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Abstract

In this work we consider two non-equilibrium models, the random av-
erage process and the diffusion with resetting. Both of these models have
very interesting features and are relevant for a variety of fields.

The random average process is defined on one-dimensional periodic lat-
tice and equipped with nearest neighbor interaction. The state of the system
is described by continuous variables that are called masses. We focus here
on totally asymmetric and discrete time dynamics. This means that at each
time-step an asymmetric mass exchange between neighboring sites takes
place. The fraction of the transported masses is defined by the probability
density function φ which we call fraction density.

We start by introducing a special case of the random average process
with state-dependent fraction density, the truncated random average pro-
cess. We will give here a short overview over the different properties of three
distinct truncated models with finite lattice size.

A new kind of random average process is introduced in this work that
is characterized by the fact that only sites, who have a mass that is above
a certain cutoff, can give a fraction of this mass to their neighboring sites.
A special property of this model is the existence of a steady state that is an
absorbing state. We determine analytically the exact form of this absorbing
state in the thermodynamic limit by a canonical ensemble approach. This
exact form also holds for systems that are partial asymmetric. Furthermore
the provided single site distribution function is a good approximation for
finite size systems.

The second class of models studied in this work are diffusive search pro-
cesses with resets. The fact that random resetting may reduce the mean du-
ration of a diffusive search process is rather intriguing. Here we re-evaluate
this positive effect of resetting for the special case of stochastic processes
that take place in bounded domains.

It will be shown here that for a diffusion process taking place in one-
dimensional domain with reflecting boundaries an optimal resetting rate can
be found. The exact value of this optimal value is provided by the solution
to the Laplace Transform of the Fokker-Planck equation. Additionally we
are in the position to calculate the non-equilibrium steady state for this
process.

Finally we consider a diffusion search process inside a two-dimensional
circular domain that switches between two phase of motion while also having

xi
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the property of resetting to the initial position. We calculate the mean time
to absorption for several variations of this procedure by determining the
corresponding survival probability. From the derived results we can define
for which parameter values resetting is still beneficial for this kind of diffusive
search.



Zusammenfassung

Wir haben uns in dieser Arbeit mit zwei verschiedenen Nichtgleichgewicht-
systemen beschäftigt, den Random Average Process und Diffusion mit Rück-
setzung. Beide Systeme haben nicht nur interessante Eigenschaften, sondern
sind auch für eine Fülle von Anwendungen interessant.

Der random average process ist auf ein eindimensionales Gitter mit pe-
riodischen Randbedingungen definiert. Wir können uns hierbei vorstellen,
dass jeder Gitterpunkt eine kontinuirliche Masse besitzt. Wir betrachten ein
total asymmetrisches Model mit diskrete Zeitschritten. Bei jedem Zeitschritt
wird eine zufällige Fraktion der Masse von einem Gitterpunkt zum näch-
sten Gitterpunkt übertragen. Die Grösse dieser Fraktion wird von der
Verteilungsdichte φ bestimmt. Wir nennen diese Funktion im folgenden
Fraktionsdichte.

Am Anfang betrachten den Spezialfall von einem Prozess mit einer Zu-
standsabhängige Fraktionsdichte, der als truncated random average process
bezeichnet wird. Wir geben hier einen kleinen Überblick über die unter-
schiedliche Eigenschaften von drei verschiedenen Modellen mit ’truncation’
Dynamik und endlicher Länge.

In dieser Arbeit führen wir eine neue Art von random average pro-
cess ein. Er ist dadurch charakterisiert, dass nur Gitterpunkte, die eine
Masse besitzen, die über einen bestimmten Wert liegen, Masse an ihren
Nachbarn abgeben können. Für diese Art von Modellen können wir sta-
tionäre Zustände finden, die als absorbierend charakterisiert werden. Dieser
absorbierende Zustand kann in den thermodynamischen Limit analytisch
bestimmt werden. Wir nutzen hierbei den Formalismus der kanonischen
Gesamtheit. Die hergeleiteten Formeln sind auch für partial asymmetrische
Systeme gültig. Die Verteilungsfunktion von Konfigurationen von endlichen
Systemen kann auf diese Weise auch bestimmt werden.

Die zweite Klasse von Prozessen, die wir in dieser Arbeit untersuchen,
sind Diffusionsprozesse mit Rücksetzung. Der Grund unserer Beschäftigung
mit dieser Klasse von Prozessen liegt in der Minimierung der Suchzeit für
stochastische Suchprozesse, die durch zufällige Rücksetzung erreicht werden
kann. Hier wollen wir diesen positiven Effekt für den speziellen Fall von
stochastischen Suchprozessen in geschlossenen Berreichen überpüffen.

Es wird gezeigt, dass für einen eindimensionalen Diffusionprozess, der in-
nerhalb von einem Interval mit zwei reflektierenden Randbedingungen stat-
tfindet, wir eine optimale Rücksetzungsrate finden können. Wir können

xiii
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den exakten Wert dieser optimaler Rate bestimmen, indem wir die Laplace
Transformierte der Fokker-Planck Gleichung berechnen. Zudem sind wir in
der Lage, den stationären Zustand von diesem Nichtgleichgewichtsystem zu
finden.

Am Ende betrachten wir Diffusion innerhalb von einem zweidimension-
alen Kreis, die zwischen zwei verschiedenen Phasen der Ausbreitung wech-
seln kann. Außerdem wird die Entwicklung dieser Diffusion durch zufäl-
lige Rücksetzungen auf den den Anfangszustand unterbrochen. Der Prozess
endet sobald ein bestimmter Punkt am Rand des Kreises erreicht wird.
Die Bestimmung der Überlebenswahrscheinlichkeit erlaubt uns die mittlere
Suchzeit für verschiedene Variationen dieses Prozesses zu berechnen. Aus
den hergeleiteten Ergebnisse können wir dann Parametergrößen bestimmen,
für die eine Rücksetzung vorteilhaft sein kann.



CHAPTER 1

Introduction

Statistical mechanics is the physical theory which connects the observ-
able behavior of complex systems with the dynamics of the microscopic parts
constituting these objects. In order to apprehend the interplay between the
two seemingly incompatible theoretical schemes of microscopic and macro-
scopic description the reduction of the degrees of freedom to a manageable
size becomes necessary. This approach proves very successful when studying
equilibrium states and has thus lead to the development of a powerful and
general framework, equilibrium statistical mechanics.

Unfortunately a very large variety of phenomena and situations involves
systems that are not in thermodynamic equilibrium. In general we can
say that non-equilibrium phenomena are encountered whenever systems are
relaxing towards an equilibrium steady state and also whenever systems are
driven, i.e., maintained away from equilibrium by external forces. This often
makes the determination of the probability distribution of the configurations
in terms of a Boltzmann-Gibbs weight formalism impossible.

The different nature of such systems and their wide area of applications
makes them more interesting that their equilibrium counterparts but does
not allow for a unified approach. In spite of this difficulty numerous promis-
ing methods arose in the last decades. Many of them have in common several
essential fundamental features on which they rely. In this work we will try
to introduce such methods like the canonical ensemble approach for non-
equilibrium systems, study their general features, and show their applica-
tions to models that have been developed in the last years. We concentrate
hereby on driven diffusive systems and focus on the relation between the
microscopic dynamics described by stochastic processes and the observable
characteristics like condensation and minimization of search times.

Condensation is a concept that is familiar to us in everyday life, nor-
mally through the phase transition of water vapor from gaseous to liquid.
Another prominent example is the Bose-Einstein condensation which can be
treated in terms of the grand-canonical ensemble in equilibrium statistical
mechanics. The term condensation is used in statistical mechanics in order
to describe the occupation of a certain state by a macroscopic fraction of the
particles in the system. The properties and occurrence of condensation has
been investigated in the last years in terms of a particular driven diffusive
system: the zero range process (ZRP). In the ZRP, particles hop from site
to site on a lattice with a hop rate which depends on the number of particles

1



2 1. INTRODUCTION

on the departure site. Here we will discuss the properties of condensation
for a similar system where instead of particles we will consider the exchange
of continuous quantities between different sites. This system is the random
average process (RAP) and its dynamics are given by the so-called fraction
density, which defines the amount of mass transported between different
sites.

Stochastic search processes on the other side are also related to everyday
experience but on a very unfathomable level. They may describe chemical
reactions in cells, or foraging in ecological environments, activation times
for call options etc. We are studying here the properties of such processes
that take place in bounded domains. We know that for a diffusion process
in a bounded domain the steady sate is described by the detailed balance
condition. The implementation of a driven force in terms of a resetting
mechanism, that forces the system back to its initial state, destroys the de-
tailed balance condition and raises the question with regard to the existence
and form of the new stationary state. Originating from this simple question
several properties of this non-equilibrium stochastic search process may be
analyzed.

In chapter 2 we start by presenting some general features of stochas-
tic mass transport models and focus on the factorization property of the
ZRP and the RAP. After that we consider a variation of the random av-
erage process with state-dependent fraction density. Truncation dynamics
that control the maximum amount of the transported mass per site are im-
plied. The effect of three distinct truncation dynamics on the condensation
transition are illustrated by numerical simulations.

In chapter 3 a new form of the random average process is introduced.
The special property of this process is the existence of an absorbing state.
We will determine the single-site mass distribution for this absorbing state by
using a canonical ensemble approach. The description of this state becomes
possible by studying the stochastic dynamics induced by the state-dependent
fraction density. We can furthermore determine sufficient conditions for
the appearance of this stationary state. To demonstrate the utility of the
proposed canonical approach we analyze a broad class of mass transport
models and use numerical simulations of finite size periodic systems in order
to show the validity of our results. Lastly we discuss briefly the relevance of
asymmetry for the presented methods.

Starting with Chapter 4 we go over to the analysis of stochastic search
processes. We consider the one-dimensional diffusion in a bounded domain
with stochastic resetting that forces the Brownian motion to return to its
initial position. Our motivation arises from the existence of an optimal
resetting rate that minimizes the search time. We start our analysis by
presenting a method to derive the Master equation for different resetting
mechanisms. In the next step we compute the non-equilibrium steady state
for a special case of this differential equation. Then we consider the exis-
tence of an absorbing point in the system and calculate the mean time to
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absorption of the diffusive particle by the target. Numerical and analytical
calculations will be used in order to determine the optimal resetting rate.
Finally we discuss different special cases of the presented problem.

Lastly in chapter 5 we consider a Brownian particle that has the property
to change between two different modes of motion. The idea for this imple-
mentation came from works focused around intermittent stochastic processes
and surface mediated diffusion. Both of these processes are very relevant for
biological and chemical systems. Here we study the Brownian motion of a
particle in a bounded circular 2-dimensional domain, in search for a station-
ary target on the boundary of the domain. The process switches between a
two-dimensional diffusion inside the circle and an one-dimensional diffusion
along the boundary. During the diffusion, the Brownian particle resets to its
initial position with a constant rate. The Fokker-Planck formalism allows
us to calculate the mean time to absorption (MTA) as well as the optimal
resetting rate for which the MTA is minimized. From the derived analytical
results the parameter regions for which resetting reduces the search time
can be specified. The MTA for a variety of different realizations is derived
analytically and shows excellent agreement to our numerical results.





CHAPTER 2

Condensation in Truncated Random Average
Processes

2.1. Introduction

In this chapter we focus on the properties of the condensation transitions
that can be observed in truncated random average processes. Condensation
is a phenomenon occurring in a plethora of physical systems and under differ-
ent conditions. Our everyday experience is full of such phenomena whether
it may be the appearance of water drops on a cold surface or formations of
small clouds in low-pressure zones above aircraft wings in the case of damp
weather conditions.

Although these examples describe a transition from a gas to a liquid
phase we have to note hereby that in general condensation phenomena are
not necessarily related to this transition. In statistical physics the notion
of condensation is more widely used in order to describe any process in
which a finite fraction of some conserved quantity becomes localized in the
phase space. This means that if the system consists of many particles a
macroscopic fraction of those particles will assume the same value for a
given characteristic quantity of the system. The most prominent example
is the Bose-Einstein Condensation [2], where a finite fraction of all bosons
occupy the lowest energy state. This behavior is not limited to elementary
particles or small molecules as a variety of works in fields as diverse as traffic
models [3, 4, 5], quantum gravity [6], networks [7, 8], economics [9, 10],
granular materials [11], and mass transport [14] in the last years has shown.

It is important to note here that many of these different instances of
condensation share common basic features. The analysis of those universal
properties has advanced greatly in the last years through the study of mass
transport models like the zero-range process (ZRP) [15]. Mass transport
models describe systems in which a conserved quantity, often called ’mass’,
is transferred from site to site of a lattice. Condensation is manifested
in such models when, in the steady state, a finite fraction of the total mass
condenses onto a single lattice site. The implied dynamics of mass transport
often allow for a simple description of the steady state and build therefore
a natural setup for the study of condensation transitions. This is especially
true for the case of the ZRP which enjoys the convenient property of having
a factorized steady state.

5



6 2. CONDENSATION IN TRUNCATED RANDOM AVERAGE PROCESSES

This property is also shared by the asymmetric random average process
(ARAP) [17, 18], for which no condensation is expected. The ARAP is
a special case of the random average process that was first introduced by
Ferrari and Fontes in [19]. A condensation transition may be induced for this
class of models by imposing a maximum threshold on the amount of mass
that may be transported between two sites. Such a model was introduced in
the past by Zielen and Schadschneider and was characterized as truncated
random average process [36].

In this chapter we will focus on the properties of condensation arising
for such truncated models of mass transfer. We start with a brief introduc-
tion on Markov Chains and Master Equations, allowing us to determine the
conditions for a steady state. In section 2.3 we will see how grand canonical
analysis can be used in order to determine the critical density for conden-
sation for the special case of factorized non-equilibrium steady states as the
ones occurring for the ZRP and ARAP. The concept of truncation will be
presented in section 2.4. In the same section we present some numerical
findings for finite and periodic one-dimensional systems for three different
variations of the truncation dynamics. Some concluding remarks are pre-
sented in the last section of this chapter.

2.2. Markov Processes and Master Equation

One of the basic assumptions of statistical physics is the Markovian
Postulate which states that "the current observational state embodies all
the observational information about the past history of the system that is
relevant to its observable future behavior" [1]. In this thesis we rely on an
even stronger version of this postulate since we are dealing with the special
class of stochastic processes called Markov processes. Markov processes can
be characterized picturesquely as ’processes without memory’ [12].

In order to characterize this property in a more rigorous way we use
the definition of the conditional probability. Let P (x, t) describe hereby the
probability density of stochastic process at the time-point t. The conditional
probability is then the probability density at a time-point t1 provided that
the state x2 was observed at the time t2. In the following we use therefore
the notation P (x1, t1|x2, t2). We assumed here that the times t1 and t2
are ordered: t1 < t2. The current definition can be generalized for more
complicated histories. As example, an observation at the time tn provided
the history of the process is described by the measurements x1, x2, ..., xn−1 at
the corresponding times t1, t2, ..., tn−1 with t1 < t2 < ... < tn−1 is described
by the function P (xn, tn|xn−1, tn−1; ...;x1, t1).

By providing this formalism we can describe a Markov process as a
process fulfilling the equation

P (xn, tn|xn−1, tn−1; ...;x1, t1) = P (xn, tn|xn−1, tn−1). (2.1)
This equation describes a property stronger then the one implied by the
Markov Postulate. The probability of finding state xn at the time tn depends
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only on the state of the system at the previous time-step and not on the
whole previous history.

The Markovian property allows us to replace the formula for the joint
probability by the following expression:

P (x1, t1; ...;xn, tn) = P (x1, t1)P (x2, t2|x1, t1)...P (xn, tn|xn−1, tn−1). (2.2)

We see also that the whole evolution of the process is governed by the
transition probabilities P (xk, tk|xk−1, tk−1) and the initial distribution. This
property leads also to the so-called Chapman-Kolmogorov equation:

P (x3, t3|x1, t1) =
∫

dx2 P (x3, t3|x2, t2)P (x2, t2|x1, t1) (2.3)

with t1 < t2 < t3. The Chapman-Kolmogorov equation is non-linear and
thus not suited for defining the stationary state of the process. The master
equation that will be derived in the following is far better suited in this
regard.

For the processes discussed in this thesis we deal with processes evolv-
ing in a continuous phase space and discrete time setting. Since we are
working in such a discrete time setting we often adopt the characteriza-
tion time-step in order to describe the different relevant instances of times.
We define hereby the distance between two sequential time-points as ε =
tk− tk−1 = ∆t. For two subsequent time-points tk−1, tk the transition prob-
ability P (xk, tk|xk−1, tk−1) is fully described by the nature of the system and
its specific properties. This mean that

P (x, tk|x′, tk−1) = P (x, tj |x′, tj−1) (2.4)

for all time-points tk and tj .
The evolution of the Markov Process is described by the dynamical rule

[13]

P (x, tk) =
∫

dx′ P (x, tk|x′, tk−1)P (x′, tk−1) (2.5)

which can be rewritten using the formula
∫

dx′ P (x′, tk|x, tk−1) = 1 as

P (x, tk) = P (x, tk−1)− P (x, tk−1)
∫

dx′ P (x′, tk|x, tk−1) +

+
∫

dx′ P (x, tk|x′, tk−1)P (x′, tk−1) (2.6)

Now it follows that

P (x, tk)− P (x, tk−1) =
∫

dx′ P (x, tk|x′, tk−1)P (x′, tk−1)−

−P (x, tk−1)P (x′, tk|x, tk−1). (2.7)

By dividing through ∆t and taking the limit ∆t → 0 we can derive the
master equation

∂

∂t
P (x, t) =

∫
dx′

[
P (x′, t)W

(
x′ → x

)
− P (x, t)W

(
x→ x′

)]
. (2.8)
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with the terms W (x→ x′) describing the transition rates between different
states

W (x→ x′) = lim
∆t→0

P (x, tk|x′, tk−1)
∆t (2.9)

Now this form is especially helpful when trying to determine the steady
state

∂

∂t
P (x, t) = 0. (2.10)

The steady state condition is equivalent to the equation∫
dx′

[
P (x′, t)W

(
x′ → x

)
− P (x, t)W

(
x→ x′

)]
= 0. (2.11)

This equation is easily fulfilled by the equation

P (x′, t)W
(
x′ → x

)
= P (x, t)W

(
x→ x′

)
, (2.12)

which is known as detailed balance condition. Such a condition is to be
expected for the stationary sate of an equilibrium system that is also ergodic.

On the other side a non-equilibrium steady state (NESS) fulfills Eq.
(2.11) but not the detailed balance condition Eq. (2.12). This fact makes
the characterization of NESS a difficult undertaking and will be the main
goal of the next chapter.

2.3. Mass Transport Models with Factorized Steady States

In the introduction of this chapter we claimed that the study of mass
transport models and especially of the ZRP and ARAP greatly improved
our understanding of condensation transitions. The influence of these two
models is mainly explained due to the fact that their respective steady states
{mi, ...,mn} are factorizable. This means that the probability to observe
the state {mi, ...,mn} can be expressed in terms of the single site functions
f(mi):

P (m1, ...,mn) ∼
n∏
i=1

f (mi) . (2.13)

In this section we will recapitulate some important results of the past
with regard to the properties of those models and discuss the general con-
ditions for the existence of a factorized steady state in a stochastic mass
transport model.

We use a very general description of the class of one-dimensional mass
transport models. Let us consider a one-dimensional lattice of L sites with
periodic boundary conditions (site L + 1 corresponds to site 1). On each
site i of the lattice resides a mass mi and at each time-step a portion of
this mass, µi ≤ mi is chipped off and transported to a different site of the
system. The total mass

M =
L∑
i=1

mi (2.14)
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is conserved. In this chapter we will consider only transport between nearest
neighbors and only in one direction (total asymmetric process). The portion
of the mass transported is given by the probability density function φ(µ|m).
This function is also called chipping kernel and it has to satisfy the obvious
normalization condition ∫ m

0
dµφ (µ|m) = 1. (2.15)

An appropriate choice of the chipping kernel φ(µ|m) can recover the ZRP
and the ARAP as we will see later. In this work we focus mostly on parallel
update rules. This does not mean that continuous time dynamics (especially
random sequential update) is excluded from the present formalism as will
be shown for the specific cases studied below.

For the case of discrete time dynamics the evolution of the system is
given by the master equation

Pt+1 (m1, ...,mL) = Zt (L,M)−1
L∏
i=1

∫ ∞
0

dm′i
∫ m′i

0
dµi ϕ

(
µl|m′l

)
×

×
L∏
j=1

δ
(
mj −m′j + µj − µj−1

)
Pt
(
m′1, ...,m

′
L

)
(2.16)

where Zt (L,M) is the normalization constant with

Zt (M,L) =
∫ ∞

0
dm1....

∫ ∞
0

dmL Pt (m1, ...,mL) δ
(

L∑
i=1

mi −M
)
. (2.17)

This expression can be considered as the equivalent of the canonical equilib-
rium partition function and is thus usually referred to as partition function.
The conservation of the total mass is guaranteed by the δ-function.

In the long time limit (t→∞) the steady state distribution P (m1, ...,mL)
is achieved. As it was shown in [42] this steady state factorizes if the dy-
namics of the system are described by a fraction density kernel of the form

φ(µ|m) ∝ u(µ)w(m− µ). (2.18)

This is easily proven by considering the Laplace transform of P (m1, ...,mL)

G (s1, ..., sL) =
∫ ∞

0
dm1....

∫ ∞
0

dmL e−
∑

i
simiP (m1, ...,mL) (2.19)

and using the factorization property

P (m1, ...,mL) = Z (M,L)−1
L∏
i=1

f (mi) δ
(

L∑
k=1

mk −M
)

(2.20)

with the normalization constant

Z (M,L) =
L∏
i=1

∫ ∞
0

dmi f(mi)δ
(

L∑
k=1

mk −M
)
. (2.21)
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By combining the two equations (2.19) and (2.20) we can derive the expres-
sion

G (s1, ..., sL) = Z (M,L)−1
L∏
i=1

g(si) (2.22)

where
g(s) =

∫ ∞
0

dmf(m)e−sm. (2.23)

By taking the master equation into account we can see that
L∏
i=1

g(si) =
L∏
i=1

[∫ ∞
0

dm′i f(m′i)
∫ m′i

0
dµi φ(µi|m′i)e−si(m

′
i−µi+µi−1)

]
. (2.24)

We can now perform a change of the variable σ = m− µ in order to obtain
L∏
i=1

g(si) =
L∏
i=1

[∫ ∞
0

dµi
∫ ∞

0
dσi P(µi, σi)e−siσi−si+1µi

]
(2.25)

with
P(µi, σi) = f(mi)φ(µi|mi). (2.26)

A necessary and sufficient condition for the solution of (2.25) is [42]∫ ∞
0

dµi
∫ ∞

0
dσi φ(µi|σi)e−siσi−si+1µi = `(si)k(si+1) (2.27)

where the two functions, k and `, must satisfy
k(s)`(s) = g(s). (2.28)

By applying now the inverse Laplace transform on this product we can
see via the convolution theorem that

f(m) = [v ∗ w] (m) =
∫ m

0
dµ v(µ)w(m− µ) (2.29)

where
k(s) =

∫ ∞
0

dµ e−sµv(µ) `(s) =
∫ ∞

0
dσ e−sσw(σ). (2.30)

Finally from the combination of Eq. (2.27) with (2.30) and (2.26) with
(2.29) we obtain

φ(µ|m) = P(µ, σ)
f(m) = v(µ)w(m− µ)

[v ∗ w] (m) . (2.31)

The importance of this proof with regard to the sufficient and necessary
condition for a factorized steady state provided by Evans, Majumdar and Zia
in [42] cannot be overstated. It not only allows for an easy characterization
of the steady state since the weight functions are provided by a rather simple
formula but also delivers an easy mechanism for the characterization of
equivalent chipping distributions.

The provided condition might be elegant but at the same time it corre-
sponds to an ’implicit test’. Hence a proof of it might be difficult. In order
to overcome this difficulty a simple explicit test for φ was provided in [43].
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One has to consider hereby that the condition provided by Eq. (2.31) is
equivalent to asking whether

∂

∂µ

∣∣∣∣
σ

∂

∂σ

∣∣∣∣
µ

lnφ (µ|µ+ σ) (2.32)

is a function of µ+ σ alone. The equivalence between the two conditions is
shown by integrating with respect to µ and σ, from which a φ of the form
(2.31) follows.

For mass transport models evolving in a discrete configuration space the
corresponding chipping rates can be written as

φ(µ|m) =
∞∑
n=1

∞∑
`=0

φ`,nδ (µ− `) δ (m− n) . (2.33)

For discrete masses in a discrete time setting the factorization condition can
be expressed as

φ`,n = v`wn−`
fn

(2.34)

where fn describes the single-site weight

fn =
n∑
`=0

v`wn−` (2.35)

with

f(m) =
∞∑
n=1

fnδ (m− n) . (2.36)

It is not hard to see that the factorization text can now be rephrased in this
case in terms of the cross ratio

R(`, n) != φ`+1,n+2φ`,n
φ`+1,n+1φ`,n+1

, (2.37)

defined when when all the φ’s are positive. One can claim namely that the
steady state factorizes if the cross ratio depends solely on n (R(`, n) = R(n)).
Then, from (2.34), one derives

R(n) =
f2
n+1

fnfn+2
(2.38)

which implies the recursion
fn+2
fn+1

= 1
R(n)

fn+1
fn

. (2.39)

Iterating this formula two times, which corresponds to a discrete version of
’integrating twice’, yields

fn = f0

(
f1
f0

)n [n−2∏
m=0

1
R(m)n−m−1

]
for n ≥ 2. (2.40)
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Now that we have discussed the necessary and sufficient conditions with
regard to the factorization we turn to the issue of condensation and espe-
cially to the question: when does a condensation transition within a fac-
torized state occur? A grand canonical ensemble approach is easily applied
under the assumption of factorization [45]. In this approach we take the
thermodynamic limit (L,M → ∞ with fixed overall density ρ = M/L). In
this limit the sites decoupled from each other and the single site mass distri-
bution is given by p(m) = f(m)e−µm where µ is the negative of the chemical
potential and is chosen to fix the density through the relation

ρ = ρ(µ) !=
∫∞

0 dmmf(m)e−µm∫∞
0 dmf(m)e−µm . (2.41)

This function ρ(µ) allows us now to easily derive the criterion for condensa-
tion. We can consider hereby three different cases with regard to the form
of the function f(m) in the large m limit:

1: f(m) decays faster than exponential. In this case, the integrals
in (2.41) converge and every value of µ in the range [−∞,∞] is
allowed. This means that for each value of ρ a suitable choice for µ
can be made so that Eq. (2.41) holds and there is no condensation.

2: f(m) decays slower than m−2. In this case, a convergence of the
integrals in (2.41) is only granted for values of µ in the range [0,∞].
As in the previous case for any given ρ a value for µ can be found
so that Eq. (2.41) holds and there is no condensation.

3: f(m) decays slower than exponential but faster than m−2. In
this case the allowed range of µ is [0,∞]. In contrast to case 2
the value of ρ(0) is finite. This value also sets the critical density
ρc = ρ(0) since for ρ < ρc a positive µ satisfying (2.41) can be
found. However, a condensation transition takes place for ρ > ρc
since no real solution can be found in this case. The extra mass
(ρ− ρc)L accumulates at one site and forms a condensate.

We have to note here that the single-site probability distribution p(m)
is given by

p(m) = f(m)e−µm for ρ < ρc. (2.42)
This result of the grand-canonical approach does not hold for ρ > ρc where
the grand canonical approach fails.

In the following we will discuss some special cases of mass transport
models, the zero range and the asymmetric random average process, that
were extensively studied in the last years.

2.3.1. Zero Range Process. The Zero-Range Process (ZRP) serves
as a model of transportation between sites which are occupied by single
mass units or particles which hop to neighboring sites and was introduced
by Spitzer in [59]. Each lattice may thus contain an integer number of
particles leading to the special case of mi ∈ N for all sites of the system
i ∈ {1, ..., L}. So we say that the number of particles on site l is equal to
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nl and we consider configurations {n1, ..., nL} which are hereby elements of
NL. The total number of particles

N =
L∑
i=0

ni (2.43)

is conserved by the dynamics. It can be shown [42, 43] that for this class
of models a factorized steady state can be found for both types of update
dynamics, parallel and random sequential.

For parallel dynamics we consider discrete time-steps. At each time-step
from all sites containing masses that are above zero a unit mass is chipped off
and transported to next site (we consider here totally asymmetric dynamics)
with a probability ũ(n) where n is the mass at the site. For this simple model
we have φ`,n = 0 for all ` > 1 and thus we see that there exists only one
cross ratio, namely, for ` = 0,

R(0, n) = ũ(n+ 2)[1− ũ(n)]
ũ(n+ 1)[1− ũ(n+ 1)] . (2.44)

Consequently the ZRP admits a factorized steady state since R is indepen-
dent from `. By inserting now this expression for R in Eq. (2.40) we get
[59]

fn =


(f1ũ(1))n
1−ũ(n)

[
n∏

m=1

1−ũ(m)
ũ(m)

]
for n > 0

1 for n = 0.
(2.45)

The same result was derived in [46, 15] by using the more complicated trans-
fer matrix method. We continue now by considering the random sequential
dynamics. This is easily obtained by letting f1ũ(1) = dt and ũ(m) = u(m)dt
where u(m) describes the departure rate of a particle sitting at a site with
m particles. Taking now the limit dt→ 0 yields

fn =
n∏

m=1

1
u(m) for n ≥ 1. (2.46)

This simple relation can also be found by considering the master equation
for the steady state

0 =
L∑
l=1

[u(nl−1 + 1)P (..., nl−1 + 1, nl − 1, ...)− u(nl)P (..., nl−1, nl, ...)] Θ (nl) .

(2.47)
Here we use the notation Θ in order to characterize the Heaviside function.
Insertion of the factorization property

P (ni, n2, ..., nL) = 1
ZL,N

L∏
i=1

f(ni)δ
(

L∑
i=1

ni −N
)

(2.48)
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Figure 2.1. Diagrammatic representation of the mapping
between the ASEP and the ZRP.

where ZL,N is the normalization

ZL,N =
∑
{ni}

L∏
i=1

f(ni)δ
(

L∑
i=1

ni −N
)

(2.49)

leads then to the relations
u(nl−1 + 1)f(nl−1 + 1)f(nl − 1) = u(nl)f(nl−1)f(nl) (2.50)

⇔ u(nl−1 + 1)f(nl−1 + 1)
f(nl−1) = u(nl)

f(nl)
f(nl − 1)

!= constant, (2.51)

for all values of l. The constant can now be set equal to unity without loss
of generality so that the iteration

f(nl) = f(nl − 1)
u(nl)

(2.52)

is obtained. Now again without loss of generality we can set f(0) = 1 and
derive the above expression for the terms f(n)

f(n) =
n∏
i=1

1
u(i) for n > 0. (2.53)

The Zero-Range process possesses two rather interesting properties. First,
there is the existence of a mapping to the asymmetric exclusion process
(ASEP). This mapping procedure relies on one side in the replacement of
the particles in the ZRP through vacancies in the exclusion process and the
replacement of the sites in the ZRP through occupied sites in the exclusion
process on the other side. A diagrammatic representation is shown in the
Figure 2.1 above.

Second, the zero range process proves to be an excellent case study for
the analysis of the condensation phenomenon. The condensation taking
place in the ZRP is closely related to the Bose-Einstein condensation. One
has to note hereby that while Bose-Einstein condensation takes place in
the state space the condensation of the zero range process is a real space
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condensation. Another important difference is that in contrast to the Bose-
Einstein condensation the grand-canonical analysis breaks down for the ZRP
(as we have seen above).

We have also seen in the last subsection how the analysis of the con-
densation phenomenon for factorized steady states can be performed by
analyzing the properties of the function ρ(µ). Here we will show how a
similar approach can be used for the case of models evolving in discrete
configuration space.

We start from the definition of the grand canonical partition function in
a discrete setting

ZL(z) =
∞∑
n=0

znZL,n, (2.54)

where the fugacity z is used to determine the density ρ through

ρ = z

L

∂ lnZL(z)
∂z

. (2.55)

By inserting the previous expression of the partition function (2.49) we get

ZL(z) =
∞∑

{ml=0}
z
∑

l
ml

L∏
l=1

f (ml) = [F (z)]L (2.56)

where

F (z) =
∞∑
m=0

zmf(m) (2.57)

and
ρ = z

F ′(z)
F (z) . (2.58)

The critical density is then easily derived if we observe that the right
hand site of the equation above is an increasing function of z. But this in-
crease of the density with increasing values of z is limited by the convergence
radius of the function F (z), which we set now to be z = β. We thus have a
critical density of

ρc = β
F ′(β)
F (β) . (2.59)

Now there exist two possibilities either ρc is infinite which would lead to the
existence of a solution for all values of ρ. On the other side if ρc is finite
for values of ρ above this value the relation may not hold and we have the
condensation of the excess mass of particles L(ρ− ρc).

Now if know the hop rate u(n) we can determine the critical density for
this system. Our condition for condensation is here related to the existence
of a convergence radius for the infinite series zF ′(z) =

∑∞
n=1 nz

nf(n). We
can consider hereto the ratio of successive terms which reads

(n− 1)f(n− 1)
znf(n) = u(n)

z

(
1− 1

n

)
. (2.60)
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Figure 2.2. Mapping between the particles on a circle and
mass exchange between different sites picture for the asym-
metric random average process

From the ratio test it follows that this ratio should decay more slowly than
1 + 1/n which leads to the requirement

u(n) > β
n+ 1
n− 1 ' β

(
1 + 2

n
+O

( 1
n2

))
. (2.61)

This method may be applied as example in order to see that for the gener-
alized hopping rate

u(n) ' β
(

1 + a

nλ

)
(2.62)

a condensation occurs when 0 < λ < 1, and for a > 2 when λ = 1, in which
case the critical density

ρc = 1
a− 2 (2.63)

can be found exactly [15].

2.3.2. Asymmetric Random Average Process. The asymmetric
random average process (ARAP) is a stochastic mass transport model in
which each site contains a continuous amount of mass, meaning that we
consider here the case of m ∈ R+. Processes taking place in a continuous
phase space setting have served as a basic model for a variety of physical
systems and therefore have been the object of a large number of studies in
the last years [20, 22, 21]. They are also in general more complicated that
discrete mass models since the characterization of the steady is not an easy
task in a continuous state space. Furthermore the dynamics of condensation
in a continuous phase space setting cannot be easily understood.

We start again by considering parallel update and totally asymmetric
dynamics. At each update a random proportion r = µ/m ∈ [0, 1] of the
continuous mass of each site is transported to the neighboring site

mi(t+ 1) = (1− ri(t))mi(t) + ri+1(t)mi+1(t). (2.64)
Like in the zero range process we can use an equivalent picture of particles
moving on a ring as shown in Figure 2.2 above.

In this picture we can imagine L particles which move on a line. Let
xi ∈ R+/ρL describe the position of the i-th particle. Then one can think of
mi as the distance between the i+1-th and the i-th particle, mi = xi+1−xi.
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Hereby we imply periodic boundary conditions by setting xL+1 = x1 with
mL = x1−xL. The positions of the particles are updated after each time-step
simultaneously according to the rules given by Eq. (2.64). We can imagine
each particle making a jump of the length µi,t ≤ xi+1,t − xi,t forward

xi(t+ 1) = xi(t) + ri(t)(xi+1(t)− xi(t)). (2.65)

These simple dynamics are generally described by a chipping kernel of
the form

φ(µ|m) = χ(µ/m)
m

. (2.66)

As before we can test the factorization for this general form by differentiating
twice
∂

∂µ

∣∣∣∣
σ

∂

∂σ

∣∣∣∣
µ

lnφ (µ|µ+ σ) = −r(1− r)
m2

d
dr

1
χ(r)

dχ(r)
dr −

1− 2r
m2

1
χ(r)

dχ(r)
dr + 1

m2 .

(2.67)
If we claim now that this expression depends only on m we come to the
conclusion that

d
dr

[
r(1− r) d

dr
1

χ(r)
dχ(r)

dr

]
= constant. (2.68)

The solution to this equation is given by

χa,b(r) = 1
B(a, b)r

a−1(1− r)b−1 (2.69)

with a, b ∈ R+, where the normalization constant is given by the Beta
function

B(a, b) =
1∫

0

dr ra−1(1− r)b−1. (2.70)

We see also that the steady state mass distribution factorizes if the chipping
kernels are Beta densities. This general result was first suggested in [21] and
later proven in [22]. It could be also shown that in this case the single-site
mass distribution is described by the Gamma densities

pλ(m) = λλ

Γ(λ)
1
ρ

(
m

ρ

)λ−1
e−λm/ρ, (2.71)

where the parameter λ is given by λ = a+ b.
The simplest version of the asymmetric random average process (ARAP)

is given for the choice of a = b = 1 leading to the fraction density χ(r) = 1.
This process is often referred to as free ARAP since no restriction (except
the conservation of the total mass, M =

∑
imi(t) = ρL) is applied. In this

case we have λ = 2 which leads to

P (m) = 4m
ρ2 e−2m/ρ. (2.72)
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This expression was first derived in [16] where the force fluctuations in bead
packs were analyzed. One has to note that the product measure Ansatz
P (m1, ...) =

∏
i P (mi) is exact for parallel update rules [17, 18].

As in the case of the zero range process it is interesting to consider the
application of random sequential update rules for the asymmetric random
average process. One just has to consider that at each time-step the chipped-
off mass is transported to the neighboring site only with a probability p while
in the complementary case, appearing with a probability (1 − p), the mass
returns to the original site, leading to

χ(r) = (1− p)δ(r) + p. (2.73)

Let us say that the difference between two time-steps is equal to dt, then by
setting p = dt and taking the limit dt → 0 we arrive at a continuous time
model. This model is best approximated by a random sequential update
mechanism. In this case the product measure ansatz delivers for the single-
site mass distribution

P (m) = 1√
2πρme−m/(2ρ) (2.74)

which is not exact as was shown in [17, 18].

2.4. Truncated processes

In the past several rigorous results for state-independent functions, χ(r),
have been derived [23, 24, 25, 26, 27, 28, 29, 30, 31]. While these
models can be easily analyzed and find applications in a large range of fields
their state-independent nature also imposes several limits on the nature
of the possible discussed systems. It is namely so that in many systems
a reduction of the flux is not only explained by the interaction between
the different particles but also due to the limited transport properties of the
system. In stochastic mass transport models such an effect is often described
as a bottleneck [32]. As example, data transport between different servers
is not only limited by the capacities of the servers but also depends on
the capability of the connection between them. In order to describe this
feature in terms of the random average process a truncation mechanism
proves useful.

We have to note here that truncation models also provide an interesting
challenge since in contrast to the ZRP or the ARAP the existence of a unique
stationary measure is not necessarily given [59, 33, 34] allowing us thus to
study systems with a broken ergodicity property [36, 37]. Furthermore the
metastability and phase transition properties related to the condensation
phenomenon which became recently an object of scientific interest [38, 39,
40, 41] are easily implemented in the setting of truncation dynamics.

Here, as in the next chapter, we use parallel update rules and consider
totally asymmetric dynamics. The evolution of the system is thus described
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Figure 2.3. Characteristic representation of the dynamics
of the TARAP. The mass fraction µ1 cannot be transported
to site 2 since µ1 > ∆. On the other side the transport from
site 2 to site 3 takes place since µ2 < ∆.

by the equation

mi(t+ 1) = mi(t)− µi(t) + µi−1(t). (2.75)

The terms µ describe a noise process where each term is given by the prob-
ability density function φ(µ|m). The stochastic mass transport models dis-
cussed in this chapter do not fulfill the factorization condition. An analytical
approach to questions regarding the condensation transition and the nature
of the condensate is thus difficult and proves even impossible for the trun-
cation models discussed here.

In order to define the truncation dynamics we use a cutoff parameter
∆. A simple example is the truncated asymmetric random average process
[36] for which at each time-step a random fraction of the mass from each
site is chosen and transported to the neighboring site only if the chosen
amount is smaller than the cutoff ∆. The fraction density of this process
has correspondingly the form

φ(µ|m) = 1−R′(m)
m

δ(µ) + Θ (R′(m)− µ)
m

(2.76)

where Θ is the Heaviside step-function and

R′(m) = min (m,∆) (2.77)

represents the maximum possible amount.
In the following we choose to set ∆ = 1. This does not lead to a loss of

generality since the dynamics of the process and specifically the occurrence
of a condensate are fully specified by the ratio ∆/ρ and the length of the
system L.
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For the analysis of truncation dynamics two parameters are useful. The
first one is the flux in the system at a specific time-point t:

J(t) =
∑L
i=1 µi(t)
L

. (2.78)

We can namely claim that for truncation processes the ensemble average of
the flux at a specific time-point is always below that of the corresponding
free ARAP

〈J(t)〉 ≤ 0.5ρ. (2.79)
One has to note that for the models presented here the free ARAP case can
be restored by choosing ∆ =∞.

Another important characteristic of truncated processes is the largest
mass in the system at a specific time-point. We consider also in the following
the order statistics of the masses in the system. We characterize hereto the
k-largest mass in the system at the time-point t by `k(t). Hence we use the
notation `k(t) with

`L(t) < `L−1(t) < ... < `1(t) = max
1≤i≤L

mi(t). (2.80)

It can be shown that in the free ARAP case following equation for the largest
mass in the system is fulfilled (see Appendix B)

〈`1〉 = 0.54ρ ln(8.63L+ 1). (2.81)
The brackets refer again to the ensemble average and we ignored the indica-
tion of time since this expression holds for all time-points. In the following
we will consider only systems with L = 100. This makes the comparison
between the different models easier. Now if we set L = 100 then we can
derive

〈`1〉 = 3.65ρ = 100ρ`∗. (2.82)
This value

(
`∗ = 3.65 · 10−2) will serve as reference in the following discus-

sion.
We start now with the analysis of truncation processes with a finite

system length. We have seen that for the ZRP the grand canonical approach
provides a description of the critical density. Furthermore the canonical
approach that will be introduced in the next chapter allows us to analyze the
nature of the condensate for mass transport models with factorized steady
states. Since both of these approaches cannot be used here we rely on a
different method.

An inquiry of the condensation transition for truncated models would
require us to consider next to the probability for a condensate to appear
in the system also the stability of those condensates. Unfortunately an
analysis of this property proves to be difficult, if not impossible. In order to
avoid this problem we decided to introduce a parameter γ which allows us
to control the persistence of a condensate in the system. The effect of this
parameter can be read from the corresponding probability density function
φ(µ|m) presented in the following three subsections.
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Figure 2.4. Characteristic representation of the function
m1−γ for different values of the parameter γ. This represen-
tation helps us evaluate the function R(m) = min

{
m,m1−γ}

used extensively in the next sections.

2.4.1. TARAP. We start with a generalization of the truncated ran-
dom average process (TARAP) by introducing the fraction density

φ(µ|m) = m−R(m)
m

δ(µ) + Θ (R(m)− µ)
m

, (2.83)

where Θ is the Heaviside step-function and

R(m) = min
{
m,m1−γ

}
(2.84)

represents the maximum possible amount. This fraction density describes
a process that prohibits each transport between two sites where the trans-
ported amount of mass µ is above the cutoff m1−γ . If we choose to set
γ = 1 then the expression of the original TARAP for ∆ = 1 is restored (see
Fig. 2.4). On the other side if we set γ = 0 then we can restore the free
ARAP model. The moments of the transported mass per site and time-step,
〈rkmk〉 = 〈µk〉, are given by the equation

〈rkmk〉 =
m∫

0

dµµkφ(µ|m) = Rk+1(m)
(k + 1)m. (2.85)

By using Monte Carlo simulations one can observe three different states
as represented in Figure 2.5. We characterize these states by the time aver-
aged values of the parameters 〈`1(T )〉ρ−1L−1 and 〈J(T )〉 averaged also over
105 realizations in the stationary regime. We have to note here that since
it is impossible to define analytically the time necessary for the distribution
to become stationary, a numerical method becomes indispensable. For most
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Figure 2.5. Schematic diagram for the TARAP model in
the ρ-γ plane for L = 100. The dashed line describes the
crossover between LF1-LF2. The characteristics of these
corresponding states are described by the same dynamics and
thus we choose a distinct way of displaying the crossover line
between them.
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Figure 2.6. Mean largest value of the TARAP in the sta-
tionary limit for L = 100 and different values of γ.

of the parameter sets {ρ, γ} and L = 100 the steady state is achieved after
approximately T = 105 time-steps. The time averaged quantities are also
calculated by taking 105 time-steps into account.

For γ < 0 we see that the flux of the system is below the free ARAP
expectations and the overall variance of the single site mass distribution is
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Figure 2.7. Time evolution of the largest mass for the
TARAP for L = 100, γ = 1 and different densities.

also minimal. We therefore characterize this state as low-flow state (LF). In
this state for small densities the mean largest value of the system is below
`∗. This changes completely for higher densities (ρ ≈ 0.4 for γ = −1), where
we observe values of `1 well above the free ARAP expectation `∗. We see
that in this case the truncation has a significant effect on the distribution
of the largest value (LF1).

For increasing densities (ρ > 1.2) the value of `1 shows no difference to
the free ARAP case as shown in Figure 2.6. For such high densities more
than half of the sites have a mass above 1 and the effect of the truncation in
the distribution of the largest value becomes negligible. At the same time
this state is completely distinguishable from the free ARAP state since the
flux in the system is well below ρ/2 (LF2).

For γ > 0 we can observe two different states. For small values of γ the
differences to the free ARAP system are minimal. This state is characterized,
due to the high flow in the system, as fluid phase (F). The probability of
condensation as well as the lifetime of the corresponding condensates are
small and consequently no deviation of 〈`1〉 from `∗ could be observed in
our simulation.

For high densities and values of γ several condensates form (C). This is
expressed through a steady increase of the largest value for high values of ρ
(Figure 2.7). Due to the conservation of mass we have also a competition
of the different condensates and with evolution of time only one condensate
may survive.

The evolution of the system is characterized by the stability of the con-
densate. We can say that the fluctuations observed early in the system
diminish for `1 > 0.9ρL but never disappear and in rare cases may lead to
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Figure 2.8. Mean largest value of the ZRRAP in the sta-
tionary limit for different values of γ.

the destruction of the condensate which is characterized by a drop of the
largest mass in the system and the following change in the position of the
condensate. Finally we have to note that all of these dynamics observed in
the condensate state are accelerated for lower densities.

We summarize the characteristics of these three states in the next table.

〈`1 (T )〉 〈J (T )〉
C > `∗ ∼ 0
F ∼ `∗ ∼ ρ/2
LF1 strong fluctuations < ρ/2
LF2 ∼ `∗ < ρ/2

Table 1. Characterization of the different characteristic
regimes of the TARAP.

2.4.2. ZRRAP. The truncation of the TARAP analyzed in the last
subsection manifests itself in two different ways: the prohibition of transport
expressed through the term m−1 (m−R(m)) δ(µ) and the reduction of the
transported fraction as dictated by the term Θ (R(m)− µ). In order to
understand the relevance of these two distinct effects for the condensation
mechanics we decided to study two different processes designed according
to these terms.

By starting with the first term we arrive at a process which can be
regarded as the continuum state space analogue of the zero range process
(since only the prohibition of the transported mass is considered). We will
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therefore call this process zero-range random average process (ZRRAP). The
fraction density of this process is given by

φ(µ|m) = m−R(m)
m

δ(µ) + R(m)
m2 Θ(m− µ) (2.86)

where we use for R(m) the same expression as defined above by Eq. (2.84).
For the moments of this density we get the expression

〈rkmk〉 =
m∫

0

dµµkφ(µ|m) = mk−1

k + 1R(m). (2.87)

This fraction density describes a process for which with a state-dependent
probability the transported fraction µi(t) of a certain site i at the time point t
will be set to 0. This event occurs with a probability equal to (m−R(m))/m.
Alternatively the fraction µi(t) is randomly distributed with equal proba-
bility in the interval [0,m]. This property is the big difference between the
ZRRAP and the TARAP, introduced in the last subsection 2.3.1, where the
transported mass per site and time-step had an upper bound of R(m), as
seen by Eq. (2.83).

For the ZRRAP three characteristic regimes can be defined. By choos-
ing γ < 0 we can see that the mean largest value shows a very interesting
behavior, whereas the expected value is always bigger than `∗ for ρ < 1.2
(LF1). This fact can be observed in Figure 2.8. Initially a spatial con-
centration of masses with mi > 1 takes place, which travels through the
system unhindered. At the same time the rest of the mass in the system
contributes only marginally to the overall flow leading thus to (〈J〉 < 0.5ρ).
This local concentration of mass leads to a stationary mean largest value
with 〈`1(∞)〉 > `∗. For higher densities (ρ > 1.2 with γ < 0) this effect
disappears and the free ARAP-like case is restored (LF2).

By studying the system for γ > 0 we can observe again a fluid and con-
densate regime as for the TARAP (see Figure 2.9). There is in general a
striking similarity between the two diagrams, which proves the relevance of
the constraint on the transition (δ-term in Eq. (2.83)) for the condensation
effect. The dynamics of condensation is in general similar to the one for the
TARAP. The main difference lies in the speed with which the condensate
builds up in the system. The concurrence between different condensates
resolves faster in the ZRRAP in comparison to the TARAP. This is also
reflected in the fact that for the same values of γ a smaller ρ is necessary for
a condensate to appear in the system. Fluctuations persist for all param-
eter values and decrease for increasing values of γ and decreasing densities
allowing therefore for a smooth crossover to the stable high flow phase (F).

These numerical results are summarized by the following tabular repre-
sentation.

2.4.3. SRAP. In the last two subsections we investigated the effect
of truncation for fraction densities with a non-zero probability for the event
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Figure 2.9. Schematic diagram for the ZRRAP model in
the ρ-γ plane for L = 100. The dashed line describes the
crossover between LF1-LF2. The characteristics of these
two states are described by the same dynamics and thus we
choose a distinct way of displaying the crossover line between
them.

〈`1 (T )〉 〈J (T )〉
C > `∗ ∼ 0
F ∼ `∗ ∼ ρ/2
LF1 > `∗ < ρ/2
LF2 ∼ `∗ < ρ/2

Table 2. Characterization of the different characteristic
regimes of the ZRRAP.

{ri(t) = 0}. In this subsection we will show that even for transport processes
for which {ri(t) > 0 ∀i, t} holds, a condensate phase appears in the ρ − γ
plane.

We introduce hereto the function

φ(µ|m) = 1
R(m)Θ (R(m)− µ) (2.88)

where Θ(x0−x) is again the Heaviside function and R(m) defined as in Eq.
(2.84). For this class of models the truncation can only lead to a reduction
of the transported mass but not to the prohibition of transport as in the two
previous cases. It is clear that for γ = 0 the free ARAP model is restored.
As before the introduction of the parameter γ allows us to study systems
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Figure 2.10. Mean transported mass per time-step for a
site with massm for the ZRRAP and the SRAP and different
parameters γ. We can see that for these two models the first
moment µ1 is described by the same function (Eq. (2.87)
and (2.89)).
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Figure 2.11. Mean largest value of the SRAP in the sta-
tionary limit for different values of γ.

with a large range of moments

〈rkmk〉 =
1∫

0

dµµkφ(µ|m) = R(m)k

k + 1 . (2.89)

In Figure 2.10 we can see the first moment of the transported mass µ1 as
function of the mass. We will see later that although the first moments for



28 2. CONDENSATION IN TRUNCATED RANDOM AVERAGE PROCESSES

the transported mass of the two models (SRAP and ZRRAP) are equal, the
corresponding diagrams have a completely different structure. We can see
that the condensate/fluid separation appears in the system only for γ > 1.
For the fluid case we again observe that the largest value in the system
remains constant around the expected value of `∗ with small fluctuations.
The same holds for the flux which fluctuates around 0.5ρ.

In the condensate phase this no longer holds. We can clearly see that
〈`1 (T )〉 > `∗ and 〈J (T )〉 < 0.5ρ. It is especially interesting that in this
regime the spatially extended condensate performs a drift through the sys-
tem. For high values of γ (γ > 1) the position of the condensate stabilizes
and the largest value in the system rises up to a stationary value which is
given by the equation

`1−γ1 (T ) = ρ− `1(T )
L

. (2.90)
This equation agrees well with our numerical results and follows from fol-
lowing simple argument. Let us assume that at the time-point t there exists
only one condensate in the system, then we know that the evolution of this
condensate is described by the differential equation

∂

∂t
`1(t) = −ξ`1(t) + ξ∗

(
ρ− `1(t)

L

)
. (2.91)

The terms ξ, ξ∗ describe noise processes with the mean value 〈ξ〉Ens =
〈ξ∗〉Ens = 0.5. By taking now the ensemble average we can clearly see
that the steady state condition〈

∂

∂t
`1(t)

〉
Ens

= 0 (2.92)

is equivalent to Eq. (2.90).
Fluctuations are present even after the formation of the condensate,

but this value remains stationary when integrated over long time-intervals(
T = 103).

For 0 < γ < 1 the flow of the system is below ρ/2 while at the same time
we can observe a homogeneous mass distribution. We therefore characterize
this phase as homogeneous low flow state (HLF). Surprisingly we found that
for ρ > 0.9 as shown in Figure 2.11 the mean largest value in the system
decreases with increasing densities (HLF2). This discovery is explained by
the slowdown of the mass drift for sites with m > 1 due to the truncation
effect. Correspondingly we get an equilibration of the mass distribution and
thus a lower mean largest value. This effect does not arise for lower densities
and we regain the expected mean largest value of `∗ (HLF1).

The diagram for this process is quite more complicated than the previ-
ous models. But as seen in the table above a clear distinction between the
different phases can be made. We have to note here that although for the
HLF1 and the LF2 the truncation seems to have no effect on the mean
largest value distribution the two states have completely different charac-
teristics. In the one case (LF2) we have collective dynamics while in the
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Figure 2.12. Schematic diagram for the SRAP model in
the ρ-γ plane for L = 100. The dashed lines do describe the
crossover between LF1-LF2 and HLF1-HLF2 correspond-
ingly.

other (HLF1) the mean largest value distribution is solely defined by single
site mass deviations. This is the reason why these two states appear on
completely different ranges of the density parameter.

Regarding the γ < 0 case we have the same structure as described above
for the TARAP. For ρ < 1.2 we see again a strong fluctuation of the mean
largest value with respect to the density. Like in the former processes these
fluctuations disappear for ρ > 1.2. It becomes clear that the dynamics of
condensation for the TARAP and therefore the transition from fluid to the
condensate phase are controlled by single site fluctuations and consequently
by the prohibition of transport (δ − term). At the same time the nature of
the phases for γ < 0 is controlled by collective dynamics and the reduction
of the mass transport (Θ− term).

2.5. Discussion and Conclusions

We introduced and studied three different truncated random average
processes. We started with the analysis of finite size systems which could
be approached only by numerical methods. A convenient choice for the
characteristic variables of this system are the largest single-site mass and
the flow in the system. The introduction of the parameter γ allowed us to
control effectively the dynamics of the system and hereby the stability of
the condensates that appear in the evolution of the system. The impact of
this parameter on the condensation transition was studied by determining
numerically the evolution of the system. This allowed us to characterize
several states in the ρ − γ plane. By comparing the different diagrams we
could also clarify the relevance of the different processes like prohibition of
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〈`1 (T )〉 〈J (T )〉
C > `∗ ∼ 0
F ∼ `∗ ∼ ρ/2
LF1 strong fluctuations < ρ/2
LF2 ∼ `∗ < ρ/2
HLF1 ∼ `∗ < ρ/2
HLF2 ≤ `∗ < ρ/2

Table 3. Characterization of the different characteristic
regimes of the SRAP. No difference between the HLF2 and
LF2 state can be determined if we observe only the parame-
ters `(∞) and J(∞).

transport (δ - term) or reduction of the fraction (Θ - term) for the nature
of the condensates.

Interesting generalizations of the presented model may arise. As example
one could consider the transport properties of the same model with open
boundary conditions. Another question that arose during this work and
was inspiration for chapter 3 is the behavior of systems with γ = −∞. In
this case an absorbing stationary state exists in the system and the relation
to similar non-equilibrium processes is at hand. Surprisingly, as we will
show in the next chapter, it is possible to determine the single site mass
distribution for this absorbing state analytically.



CHAPTER 3

Continuous Mass Transport Models with γ = −∞

3.1. Introduction

In the last chapter we have studied systems with factorized steady states
and discussed the condensation phenomenon occurring for stochastic mass
transport models with truncation dynamics. We could see that in the latter
case analytical results are rather cumbersome. This problem arises out of the
fact that the steady state is non-factorizable. Nevertheless the introduction
of the parameter γ and its strong influence on the dynamics of condensation
helped us gaining a better understanding of some aspects of the condensation
process.

In the last chapter we have chosen γ to be a real number. For negative
values of γ a condensation is excluded but at the same time a large range
of other interesting phenomena arise. As a first step in the analysis of these
phenomena we decided to consider the simple case of γ = −∞. This choice
leads to a quite simple stochastic transport model which could be interesting
for a series of applications for example traffic systems or transport along
one-dimensional DNA sequences [4]. Surprisingly several properties of this
model can be determined analytically. As example the steady state occurring
for ρ < 1 can be exactly calculated using the canonical ensemble approach.

Characterizing the non-equilibrium steady state of an interacting many-
particle system has always been a fundamental problem [49, 50]. Although
these systems appear in a variety of situations and have a potentially richer
behavior than equilibrium systems, mainly due to the lack of a detailed
balance condition, a general approach to this problem is still missing. The
biggest challenge lies in the fact that in contrary to equilibrium systems the
stationary state cannot be described by a Boltzmann distribution. In the
past there have been several attempts to provide a relative broad frame-
work inside of which questions with regard to the nature of non-equilibrium
steady states could be addressed [51]. The additivity property has proven
extremely useful in that regard when dealing with the special case of sto-
chastic mass transport models where chipping, diffusion and coalescence of
neighboring masses is considered [27, 28].

The application of the canonical ensemble formalism for non-equilibrium
systems is made possible inside the mathematical framework of Large Devi-
ation Theory. So before we go over to the details of our model it is surely
helpful to provide a brief introduction to Large Deviation Theory [52]. Then

31
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we will discuss the canonical ensemble formalism for stochastic mass trans-
port models. In section 3.4 we will apply this formalism to the special case
of restricted processes. Following that in section 3.5 and 3.6 we will see
some generalizations of the presented models. At the end of this chapter
some concluding remarks will be made.

3.2. Large Deviation Theory

Large deviation theory is the mathematical theory concerned with the
exponential decay of probabilities of large fluctuations (or rare events) of ran-
dom systems. The concept of weights with an exponential form is established
in physics since the work of Boltzmann and Gibbs. We can namely find sev-
eral equilibrium systems, where the probabilities of a certain observational
state can be expressed in terms of exponential functions with exponents
mostly proportional to the entropy or free energy function. Large Deviation
Theory provides a rigorous mathematical formulation of this property. Fur-
thermore the introduction of more technical terms like the rate function and
the scaled cumulant generating function allows for the generalization of Ein-
stein’s fluctuation theory. This lead to the increase of the popularity of this
theory in the last years in the field of both equilibrium and non-equilibrium
statistical mechanics.

Our goal in this chapter is to provide the essential elements of the large
deviation theory and show the close connection between large deviation
theory and statistical mechanics. We follow hereby the great introduction
provided by Touchette in [56, 57].

3.2.1. Basic Elements of Large Deviation Theory. In order to get
a better idea about the basic approach and methods we start by considering
the simple example of the average SN of N real independent and identically
distributed (i.i.d.) random variables Xk

SN = 1
N

N∑
k=0

Xk. (3.1)

The probability distribution function (pdf) of the sum SN which we denote
by PSn(s) 1 can be determined by the corresponding joint pdf of X1, ..., Xn

which in the case of i.i.d. RVs may be written in the factorized form

P{X1,...,XN} (x1, ..., xN ) =
N∏
k=0

PXk (xk) . (3.2)

We can calculate the pdf associated with the event SN = s by taking into
account all possible realizations (x1, ..., xN ) ∈ RN of X1, ..., XN that respect

1We will denote in this section the pdf of a RV X as PX(x). Correspondingly the pdf
for a set of RVs {X1, ..., XN} is characterized by P{X1,...,XN}(x1, ..., xN ).
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the condition SN = s. This is easily expressed in a mathematical way by
using the Dirac δ function and writing

PSN (s) =
∫
R

dx1 ···
∫
R

dxN δ
(

N∑
k=1

xk −Ns
)
P{X1,...,XN} (x1, ..., xN ) . (3.3)

This equation can be solved by using the method of generating functions or
by calculating the Laplace transform and use the saddle point approximation
as will be shown in the next section.

Independent of the chosen method we come to the realization that in
the case of i.i.d. RVs Xk with Gaussian densities

PXk(x) = 1√
2πσ2

e−(x−µ)2/(2σ2), x ∈ R (3.4)

the general form
PSN (s) ≈ e−NI(s) (3.5)

with
I(s) = (s− µ)2

2σ2 (3.6)

is obtained.
We have to note that the general exponential form e−NI(s) can be repli-

cated for numerous choices of the pdf PXk(x). This result is the cornerstone
of large deviation theory and referred to as the Large Deviation Principle
(LDP).

In general we say that the pdf of a random variable SN satisfies the large
deviation principle if the following limit exists:

lim
N→∞

(
− 1
N

lnPSN (s)
)

= I(s). (3.7)

The function I(s) is the so-called Cramér or rate function. For simplicity
we assume that this function is analytic and not everywhere zero.

An equivalent formulation of the LDP is expressed in terms of the equa-
tion

PSN (s) = e−NI(s)+o(N) (3.8)
where o (N) describes any correction that is sub-linear in N . This equiva-
lence illustrates the close connection between the LDP and the exponential
decay of large fluctuations. This last property is of course relevant for a wide
range of applications and shows the great importance of the LDP. This led
to the development of the Large Deviation Theory which can be considered
as a collection of methods devised for attacking two problems: first showing
that a LDP exists for a given RV and second provide the expression of the
corresponding rate function.

Both of these problems can be addressed directly, indirectly or through
the contraction method. The direct method consists in calculating the pdf
PSN (s) and show that the limit (3.7) holds. This approach can in general
be very difficult, especially when dealing with continuous RVs.
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The indirect method on the other side is far more general and relies on a
fundamental result of LDT known as Gärtner-Ellis Theorem (GE Theorem).
In the following we present a simplified version of this theorem.

We start from the definition of the scaled cumulant generating function

λ(k) = lim
N→∞

1
N

lnE
[
ekNSN

]
. (3.9)

According to the GE Theorem, if λ(k) is differentiable for all k ∈ R, then SN
satisfies an LDP and the rate function is the Legendre-Fenchel transform of
λ(k):

I(s) = sup
k∈R
{ks− λ(k)} . (3.10)

We will not provide here a rigorous proof of the GE Theorem as it would be
beyond the scope of this short introduction. For readers interested in the
technical details we would like to recommend the textbooks of Varadhan
[53], Ellis [54] or Dembo and Zeitouni [55]. Although we cannot provide
a proof we would like to give some insight by providing a simple proof of
the second part of the theorem namely showing that Eq. (3.10) holds if we
assume that a LDP holds for SN .

We start from the functional

E
[
eNkSN

]
=
∫

ds PSN (s)eNks. (3.11)

The assumption that SN satisfies an LDP with rate function I(s) leads to
the expression

E
[
eNkSN

]
≈
∫
R

ds eN [ks−I(s)]. (3.12)

Now this form is reminiscent of the Laplace integral and it thus allows us to
replace the integral by the approximation

E
[
eNkSN

]
≈ eN sups{f(s)−I(s)}. (3.13)

This approximation is called Laplace approximation or saddle-point approxi-
mation and is justified in the large deviation theory since all correction terms
are subexponential in N . Now by returning to the definition of the scaled
cumulant generating function, we can see that

λ(k) = lim
N→∞

1
N

lnE
[
eNkSN

]
= sup

s
{ks− I(s)} . (3.14)

Since the the function λ(k) is everywhere differentiable, the Legendre-Fenchel
transform is self-inverse, so that

I(s) = sup
s
{f(s)− λ(k)} . (3.15)

This short calculation is quite important since it shows that the knowledge
of the scaled cumulant generating function provides automatically an ex-
pression for the rate function.
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A generalization of the result above for a large class of RVs, random
vectors and random functions was provided by Varadhan who used the gen-
eralized version of the SCGF, corresponding to the functional λ[f ], and
showed that

λ [f ] = lim
N→∞

1
N

lnE
[
eNf(SN )

]
= sup

s∈R
{f(s)− λ(k)} (3.16)

holds for an arbitrary continuous function f of SN .
The clear connection between the GE and the Varadhan Theorem is

demonstrated by considering the case of f(s) = ks which then leads to the
formula derived above (3.15). It is also worthy to note here that Legendre-
Fenchel transform appears in this theory as natural consequence of Laplace’s
approximation.

Another way to derive the LDP is given by the contraction method. Let
therefore AN be a random variable for which an LDP with a rate function
IA(a) holds and let BN be a second random variable with f(AN ) = BN .
Naturally then the question arises, if this condition is sufficient for the va-
lidity of an LDP also for the RV BN . Furthermore, is it possible to derive
the corresponding rate function?

The answer to these questions is given by expressing the pdf of BN in
terms of the pdf of AN

PBN (b) =
∫
{a:f(a)=b}

daPAN (a) ≈
∫
{a:f(a)=b}

da e−NIA(a). (3.17)

This integral can be approximated according to the Laplace principle by the
maximum value which corresponds to the minimum of IA(a) for a such that
b = f(a). It follows therefore immediately that an LDP of the form

PBN (b) ≈ exp
−N inf

a:f(a)=b
{IA(a)}

(3.18)

for BN can be found. The corresponding rate function is simply given by

IB(b) = inf
a:f(a)=b

IA(a). (3.19)

This principle is called contraction principle and can be used in order to
derive the maximum entropy from the minimum free energy principle and
vice versa. These in turn were essential for the determination of equilibrium
states in the microcanonical and canonical ensemble respectively.

Lastly we will show that large deviation theory contains the Central
Limit Theorem. This seems logical if we consider that the LDP implies some
form of a Law of Large Numbers (LLN) since in the large N limit the pdf
p (SN ) concentrates around the typical values of SN . These typical values
correspond of course to the minimal values of the rate function I(s). Next
to this information with regard to the mean value one can also evaluate the
likelihood of small deviations from the typical value of SN . We consider here
that we have only one such typical value and use a Taylor series expansion
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of the rate function around this typical value s∗:

I(s) = I(s∗) + I ′(s∗)(s− s∗) + I ′′(s∗)(s− s∗)2

2 +O(s3). (3.20)

Since s∗ corresponds to a minimum of I(s) the first derivative vanishes.
Now from the two remaining terms we need to consider only the second
order term. The first term contributes only with a term of e−I(s∗) to the pdf
which can be considered just as a normalization factor. This leads us to the
prediction that the pdf around the typical value takes a Gaussian form:

PSN (s) ≈ e−NI′′(s∗)(s−s∗)2/2. (3.21)
We see also that large deviation theory can be considered as extension of the
central limit theorem since it provides us with estimates not only of small
deviations but also of large deviations far away from the typical values.

3.2.2. Connection to the Boltzmann Formalism. Now we will see
how the formalism presented in the previous subsection is connected to the
Boltzmann formalism used in equilibrium statistical mechanics.

We consider now a statistical ensemble consisting of N trials in which
each random variable XI may take only a finite set of n different values
{x1, ..., xn}. Each experiment then is described by the set {N1, ..., Nn} with

n∑
k=1

Nn = N. (3.22)

The natural numbers N1, N2,.... describe the number of samples with the
outcome x1, x2 and so on. Alternatively one could consider the relative
frequencies

fi = Ni/N, i = 1, ..., n. (3.23)
Now the probability to measure the set {f1, ..., fn} in such an experiment

consisting of N trials is given by

P (f1, ..., fn) = N !
(Nf1)!... (Nfn)!

n∏
i=1

[P (xi)]Nfi , (3.24)

where P (xi) = pi is the probability for the outcome xi for a single trial.
Using the Stirling formula we find

P (f1, ..., fn) '
√

2πN∏n
i=1
√

2πfiN
e
−N

n∑
i=1

fi(ln fi−ln pi)
(3.25)

We see that the expression

H(f1, ..., fn) =
n∑
i=1

fi ln fi
pi

(3.26)

serves as rate function. This rate function is called the relative entropy or
Kullback-Leibler divergence.

In the absence of constraints other than the normalization condition∑n
i=1 fi = 1 and for N large, the frequencies fi converge towards the values
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pi that maximize H(f1, ..., fn). This property arises from the convexity of
H(f1, ..., fn) and is an expression of the law of large numbers.

Our present formalism allows us to go beyond the LLN and consider the
possibility of a fluctuation for the set {f1, ..., fn}. We consider hereto the
deviation from the mean value

n∑
i=1

fixi −
n∑
i=1

pixi = x̂. (3.27)

If we make now the observation x =
∑n
i=1 fixi we can apply an additional

condition. The frequencies in this case are those that minimize the function

H(f1, ..., fn) + λ1

(
n∑
i=1

fi − 1
)

+ λ2

(
n∑
i=1

fixi − x
)
, (3.28)

where λ1 and λ2 are the two corresponding Lagrange parameters.
The corresponding expressions for fi are then given by [58]

fi = pi
e−λ2xi

Z(λ2) (3.29)

where Z(λ2) is the normalization factor

Z(λ2) =
n∑
i=1

pie−λ2xi . (3.30)

The existence of a deviation leads to a corresponding modification of the em-
pirical frequencies, which is reminiscent of the Boltzmann formalism. This
can be seen by renaming the second Langrange parameter λ2 as β 2. These
parameters are namely determined by the equation

∂

∂β
lnZ(β) = x =

n∑
i=1

fixi. (3.31)

This strong similarity is not surprising if we consider that the canonical
ensemble approach in equilibrium physics (as introduced in most textbooks)
also originated from the consideration of large fluctuations of the energy
made possible by the contact of the system with a reservoir. Lastly we have
to note that if we assume x̂ = 0 then fi = pi is recovered in the asymptotic
limit since then β = 0.

In the next section we will return to stochastic mass transport models
and see how the implementation of additional conditions creates a deviation
between the weight functions and the single site mass distribution. This
inquiry will allow us to provide another example for the relevance of the
"canonical ensemble" approach for non-equilibrium systems.

2This notation is often used in statistical mechanics in order to characterize the
intensive thermodynamic parameter which is proportional to the inverse temperature of
the system, β = (kBT )−1.
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3.3. Canonical Ensemble Approach for Mass Transport Systems

We have seen in the previous chapter that for the ZRP and the ARAP
the chipping kernel φ(µ|m) determining the dynamics of transport can be
written in the form

φ(µ|m) ∝ u(µ)w(m− µ), (3.32)

where u(z) and v(z) are arbitrary non-negative functions. We also claimed
that for chipping kernels of this form the steady state probability takes a
factorized form

P (m1, ...mL) = 1
ZL(M)

L∏
k=1

f(mk)δ
(

L∑
i=1

mi −M
)

(3.33)

where ZL (M) is the normalization constant, f(mi) is the single-site weight
and the δ function ensures the conservation of mass in the system. The
single site weight is given by

f(m) =
∫ m

0
dµu(µ)w(m− µ). (3.34)

Furthermore the grand canonical ensemble framework analysis was in-
troduced in the last chapter which allowed us to determine the conditions
for condensation in general mass transport models. This analysis proved
to be easy and useful but granted us no insight into the condensed phase
itself. For this reason a canonical ensemble formalism was established in
the past [44, 45] which concentrates on the analysis of the single-site mass
probability distribution function

p(m) !=
∫
...

∫
dm2...dmL P (m,m2, ...,mL) δ

(
L∑
i=2

mi +m− ρL
)

(3.35)

in a finite system size of size L. It is now clear that due to the factorization
property

p(m) = f(m)Z (M −m,L− 1)
Z (M,L) . (3.36)

One hast to note here that there is a striking similarity between this equation
and Eq. (3.29) derived in the last section. In the work of Evans, Majumdar
and Zia [44, 45] this approach was used in order to analyze p(m) in the
special case of

f(m) ≈ Cm−γ with γ > 2. (3.37)

The constant C is an arbitrary constant defined by the normalization con-
dition. We can choose now without loss of generality to set

∫
dmf(m) = 1.

One easy argument to see that the choice γ > 2 leads to a condensa-
tion is considering that for normalized weight functions f(m) the product∏L
i=1 f(mi) corresponds to the probability that L i.i.d. positive RVs, each
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drawn from the distribution f(m), take the values m1,m2, ...mL. Under the
assumption that the first moment

〈m〉 =
∫

dmmf(m) (3.38)

exists we can consider two distinct cases. In the first case we have the
relation L〈m〉 > M which correspondingly leads to the conclusion that the
ensemble is dominated by configurations with mi = O(1) for all i. On the
other hand we could have the relation L〈m〉 < M . In this second case
the ensemble is dominated by configurations where L − 1 masses are of
the order O(1) and one of O(M). The choice of f(m) ∼ m−γ is therefore
a good candidate for studying systems with a condensation at a critical
density ρc = 〈m〉.

In contrast to these works we will use here this approach not in order
to study the condensation transition but to derive an exact expression for
the factorizable steady state for a relatively broad class of stochastic mass
transport system that have not been studied yet. This is an exciting result
since in general for non-equilibrium systems where stochastic dynamical
rules have such an important effect the steady state distributions are not
a priori known. Especially not if the dynamics are specified by a state-
dependent kernel as for the process treated here.

3.3.1. Model and general approach. We start this section by de-
scribing the dynamics of the mass transport process studied. The studied dy-
namics are rather similar to that of the asymmetric random average process
(ARAP). We assume that the transport takes place on a lattice consisting
of L sites with periodic boundary conditions. As in the case of the random
average process each site i ∈ {1, ..., L} carries a positive mass mi ∈ R+. At
each time-step a fraction of the mass µi ≤ mi is transported to a neighboring
site, only and only if, the mass at the departure site is bigger than 1. We
consider in this section only totally asymmetric dynamics (i − 1 → i). In
the next section we will also consider partially asymmetric dynamics. The
total mass in the system M = ρL is conserved by these dynamics.

The dynamics of this stochastic process are described by the evolution
equation of the mass mi(t) = mi,t at a site i:

mi,t+1 = mi,t − µi,t + µi−1,t (3.39)

whereas the random variables µi,t ≤ mi,t are white noise processes derived
from the probability density function

φ(µ|m) =
{
δ(µ) if m < 1
ϕ(µ) if m ≥ 1.

(3.40)

In the following we will assume that the distributions are non-degenerate
and ϕ(µ) > 0 holds for all µ ∈ [0, 1].
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Let us focus now on the case of an exponential distribution for the initial
configuration of the mass (gap) statistics

f0(m) = ρ−1e−
m
ρ . (3.41)

This choice is easily implemented by creating an interval of length ρL and
choosing L−1 i.i.d. RVs Xi with uniform distribution in the interval [0, ρL].
We go now over to the order statistics of these RVs Xi characterized by Yi
with

YL < YL−1 < ... < Y1 = max
1≤i≤L

Xi. (3.42)

By setting mi = Yi+1 − Yi with mL = ρL − YL−1 and m1 = Y1 one gains

a configuration of masses {m1, ...,mL} with
L∑
i=1

mi = ρL. Each of these
RVs mi is now identically and independently distributed with a probability
density function given by (3.41).

We will see in the next section that for mass chipping models like the
one introduced here a factorizable steady state is achieved in the limit of
(t → ∞, L → ∞). For ρ =

∑L
i=1mi/L < 1 there exists a stationary state

which is an absorbing state i.e. a configuration that can be reached by
the dynamics but cannot be left [60]. This absorbing state is defined by
the following two properties. First due to the conservation of mass by the
dynamics the sum of all masses in the absorbing state have to be equal to
M = ρL. Second a configuration {m1, ...,mL} is an absorbing state if and
only if, mi < 1 for all sites i in the system.

As in [61, 62] the corresponding factorized steady state is described
by an expression over the large deviations of a sum of random variables.
Furthermore as we will see the introduction of a truncation effect does not
lead to the loss of the additivity property and a Gamma-like distribution is
restored for the single site mass distribution in the stationary case.

We start also by the assumption that the probability of observing a
configuration of masses {mi} is given by

P (m1, ...,mL) =
∏L
k=1 f (mk)
ZL (M) δ

(
L∑
k=1

mk −M
)

Θ (1−mk) (3.43)

where ZL (M) is just the normalization

ZL (M) =
L∏
k=1

∫
dmk f (mk) δ

(
L∑
k=1

mk −M
)

Θ (1−mk) . (3.44)

We have to note here that P (m1, ...,mL) is equivalent to the probabil-
ity of picking L independent and identically distributed random variables
(i.i.d.RVs) with a common probability density f(m), conditioned on the fixed
value of their total sum and the fact that each random variable has to be
smaller than 1. In that context the partition function ZL(M) itself becomes
a probability distribution for the sum of L independent and identically dis-
tributed random variables.
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By using now this equation we can determine the stationary distribution
of the system by calculating the Laplace transform of (3.44):∫

dM ZL (M) e−sM = [g(s)]L (3.45)

where

g(s) =
∫ 1

0
dmf(m)e−sm. (3.46)

We use here the approach described in detail in [44, 45] in order to derive
the inverse of Eq. (3.45). We rely also on the Bromwich formula but in
contrast to the case of f(m) ∼ m−γ we do not have any singularities for
finite values of s.

It is not hard to see that a saddle point approximation is applicable
whereas the partition function takes the form

ZL(M) ' exp [Lh(s0)]√
2πLh′′(s0)

. (3.47)

Substituting (3.47) in (3.44) we get p(m) ' f(m)e−s0m, whereas the saddle
point s0 is determined by the minimum of the function h(s) = ρs+ ln g(s).

In order to proceed it is necessary for us to know the exact form of
the weight functions f(m). This would allow us to specify g(s) and thus
the saddle point in the equation above. We could see that for fraction
densities of the form φ(µ|m) = u(µ)w(m − µ) the weight functions can be
easily determined. Unfortunately this is not the case here and we have to
determine f(m) exactly by analyzing the dynamics of the system. In the
next section we will show how this can be done for the relatively broad class
of the so-called "restricted" processes.

3.4. Restricted Processes

In the following we will consider processes for which the total transported
mass per site and time-point is bounded from above, µi,t < 1, ∀i, t ∈ N. We
use the terminology "restricted" for this large class of processes.

As in many non-equilibrium systems the exact calculation of the mass
distribution during the relaxation process is a rather cumbersome and even
impossible undertaking. But in the steady state this is rather easy if we
consider that the absorbing state is achieved when all masses in our system
are below 1. Up to this stationary limit we have a more or less constant
inflow and outflow of masses at each site. These increments and decreases
are hereby i.i.d. random variables given by the fraction density, φ(µ|m). Let
us now use the concept of stopping time which can be defined as the time
at which a given stochastic process exhibits a certain behavior of interest.
Here we define as stopping time τi for a site i the time

τi = inf
{
t′ ∈ N : mi,t′ = mi,t ∀t > t′

}
. (3.48)
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Furthermore let us define the overall stopping time
τ = max {τ1, .., τL} . (3.49)

From the definition of the stopping time τ it follows the mass at each
single site in the stationary state is given by the following equation

mi,τ = mi,0 + ξ+
i − ξ

−
i < 1. (3.50)

With mi,0 being the initial mass at site i derived from the initial mass
distribution. On the other hand, the terms ξ+

i and ξ−i describe the sum of
increments and decreases.

These inflows and outflows are independent from each other and we use
the white noise process ξn given by the probability density function ϕ(ξ) for
the representation:

ξ+
i =

τ∑
n=1

µi−1,n =
qi∑
n=1

ξn and ξ−i =
τ∑

n=1
µi,n =

ri∑
n=1

ξn. (3.51)

We used the term qi in order to describe the number of the increments
during the evolution of the system and ri for the number of decreases for
the respective site i. This number differs greatly from site to site and we
are in no position to derive these numbers here analytically. From the above
expression it clearly follows that qi, ri ≤ τ for all i ∈ {1, ..., L}.

In the following we omit the indices from τi, qi, ri since our arguments
are independent from the respective site. This relies on the fact that the
distribution of mτ converges to a steady distribution for increasing values
of q. One has to take into account that the random variable m0 + ξ+ is a
Gaussian random variable for high values of q which becomes independent
from the initial value. On the other hand, the number r is solely defined by
the requirement mτ < 1.

In other words if we denote the distribution of the mass mτ with q
increments by Pmτ ,q(m) then there exists for each density function ϕ(ξ) a
natural number q∗ so that

Pmτ ,q1(m) = Pmτ ,q2(m) ∀q1, q2 > q∗ and ∀m ∈ [0, 1]. (3.52)
This is to be expected since for increasing number of exchanges the infor-
mation regarding the initial distribution gets lost and the final distribution
is defined solely by the dynamics of the exchanges. This fact is shown by a
numerical simulation in Figure 3.1.

Due to this property we can now determine the weight functions for a
series of truncated processes. We need therefore only to consider the prob-
ability density function of the random variable mτ , which is characterized
by the following properties mτ < 1 and mτ + ξ = mτ−1 with ξ ∼ ϕ(ξ) and
mτ−1 > 1. So if we ask ourselves how probable the event {mτ = x} is, we
get the expression

P [mτ = x|mτ < 1,mτ−1 > 1,mτ + ξ = mτ−1] =
P [mτ−1 −mτ = ξ > 1− x] ∝

∫ 1
1−x dξ ϕ(ξ) (3.53)
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Figure 3.1. Numerical evaluation of the probability den-
sity function for a random process described by the equation
(3.50) for different q′s and ξi ∼ ϕ(ξ) with ϕ(ξ) = Θ(1 − ξ).
As we can see for increasing values of q we have a convergence
to the expected weight function.

Here we have used the fact that no information with regard to the value
of mτ−1 except to mτ−1 ≥ 1 is necessary. In order to illustrate this fact we
can consider the position of mτ−1 for which

P [mτ−1 = y] = P [y − ξ < 1] ∝
∫ 1

y−1
dξ ϕ(ξ) (3.54)

holds. Now we can use a symmetry argument in order to determine the pdf
of mτ . We expect the measure to remain invariant under the transformation
y − 1 = 1− x, which leads us to Eq. (3.53).

Let us now characterize with Pmτ (x) the probability density function of
the random variablemτ under the assumption that the number of increments
is above q∗ then

P [mτ ∈ (x+ dx)] = Pmτ (x)dx. (3.55)
By taking into account the normalization∫ 1

0
dxPmτ (x) = 1 (3.56)

we can easily see that when the number of increments per site exceeds the
fraction density specific value of q∗, then the stationary state is described
by the normalized weight function

Pmτ (m) = f(m) =
∫ 1

1−m dxϕ(x)∫ 1
0 dx

∫ 1
1−x dy ϕ(y)

. (3.57)
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Now one can thus use these results in order to determine numerically the
partition function for a set of random variables constrained from their fixed
sum and independently distributed according to a large range of monotone
increasing density functions f(m) fulfilling the equations

df(m)
dm

= −ϕ(1−m) (3.58)

with f(0) = 0. On the other side one can invert these equations and de-
termine analytically the stationary absorbing state for any given analytic
fraction density φ(µ|m).

Now let us return to the applicability of our results. The requirement
described above with regard to the number of increments surely does not
hold for all ranges of parameters ρ, L but as we will show shortly a sufficient
condition for the existence of a unique stationary measure for this class of
processes can be derived. In general we can say that as long as the condition∫

dmmf(m) < ρ (3.59)

is fulfilled, then a unique stationary measure described by Eq. (3.57) exists
in the thermodynamic limit (M,L→∞, ρ = M/L = const.).

Let us start with our numerical observation (see Figure 3.2) that for
increasing lengths for systems with ρ >

∫
dmmf(m) we can observe that

the condition q > q∗ is fulfilled for all sites in the system. In order to
understand this property we introduce the following algorithm. Instead of
creating a system with L sites which are evolved by parallel dynamics we
can just consider the system consisting by a collection of subsystems with
increasing length Lν = ν where each of these subsystems is evolved by a
sequential procedure.

Now at the beginning we create a subsystem of length ` where the mass
distribution for each site is given by the function f0(m) = ρ−1e−ρ

−1m. We
evolve all sites of this subsystem according to the described dynamics (totally
asymmetric with transport in the direction i → i + 1) while we forbid any
kind of inflow to this subsystem. The mass that flows out of the system
is characterized as the excess mass mexc

1 of this first update step. After all
sites of the subsystem have frozen out (mn < 1, ∀n ∈ [1, `]) we expand our
subsystem to the size 2` by adding ` sites to the right side of the old system.
All new sites carry a mass distributed according to the function f0(m).
Before we can start with the evolution of this new subsystem we have to
add the excess mass of the previous update step to the first site of the new
addition, m`+1. We repeat this algorithm several times and analyze hereby
the time series of mexc

ν where ν corresponds to the number of updates. For
simplicity we will set now ` = 1.

The process of the excess mass is given by a random walk in a random
environment for mexc

n < q∗ while a positive drift is present for mexc
n > q∗.

This positive drift comes from the fact that after each time step and while
mexc
ν > q∗ new masses are created through the update mechanism which
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Figure 3.2. Rate of sites with more than three updates for
the uniform density function ϕ(µ) = 1 for a periodic bound-
ary system with ρ = 0.7.

follow the probability density function f(m). Correspondingly they have
the mean value

∫
dmmf(m) whereas their previous mean value was equal

to ρ. This leads to a mean increase of the excess mass after each time step

〈mexc
ν+1 −mexc

ν 〉 = ρ−
∫

dmmf(m) for mexc
ν > q∗. (3.60)

We see also that the condition
∫

dmmf(m) < ρ proves sufficient for us to
have a system where for increasing lengths the number of increments rises
to a satisfying level.

Due to the positive drift we can develop following hypothesis: let T ∗ν be
the time of the last ruin 3

T ∗ν = sup {ν∗ ≤ ν : mexc
ν∗ < q∗} (3.61)

then for all q∗ <∞ there exists a ν <∞ so that mexc
ν > T ∗ν + q∗.

In order to prove this hypothesis we just need to show that the survival
probability

P
[
mexc
T ∗ν+1 > q∗,mexc

T ∗ν+2 > q∗, ...,mexc
T ∗ν+n > q∗

]
(3.62)

3We adopt here the notation from the famous ruin problem in stochastic analysis. In
the traditional ruin problem the term ruin was used in order to describe the event Sn = 0,
where Sn is a symmetric random walk. Here we use it in order to characterize the event
mexc
ν∗ < q∗.
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as function of the number of the update steps (also in log-
arithmic scale) for the algorithm described in detail in the
text. The presented results were derived for a system with
ϕ(µ|m) = 1 and ρ = 0.7.

for finite n is always bigger than zero. This is shown rather easily by using
the fact that

P
[
mexc
T ∗ν+1 > q∗,mexc

T ∗ν+2 > q∗, ...,mexc
T ∗ν+n > q∗

]
=

P
[
mexc
T ∗ν+n > q∗|mexc

T ∗ν+n−1 > q∗
]
...P

[
mexc
T ∗ν+2 > q∗|mexc

T ∗ν+1 > q∗
]
×

×P
[
mexc
T ∗ν+1 > q∗

]
. (3.63)

Now due to the drift for processes with mexc
ν > q∗ we get for all k ∈ N

P
[
mexc
k > q∗|mexc

k−1 > q∗
]
>

1
2 , (3.64)

leading us to the result

P
[
mexc
T ∗ν+1 > q∗,mexc

T ∗ν+2 > q∗, ...,mexc
T ∗ν+n > q∗

]
=

P
[
mexc
T ∗ν+1 > q∗

]
2n−1 (3.65)

which is strictly positive for all finite values of n ∈ N, since

∞∫
q∗+1

dmρ−1e−ρ
−1m > 0⇒ P

[
mexc
T ∗ν+1 > q∗

]
> 0. (3.66)
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Now due to this fact we can claim that in a long series of renewal processes4

there exists at least one which can survive for long enough times so that
the law of large numbers applies. We characterize here such a process with
Xn = mexc

T ∗ν+n, namely a process such that Xk > q∗, ∀1 ≤ k ≤ n with n

sufficiently large. We know that for this process 〈Xn〉 = nµ + q∗ holds,
whereas µ = ρ−

∫
dmmf(m) > 0.

Now according to the law of large numbers, if ε < µ is fixed and η is an
arbitrary small number then for n sufficiently large [63]

P
[∣∣∣∣Xn

n
− µ

∣∣∣∣ < ε,

∣∣∣∣Xn+1
n+ 1 − µ

∣∣∣∣ < ε, ...

]
> 1− η ⇒

P [Xn > n(µ− ε), Xn+1 > (n+ 1)(µ− ε), ...] > 1− η. (3.67)
By choosing now a n big enough so that n(µ− ε) > q∗ we can prove our

hypothesis. Explicitly we have proven that if the mean step is positive, then
after a sufficiently large number of steps the process will remain beyond any
arbitrarily chosen point in the positive direction with probability as close to
unity as we please. It is therefore given that the condition mexc

ν > T ∗ν + q∗

can be satisfied in finite number of steps ν.
Before we continue we have to make following remarks. We did not

make any statement about the behavior of the random walk in the range
[0, q∗]. This proved to be unnecessary since the only relevant property of this
random walk is the fact that a jump to values above q∗ is always possible.
We will return to this problem in the conclusion since it is closely related to
the expansion of the present work for different initial conditions.

Now if the condition mexc
ν > T ∗ν + q∗ is fulfilled then we can create a link

between the last site of the system created by this algorithm and its first
site system and gain a closed boundary system where all sites in the system
will have more than q∗ increments for each site. If the number of necessary
steps ν is big enough then due to the law of large numbers we will get a
system where the total mass in the system is really close to the expected
value of ρL. But we can of course insert some more sites between the first
and last one so that the total mass in the system will be exactly equal to
ρL.

It is clear that, although the time scale of the proposed algorithm follows
different rules than the one initially presented by us, the dynamics of the
system were not changed so that the derived distribution of the expected
increments as well as the stationary distribution is the same as the one
derived by our traditional approach. We can claim that the steady state
distribution is invariant under a change from parallel update rules to or-
dered sequential ones. This statement is strongly supported by numerical
results. Although the presented algorithm does not lead to qualitatively new

4We consider each jump of the excess mass above the value of q∗ as a renewal. The
term refers to the fact that the process "starts afresh" after each jump above the value of
q∗ [72].
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Figure 3.4. Single site mass distribution for a system with
L = 100, ρ = 0.7 and a uniform distribution of the trans-
ported masses. The results of the Monte Carlo simulation
rely on 106 realizations and each trial showed excellent agree-
ment to our analytical result of p(m) ' 1.3m exp(0.627m).

results we thought that its introduction would be meaningful since it helps
us illustrate why increasing lengths lead to the desired distribution

3.4.1. Examples. In this subsection we will consider the specific case
of three different probability density functions ϕ and calculate analytically
as well as numerically the stationary single site mass distribution.

Uniform distribution. At first we consider the fraction density

φ(µ|m) =
{

Θ(1− µ) if m ≥ 1
δ(µ) if m < 1.

(3.68)

So we have the case of a uniform probability density function of the random
variables µ in the interval [0, 1]. For this function we will get the normalized
weight function

f(m) = 2m. (3.69)
In general for systems with f(m) = mδ we have to study densities in the
range of ∫

dmmf(m)∫
dmf(m) = δ + 1

δ + 2 < ρ < 1. (3.70)

For f(m) = 2m we have correspondingly ρc = 2
3 . By knowing now the

exact weight function we can return to the method described above and use
the Laplace transform of the norm Z (ρ, L) as well as the inversion of the
Bromwich formula to derive the formula p(m) = f(m)e−s0m whereas the
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Figure 3.5. Analytical and numerical description of the sin-
gle site mass distribution for a system with L = 100. The
fraction density is given by ϕ(µ) = exp(−µ) and we consider
two different densities. For the derived weight function we
have a critical density of ρc = 0.6961. As we can see the
described analytical method shows an excellent agreement
to the Monte Carlo simulation for values of ρ well above the
critical regime, while a deviation can be observed for ρ = 0.7.
We considered in both cases 106 realizations.

exponent s0 is determined by the minimum of the function

h(s) = ρs− 2 ln s+ ln(1− e−s + se−s). (3.71)

Our analytical results have an excellent agreement to the numerical results
as shown in Figure 3.4.

Exponential distribution. In the following we will present the results of
our calculation for the special case of

ϕ(µ) = e−µ

1− e−1 . (3.72)

By using the Formula (3.57) one can easily see that

f(m) = em−1 − e−1

1− 2e−1 . (3.73)

We make now again a saddle point approximation p(m) = f(m)e−s0m where
the saddle point is here determined for two different densities

s0 =
{
−0.076282 for ρ = 0.7
−1.15892 for ρ = 0.75.

(3.74)
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Figure 3.6. Single site mass distribution for the Gaussian-
like probability density functions. The numerical results were
derived by a Monte Carlo simulation over 104 samples where
the dynamics of periodic systems with L = 100 were simu-
lated. We have chosen here to set σ = 0.2 and ρ = 0.75. For
these parameters we have the critical value ρc = 0.73 and
s0 = −1.3.

In Figure 3.5 one can see that our derived results show a relatively good
agreement to the numerical results. The small discrepancies observed for
values of ρ close to the critical density disappear for increased lengths.

Normal distribution. We consider now the case where the transported
mass is given by a Gaussian function

g(x) = 1
σ
√

2π
e−

(x−0.5)2

2σ2 . (3.75)

Due to the condition 0 < µ < 1 we have the actual density function

ϕ(µ) = e−
(µ−0.5)2

2σ2∫ 1
0 dµ e−

(µ−0.5)2
2σ2

. (3.76)

We can calculate the weight function as described above

f(m) =
erf
(

0.5√
2πσ2

)
− erf

(
0.5−µ√

2πσ2

)
erf
(

0.5√
2πσ2

)
−
∫

dµ erf
(

0.5−µ√
2πσ2

) . (3.77)

One can see that this complicated expression provides indeed the expected
distribution by comparing it to a numerical simulation as we did in Figure
3.6. We see also that our method delivers good results for a variety of density
functions ϕ(µ).
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Figure 3.7. The mean increment of the excess mass for a
system with a uniform distribution ϕ(µ) = 1 and ρ = 0.7.
We can see that for decreasing asymmetry coefficients the
mean value decreases to the point where the increament is
negative. This means that for specific values of ρ and a no
unique stationary value for the single site distribution can be
achieved even if we choose to set L→∞.

3.5. Partial Asymmetric Case

In the last section we have analyzed the single site mass distribution of
the steady state only for totally asymmetric dynamics. Here we would like
to test if our results can be expanded for the case of partially asymmetric
processes. In the following we consider also processes which in general can
be described by the equation

mi,t+1 = mi,t − αi,tµi,t + αi−1,tµi−1,t. (3.78)
Where αi,t is a white noise process described by the following probability
density function

f(x) = aδ(x− 1) + (1− a)δ(x). (3.79)
This process is especially interesting since it cannot be analyzed by a mean-
field approach as shown in [17].

We have studied numerically several such processes with a variety of
parameters a. In general we could see that a sufficient number of update
steps could not be achieved. In order to study this behavior we decided
to use a variation of the excess mass algorithm as it was presented in the
previous Section 3.4 where we take into account the effect of the asymmetry
coefficient a.

We create again a subsystem of size ` = 3 which is then evolved until
mi < 1 for all i ∈ N with i ≤ ` is fulfilled. After this step we create either
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one or two new sites. The difference to the previous approach is namely that
although we always add a new site to the right side of the old system this
adding process may also take place to the left side. A necessary condition
herefore is that the site which is further to the left carries a mass that is
bigger than the cutoff value of 1. Again the excess mass is gathered on either
side and then added to the new sites of the system which initially carries a
mass defined by the initial probability density function f0(m).

By evaluating this algorithm numerically we can see that the mean incre-
ment of the excess mass per step of the algorithm may become negative when
a is sufficiently small. We show in Figure 3.7 how this mean value changes as
function of the different asymmetry coefficients for a system with a uniform
probability density function.

If we have ρ = 0.7 then we can see a change in the sign for a = 0.83.
The expected minimum of the mean increase of the excess mass is of course
expected when a→ 0.5.

In general we can also say that for a range of asymmetry coefficients we
are not in the position to arrive at a unique stationary state if we choose
to send L to ∞. We could also see that there exists a critical asymmetry
coefficient for which a unique stationary state cannot be found. Depend-
ing on the dynamics on the system as well as the density we have different
dependencies of the value 〈mexc

ν −mexc
ν−1〉 as function of the asymmetry co-

efficient. We are also in no position to give a general function. Nevertheless
it is possbile calculate the specific curve for each given set of parameters.

The unique stationary state calculated for systems with a > ac(ρ, ϕ) and
ρ > ρc is of course independent of the asymmetry coefficient and the results
of the last section still hold.

3.6. Unbounded Transport

In the past sections we have shown explicitly how to create a set of
independent random variables fulfilling several constraints. We have imple-
mented several restrictions on the transported masses leading to random
variables which were bounded from above as well as from below. This of
course had the consequence of monotonically increasing weight functions
with f(0) = 0.

Now we can ask if analytical results can be derived if we overcome this
restrictions. In general this is not the case but there exist such examples
and we think that it is interesting to discuss at least one.

In the following we consider the uniform distribution presented above
where the truncation effect is lifted:

φ(µ|m) =
{
δ(µ) if m < 1
m−1 if m ≥ 1.

(3.80)

Explicitly we consider here the case where m > µ > 1 is allowed.
We expect for this process the weight function f(m) = 1. This result

may seem trivial but is explained in detail in the following. Let us return
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Figure 3.8. Single site mass distribution for a system with
L = 50 and ρ = 0.7. The results of Monte Carlo simulation
rely on 106 realizations and show excellent agreement to our
analytical result of p(m) ' 0.2 exp(2.647m).

to the time series described by Equation (3.50) and consider the transition
probability, g(x, t;x0; t− 1), describing the likelihood of the crossover from
state (x0, t− 1) to the state (x, t). Then we know from our fraction density
that g(x1, τ ;x0, τ − 1) = g(x2, τ ;x0, τ − 1) for all x1, x2 < x0. Correspond-
ingly it follows that p(mτ ) = 1 for all 0 ≤ mτ ≤ 1 and hence we get the
weight function f(m) = 1. Based on this result we can calculate the single
site mass distribution for a large range of densities. As we can see from
Figure 3.8 we have an excellent agreement with the Monte Carlo simulation
leading us to the conclusion that the canonical ensemble approach still holds
even for this class of processes.

For the total asymmetric process we get very good results which could
even be improved by considering larger systems increasing good results for
higher lengths. We can see that in this case a good agreement with the
numerical simulations can be gained also for systems with a length L = 50.
This is not surprising since a sufficient condition for getting this weight
function lies just in a single jump of the single-site mass to values above 1,
or equivalently q∗ = 1.

For this generalized case we also investigated the partial symmetric dy-
namics by means of Monte-Carlo simulation. We could see that for such
systems our analytical approach is still useful for a relatively wide range of
values of a. Of course this range also depends on the density. So one can
see that for ρ = 0.7 our approach fails for a < 0.57 while the threshold of
a ∼ 0.96 is at hand when considering the density ρ = 0.51. Unfortunately
we are not in the position to provide a generalized approach for this class
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of processes. The algorithm described by us in a previous section 3.3 can
also not be applied here since a change from parallel to ordered sequential
update rules would lead to a different steady state.

3.7. Discussion and Conclusions

We have analyzed the partition function for a set of i.i.d. random vari-
ables where next to the constraint fixing their total sum another one deter-
mining the threshold of largest value was implied. We could see that the
sought configuration could be easily realized as the absorbing state of a trun-
cated stochastic mass transport model, allowing us to determine the single
site mass distribution for several fraction densities by a canonical ensem-
ble approach. This result shows that a factorizable steady state is possible
even if the dynamics of the system is state-dependent. Furthermore we de-
termined the conditions under which our approach becomes exact in the
thermodynamic limit. Next to the exactness of our approach in the ther-
modynamic limit we could also show that the method can be useful when
studying finite size systems. We have initially studied a system with total
asymmetry but through numerical simulations we could show that our re-
sults are suited for a wide range of partially asymmetric processes. In the
last section we could see that our method is applicable even in the case of
a generalized version where no constraints on the transported mass were
implied.

We treated here the problem of state-dependent fraction densities only
for the case of ρ < 1. For higher densities (ρ > 1) we expect that a non-
equilibrium steady state exists. The analysis of such system proved rather
difficult but has shown some very interesting characteristics, like the conden-
sation of masses with m > 1 around a single non-stationary site. We think
that the present work will help us understand the different features of these
complicated systems. An interesting Ansatz lies in the possibility of sepa-
rating the system in two subsystems, one where masses are in a frozen state
and one where an active exchange takes place. The work of Bertin et al. [70]
has shown that a factorization for both subsystems and the conservation of
the total mass make the existence of an associated intensive thermodynamic
parameter possible. The definition of such an intensive parameter would
greatly improve our understanding of stochastic mass transport models in
general.

The presented good agreement between analytical and numerical results
raises the question with regard to the expansion of the present method for
a larger range of densities. We have to note that the implied restrictions
on the fraction density distributions are not intuitive and our goal should
be to expand our model to a larger class of weight functions. The results
of the last section prove hereby that an expansion of the presented method
to processes with weight functions that are not strictly increasing can be
fruitful.
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Another interesting question that arose during this work and has been
gathered attention in the past years is related to the relation of mass trans-
port to the linear statistics of sums of i.i.d random variables. As mentioned
in the introduction partition functions with similar constraints have been
analyzed in the past [61, 62]. We hope that the presented results prove
the efficacy of large deviation theory and will serve as inspiration for further
studies in this interesting field.

Lastly we have to note that it is possible to apply the presented methods
to systems with initial distributions that are not exponential. Based on the
results of our excess mass algorithm we tend to believe that for each initial
distribution function which is heavy tailed the unique stationary state will
be achieved. This raises naturally the question with regard to the existence
and uniqueness of the absorbing state for initial distributions which are light
tailed.





CHAPTER 4

Diffusion with Resetting in Bounded Domains

4.1. Introduction

In this and the next chapter we focus on the properties of stochastic
search processes [94]. In the last years an increasing number of works con-
cerned with the efficiency of stochastic search models has been published.
The general interest in problems of this kind is explained by the fact that
they find applications in a wide range of fields such as chemical or biochem-
ical reactions [73, 74, 75], cell biology [76], zoology [77], risk management
[108] up to astrophysics [78].

Usually stochastic search models are described in terms of a first passage
problem [94]. In these problems we ask ourselves when did a specific event
took place for the first time. Let us imagine therefore that we have a sto-
chastic process Xt that can assume a specific value xA, then the first passage
time (FPT) is the time-point at which the event {Xt = xA} occurred for the
first time.

When we define a stochastic search model we often use the term ’searcher’
in order to describe the process Xt. In the following we will often use the
specific term Brownian searcher which describes in this chapter a simple
one-dimensional Brownian motion. On the other hand the term ’target’ is
used in order to describe the value xA. We consider also here the case of a
stationary target.

The event {Xt = xA} is considered as a necessary condition for the ab-
sorption of the searcher. This absorption is usually presented as the anni-
hilation of the searcher and leads to the termination of the search process.
The mean time to absorption (MTA) corresponds to the average of this
termination time over many trials.

If the first passage time is equal to the termination time for all trials then
we have perfect absorption. In this case the event {Xt = xA} is not only a
necessary but also a sufficient condition for the absorption of the searcher.
This corresponds to the assumption that a first meeting between target and
searcher must have an intermediate effect on the studied system. Realistic
examples for such situations from neural and financial sciences respectively
are the firing of a neuron when a voltage fluctuation is high enough and
the execution of buy/sell order when a certain stock price reaches a specific
value.

57



58 4. DIFFUSION WITH RESETTING IN BOUNDED DOMAINS

On the other side for certain experimental applications this assumption is
rarely true, e.g. two ions in a chemical solution do not necessarily recombine
when they encounter [131, 91]. This fact makes the introduction of the
concept of the partial absorption process, where the time to absorption does
not correspond to the first passage time, necessary. In this chapter we will
focus on the solution of a master equation describing the time evolution of a
partial absorption diffusion process under the effect of a resetting potential
[115].

4.1.1. Background and Motivation. The term reset describes in
general the restart of an ongoing process. In physics literature resetting
and especially stochastic processes with resetting have been investigated re-
cently. One the first scientific works on this topic is the paper by Manrubia
and Zanette [111] that analyzes a stochastic multiplicative process with re-
set events. A similar model was analyzed 14 years later by Montero and
Villarroel [112], who derived the stationary distribution and exit time of a
continuous time random walk with reset.

The work of Evans and Majumdar who first discussed the case of a
one-dimensional Brownian motion modified by a resetting mechanism [113]
has a great impact on this field. Inspiration for this process was the fact
that many searches in real-life situations are interrupted by resettings, as
example searching for the car keys while often returning to the point where
one remembers last seeing them. This situation is easily modeled by con-
sidering a perfectly absorbing target at the origin that is searched by an
one-dimensional Brownian particle. The evolution of the process is then in-
terrupted by resetting events forcing the particle back to its initial position.

The mean first passage time, T , becomes a function of the resetting rate
r. If the process has the diffusion constant D and starts from the initial
position X0 = x, then the first passage time for the event {Xt = 0} is given
in this case by the formula

T (x) = 1
r

(
exp

(√
r

D
x

)
− 1

)
. (4.1)

By performing a Taylor expansion we can easily see that T ∼ r−1/2 holds
in the limit r → 0. Consequently, we recover the well-known result that the
mean first passage time for a diffusive particle in a semi-infinite interval is
infinite [94]. Also T diverges for r →∞ since in this limiting case a diffusion
of the particle away from its initial position becomes impossible and the
particle appears to be trapped at the initial position. The divergence of T in
both limits r → 0 and r →∞ is an indication for the existence of a minimum
for T with respect to r in the interval r ∈ (0,∞). In [113] the existence of
such a positive optimal resetting rate was shown and furthermore its exact
value for a diffusion in the semi-infinite interval was calculated.

This model of Majumdar and Evans has shown the possible beneficial
effect of a resetting mechanism on the distribution of search times and thus
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X0

X
t

t

Figure 4.1. Characteristic path of a diffusion process Xt

with resetting. The red lines correspond to the path of the
stochastic process while the blue lines indicate the jumps
performed due to the resetting to the initial position X0.

triggered the study of the dynamics of similar processes. A first general-
ization of this problem was provided in terms of space-depending resetting
rates in [114]. In the same work also different conditions with regard to the
position at which resetting may take place and with regard to the position
of the searcher after the resetting have been considered. An expansion of
the presented formalism for higher dimensional cases is also possible and
was provided in a later work [79].

In the last years one can observe an ongoing interest in stochastic pro-
cesses with resetting [138, 139, 140, 126, 127]. This interest is on the
one hand explained by their importance in computer science and network
theory where resetting proves to be a useful strategy when trying to op-
timize search algorithms in combinatorial problems [80, 82, 81, 83]. On
the other hand, processes with random resettings do not only find applica-
tion in artificial systems but also in various natural systems. For example
foraging animals improve their search strategy by returning to previously
visited sites [119]. Another important aspect is the fact that diffusion with
resetting has similar features to intermittent search processes that are very
important in the description of biochemical reactions in microbiological sys-
tems [109, 85, 86, 87].

Another interesting feature of stochastic processes with resetting is the
nature of their stationary states. The implementation of a resetting mecha-
nism leads to non-vanishing probability currents and hence allows the study
of interesting non-equilibrium steady states [132, 133]. In the work of Pal
et. al. [117] the non-equilibrium steady state of a diffusion inside a potential
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landscape was analyzed. Other examples of stochastic processes with inter-
esting stationary states are the surface growth process described by a KPZ
equation with resetting which shows non-Gaussian interface fluctuations in
the stationary limit [121, 124] and the coagulation-diffusion process with
a stochastic reset [88]. Here, we will derive the stationary distribution of
a diffusion process taking place in one-dimension with reflecting boundary
conditions.

Our main goal in this chapter is to reevaluate the importance of resetting
for a process that takes place in a bounded domain. One has to consider
hereby that boundary conditions have a great and mostly erratic influence
on the search properties of realistic stochastic processes [90]. As example
the expression lim

r→0
T = ∞, presented above for a diffusive search process

in a semi-infinite interval, does in general not hold for a stochastic process
evolving in a bounded domain. This leads us to question the existence of an
optimal resetting rate for this kind of processes.

This chapter has following structure: In section 4.2 we describe the
main characteristics of our model and show how the forward equation for
diffusion processes with resetting and partial absorption can be formulated.
We proceed by calculating the stationary solution of the derived differen-
tial equation ( section 4.3 ). The targeting properties of our model will be
discussed in section 4.4. This will be done by determining the survival prob-
ability of a single random walker. Several special cases with regard to the
resetting and absorbing potential are discussed in detail. One of these spe-
cial cases can also be evaluated in terms of a Monte Carlo simulation. This
circumstance also allows us to test the validity of our analytical findings.
Some concluding remarks are reserved for the final section.

4.2. Model

We start our analysis by showing a way to derive the master equation
for a diffusion process with resetting in a bounded domain. Alternative
strategies that do not follow this approach and do not require the derivation
of a differential equation can also be successful and have been used in the past
[112]. This alternative way of proceeding may be easy but it is not promising
for the general problems with of space-dependent resetting rates. In this case
the determination of the resetting event dispersion has to be undertaken
and this is a rather difficult undertaking. Furthermore the master equation
approach is suited for a wide class of random walks with resetting.

In this section we focus on a random walk taking place in a one-dimensional
domain with two reflecting walls. A resetting event can be represented math-
ematically in terms of ’gain’ and ’sink’ potentials in the master equation.
These ’gain’ and ’sink’ terms describe the disppearance and simultaneous
reappearance of the random walker in different regions of the system. We
characterize in the following these potentials by the probability density func-
tions pS(x) and pG(x), respectively. The complete disappearance of random



4.2. MODEL 61

walkers from the system due to the partial absorption is described by the
function pA(x).

The probability distribution function of a random walker starting from
the position y is characterized by ψ(x, y; t)1. We can derive a differential
equation that describes the time evolution of this propagator ψ(x, y; t) as
follows. We consider an ensemble consisting of several diffusing particles.
The pdf ψ(x, y; t) corresponds to the concentration function of the set of
particles. The derivation of the differential equation describing the evolution
for this concentration function starts by regarding the transition probability
at a time t + ∆t, with ∆t being a small interval of time, as a function of
the transition probability at the time t. This can be done by dividing the
time interval [t, t+ ∆t] into two intervals: [t, t+ t′] and [t+ t′, t+ ∆t], with
0 ≤ t′ ≤ ∆t. Three possibilities exist now in this first interval:

1: the particle gets resetted to a new position which will then be the
starting position for a diffusive motion in the subsequent interval
[t+ t′, t+ ∆t],

2: the particle gets absorbed,
3: no resetting or absorbing takes place and the particle diffuses to a

new position.

The probability of the occurrence of one of these events depends on the
time that has elapsed. On the other hand the path of the diffusive walker in
correlation to the spatial form of the resetting and absorbing field described
correspondingly by the functions pS(x), pA(x) ∈ L1(R) must also be taken
into account. In case of a resetting event a new position is derived from the
probability distribution function pG(x) and a diffusion starting from that
position takes place. This ensuing stochastic exploration is performed in
the remaining time interval ∆t− t′. The probability of a jump with length
ξ in the time interval (∆t− t′) is given by the Gaussian law

p(ξ,∆t− t′) = (4πD(∆t− t′))−1/2 exp
[
− ξ2

4D(∆t− t′)

]
. (4.2)

The resetting procedure is described by the following two terms

−
∆t∫
0

dt′ pS(x′)ψ(x′, x0; t+ t′) (4.3)

1The term ψ(x, y; t) is equal to the term P (x, t|y, t0) used in chapter 2. The probability
to find the diffusive particle at the position x at the time-point t if it was at the time-
point t0 at the position x0 depends only on the time-difference t − t0. We can also for
convenience replace the term P (x, t|y, t0) by the term ψ(x, y; t− t0). In the following we
set t0 = 0 and hence we use the function ψ(x, y; t) in order to describe the probability
distribution function of the position of the particle.
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and
∆t∫
0

dt′ pG(x)p(ξ,∆t− t′)
∫

dx′ pS(x′)ψ(x′, x0; t+ t′) . (4.4)

The first term describes the disappearance of a particle due to resetting
at a certain position drawn from the pdf pS(x) and the second one the
reappearance of the same particle at a position drawn from the pdf pG(x)
together with the subsequent diffusion from that position.

Lastly we need to take the possibility of an absorption of the particle
into account. This event can only take place in domains of [0, L] for which
pA(x) > 0 holds. Through this absorption mechanism a reduction of the
number of particles takes place. The difference in the number of particles
in the time interval [t, t + ∆t] at a specific point x′ in the system due to
absorption is given by the formula

−
∆t∫
0

dt′ pA(x′)ψ(x′, x0; t+ t′) . (4.5)

The resemblance between Eq. (4.3) and Eq. (4.5) is obvious.
The third case is the complementary event of the two other events and

described by a simple diffusion process. All walkers who do not get resetted
or annihilated perform a Brownian motion described by∫

dξ p(ξ,∆t)ψ(x, x0; t). (4.6)

By combining all these terms we get

ψ(x, x0; t+ ∆t) =
∫

dξ p(ξ,∆t)ψ(x− ξ, x0; t)+

+
∆t∫
0

dt′
∫

dξ p(ξ,∆t− t′)pG(x− ξ)
∫

dx′ ps(x′)ψ(x′, x0; t+ t′)−

−
∆t∫
0

dt′
∫

dξ p(ξ,∆t− t′)pS(x− ξ)ψ(x− ξ, x0; t+ t′)−

−
∆t∫
0

dt′
∫

dξ p(ξ,∆t− t′)pA(x− ξ)ψ(x− ξ, x0; t+ t′) (4.7)

Now we consider the limit

lim
∆t→0

ψ(x, x0; t+ ∆t)− ψ(x, x0; t)
∆t (4.8)

while taking into account the approximation∫
dtf(t) ≈ f (∆t) ∆t (4.9)
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for small time intervals ∆t. This way we can derive the differential equation

∂ψ(x, x0; t)
∂t

= D
∂2ψ(x, x0; t)

∂x2 + pG(x)
∫

dx′ pS(x′)ψ(x′, x0; t)

−pS(x)ψ(x, x0; t)− pA(x)ψ(x, x0; t). (4.10)

In the derivation of Eq. (4.10) we ignored the possibility of a second
resetting or the case in which the particle gets absorbed after being reset.
These terms are of the order O(∆t1+ε) and in the continuum time limit
negligible.

We have chosen here to consider the simple case where the functions
pA, pG and pS are time-independent. Of course one could also consider
time-dependent functions as shown in [129]. The complicated nature of the
present model forced us to restrict ourselves to the time-independent case.

The reflecting boundary condition can be expressed with the additional
equation

∂ψ(x, x0; t)
∂x

∣∣∣∣∣
0,L

= 0 . (4.11)

For the special case of a constant resetting field with reset to a specific
point and a pointlike target (pS(x) = r, pG(x) = δ(x − xr) and pA(x) =
αδ(x− xB)) we obtain the equation

∂ψ(x, x0; t)
∂t

=D∂
2ψ(x, x0; t)
∂x2 + rδ(x− xr)

∫
dx′ ψ(x′, x0; t)−

− rψ(x, x0; t)− αδ(x− xB)ψ(x, x0; t). (4.12)

The relations ∫
dx′ ψ(x′, x0; t) = 1

and

δ(x− xB)ψ(x, x0; t) = δ(x− xB)ψ(xB, x0; t) almost surely

lead us to an expression which is the same as Eq. (1) in [89]. The terms
r and α label the resetting and absorbing rate respectively. They define
the probability of absorbing or resetting in an infinitesimal time interval dt
which is equal to αdt and rdt respectively. Lastly one should note that Eq.
(4.12) could be written alternatively as(

∂

∂t
−D ∂2

∂x2 + V (x)
)
ψ(x, x0; t) = rδ(x− xr) (4.13)

with
V (x) = r + αδ(x− xB). (4.14)

This Schrödinger operator representation can be extremly useful when deal-
ing with general resetting functions [98].
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4.3. Stationary solution

In this section we will determine the stationary distribution for the dif-
fusion process described by the forward Eq. (4.12) with α = 0.

The stationary solution φ for this process fulfills the equation
∂

∂t
φ(x, x0; t) = 0 . (4.15)

The described diffusion process is ergodic for r < ∞. Hence the stationary
solution is independent of the initial position x0. Since the stationary solu-
tion is by definition time-independent we use the notation φ(x). In order to
calculate its exact form we start from

D
∂2

∂x2φ(x)− rφ(x) + rδ(x− xr) = 0. (4.16)

We follow here the steps presented in [92] and represent the eigenfunctions
of the operator

D
∂2

∂x2 − r + rIxr (4.17)

in terms of the eigenfunctions, φn(x), of the Laplace operator ∂2/∂x2. Ixr
is used hereby as the short form of the integral transform

Ixr [ψ](x) = δ(x− xr)
L∫

0

dxφ(x) = δ(x− xr). (4.18)

The Laplace operator in a square well potential with reflecting boundary
conditions

φ′(0) = φ′(L) = 0 (4.19)
has eigenvalues nπ/L for the eigenfunctions

φn(x) =
√

2/L cos(nπx/L), ∀n ∈ N+ (4.20)

respectively. We assume now that the stationary solution has a representa-
tion of the form

φ(x) = φ0 +
∞∑
n=1

anφn(x). (4.21)

The first term on the right hand side of equation (4.21) is given by the
probability conservation law

L∫
0

dxφ(x) =
L∫

0

dxφ0(x) +
∞∑
n=1

an

L∫
0

dxφn(x) = 1 (4.22)

leading due to Eq. (4.20) to

φ0(x) = 1
L
∀x ∈ [0, L]. (4.23)
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It is obvious from our choice of the orthonormal basis that
∂2φn(x)
∂x2 = εnφn(x) (4.24)

with
εn = −n

2π2

L2 . (4.25)
We can generalize now the presented approach by assuming that there exist
N different resetting positions, {xr1 , xr2 , ..., xrN }. In this case Eq. (4.16)
takes the form

D
∂2φ(x)
∂x2 = rφ(x)− r

N

N∑
d=1
Ixrdφ(x). (4.26)

The combination of (4.24) with (4.26) delivers the equation

D
∞∑
n=1

anεnφn(x) = rφ(x)− r

N

N∑
d=1

δ(x− xrd) . (4.27)

The prefactors an are easily derived by multiplication with the orthonormal
vector (in L2)

√
2/L cos(kπx/L) and integration over the interval [0, L]

ak = r/N

r −Dεk

N∑
d=1

cos(kπxrd/L) . (4.28)

Reinserting this formula in (4.21) we get

φ(x) = φ0(x) +
∞∑
n=1

2r
NL(r −Dεn) cos(nπx/L)

N∑
d=1

cos(nπxrd/L) . (4.29)

This formula shows that the stationary solution is continuous in the interval
[0, L] while the derivative has singularities at the points xrd ∈ [0, L], as
expected.

Alternatively one could calculate the stationary distribution by dividing
the space into different regimes separated by the resetting positions. Inside
these different regimes one can calculate the stationary solution and fur-
thermore derive a general solution by combining these separate equations
[93].

We see that our stationary solution depends on the resetting positions
xrd and the parameter

`−1
0 =

√
D/r. (4.30)

This term represents the characteristic diffusion length between two reset-
ting events. From now on we will call this length scale the mean free path
length [94]. We rewrite therefore Eq. (4.29) as

φ(x) = φ0(x) +
∞∑
n=1

2
NL(1− `−2

0 εk)
cos(nπx/L)

N∑
d=1

cos(nπxrd/L). (4.31)

It is a clear that the the limit of the pure diffusion is recovered for `−1
0 →∞.

in this case of course the stationary state φ(x) = φ0(x) is expected.
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4.4. Survival Probability

We will now analyze the mean first passage time of the described pro-
cess. We consider hereto the survival probability Q(z, t) of the diffusive
particle to have survived up to time t if it started from the position z. This
function is easily derived by the corresponding function ψ(x, z; t) describing
the transition probability∫ ∞

0
dxψ(x, z; t) = Q(z, t) . (4.32)

It is also possible to calculate the survival probability by deriving an explicit
form of the backward equation from the corresponding forward equation and
provide its solution. This approach will be used in the next chapter where we
consider a perfect absorbing target. The fact that we consider here partial
absorbing conditions forces us to follow a different way and start from the
Laplace-transform of Eq. (4.12)

0 =D∂
2ψ̃(x, z; s)
∂x2 − (r + s)ψ̃(x, z; s)+

+ rδ(x− xr)
∫

dx′ ψ̃(x′, z; s)− αδ(x− xB)ψ̃(x, z; s) . (4.33)

We use now the Laplace transform of the free Green’s function

G0(x, z; s) = 1
2(sD)−1/2 exp

[
−
(
s

D

)1/2
|x− z|

]
(4.34)

in order to find the solution of the differential equation (4.33). We start with
the solution to the differential equation where we consider only the resetting
trigger field

0 = D
∂2G(x, z; s)

∂x2 − (r + s)G(x, z; s). (4.35)

This equation is solved by the substitution s → s + r in the free Green’s
function above. We have also

G(x, z; s) =
∫

dt exp [−(r + s)t]ψ(x, z; t) =

= 1
2((r + s)D)−1/2 exp

[
−
(
r + s

D

)1/2
|x− z|

]
. (4.36)

We can imply reflecting boundary conditions at x = 0 and x = L by using
the reflexion theorem [99]. The propagator takes in this case the form

Gr(x, z; s) =
∞∑

n=−∞
G(x, z+2nL; s)+G(x,−z+2nL; s), 0 ≤ x ≤ L . (4.37)

All of these terms can be combined together in order to construct the Green’s
function K(x, z; s) fulfilling the equation

0 = D
∂2

∂x2K(x, z; s)− (r+s)K(x, z; s)+rδ(x−xr)
∫

dx′K(x′, z; s) (4.38)
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together with the boundary conditions
∂

∂x
K(x, z; s)

∣∣∣
0,L

= 0 . (4.39)

The solution to this equation is

K(x, z; s) = Gr(x, z; s) + r

s
Gr(x, xr; s). (4.40)

From the exact form of K(x, z; s) one can calculate the survival probability
for the process described by Eq. (4.33). The formula derived in [91] for the
special case of a point-like partial absorbing target is rather useful in that
regard

ψ̃(x, z; s) = K(x, z; s)− αK(x, xB; s)K(xB, z; s)
1 + αK(xB, xB; s) . (4.41)

The Laplace transform of the survival probability Q(z, t) is correspondingly
given by

Q̃(z, s) = 1
s

(
1− αK(xB, z; s)

1 + αK(xB, xB; s)

)
. (4.42)

Figure 4.2. Plot of f(s) = s + rαGr(xB ,xr;s)
1+αGr(xB ,xB ;s) for r = 0.1,

D = 10−4, L = 1, α = 107, xB = 0.54 and xr = 0.44. In
the limit s → ∞ we get f(s) → s, while for s → −r, f(s)
approaches negative value proportional to r.

We can derive the survival probability by calculating the inverse Laplace
transform of this formula. The function Gr(x, z; s) is strictly decreasing for



68 4. DIFFUSION WITH RESETTING IN BOUNDED DOMAINS

increasing s. This leads us to the conclusion that Q̃(z, s) has a simple pole
at s = s0 (see Fig. 4.2), which is defined through

s0 = − rαGr(xB, z; s0)
1 + αGr(xB, xB; s0) . (4.43)

Furthermore due to the positivity of Gr(x, z; s) we can claim that

−r < s0 ≤ 0. (4.44)

In the complex plane there is a branch point at s = −r. The long time
behavior of the survival probability is determined by the residue from s0
which can be determined numerically by the point at which f(s) = s +
rαGr(xB ,xr;s)

1+αGr(xB ,xB ;s) crosses the x-axis (see Fig. 4.3).

4.4.1. Existence of the optimal rate. A first indication for the exis-
tence of an optimal resetting rate that minimizes the mean time to absorp-
tion (MTA) is the existence of a value of r for which s0 is minimal. This can
be seen Fig. 4.3 where s0 as function of r is plotted. We can investigate this
further by studying directly the properties of the MTA, T (z), for a particle
which originated at z,

T (z) = −
∫ ∞

0
dt t∂Q(z, t)

∂t
=
∫ ∞

0
dtQ(z, t) = Q̃(z, 0) . (4.45)

Q̃(z, s) is a continuous function of s and we can set

Figure 4.3. Plot of s0 in dependence of r for α = 107,
L = 1, D = 10−4, xB = 0.54 and xr = 0.44. We see that in
the limit r → 0 the behaviour of s0 approximates that of −r.
The limit of zero is approached for big resetting rates.
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T (x0) = Q̃(x0, 0) = lim
s→0

1 + α(K(xB, xB; s)−K(xB, x0; s))
s+ αsK(xB, xB; s) . (4.46)

This formula can be further modified by inserting the expression (4.40) for
the propagator K(xB, xB; s)

T (x0) = 1 + α(Gr(xB, xB; 0)−Gr(xB, x0; 0))
αrGr(xB, xr; 0) . (4.47)

The optimal resetting rate can no been determined by solving the equation
∂

∂r
T (x0) = rα2(Gr(xB, xB; 0)−Gr(xB, x0; 0))′Gr(xB, xr; 0)

α2r2G2
r(xB, xr; 0) −

− [1 + α(Gr(xB, xB; 0)−Gr(xB, x0; 0))](αrGr(xB, xr; 0))′

α2r2G2
r(xB, xr; 0) = 0 (4.48)

or equivalently
α2(rG′r(xB, xB; 0) +Gr(xB, x0; 0)−Gr(xB, xB; 0)− α2r(Gr(xB, xB; 0)−

− rG′r(xB, x0; 0))Gr(xB, xr; 0)−Gr(xB, x0; 0))G′r(xB, xr; 0)−
− α(Gr(xB, xr; 0) + rG′r(xB, xr; 0)) = 0 . (4.49)

From Eq. (4.37) follows that each propagator consists of a sum over infinitely
many exponential functions. This exponential form allows us to approximate
each propagator by a finite sum that can be evaluated numerically. We could
see that the deviation between the evaluation of Eq. (4.37) for n = 105 and
n = 106 is smaller than 10−10. We have set n = 106 and could calculate this
way an optimal resetting rate of r = 0.026 for the case presented above in
Fig. 4.3.

As stated in our introduction for a stochastic search process in a bounded
domain the possibility of a divergent search is excluded. This mean that in
this case resetting may be advantageous or disadvantageous and its effect
depends on the positions x0, xr and xB. In the following we focus on this
matter for the simple case of a resetting mechanism that leads the diffusive
searcher back to its original position (x0 = xr).

Setting x0 = xr in Eq. (4.47) we see that depending on the value of
|xB−xr| the typical behavior of T (x0) as function of r can described in two
distinct ways. If the distance |xB−xr| is equal or bigger than half the order
the size of the system T (z) is a monotonic increasing function of r:

∂T (x0)
∂r

> 0 ∀r ∈ R+ (4.50)

and
∂T (x0)/∂r →∞ for r →∞. (4.51)

On the other hand, for values of |xB − xr| that are smaller than O(L/2),
the function ∂T (x0)/∂r becomes negative for values of r close to zero. But
there exists a value r∗ ∈ R+ so that ∂T (x0)/∂r > 0 for all r > r∗. This
behavior is shown explicitly in Fig. 4.4. Now we can consider several system
sizes L and a wide range of values for |xB − xr| in order to verify that this
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Figure 4.4. The MTA as a function of the resetting rate
r for different values of |xB − x0|. We set xB = 0.54, L =
1, D = 10−4 and α = 107. We see that the existence of
an optimal resetting rate for T (x0) is evident only for the
smallest value of |xB − x0|.

pattern is universal and described by the linear functions shown in Fig. 4.5.
It is clear that the different regimes are separated by lines the slope gr of
which depend on the parameter α.

The dependency of the function T (x0) on the absorption rate α is re-
flected in the equation

T (x0) = 1
αrGr(xB, xr; 0) + (Gr(xB, xB; 0)−Gr(xB, x0; 0))

rGr(xB, xr; 0) . (4.52)

The first term of this equation is dominant for values of α which are smaller
than 10−5 while the opposite case, where this term can be ignored, occurs
if α > 0.01. This fact allows us to produce Fig. 4.6 where gr is described as
function of the absorption rates α.

We can also declare that for reflecting boundary conditions the existence
of an optimal resetting rate depends on the distance |xB−x0|. Furthermore
the exact value of this optimal resetting rate is a function of the distance
|xB − x0| and the absorption rate α. This finding is not surprising since a
similar dependency between optimal parameters and initial conditions could
be shown also for a Lévy flight process in one dimension [95]. In this work
the two optimal parameters µ∗ and r∗, undergo a discontinuous jump, from
nonzero finite values to r∗ = 0 and µ∗ = 0 at a critical value x∗0. Here we
observe a continuous transition as represented in Fig. 4.7.
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Figure 4.5. Phase diagram for the existence of an optimal
resetting rate r∗ for a random walk taking place in a bounded
domain with reflecting walls. In the region between the two
lines (blue and red) resetting can be beneficial. The blue line
is given by the formula x0 = (1− gr) + grxB and the red line
is of the form x0 = grxB.

This continuous nature of the transition is expected. We know that for
large values of xB − x0 the optimal resetting rate r∗ is equal to zero and
Tr(x0) a strictly increasing function of r. Now if we decrease the distance of
xB−x0 then at the critical value of x∗0 ≈ grxB we observe the disappearance
of the derivative ∂rTr(x0) for a large range of values of r around r = 0.
A numerical evaluation of the optimal value is impossible at that point.
Further decrease of the distance xB − x0 will lead the development of a
minimal value for the function Tr(x0) and hence we have a single optimal
value with r∗ > 0.

4.4.2. Special cases. In the following we consider different special
cases that correspond to limiting cases with regard to the resetting or absorb-
ing rates for the survival probability described by Eq. (4.42). The complex
structure of the numerator makes an analytical determination of the simple
pole impossible. Fortunately qualitative statements are possible in the lim-
iting cases that we will consider in the following. This allows us to test if
the derived solutions are consistent with the expected behavior.

Weak Absorption (α→ 0). In this limiting case Eq. (4.42) simply trans-
forms to

Q̃(z, s) = 1
s
. (4.53)
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Figure 4.7. Optimal resetting rate as a function of the ini-
tial position. We show the behavior of the optimal resetting
rate for L = 1, xB = 0.5, α = 1 and D = 10−4. Numeri-
cal calculations for different combinations of the parameters
(L = 1; 2; 3, xB = 0.5·L, D = 10−4; 4·10−4; 9·10−4, α = 1)
show the same behavior. The critical value is estimated at
x∗0 = (0.448± 0.004)xB.
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This corresponds to an infinite T (z), which is natural since no absorption
can take place.

Weak Resetting (r → 0). In the limit of r → 0 we can replace the func-
tion K(x, y; s) by the term

H(x, y; s) =
∞∑

n=−∞
G0(x, y + 2nL; s) +G0(x, y − 2nL; s) . (4.54)

The expression H(x, y; s) corresponds to a simple diffusion process in a
bounded domain [0, 1] with reflecting boundary conditions at x = 0 and
x = 1. The Laplace transform of the survival probability reads as

Q̃(z, s) = 1
s

(
1− αH(xB, z, s)

1 + αH(xB, xB; s)

)
. (4.55)

We notice now that lim
s→0

H(x, y; s) → ∞ for all x, y ∈ R and come hence to
the conclusion that

lim
r→0

T (x0) ∼ const. (4.56)

This constant value depends solely on the parameters α, L and |xB − x0|.
Strong Resetting (r →∞). In the limiting case of strong resetting we

expect a situation similiar to the one of weak absorption. We have namely

K(x, y; s) ∼ rGr(x, xr; s) ∼ r1/2 exp
[
−
(
r + s

D

)1/2
|x− xr|

]
∼ 0 (4.57)

leading to

Q̃(z, s) ∼ 1
s
. (4.58)

This expression is equivalent to the one derived for α = 0. In the limit of
r → ∞ the random walker has not the opportunity to travel away from
its initial position since it gets constantly resetted to its initial position.
Absorption has correspondingly no effect on the evolution of the process.

Strong Absorption (α→∞). It is easy to see that in the limitng case of
(α→∞) the Laplace transform of the survival probability can be replaced
by the expression

Q̃(x0; s) = K(xB, xB; s)−K(xB, x0; s)
sK(xB, xB; s) . (4.59)

We can now use the explicit expression (4.40) for the function K(x, y; s)
which leads us to

T (x0) = Gr(xB, xB; 0)−Gr(xB, x0; 0)
rGr(xB, xr; 0) . (4.60)

The same problem could be considered in terms of one absorbing

q(xB, y; t) = 0 (4.61)
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and one reflecting boundary condition

∂q(x, y; t)
∂x

∣∣∣∣∣
0

= 0 . (4.62)

It is therefore no surprise that no explicit dependence of T (x0) on the ab-
sorbing rate exists.

Furthermore we can claim that in this case the propagator Gr(x, y; s)
can be replaced by the Laplace transform

q̃(x, y; s) = 1
2 [(r + s)D]−1/2×

×
{

exp
[
−
(
r + s

D

)1/2
|x− y|

]
+ exp

[
−
(
r + s

D

)1/2
|x+ y|

]}
. (4.63)

This easily proven by a numerical calculation of the propagator Gr(x, y; 0)
for L = 1 by taking up to 106 elements into consideration

Gr(x, y; 0)
Gr(x, z; 0) ≈

106∑
n=−106

G(x,±y + 2nL; 0)

106∑
n=−106

G(x,±z + 2nL; 0)
≈

≈ exp(−
√
r/D|x− y|) + exp(−

√
r/D|x+ y|)

exp(−
√
r/D|x− z|) + exp(−

√
r/D|x+ z|)

= q̃(x, y; 0)
q̃(x, z; 0) .

(4.64)

Hence a replacement of Eq. (4.60) by

T (x0) = q̃(xB, xB; 0)− q̃(xB, x0; 0)
rq̃(xB, xr; 0) (4.65)

is justified.

4.4.3. Numerical Results. For the special case of a perfect absorp-
tion (α →∞) we can easily test our theoretical predictions by a numerical
simulation. A stochastic search process with a perfectly absorbing target
correspons to a first passage problem that is easily evaluated by a Monte-
carlo simulation. In Figs. 4.8 and 4.9 the analytical predictions (blue lines)
derived from Eq. (4.60) are compared with the results of Monte Carlo sim-
ulations. The calculated average search time is quite well described by our
equations. Of course a discrepancy is observed for very small values of the
mean free path length. This deviation is explained by the different na-
ture between a continuous time process like the Brownian motion described
by our analytical approach and the simulated discrete time random walk.
Similar deviations have been observed by Gelenbe in simulations of a two-
dimensional random walk in an infinite lattice [83].

Our Monte Carlo simulation is based on a random walk Sn =
∑n
k=0Xk

taking place in a one-dimensional lattice. We have chosen here a lattice
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Figure 4.8. MTA in dependence of the mean free path
1/
√
r. For this simulation we set x0 = xr = 44 and xB = 64.

The numerical results are calculated based on the values of
100 different random walks.

consisting of xB sites. At the beginning we set the random walker in its
initial position x0 ∈ N with 1 ≤ x0 ≤ xB. At each time step the random
walker makes a jump either to the left or the right with equal probability.
The left boundary of the system which correspond to the position x = 0 is
reflective. This mean that a walker at the position x = 1 will necessarily
perform a jump to the right. After each such step a resetting of the walker
to its initial position x0 may occur with a probability 0 ≤ rn ≤ 1. The
mean time between two reset events is therefore equal to (1 − rn)/rn and
the corresponding mean free path is

√
(1− rn)/rn.

The walk is terminated as soon as the particle arrives at the absorbing
position xB. The effect of the reflecting boundary conditions on the MTA
is best observed in the behavior of the function T (x0) for large values of√

(1− rn)/rn =
√

2D/r. In that regime the function T (x0) appears to
be almost constant. The reason being that due to the confinement of the
process at a certain domain, the increase of the mean free path length can
only have a minimal effect on the search process.

4.5. Discussion and Conclusions

In this chapter we considered the effect of reflecting boundary conditions
on a diffusion process in one dimension under the effect of a resetting and an
absorbing potential. We asked ourselves how the existence of the boundary
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Figure 4.9. MTA as a function of the mean free path 1/
√
r.

For this simulation we set x0 = xr = 34 and xB = 74. The
numerical results are calculated based on the values of 100
different random walks.

conditions will influence the properties of a stochastic search process with
resetting. We did that by determining the mean time to absoprtion of the
described process. Our approach consisted in expressing the solution to
the Laplace transformed forward equation in terms of the free Brownian
propagator. From the exact form of the propagator we derived the Laplace
transform of the survival probability. A careful analysis of this function
showed that the existence of an optimal resetting rate is not granted for
this class of processes. Numerical calculations helped us determine exact
regions of the initial position for which a positive resettign rate can be
found. Furthermore it was possible to determine the exact value of the
optimal resetting rate for different cases and a large set of parameters.

For the special case of a perfect absorbing target we used numerical
simulations in order to verify our results. The predicted behavior of the
MTA as function of the resetting rate was in good agreement with the Monte
Carlo simulation. Of course several limitations arose when approaching
small values of `−1

0 due to the different scaling properties of Brownian motion
and discrete time step processes.

The presented model can be extended in several ways. For instance, the
problem of a search process with more than one partial absorbing potential is
rather interesting. Similarly one could consider the case where the Brownian
particle does not necessarily gets reset to its initial position but to a random
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previously visited position. Processes that include this kind of memory effect
have been the subject of scientific research in the last years [118, 119] and
were inspired by animal behavior. It would be surely interesting to evaluate
the properties of such a process in a bounded domain. The question with
regard to the existence of an optimal resetting rate for a process with more
than one searcher also arises naturally.

Finally the present framework is suited the study of general integrable
resetting and absorbing potentials. Therefore a discussion of the same prob-
lem for different resetting mechanisms, relying as example on a Gaussian
or an exponential distribution function is possible and probably interesting
for several applications. Especially the existence and properties of several
regimes in such systems would be an attractive and promising problem.





CHAPTER 5

Diffusion with Resetting inside a two-dimensional
Circle

5.1. Introduction

In the last chapter we focused on the properties of an one-dimensional
stochastic search process with resetting in a bounded domain. We considered
hereto a diffusion process with a partial absorbing target inside an interval
bounded by reflecting boundary conditions. In this chapter we will integrate
new features to this previous model and consider a stochastic search process
with resetting evolving inside a simple two-dimensional confining geometry
while also having the property to switch between two different modes of
diffusion.

In detail we imagine that we have a circle of radius R inside of which a
diffusion process takes place. The Brownian particle is in search of a station-
ary target that lies on the boundary of the circle. The stochastic searcher
performs a two-dimensional Brownian motion with the diffusion constant
D2 until it arrives at the boundary of the circle. The searcher then sticks
to the boundary reducing the dimensionality of its motion and undergoing
from now on a one-dimensional diffusion with diffusion constant D1 along
the boundary. This whole process may get interrupted by a resetting event
appearing with a constant rate r which forces the searching particle to re-
turn to its initial position. From this point on a two-dimensional diffusion
takes place until the arrival at the boundary and so on. The process is
terminated by the first meeting between searcher and target. We will also
evaluate in the following the first passage time of this process. By assuming
here that the target has no dimension (point target) we can guarantee that
a termination of the target is possible only during the one-dimensional dif-
fusion phase. This assumption allows for an exact analytical calculation of
the MTA.

A well studied class of stochastic search processes that combine two
phases of motion like the one described above are intermittent search pro-
cesses. They are characterized by a combination of phases of slow motion
during which detection of the target is possible and phases of long jumps
allowing the searcher to cross over large regions of the system. This very
efficient strategy can be observed at different scales (microscopic and macro-
scopic) and in various fields [84].

79
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Figure 5.1. Characteristic paths of a diffusion process with
resetting inside a circle with R = (2π)−1. The red line on the
left figure correspond to the first excursion of the Brownian
particle starting from the center of the circle and diffusing
inside the circle. Upon arriving on the boundary an one-
dimensional stochastic process starts that gets interrupted
by stochastic resets. Directly after this resetting a new diffu-
sive excursion from the center of the circle starts (indicated
by the green line in the left figure) which ends again at the
boundary. As in the last chapter we represent these reset-
ting effects on the boundary by blue lines. Starting an one-
dimensional excursion at the position x = 0/1 would require
a two-dimensional path ending at the position ~R =(
(2π)−1 , π

)
.

Although the process studied in this section also has the property that
detection of the target is only possible during a certain phase of its evolution
the characterization as intermittent search process would be incongruous.
The reason for this is the fact that the different nature of the two phases of
motion (one-dimensional and two-dimensional process) does not allow for a
characterization of a ’slow’- and a ’fast’-moving phase.

A much more fitting characterization for the dynamics studied in this
section is surface mediated diffusion. This class of diffusion processes de-
scribes search processes that terminate on the surface of a confining domain
and is therefore very important for the analysis of chemical reactions in
bounded domains [116, 109, 86, 87]. A great inspiration for the present
chapter was the work of Bénichou et al. [107] on the “Optimal Reaction
Time for Surface-Mediated Diffusion”. They considered a Brownian particle
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inside a circular domain with alternates between phases of bulk and sur-
face diffusion. The transition from bulk to surface diffusion is initiated as
in our model by the arrival of the particle at the surface. The transition
from surface to bulk diffusion on the other hand corresponds to a jump of
the particle from the surface in a direction perpendicular to the surface and
towards the center of the circle. At each desorption event the particle is
radially ejected at a distance a from the boundary. We will see here how a
replacement of the desorption mechanism through a resetting event would
influence the properties of the process.

One has to note here that although for such microbiological systems a
resetting mechanism cannot be constructed 1 a vast number of applications
can be found in different fields such as computational sciences or zoology.
One characteristic example is animal foraging where revisiting previous po-
sitions has proven to be an effective strategy [118, 122]. When searching
for foods animals may also be forced to reduce their dimensionality by dif-
ferent ecological characteristics, as example hunting along a shore. At the
same time reduction of dimensionality can be considered as fulfillment of a
constraint in terms of a randomized search algorithm which in general profit
from a restart mechanism [137, 141].

In this chapter we will consider different initial conditions as well as
different conditions under which a resetting may occur. We have chosen
hereto following structure: We start by showing how one can calculate the
mean first passage time for a diffusion process by calculating the Laplace
Transform of the survival probability. We will then apply the provided
method for the simple case of a diffusion process starting at the boundary
of the circle. In section 5.3 we treat the case of the initial position being
the center of the circle and prove the validity of our approach by comparing
our results to previous works in an intermittent setting [123]. In section 5.5
we generalize our approach by considering random initial conditions. This
forces us to derive an expression for the gain potential first. In doing so,
we can derive the master equation of the process. The solution delivers
then the desired MTA. Furthermore, the provided expression allows us to
characterize the different regions with a positive resetting rate. Of course in
this case the parameters D2 and D1 have to be specified. In section 5.6 we
follow the same approach as in the preceding section in order to analyze the
properties of the generalized process where resetting may even occur during
the two-dimensional diffusion. Finally, our last section is reserved for the
discussion of our results.

5.1.1. General Approach. Although we consider in the following sys-
tems with diverse resetting behavior the establishment of a general approach

1Resetting would require the searcher to have some kind of memory with regard to
previously visited positions (at least with regard to its initial position). At microbiological
level this kind of memory cannot be implemented experimentally.
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in analyzing these problems is still possible. Two conditions are hereby cru-
cial. First, we consider a constant resetting rate. Second, the target has no
dimension and hence the process is terminated during the one-dimensional
diffusion phase. Under these two conditions the MTA is simply given by
the addition of the mean times for each of the two different modes consist-
ing purely of one- and two-dimensional diffusion. We characterize the mean
time the particle spends during its one-dimensional diffusion by T1 and by
T2 the mean time for the two-dimensional path. The total mean time to
absorption is then given by,

T = T1 + T2. (5.1)

It is important to note here that the mean time of the one-dimensional
diffusion T1 can be calculated analytically, while T2 can be expressed in
terms of T1 and the mean time of the first two-dimensional excursion, τ2.
We can claim now that due to the stationarity of the diffusion process each
two-dimensional excursion starting after a reset from the boundary to the
initial position has the same mean duration as the first two-dimensional
excursion. Correspondingly we use now the general term "mean time to
boundary" (MTB) in order to describe τ2. The mean time T2 is then given
by the formula

T2 = (cr + 1)τ2 (5.2)

where cr describes the mean number of resets from the boundary.
This new term cr can also be expressed in terms of the resetting rate r

and the mean time of the one-dimensional diffusion T1. The time interval
between two resets follows a Poisson distribution with rate r. Hence the
mean time interval is given by τr = r−1. Consequently we get

cr = T1
τr

= rT1. (5.3)

Implementing this simple expression in Eq. (5.2) leads to the reformulation
of Eq. (5.1)

T = rT1τ2 + T1 + τ2. (5.4)

Therefore our only task consists in the following in the determination of
the two quantities T1 and τ2.

5.2. Diffusion with Resetting in one-dimensional periodic domain

We start our analysis by attacking the simple problem of an initial po-
sition on the boundary of the circle. Two-dimensional diffusion does not
need to be considered in this case as the random searcher can only move
on the boundary of the circle. Correspondingly we deal here with an one-
dimensional diffusion process with resetting in a periodic domain of length
L = 2πR.
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In the last chapter we have seen how a diffusion process with resetting
can be described by a Fokker-Planck equation formalism

∂ψ(x, x0; t)
∂t

= D
∂2ψ(x, x0; t)

∂x2 + pG(x)
∫

dx′ pS(x′)ψ(x′, x0; t)

−pS(x)ψ(x, x0; t)− pA(x)ψ(x, x0; t). (5.5)

The different cases presented in the following sections are easily implemented
by defining the corresponding different distribution functions pS(X), pG(x)
and pA(x) which describe the dynamics of the resetting and absorption pro-
cess. We will assume that resetting is possible from any point on the bound-
ary. The possibility of resetting should hereby be independent of the position
of the diffusing particle. These features are represented by a resetting po-
tential of the form pS(x) = r. This potential is in turn complemented by
the gain potential pG(x) = δ(x − xr), which describes the resetting of the
diffusing particle at the position xr. We start here with a generalized ap-
proach and set later on xr = x0, forcing herewith the particle to return to
its initial position at the boundary. Finally since we consider here perfectly
absorbing targets we can set PA(x) = αδ(x− xA) with α→∞.

The evolution of the probability density function ψ(x, t;x0) for a process
starting from the position x0 at the time-point t = 0, is hence given by the
master equation

∂ψ(x, t;x0)
∂t

= D1
∂2ψ(x, t;x0)

∂x2 + δ(x− x0)
∫

dx′ rψ(x′, t;x0)−

−rψ(x, t;x0)− αδ(x− xA)ψ(x, t;x0). (5.6)

Now without loss of generality we can choose xA = L. This allows us to
replace the annihilation potential PA by the boundary conditions

ψ(0, t;x0) = ψ (L, t;x0) = 0 (5.7)

for the problems studied here. The Fokker-Planck equation (5.6) describes
the evolution of our process but is not suited for the determination of the
first passage time. Therefore one can rely on the backward master equation
fulfilled by the survival probability Q(x0, t),

Q(x0, t) =
∫

dxψ(x, t;x0). (5.8)

The function Q(x0, t) describes the probability for a process to have survived
up to the time-point t if it started from the position x0.

Integration of the Fokker Planck equation (5.6) leads to the following
equation

∂Q(x, t)
∂t

= D1
∂2Q(x, t)
∂x2 − rQ(x, t) + rQ(x0, t) (5.9)

with
Q(0, t) = Q(L, t) = 0. (5.10)
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This differential equation is easily solved by using the Laplace-Transform

q̃(x, s) =
∞∫
0

dtQ(x, t)e−st (5.11)

leading to

D1
∂2q̃(x, s)
∂x2 − (r + s)q̃(x, s) + 1 + rq̃(xr, s) = 0. (5.12)

which yields [79]

q̃(x, s) = Ae

√
r+s
D1

x
+Be

−
√

r+s
D1

x
+ 1 + rq̃(xr, s)

r + s
. (5.13)

The mean time to absorption is derived now by setting s = 0

T (x) = −
∫ ∞

0
dt t∂Q(x, t)

∂t
= q̃(x, 0) (5.14)

for which the expression

T (x) = Ae`
−1x +Be−`

−1x + 1 + rT (xr)
r

(5.15)

with T (0) = T (L) = 0 holds. We used hereby the notation

` =

√
D1
r

(5.16)

as in the previous chapter in order to characterize the mean free path length
between two resets.

From the symmetry of the system follows
∂

∂x
T (x)|x=L/2 = 0 (5.17)

which together with the two boundary conditions gives us the solution

T (x) = 1 + rT (xr)
r

(
1− cosh `−1(x− L/2)

cosh `−1L/2

)
(5.18)

For the special case of xr = x, namely the case where the particle resets to
its initial position, our solution takes the form

T (x) = − `2

D1

(
1− sinh `−1L

sinh `−1x+ sinh `−1(L− x)

)
. (5.19)

We can now evaluate the dependence of this mean time to absorption on
the initial position by analyzing the optimal free path length, `∗, which is
simply the value of ` for which

∂

∂`
T (x)|`=`∗ = 0 (5.20)

holds. In Fig. 5.2 we can see that a decrease in the distance between the
starting position and one of the boundaries leads to a crossover of the optimal
mean free path length from an infinite value to a finite one.
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Figure 5.2. Inverse of the optimal mean free path length
vs the starting position of the searcher for a system of length
L = 1. We can see that for 0.276L < x0 < 0.724L the optimal
mean free path length is equal to ∞. This fact changes if we
consider a starting position which is closer to the boundaries
and thus a finite value for the mean free path length tends
to be optimal.

This explained by the fact that for initial positions close to the bound-
aries, a finite traveling distance between two resets efficient. A specific
choice of r with r > 0 is hence optimal. This situation changes if the par-
ticle starts at a position between the crossover points (0.276L, 0.724L), as
shown in Fig. 5.2. In this case restriction of the mean free path length is
unfavorable. So the optimal choice is an infinite time interval between resets
and thus pure diffusive motion given for r = 0 is preferred.

5.3. Hard Resetting

In this section we consider the case of the initial position being at the
center of the circle. A fitting characterization of this process would be hard
reset process. It can be treated as a special case of the general process
presented in the next section. We start with this special case here since it
allows us to test our method through the comparison of the derived results to
previous findings of works [107, 110] concerned with processes that exhibit
intermittent dynamics. Furthermore the simple nature of the problem at
hand provides a good introduction to our general approach.

The MTB for a Brownian particle starting at the center of a circle with
radius R is given by [94]

τ2(R) = R2

4D2
. (5.21)
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Now if we consider the one-dimensional excursion we have to note that,
since the particle finds itself in the center of the circle after each reset, the
subsequent two-dimensional excursion will end due to the radial symmetric
nature of the system at an arbitrary point on the circle. This means that
each one-dimensional excursion starts at an arbitrary point on the bound-
ary. The gain term in Eq. (5.5) has correspondingly the form a uniform
probability distribution function pG(x) = L−1 = (2πR)−1 for x ∈ [0, 2πR].

The MTA T1 is also easily calculated by solving the differential equation

−1 = D1
∂2

∂x2T1(x)− r

L
T1(x) + r

L

∫
dz T (z) (5.22)

with the boundary conditions

T (0) = T (L) = 0. (5.23)

In the previous section we could see that the solution takes the form

T (x) = −Acosh `−1(x− L/2)
r coshL (2`)−1 + L

r
+ F (0, L). (5.24)

where the notation F (0, L) =
∫ L

0 dz T (z) has been used. From the boundary
conditions we can determine the constant A as,

A = rF (0, L) + L. (5.25)

The above expression can now be reinserted in the general form described
in (5.24) and gives us

F (0, L) =
(
L

r
+ F (0, L)

)(
1− 2` tanhL (2`)−1

)
from which we obtain

F (0, L) = L

r

(
(2`)−1 cothL (2`)−1 − 1

)
. (5.26)

Finally we have

T (x) = L cothL (2`)−1

2`r

(
1− cosh `−1(x− L/2)

coshL (2`)−1

)
. (5.27)

One interesting property of Eq. (5.27) is the fact that the MTA is
vanishing for `→ 0. The behaviour of the derived formula is shown in Fig.
5.3. This is a quite surprising result since a vanishing mean free path length
corresponds to a restriction of the diffusive searcher in a very small region
of the system. We would normally expect a slight increase of the mean
search time though this narrowing of the diffusive paths. This contradiction
is explained by the property of the resetting mechanism in this specific
context to accelerate the visit of infinitely many different positions on the
circle. The limit r → ∞ leads namely to an infinite-speed sampling which
outweighs the restriction of the mean free path length and optimizes the
search process.



5.3. HARD RESETTING 87

100000
120000
140000
160000
180000
200000
220000
240000
260000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
(x

0;
0,
L

)

`

Numerical
Analytical

Figure 5.3. Numerical evaluation of the formula (5.27) for
x0 = 0.5 with L = 1. We have chosen here, as before, D1 =
5 · 10−7.

In order to illustrate this feature we introduce the following variation of
the original problem. We consider the probability density function for the
gain term

pG(x) =
{

1
1−2ε if ε < x < 1− ε
0 else

(5.28)

which is identical to the original uniform function in the limit ε → 0. For
the process described by Eq. (5.28) and L = 1 we get the mean time

T (x) =
(1− 2ε)

(
cosh (2`)−1 − cosh `−1(x− 1/2)

)
2r` sinh `−1(1/2− ε) . (5.29)

For small values of ` and x ∈ [0, 1] we have(
1− cosh `−1(x− 1/2)

cosh (2`)−1

)
' 1. (5.30)

This allows us to replace Eq. (5.29) above with the expression

T (x) = σ−22(1− 2ε)`
tanh (2`)−1 − cosh `−1ε− sinh `−1ε

.

Now by using

tanh
(
`−1

2

)
' 1, (5.31)

for small values of ε our formula simplifies to

T (x) = εσ−2(1− 2ε)e
`−1ε

`−1ε
. (5.32)
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Figure 5.4. MTA for the hard resetting problem in the spe-
cial case of D2/D1 = 2 for R = (2π)−1 and D1 = 5 · 10−7.

It is noticeable that the MTA becomes independent of the initial position
for high values of the resetting rate, since due to the frequent resetting, the
information with regard to the initial position will eventually get lost for
increasing times.

Now we proceed in our analysis by considering that the function x−1ex

has a minimum for x = 1. Accordingly, the optimal resetting rate for this
variation of the one-dimensional problem is achieved when `−1 = ε−1. In
the limit of ε approximating zero, where the original problem is regained,
the optimal resetting rate goes correspondingly to infinity.

We see also through the previous calculation that if we consider only
the one-dimensional excursion the optimal resetting rate is infinite. This
cannot be true if we also take into account the two-dimensional excursion
of the particle since each reset adds a term of τ2 to the mean time. We
evaluate therefore Eq. (5.4) by implementing Eq. (5.21) and Eq. (5.27) and
integrating over the interval [0, L] leading to

T = R2

4D2
+ L cothL (2`)−1 − 2`

2r`

(
rR2

4D2
+ 1

)
. (5.33)

This expression is in perfect agreement with Eq. (2.23) of [110]. We can
see by a series expansion of the hyperbolic cotangent which transforms the
expression above to

T = R2

4D2
+ 2
D1

(
1 + r

D2

) ∞∑
k=0

L−1(
2πk
L

)2
+ r

D1

. (5.34)
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Figure 5.5. MTA for the hard resetting problem in the spe-
cial case of D2/D1 = 0.25 for R = (2π)−1 and D1 = 5 · 10−7.

This formula allows us to state that an optimal resetting rate can be
found only if D2/D1 ≥ 0.38. In Figs. 5.4 and 5.5 the diverse behavior of the
MTA for different values of ` is shown.

5.4. Partial Resetting

Now we consider the general case where the initial position is a random
position inside the circle and not necessary the center. We again consider
only the possibility of resetting taking place only from the boundary of
the domain. We will characterize this process from now on as partial reset
process. In the next section we will generalize the present problem by in-
troducing a persistent resetting field that allows for resetting to take place
from any position inside the circle, irrespective of whether the particle is
undergoing one-dimensional or two-dimensional diffusion.

It is useful now to consider polar coordinates. The initial position of our
particle is given by the set ~x = (R0, θ0), where R0 is the distance from the
center and θ0 is the angle between the line connecting the initial position to
the center of the circle with the vertical.

As before we start with the two-dimensional excursion of the particle.
The MTB is given by

τ2(R,R0) = R2 −R2
0

4D2
. (5.35)

Now next to the time needed we have also to calculate the likelihood of cross-
ing the boundary at a specific angle as function of the parameters R0 and
θ0. This simple step is sufficient to provide us with the probability distri-
bution function of the starting position for the subsequent one-dimensional
diffusion phase. The probability distribution function of the hitting angle is
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Figure 5.6. Mean time to absorption for a Brownian pro-
cess starting inside a two-dimensional circle for different ini-
tial conditions (R0, θ0). The points were determined by a
Monte-Carlo simulation with D2 = 10−6, 2D1 = D2 and
R = 1/2π. The lines correspond to our theoretical values for
these parameters.

easily given by using an electrostatics analogy [94] which leads to

p(θ; θ0, R0) =
1− R2

0
R2

2πR
(
1− 2R0 cos(θ−θ0)

R + R2
0

R2

) . (5.36)

Now let’s say that x0 is the point on the boundary of the circle that
lies on the line connecting the initial position ~R0 = (θ0, R0) to the center of
the circle and is closest to the initial position. We can switch between the
polar and Cartesian coordinate system by setting R(θ − θ0) = (z − x0). By
this transformation we can now write pG(z) = p(θ; θ0, R0). Inserting this
expression in Eq. (5.5) we can get following backward equation for the MTA
for a process starting on the boundary at the position x,

0 = D1
∂2

∂x2T (x)− rT (x) + 1 + r

∫
dz pG(z)T (z). (5.37)

Using the boundary condition T (0) = T (2πR) = 0 together with Eq. (5.17)
the solution to this non-homogeneous differential equation of second order
is easily delivered

T (x) =
(1
r

+
∫

dz pG(z)T (z)
)(

1− cosh `−1(x− πR)
cosh `−1πR

)
. (5.38)
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Figure 5.7. Different regimes with regard to the existence
of an optimal resetting rate for different initial position for
a Brownian particle in search for a target located at A.
The left figure corresponds to the choice of parameters with
D2/D1 = 0.25 and on the right to D2 = D1. The shaded
area (red) describes initial positions for which no positive
optimal resetting rate can be found. We can see that for
D2/D1 = 1 a particle starting from the center of the circle
can be optimized through a positive resetting rate.

If we multiply now both sides of this formula with pG(x) and integrate over
the interval [0, 2πR] we can see that

T (x) =
cosh

√
r
D
L
2 − cosh

√
r
D (x− L/2)

r
∫

dz pG(z) cosh
√

r
D (z − L/2)

(5.39)

holds.
The MTA is hence given by the expression

T1 =
∫

dz pG(z)T (z). (5.40)

Inserting all of these results in Eq. (5.4) we get

T = R2 −R2
0

4D2
+
(

1
r

+ R2 −R2
0

4D2

)
×

×
∫

dx pG(x)
cosh

√
r
D1
πR− cosh

√
r
D1

(x− πR)∫
dz pG(z) cosh

√
r
D1

(z − πR)
. (5.41)

In Fig. 5.6 we can observe a very good agreement between this formula and
the results of Monte-Carlo simulations.

The derived equation enables us to characterize the different regimes
inside the circle for which an optimal resetting rate that is non-zero can be
found. In Fig. 5.7 we represent the respective areas for the specific ratios
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of D2 = 0.25D1 and D2 = D1. Two values that are below and above the
characteristic value of D2 = 0.38D1, that was determined in the last section.
In both figures we can see that in the limit of R0 = R a crossover is expected
at the value of θ = 0.56π. This expectation is in perfect agreement with the
results of the third section of this chapter.

5.5. Persistent Resetting

In the previous section we could determine different regimes for which
a resetting from the boundary could be beneficial. This was of course only
possible by specifying the values of the ratio D2/D1. In this section we
generalize the previous model and allow for resetting to take place from
anywhere inside the circle. We consider also a permanent resetting field and
characterize in the following the process as persistent reset process. Our
analysis relies on the approach introduced in the previous sections.

One has to note here that while the formalism and approach of the pre-
vious sections is surely useful, special care with regard to two characteristics
of the present problem have to be regarded. The first is the effect of the
resetting mechanism on the MTB, τ2. The second is the modification of the
hitting angle distribution due to the constant resetting.

Let us start with the first point. Our goal is hereby the determination
of the conditions under which the MTB τ2 can be minimized by an optimal
resetting rate that is positive. Let ~xr be the position of the particle after
each resetting event then our backward equation formalism for the two-
dimensional excursions of the particle is described by

D2∂
2
~xq̃(~x, s)− (r + s)q̃(~x, s) = −1− rq̃(~xr, s) (5.42)

with the boundary condition

q̃ (~x, s) ||~x|=R = 0. (5.43)

We start by finding the solution to the homogeneous equation

D2∂
2
~xq̃(~x, s)− (r + s)q̃(~x, s) = 0. (5.44)

The solution to this equation is of course expected to be radially symmetric
about the origin and to have a vanishing derivative at |~x| = 0

∇q̃(~x, s)|~x=~0 = 0. (5.45)

These conditions are fulfilled by the equation

q̃hom(~x, s) = I0

(√
r + s

D2
|~x|
)

(5.46)

where In is the modified Bessel function of the first kind.
Now by knowing the homogeneous solution we can derive the inhomoge-

neous solution which fulfills the differential equation (5.42), by considering,
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as before, the Ansatz

q̃ (~x, s) = AI0

(√
r + s

D2
|~x|
)

+B. (5.47)

In combination with the boundary condition we can derive the solution

q̃ (~x, s) = I0
(
`−1
s R

)
− I0

(
`−1
s |~x|

)
rI0

(
`−1
s |~xr|

)
+ sI0

(
`−1
s R

) (5.48)

with `−1
2,s =

√
(r + s)/D2. The problems studied in this work have the special

characteristic that the resetting position ~xr is equal to the starting position
which allows us to simplify our solution to

q̃ (~x, s) =
I0
(
`−1
2,sR

)
− I0

(
`−1
2,s|~x|

)
rI0

(
`−1
2,s|~x|

)
+ sI0

(
`−1
2,sR

) . (5.49)

The MTB for this process is provided by the formula

τ2(R0) = q̃ (R0, s = 0) = 1
r

 I0
(
`−1
2 R

)
I0
(
`−1
2 R0

) − 1

 (5.50)

with `2 =
√
D2/r. This analytical result agrees quite well with the Monte-

Carlo simulations as can be seen by Fig. 5.8. Furthermore our formula can
be used in order to specify the value of the optimal resetting rate for a large
range of values of the ratio R0/R. The results of this calculation can be seen
in Fig. 5.9. It is remarkable that an optimal resetting rate r∗ with r∗ 6= 0
can be found only for R0 > 0.578R.

We can now assume that the diffusive particle starts from the center of
the circle and calculate the ratio D2/D1 for which the effect of resetting is
beneficial. In this case we have of course the gain potential PG(x) = L−1

and thus we get the equation

T = 1
r

 I0
(
`−1
2 R

)
I0
(
`−1
2 R0

) − 1

+
I0
(
`−1
2 R

)
I0
(
`−1
2 R0

)×
×cothL(2`1)−1

2r`1

(
L− 2`1 tanhL (2`1)−1

)
(5.51)

Inserting now R0 = 0 in the formula derived above and using the fact that
I0(0) = 1 gives us the MTA

T = 1
r

(
I0
(
`−1
2 R

)
− 1

)
+ I0

(
`−1
2 R

) cothL(2`1)−1

2r`1

(
L− 2`1 tanhL (2`1)−1

)
(5.52)

with `1 =
√
D1/r. In Fig. 5.10 we can see an excellent agreement between

this formula and the numerical simulation for the special case of `−1 =
`−1
1 = `−1

2 . The necessary condition D2 > 0.4D1 for the existence of an
positive optimal resetting rate can be easily derived from this equation.
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Figure 5.8. MTB for two-dimensional Brownian motion in
a circle of radius R = 1 starting from the radius R0 = 0.9 for
different inverse mean path lengths. We can clearly see that
there exists an optimal resetting rate for which this time is
minimized.
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Figure 5.9. Inverse of the optimal mean free path length
for different ratios of the initial radius to the total radius
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5.5. PERSISTENT RESETTING 95

140000

160000

180000

200000

220000

240000

260000

280000

0 2 4 6 8 10 12 14 16

T

`−1

Monte Carlo
Analytical

Figure 5.10. MTA for a particle starting from the center of
the circle of radiusR = (2π)−1 for different inverse mean path
lengths and D2 = D1. We can clearly see that there exists
an optimal resetting rate for which this time is minimized.
The results of the Monte-Carlo simulation show a very good
agreement to the analytical expectations derived from the
formula (5.52).

This value is slightly bigger than the value (D2 > 0.38D1) calculated in the
last section. This is not surprising if we consider that for the special case of
a resetting field that acts only on the boundary of the system the delay of
the first passage time caused by resetting is weaker than the one caused by
a persistent resetting field.

Now we focus on the second point, namely the effect of the resetting
on the hitting angle. In the past the impact of a resetting mechanism on
the outcome of an absorption process has been studied [134]. This impact
can be understood by considering that the stochastic paths of the particle
influenced by resetting are the paths of a renewal process. The mean length
of these paths is reduced to a scale proportional to r−1/2. This implies an
additional condition that has to be considered when determining the hitting
angle distribution.

The method introduced in [134] is rather general and can also be used
here in order to quantify the effect. Let therefore p(θ, t) describe the proba-
bility density function of the event: the diffusive particle crosses the bound-
ary at the time-point t and at a point that corresponds to the angle θ. The
probability density function for the same outcome with a positive resetting
rate r is given by

pr(θ) = p̃(θ, r)
p̃(r) , (5.53)
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where p̃(θ, r) and p̃(r) denote the Laplace Transforms of p(θ, t) and p(t) =∫
dθ p(θ, t) evaluated at r, respectively. Unfortunately an analytical ex-

pression of the function p(θ, t) is still missing and we could not evaluate
the corresponding Laplace Transform and hence provide an exact form for
pG,r(x) = pr(θ).

Nevertheless it is possible here the Laplace Transform p̃(r), since

p̃(r) = −
∞∫
0

dt ∂Q(R0, t)
∂t

e−rt =

= −e−rtQ(R0, t)|∞0 − r
∞∫
0

dt e−rtQ(R0, t) =

= 2I0(`−1
2 R0)

I0(`−1R) + I0(`−1
2 R0)

. (5.54)

In the Appendix C we illustrate how the provided formulas can be used
in order to calculate the exact effect of resetting on the outcome of a simple
one-dimensional diffusion with two absorbing boundary conditions.

The results of the present section can be summarized as

T = 1
r

 I0
(
`−1
2 R

)
I0
(
`−1
2 R0

) − 1

+
I0
(
`−1
2 R

)
I0
(
`−1
2 R0

)×
×
∫

dx pG,r(x)cosh `−1
1 πR− cosh `−1

1 (x− πR)∫
dz pG,r(z) cosh `−1

1 (z − πR)
. (5.55)

This expression is in good agreement with our previous results. For example
it is not hard to see that in the limiting case of D2 →∞ the present formula
is equivalent to Eq. (5.41).

5.6. Monte Carlo simulation

In order to test our analytical findings we compared them with numeri-
cal results derived from Monte-Carlo simulations. We used hereby a simple
method by which we simulate a Brownian-like motion by creating and mon-
itoring a discrete time random walk xt with t ∈ N, defined by

xt = x0 +
t∑

k=0
ξk (5.56)

whereas the random variables ξk are drawn from a normal distribution with
mean 0 and variance σ2.

The mean variance of the random walk is given by the formula

E
[
x2
t − x2

0

]
= E

[
t∑
i=1

(xi − xi−1)2
]

= σ2t. (5.57)
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Figure 5.11. Numerical and analytical evaluation of the
targeting problem with no resetting. We calculate the mean
time to absorption for a Brownian particle starting from
x0 = 1/2 with two absorbing boundary conditions T (0) =
T (1) = 0. We can see that a comparison between our ana-
lytical and numerical results is only possible for low values
of σ.

By comparing this expression to the Green’s function we see that σ2 = 2D1.
These two scales (analytical and numerical) define the respective charac-
teristic scales for both our methods and allows us to directly compare our
numerical results to the derived analytical expressions.

Special care has to be taken here with regard to the choice of stan-
dard deviation, since higher values of volatility may lead to discrepancies
between the numerical and analytical approach. This is expected due to
the fundamentally different nature of the continuum (analytical) and the
discrete (numerical) time-step processes and shown in Fig. 5.11 where the
expected time to absorption for a process with no resetting and two perfectly
absorbing boundary conditions is plotted for both numerical and analytical
methods.

In the latter sections 5.3-5.5 the implementation and understanding of
the dynamics of two-dimensional Brownian motions became necessary. In
order to achieve that, we considered a two-dimensional random walk de-
scribed by the equation

~xt =
(
x0 +

t∑
k=0

ξk

)
~ex +

(
y0 +

t∑
n=0

ξn

)
~ey, (5.58)

whereas ξk is a white noise process derived from the Gaussian distribution
N (0, σ). For the presented two-dimensional process we have a standard
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deviation given by 2D2 = σ2. This allows us to determine numerically the
stopping time

τ2 = inf
{
t ∈ N : x2

t + y2
t ≥ R2

}
. (5.59)

For two-dimensional systems the offset is extremely hard to reduce in com-
parison to the one-dimensional processes. Fortunately we can rely hereby on
two methods: using processes with a smaller volatility and/or introduce a
finer time-scale. The first method is non-optimal since it leads to an increase
of the mean time to absorption and correspondingly to higher running times.

We decided therefore to use the second method. We considered hereby
that each time step consists of δ−2 smaller steps during which jumps of
length ξδ are performed. It is easy to see that by sending δ to zero the
desired Wiener process can be approximated, but even for δ > 0 this method
leads to a great improvement of the derived results. For sections 5.3 and 5.4
we have chosen δ = 0.25 and for section 5.5 δ = 0.1.

In order to simulate the resetting mechanism we introduced the resetting
probability rn ∈ [0, 1]. After each jump the walker is reset to a new position
with a probability rn according to the gain distribution PG. The mean time
between two resets τr for this process is consequently given by the formula

τr,n = 1 +
∞∑
k=0

krn(1− rn)k = 1 + 1− rn
rn

= 1
rn
. (5.60)

In our analytical calculations we know that the times intervals between two
resets have an exponential distribution

p(t) = re−rt (5.61)

for which then the mean time is given by τr,a = 1
r .

As already seen in the last chapter a comparison between our analytical
findings and the Monte-Carlo approach is made possible by the requirement
that the two time scales, τr,a and τr,n, are equal. This is accomplished by
adjusting the two parameters, rn and r.

5.7. Discussion and Conclusions

In this chapter we studied the dynamics of a diffusive searcher which
combines two different types of diffusive behavior. Two distinct modes are
considered hereby, one where the searcher undergoes a two-dimensional dif-
fusion and one where an one-dimensional diffusion process along the bound-
ary of the domain is performed. We also assumed that the evolution of
the process involves restarts which allow the searcher to return to its initial
position.

We started by a Fokker-Planck formalism and used the Laplace Trans-
form to calculate the mean time to absorption for several variations of the
process. This allowed us to have a better evaluation of the properties of ran-
dom search processes with restarts in two-dimensional bounded domains. In
the last chapter we proved that resetting can be beneficial for the case of
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an one-dimensional diffusion process in a bounded domain [135]. The work
presented here allows us to assert that resetting may be beneficial for a
diffusive search process inside a two-dimensional bounded domain.

Before we go over to the properties of the two-dimensional model we
have to note that while in the last chapter we considered an one-dimensional
model with reflecting boundary conditions and derived the necessary condi-
tions for the existence of a positive resetting rate here we could show that
for a one-dimensional process taking place in a periodic domain of length L
an optimal positive resetting rate exists as long as the distance between the
initial position and the target is smaller than 0.276L. Furthermore if the
resetting does not lead back to the initial position but sets the searcher at
random position of the whole interval [0, L], then the optimal resetting rate
is equal to ∞.

These results helped us greatly when analyzing the process that switches
between two-dimensional diffusion and one-dimensional excursion. Firstly
we considered the case where a resetting field applies only on the boundary.
For this problem several regions with an optimal resetting rate that was
bigger than zero could be found. Of course this was only possible by consid-
ering specific values of the ratio D2/D1 between the two diffusion constants.
Our approach also showed that for a process starting from the center of
the circle an optimal resetting rate can be found as long as D2 > 0.38D1.
This result agrees perfectly with the past works which followed a diverse
framework since they were occupied with processes exhibiting intermittent
behavior [107]. In the last section we generalized the resetting field and
considered the possibility of a reset from inside the circle. These resetting
dynamics can only have a positive effect for the special case of a process
starting from the center of the circle only when D2 > 0.4D1.

The present formalism could also been generalized in order to analyze
search processes where the target is not a point but an extended area on
the boundary. This model would correspond to a Brownian particle trying
to escape from a bounded domain through a small window while under the
effect of a resetting potential. We have also a variation of the narrow escape
problem [136] where we can ask ourselves if a positive resetting rate can
accelerate this process.

Another property of search processes that arises in several realizations
but has not been considered here is the existence of several searchers. The
relevance of many searchers for diffusion with resetting has been considered
in the past [113, 79, 115]. Such a consideration would surely be interesting
also in the present setting. This implementation also allows one to consider
the effect of resetting on interacting particles. One could as example consider
the case of a single file diffusion on the boundary of the circle [143].





CHAPTER 6

Conclusions

In this work we studied two distinct classes of non-equilibrium models,
random average process and diffusion with resetting. Despite the significant
differences between them a stochastic analytical approach proved essential
in both cases. In chapter 3 for example the analysis of the random aver-
age process with γ = −∞ became possible only by the study of the time
evolution of the mass at a single site and the determination of the prob-
ability distribution function of the random variable mτ . For the diffusion
process on the other hand the vast majority of the presented results in chap-
ters 4 and 5 were based on established stochastic analytical methods of the
past. This fact underlines the general importance of stochastic calculus in
non-equilibrium physics.

In chapter 2 and 3 we focused on the random average process that is
related to stochastic driven lattice gas models with stochastic nearest neigh-
bor interactions like the zero range process. In contrast to the lattice gas
models the state of the random average process is described by continuous
and unbounded random variables. Here we studied the specific example of
a truncated random average process where the fraction density φ and hence
the dynamics of the system are influenced by the state of the system. For
this special class of stochastic mass transport models an analytical approach
is difficult and in some cases even impossible.

The limits of the analytical methods became apparent when dealing with
three different models of truncated stochastic mass transport in chapter
2. For example a mean field ansatz proved to be misleading due to the
existence of strong two-point mass correlations. In addition the derivation
of a critical density by a grand-canonical formalism was not possible. These
difficulties made an analytical evaluation of the broken ergodicity property
of the TARAP impossible. Nevertheless an order statistics approach may
prove to be successful in a future study of the condensation transition for
truncated models in the thermodynamic limit (see Appendix B).

Nevertheless it was possible to gain some analytical results for a new kind
of truncated random average process where only sites with masses above a
certain cutoff (which we chose to set equal to 1) contribute to the flow in
the system. For this model an absorbing state appears for ρ < 1 that can be
determined by a canonical ensemble formalism for a relatively broad class of
fraction densities φ. It is given that the determination of this state is very
crucial in the understanding of the properties for the system with ρ > 1.
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It is also notable that the derived results provide an algorithm that
can create rather efficiently a large set of independently and identically dis-
tributed random variables that fulfill two kind of constraints. The first
constraint determines the maximal value of those variables and the second
fixes their total sum. A naive computer algorithm trying to accomplish the
same task has a much higher running time that our proposed method. Fur-
thermore it was possible to show that the described absorbing state also
exists when the dynamics are partial asymmetric. These findings prove that
large deviation theory is a very useful tool in the analysis of non-equilibrium
systems and probably can contribute to the understanding of condensation
transitions in such models.

The study of the effect of stochastic resetting on diffusing search pro-
cesses that take place in bounded domains has revealed some very interest-
ing findings. We could see in chapter 4 that for an one-dimensional partial
absorption process with two reflecting boundaries the option of stochastic
resetting to the initial position is not always advantageous. The optimal
resetting rate r that minimizes the Mean Time to Absorption (MTA) is a
continuous function of the distance between the target and the initial posi-
tion of the stochastic searcher. The exact regions inside this one-dimensional
bounded domain for which the optimal resetting rate is bigger than zero
could be defined for different values of the absorption rate α. Furthermore
we were in the position to determine analytically the MTA for a random
walk in a discrete lattice with a perfectly absorbing target α→∞.

In chapter 5 we present a new random search model formulated again
as a stochastic first passage time problem. The model consists of two com-
ponents, each of which are not individually new, but the combination of the
two is novel and interesting. First, the searcher is able to move (by Brown-
ian motion) in 2D when in the interior of a bounded domain and switches
to 1D Brownian motion (with a different diffusivity) when on the boundary
of the domain. The second component is that the search randomly resets
to its initial position. The counterintuitive result is that random resetting
can speed up the random search, particularly when motion on the boundary
is slower. It is also possible to show that there is a region within the disc
where starting positions support a positive optimal resetting rate.

First passage scenarios like the one explored in this work have been es-
sential in the development of our theoretical understanding of cell biology,
foraging behavior, stock markets and chemical or biochemical reactions. Fur-
thermore they may find applications in data analysis methods that rely on
stochastic search algorithms. In all of these different fields the properties of
stochastic search processes that take place inside bounded domains play a
very important role. It would be surely interesting to test the existence of an
optimal resetting rate in more complex geometries than the one presented
in this work.
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Additionally our findings support the idea that random walk, in search
for a target site inside a finite size network, may profit from the implementa-
tion of a restart mechanism. Such a restart mechanism is easily implemented
for a complex network by inserting several directed links. The effect of this
resetting mechanism can then be estimated by analyzing the spectral prop-
erties of the two networks, the original and the modified one.

We have seen in this work that stochastic processes with resetting were
inspired by the adoption of memory effects in the evolution of those pro-
cesses. Here we introduced a very basic form of memory where the searcher
only remembers its initial position. It is therefore natural to try to encom-
pass a more complicated version of this memory effect in a future work. This
possible interplay between resetting to previous preferential positions and
surface mediated diffusion is surely a very interesting subject.

One last question that arose from this work relates to the probability
distribution function of the escape time from inside a circular domain for a
two-dimensional Brownian motion. It was not possible to find or to derive an
exact expression for the pdf of the escape times under the condition that the
crossing of the boundary took place at a specific angle of the circle. Of course
such a question is only meaningful if the Brownian motion started from a
point, that it is not the center of the circle. This mathematical problem
seems to be rather simple but due to time reasons its solution is not part of
this work. The exact calculation of this probability density function would
allow us to predict the effect of resetting on the hitting angle distribution
and therefore complete our stochastic analytical endeavor of chapter 5.





APPENDIX A

Mean Field Approach for the Random Average
Process

In this chapter we will see how the mean field ansatz can be applied
for a special case of the random average processes. We consider namely the
case where at each time-step a random fraction of the mass at each site i is
chipped off. A fraction equal to (1 + α)/2 of this chipped off mass is then
transported to site i+1 and the rest, (1−α)/2, to the site i−1. The evolution
of the state at a specific time-point (m1,t, ...,mL,t) is thus described by the
following equations

mi,t+1 = (1−ri,t)mi,t+
1 + α

2 ri−1,tmi−1,t+
1− α

2 ri+1,tmi+1,t, ∀i : 1 < i < L

(A.1)

m1,t+1 = (1− r1,t)m1,t + ξ`,t + 1− α
2 r2,tm2,t (A.2)

mL,t+1 = (1− rL,t)mL,t + ξr,t + 1 + α

2 rL−1,tmL−1,t (A.3)

The elements ξ`,t and ξr,t can also be used to describe hereby the left and
right boundary of the system respectively. The parameter α serves as an
indicator of the asymmetry in the system. For α = 0 the update process has
symmetrical dynamics, while setting α = 1 allows us to study the properties
of the totally asymmetrical process.

In order to analyze the effect of closed boundaries in the system we can
simply set

ξ`,t = 1 + α

2 rL,tXL,t and ξr,t = 1− α
2 r1,tX1,t. (A.4)

From the Master Equation (A.1) we can see that the two-point correla-
tion functions in the steady state limit

Cj = 〈mimi+j〉 (A.5)

fulfill following equations:

C0

(
µ2

(
1 + 1 + a2

2

)
− 2µ1

)
+ 2C1µ1(1− µ1) + 2C2µ

2
1
1− a2

4 = 0
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C0

(1 + a

2 (µ1 − µ2) + 1− a
2 (µ1 − µ2)

)
+ C1µ1

(
−2 + µ1

3 + a2

4

)
+

+C2(µ1 − µ2
1) + C3

1− a2

4 µ2
1 = 0

C0(µ1 − µ2) + C1µ1

(
7− a2

4 µ1 − 2
)

+ C2µ1(1− µ1) + C3
1− a2

4 µ2
1 = 0

Cj−2
1− a2

4 µ2
1 +Cj−1µ1(1− µ1) + Cjµ1

(
1+a2

2 µ1 − 2
)

+ Cj+1µ1(1− µ1) +

+Cj+2
1−a2

4 µ2
1, for j ≥ 4. (A.6)

It is not possible to solve this set of equations and we have to use a different
approach.

By applying the product measure ansatz and equation (A.1) we can see
that the evolution of the probability distribution function for a single site is
given by the following master equation

Pt(mi) =
∫∞

0 dm′i−1
∫ 1

0 dri−1
∫∞

0 dm′i
∫ 1
0 dri

∫∞
0 dm′i+1

∫ 1
0 dri+1

×Pt−1(m′i−1,m
′
i,m

′
i+1)φ(ri−1)φ(ri)φ(ri+1)

×δ
(
mi −m′i(1− ri)− 1+α

2 ri−1m
′
i−1 − 1−α

2 ri+1m
′
i+1

)
(A.7)

We will consider in the following the fraction density φ(r) = 1. For this
special choice with regard to the fraction density we can see that in the
stationary limit t→∞, following equation

Q(s) =
∫ 1

0
dr Q(rs)

∫ 1

0
dr Q

(1− α
2 rs

)∫ 1

0
dr Q

(1 + α

2 rs

)
. (A.8)

for the Laplace transform, Q(s) =
∫∞

0 dxP (x) exp(−xs) is fulfilled. For
α = ±1, this equation can be solved in closed form and we get Q(s) = 4

(s+2)2

leading to the well known result P (x) = 4x exp(−2x) [16].
For other values of α a closed form expression is impossible. Nevertheless

we are in the position to derive the different moments of the distribution.
Differentiating two times of Equation (A.8) and setting s = 0 allows us to
determine the second moment of the distribution,

〈x2〉 = 3
4

5− α2

3− α2 . (A.9)

From the numerical simulations one can see clearly a deviation from the
predicted behavior for |α| < 1 (see Fig. 1). This fact clearly shows that
the mean field approach for systems with |α| < 1 is false. Similar results
have been derived for a different version of the symmetrical random average
process [17]. It seems also impossible to define the distribution for general
α. Nevertheless it is viable to define a symmetric process for which the mean
field approach applies.
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Figure A.1. Second moment for random average process
defined by Eq. (1) for different asymmetry coefficient and
two distinct boundary conditions. We see a clear discrep-
ancy between the mean field solution and the numerical re-
sults for α < 1. We are therefore inclined to declare the
product measure ansatz for α < 1 as invalid. In the case of
open boundary conditions we have chosen ξ`,t, ξr,t to have a
uniform distribution in the interval [0, 1].

We see also that the mean field approach does not apply for the special
case of α = 0 for the master equation defined above. This fact is independent
from the symmetric nature of the system, as one can introduce a symmetric
system, for which the mean field approach is fruitful. We present here such a
process and prove numerically that the predicted probability distribution is
the correct one. We define therefore a system of stochastic differential equa-
tions where at each time the fraction of the masses transported to the two
neighboring sites are both chosen from a uniform probability distribution.
The process is described by the master equation

mi,t+1 = ri,s,tmi,t + ri−1,r,tmi−1,t + ri+1,`,tmi+1,t. (A.10)

With
φ(rr, r`, rs) = 2δ(r`,t + rr,t + rs,t − 1) (A.11)

leading to
φ(rr) = φ(r`) = φ(rs) = φ(r) = 2(1− r). (A.12)

It is not hard to see that in this case the Laplace transform of the mass
distribution is given by

Q(s) =
[∫

dr 2(1− r)Q(sr)
]3
, (A.13)
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Figure A.2. Probability distribution for the process de-
scribed by Equations (A.10)-(A.12). We can see a very good
agreement between the predicted distribution, Eq. (A.14),
and the Monte Carlo simulation. The Monte Carlo simula-
tion is based on 104 different realizations.

which can be easily solved to deliver

P (x) = 27
2 x

2 exp (−3x) . (A.14)



APPENDIX B

Extreme Value Distribution of the Random
Average Process

In the following section we consider the order statistics of the free ARAP.
This study can eventually be used in order to understand the ergodicity
breaking observed in [36]. We consider also in the following the set {`k(t)},
where `k(t) is the k-largest mass at the time-point t in the system, instead
of the mass configuration {mi(t)}. Hence we use the notation `k(t) with

`L(t) < `L−1(t) < ... < `1(t) = max
1≤i≤L

mi(t). (B.1)

In Chapter 2 we derived a diagram for the states of three different trun-
cation models with finite lengths. One question that naturally arises is if
the observed structure survives in the thermodynamic limit. Here we will
try to answer this question by focusing on the properties of the largest value
`1(t) in the thermodynamic limit. Since in the following we consider only
free ARAP update rules the distribution of the masses is stationary. Hence
we can use in the following the characterization `1 instead of `1(t).

We know from [45] that the probability of `1 ≤ x is given by

P (x,M,L) = I(x,M,L)
Z(M,L) (B.2)

where

I(x,M,L) =
L∏
i=1

∫ x

0
dmi f(mi)δ

(
L∑
i=1

mi −M
)

(B.3)

and Z(M,L) is given by Z(M,L) = I(∞,M,L) (see equation (5) above).
The Laplace transform of I(x,M,L) is easily computed by∫ ∞

0
dM I(x,M,L)e−sM =

[∫ x

0
dmf(m)e−sm

]L
. (B.4)

The critical density for a condensation phase transition of the free ARAP
is infinite and we can apply the Bromwich integral in order to invert the
expression (B.4) in order to get

P (x,M,L) =
∫ c+i∞
c−i∞ ds exp [L (ρs+ ln g(s))]∫ c+i∞
c−i∞ ds exp [L (ρs− 2 ln s)]

(B.5)

with M = ρL and
g(s) = s−2(1− e−sx − sxe−sx). (B.6)
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Figure B.1. Numerical (red circles) and analytical (black
line) derivation of the largest value distribution density for a
free ARAP system with L = 100 and ρ = 1.

The integration is performed along the vertical line <(s) = c in the com-
plex plane such that c is greater than the real part of all singularities of the
integrand. Since we are in the fluid phase we can use a saddle point ap-
proximation as the one presented in [47] where to leading order the saddle
point, s0, of the integrand is independent of x and is given by the equation

ρ =
∫∞
0 dmm2e−s0m∫∞
0 dmme−s0m

= 2
s0
. (B.7)

Inserting this formula in

P (x,M,L) = exp
[
−L

∫∞
x dmme−s0m∫∞
0 dmme−s0m

]
(B.8)

leads finally to the approximate solution

P (x,M,L) = P
(
xρ−1, L

)
= exp

[
−L

(2x
ρ

+ 1
)
e
− 2x
ρ

]
. (B.9)

Although the derived equations are approximations they can be still
useful even for finite systems as shown in Figure B.1 where we can see a
good agreement between the Monte Carlo simulation and our analytical
prediction for the probability density function of the largest value

q
(
xρ−1, L

)
= ρ

∂

∂x
P
(
xρ−1, L

)
. (B.10)



B. EXTREME VALUE DISTRIBUTION OF THE RANDOM AVERAGE PROCESS 111

3.5

4

4.5

5

5.5

6

6.5

100 1000 10000

〈`
1(

0)
〉

L

Numerical Integration
Monte Carlo

Figure B.2. Mean largest value for different lengths in the
special case of ρ = 1. Each data point was calculated by
averaging over 104 different Monte Carlo simulations. We
have evolved hereby a periodic boundary system with random
initial condition according of the dynamics of the free ARAP.
The blue line was derived by a numerical evaluation of the
integral in Eq. (B.11).

We can use now this expression to calculate the mean largest value in the
system

〈`1〉
ρ

=
∞∫
0

dy yq (y, L) = ρ−1
∞∫
0

dxx ∂
∂xP

(
xρ−1, L

)
=

= −
∞∑
n=1

(
−L
n

)n 1
2n

n∑
k=0

nk

k! . (B.11)

We preferred here a numerical evaluation of the integral in Eq. (B.11).
The results of which are presented in Figure B.2 where we also plotted the
results of a Monte Carlo of a free ARAP system. The derived curve is best
approximated by the function

〈`1〉 = 0.54ρ ln(8.63L+ 1). (B.12)

Now if we set L = 100 then we can derive

〈`1〉 = 3.65ρ = 100ρ`∗, (B.13)

whereas `∗ is the value for 〈`1〉ρ−1L−1 that we could observe in the fluid
state for all of the truncated models studied in Chapter 2. Unfortunately
the extreme value distribution can be determined analytically only for the
fluid case.
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Nevertheless the presented approximations prove extremely useful in the
analysis of the broken ergodicity property of truncated models. This char-
acteristic was first noticed in [36] where the divergence of the lifetimes of
the high flow and the low flow states in the thermodynamic limit could be
observed. An ergodicity breaking is also to be expected for the TARAP and
the ZRRAP in the case of γ > 0 and for the SRAP if we assume that γ > 1.

This statement relies on two facts, the stability of condensates for trun-
cated models and the degeneracy of the extreme value distribution in the
thermodynamic limit.

In Chapter 2 we characterized the condensate phase by the large devia-
tion of the mean largest value from the derived expectation of Eq. (B.12).
By using Monte Carlo simulations we could see that for increasing times
this deviation is also increasing. Specifically we could say that for large
time intervals following property becomes evident〈

∂`1(t)
∂t

〉
≥ 0 as long as `1(t) > 1. (B.14)

This assumption would of course not hold for all time-points in a finite
system due to the conservation of the mass, M , but it becomes reasonable
if we consider the case of L → ∞. Now for `1(t) � 1 this would lead to a
condensate with infinite lifetime, meaning that the probability of the mass on
this site to return to values below 1 is becoming zero. This condition alone
is not sufficient for the appearance of condensates in the studied systems
since no guarantee for the survival of states with `1(t) = 1 + ε can be made.
Therefore we have to consider the order statistics of the free ARAP.

We note here that the position of the largest value in the fluid state
is neither stable nor does it perform a continuous drift but shows irregular
jumps. It is therefore appropriate to consider this as a resetting of the
largest value to a random position constantly during the evolution of the
system. Due to this resetting it is important to calculate the distribution of
the second largest value in order to describe the properties of the transition
{`1(t) < 1} ↔ {`1(t+ 1) > 1}.

We start therefore by the formula

Pr {`2 < x} = Pr {`1 < x}+ Pr {`2 < x < `1} . (B.15)

Since the term P {`1 < x} has been calculated above we concentrate now on
the second term [48]

Pr {`2 < x < `1} = L
∫∞
x dm1 f(m1)×

L∏
i=2

∫ x
0 dmi f(mi)δ

(
L∑
i=2

mi−M−m1

)
L∏
i=1

∫∞
0 dmi f(mi)δ

(
L∑
i=1

mi−M
) . (B.16)

In order to evaluate this expression we use, as before, a saddle point ap-
proximation of the inverse Laplace transform by determining the minimum
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Figure B.3. N =
∫

dρPr {`2 < 1 < `1} vs the length of the
system L. We find that for increasing lengths this weight
tends to zero with an algebraic law. Numerically we find
N ∝ L−2.5 for L → ∞. The blue line correspond to our
numerical fit.

of the function
h(s) = ρs + 1

L ln
∫∞
x dmf(m)e−sm +

+L−1
L ln

∫ x
0 dmf(m)e−sm. (B.17)

Using a numerical calculation we can see that
lim
L→∞

Pr {`2 < x} ∼ lim
L→∞

Pr {`1 < x} . (B.18)

This follows from the fact that the expression Pr {`2 < x < `1} vanishes
faster than Pr {`1 < x} when L → ∞. One can use the same approach in
order to show that

lim
L→∞

Pr {`k+1 < x} ∼ lim
L→∞

Pr {`k < x} ∀k � L. (B.19)

The dependency of the probability Pr {`2 < x < `1} on the length of the
system is reflected in Figure B.3 where the quantity

N =
∫

dρPr {`2 < 1 < `1} (B.20)

is shown as function of the length of the system. We choose N in order
to show that the likelihood of a transition {`1(t) > 1} ↔ {`1(t+ 1) < 1},
which strongly depends on Pr {`2 < x < `1}, is vanishing for all densities.

On the other side if we consider the density ρ∗ for which the expression
Pr {`2 < 1 < `1} is maximal,

d

dρ
Pr {`2 < 1 < `1} |ρ∗ = 0, (B.21)
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Figure B.4. Density ρ∗ as function of the length of the system.

we can see in Figure B.4 that the behavior of the function ρ∗(L) is described
by a monotone decreasing function for increasing lengths.

In detail we show that for sufficiently high densities (ρ > (lnL)−1) in
the thermodynamic limit we arrive at a state where a macroscopic number
of sites have a mass above 1. If we assume that these states have a survival
probability (meaning the probability of remaining above 1) that is higher
than zero, then the existence of a macroscopic number of such states in
combination with the increasing survival probabilities for increasing masses
when truncation dynamics apply is a sufficient condition for the creation of
a condensate in the system.

Similarly for ρ � (lnL)−1 we almost surely can observe states with
`1(t) < 1 and a vanishing transition probability {`1(t) < 1} → {`1(t+ 1) > 1}
for L → ∞ and ∀t ∈ N. By taking into account these two facts the bro-
ken ergodicity property for truncated models in the thermodynamic limit
becomes evident.

We were unfortunately not in the position to derive any analytical re-
sults. This is of course due to the complex nature of the fraction density.
Nevertheless we think that the presented approach can prove rather useful
in the future when discussing the broken ergodicity property or in general
condensation transitions arising out of single site deviations. Specifically we
are convinced that when truncated dynamics apply the system in the ther-
modynamic limit can be in either of two states: no site has a mass above
the cutoff or a macroscopic number of sites has a mass above the cutoff.



APPENDIX C

Effect of Resetting on the Hitting Probability

In order to visualize the effect of resetting on the hitting probability we
decided to present here the effect of a resetting mechanism on the simple
one-dimensional diffusion process with two absorbing boundary conditions.

Let us also consider a Brownian Motion with resetting that takes place
in the one-dimensional interval [0, L] with two perfectly absorbing traps on
x = 0, L. Let Pr(x0) describe hereby the probability for the process starting
at the position x0 to terminate on the boundary x = L. If we set the
resetting rate r equal to zero, then we know that the expression

Pr=0(x0) = x0
L

(C.1)

is to be expected. Now we have to ask ourselves how this expression might
change if the process resets to its initial position with a resetting rate r > 0.

We use here the method introduced in [134] in order to calculate the
effect. Let p(x0, t) describe the probability density function of the absorption
time and ps(x0, t) the pdf of the absorption times with a successful outcome,
namely an absorption at x = L, then the probability for a positive outcome
with a resetting rate r is given by the formula

Pr(x0) = p̃s(x0, r)
p̃(x0, r)

. (C.2)

Whereas p̃s(x0, r) and p̃(x0, r) denote the Laplace Transforms of ps(x0, t)
and p(x0, t)

p̃s(x0, r) =
∫

dt e−rtP s(x0, t), p̃(x0, r) =
∫

dt e−rtP (x0, t) (C.3)

evaluated at r respectively. In order to calculate the probability distribution
functions, ps(x0, t) and p(x0, t), we first calculate the pdfs ψ(x, t;x0) for the
Brownian particles by using the image method [144]

ψ(x, t;x0) =
∞∑
k=0

exp
(
− (x−x0−2k)2

4Dt

)
− exp

(
− (x+x0−2(k+1))2

4Dt

)
√

4πDt

−
exp

(
− (x+x0+2k)2

4Dt

)
+ exp

(
− (x−x0+2(k+1))2

4Dt

)
√

4πDt
.
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Figure C.1. Evaluation of the probability density functions
ps(t) and pf (t) for process starting at x0 = 0.75 with L = 1
and D = 5 · 10−4. The blue lines corresponds to the results
of the Monte-Carlo simulation which ends at the boundary
x = L while the red lines describe the distribution of the
absorption times for process who end in fails (at the boundary
x = 0). We can see a very good agreement between our
numerical and analytical results.

Now we can calculate the probability density function for success or fail
as function of the time by the derivative

ps(x0, t) = ∂

∂x
ψ(x, x0; t)|x=L = p(x0, t)− pf (x0, t). (C.4)

We use here the notation pf (x0, t) to describe the pdf of the absorption times
for Brownian particles that get absorbed at x = 0. The pdf is consequently
given by

p(x0, t) = ∂

∂x
ψ(x, x0; t)|x=0 + ∂

∂x
ψ(x, x0; t)|x=L = ps(x0, t) + pf (x0, t).

(C.5)
By using these expressions we are in the position to calculate analytically
the expression ps(x0), p(x0, r) and hence Pr(x0). In Figure C.2 we can see
an excellent agreement between our numerical and analytical results.

The same method was used in chapter 5 in order to calculate the effect of
the resetting on the hitting probability for a two dimensional process inside
a circle. For a process starting from the center of the circle the Laplace
transform of the probability distribution of the hitting times is given by the
expression

p̃(r) = 2I0(R0)
I0(R) + I0(R0) . (C.6)
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Figure C.2. Probability for a process to end at the bound-
ary x = 1 if it started from the position x0 with D = 5 · 10−5

and r = 5 · 10−3.

Unfortunately it was impossible to define the Laplace transform of the
same function for the specific value of a certain angle outcome θ for pr(θ)
given by

pr(θ) = p̃(θ, r)
p̃(r) =

∫
dt e−rtp(θ, t)∫

dt
∫

dθ e−rtp(θ, t) . (C.7)

Here the term p(θ, t) describes the pdf of the absorption times that happen
at a specific angle θ. This expression is hardly approachable analytically and
hence we were not in the position to provide a fully analytical expression for
the general case of the mean to absorption for Brownian particle starting
from a random position inside the circle.





APPENDIX D

Optimal Search Strategy for Intermittent Search
Process

In the last two chapters of our work we occupied ourselves with the search
properties of diffusion processes with resetting dynamics. One question that
arose during our work was related to the existence of an optimal search
strategy for Brownian motion process taking place in a periodic domain.
We have seen hereby in chapter 4 that an optimal searching time for a
resetting process inside a periodic domain is achieved when we combine a
uniform gain potential with an infinitely high resetting rate.

In this chapter we describe the properties of search process not in terms
of resetting dynamics but that of an intermittent search process that com-
bines short range excursions with long range jumps. Let ϕ characterize
hereto the probability distribution of these long range jumps. The time in-
tervals between two such long range jumps are described by the exponential
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Figure D.1. Mean time to absorption for a resetting process
that performs a maximum jump of a = 2R. The numerical
results were derived by a discrete time Monte-Carlo simula-
tion where after each time-step the searcher performed a long
range jump.
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distribution function λe−λt. For the special case of
ϕ(x) = 1, ∀x ∈ [0, 2πR]. (D.1)

an optimal search strategy would require an infinite high jump rate λ.
Now let us focus on the case where these long range jumps are described

by a δ function
ϕ(x) = δ(x− b). (D.2)

Naturally the question arises how the parameter b has to be chosen in order
for the quantity

I =
∫

dxT (x), (D.3)

with T (x) being the mean time to absorption for a process starting at x, to
be minimized?

Let us here consider the choice of b = L/2. Fortunately this case can
be described analytically and an optimal strategy for this jump distribution
can be found. One has to consider hereby that the mean time to absorption
for this process is equal to that of one particle bounded in the region [0, L/2]
with one reflecting and one perfectly absorbing boundary condition whereas
the position of these boundaries is exchanged with a rate λ. We also have to
deal with a target problem with a radiation boundary condition [115, 131].
After this unconventional yet simple realization it is easy to see that the
Laplace transform of the survival probability reads

q̃(z, s) =
λ coshαL/4−

(
λ−
√
Ds
)

coshα (z − L/4)
λs coshαL/4 (D.4)

with α =
√
s/D. Now if we consider the limit λ → ∞ and do a series

expansion of cosh up to O(s) then this equation transforms into

lim
λ→∞

T (z) = lim
λ→∞

lim
s→0

q̃(z, s) = 2 + (αL/4)2 − 2− α2 (z − L/4)2

2s =

= z (z − L/2)
2D for z ∈ [0, L/2]. (D.5)

We see also that the mean time T (z) = q̃(z, 0) is in the limit of λ→∞ that
of a particle between two perfect absorbing boundaries at 0, L or equivalently
to that of two particles performing the same random motion in the interval
[0, L] while being at a distance L/2 from each other. The relative good
agreement between the analytical and the numerical solution is shown in
Figure D.1. We simulated hereby a random walk process that evolves in a
discrete time setting. After each jump a long range jump is performed.
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