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A B S T R A C T

Motivation:
Atmospheric turbulence is a major issue in achieving high angular resolutions for

optical and infrared astronomical observations. Such turbulences induce phase fluctua-
tions on the incoming stellar wavefronts. With the recent advances in Adaptive Optics,
we can overcome this effect and remove most of the aberrations on the stellar wavefront.
However, the global phase shift (piston) which is not corrected by the adaptive optics
system, plays a significant role in optical and infrared interferometry. The piston or
Optical Path Difference (OPD) fluctuations induced by atmospheric turbulence and
instrumental vibrations at an interferometer affects the position of the fringes on the
detector and thus influencing the visibility measurements. Thus, a dedicated fringe
tracker is required in addition to the adaptive optics system in an optical or infrared
interferometer.

The fringes can be tracked in two ways, namely group delay tracking and phase delay
tracking. Phase delay tracking involves in tracking each individual fringe phases and
group delay tracking involves in tracking the fringe envelope. Currently the Very Large
Telescope Interferometer (VLTI) houses GRAVITY fringe tracker, FINITO and PRIMA
FSU which tracks group and phase delays in H and K bands. However, targets such as
Young Stellar Objects (YSO), dusty torus around Active Galactic Nuclei (AGN), etc. are
brighter at longer wavelengths due to the presence of dust around them. Hence in this
work, I explore the possibility of on-source fringe tracking in the L band alongside K
band. Fringe tracking in L band is advantageous due to its longer atmospheric coherence
time and larger Fried parameter as compared to that of shorter wavelengths. I also
extend my work in performing feed-forward group delay estimation at mid-infrared
wavelengths using inter-band dispersion between K and L bands.

The main goal of the work is to analyze the performance of a simultaneous K and L
band group delay tracker which keeps the fringe frames of the science channel within
coherence length. The sensitivity of the science channel can then be increased by stack-
ing each frame by its power spectrum.

Method:
To analyze the performance of a fringe tracker at K and L bands, I have developed a

atmospheric turbulence simulator (GDsim) which includes atmospheric water vapor
dispersion and instrumental vibrations at the VLTI. The simulated OPD fluctuations
are then injected into simulated noisy K and L band fringes over different lengths

v



integration times. Group delay is then estimated from the resulting fringes through
spectrally dispersed ABCD encoding technique, least squares estimation and the double
Fourier technique. The performance and sensitivity of each of the group delay estima-
tion algorithm is then estimated by comparing the simulated input group delay and the
measured group delay.

Result:
The loss in fringe contrast over integration time follows a random walk behavior

due to the temporal decorrelation of the phase fluctuations at each telescope over
long integration times (Tint > 1.79τ0). Thus the Signal to Noise Ratio (SNR) on the
correlated flux is unreliable in estimating the sensitivity of a group delay tracker at
such integration times. Alternatively, by analyzing the Root Mean Squared (RMS) on the
residual group delay for each group delay estimation algorithm, we can estimate the
sensitivity and performance of the group delay tracker simultaneously. However, the
threshold on the RMS of the residual group delay (input group delay - measured group
delay) depends on the spectral resolution of the science channel for incoherent stacking
of fringe frames. For astronomical observations in the L band with MATISSE at low
spectral resolution (R=30) with an acceptable maximum loss in fringe contrast of 10%,
we can perform coherencing with a K and L band sensitivities in the range of 13.36 -
14.67 magnitudes and 6.64 - 10.02 magnitudes respectively for the different group delay
estimation algorithms.

Feed forward group delay tracking performance and sensitivity at mid-infrared
wavelengths (M & N bands) can be estimated by comparing the individual group delay
estimation errors in K and L bands. The sensitivity to perform feed forward group delay
tracking using only K and L band group delay information for science in the N band
with MATISSE at low spectral resolution (R=30) is 9.0 magnitude in the K band and 8.3
magnitude in the L band. Also, only the spectrally dispersed ABCD encoding algorithm
in K and L bands can coherence the N band fringes with a maximum loss in fringe
contrast of 10%. However, this sensitivity applies only for instantaneous estimation of
water vapor dispersion.The feed forward sensitivity can be enhanced by averaging the
water vapor content over multiple duty cycles of K and L band group delay estimation.
The L band group delay estimation sensitivity can also be enhanced by coherencing the
L band fringe tracking channel using K band group delay information at a faster duty
cycle.
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Z U S A M M E N FA S S U N G

Motivation:

Atmosphärische Turbulenz stellt ein Hauptproblem für das Erreichen hoher Winke-
lauflösungen für optische und infrarote astronomische Beobachtungen dar. Die at-
mosphärische Turbulenz induziert Phasenfluktuationen an den eingehenden stellaren
Wellenfronten. Mit den jüngsten Fortschritten in adaptiver Optik u.A. können wir
diesen Effekt minimieren und die Aberrationen der stellaren Wellenfront größten-
teils beseitigen. Allerdings wird die globale Phasenverschiebung (Piston) nicht durch
das adaptive Optiksystem korrigiert. Diese spielt jedoch eine kritische Rolle in der
optischen- und infrarot-Interferometrie. Die Schwankungen der optischen Wegdifferenz
(OPD), induziert durch atmosphärische Turbulenzen und Vibrationen des Instruments,
beeinflussen die Positionen des Interferenzmusters (Fringes) auf dem Detektor und
damit die Bestimmung des Kontrasts. Somit ist ein dedizierter sogenannter Fringe
Tracker zusätzlich zu einem adaptiven Optiksystem notwendig in einem optischen-
oder infrarot-Interferometer.

Die Fringes können auf zwei Arten verfolgt werden, nämlich durch Verfolgung der
Gruppengeschwindigkeit und durch Verfolgung der Phasenverzögerung. Die Verfol-
gung der Phasenverzögerung beinhaltet die Verfolgung jeder einzelnen Fringe Phase
und Gruppengeschwindkeitsverfolgung beinhaltet das Verfolgen der Hüllenkurve.
Derzeit verfügt das Very Large Telescope Interferometer (VLTI) über den Gravity Fringe
Tracker, FINITO und Prima FSU, die Gruppen- und Phasenverzögerungen in den H-
und K-Bändern verfolgen. Objekte wie Young Stellar Objects (YSO), staubige Tori um
aktive galaktische Kerne (AGN) usw. sind jedoch bei längeren Wellenlängen, aufgrund
des Vorhandenseins von umgebenden Staub, heller. In meiner Arbeit erkundige ich
daher die Möglichkeit on-source Fringe Tracking im K und L Band zu realisieren. Fringe
Tracking im L Band ist vorteilhaft, da hier die Kohärenzzeit der Atmosphäre länger
ist und der Fried Parameter größer im Vergleich zu kürzeren Wellenlängen ist. Ich
erweitere außerdem meine Arbeit auf feed-forward Gruppenverzögerung im mittleren
Infrarot indem ich inter-Band Dispersion zwischen dem K und L band studiere.

Methode:
Um die Leistung eines Fringe-Trackers in den K- und L-Bändern zu analysieren,

habe ich einen atmosphärischen Turbulenzsimulator (GSDim) entwickelt, der atmo-
sphärische Wasserdampfdispersion und Instrumentenvibrationen am VLTI beinhaltet.
Die simulierten OPD-Fluktuationen werden dann in simulierte, verrauschte K- und
L-Fringes über unterschiedliche Integrationszeiten injiziert. Die Gruppenverzögerung
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wird dann aus den resultierenden Interferenzstreifen durch die spektral verteilte ABCD-
Codierungstechnik, die Methode der kleinsten Quadrate und die Doppel-Fourier-
Technik geschätzt. Die Leistung und Empfindlichkeit jedes der Gruppenlaufzeitschätzal-
gorithmen wird dann durch Vergleichen der simulierten Eingangsgruppenverzögerung
und der gemessenen Gruppenverzögerung geschätzt.

Ergbenisse:
Der Verlust im Kontrast über die Integrationszeit folgt einem zufälligen Random

Walk aufgrund der zeitlichen Dekorrelation der Phasenfluktuationen an jedem Teleskop
über längere Integrationszeiten (T int 1,79 & t0). Daher ist das Signal-Rausch-Verhältnis
(SNR) auf dem korrelierten Fluss unzuverlässig beim Schätzen der Empfindlichkeit
eines Gruppenverzögerungs-Verfolgers bei solchen Integrationszeiten. Alternativ kön-
nen wir durch das quadratische Mittel (Root Mean Squared, RMS) auf die Restgruppen-
verzögerung für jeden Gruppenverzögerungsschätzalgorithmus die Empfindlichkeit
und Leistung des Gruppenverzögerungsverfolgers gleichzeitig abschätzen. Die Schwelle
für die RMS der Restgruppenverzögerung hängt jedoch von der spektralen Auflösung
für die inkohärente Addition von Interferenzaufnahmen ab. Für die Studien im L-
Band mit MATISSE bei niedriger spektraler Auflösung (R = 30) mit einem akzeptablen
maximalen Verlust im Kontrast von 10% können wir eine Kohärenz mit einer K- und
L-Bandsensitivität im Bereich von 13,36-14,67 und 6,64 - 10,02 Magnituden für die
verschiedenen Gruppenverzögerungsschätzungsalgorithmen realisieren.

Durch Vergleich der individuellen Gruppenverzögerungs-Schätzfehler in den K- und
L-Bändern wird die Empfindlichkeit zur Durchführung der Vorwärts-Gruppenlaufzeit-
verfolgung unter Verwendung von nur K- und L-Bandgruppenverzögerungsinformation
für Studien im N-Band mit MATISSE bei niedriger spektraler Auflösung (R = 30) zu
9,0 Magnitude im K-Band und 8,3 Magnitude im L-Band bestimmt. Außerdem kann
der einzige spektral verteilte ABCD-Codieralgorithmus in K- und L-Bändern die N-
Band-Fringes mit einem maximalen Kontrastverlust von 10% kohärent arbeiten. Die
Feed-Forward-Empfindlichkeit kann jedoch durch Mitteln des Wasserdampfgehalts über
mehrere Arbeitszyklen der K- und L-Bandgruppenverzögerungsschätzung verbessert
werden.
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1
I N T R O D U C T I O N

High angular resolution and high sensitivity is the major desire for every astronomical
observation. This has been a driving force for development in Astronomical instrumen-
tation. This fueled innovations such as long baseline interferometry, adaptive optics,
large segmented primary mirrors using active optics, etc. Resolution is defined as
the ability to separate two objects or sources of light into two separate Point Spread
Function (PSF). Resolution limit of an astronomical telescope with a primary mirror
diameter D observing at a wavelength λ is given by,

Θ = 1.22
λ

D
(1)

The current pathway for Astronomical instrumentation is striving in achieving higher
resolutions by implementing new technologies on producing larger primary mirrors.
Current large scale telescope such as Gran Telescope Canarias (GTC), Large Binocu-
lar Telescope (LBT), Very Large Telescope (VLT), Hobby Eberly Telescope (HET), Keck,
Gemini, Giant Magellan Telescope (GMT), etc. have pushed the sensitivity and resolu-
tion higher with technologies such as Multi-Conjugate and extreme adaptive optics,
active optics, etc. This has paved the way to future telescopes such as European Ex-
tremely Large Telescope (EELT), Thirty Meter Telescope (TMT), Large Synoptic Survey
Telescope (LSST), etc., which will further push the boundaries on the sensitivity and
resolution of Astronomical observations.

However, we can still push the boundary of resolution by using Stellar Interferometers.
Combining the light received by two telescopes separated by a baseline B, we can achieve
a resolution of,

Θ = 1.22
λ

B
(2)

Observing astronomical targets at high angular resolutions gives us more detailed in-
formation about the morphology of the objects and the physical and chemical processes
involved to a greater detail.

1



2 introduction

1.1 scientific motivation

1.1.1 Young Stellar Objects

Young Stellar Objects (YSO) are young stars and their surrounding material (dusty
envelope, protoplanetary disk , etc.), which are a few million years old. These objects
are the perfect laboratories in understanding the processes of star and planet formation.
YSO environment consists of mainly of dust and gas. These two components play a key
role in the star and planet formation.

Due to the dusty nature of YSOs, they are brighter at near and mid- infrared wave-
lengths. Their Spectral Energy Distribution (SED) shows an excess at these wavelengths
when compared to the stellar blackbody SED. YSOs can be classified based on the slope
of the SED at infrared wavelengths (Lada & Wilking, 1984). They are classified as,

• Class 0: Protostars with a collapsing envelope around.

• Class 1: Protostars with a collapsing envelope and a newly forming disk around.

• Class 2: Protostars with an active accretion disk (Protoplanetary disk) around
them.

• Class 3: Protostars having weaker disks around them with very low or no accretion.

Figure 1: Classification of YSO (Armitage, 2010).
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To understand the physical and chemical processes involved with formation of planets,
we need to understand the nature of dust and gas in Class 2 YSOs (Protoplanetary disks).

Brown dwarf transitional disks

Brown dwarfs are sub-stellar objects whose mass is 6 0.8M� (Kumar (1963), Hayashi
& Nakano (1963)). Due to their low masses they fail to start Hydrogen burning thus
ending up being a failed star (sub-stellar object). Circumstellar material around young
brown dwarf disks were first discovered through excess in the H-K colors (Luhman
(1999), Muench et al. (2001)) hinting the existence of planet formation around brown
dwarfs. Various Smoothed Particle Hydrodynamics (SPH) simulations of dust particles
around brown dwarf protoplanetary disks have shown that dust grains can efficiently
move radially inwards forming a high density inner region with an exponential surface
density cut-off as compared to T-Tauri disks (Pinilla et al., 2013).

Due to the low flux from the primary brown dwarf in optical wavelengths, exoplanets
around brown dwarfs can only be discovered at near- & mid-infrared through microlens-
ing events. Han et al. (2017) was the first to discover a 1.9± 0.2MJ (Jupiter mass) at a
distance of 0.87 Astronomical Unit (AU) around a 0.022M� (Solar mass) brown dwarf
using microlensing events. The host to planet mass ratio of 0.08± 0.001 of the shows
that the planet may have formed in a protoplanetary disk. Similar planet to host mass
ratio has been identified by other microlensing discoveries (Mróz et al., 2017). Mohanty
et al. (2013) analyzed the brown dwarf and disk masses of a large sample of M dwarfs
and Brown dwarfs and concluded that the the typical disk to stellar mass ratio of such
systems is 3.98× 10−3. This is in the order of magnitude of the observed host to planet
ratio, which implies highly efficient planet formation mechanism on the disk. This is in
line with the SPH simulations of Pinilla et al. (2013) where the dust efficiently moves
radially inwards of the disk which creates a high density region of dust particles. Apai
et al. (2005) observed a strong presence of crystalline silicates in a sample of brown
dwarf protoplanetary disks using low resolution spectroscopic instrument on the Spitzer
space telescope. This shows that the protoplanetary disk around brown dwarfs have
similar planet formation mechanism as that of T-Tauri and Herbig systems. However,
the dust accumulation of Pinilla et al. (2013) and the relatively cooler disk, shows us that
these dust grains can efficiently settle down at the mid-plane of the disk accelerating
the planet formation mechanisms.
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Figure 2: Mass fraction of crystalline silicate grains as compared to the mass of the host (Apai et al.,
2005)

Thus to complete the picture of planet formation around brown dwarfs, we need
to analyze transitional disks around brown dwarfs, which are the intermediate stage
between a protoplanetary disk and a planetary system. Transitional disks usually
exhibit inner hole, gap or a cavity on their density distribution which indicates an
ongoing planet formation. Due to the relatively low flux and cooler temperatures of
the brown dwarf protoplanetary disks, these features are best observed at near and
mid-infrared wavelengths (Typically L, M and N bands). Transitional disks around
brown dwarfs have been earlier identified through analysis of their SED (Muzerolle
et al. (2006), Luhman et al. (2007), Dawson et al. (2013)). The lack of excess emission at
mid-infrared wavelengths (typically 5− 8µm) shows the presence of an inner hole or a
gap indicating an ongoing planet formation. Fig. 3 shows the SED of the first ever brown
dwarf protoplanetary disk to be found with an inner hole (Muzerolle et al., 2006).
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Figure 3: SED of the brown dwarf L316 with an infrared excess and mid-infrared dip showing the existence
of an inner hole. The diamonds indicate the observed photometric fluxes and the solid and dotted
lines shows the best fitting model (Muzerolle et al., 2006)

However, the main limitation with SED analysis is its degeneracy. Hence, it is difficult
to measure the inner hole properties accurately. Alternatively, we can analyze the
properties of the inner hole of the brown dwarf protoplanetary disk at high angular
resolution using future mid-infrared beam combiners such as MATISSE at Very Large
Telescope Interferometer (VLTI) with an external dedicated near+mid infrared fringe
tracker. This enhances the sensitivity and the spatial resolution as compared to the
previous mid- and far-infrared observations of such brown dwarf transitional disks.

Water ice on protoplanetary disks

One of the key molecules which plays a significant role in the process of planet for-
mation is water ice. Water ice exists as mantles on dust grains in the disk. They help
in the process of dust coagulation as they are more efficient in sticking with other
grains with icy mantles through the Van der Vaals force. It also adds on to the solid
material accumulated through the coagulation of dust grains. Hence, the presence of
water molecules plays a key role in the formation of rocky planets.

Water ices can be detected in the near infrared through their absorption feature in
the L band (3.08µm). Honda et al. (2009) observed the regions of water ices on face-on
Herbig Ae protoplanetary disk HD142527 through the Subaru telescope in Hawaii. By
measuring the spectrum of the correlated flux of various targets using large baseline
interferometers such as VLTI at the L’ band (3.5− 4µm), we can estimate the snowline of
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water ices with a higher spatial resolution over a range of protoplanetary disks. This
will help us understand the formation of rocky planets better.

Figure 4: HD142527 observed by Honda et al. (2009) using Subaru telescope at 3.08µm wavelength

1.1.2 Active Galactic Nuclei(Active Galactic Nuclei (AGN))

Most of the galaxies have a bright and compact core called as AGN which outshines
the brightness of the galaxy. These AGNs are powered by the Super Massive Black
Hole (SMBH) which feeds on the material around the AGN. The unified model of AGN as
shown in fig. 5, consists of a central SMBH of ~106M� having an accretion disk around
it. The accretion disk is then surrounded by the broad line & narrow line region and a
dusty torus.
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Figure 5: Unified model of an AGN (Beckmann & Shrader, 2012)

Dusty Torus

One of the major feeders of the central SMBH of an AGN is the dusty torus. The dusty
torus is a key feature which separates the dichotomy between the type 1 and type 2

Seyfert galaxies. However, the nature and origins of the dusty torus around AGN is
still not completely clear. The apertures of the single dish ground based telescopes are
not sufficiently large enough to resolve the dusty torus to understand its morphology.
However, long baseline interferometers at near- and mid-infrared wavelengths can
achieve the required resolution of a few milli-arcseconds.

The VLTI/MIDI AGN Large Program Burtscher et al. (2013) cataloged the correlated
flux and visibilities of the dusty torus around 23 AGNs. Observations made by Tristram
et al. (2007) of the AGN environment with MIDI at VLTI showed that the central region is
a thick and a torus like dusty structure around the center of Circinus galaxy. However,
some of the data collected by Tristram et al. (2007) showed that the dusty torus could
also be clumpy in nature. Burtscher & Tristram (2013) realized that the morphology of
the dusty torus differs for different galaxies and doesn’t follow the dependency of the
viewing angles. Hence, a more analysis of the dusty torus around AGN using near and
mid-IR interferometry can help us to understand its structure to a greater detail.
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1.1.3 Dusty S-Cluster Object- Galactic Center

The center of Milky way is an excellent laboratory to understand the nature of active
galactic nuclei. Galactic center harbors sources where a significant near-infrared excess
has been detected (Gillessen et al., 2012). These objects are termed as Dusty S-Cluster
Object (DSO) (Eckart et al., 2013) due to their dust emission and near-infrared excess.
One of the most studied object is the DSO/G2, which has been proposed to be a YSO with
a protoplanetary disk (Trani et al., 2016). Zajaček et al. (2017) predicts that the DSO/G2

source should belong to the class 1 category of YSO. Fig. 6 shows the mid-infrared part
of the DSO/G2 SED fitted with a blackbody of 4200K for the stellar component and a
874K blackbody fit for the interferometric fluxes (Zajaček et al., 2017).

Figure 6: mid infrared SED of DSO/G2 with a stellar black body of T = 4200K and a T = 874K blackbody
for the infrared thermal emission of dust (Zajaček et al., 2017)

The dusty environment around the DSO/G2 is still unresolved. Hence, with large
baseline interferometric measurements in the near- & mid-infrared wavelengths we can
estimate the nature of the protoplanetary disk around DSO/G2 source. This will further
improve our understanding on planet formation around such dynamic environments.

The flux of DSO/G2 in the K band is 0.23 mJy (16.08 magnitude)(Shahzamanian et al.,
2016) and 1.2 mJy (13.28 magnitude) in the L’ band (Gillessen et al., 2012). Thus these
objects needs a dedicated near and mid-infrared fringe tracker aided interferometric
observations to achieve such high sensitivities required.



1.2 interferometry 9

1.2 interferometry

The principle of interferometry was first demonstrated by Thomas Young in 1802. The
fundamental principle behind the experiment is the Fresnel-Huygens principle of prop-
agation of electro-magnetic waves.

1.2.1 Young’s double slit experiment

The Young’s experiment involves in uniformly illuminating a screen with two narrow
pinholes of diameter d, separated by a baseline B. The spherical wave-fronts emanating
from the pinholes interfere and produce alternating bright and dark bands on the
detector as shown in fig. 7. The alternating bright and dark bands is called inteferometric
fringes.

(a) Setup of Young’s Double slit experiment (b) Sample fringes measured on the detector

Figure 7: Young’s Double slit experiment

The intensity pattern of two interfering monochromatic spherical wave-fronts of
intensities I1 and I2, a phase difference of ∆φ = φ1 −φ2 is,

I = I1 + I2 + 2
√
I1I2cos(φ) (3)

1.2.2 Michelson’s interferometer

Michelson’s interferometer is an alternative technique for combining wavefronts to
form interferometric fringes. On contrary to the Young’s double slit experiment which
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combines the incoming beam on the image plane, the Michelson’s interferometer
combines the incoming beam on the pupil plane. This is achieved by a combination of
two plane mirrors separated by a beam splitter on which the Optical Path Difference
(OPD) can be applied by modulating the position of one of the mirrors. This is shown in
fig. 8, where the OPD is modulated with the mirror M1.

Figure 8: Schematic of a typical Michelson interferometer

The interferometric fringes can be then recorded by modulating M1 with the corre-
sponding OPD.

1.2.3 Stellar interferometry

To understand the advantages of using interferometry for astronomical observations, we
need to first understand the property of coherence. Two waves are said to be coherent
if they have a constant phase difference (spatial coherence) and the same frequency
(temporal coherence). This property is important for astronomy as it sets the condition
for a stable set of interferometric fringes.

The Mutual Coherence Function (MCF) of two wave-fronts (Î1,Î2) is defined as,

Γ(x, t) = 〈Î1(x1 + x, t+ τ)Î∗2(x1, t)〉 (4)
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where,

Î1 = I1e
−iφ1

Î2 = I2e
−iφ2

The complex visibility of the astronomical source is defined as the Fourier transform
of the object intensity distribution (Van Cittert-Zernike Theorem) (Zernike, 1938). Thus
the complex visibility can be computed by normalizing the MCF by the intensities of the
wave-front

µ =
Γ(x, t)
I1I2

(5)

In the case of optical and infrared interferometry, it is hard to estimate the MCF as
the frequencies are high as compared to the available computer clock rates. Hence, the
fringe visibility amplitude is computed from the fringe intensities in equation 3 by,

V =
Imax − Imin
Imax + Imin

(6)

For an unresolved astronomical source which has high spatial coherence, the value
of V will be 1. For a super resolved astronomical source the value of V will be close
to 0. Hence, it is easier to measure the coherence of the source through the visibility
amplitude.

1.3 very large telescope interferometer

VLTI is a long baseline optical/infrared interferometer consisting of 4 Unit Telescopes (UT)
of 8.2 meters in diameter with baselines ranging between 47m− 130m and 4 Auxiliary
Telescopes (AT) of 1.8 meters and baselines ranging between 8m− 200m. Fig.9 shows
the different baseline configurations of the UTs and ATs.
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Figure 9: different baseline configurations at VLTI

Instruments currently on board of the VLTI are,

• AMBER: 3 telescope, near infrared instrument operating in J, H and K band.(Petrov
et al., 2007)

• PIONEER: 4 telescope Integrated Optics (IO) based beam combiner operating in
the H band. (Benisty et al., 2009)

• GRAVITY: 2nd generation 4 telescope IO based beam combiner operating in the K
band with dedicated fringe tracker. (Gravity Collaboration et al., 2017)

1.4 atmospheric turbulence

Another important parameter of measurement in stellar interferometry to consider is
the phase of the incoming wave-front. In the case of optical and infrared observations,
the Earth’s Atmosphere plays a key role in the propagation of light. Turbulence in
the atmosphere arises due to climatic variations of temperature and pressure which
causes fluctuations in the optical densities of the medium. These fluctuations results in a
change in the path length and thus the phase of the incoming wave-front. The physical
and analytic treatment of the Atmospheric turbulence will be discussed in detail in
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Chapters 2 & 3.

These phase fluctuations can be characterized by the Zernike Polynomials (Noll,
1976). Zernike polynomials categorizes various optical aberrations that are caused due
to atmospheric turbulence. The zernike polynomials has two components, the radial
component R(r) and the angular component Θ. The polynomials is then divided into n
orders and m frequencies.

Zeven(r,Θ) =
√
n+ 1Rmn (r)

√
2cos(mΘ) (7)

Zodd(r,Θ) =
√
n+ 1Rmn (r)

√
2sin(mΘ) (8)

Equations 7 & 8 are odd and even functions respectively and is only for non-zero
frequencies (m 6= 0). At m = 0 the polynomial is given by,

Z(r) =
√
n+ 1R0n(r) (9)

Fig. 10 shows the standard shapes of different orders and frequency Zernike polyno-
mials .

Most of the aberrations on the incoming stellar wave-front can be corrected by using
Adaptive Optics (AO) and spatial filters. AO system measures the phase errors on the in-
coming wave-front through a wave-front sensor,which then estimates the weights of each
Zernike component. A wave-front model is then computed based on the Zernike modes.
A deform able mirror then takes the negative shape of the wave-front model, which
after reflection corrects for the shape of the wavefront and thus resulting in a plane wave.

Another alternative is to use spatial filters. The most effective and commonly used
spatial filters in stellar interferometry are single mode fibers. An optical fibre typically
consist of a core with a high optical density (high refractive index) and a cladding
with a relatively lower optical density. When an Electro Magnetic (EM) wave is passed
through an optical fibre, the wave is guided through the core by total internal reflection.
The waveguides have a discrete set of spatial distributions of the EM wave that can be
guided. This is called the mode of the wave guide. The mode of a waveguide can also
be defined as the spatial pattern of the EM field. A single mode fibre has only one mode
of propagation.
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Figure 10: Standard shapes of wavefronts for n order and m frequency Zernike polynomials (Lakshmi-
narayanan & Fleck, 2011)
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When an incoming corrupted waevfront is coupled into a single mode fibre, only the
fundamental mode of the fibre is allowed to pass through the core. All other modes
are reflected or dissipated through the cladding. Thus, when a corrupted wave front is
coupled into a single mode fibre, all the phase aberrations are lost and the output will
be a plane waevfront.

Beam couplers based on IO devices can also act as a spatial filters. Single mode
waveguides can be etched on sillica based IO chips with photolithography (GRAVITY,
PIONEER) (Benisty et al., 2009), or it can be written on Gallium Lanthanum Sulphide
(GLS) based IO chips using ultra-fast laser inscription (Tepper et al., 2017). X-shaped and
Y-junction couplers written on an IO chip does a dual purpose of beam combination as
well as spatial filtering.

1.5 fringe tracking

Even though adaptive optics and spatial filters correct for most of the wavefront
aberrations, the zero order zernike mode (piston) is not corrected. This is because the
AO systems and spatial filters considers only the local phase fluctuations and result in
a flat wavefront. However, the global phase difference between the two telescopes of the
interferometer plays a significant role in the position of the fringes on the detector. Over
long integration time, the fringe shift due to piston fluctuations results in a degradation
of the fringe contrast and thus the visibility estimation. Hence, it is essential to have
a fringe tracker on top of the adaptive optics system to stabilize the position of the
fringes and thus increasing the sensitivity of the instrument. A fringe tracker is a second
beam combiner instrument which works alongside the main science beam combiner
measuring and stabilizing the position of the central fringe (zero OPD) or the center of
the fringe envelope.

1.5.1 Phase delay tracking (Co-phasing)

Co phasing is to track the individual fringe phases. Co-phasing involves tracking at
the rate of atmospheric turbulence time scale (coherence time) at the corresponding
wavelength. In K band a typical time scale is about 12ms and 20ms for the L band. For
more precise tracking, the sample rate should be smaller than this time scale.

Currently at VLTI Gravity fringe tracker, FINITO, Prima FSU does phase delay track-
ing in the H and K bands. Phase delay tracking produces high accuracy on the position
on the detector (~fraction of λ on the OPD). Due to high processing rates and low inte-
gration time, phase delay tracking is restricted highly by the sensitivity of the instrument.
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Gravity can perform co-phasing on the K band with a sensitivity of 10 in magnitude
with an accuracy of 350nm (with a 10th magnitude phase reference) with the unit
telescopes (Choquet et al., 2014).

1.5.2 Group delay tracking (Coherencing)

The broadband interferometric fringes has two major components, the fringes and the
fringe envelope as shown in fig. 11. Cophasing involves in tracking the fringe phases at
the atmospheric coherence time. However, due to the dispersion of water vapor content
of the atmosphere, each wavelength channel has its own corresponding path delay.
This makes phase tracking harder, as a typical phase delay tracker has to estimate the
phases in each wavelength channel by dispersing the fringes, thus losing the flux and
sensitivity. However, if the science case doesn’t require the precision of a phase delay
tracker, the fringe packet can be tracked instead of the individual phases. The main
advantage of group delay estimation is the ability to integrate the faint stellar fringes
over longer period than that required by a phase delay tracker (~100ms-2 seconds). This
increases the signal to noise ratio and thus the fringes in the science channel can be
coherenced by 2-3 magnitudes fainter reference.

Figure 11: Representation of broadband fringes and fringe envelope. The green shaded region shows the
region of accuracy in which the cophasing is done. The yellow region shows the accuracy in
which coherencing is done.
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1.6 closure phase

Another technique in estimating the phase of the astronomical source is to combine
the phases from 3 baselines of the interferometer. The phases at the three baselines are
given by,

Φ12 = φ12 +∆φ12 = φ12 +φ
′
1 −φ

′
2

Φ23 = φ23 +∆φ23 = φ23 +φ
′
2 −φ

′
3

Φ31 = φ31 +∆φ31 = φ31 +φ
′
3 −φ

′
1 (10)

Where, φ12, φ23 & φ31 are the phase differences of the source between baselines 12,23

& 31 respectively and φ ′1, φ
′
2 & φ ′3 are the piston induced by the atmospheric turbulence

and instrumental vibrations. Thus adding the phase differences at the three baselines,

Φ123 = Φ12 +Φ23 +Φ31 = φ12 +φ23 +φ31 +φ
′
1 −φ

′
2 +φ

′
2 −φ

′
3 +φ

′
3 −φ

′
1

= φ12 +φ23 +φ31 (11)

Thus, by adding the phase differences at the three baselines, we can completely
remove the atmospheric contribution and retrieve the pure phase differences of the
source. This is known as closure phase Φ123.

1.7 fringe tracking for infrared targets

Fig. 12 shows the comparison of K and L band magnitudes of class 1 and class 2 YSOs
in embedded clusters. The vertical blue line shows the K band phase delay tracking
sensitivity of Gravity fringe tracker (Choquet et al., 2014). The horizontal red and green
dashed lines shows us the L band sensitivity of MATISSE at low spectral resolution
without and with an external fringe tracker respectively (Matter et al., 2016).
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(a) Class 1 (Connelley et al., 2008) (b) Class 2 (Muthusubramanian et al. (2016), Gutermuth
et al. (2009))

Figure 12: Comparison of K and L band magnitudes of YSOs in embedded clusters. The vertical red line
shows the K band sensitivity limit of Gravity fringe tracker. The horizontal green and yellow
dashed lines shows the L band sensitivity of MATISSE operating without and with an external
fringe tracker respectively. The green and yellow shaded region contains targets which are
too faint to be detected with Gravity fringe tracker in the K band but are bright enough to be
detected by MATISSE without and with an external fringe tracker respectively

Objects in yellow and green shaded regions in fig. 12 are YSOs that cannot be tracked
by Gravity fringe tracker, but they are still within the L band sensitivity limits of
MATISSE at low spectral resolution. It would be beneficial to observe these targets by
performing on source fringe tracking in the L band.

The objects in the lower left quadrant of the plots are within the current sensitivity
limits at K and L bands. Hence, it would be beneficial to perform fringe tracking by
referencing in both K and L bands simultaneously.

1.8 goals of the thesis

In this work, I have explored the possibilities in performing group delay tracking in
the L band alongside the K band for red targets including YSOs, AGN & DSO, which are
brighter at longer wavelengths. This adds another advantage of longer coherence time
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in the L band while comparing to shorter wavelengths and thus a longer integration
time for the group delay estimates. We analyze the possibility to increase the sensitivity
(as compared to the values shown in fig. 12) in estimating the visibility amplitude in the
science channel by stacking the individual fringe frames through their power spectra,
while maintaining the fringes within the coherence length (Coherencing). This increases
the sensitivity in both the fringe tracking as well as the science channel in observing at
such long wavelengths.

We also explore the possibility in coherencing mid-infrared fringes (M and N bands)
by feed forwarding the group delay estimates using K and L band group delay mea-
surements.



2
AT M O S P H E R I C T U R B U L E N C E

Big whorls have little whorls
Which feed on their velocity
And little whorls have lesser whorls,
And so on to viscosity.
– Lewis Fry Richardson, Weather prediction by Numerical Models (1922).

2.1 kelvin-helmholtz instability

To understand the turbulence in Earth’s atmosphere, we have to understand the flow of
different layers of fluids in the atmosphere. The motion of a fluid in a medium can be
characterized by the Reynold’s number. The Reynold’s number is defined as the ratio of
inertial forces and the viscous forces and is given by,

Re =
VL

ν
(12)

where,

• V→ Maximum velocity of the fluid (m s−1)

• L→ Characteristic length scale of the fluid (m)

• ν→ Kinematic viscosity (m2s−1)

At low values of Re (< 106), the fluid exhibits a laminar flow. At larger values of
Re (> 106) the fluid is said to exhibit turbulent behavior. The typical parameters for
atmosphere are,

• L = 22 m

• V = 10 ms−1

• ν = 15× 10−6m2s−1

This results in a Reynold’s number of Re = 1.46× 107. This corresponds to a fully
developed turbulent flow. The turbulence of the atmosphere is dominated by Kelvin-
Helmholtz instability. Kelvin-Helmholtz instability occurs in a turbulence fluid when
there is a velocity shear on the layers of the fluid. This occurs due to the gradient of the
wind velocity over the altitude of the layers of atmosphere.

20
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2.2 kolmogorov theory of atmospheric turbulence

Kolmogorov’s theory of atmospheric turbulence (Kolmogorov, 1941) deals with the
cascade of the kinetic energy transfer from large scale to smaller scale turbulence
vortices. There are three major assumptions of the Kolmogorov’s theory of turbulence.
The turbulent fluid (atmosphere) is homogeneous and isotropic. In other words, the
physical processes that occurs at different spatial points and directions in space are
the same. The third major assumption is that the fluid is incompressible and can be
characterized by the Navier-Stokes continuity equation,

5 .~U = 0 (13)

Where ~U is the velocity vector (Ux, Uy, Uz) which has zero divergence and can be
characterized by irregular eddy motions given by the non-zero vorticity,

~ω = ~5× ~U (14)

The velocity vector can be represented as the sum of laminar flow velocity ~u and
the turbulent component ~u ′. We can thus define the velocity correlation tensor of the
turbulent component as,

Rij = 〈 ~u ′i(~x) ~u ′j(~x+~r)〉 (15)

Since the turbulent field is homogeneous and isotropic, the velocity correlation tensor
depends only on the separation between the spatial points ~r and not the position vector
~x of the measuring points. To understand the cascade of kinetic energy from large
eddies to smaller ones, we have to estimate the energy spectrum tensor which is the
Fourier transform of the velocity correlation tensor. The energy spectrum tensor is thus
given by,

φij(~k) =
1

(2π)3

∫∞
0
Rij(~r)e

−i~k~rd3~r (16)

Where, ~k is the spatial frequency and is defined as,
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~k = (2π)/(~r) (17)

The energy spectrum function is thus calculated by the trace of φij(~k) as,

E(k) = 2πk2
∑
i

φii(~k) (18)

During the energy cascade, the kinetic energy of the large scale eddies is dissipated
to the smaller scale eddies through viscous heating. The turbulent energy dissipated by
viscosity is given by,

εd = 2ν

∫∞
0
k2E(k)dk (19)

To have a steady cascade of energy transport from large to small scale eddies which
then dissipates through viscous heating, there needs to be a constant supply of kinetic
energy at the large scales. This energy supply for atmospheric turbulence comes from
the solar radiation.

Kolmogorov assumes a self-similarity model, where there is a dissipation free cascade
of kinetic energy through the eddies. Thus, we can define a length scale beyond which
the viscous dissipation dominates. The self similarity model states that a fully developed
turbulence model depends only on ν and εd. ν has the dimensions of L2T−1 and εd
has the dimensions of L2T−3. The characteristic length scale (inner/ Kolmogorov/
dissipational length scale) can thus be derived through dimensional analysis as,

l0 =

(
ν3

εd

)1/4
(20)

for dry air in earth’s atmosphere, the value of l0 is 0.1cm and we can define an
associated velocity of the vortice at l0 as,

u0 = (νεd)
1/4 (21)

The Kolmogorov’s self similar turbulence model has a power spectrum given by,



2.2 kolmogorov theory of atmospheric turbulence 23

E(k) = u20l0E∗(l0k) (22)

Where E∗ is a dimensionless scaling factor. Since, the main range in which Kol-
mogorov’s self similar model operates is purely dominated by inertial dispersion and
no viscous dispersion, the power spectra must be scale free and should not depend on
the kinematic viscosity ν. Thus, the scaling function can be defined as,

E∗(l0k) = C× (l0k)
n (23)

Where C is a dimensionless constant of proportionality of order unity. Thus, substi-
tuting the values of l0, u0 and E∗ from equations 20, 21 & 23 respectively into equation
22.

E(k) = ν1/2ε
1/2
d ν3/4ε

−1/4
d Cν3n/4ε

−n/4
d kn (24)

As the power spectrum is purely intertial, it should have no dependence on ν. Thus
solving for n to remove the dependence on ν, we get,

E(k) = Cε
2/3
d k−5/3 (25)

This is known as the Kolmogorov’s power spectrum of atmospheric turbulence. The
−5/3 exponent is derived for 2 dimensional turbulence behavior. However, in the case
of 3D turbulence simulations the exponent is then −11/3 (Tatarski et al., 1961).

2.2.1 Outer scale

To estimate the velocity correlation tensor, we can estimate the total velocity vector and
subtract the laminar component. However, it is difficult to decouple and estimate the
laminar component in laboratory experiments and other real time scenarios. Hence, it
is easier to estimate the trace of the velocity correlation tensor defined as,

R(r) =
∑
i

Rii(~r) (26)
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The velocity correlation breaks as R → 0 by R(r) → 〈|u|2〉. Thus, we can define a
characteristic length scale at which this correlation breaks as,

L0 =
1

R(0)

∫∞
0
R(r)dr (27)

L0 is the characteristic upper limit beyond which the kinematic energy cannot sustain
an eddy anymore and thus the spatial points which are separated beyond L0 is com-
pletely uncorrelated. This is also known as the outer scale of earth’s atmosphere.

The outer scale at Paranal, Chile measured using the Generalised Seeing Monitor
(GSM) is 22 meters (Martin et al. (2000) Dali Ali et al. (2010)). However, the value of L0 is
too low to match the OPD fluctuations measured in the K band with PRIMA (Sahlmann
et al., 2009) and in the H band with FINITO (Le Bouquin et al., 2008). Thus Choquet
et al. (2014) uses a value of 100 meters which matches the measured OPD fluctuations
than the models at 22 meters.

2.2.2 von Karman power spectrum

To account for the decorrelation beyond the outer scale, von Kármán (1948) suggested a
power spectrum of atmospheric turbulence which includes the outer scale (L0) as,

E(k) ∝
(
k2 +

(
1

L0

)2)−11/6

(28)

Fig. 13 shows the turbulence power spectrum measured in the laboratory experiment
(Champagne, 1978).
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Figure 13: Power spectrum of a laboratory turbulence (Champagne, 1978)

2.3 numerical simulations of atmospheric turbulence

2.3.1 white noise

White noise is a signal where there is no correlation between the sample points of the
signal. In other words they have a flat power spectrum at all frequencies. Such signals
are termed as stochastic and are only defined by statistical quantities such as mean and
standard deviation. Figure 14 shows an example random white noise with amplitudes
in arbitrary units with a mean of zero and a standard deviation of unity.

Figure 14: Sample random white noise over time
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The amplitudes of the random white noise signal follows a Gaussian distribution. Fig.
15 shows the histogram of the values in the random white noise from fig. 14.

Figure 15: Distribution of the values in the random white noise

The power spectrum of the white noise from fig. 14 is shown in fig. 16. The power
spectrum of the white noise is flat as the values are completely uncorrelated.

Figure 16: Power spectrum of the random white noise

We can see that from the flat power spectrum and the Gaussian distribution of the
values, the white noise is perfect initial random distribution to play with different
models of atmospheric turbulence.
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2.3.2 Generating random turbulence screens

Kolmogorov screens are more efficient and computationally less expensive for turbu-
lence fields smaller than the outer scale of the atmosphere. Hence for a single telescope
AO simulations (where D < L0), Kolmogorov screens are preferred over von Karman
screens. However, for interferometry using long baselines (where B > L0), the decorrela-
tion beyond the outer scale becomes important.

The fluctuations caused due to atmospheric turbulence is a random Gaussian process.
Hence, to generate a random realization of the atmosphere, the selected power spectrum
(Kolmogorov/von Karman) is multiplied to the power spectrum of a random white
noise which is centered around zero and has a standard deviation of unity. Figure 17

shows a sample random realization of a 2D white noise and the 2D Kolmogorov power
spectrum.

(a) Random 2D white noise (b) 2D Kolmogorov power spectrum

Figure 17: initial conditions for generating a Kolmogorov turbulence screen on refractive index

Figure 18 shows the final simulated turbulence screens. Fig. 18a shows a Kolmogorov
screen with infinite outer scale and fig. 18b shows a von Karman screen with an outer
scale of 25 meters.



28 atmospheric turbulence

(a) Kolmogorov (b) von Karman (L0 = 25m)

Figure 18: A random realization of Kolmogorov turbulence screen on refractive index

2.4 characterizing turbulent screens

Once the phase screen is simulated, we can derive some physical parameters from
it. The most fundamental function to analyze is the structure function (correlation
function). The structure function of an atmospheric turbulence parameter is defined as
the averaged squared difference of the parameter at two sample points separated by a
distance ’r’. The structure function of a parameter ’X’ is thus defined by,

Dx(r) = 〈|X(r1) −X(r1 − r)|2〉 (29)

Thus the structure function measures the auto-correlation of the input phase screen.
It also describes the expected difference of the parameter ’X’ in a turbulence field
separated by a distance ’r’.

2.4.1 Kolmogorov-Obhukov statistics

Kolmogorov’s self-similar model follows only the dissipation free cascade of kinetic
energy from large to smaller scale eddies. Hence, to understand the energy cascade
in the simulated turbulence screen, we can first look into the structure function of the
turbulence velocity field. Hence, from equation 29, the velocity structure function can
be defined as,

Dv(r) = 〈|v(r1) − v(r1 − r)|2〉 (30)



2.4 characterizing turbulent screens 29

As the energy cascade is dissipation free we can rewrite equation 31 as an arbitrary
function f(r/l0) by dividing the into cells of the size of the inner scale length. As
the structure function Dv(r) has the dimensions of squared velocity and f(r/l0) is a
dimensionless function, equation 31 becomes,

Dv(r) = αf(r/l0) (31)

Where, α is a constant which has the dimensions of squared velocity. Due to self
similarity model, the parameter α should depend only on ν and εd. Thus from equation
21, α can be represented as,

α = (νεd)
1/2 (32)

The dimensionless function can be defined as,

f(r/l0) = k

(
r

l0

)n
(33)

Where, k is a dimensionless constant. Thus the structure function from equation 31

can be rewritten as,

Dv(r) = kα

(
r

l0

)n
(34)

from equations 32 and 20,

Dv(r) = kν
1/2ε

1/2
d ν−3n/4ε

n/4
d rn (35)

As the system is in the inertial range, the structure function shouldn’t depend on
the kinematic viscosity ν. Thus the value of n should be 2/3 in order to remove the
dependence of ν from equation 35, making it,

Dv(r) = kε
2/3
d r2/3 = C2vr

2/3 (36)

Where C2v is defined as the structure function coefficient and is given by,

C2v = kε
2/3
d (37)

The value of the structure function parameter is important for different instruments
and telescope site characterization as it is a measure of the strength of the atmospheric
turbulence at that location.
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2.4.2 Other structure functions

The velocity field transports the kinetic energy in parcels of eddies. As these parcels are
in pressure equilibrium, the fluctuations are mainly on temperature and densities (thus
on the refractive index). Therefore, the structure functions on temperature and refractive
index also follows the Kolmogorov-Obhukov law. Hence, the structure function on
temperature and refractive index is,

DT (r) = C
2
Tr
2/3 (38)

Dn(r) = C
2
nr
2/3 (39)

Using ideal gas laws and as the refractive index (n) is directly proportional to the
density (ρ), the structure function coefficients Cn & CT are related as, (Quirrenbach,
2014)

Cn = (7.8× 10−5P[mbar]/T2[K])CT (40)

Fig. 19 shows the two point correlation function estimated from the Kolmogorov
phase screen (fig. 18a) and the analytical fit from eq.39.

Figure 19: Structure function estimated from the Kolmogorov screen (fig. 18a) and the analytical fit given
by eq. 39. We see a divergence between the analytical and the numerical correlation functions
at a distance of 0.26× box size. This is mainly computational issue due to the limited box size
of the simulated refractive index screen.
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The correlation function computed from the phase screen breaks off from the theoreti-
cal prediction at a point which is 0.26 times the box size. In the case of fig. 19, the break
off occurs at a point of 40 meters. This effect is mainly due to computational restrictions.
As the separation between the points goes above this distance, the number of sample
data point reduces drastically. Hence, the signal appears highly decorrelated. In our
simulations we chose a box size which is slightly larger than 3.75 times the baseline of
the interferometer to be within the correlated part.

2.4.3 Phase Structure function

The phase structure function plays an important role in understanding the propagation
of light through a turbulent screen. The phase structure function can be defined through
eq. 29 as,

Dφ(r) = 〈|φ(x) −φ(x+ r)|2〉 (41)

The phase of a light wave propagating through a medium of refractive index n and
thickness δh is given by,

φ =
2π

λ
nδh (42)

A similar approach can be used to relate the phase structure function and the
refractive index structure function through equations 39 & 41. Thus for a incoming
stellar wavefront traveling through a layer of atmosphere of thickness δhi and a refractive
index structure function coefficient Cn,i, the phase structure is given by,

Dφ,i(r) = 2.91
(
2π

λ

)2
δhiC

2
n,ir

5/3 (43)

For an atmosphere with multiple layers of different refractive index turbulence screens,
the phase structure function is given as,

Dφ(r) = 2.91
(
2π

λ

)2
sec ζ

∫
C2n(h)dhr

5/3 (44)
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Where ζ is the hour angle of the observing target. The further the object is away from
the zenith, the longer is the path traveled by the light through the turbulent medium.
Hence, the larger the hour angle the more wave gets abberated.

There is a minimum value of r, where the effect of atmospheric turbulence on the
wavefront aberrations is the least. This length is called the Fried’s parameter (r0). The
Fried’s parameter is the maximum value of r where the rms of phase fluctuations is less
than 1 radian. Thus plugging in 1 radian and solving for r in eq. 44, the value of r0 can
be computed as,

r0 =

(
0.423

(
2π

λ

)2
sec ζ

∫
C2n(h)dh

)−3/5

(45)

For example, an incoming K-band wavefront (2.0− 2.4µm) will have a Fried parameter
(r0) of 60 centimeters.

The phase structure function can thus be redefined as,

Dφ(r) = 6.88
(
r

r0

)5/3
(46)

Applying the same 1 radian rms limit on eq. 43, the Fried parameter (r0) for a single
layer of atmosphere with a thickness δh is given by,

r0 = 2.361
((

2π

λ

)
δhC2n

)−3/5

(47)

2.4.3.1 Turbulence profile of atmosphere

The dependence of C2n over altitude or the C2n profile is a key information to understand
the nature of turbulence at an astronomical observatory site. There are a few analytical
and empirical models for the C2n profile for different altitudes.

Kaimal model

This model proposed by Kaimal et al. (1976) is a simple analytic relation that relates the
C2n at any arbitrary height h0 to that of another height h by,

C2n(h)

C2n(h0)
=

(
h

h0

)−4/3

(48)
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Walters-Kunkel model

The Kaimal model however doesn’t include the effect of temperature inversion in the
atmosphere. This inversion layer in temperature will affect the evolution C2T over height
and thus C2n. The Walters & Kunkel model (Walters & Kunkel, 1981) estimates the
evolution of C2n vertically by,

C2n(h)

C2n(h0)
=



(
h
h0

)−4/3
h0,h 6 0.5hi(

0.5hi
h0

)−4/3
0.5hi 6 h 6 0.7hi

2.9
(
0.5hi
h0

)−4/3 (
h
hi

)3
0.7hi 6 h 6 hi

(49)

Where hi is the height of the inversion layer in the atmosphere.

Hufnagel-Valley model

Unlike Kaimal and Walters-Kunkel model which are analytically estimated, the Hufnagel-
Valley model (Lawson & Carrano, 2006) is an empirical fit to high altitude measurements
of C2n. The Hufnagel-Valley relation is given by,

C2n(h) = 5.94 × 10−53(v/27)2h10e(−h/1000) + 2.7 × 10−16e(−h/1500) + C2n0e(−h/100) (50)

Where, v is the velocity of wind at that altitude and C2n0 is the structure function
constant near the ground level.

The wind velocities can be estimated for major observatory sites by an empirical
fit model given by Roberts & Bradford (2011). Fig. 20 shows the wind velocities at
Antofagasta base which is about 150kms from the VLTI during the month of July.
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Figure 20: Wind velocity as a function of height at Antofagasta base during the month of July

Fig. 21 shows the C2n tracks of the three models over height.

Figure 21: Comparison of the three C2n models

Figure 22 shows us the turbulence strength of the atmosphere measured above Cerro
Paranal, Chile (Quirrenbach, 2014). In our models we implement the Hufnagel-Valley
model of C2n profile which matches with the observed data more precisely.



2.4 characterizing turbulent screens 35

Figure 22: Turbulence strength measured at Cerro Paranal, Chile (Quirrenbach, 2014)
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G D S I M : T E M P O R A L E V O L U T I O N O F P H A S E

3.1 gdsim

In our study, we investigate the effects of atmospheric turbulence and the differential
dispersion of atmospheric water vapor on K and L band fringes. Hence, I have con-
structed a simulator (GDSIM) based on the first principles that involves propagation
of light waves through a turbulent medium. Currently, simulators such as SOAPY
(Reeves, 2016), YAO (Rigaut & Van Dam, 2013), TurSim (Thomas, 2004), etc. simulates
the atmospheric turbulence over a single telescope and their response on the adaptive
optics wavefront sensor. In the case of long baseline optical/infrared interferometry, the
decorrelation of the turbulent energy transport between distances greater than the outer
scale of the atmosphere becomes important. Simulators such as Choquet et al. (2014)
were developed to simulate the instrumental stabilities and control system in order to
control the atmospheric turbulence using GRAVITY fringe tracker. I have developed a
python based atmospheric turbulence simulator GDSIM, which simulates the piston
fluctuations at VLTI due to atmospheric turbulence and instrumental vibrations. GDSIM
also includes the chromatic effects of differential dispersion on the OPD due to the
atmospheric water vapor at near- and mid- infrared wavelengths.

3.2 taylor’s frozen turbulence flow hypothesis

After generating the atmospheric turbulence screen, we shall now discuss about the
temporal evolution of these screens over a telescope aperture. Over short timescales and
a steady wind flow, the turbulence can be assumed to be static (Taylor, 1938). Hence,
to analyze the evolution of a turbulent screen over an aperture, we can simply blow
the screen over an aperture mask. Figure 23 shows a sample Kolmogorov screen blown
over a circular telescope aperture.

36
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Figure 23: Description of a Kolmogorov turbulent screen blown over a telescope aperture with a specific
wind velocity (v)

3.3 phase structure function

To understand the temporal coherence of the phase of the incoming wavefront, we
need to understand the phase structure function over different timescales. For a spatial
scale r and wind velocity V , the temporal phase structure function can be defined by
substituting time scale t = r/V on equation 46 as,

Dφ(t) = 6.88
(
V t

r0

)
(51)

We can thus define a time scale within which the Root Mean Squared (RMS) of phase
fluctuations is 1 radian. This is known as the coherence time of the atmosphere. The
coherence time of the atmosphere (τ0) is thus given by,

τ0 = 0.314
(r0
V

)
(52)

A typical coherence time in the K band assuming a wind velocity of 10m/s and a
Fried parameter of 60cm is 18.8ms. However in the case of interferometry, the phase
fluctuations at both the telescopes needs to be optimized to 1rad RMS. Hence, the
coefficient in the structure function (eq. 46) will then be 2× 6.88. Thus we can define a
separate inteferometric coherence time as,

τ0 = 0.207
(r0
V

)
(53)
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The temporal phase structure function can thus be defined as,

Dφ(t) =

(
t

τ0

)−5/3

(54)

3.4 temporal power spectrum

Wiener-Kinchin theorem states that the structure function and the power spectrum are a
Fourier pair. So the power spectrum can be derived by performing a Fourier transform
of the phase structure function in equation 54. However the Fourier integral of equation
54 is non-trivial, the function has to be integrated in certain intervals. The resulting
power spectrum is given by (Nightingale & Buscher, 1991),

Φφ(k) = 5.60× 10−3τ−5/30 k−8/3[rad2/Hz] (55)

Equation 55 is the power spectrum of phase fluctuations over a single telescope.
However in the case of interferometry, the phase difference between both the telescopes
is the key parameter to understand. Hence, the power spectra of the Phase/OPD (as
the phase and OPD can be transformed by a multiplicative factor of 2π/λ) difference
fluctuations between the two telescopes can be computed by convolving the phases
with two delta functions corresponding to each arm of the interferometer. Thus the
phase power spectrum will be,

ΦOPD(k) ∝ (FT(Dφ(r, t))× FT(δ(r−B/2) − δ(r+B/2)))2 (56)

Where B is the baseline of the interferometer. The above Fourier transform can be
simplified into two regimes. At high temporal frequencies, the OPD fluctuations between
the two telescopes are highly uncorrelated thus the power spectrum behaves as in that
of a single telescope with a power law exponent of −8/3. However, at lower frequencies
the fluctuations depends on the model of turbulence used. In the case of a Kolmogorov
turbulence, the power spectrum goes with a power law exponent of −2/3. Whereas in
the case of von Karman power spectrum with a definite outer scale, the power spectrum
behaves as an asymptote. Hence, the temporal power spectrum for the phase/OPD
fluctuations for an interferometer is given by,

Pt(f) ∝
{
f−8/3 f > f1

f−2/3 (or)f0 f < f1
(57)
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Where f1 is the cut-off frequencies between the two regimes of the power spectrum
given by,

f1 = 0.2V/B (58)

Where V is the wind velocity. At small baselines (where B < L0), the phase/OPD
fluctuations becomes highly spatially correlated hence a Kolmogorov temporal power
spectrum will be more applicable. At long baselines (where B > L0), the spatial decorre-
lation becomes more significant hence the von Karman temporal power spectrum will
be applicable. Fig. 24 shows the temporal power spectrum of an interferometer with a
baseline 80meters and a wind velocity of 10m/s. Buscher et al. (1995) measured the
power spectrum of the OPD fluctuations on the Mark III interferometer at Mt.Wilson
and confirmed the two exponent behavior for both Kolmogorov and von Karman like
temporal power spectrum. Fig. 25 shows the Kolmogorov and von Karman like two
exponent behavior of the power spectrum.

Figure 24: Temporal power spectrum of an interferometer with baseline of 80 meters and wind velocity of
10m/s
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(a) Kolmogorov (b) von Karman

Figure 25: Power spectra of OPD fluctuations measured on Mark III interferometer at Mt.Wilson
(Buscher et al., 1995). Both the observations were done at 31.5 meter baseline, but on different
observing nights. The effect of the outer scale is clearly visible below 0.1 Hz. On the left plot,
the -2/3 asymptotic behavior characteristic of the Kolmogorov model is clearly noticeable.
On the right plot, the outer scale of that night was smaller and a flat behavior of the power
spectrum with a 0 exponent is visible.

Temporal power spectrum from Taylor’s hypothesis

Following the Taylor’s frozen turbulence flow hypothesis from §3.2, we can now place
two masks of 8 meters in diameter separated by a baseline B (B = 80m) on the
turbulence screen to derive a temporal power spectrum. The turbulence screen is blown
perpendicular to the baseline to avoid the same phase screen crossing the both the
apertures. This is shown in fig. 26.
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Figure 26: Representation of the Taylor’s frozen turbulence flow over an interferometer with 8 meter
apertures and a baseline B = 80m

After measuring the piston difference between the two apertures, we can estimate
the resulting power spectra of the OPD fluctuation. The power spectrum of the OPD is
shown in fig. 27 with a comparison of the analytical power spectrum from eq. 57.

Figure 27: Temporal power spectrum of OPD fluctuations derived with Taylor’s frozen turbulence
hypothesis compared with the analytical power spectrum. The entire signal was simulated for
18.63 seconds with a 10m/s wind speed

However, Taylor’s frozen turbulence hypothesis still lacks sufficient experimental
evidences. Caccia et al. (1987) states that the average time scale of evolution of a
turbulent cell which is of few centimeters is 60ms. A frozen turbulence to blow over
an aperture with an average 10m/s wind velocity can only survive to a distance of 60

centimeters. Hence, for an interferometer with a few tens of meters to a hundred meter
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baseline (VLTI), baseline the frozen turbulence hypothesis cannot be used to simulate
the temporal fluctuation of the atmosphere.

3.5 instrumental vibration

Another key parameter to consider on top of atmospheric turbulence on the piston
fluctuations for an interferometer is the instrumental vibrations. Even though the
construction of the VLTI is highly stable for mechanical vibrations, few small scale
vibrations to the order of the wavelength of observation can cause fluctuations on the
OPD. The vibration at VLTI can be represented by the following differential equation
(Choquet et al., 2014)

d2pv

dt2
+ 4πkf0

dpv

dt
+ 4π2f20pv(t) =

v(t)

T2
(59)

Where,

• pv → random Gaussian signal of the piston vibrations

• v(t)→ initial Gaussian noise at an instant t

• f0 → natural frequency of the oscillator

• k→ damping coefficient

• T → sampling frequency

Equation 59 results in a power spectrum given by,

Pvib(f) =
σ2vT/(16π

4T4)

f4 + 2f20f
2(2k2 − 1) + f40

(60)

Where σv is the variance of excitation.The vibration RMS were measured by Mérand
et al. (2012) for the AMBER instrument at VLTI. However, the currently the instrumental
vibrations at the VLTI have been suppressed to <300nm (Choquet et al., 2014). Tables 1

& 2 lists the values of the parameters for the UT at VLTI.
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UT1 UT2 UT3 UT4

UT1 377nm 411nm 445nm 738nm

UT2 215nm 402nm 548nm

UT3 287nm 580nm

UT4 542nm

Table 1: OPD RMS induced by instrumental vibrations of the UTs at VLTI (Mérand et al., 2012)

Figure 28: OPD fluctuation power spectrum due to instrumental vibrations at UT1-UT2 with a total
vibration σOPD,vib = 300nm
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f0 (Hz) k σv (nm) f0 (Hz) k σv (nm)

UT1 8 0.003 0.25 UT2 13 0.01 1.8
14 0.002 0.5 15 0.003 1.0
16 0.006 1.3 18 0.02 2.5
18 0.006 1.5 24 0.002 3.0
24 0.001 2.5 34 0.004 3.0
34 0.006 5.0 45 0.003 5.0
45 0.003 4.0 96 0.001 6.0
50 0.001 4.0
78 0.001 6.0
96 0.003 7.0

UT3 14 0.002 1.4 UT4 5 0.05 0.8
17 0.01 2.5 10 0.002 0.5
24 0.001 3.7 18 0.001 2.8
34 0.003 2.0 24 0.002 5.0
46 0.002 2.7 34 0.003 4.0
49 0.001 3.0 45 0.004 6.2
86 0.003 11.0 52 0.005 9.0
94 0.002 15.0 68 0.007 13.0

76 0.006 15.0
85 0.002 12.0
96 0.005 18.0
107 0.002 11.0

Table 2: vibration model parameters (Choquet et al., 2014)

3.6 simulating phase/opd fluctuation time series

Phase/OPD fluctuation time series can be produced for an interferometer with a white
noise and the power spectrum described in eq. 57 using the same technique described
in §2.3. A sample random simulated OPD time series is shown in fig. 29 and fig. 30

shows the corresponding power spectrum. Fig. 31 shows a simulated OPD time-series
simulated by Choquet et al. (2014).
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Figure 29: Simulated OPD time-series for an 80 meter baseline including both atmospheric turbulence
and instrumental vibrations of UT1-UT2 combination

Figure 30: power spectrum of simulated OPD time-series shown in fig. 29

Figure 31: OPD time-series simulated by Choquet et al. (2014) for a 100m baseline including instrumental
vibrations at VLTI
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3.7 variance of opd fluctuations

To understand the effect of interferometric baselines on the OPD fluctuations, we have
to first understand the variance of the OPD fluctuations. As a power spectrum of any
signal is a measure of the variance of the signal at a particular frequency, the variance
of OPD fluctuations can be computed by integrating the temporal OPD power spectrum
over −∞ to∞. For a Kolmogorov like turbulence, the variance of OPD as a function of
baseline is given by (Roddier, 1981),

σ2OPD(B) = 0.17λ
2

(
B

r0

)5/3
(61)

In the case of a von Karman power spectrum with a finite outer-scale (L0), the variance
of OPD as a function of the baseline is given by (Glindemann, 2011),

σ2OPD(B) = 0.00876λ
2

(
L0
r0

)5/3(
1−

(
2πB

L0

)5/6
K5/6

(
2πB

L0

))
(62)

Where K5/6 is a modified Bessel function of the second kind and 5/6 order, also known
as Macdonald function. Fig. 32 shows the influence of baselines, model of turbulence
and outer scale on the variance of OPD. Here, one key thing to note is that even though
the observing wavelength λ appears on the both the equations (eq. 61 & 62), the final
OPD variance is independent of the observing wavelength. This is due to the fact that
the Fried parameter (r0) depends on the wavelength as,

r0 ∝ λ−6/5 (63)

Hence, the λ dependence cancels each other out. The OPD variance depends mainly
on the baseline (B), outer scale (L0) and the Fried parameter (r0).
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Figure 32: Standard deviation of OPD fluctuation in an interferometer as a function of baseline, model of
turbulence and outer scale

Hence, the fluctuations on OPD keeps rising as the baseline increases in the case
of Kolmogorov turbulence. In the case of von Karman turbulence, the OPD fluctu-
ations saturates to an asymptote at baselines which are larger than the outer scale
(B > L0). Hence, the von Karman model of atmospheric turbulence with a limited outer
scale (L0) becomes important for interferometers with baselines larger than the outer
scale and for a single telescope AO simulations, we can still be in the Kolmogorov regime.

Another important parameter to consider is the growth of the variance of OPD
fluctuations over time. The variance of OPD fluctuations over different integration time
can be estimated by applying a sliding top-hat window over the time series with a width
of the integration time. Another way to estimate the OPD variance is by integrating
the temporal power spectrum of the time series from the frequency corresponding
to the integration time to the sample rate of the OPD signal. However, as we use a
sliding top-hat filter in the time domain to estimate the OPD variance it corresponds to
a convolution of the Fourier transform of the filter function on power spectral domain.
Thus a top hat function with a width of T will result in a filter function on the power
spectrum as shown in eq. 64.

F(k) = 1− sinc2(πTk) (64)

Figure 33 shows the filter function for a 1 second wide top-hat filter on a Kolmogorov
power spectrum for a baseline of 80 meters. The blue curve shows the Kolmogorov
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power spectrum for a baseline of 80 meters with a wind velocity of 10m/s, the orange
curve shows the filter function for 1 second integration time through eq. 64 and the
green curve shows the filtered power spectrum. Hence, the variance or the RMS of the
OPD fluctuations can be estimated by integrating the filtered power spectrum over all the
frequencies. Fig. 34 shows the comparison of the rise in the RMS of OPD over integration
time by estimating it from both temporal and power spectral domains.

Figure 33: Filtered and unfiltered Kolmogorov temporal power spectrum for a baseline of 80 meters and
integration time of 1 second. The orange dashed curve shows the filter function for a box width
of one second. The solid blue curve shows a typical Kolmogorov power spectrum. The green
dashed dotted lines shows the filtered Kolmogorov power spectrum.

Figure 34: Growth of σOPD over integration time estimated in both temporal and power spectral domain.
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3.8 strehl ratio - maréchal’s approach

The strehl ratio is defined as the ratio of the peak of the observed PSF to the theo-
retical Intensity peak of the PSF. The strehl ratio is useful in understanding effects of
atmospheric turbulence on the observed data. In the case of interferometry, the strehl
ratio represents the loss in fringe contrast (visibility amplitude) due to the atmospheric
turbulence. Maréchal (1947) used a Taylor series approximation and derived a relation
between the Strehl ratio and σOPD.

There are two ways to derive the loss of strehl ratio due to atmospheric turbulence.
The first approach is suggested by Ross (2009), which uses the Fourier propagation of
the wavefront. If Îσ(kx,ky) & Î(kx,ky) are the Fourier transforms of the abberated and
theoretical PSF of an incoming wavefront given by,

E(x,y) = U(x,y)exp(−2πjφ(x,y)) (65)

Where U(x,y) is the amplitude and φ(x,y) is the phase of the wavefront. The Strehl
ratio can then be represented as,

S =
Iσ(0, 0)
I(0, 0)

(66)

Substituting, the incoming wavefront from eq. 65 on eq. 66,

S =
|
∫
U(x,y)exp(−2πjφ(x,y))dxdy|2

|
∫
U(x,y)dxdy|2

(67)

Assuming a uniform illumination (U) over both the telescope apertures,

S =
|U
∫
exp(−2πjφ(x,y))dxdy|2

|U
∫
dxdy|2

(68)

Substituting, the total area of both the apertures given by A =
∫
dxdy.

S = |
1

A

∫ ∫
exp(−2πjφ(x,y))dxdy|2 (69)
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Applying a Taylor’s expansion on the exponential function and neglecting terms
higher than the 2nd order,

S = |
1

A

∫ ∫
(1+ 2πjφ(x,y) +

1

2
(2πjφ(x,y))2)dxdy|2 (70)

Assuming,

Φn =
1

A

∫ ∫
φn(x,y)dxdy (71)

Hence eq. 70 becomes,

S = |1+2πjΦ1−2π
2Φ2| = (2πΦ1)

2+(1−2π2Φ2)
2 = 4π2Φ21+1+4π

2Φ22−4π
2Φ2 (72)

We neglect the term (4π2Φ22) as it represents the small variations due to the square of
the 2nd order fluctuations. Hence we can simplify the above equation to,

S = 1− 4π2(Φ2 −Φ
2
1) (73)

The RMS on phase can be defined as a function of the independent phase at a point
(x,y) and the average phase Φ1 as,

σ2φ =
1

A

∫ ∫
(φ−Φ1)

2dxdy

=
1

A

(∫ ∫
φ2dxdy+Φ21

∫ ∫
dxdy− 2Φ1

∫ ∫
φdxdy

)

= Φ2 +Φ
2
1 − 2Φ

2
1 = Φ2 −Φ

2
1 (74)

Combining eq. 72 & eq. 74,
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S = 1− 4π2σ2phi = exp(−2πσφ)
2 (75)

Figure 35 shows the Maréchal’s approximation on the loss of visibility amplitude
of a point (unresolved) source due to atmospheric turbulence for a Kolmogorov like
turbulence on an interferometer with 80 meters baseline.

Figure 35: Maréchal’s approximation of the loss in visibility amplitude due to atmospheric turbulence of
a spatially unresolved source in the K band at a baseline of 80 meters.

3.9 deviation from maréchal’s approximation

3.9.1 Random walk model

The Maréchal approximation works for shorter integration times (tint 6 1.78τ0) (Buscher
& Longair, 2015). However, numerical simulations shows us that at longer timescales the
decorrelation on the temporal phase structure due to the outer scale of the atmosphere
dominates. Hence, the phase fluctuations over the two telescopes behaves independently.
We can thus model the loss in fringe contrast due to such decorrelation by a random
walk model. Due to the temporal decorrelation of the phase difference between the
telescopes, the phase fluctuations at such timescales is randomly distributed. Thus the
contrast degradation (Strehl loss) due to the phase fluctuations can be described by
rewriting eq. 69 as,

S =
1

n

n∑
k=1

eiφk (76)
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Where n is the total number of sample points on the phase difference time series
and φk is the phase difference in the time interval kτ0. Each sample of φk is from a
Gaussian distribution between −2π and 2π with its center around 0. Hence, the loss in
contrast goes as 1/

√
n or in the time domain as,

S =

√
τ0
t

(77)

Where t is the integration time. Figure 36 shows the comparison of the loss of contrast
due to Maréchal’s approximation and due to random walk model with a numerical
simulation of loss of contrast of a K band broadband fringes for a baseline of 80m.

Figure 36: Loss of visibility amplitude due to Maréchal (analytical) approximation and random walk
model with simulated numerical K band broadband fringe contrast loss

3.9.2 Longer time scale OPD drift

At even longer integration time (tint � 1s), the errors on the telescope pointing models
and the geometric delay correction at VLTI propagate into the OPD errors on the fringes.
These drifts are constantly monitored at the VLTI (Štefl et al., 2012). These are linear drifts
on the OPD time-series and the evolution of the Strehl ratio (fringe contrast) depend on
the integration time as,
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S =
τ0
t

(78)

However, these linear drifts on the OPD occur at time scales larger than what is used
in the GDsim. Hence, we neglect these longer time scale OPD errors in the simulations.

3.10 effects of atmospheric dispersion

On top of the atmospheric turbulence, the water vapor content of the atmosphere also
plays a significant role in the fringe motion. The difference in dispersion between the
two arms of the interferometer causes an additional path/phase delay difference on
the incoming wavefront. The phase delay of a wavefront with wave number k (λ/2π),
passing through a medium with refractive index n is given by,

φ = nLk (79)

Where L is the vacuum path length. The group delay (τg) due to the dispersion is
defined as,

τg =
dφ(ν)

dν
(80)

The corresponding OPD is,

xg = cτg =
dφ(k)

dk
(81)

Combining eq. 79 & eq. 81, group delay OPD can be re-written as,

xg =
d(nLk)

dk
= nL+ Lk

dN

dk
(82)

Where N is the refractivity of the medium and it is given by,

N = n− 1 (83)

Thus by knowing the refractivities of each component of the atmosphere for different
wavelength channels, we can estimate the dispersed path lengths.
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3.10.1 water vapor refractivities

Colavita et al. (2004) calculated the water vapor and dry air refractivities by adding all
the infrared resonances of water vapor and dry air from the HITRAN database. The
values reported by Colavita et al. (2004) match with the refractivity models of Ciddor
(1996) and Matsumoto (1982) with a 0.3% and 1.0% accuracy. However, they are off
by 2.3% accuracy from the Mathar (2004) models of water vapor refractivities. This is
due to the fact that Colavita et al. (2004) ignores the influence of the UV resonances of
atmospheric water vapor molecules, which affects the refractivities in the second order
of the Taylor expansion of the Erickson’s equation.

The total refractivity(N) at a wavelength(λ) can be defined as,

N(λ) = n− 1 =
∑
i

Ri(λ)ρi (84)

Where, Ri is the specific refractivity of the component and ρi is the vertical column
density of the component above the telescope. Using ideal gas laws the refractivity can
be rewritten as,

Ni(λ) = Ri(λ)aipi/T (85)

Where, pi is the partial pressure of the component and T is the temperature. Table 3

shows the ideal gas parameters for the dry air and water vapor during the observation
of Colavita et al. (2004). The amount of precipitable water vapor during observations
was 3µmm−1.

Parameter Water vapor Dry air

a (g m−3 mbar−1 K) 216.6 348.5
Partial pressure (p) (mbar) 1009.15 4.1

Temperature (T)(K) 293.16 293.16

Table 3: Ideal gas parameters for dry air and water vapor during the observation of Colavita et al. (2004)

Using the values of partial pressure and temperatures from table 3 with eq. 85 on the
measured refractivities by Colavita et al. (2004), we can estimate the specific refractivities
at near- & mid-infrared wavelengths. Table 4 lists the estimated specific refractivity per
molecule of dry air and water vapor.

The phase delay can be written as,
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Wavelength λ (µm) Specific refracitivity of water vapor Rq (cm2) Specific refractivity of dry air Rd (cm2)

2.00 9.05e-24 5.312e-24

2.05 9.04e-24 5.312e-24

2.10 9.02e-24 5.312e-24

2.15 9.01e-24 5.311e-24

2.20 8.99e-24 5.311e-24

2.25 8.97e-24 5.311e-24

2.30 8.95e-24 5.310e-24

2.35 8.92e-24 5.310e-24

2.40 8.89e-24 5.310e-24

3.50 8.84e-24 5.307e-24

3.60 8.81e-24 5.307e-24

3.70 8.77e-24 5.306e-24

3.80 8.74e-24 5.306e-24

3.90 8.70e-24 5.306e-24

4.00 8.67e-24 5.305e-24

9.00 7.41e-24 5.305e-24

9.50 7.10e-24 5.305e-24

10.00 6.79e-24 5.305e-24

Table 4: Specific refractivities of dry air and water vapor at infrared wavelengths
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xφ(λ) = N(λ)L (86)

Equation 82 can be rewritten to wavelength as,

xg = NL− Lλ
dN(λ)

dλ
(87)

Thus we can define a dispersion parameter, which is the difference between phase
and group delay at a wavelength (λ) as,

D(λ) = xφ − xg = λ
dN(λ)

dλ
L = λ

dR(λ)

dλ
ΣwvL (88)

The key parameter to consider in fringe tracking is the differential dispersion between
the arms of the interferometer. The difference in the path delay between both the arms
of the interferometer caused due to the difference in densities of water vapor plays a
key role. Hence, difference in the refractivities between the arms of the interferometer is
represented as N(λ) = R(λ)Σ. Where, Σ is the differential water vapor column density.

As we have the specific refractivities of water vapor and dry air for different near-
& mid-infrared wavelengths, which is a static parameter, we have to simulate the fluc-
tuations on differential water vapor column density. Lay (1997) suggested that the
fluctuations of the water vapor column densities behaves as a Kolmogorov turbulence
with a large outer scale. The outer scales of water vapor layers was measured by Lay
(1997) to be ~10 kms. As the baselines of optical/infrared interferometers that are
currently operational are small compared to the outer scale of water vapor turbulence,
we can assume the water vapor turbulence to follow the Kolmogorov turbulence models.
Colavita (2010) measured the differential water vapor column density fluctuations and
estimated the power spectral coefficients by comparing phase and group delay measure-
ments at Keck Interferometer. Figure 37 shows the Kolmogorov like power spectrum
at low frequencies for dry air and water vapor measured at the Keck interferometer
(Colavita, 2010).

As the effective wind speed is lower for water vapor as compared to that of the dry
air, the coherence time (τ0) of water vapor fluctuations is a factor of 65 times larger than
that of the dry air (Colavita, 2010). The measured power spectral parameters for water
vapor and dry air is tabulated in table 5.
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Figure 37: Dry air and water vapor temporal power spectral densities measured at Keck interferometer at
a baseline of 82meters (Colavita, 2010). The upper curves are for dry air and the lower curves
are water vapor fluctuations

Parameter dry air water vapor

Power spectral coefficient (m3Hz5/3) 4.5× 10−13 1.1× 10−16
cut-off frequency (Hz) 0.046 0.032

Coherence time at 0.05µm (s) 0.008 1.20

Table 5: Power spectral parameters for water vapor and dry air measured at the Keck Interferometer at a
baseline of 82 meters and a wind velocity of 10m/s (Colavita, 2010)

Hence to simulate the effects of dispersion due to water vapor in our simulations, we
simulated a second time series for the fluctuations of the differential column densities
of the atmospheric water vapor. Figure 38 shows the simulated water vapor differential
column density fluctuations.
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Figure 38: Simulated differential water vapor column density fluctuations between two arms of an
interferometer separated by a baseline of 80m

Masson (1994) measured the differential water vapor column density fluctuations
at Mauna Kea for a 100 meter baseline and found the rms of Σwv for a period of 15

minutes to be,

σ15(Σwv) = 3.7× 1019cm−2 (89)

Hence, we scaled the value to an 80 meter baseline with eq. 61. Fig. 39 shows the
water vapor differential column density fluctuations measured at Keck interferometer
(Koresko et al., 2006).

Figure 39: Measured water vapor differential column density fluctuations at Keck interferometer (Koresko
et al., 2006) on a relatively larger humidity as compared to the observation of Masson (1994).

Another key parameter to analyze is the RMS of the OPD fluctuations at each wave-
length channel with reference to the dry air OPD. This is known as intra-band dispersion.
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For example, monochromatic fringes at 2.2µm will fluctuate due to water vapor seeing
as,

σwv2.2 = (Rwv2.2 − R
dry
2.2 )σ15(Σwv) = −0.6µm (90)

The effects of the differential dispersion due to water vapor in the atmosphere can
thus be integrated to the simulator by using the dry air time series as the undispersed
time series of OPD and applying the differential dispersion through eq. 88.

3.11 non-kolmogorov turbulence

There can be significant deviations from the standard Obukhov-Kolmogorov model of
atmospheric turbulence (Kerr, 1972). These deviations are highly inhomogenous and
anisotropic in nature. There are various ways in which the atmospheric turbulence can
vary from the standard, some of them are,

• Energy transport by convection between different layers of the atmosphere.

• Deviations in the stratospheric and free tropospheric turbulence from the Obukhov-
Kolmogorov model

• Localized thermal fluctuations due to the geography of the telescope site

The Kolmogorov model of turbulence assumes that the initial supply of thermal
energy into turbulent eddies is fed through solar radiation. However, there are other
sources of thermal energy for turbulent eddies. The ground layer of the atmosphere can
attain higher thermal energy from geothermal sources and human activities. Buildings
and human settlements around the telescope site can add to the thermal energy source
to the ground layer. This makes the lower layers of the atmosphere convectively unstable
causing convective transfer of heat between the layers. These convections cause localized
deviations from the standard Obukhov-Kolmogorov model.

The troposphere can be separated into two regions separated by the thermal inversion
layer, the Atmospheric Boundary Layer (ABL) or also known as Planetary Boundary
Layer (PBL) is the layer of troposphere below the inversion layer and the layer above
the inversion layer is called as the free troposphere. The free troposphere and the
stratosphere is also strongly affected by the tidal forces due to the gravity of moon
and the sun (as compared to the tides on the ocean) (Gurvich & Belen’kii, 1995). These
changes on the density of different layers of the atmosphere causes shifts on the optical
path difference.
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Zilberman et al. (2008) measured the anisotropic power spectrum of the non-Kolmogorov
turbulence with a three layer turbulence. However as the models are computationally
extensive, GDsim uses a homogeneous and isotropic Kolmogorov/von Karman model
of atmospheric turbulence.

3.12 comparison with finito data

Fringe-tracking Instrument of NIce and TOrino (FINITO) is a first generation fringe
tracker at VLTI which does simultaneous 3 telescope fringe tracking. FINITO uses bulk
optics to estimate the group and phase delay using four π/2 phase shifted measurements
(ABCD) in the H band. Fig. 40 shows the layout design of FINITO.

Figure 40: design layout of FINITO fringe tracker at VLTI (Gai et al., 2004)

I used the calibration data of Amber instrument (Program ID: 094.D-0572(A) & 094.D-
0572(C)) which was fringe tracked by FINITO and retrieved the closed-loop group and
phase delay data. The observations were done with the Auxiliary telescopes of VLTI at
the stations A1, G1, K0, B2, C1 and baselines,

• A1-G1: 80.01 meters

• G1-K0: 63.98 meters

• A1:K0: 129.0 meters

• A1-B2: 11.31 meters

• A1-C1: 15.99 meters

• B2-C1: 11.30 meters
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The Amber observations were made to measure the angular diameters of 21 stars
which will be later used by Gaia mission as a golden standards to estimate the effective
temperatures of the star with higher accuracy. The calibrators chosen for the observation
were 31Ori (HIP27288) and α-Tau. Fig. 41 shows the on-source H band closed-loop
group delay of 31Ori measured with baselines A1-G1-K0. Fig. 42 shows the on-source
H band closed-loop group delay of α-Tau measured with baselines A1-B2-C1.

Figure 41: H band closed-loop group delay measurements of 31Ori measured with FINITO fringe tracker
at VLTI

Figure 42: H band closed-loop group delay measurements of α-Tau measured with FINITO fringe tracker
at VLTI

Figures 43 & 44 shows the power spectra of the group delay time series shown
in figures 41 & 42. The closed-loop power spectra shows a von Karman like power
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spectra. However, as the time series is that of a closed-loop system and the analytical
Kolmogorov/von Karman power spectra is for an uncorrected atmospheric turbulence
we cannot directly fit the analytical power spectra with the measured power spectra.

Figure 43: Normalized power spectrum of group delay fluctuations shown in fig. 41.

Figure 44: Normalized power spectrum of group delay fluctuations shown in fig. 42.

In fig.42, we can note two sharp deviations from the group delay time series at
20 seconds and at 63 seconds. These two sharp features could arise from the non-
Kolmogorov like turbulence or a control system error.
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3.13 birefringence

Another property of light that reduces the fringe contrast is the polarization of the
incoming stellar light. When the two beams of the light combined in the interferometer
has different angles of polarization resulting in difference in refractive indices and thus a
change in the phase of the wavefront which then reduces the contrast of the fringes. This
property is known as Birefringence. In the case of a typical stellar interferometer, the
contribution of atmospheric turbulence on the polarization of the light is insignificant
(Ji & Pu, 2009). However, the polarization effects of the instruments at VLTI can reduce
the resulting fringe contrast significantly. The effect of birefringence at VLTI for the
Gravity instrument has been extensively modeled by Lazareff et al. (2014). As the effect
of birefringence is purely instrumental, it can be calibrated on the resulting fringes.
Thus, we have excluded the polarization effects from our simulations.



4
S I G N A L T O N O I S E R AT I O A N D S E N S I T I V I T Y

Signal to Noise Ratio (SNR) is the best measure to estimate the sensitivity of an astro-
nomical instrument. But before understanding the ratio, let us first understand the
different noise involved in any astronomical observation.

4.1 noise

4.1.1 Photon/Shot Noise

Charge Coupled Device (CCD) acts as a light collecting bucket with an array of photo-
receptors which converts the incoming photons into photo-electrons. The photon count-
ing method has a Poisson distribution with the peak at the total number of photons
(N) collected and a standard deviation of

√
N. This noise is known as photon noise or

shot noise. This noise can be overcome by increasing the integration time or by stacking
multiple frames.

4.1.2 Detector Noise

Read Noise

The read noise of a detector is an inherent noise that is specific to the detector. During
the readout of the photo-electrons, the detector has other sources which can contribute
to the noise on the final count of photo-electrons. This is known as the read noise of the
detector. The read noise contributes to the total noise as,

σ2RN = Npix × RN2 (91)

The read noise of the GRAVITY fringe tracker detector is 3e− RMS and about 15e−
RMS for MATISSE L band detector.

Dark Current

Dark current mainly affects the infrared observations. Even in the absence of incoming
photons the detector and its associated electronics can emit radiation which can then be
read by the detector. The dark current for the GRAVITY fringe tracker at 80 Kelvin is
100e− /s/pixel.

64
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4.1.3 Thermal Background

Near- and mid- infrared wavelengths are also affected by the thermal background of
the atmosphere and the instruments. The atmosphere at 300K acts as a blackbody and
radiates in the near- and mid-infrared wavelengths given by the Planck’s blackbody
radiation law given by,

B(λ) =
2hc2

λ5
1

exp
(

hc
λKBT

)
− 1

(92)

Where,

• h→ Planck’s constant

• c→ Velocity of Light

• T→ Temperature of the black body

• KB → Boltzmann constant

The thermal background at near- and mid-infrared wavelengths for a typical Paranal
atmospheric conditions which includes the atmospheric transmission is shown in fig.
45.The typical values of the background radiation in the K band is about 10−2 Jy/as2

and 5 Jy/as2 in the L band.

Figure 45: Thermal background for Paranal, Chile (Absil et al., 2006)
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The instrumental background at the K band for an ambient temperature of 290K is
4.5× 10−3 Jy/as2 in the K band and 7.3 Jy/as2 in the L band for the VLTI.

There are two ways to subtract background radiation at an interferometer.

Chop-nod method

The chop-nod technique uses simultaneous observations of two fields namely, Astro-
nomical Source+Thermal background and just the Background. The pure background
image can then be subtracted from the data. Typical chopping time scale is 30ms at VLTI.
However, the background flux experiences temporal variations, thus the efficiency of
chopping depends on the time scales. Thus by using eq.29 we can define a temporal
structure function of the background flux as,

DB(τ) = 〈|nB(t) −nB(t+ τ)|2〉 (93)

Figure 46 shows the temporal structure function measured at VLTI using MIDI data
(Matter et al., 2016).

Figure 46: Thermal background structure function measured at VLTI using MIDI data (Matter et al.,
2016)

This temporal structure function gives rise to a background rejection factor. The
background rejection factor can be considered as a residual background noise after the
chop-nod correction. The background rejection factor is given by,
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γ =

√
DB(2/fchop)

B̄
(94)

Where fchop is the chopping frequency and B̄ is the average background photons in
the image.

Phase Modulation

We can overcome the problem with the background structure function by adding a
phase modulation to the interferometric fringes. It is based on the fact that the thermal
background radiation is spatially incoherent compared to the astronomical source. Thus,
by producing two fringes with a π phase shift between them simultaneously of the same
source, we can effectively remove the background by subtracting the two fringes. This
will remove the spatially incoherent background radiation while improve the signal of
the source. This technique has been used in the MIDI instrument at VLTI (Leinert, 2003).

Currently with the development of X-shaped couplers on integrated optics beam
combiners, where the two outputs of the coupler are stable π phase shifted fringes.
Hence, in our simulations we have mainly considered the shot noise of the background
flux which is still a dominant noise source at longer infrared wavelengths.

4.2 snr on the flux of the source

The SNR on the flux of the source is a key number to estimate the sensitivity of a single
telescope. The SNR on flux is the ratio of the incoming number photons (N) and the
associated noises given by,

SNRflux =
N√

N+B+ (Npix × RN2)
(95)

In the case of chop-nod background subtraction, the signal to noise ratio is given by,

SNRflux =
N√

N+B+ (Npix × RN2) + (γ2B2)
(96)

In a simple case where the data is shot noise dominated, we can neglect the effects of
background and the detector noise. Thus the signal to noise ratio will evolve purely of
Photon flux as,
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SNRflux =
N√
N

(97)

Fig. 47 shows the evolution of the simple SNRflux over time.

Figure 47: Evolution of simple SNRflux over time for a 6th magnitude star

4.3 snr on the correlated flux

The SNR on the correlated flux is defined as the product of the SNRflux and the fringe
contrast (v) (Petrov et al., 2016).

SNRc =
Nv√

2N+ 2B+ (Npix × RN2)
(98)

For a two telescope interferometer, as the shot and the background noise depends on
the total number of photons collected at both the telescopes, a factor of

√
2 is included

for the shot noise of the source and the background flux.

The typical threshold SNR on the correlated flux of 5 is assumed to mark the sensitivity
limits of the instrument. To understand the evolution of SNR on the correlated flux over
integration time we need to understand the evolution of fringe contrast over integration
time. §3.8 describes the loss of fringe contrast due to the Kolmogorov model of the
atmospheric turbulence. However, at longer integration time (tint > 1.78τ0), the random
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walk model as described in §3.9.1 dominates. Hence, the loss in fringe contrast depends
on the integration time as 1/

√
t.

The simplified signal to noise ratio on flux given by eq. 97 which depends on the
integration time as

√
t, multiplied by the random walk behavior of the loss in fringe

contrast which goes as 1/
√
T will yield an asymptote for the SNRc. Thus the signal to

noise ratio on the correlated flux becomes unreliable for estimating the sensitivity over
longer integration time. The asymptotic behavior of the SNRc over integration time
using the simulated numerical fringe contrast loss is shown in fig. 48.

Figure 48: Evolution of simplified SNRc over integration time using the simulated numerical fringe
contrast

4.4 noise on the measurement of phase

Even though the SNRc is not robust at large integration time, it can be used to estimate
the sensitivity of various measurements at short integration times (t < 1.78τ0). One of
the key measurements is the phase of fringes. The noise on the measurements of phase
is given by (Petrov et al., 1986),

σφ =
1√

2SNRc
(99)

The factor of
√
2 arises due to the cross correlation of the irradiances at both the

telescopes of the interferometer.
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4.5 noise on the group delay measurements

Another key parameter to consider is the noise on the group delay measurement. Lawson
et al. (2000) derived a relation between the noise on the group delay measurement and
the signal to noise on the correlated flux as,

σgd =

√
12

2π

1/∆k

SNRc
(100)

Where ∆k is the coherence length of the band and it is given by,

∆k =
∆λ

λ2c
(101)

4.6 simulating noisy two telescope fringes

Now that we have the atmospheric turbulence simulated for various conditions using
GDsim, the next step is to simulate two telescope interferometric fringes which includes
all the different noises as described in §4.1. We have mainly concentrated in simulating
K and L band fringes at the VLTI. For K band simulations, we have used the instrumental
parameters of the Gravity fringe tracker (Choquet et al., 2014), and MATISSE for the
L band setup. The instrumental parameters for gravity and MATISSE is tabulated in
table 6. Due to the lack of water vapor refractivity data in the L band at wavelengths
between 3.0µ− 3.5mu (Colavita, 2010) (Table 4), I have simulated fringes in the L’ band
(3.5µ− 4.0µm) for simulations which includes the dispersive nature of the atmospheric
water vapor.
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Parameter K band (Gravity FT) L band (Matisse)

atmospheric background (Jy/as2) 1.4× 10−2 15.16

instrumental background (Jy/as2) 4.5× 10−3 7.3

total background (Jy/as2) 1.85× 10−2 22.46

baseline (m) 80 80

OPD scan range (µm) [-25 µm, 25 µm] [-60 µm, 60 µm]

read noise (e-) 3 15

total transmission (%) 1.0 0.7

Fried Parameter (meters) 0.6 1.0

Coherence time (milliseconds) 12.4 20.7

Table 6: Input parameters used in simulating K and L band fringes

Broadband and dispersed fringes are produced by using eq. 3 and summing it over
different wavelength channels.

IBB =

λf∑
λi

I1 + I2 + 2
√
I1I2cos

(
2π

λ
x

)
(102)

In Fourier space, eq. 102 will be a sum of delta functions which corresponds to
the cosine function at each wavelength channel. This sum of delta functions will be
convolved with a top-hat filter function which corresponds to the uniform response of
the filter with a bandwidth of ∆λ. According to the convolution theorem, convolution
of two functions is the product of the Fourier transform of the functions. Hence, the
sum of delta functions which is convolved with a top-hat filter in the Fourier space
will correspond to a product of a sinc function (Fourier transform of the Top-hat filter
function) which has a central width of the coherence length of the band (given by, λ2c/∆λ)
and a cosine function which has a frequency corresponding to the central wavelength.
The simplified broadband interferogram can be represented as,

IBB = sinc

(
∆λ

λ2c
x

)
cos

(
2π

λc
x

)
(103)

Equation 103 can be alternatively derived by integrating eq.102 over the spectral
bandwidth. Eq. 102 can be rewritten as,
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IBB =

∫Kf
Ki

I1 + I2 + 2
√
I1I2cos (2πKx)dK (104)

Where K is the wave number and it is related to the wavelength as K = 1/λ. As-
suming the intensities at both the arms of the interferometer to be equal (ignoring the
photometric imbalances) (I1 = I2 = I) and ignoring the spectral dependence of the
intensities,

IBB = 2I

∫Kf
Ki

(1+ cos (2πKx))dK (105)

Integrating the above equation we get,

IBB = 2I

(
|K|
Kf
Ki

+

∣∣∣∣sin(2πKx)2πx

∣∣∣∣Kf
Ki

)
(106)

Rewriting the integral limits in terms of Central wave number(Kc) and the bandwidth(∆K)
as,

Ki = Kc −∆K/2 (107)

Kf = Kc +∆K/2 (108)

Applying the integration limits,

IBB = 2I

(
∆K+

1

2πx
(sin(2π(Kc +∆K/2)x) − sin(2π(Kc −∆K/2)x))

)
(109)

using the trigonometric identities we can simplify the above equation to,

IBB = 2I

(
∆K+

2cos(2πKcx)sin(π∆Kx)

2πx

)
(110)

The above equation can be rewritten as,

IBB = 2I∆K(1+ cos(2πKcx)sinc(π∆Kx)) (111)
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4.7 poisson noise and gaussian noise

The noises described at the earlier part of this chapter mainly follow two distributions.
The noise of an independent measurement follows a normal distribution (Gaussian
noise) given by,

P(x) =
1√
2πσ2

exp

(
−
(x− µ)2

2σ2

)
(112)

Where x is the random noise value, σ & σ2 are the standard deviation and variance of
the measurements and µ is the expected mean value. The nature of the Gaussian white
noise is described in detail in §2.3.1.

Individual photon detection/measurements can be considered as an independent
events, where each measurement of the intensity of the registered photon follows a
Poisson distribution given by,

P(x) =
µxe−µ

x!
(113)

From Poisson statistics the width of the distribution (standard deviation) is
√
µ. At

high flux counts a Poisson distribution tends towards a Gaussian distribution. Fig. 49

shows the Poisson distribution for mean values of 0.5,3.0 and 10.0.

Figure 49: Poisson distributions centered around 0.5,3.0 and 10.0
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In contrast to Gaussian noise which is additive in nature, the shot noise is applied
to an array of data based on the values at the corresponding pixel. In other words the
Poisson noise in an image is correlated to each pixel value whereas the Gaussian noise
is purely uncorrelated to the individual pixel values.

4.8 gravity fringe tracker

The Gravity fringe tracker is a second generation fringe tracker at VLTI operating in the
K band. It aims to co-phase the fringes to a sensitivity of K=10 with the UT and K=7

with the AT. It is the first fringe tracker on board the VLTI to use integrated optics beam
combiner. Fig. 50 shows the integrated optics beam combiner of Gravity instrument and
its circuit design (Gravity Collaboration et al., 2017).

Figure 50: Integrated optics beam combiner of Gravity instrument at VLTI (Gravity Collaboration et al.,
2017)
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The Gravity fringe tracker estimates the phase delay from the dispersed ABCD
measurements at the 6 baselines of a 4 telescope interferometer. Gravity fringe tracker
uses a SELEX infrared Avalanche Photo Diode (APD) detector. The detector parameters
are,

• frame rate→ 350Hz

• Read Noise→ 3e-

• Quantum Efficiency→ 65%

The fringe tracker image has a dimensions of 5x24 pixels. Each row of the detector
corresponds to a spectral channel of the dispersed K band fringes. The 24 columns
corresponds to the 6 baselines with 4 measurements (ABCD) each. A typical gravity
fringe tracker image is shown in fig. 51.

Figure 51: Sample Gravity fringe tracker image

Gravity fringe tracker can perform off-axis fringe tracking at the UT with an off-axis
source at 2 arcseconds from the phase center and 4 arcseconds with the AT. Gravity can
perform both group and phase delay corrections. The group delay correction is only
applied when the SNROPD goes below 5. The noise on the OPD measurements between
two telescopes i & j measured at a wavelength λ is given by (Houairi et al., 2008),

σOPD =
λ

2π

1

Vi,j

α

ηi,jSNRflux,i,j
(114)

where,
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• ηi,j → Visibility attenuation factor due to photometric imbalance

• SNRflux,i,j → The total signal to noise ratio on the flux from both telescopes i & j
as given in eq. 95

• Vi,j → Visibility amplitude of the source (including the losses due to atmospheric
turbulence, instrumental vibrations and instrumental contrast loss)

• α→ coefficient depending on the beam combination technique. (ABCD - α =
√
2,

AC- α = 1)

4.9 matisse

The Multi AperTure mid-Infrared SpectroScopic Experiment (MATISSE) is a next gener-
ation instrument on board of VLTI. MATISSE is a 4 telescope beam combiner operating
in L, M and N bands. MATISSE offers three different spectral resolutions (R = 30, 500,
950) for L and M bands and R=30 and R = 220 for N band observations.

On the detector MATISSE has 3 channels, 2 photometric channels and 1 interferometric
channel. MATISSE observations can be done in 3 modes,

• 4TSiPhot mode → 4 telescope simultaneous photometric and interferometric
channels. Where 65% of the incoming light goes to the interferometric channel(αi =
0.65) and 35% of the incoming light goes to the photometric channels (αp = 0.35)
(Matter et al., 2016).

• 2THighSens mode → 2 telescope pure interferometric measurements. Where
αp = 0.

• 4THighSens mode → 4 telescope pure interferometric measurements. Where
αp = 0.

The detector layout and sample 4 telescope fringes with the MATISSE detector is
shown in fig. 52.
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Figure 52: left:Layout of the Hawaii-2RG detector. right: Sample 4 telescope L band interferometric
fringes.(Millour et al., 2016)

The parameters of the Hawaii-2RG detector used by MATISSE are,

• Read Noise→ 15e- for L and M bands & 300e- for N band

• Quantum Efficiency→ 50%

The PSF of each spectral channel is 1.5λ/D in size for the L and M bands and 2λ/D
in size for the N band. In the spatial direction each λ/D element occupies 72 pixels on
the detector in the interferometric channel and 12 pixels in the photometric channel.
In the spectral direction each λ/D element occupies 3 pixels on the detector. Hence,
the interferometric channel around central wavelength in the L band occupies 1550

pixels and 2977 pixels in the N band. The limiting magnitudes of MATISSE for the L
band operating without a fringe tracker for different spectral resolutions and operating
modes are tabulated in table 7

R 4TSiPhot 4THighSens 2THighSens

30 7.6 8.0 8.1
500 4.95 5.4 5.45

950 4.25 4.7 4.25

Table 7: L band sensitivity (in magnitudes) of MATISSE without an external fringe tracker (Matter
et al., 2016)
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4.10 simulated noisy fringes

Using eq. 102, I have simulated broadband and dispersed fringes in K and L bands using
the instrumental parameters of Gravity fringe tracker and MATISSE from table 6. In my
simulations, I assumed a perfect background subtraction (using the phase modulation
technique in §4.1.3), hence I have only included the shot noise of the background flux
in the simulations. Figures 53 & 54 shows sample noisy broadband fringes in K and L
bands respectively.

Figure 53: Sample K band noisy fringes for a 8th magnitude source with an integration time of 10ms

Figure 54: Sample L band noisy fringes for a 8th magnitude source with an integration time of 10ms
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Figure 55 shows a sample image of dispersed(R=500) L band noisy fringes of a 5th
magnitude unresolved source.

Figure 55: Simulated dispersed fringes (R=500) for an unresolved source of 5th magnitude in the L band.

4.11 loss in fringe contrast

Once the fringes are simulated, they are modulated by the corresponding OPD from
the atmospheric turbulence simulator(GDsim). These individual fringe frames are then
added to form the final integrated fringes which is degraded by the atmospheric
turbulence and instrumental vibrations. The final fringe contrast is then estimated
through equation 6. Figure 57 shows the degraded noisy fringes of a K band unresolved
source of 8th magnitude after being aberrated by the simulated dry air atmospheric
OPD time series shown in fig. 56. The fringes were integrated for a time of 1 second.

Figure 56: Simulated dry air OPD time-series for a baseline of 80 meters and wind velocity of 10m/s
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Figure 57: K band interferometric fringes of an unresolved source of 8th magnitude, aberrated by the
simulated OPD disturbance shown in fig.56 for an integration time of 1 second

Figure 58 shows the loss in the fringe contrast over the integration time.

Figure 58: Loss in fringe contrast over 1 second of integration of fringes shown in fig.57

I have compared the fringe contrast loss with some uncorrected fringe data avail-
able within the work group. The data used was calibrator observations with AMBER
instrument in K band at VLTI with the fringe tracker FINITO turned off. The sources
observed were, c Vir, HD170818, HD174532 and HD174240 with an integration time of
200 milliseconds. They were observed with UT1, UT2 & UT4 with baselines,
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• UT1-UT3→ 102.43 meters

• UT3-UT4→ 62.43 meters

• UT1-UT4→ 130.23 meters

Figure 59 shows the observed visibility amplitude using UT1-UT3 combination as
compared with the simulated loss in visibility amplitude for a 100 meter baseline. As
we can see that the simulated visibility amplitude matches the untracked visibility
amplitude in the K band of the calibrator observations.

Figure 59: Comparison of observed loss in visibility amplitude for 200 millisecond integration time with
UT1-UT3 combination of VLTI with the simulated loss of visibility amplitude for a 100 meter
baseline

4.12 phase delay sensitivity

Although the SNRc is not a reliable tool for long integration times (Tint > 1.78τ0), the
required integration time to perform phase delay tracking is shorter than the atmo-
spheric coherence time (τ0). Hence, the SNRc is useful to understand the sensitivity in
performing phase delay tracking in K and L bands.

To perform closed loop phase delay tracking, we need to achieve a SNRc > 4. Figures
60 & 61 shows the values of SNRc at different stellar magnitudes in the K and L bands.
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Figure 60: SNRc vs K band magnitude for an integration time of 100ms for Gravity fringe tracker setup.
The black horizontal line marks the threshold of SNRc = 4.

Figure 61: SNRc vs L band magnitude for an integration time of 100ms for MATISSE L band low
spectral resolution (R=30) setup. The black horizontal line marks the threshold of SNRc = 4.

Hence the sensitivity to perform phase delay tracking in the K band ≈ 12.5 and ≈ 6.9
in the L band. These are the stellar magnitudes which provides a SNRc = 4.
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G R O U P D E L AY T R A C K I N G

There are different techniques to estimate the group delay from stellar fringes. They are,

• ABCD on dispersed fringes (Colavita et al., 1999) (Sahlmann et al., 2009)

• Least Square fitting (Bonino et al., 2004)

• Double Fourier (Pedretti et al., 2004) (Pedretti et al., 2005)

• Sliding Window (Wilson et al., 2005)

• Sliding Template (Thureau et al., 2003)

In my work, I have mainly concentrated on the first three techniques as they are
extensively used at Palomar Testbed Interferometer (PTI) & VLTI. Namely, ABCD on the
dispersed fringes, Least Square fitting & Double Fourier techniques.

5.1 abcd on dispersed fringes

Figure 62: Description of the ABCD fringe encoding

To simultaneously estimate the visibility amplitude and phase of the recorded fringes,
we need to estimate fringe intensities at 4 positions (A,B,C,D) simultaneously. The
ABCD method was first proposed by Shao & Staelin (1977). The four positions are
separated by a phase difference of π/2 from the neighboring points. From the ABCD
measurements, we can estimate the fringe visibility amplitude and phase by,

83
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V =

√
(IA − IC)2 + (IB − ID)2

Itot
(115)

φ = tan−1

(
IA − IC
IB − ID

)
(116)

Where, Itot is the total intensity given by, Itot = IA + IB + IC + ID. Alternatively we
can combine the ABCD intensities into the fringe quadrature defined as,

Q = X+ iY (117)

Where,

X = IA − IC (118)

Y = IB − ID (119)

The visibility amplitude is thus the absolute value of the fringe quadrature and the
visibility phase is the argument of the complex fringe quadrature.

PRIMA FSU at VLTI (Sahlmann et al., 2009) and PTI (Colavita et al., 1999) uses the
ABCD measurements on the dispersed fringes to estimate the group delay. The group
delay is estimated by performing a Discrete Fourier Transform (DFT) over different
spectral channels (λi) and scanning with range of OPD through,

F(x, t) =
R∑
i=0

Q(λi, t)exp(−2πjkix) (120)

Where R is the total number of spectral channels and ki = 1/λi. The value of x at the
peak of |F(x, t)| is the group delay position. Figure 63 shows the absolute value of the
DFT in the K band with a group delay of −8µm for a 5th magnitude star.
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Figure 63: absolute value of the DFT described in eq. 120 for a 5th magnitude star in the K band with a
group delay of −8µm

5.1.1 Dynamic range

One of the key factors to consider while performing the group delay estimation through
dispersed ABCD data is the range of OPD scan during the DFT (also known as dynamic
range). The dynamic range should be sufficiently large enough so that the peak of
the DFT amplitudes (group delay position) stays within the range. If the scan range is
smaller than the dynamic range, the DFT amplitude cycles off to the opposite polarity
thus making the group delay measurements in the wrong direction. Blind et al. (2011)
estimated that for a K band group delay tracker using ABCD encoding, the fringes have
to be dispersed to a minimum of 5 spectral channels over the band to be able to achieve
better results.

Rewriting eq. 104 as,

IBB =

∫λf
λi

I exp(2πixgd/λ) exp(−2πix/λ)dλ (121)

If we assume that ∆λ is the bandwidth and λc is its central wavelength, the width of
the broadband fringe envelope (coherence length) will be,

Lc =
λ2c
∆λ

(122)
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we disperse the fringes over Nλ spectral channels of equal width given by,

δσ = ∆σ/Nλ (123)

Where, σ is the wave number and ∆Sigma is the bandwidth which is related to the
wavelength by ∆σ = 1/Lc. The DFT of eq. 121 using eq. 120 is,

F(x) =

Nλ∑
k=1

Iexp(−2πiσk(x− xgd)) (124)

The squared amplitude of the DFT can be written as,

|F(x)|2 = F(x)F∗(x) = I2
Nλ∑
k=1

Nλ∑
k=1

exp(−2πi(σk − σl)(x− xgd)) (125)

As each spectral channel has equal width,

σk − σl = δσ(k− l) (126)

Hence, eq. 125 can be rewritten as,

|F(x)|2 = I2
Nλ∑
k=1

Nλ∑
k=1

exp(−2πiδσ(k− l)(x− xgd)) (127)

The peak of the squared DFT amplitude occurs at the position x = xgd with an
ambiguity of 1/δσ. This ambiguity depends on the number of channels and hence the
dynamic range as,

DR = Nλ
λ2c
∆λ

(128)
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To perform K band group delay tracking using the dispersed ABCD encoding of
fringes, the excursion of OPD over the integration time is −20µm− 20µm. Thus the ideal
number of spectral channels in the K band which corresponds to this dynamic range is
5.

Figure 64 shows the simulated input group delay time-series and the measured group
delay using noisy K band fringes of a 10th magnitude source dispersed over 5 spectral
channels at an integration time of 100ms. Fig. 65 shows the simulated input group delay
time-series and the measured group delay time series measured with a noisy L’ band
fringes of a 7th magnitude source with an integration time of 100ms.

Figure 64: K band simulated and measured group delay time series using ABCD algorithm on dispersed
fringes in the K band for an unresolved source with 10th magnitude and an integration time
of 100ms

Figure 65: L’ band simulated and measured group delay time series using ABCD algorithm on dispersed
fringes in the L band for an unresolved source with 7th magnitude and an integration time of
100ms

Figures 66 & 67 shows the comparison of input simulated group delay and the
measured group delay with ABCD encoding. The diagonal black line shows the ideal
case where the input group delay is equal to the measured group delay.
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Figure 66: Comparison of the input and measured K band group delay of the time series shown in fig. 64

Figure 67: Comparison of the input and measured L’ band group delay shown in fig. 65
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5.2 least square estimation

The least square estimation technique fits the noisy broadband fringes data to a stan-
dard fringe model. This technique is used in FINITO (Gai et al., 2004) and CHAMP
fringe tracker. The technique was first proposed by Bonino et al. (2004) where the
observed fringe signal (O(z)) is fitted by a fringe model (M(x)) by estimating the square
discrepancy function given by,

e =
(O(z) −M(x))2

σ2
(129)

The efficiency of the group delay estimation with the least square technique depends
on the chosen envelope model. Blind et al. (2011) compared the efficiency of using a
parabola model and a sinc model for the central fringe envelope. They concluded that
the sinc function has a better performance than the parabola model in estimating the
group delay. Hence, we adopted the model of Wilson et al. (2005) of a cosine function
amplitude modulated by a sinc function. Using the equation 111, we can define a simple
model for the broadband fringes as,

M(x) = Asinc(Bx+C)cos(Dx+ E) (130)

Where,

• A→ Fringe amplitude

• B→ Coherence length (Lc = λ2c/∆λ)

• C→White light fringe position

• D→ fringe frequency (1/λc)

• E→ dispersion parameter (Σwv dRdλ )

To have the best fitting model, we need to fit the model with the minimum value of
square discrepancy function given in eq. 129. We can rewrite equation 82 as a function
of model parameters C and E as,

xg = NL+ Lk
dN

dk
= C+ E (131)
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We can estimate C by finding the maximum intensity position of the recorded fringe
and then fit the model with the observed fringes by modulating E and finding the
absolute minimum using Newton-Raphson method. Fig. 68

Figure 68: Sample K band simulated noisy broad band fringe of an unresolved source at 10th magnitude
with a delay of −11µm fitted with the model

Fig. 69 & 70 shows the simulated group delay time series and the measured group
delay for K and L’ bands.

Figure 69: Simulated input and measured group delay in K band using noisy fringes of a 10th magnitude
unresolved source with 100ms integration using the least squares technique



5.2 least square estimation 91

Figure 70: Simulated input and measured group delay in L’ band using noisy fringes of a 5th magnitude
unresolved source with 100ms integration using the least squares technique

Fig. 71 & 72 shows the direct comparison of the input group delay and the measured
group delay of the time series shown in fig. 69 & 70 in K and L’ bands respectively.

Figure 71: Comparison of K band input and measured group delay from the time series shown in fig. 69
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Figure 72: Comparison of L’ band input and measured group delay from the time series shown in fig. 70

5.3 double correlation

The double correlation technique is used in the Infrared Optical Telescope Array (IOTA)
fringe tracker (Pedretti et al., 2004). This technique involves in deriving the group delay
(xgd) from the auto-correlation of the broadband fringes. Using eq. 111, we can define
the broadband fringes as,

IBB(x) = I0
sin(π(x− xgd)∆m)

π(x− xgd)∆m
sin

(
2π(x− xgd)M0

N

)
(132)

Where,

• I0 → fringe peak intensity

• xgd → group delay

• ∆m→ Spatial frequency associated with the bandwidth

• M0 → Central frequency

• N→ number of samples

The fast Fourier transform of the broadband fringes described above is,

Î(m) =

N∑
i=1

IBB(x)e
−2πjm i

N (133)
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The auto-correlation of the fringes between spatial frequencies m1 & m2 with a width
of ∆m12 can be written as,

X(m1,m2) = Î(m1)Î
∗(m2) =

(
i

2
exp

(
i
2πim1xgd

N

))(
i

2
exp

(
i
2πim2xgd

N

))*

=
1

4
exp(−i2πxgd(m1 −m2)) (134)

We can now calculate the auto-correlation for all frequencies with a width of ∆m12 to
derive the cross spectral value with a high SNR by,

X(∆m12) =
∑
m1

1

4
exp(−i2πxgd(m1 −m2)) (135)

Thus the group delay can be derived from X(∆m12) as,

xgd =
N

2π

arg(X)

∆m12
(136)

The two free parameters in this technique is the number of samples (N) and the
difference in the spatial frequencies (∆m12). We can restrict ∆m12 = 1 and increase
the performance by adding more number of samples. The noise on the group delay
measurement will then depend on

√
N.

Fig. 73 & 74 shows the input and the measured group delay time series for an
unresolved source in K band with 10th magnitude and L’ band with 5th magnitude
with an integration time of 100ms.

Figure 73: Input and measured group delay time series with synthetic noisy fringes of an unresolved K
band source at 10th magnitude
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Figure 74: Input and measured group delay time series with synthetic noisy fringes of an unresolved L’
band source at 5th magnitude

Fig. 75 & 76 shows the direct comparison of the input and measured group delay
from fig. 73 & 74.

Figure 75: Comparison of the input and the measured group delay in K band shown in fig. 73. The black
diagonal line shows the ideal case where input group delay = measured group delay
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Figure 76: Comparison of the input and the measured group delay in L’ band shown in fig. 76. The black
diagonal line shows the ideal case where input group delay = measured group delay

5.4 other techniques

The sliding window and the sliding template techniques proposed by Wilson et al. (2005)
and Thureau et al. (2003) are viable and sophisticated algorithms in measuring the
group delay from noisy broadband fringes. However, Pedretti et al. (2004) found very
little difference in their performance in comparison with the double Fourier technique.
The least squares fitting and the DFT with ABCD encoding techniques are the most
widely used techniques. Hence, I have concentrated mainly on the least squares, DFT
with ABCD encoding and double Fourier techniques.

5.4.1 Sliding Window

The sliding window technique is used at the IOTA interferometer for coherencing
(Wilson et al., 2005). This technique involves in estimating the DFT amplitudes by sliding
a rectangular window of width equal to the fringe frequency. The position of the peak
of the DFT amplitudes corresponds to the group delay position. However, in reality 5

different frequencies around the fringe frequency are chosen and the window width of
the next scan is derived from maximum DFT amplitudes over the 5 frequencies.
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5.4.2 Sliding Template

The sliding template technique is used at the COAST interferometer (Thureau et al.,
2003). This technique involves in two orthogonal models of the broadband fringes
(similar to eq. 130), where one is a cosine function modulated by a sinc function and
the other one is a sine function modulated by a sinc function. Both the templates
corresponds to the real and the imaginary parts of the fringe phasors. These two
templates can be correlated with the observed fringe data through convolution, i.e.,
the template and the data are multiplied in the Fourier space and the inverse Fourier
transform corresponds to the correlation function. The resulting correlation function
will be a series of envelopes which can be averaged over time and the group delay
position corresponds to the centroid position of this correlation function.



6
R E S U LT S A N D D I S C U S S I O N

6.1 residual group delay

As described in § 4.3, the value SNRc is reliable in estimating the sensitivity only in
the Maréchal regime (tint 6 1.78τ0). However, at longer time scales (tint > 1.78τ0) the
random walk behavior (as described in § 3.9.1) starts to dominate and SNRc is not a
reliable tool to estimate the sensitivity of the fringe tracker. However, the residual group
delay from the 3 techniques described in chapter 5 is a viable alternative in estimating
the sensitivity of a group delay tracker.

The residual group delay ((input/simulated group delay)-(measured group delay)) for
different stellar magnitudes at K & L bands are computed by identifying the difference
between the applied and the measured group delay. Fig. 77 shows the sample group
delay residuals in the K band for a 100ms integration time for a 10th magnitude
unresolved source.

Figure 77: Sample residual group delay estimated with the least square algorithm with a K band unre-
solved source of 10th magnitude at an integration time of 100ms

6.2 rms on the residual group delay

The RMS on the residual group delay is then estimated over different stellar magnitudes
and integration times to estimate the sensitivity and performance of different group
delay tracking algorithms. However, due to the random seed for each run of GDsim

97
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and the random noises on the simulated fringe signal (as described in § 4.1) the RMS
on the residual group delay for each iteration is limited by the random nature. Fig. 78

shows the RMS of the residual group delay for one random iteration of the GDsim run.

Figure 78: RMS of the residual group delay in the K band for a Gravity fringe tracker with 100ms
integration time set up for one random realization of the atmospheric turbulence

To remove the random nature of each simulated group delay time series, the RMS
of the residual group delay is estimated for multiple realizations of the atmospheric
turbulence and the final RMS of the residual group delay is computed by averaging
over all the different realizations. In my simulations, the RMS on the residual OPD is
averaged over 20 independent iterations of the atmospheric turbulence and the noises
on the interferometric signal.

Fig. 79 & 80 shows the RMS on the residual group delay in the K and L’ bands
respectively for different stellar magnitudes at 100ms integration time.
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Figure 79: RMS on the residual group delay in the K band with Gravity fringe tracker setup for different
stellar magnitudes at 100ms integration time

Figure 80: RMS on the residual group delay in the L’ band with Matisse L band setup for different stellar
magnitudes at 100ms integration time
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6.3 ideal integration time

To perform phase delay tracking, the independent phases should be sampled at a time
scale shorter than the atmospheric coherence time (τ0). However, we can perform group
delay estimation at longer time scales. This is due to the fluctuation timescale of water
vapor in the atmosphere is longer than that of the dry air (Lay, 1997).

The accuracy of group delay estimation depends on the position of the peak and the
shape of the fringe envelope. If the frequency bandpass of the spectral band is related
to the central frequency by,

∆ν = νc/α (137)

Where, α is a dimensionless constant. We can assume that the fringe envelope signal
is lost when the envelope moves by its own width during the integration. For the
envelope to move by its own width it has to move by α× λ (2πα radians). This time
scale is related to the dry air atmospheric coherence time by (Buscher, 1988),

T = (2πα)6/5τ0 (138)

This integration time is the maximum possible integration time for a group delay
tracker. For a K band group delay tracker with an average Fried parameter of 60cms
and wind velocity of 10m/s, the dry air atmospheric coherence time from eq. 53 is,

τK0 = 0.207
(
0.6
10

)
= 12.4ms (139)

In the case of L’ band with an average Fried parameter of 1.0 meter and wind velocity
of 10m/s, the dry air atmospheric coherence time is,

τL
′
0 = 0.207

(
1

10

)
= 20.7ms (140)

The K band spans between 2.0µm− 2.4µm and a bandpass of 3.09× 1013Hz, thus
resulting in the value of αK = 4.4. In the case of L’ band (3.5µm− 4.0µm), a bandpass
of 1.09× 1013Hz results in αL ′ = 7.4. Thus the maximum K and L band integration time
for group delay estimation is given in eq. 141 & 142 respectively.
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TGD,K
int = (2παK)

6/5τK0 = 53.69τK0 = 0.7seconds (141)

TGD,L ′
int = (2παL ′)

6/5τL
′
0 = 102.935τL

′
0 = 2.1seconds (142)

Fig. 81 & 82 shows the comparison on the RMS on the residual group delay for 100ms
and the Tint for K and L’ bands respectively.

Figure 81: Comparison of RMS on the residual group delay for 100ms and 700ms integration time with
different group delay estimation techniques in the K band
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Figure 82: Comparison of RMS on the residual group delay for 100ms and 2.1 seconds integration time
with different group delay estimation techniques in the L’ band

From fig. 81 & 82 we can conclude that the longer integration reduces the residual
difference between the input and the measured group delay for faint targets (high SNR).
However for brighter targets, short integration time is more beneficial.

6.4 performance and sensitivity

The main advantage in estimating the RMS on the residual group delay is that it serves
the dual purpose of estimating the performance and sensitivity of each group delay
estimation technique. We can split RMS on the residual group delay plots into three
regimes. They are,

• High SNR regime, where the RMS of the residual group delay depends only on the
limitations of the technique.

• Intermediate SNR regime, where the noise on the fringes plays a significant role in
the residual group delay.

• Low SNR regime, where the noise completely dominates and the fringe signal is
completely lost.

The limitations of the techniques include,

• Dynamic range and OPD scan step during the DFT of the dispersed ABCD fringes.
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• Sensitivity of the fringe envelope model which is fitted by the least squares
technique. Blind et al. (2011) found that the sinc function is a better model when
compared to a simple parabola model.

• Insufficient number of samples around the fringe envelope or under-sampling the
fringes with the double Fourier technique.

Hence, the RMS on the residual group delay is a better alternative to estimate the
sensitivity and performance of the group delay estimation techniques than looking only
at the SNR.

6.5 incoherent stacking

Another way to over come the phase fluctuations during a long integration is to stack
each independent fringe frames by their power spectrum. As the power spectrum is
insensitive to the phase of the input signal, the fringes can be stacked by their power
spectrum to achieve high SNR. If we integrate the fringe frames by their power spectra
for a time scale which is half the integration time shown in eq. 138, the resulting signal
will have a SNR gain by a factor of 6 as compared to coherent addition of fringes
(Buscher, 1988).

Incoherent addition of fringe frames also removes the errors on coupling the incoming
stellar light to optical fibers. If the OPD scan is performed faster than the bandwidth of
the fibre coupling fluctuations, the lower frequency scintillation noise can be removed
with a high pass filter in the Fourier space.

We can estimate the visibility amplitude from the resulting power spectrum by
(Millour et al., 2016),

V2(λ) =

∑
u〈|Î(u, λ, t)|2〉t

2
∑
x〈Pa(x, λ, t)Pb(x, λ, t)〉t

(143)

Where,

• Î→ Fourier transform of the fringe intensities

• u→ Spatial frequency

• x→ OPD

• Pa, Pb → Photometric contribution from telescopes a and b into the interferometric
channel
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If the SNR on each fringe frame is sufficiently high, we can also estimate the closure
phases from the complex Fourier transform of the fringe frames. The closure phase can
be computed by performing a triple correlation of the fringe Fourier spectra of the three
baselines.

O3ij(λ) = 〈Î(u, λ, t)Î(v, λ, t)Î∗(u+ v, λ, t)〉t (144)

Even though incoherent addition of fringe frames is insensitive to phase fluctuations,
a proper estimation of the fringe power spectrum requires the fringes to be within the
coherence length. Hence, coherencing and stacking independent fringe power spectra
will increase the sensitivity of an interferometer.

Assuming a top-hat shaped bandpass at each spectral channel with a bandwidth
of ∆k in wave number, the loss in the resulting visibility amplitude due to an OPD
fluctuation RMS of x is given by,

V = sinc(πx∆k) (145)

We can estimate the sensitivity of a group delay algorithm by setting an upper limit
on the maximum possible delay (x) for a given budget on the visibility amplitude loss.
For example, a 10% loss in contrast can be calibrated by a separate calibration star
observation. Thus, we can assume a 10% loss as the maximum budget for the science
channel visibilities. Hence, for science observation in the L band with Matisse at low
spectral resolution (R=30), the bandwidth for each spectral channel will be 0.019µm−1.
Thus for V = 0.9, the value of x should be 13µm. This is the upper limit threshold on
the RMS of the residual group delay that will result in a loss in fringe contrast in the
science channel to be 6 10%.

However, the threshold value of x mentioned above is the error on the corrected
group delay position. For an efficient closed-loop group delay tracker the error on
the measured group delay should be 4 times smaller than the error on the corrected
group delay. Thus the threshold limit on the RMS of the residual group delay will be
13/4 = 3.25micron.

Figures 83 & 84 shows the same plots as in figures 79 & 80 with the 3.25µm threshold.
The resulting group delay sensitivities are tabulated in table 8.



6.5 incoherent stacking 105

Figure 83: RMS on the residual group delay in K band for a Gravity fringe tracker set up for 100ms
integration time for different stellar magnitudes. The horizontal black line shows the 3.25µm
threshold for MATISSE L band science at low spectral resolution (R= 30). The vertical black
dotted line shows the 10th magnitude phase delay tracking limit of Gravity Fringe tracker in
the K band.

Figure 84: RMS on the residual group delay in the L’ band for MATISSE L band set up for 100ms
integration time for different stellar magnitudes. The horizontal black line shows the 3.25µm
threshold for MATISSE L band science at low spectral resolution (R= 30)
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Technique K L

ABCD 14.67 10.02

Least square 14.12 8.56

Double Fourier 13.36 6.64

Table 8: K and L band sensitivity in estimating group delay for coherencing science fringes in the L band
with MATISSE at low spectral resolution

At higher spectral resolution the value of ∆k gets smaller, thus the threshold value
of x becomes larger. Thus for medium spectral resolution (R = 500) and high spectral
resolution (R = 950) of MATISSE L band science the threshold on the error on measured
group delay is 53.75µm and 100µm respectively. However, such threshold values are
larger than the asymptotic value on the RMS at the noise dominated regime. Thus, we
can assume the turning point between the second and third regimes on the RMS of the
residual group delay.

6.6 coherencing with auxiliary telescopes

I have also extended the above analysis (which is mainly on the UTs of the VLTI), into
the Auxiliary Telescopes (AT) of VLTI. I have simulated the atmospheric turbulence for
80 meters baselines for the ATs.

Due to the lack of vibration parameters of the auxiliary telescopes, I have simulated
only the atmospheric turbulence. Figures 85a and 85b shows the RMS on the residual
group delay for K and L’ bands respectively with the AT of VLTI with the 3.25µm
threshold for MATISSE L band science at low spectral resolution (R=30). The group
delay sensitivities are tabulated in table 9
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(a) K band (b) L’ band

Figure 85: RMS on the residual group delay measured in K and L’ bands with a Gravity fringe tracker
and MATISSE L band setup at 100ms integration time with the ATs at a baseline of 80 meters.
The vertical black dotted line shows the K=7 phase delay sensitivity limit of the Gravity fringe
tracker with ATs.

Technique K L

ABCD 12.33 6.78

Least square 12.11 5.33

Double Fourier 9.55 3.68

Table 9: K and L band sensitivity in estimating group delay with ATs for coherencing science fringes in
the L band with MATISSE at low spectral resolution

6.7 group delay tracking with resolved sources

One of the main assumptions of my work is that the phase reference source is spatially
unresolved (visibility amplitude = 1). However, in some cases when there is a lack of
unresolved phase reference in the field of view, on source fringe tracking of the resolved
source is the only option. Figure 86 shows the RMS of the residual group delay in the
K band by using a resolved phase reference with a visibility amplitude of 0.2 and 0.5.
Table 10 shows the corresponding sensitivities.
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(a) v = 0.2 (b) v = 0.5

Figure 86: RMS on the residual group delay in the K band with a spatially resolved phase reference. The
vertical black dotted line shows the 10th magnitude phase delay sensitivity limit of Gravity
fringe tracker with the UTs.

Technique v = 0.2 v = 0.5

ABCD 9.62 10.74

Least Squares 12.59 11.46

Double Fourier 12.14 10.45

Table 10: K band group delay sensitivity by using a spatially resolved phase reference

6.8 different vibration modes

Mérand et al. (2012) has measured the RMS of the OPD fluctuations caused due to
instrumental vibrations for the AMBER instrument at VLTI to be in the range of 300nm−

700nm (as shown in table 1). However, Perrin et al. (2011) reports that currently the
vibrations at the VLTI is controlled to have a total RMS on the OPD fluctuations due to
instrumental vibrations to under 200nm. Most of the work mentioned above works for
the current vibration level. Here let us compare the effects of the high vibration levels
mentioned by Mérand et al. (2012) to the main result of this work. Fig. 87 shows the K
and L band RMS on the residual OPD with a high vibration level of UT1 & UT2 with a
σOPD,vib = 411nm. Table 11 shows the corresponding sensitivities in K and L bands.
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(a) K band (b) L band

Figure 87: RMS on the residual OPD at K and L bands for high vibration levels with UT1-UT2 combination
with σOPD,vib = 411nm. Estimated on a spatially unresolved source (v = 1). The black
vertical dotted line shown in the left figure shows the 10th magnitude phase delay tracking
sentivitiy of Gravity fringe tracker with UTs!

Technique K L

ABCD 9.33 9.88

Least square 13.25 8.28

Double Fourier 12.09 6.8

Table 11: K and L band sensitivity in estimating group delay for coherencing science fringes at high
vibration level (411nm) in the L band with MATISSE at low spectral resolution

From fig. 87 and table 11, we can see that the K band is strongly affected by high
vibration levels. However, the effect on the L band is insignificant at high vibration levels.
Also comparing figures 87a & 83, we can see that the ABCD technique on dispersed K
band fringes is the most affected method (loss of 5.34 magnitudes on sensitivity). This
might be due to insufficient step size on the DFT and the loss of correlated flux due to
the high loss in fringe contrast (σOPD,vibration = 411nm ≈ λc/5) as compared to that of
the L’ band (σOPD,vibration ≈ λc/9).

6.9 mid-ir feed forward group delay

Koresko et al. (2006) used the intra-band dispersion in the K band at the Keck interfer-
ometer to estimate the possibility to feed forward to a possible mid infrared nulling
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interferometer operating at 10µm. This involves in computing the dispersion metric
mentioned in eq. 88 using the phase and group delay estimates in the K band. Using the
dispersion metric, we can estimate the instantaneous differential water vapor column
density (Σwv) and with the knowledge of the specific refractivities of water vapor at the
feed-forwarded wavelength, we can estimate the group delay at the output wavelength.
By estimating the value of Σwv from eq. 88, we can compute the value of group delay at
N band (λc = 10µm) by,

xg,10 = xg,K +

[
RW10 − R

W
K −

(
λ10
dRW10
dλ10

− λK
dRWK
dλK

)]
Σwv (146)

Where,

• xg,10, xg,K → Group delay in the N band and K band respectively

• RW10, R
W
K → Specific refractivity of a water vapor molecule at N band and K band

respectively

However, the group delay estimation is 2-3 magnitudes more sensitive than the phase
delay estimation. Hence, we can compare the inter-band dispersion (GD-GD) than the
intra-band dispersion (GD-PD) to estimate the dispersion metric and thus Σwv. With
the new GLS based integrated optics beam combiners, we can perform simultaneous K
and L band beam combination and estimate the group delay simultaneously (Tepper
et al., 2017). The group delay can be expressed as a function of RW & Σwv by rewriting
eq. 82 as,

xg = x+ R
WΣwv + λ

dRw

dλ
Σwv (147)

Hence, the difference between the group delays in K and L bands is,

xg,K − xg,L = Σwv

[
(RWK − RWL ) −

(
λK
dRWK
dλK

− λL
dRWL
dλL

)]
(148)

Thus, we can derive the instantaneous differential water vapor column density (Σwv)
by using the inter-band group delay difference.
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To estimate the efficiency of K+L band feed forward, we can propagate the errors on
the group delay estimation from the RMS on the residual group delay from figures 79

& 80. Let us assume that we are feed-forwarding the group delay to coherence fringes
in the N band (λc = 10µm) observed with MATISSE at low spectral resolution (R=30).
Using eq. 145 around the central spectral channel (9.67µm− 10.33µm) and assuming
a maximum acceptable fringe contrast loss of 10%, the threshold on the RMS on the
residual group delay is 38µm. This results in a threshold on the error on group delay
estimation of 9.5µm before the application of the control system.

Rewriting eq. 148 as,

xg,K − xg,L = CK,LΣwv (149)

Where,

CK,L =

[
RWK − RWL −

(
λK
dRWK
dλK

− λL
dRWL
dλL

)]
(150)

Thus the feed-forward group delay at N band can be written as,

xg,10 = xg,K −CK,10Σ (151)

Hence, the error on the estimation of Σwv is given by,

σΣ =

√
σ2gd,K + σ

2
gd,L

CK,L
(152)

Where, σgd,K & σgd,L is the RMS on the residual group delay in K and L bands. Thus
the error on the feed-forward group delay in the N band is,

σgd,10 =
√
σ2gd,K + (CK,10σΣ)2 (153)
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Fig. 88 shows the error on the estimation of Σwv and fig. 89 shows the feed-forward
error on group delay at the N band using K and L band group delay estimation errors.

(a) ABCD (b) Least squares (c) Double Fourier

Figure 88: Errors on estimation of Σwv using K and L band group delay

(a) ABCD (b) Least squares (c) Double Fourier

Figure 89: Error on the feed-forward group delay at N band estimated using K and L band group delay
estimation errors

To perform coherencing on N band fringes using MATISSE at low spectral resolution
(R=30) by feed forwarding the N band group delay from K and L band group delay
estimates, we have a maximum threshold of 9.5µm on the acceptable error for a 10%
contrast loss. For this threshold of 9.5µm, the only possible way to feed-forward the
group delay to N band is by using the ABCD group delay estimation in the K and L
bands. This gives us a K and L band sensitivity of 8.3 magnitude and 9 magnitude
respectively.

This limit applies only when we need to estimate the value of Σwv instantaneously.
However, from fig. 38 the fluctuations of water vapor is small(~1019cm−2) over a few
seconds. Combining equations 152 & 153, the error on xGD,10 can be related to errors on
xgd,K & xgd,L as,
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σgd,10 =

√√√√σ2gd,K

(
1+

(
CK,10

CK,L

)2)
+ σ2gd,L

(
CK,10

CK,L

)2
(154)

From table 4, the ratio of CK,10 and CK,L is,

CK,10

CK,L
= 14.62 (155)

Thus, the errors on K and L band group delay estimation plays a significant role in
the instantaneous water vapor estimation and thus the feed forward group delay at
longer wavelengths. However, the error on Σwv can be reduced by averaging over a
longer period of time where the fluctuation of Σwv is sufficiently low.

The difference between K and N band group delay from eq. 151 is the parameter
CK,10Σwv. The value of CK,10 derived from table 4 to be 3.35 × 10−24cm3. The total
excursion of Σwv from figures 38 & 39 is ≈ 2× 1020cm−2. Thus the total excursion of
the group delay difference between K and N bands is,

CK,10Σwv = 3.35µm (156)

This will be the maximum difference between the group delays at K and N bands.
The maximum coherencing time scale for the N band at low spectral resolution (R=30)
using eq. 138 is 41.07 seconds. For this time scale the RMS of fluctuation of Σwv is
2.44 × 1019cm−2 which corresponds to a group delay difference between K and N
bands of 0.82µm. If the coherencing in N band is done with the K band group delay
for this time scale while monitoring the fluctuations of Σwv, we can safely coherence
N band fringes with K and L band sensitivities given in table 8. Thus even at the
largest fluctuation of Σwv, we can still keep the RMS on the residual group delay to
3.5µm+ 3.35µm = 6.85µm which is within the threshold group delay RMS for N band
science observations at low spectral resolution with MATISSE.

Fig. 90 shows the decision tree for an efficient way to perform coherencing and
cophasing at mid-infrared using K and L band phase and group delays.
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Figure 90: Decision tree for an efficient way to perform coherencing and cophasing at mid-infrared using
K and L band group and phase delays.



7
S U M M A RY A N D C O N C L U S I O N

Atmospheric turbulence is a major hindrance for high angular resolution astronomical
observations in optical and infrared wavelengths. With modern day adaptive optics
systems, we can correct for all major optical aberrations caused due to the atmospheric
turbulence. However, the global phase shift (piston) is not corrected and plays a major
role in the phase of optical and infrared interferometric observations. Hence, a dedicated
fringe tracker is required on top of the adaptive optics correction for optical and infrared
interferometers.

The main goal of this work is to analyze the possibility to perform simultaneous K
and L band group delay estimation for a possible second generation fringe tracker at
VLTI. With the arrival of GLS based integrated optics beam combiners which is trans-
parent at near and mid-infrared wavelengths (1µm− 10µm), we can simultaneously
record K and L band fringes for group delay estimation. The main advantage of moving
to a longer wavelength is the longer atmospheric coherence time and hence longer
integration time for closed-loop fringe tracking. However, the major challenge at longer
wavelength is the high atmospheric and instrumental thermal background. However,
this can be overcome with faster chop-nod subtraction or a π phase shift subtraction in
interferometry. Hence, the main contribution of the atmospheric background that I have
considered in my work is the shot noise of the background.

To understand the effects of atmospheric turbulence and instrumental vibrations on
near and mid-infrared interferometric observations, I have built a simulator (GDsim)
which simulates the OPD fluctuation time series which also includes the dispersive
effects of the atmospheric water vapor. This OPD time series is then applied to a set of K
and L band noisy interferometric fringes. The Gravity fringe tracker setup parameters
are used to generate the interferometric fringes in the K band and MATISSE L band
optical setup parameters are used for the L band fringes. The group delay is then
estimated from the noisy fringes using ABCD encoding on dispersed fringes, least
squares and double Fourier techniques as described in chapter 5.

One way to estimate the sensitivity of an instrument is through its Signal to Noise
Ratio. For interferometric fringes the SNR on the correlated flux given by eq. 98 is suit-
able to estimate the sensitivity of an interferometer for small integration time. However,
at longer integration times (Tint > 1.79τ0) the loss in fringe contrast exhibits a random
walk behavior and hence resulting in an asymptotic SNRc over integration time. Hence,
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the SNRc is not a reliable parameter to estimate the sensitivity at such integration times.
Thus I adopted the RMS on the residual group delay, which is the difference between
the simulated input group delay and the measured group delay as a marker to estimate
the sensitivity and performance of each group delay estimator.

A way to over come the OPD/phase fluctuations to perform long integration of faint
interferometric fringes is to add the fringe frames by their power spectra. Incoherent
stacking however still needs the fringes to be within the coherence length to have little
to no loss on the fringe contrast and visibilities. The loss of fringe contrast due to the
OPD fluctuations is represented in eq.145. Thus assuming a maximum acceptable fringe
contrast loss of 10% on the science channel to perform L band science with MATISSE
at low spectral resolution (R=30), we can coherence the fringes with K and L band
sensitivities shown in table 8 for the UTs and table 9 for the ATs at VLTI.

Figures 91 & 92 shows the comparison of K and L magnitudes of class 1 and class 2

YSO from fig.12 with the updated group delay sensitivities from table 8.

Figure 91: Comparison of K and L magnitudes of class 1 YSOs in embedded clusters with the new group
delay sensitivity limits estimated by this work
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Figure 92: Comparison of K and L magnitudes of class 2 YSOs in embedded clusters with the new group
delay sensitivity limits estimated by this work

For mid-infrared interferometry, the current system employs a feed-forward group
delay tracking by analyzing the intra-band dispersion (group delay-phase delay) (Ko-
resko et al., 2006). However, as group delay sensitivity is 2-3 magnitudes fainter than the
phase delay sensitivity, we can extend the sensitivity of the feed-forward group delay
tracker by comparing the inter-band dispersion (group delay-group delay) between two
consecutive band instead. As the simulations done in this work looks into both group
delay at K and L bands simultaneously, we can directly propagate their group delay
estimation errors to mid-infrared (N band, in this case) to estimate the sensitivity of a
mid-infrared feed forward group delay tracker. By comparing the RMS on the residual
group delays at K and L bands, we can perform feed-forward group delay tracking
for science in the N band with MATISSE at low spectral resolution (R=30) only by the
ABCD group delay estimation technique at K and L bands with a sensitivity of 9.0
magnitude in the K band and 8.3 magnitude in the L band. However, this sensitivity
applies only when the feed forward is performed based on the instantaneous value of
Σwv. The contribution of Σwv on the feed forward group delay over ideal coherencing
times is low (∆GDK,10 ≈ 0.86µm). Thus the value of Σwv can be averaged over this
time scale to reduce the noise σΣ and thus resulting in a higher sensitivity and a better
performance in the feed forward group delay estimation.
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7.1 future work

All the work is done by assuming the instrumental properties of Gravity fringe tracker
for K band and MATISSE for L’ band. The L band group delay estimation performance
and sensitivity can be further improved by using laser written GLS based integrated
optics beam combiners (Tepper et al., 2017) and better detectors with low noise such as
the one reported by Guieu et al. (2014) where it is sensitive till 3.2µm with a read noise
less than 2e−.

We can also extend the current work for increasing the feed-forward group delay
sensitivity by utilizing their different integration times. We can increase the L band
feed-forward sensitivity by coherencing the fringes during integration using the K band
group delay data which runs at a relatively faster duty cycle. This pushes the group
delay estimation sensitivity in the L band for mid-infrared feed-forward group delay
tracking.



B I B L I O G R A P H Y

Absil, O., den Hartog, R., Gondoin, P., Fabry, P., Wilhelm, R., Gitton, P., & Puech, F.
2006, A&A, 448, 787

Apai, D., Pascucci, I., Bouwman, J., Natta, A., Henning, T., & Dullemond, C. P. 2005,
Science, 310, 834

Armitage, P. 2010, Astrophysics of Planet Formation (Cambridge University Press)

Beckmann, V. & Shrader, C. R. 2012, Active Galactic Nuclei

Benisty, M., Berger, J.-P., Jocou, L., Labeye, P., Malbet, F., Perraut, K., & Kern, P. 2009,
A&A, 498, 601

Blind, N., Absil, O., Le Bouquin, J.-B., Berger, J.-P., & Chelli, A. 2011, A&A, 530, A121

Bonino, D., Gai, M., Corcione, L., & Massone, G. 2004, in SPIE, Vol. 5491, New Frontiers
in Stellar Interferometry, ed. W. A. Traub, 1463

Burtscher, L., Meisenheimer, K., Tristram, K. R. W., Jaffe, W., Hönig, S. F., Davies, R. I.,
Kishimoto, M., Pott, J.-U., Röttgering, H., Schartmann, M., Weigelt, G., & Wolf, S.
2013, A&A, 558, A149

Burtscher, L. & Tristram, K. R. W. 2013, The Messenger, 154, 62

Buscher, D. & Longair, M. 2015, Practical Optical Interferometry: Imaging at Visible and
Infrared Wavelengths, Cambridge Observing Handbooks for Research Astronomers
(Cambridge University Press) [LINK]

Buscher, D. F., Armstrong, J. T., Hummel, C. A., Quirrenbach, A., Mozurkewich, D.,
Johnston, K. J., Denison, C. S., Colavita, M. M., & Shao, M. 1995, Applied Optics, 34,
1081

Buscher, D., F. 1988, PhD thesis, University of Cambridge

Caccia, J. L., Azouit, M., & Vernin, J. 1987, Applied Optics, 26, 1288

Champagne, F. H. 1978, Journal of Fluid Mechanics, 86, 67 [LINK]

Choquet, É., Menu, J., Perrin, G., Cassaing, F., Lacour, S., & Eisenhauer, F. 2014, A&A,
569, A2

119

https://books.google.de/books?id=zX65CgAAQBAJ
http://journals.cambridge.org/article_S0022112078001019


120 Bibliography

Ciddor, P. E. 1996, Applied Optics, 35, 1566

Colavita, M. M. 2010, PASP, 122, 712

Colavita, M. M., Swain, M. R., Akeson, R. L., Koresko, C. D., & Hill, R. J. 2004, PASP,
116, 876

Colavita, M. M., Wallace, J. K., Hines, B. E., Gursel, Y., Malbet, F., Palmer, D. L., Pan,
X. P., Shao, M., Yu, J. W., Boden, A. F., Dumont, P. J., Gubler, J., Koresko, C. D.,
Kulkarni, S. R., Lane, B. F., Mobley, D. W., & van Belle, G. T. 1999, ApJ, 510, 505

Connelley, M. S., Reipurth, B., & Tokunaga, A. T. 2008, AJ, 135, 2496

Dali Ali, W., Ziad, A., Berdja, A., Maire, J., Borgnino, J., Sarazin, M., Lombardi, G.,
Navarrete, J., Vazquez Ramio, H., Reyes, M., Delgado, J. M., Fuensalida, J. J., Tokovinin,
A., & Bustos, E. 2010, A&A, 524, A73

Dawson, P., Scholz, A., Ray, T. P., Marsh, K. A., Wood, K., Natta, A., Padgett, D., &
Ressler, M. E. 2013, MNRAS, 429, 903
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