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Abstract

Cell mechanics and adhesion play an important role in biological sys-
tems. We focus on two examples in this thesis, stress-induced cell bleb-
bing and red blood cell deformation during the invasion by malaria
parasites. To investigate both processes, simulation models are em-
ployed and their dependence on various parameters, such as membrane
properties or adhesion kinetics, are studied.

A coarse-grained cell model, which includes a lipid-bilayer cell mem-
brane and a bulk cytoskeleton, is introduced. To incorporate effects of
fluid environment, we additionally present two simulation frameworks,
Brownian dynamics and dissipative particle dynamics. Both methods
allow for an effective formulation of fluid properties, such as viscosity
and thermal fluctuations. The elastic response of the cell is studied by
microplates compression and the effect of various simulation param-
eters on cell deformation is analyzed, e.g. the bulk Young’s modulus
and the stretching resistance of the cell membrane. It is shown that
the total elastic response can be described by a superposition of the
elastic parameters of the cytoskeleton and cell membrane.

Cell blebbing is connected to a number of cell processes such as cell
death and cell motility. A membrane bleb is a protrusion formed by
a cell membrane that locally detaches from an underlying cell struc-
ture such as a cytoskeleton. Stress-induced cell blebbing is studied
by adding a contraction mechanism to the employed bulk cytoskele-
ton model. Additionally, a dynamic, bond-based adhesion between
cell membrane and inner network is introduced. The model is able to
reproduce cell blebbing, which occurs for a limited parameter range.
By employing mean-field calculations and computer simulations, the
effects of cell membrane properties and the adhesion on cell blebbing
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are separated. A number of scaling laws for the onset of blebbing
are derived by quantifying the effects of various simulation parame-
ters, e.g. the membrane bending rigidity and the number of adhesion
binding sites.

Today, malaria is still one of the deadliest diseases and attributes
to about half a million human deaths every year. Malaria parasites
reproduce by invading red blood cells in the human blood stream.
Before the invasion takes place, a parasite may induce various defor-
mations at the membrane of a targeted red blood cell. According to
the passive compliance hypothesis, these deformations are a result of
the adhesion of the parasite to the cell membrane and aid the malaria
parasite alignment. The successful alignment of the parasite head is
an important step in the invasion process. To test these assumptions,
simulations of a red blood cell and a parasite are employed, in which
they interact either via an attractive potential or through a bond-
based, dynamic adhesion.

Both employed interaction models can reproduce red blood cell de-
formations comparable to those in experiments. The deformations
are induced by the mechanical interaction between parasite and red
blood cell. The adhesion force required for these deformations is on
the same order of magnitude as measured in experiments. With the
bond-based adhesion, the parasite dynamics and red blood cell de-
formations observed in vitro are reproduced. Parasite alignment is
quantified by a number of parameters, such as alignment angle and
alignment time, and a reliable parasite alignment through the bond-
based adhesion is shown. The effect of various simulation properties
on parasite alignment is studied and the egg-like parasite shape, which
was measured in in vitro and in vivo experiments, is shown to lead
to the highest alignment probability. Other important aspects for the
parasite alignment are the average bond lifetimes and the length of
bonds. Finally, the importance of the red blood cell deformations for a
successful parasite is shown and it is concluded that the passive com-
pliance hypothesis can explain a number of experimental observations
of malaria parasite alignment.



Kurzzusammenfassung

Die Mechanik und Adhäsion von Zellen spielen in biologischen Syste-
men eine wichtige Rolle. Wir konzentrieren uns in dieser Arbeit auf
zwei Beispiele, stressbedingtes cell blebbing (Blasenbildung der Lipid-
membran) und die Deformation von roten Blutkörperchen während
der Invasion durch Malariaparasiten. Zu diesem Zweck erarbeiten wir
Simulationsmodelle und analysieren die Effekte von verschiedenen Pa-
rametern.

Die Untersuchungen basieren auf einem einfachen Zellmodell, wel-
ches aus einer Zellmembran und einem Cytoskelett besteht. Zusätzlich
werden zwei verschiedene Arten von Flüssigkeitssimulation vorgestellt,
Brownian dynamics und dissipative particle dynamics. Beide Metho-
den erlauben die effektive Modellierung von Flüssigkeiten, hauptsäch-
lich deren Viskosität und thermischen Fluktuationen. Die Elastizität
des Zellmodells wird mit Hilfe von Mikroplatten-Kompression stu-
diert und der Effekt von verschiedenen Simulationsparametern, z.B.
von dem Elastizitätsmodul des Cytoskeletts, analysiert. Die Ergeb-
nisse zeigen, dass die komplette elastische Reaktion der Zelle durch
Superposition der elastischen Kenngrößen der Zellmembran und des
Cytoskeletts beschrieben werden kann.

Cell blebbing ist Bestandteil von verschiedenen Zellprozessen, zum
Beispiel dem Zelltod oder der Bewegung von Zellen. Hierbei bilden sich
Blasen, bei denen ein Teil der Membran nicht mehr mit dem Cytoske-
lett der Zelle verbunden ist. Wir studieren stressbedingtes cell bleb-
bing, indem wir dem vorgestellten Cytoskelettmodell einen Mechanis-
mus zur kontrollierten Kontraktion hinzufügen. Zusätzlich wird dyna-
mische Adhäsion zwischen Zellmembrane und Cytoskelett eingeführt.
Dieses erweiterte Modell erlaubt cell blebbing für einen beschränkten
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Bereich von Simulationsparametern. Durch Mean-Field-Rechnungen
und Computersimulationen werden die Effekte der Zellmembraneigen-
schaften und des Adhäsionsmodells separiert. Durch die Quantifizie-
rung der Effekte von verschiedenen Simulationsparametern, wie z.B.
der Biegesteifigkeit der Membran oder der Anzahl der Bindungsstel-
len der Adhäsion, finden wir verschiedene Skalierungsgesetze für das
Einsetzen von cell blebbing.

Bis zum heutigen Tag ist Malaria eine der tödlichsten Krankhei-
ten, welche für fast eine halbe Million menschliche Tode jedes Jahr
verantwortlich ist. Malariaparasiten vermehren sich, indem sie in rote
Blutkörperchen im menschlichen Blut eindringen. Vor dem Eindringen
können die Parasiten starke Deformationen in der Membran von ro-
ten Blutkörperchen auslösen. Die “passive compliance“ Hypothese be-
sagt, dass diese Deformationen das Ergebnis der Adhäsion zwischen
Malariaparasit und roten Blutkörperchen sind und der Ausrichtung
des Malariaparasiten dienen. Die Ausrichtung des Parasitenkopfes ist
ein wichtiger Bestandteil des Eindringprozesses. Simulationen von ro-
ten Blutkörperchen und Malariaparasiten werden verwendet, um diese
Annahmen zu untersucen und zu verifizieren. Dabei interagieren die
beiden Zellen entweder durch ein attraktives Potential oder durch dy-
namische Adhäsion.

Beide Modelle können Membrandeformationen durch mechanische
Wechselwirkungen erzeugen, die auch experimentell beobachtet wur-
den. Die benötigte Adhäsionskraft für diese Deformationen ist in der-
selben Größenordnung wie in den Experimenten. Mit dem dynami-
schen Wechselwirkungsmodell kann die Dynamik des Parasiten und
die Deformation von roten Blutkörperchen in in vitro Experimenten
dargestellt werden. Die Ausrichtung des Parasiten wird durch verschie-
dene Parameter, wie dem Ausrichtungswinkel und der Ausrichtungs-
zeit, quantifiziert. Wir zeigen, dass der Parasit im Mittel senkrecht zur
Membran des Blutkörperchens ausgerichtet wird. Die Effekte verschie-
dener Simulationsparameter auf die Qualität der Ausrichtung werden
studiert. Dabei zeigen wir, dass die eiförmige Form des Parasiten, wel-
che in vitro und in vivo gefunden wurde, für die Ausrichtung optie-
miert ist. Weitere wichtige Aspekte für die Qualität der Ausrichtung



sind die durchschnittliche Lebensdauer und die Länge der Interaktion
zwischen Parasiten und roten Blutkörperchen. Schließlich wird die Ab-
hängigkeit der Ausrichtungsqualität von den Deformationen der roten
Blutkörperchen gezeigt. Aus den Ergebnissen schließen wir, dass das
verwendete Modell für die Wechselwirkung zwischen Blutkörperchen
und Parasiten eine Reihe von experimentellen Beobachtungen sehr gut
erklären kann.
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1 Introduction

The body is a community
made up of its innumerable
cells or inhabitants.

Thomas A. Edison (1847 -
1931)

Cells are one of the fundamental building blocks of life. Nearly any
structure and function of a living organism can be connected to one
or several cells fulfilling various tasks to keep organisms homeostatic.
As a result, cells spark the interest of researchers all around the world
since their first discovery by Robert Hooke in 1665 [1] till today. For
example, in 2018, the Nobel price in physics was awarded for the
invention of the optical tweezers and their application to biological
systems [2].

The main difficulties in studying cells are their variety, complexity,
and the huge number of them forming a living organism. For a human
body, around 200 [3] different types of cells are known, their sizes
ranging between 0.1 nm and 100 µm. Recent approximations suggest
a total number of 3.8× 1013 cells forming the whole body [4]. About
84 % of these cells are erythrocytes, also known as red blood cells
(RBCs), whose main function is the transport of oxygen from the
lungs to the rest of the body. On the other side, epidermal cells,
which form the skin tissue, account only for about 0.5 % of the total
number of cells, but without them, our live would be quite different
[4].
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1 Introduction

1.1 Cell Structure

Cells are constructed in various ways to fulfill the vast number of tasks.
Therefore, no generic building schemes valid for all cells exist. Nev-
ertheless, most cells share a number of similar features. The inside
of the cell is made of cytoplasm, which consists of about 80 % wa-
ter with various suspended biomolecules such as proteins and nucleic
acids [5]. The cytoplasm is enveloped by a membrane that controls
the entry and exit of fluids and other materials of the cell and main-
tains the electric potential of the cell. The shape of cells is mainly
determined by a cytoskeleton enclosed by the membrane. Depending
on the cell type, this structure can be volume spanning or may only
form a two-dimensional network close to the membrane. Lastly, most
cells have a full copy of the genetic information stored by the DNA
in a cell nucleus. Depending on the existence of the nucleus, cells are
characterized as eukaryotic (with nucleus) and prokaryotic (without
nucleus) cells. [5]

1.1.1 Lipid Bilayer Cell Membrane

A cell membrane mainly consists of lipids, which are amphiphilic
biomolecules with a hydrophilic head group and a hydrophobic tail.
They self-organize in aqueus environments into two sheets, with their
head groups pointing outwards and their tails protected from water
contact, and are packed together as closely as possible (see fig. 1.1).
This lipid-bilayer forms a continuous barrier between the cytoplasm
and the outside of the cell, preventing a free exchange of different
materials between the outside and the inside of the cell. Within this
bilayer, different membrane proteins may be embedded or attached.
[5]

The intra-membrane proteins may vary between different cell types
and fulfill a variety of different tasks [7]. They are so important for
the function of the cells that around 30 % of the genes in an organism
code for membrane proteins [8]. Common examples of these proteins
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1.1 Cell Structure

Figure 1.1: Schematic sketch of a cell membrane. The lipids self-
organize into a bilayer structure to minimize the contact of their hy-
drophobic tail groups with the surrounding fluids. The bilayer effec-
tively separates the outside and the inside of the cell. In the bilayer
sheets, a number of proteins and other biomolecules are embedded,
i.e. channels, which allow a controlled exchange of ions, or receptors,
which control the interaction with the surrounding environment. Pic-
ture taken from [6] (open domain).

are channels and pumps, which allow for a controlled exchange of
materials, such as proteins or ions. These materials may be used either
as building blocks or as chemical signals within the cell, which guide
the behavior of the cell. Other examples are membrane receptors,
which can be used for the communication between the membrane and
the extracellular space by binding certain transmitter proteins or other
molecules.

Cell membranes play a vital role in the cell behavior. Membranes
in mathematical and physical cell models are often represented as
two-dimensional surfaces. This approach is useful, since a typical cell
membrane has a thickness between 5 nm and 10 nm [9] and is therefore
quite thin in comparison to the diameter of most eukaryotic cells. Due
to the bilayer structure, cell membranes resist bending deformation,
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which is usually modeled by the Helfrich Hamiltonian [10] as

UHelf =

ˆ

A

dA
1

2
κ (c1 + c2 − c0)

2
+ κc1c2, (1.1)

where κ is the bending rigidity of the membrane, κ is the saddle-splay
modulus, and A is the membrane surface area. The parameters c1
and c2 describe the principal curvatures at every membrane point and
c0 is the spontaneous curvature, determining the stress-free state of
the membrane. The last term on the right-hand side is known as
Gaussian curvature. The Hamiltonian describes an elastic energy cost
to bend the membrane away from its original shape, such that these
deformations require the application of external forces. Typical values
of κ are in the range from of 1× 10−20 N m to 1× 10−19 N m [11].

1.1.2 Cell Cytoskeleton

The cytoskeleton of a cell consists of filaments and tubules of different
lengths and stiffnesses [12] (see fig. 1.2). The cytoskeleton may span
throughout the whole cell and is responsible for its general shape and
the cell resistance to mechanical stresses [5]. Depending on cell type,
other functions may be performed by the cytoskeleton, such as cell
movement [15], cell signaling and the generation of cellular forces [15,
16].

The constituents of the cytoskeleton vary depending on cell type. In
eukaryotic cells, the cytoskeleton generally consists of actin filaments,
intermediate filaments, and microtubules. These filaments differ in
size, rigidity, and function within the cell. Microtubules are stiff and
hollow rods, which structurally start from a central organelle within
the cell [17]. They have an average diameter of 24 nm with a persis-
tence length of a couple of mm [18]. Microtubules are composed of α-
and β-tubulin, which self-organize in alternating, helical structures.
The incorporation of the tubulin-blocks into microtubules is dynamic
and may lead to rapid growth and shrinkage behavior at the unbound
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1.1 Cell Structure

Figure 1.2: Image of bovine endothelial cells from pulmonary arteries.
The red dye marks actin-filaments, the green color represents the mi-
crotubules, and the cell nuclei are stained blue. The cytoskeleton deter-
mines the shape of the cell. The organization within the cytoskeleton
varies locally, as the distinct filaments are responsible for different func-
tions in the cell. Picture taken from ImageJ project [13, 14].

end [19]. Within the cell, microtubules function as paths for cargo
transport and molecular motors [20]. They also play a vital role in
the separation of chromosomes during cell division [21].

Intermediate filaments provide stability for the cell by forming a
network, which absorbs mechanical stress [18, 22]. Depending on the
cell type and the required functions, various kinds of structures may
be formed by the filaments. Intermediate filaments are composed of
protofilaments, which are bundled together forming the filament struc-
ture. They usually have a diameter of around 10 nm and a persistence
length on the order of hundreds of nm [18].

The structure of cells is mainly controlled by an actin cortex, a
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thin network layer beneath the cell membrane (see fig. 1.2, red dye).
This layer is formed of actin filaments [16], which are built from actin
monomers (G-actin) and form F-actin filaments. Actin filaments are
polarized and have a double helical structure. The typical diameter
is between 5 nm and 9 nm and the persistence length is on the order
of tens of µm [18]. Similar to microtubules, actin incorporates its
monomers by the polymerization at one end, but it also looses building
blocks at the other end. This leads to a highly dynamic tread-milling
behavior of the actin filaments [18]. Actin together with the molecular
motor myosin plays a vital role in the generation of contraction forces,
as the myosin protein is able to slide along the polarized actin filaments
and generate contractile forces on the order of 3 pN to 4 pN [23, 24].

While the cytoskeleton and the cell membrane consist of differ-
ent molecules and form distinct structures, they also interact. This
membrane-cytoskeleton adhesion is usually mediated by various linker
molecules, which form bonds between the constituents of both parts.
The connection is loose, such that the cell membrane is still able to
move and shows membrane flickering. Additionally, the stability of
the connection is sensitive to various biochemical components and
mechanical stresses, which allows for structural reorganization during
various cell processes. [25]

Different approaches exist for modeling of the function and me-
chanical effects of the cytoskeleton. These models range from detailed
descriptions at the level of single protein filaments [26] to the contin-
uous description of the cell as an elastic material [27]. Which model
should be used depends on the involved lengthscales and the questions
to be addressed.

1.2 Cell Deformations

One way to describe mechanical properties of cells is to use elastic
constants, such as the three-dimensional Young’s modulus. For cells,
typical values are in the range of 1 kPa and 100 kPa [28], which is
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many orders of magnitudes smaller then e.g. steel with values around
200 GPa [29]. The Young’s modulus characterizes the deformability
of cells, which is important for many cell functions.

Figure 1.3: Flowing RBCs in a glass tube with a diameter of 7 µm (A)
and in a capillary with approximately the same diameter (B). While
passing through the narrow channel, the cells deform drastically in
comparison to their rest shape. Picture taken from [30] with permis-
sion.

One example for the effect of cell deformations is the transport of
oxygen by RBCs through the vascular system. The vascular system of
humans consists of a large variety of vessels ranging from big arteries
with a diameter on the order of a couple of mm to small capillar-
ies with a diameter between 3 µm and 10 µm. The average size of
RBCs is about 8 µm, such that they can easily travel through large
vessels. When the cells reach small capillaries, the RBCs need to
deform dramatically, as shown in fig. 1.3. When the cells return to
large arteries and veins again, their cytoskeletal network restores their
original shape. This dynamic transition allows every cell to pass the
blood circle numerous times before it is sorted out by the spleen [31].

The example of RBCs demonstrates the importance of the cell’s
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mechanical properties and a number of techniques are available to
measure quantities such as Young’s modulus and other mechanical
characteristics. These techniques can be divided into two classes: di-
rect force application and force sensing methods [32].

Force application techniques exert external stresses to deform cells
and derive their elastic properties by interpreting the cell reaction.
The applied forces can be of various types, e.g. mechanical stress us-
ing atomic force microscopy [33–37]. Other methods utilize optical
techniques (optical tweezers [38–42], optical stretcher [43–46]), mag-
netic and/or electric stimulation (magnetic tweezers [47–50], electric
field stimulation [51, 52]), or acoustic approaches (acoustic tweezers
[53–55]). To study cells in flow environments, a number of flow tech-
niques are available [56–64]. For example, in microfluidic devices,
cells are deformed by flow stresses and through the interaction with
geometrical boundaries such as shown in fig. 1.3.

Force sensing techniques focus on forces that are a result of internal
cell processes. Examples are cell motility and reorganization dur-
ing cell division. A number of methods such as optical tweezers and
atomic force microscopy may also be applied within the force sensing
context [32].

The interpretation of experimental results often requires models to
quantify the elastic properties. Experimental measurements of cell
mechanics may be too complex to be reliably quantified by analytical
models, such that computer models and simulations are required for
interpretation. The resulting field of computational physics can be
placed between the experimental and theoretical branches of physics
and plays an important role in ongoing research.

1.3 Thesis Structure

In this thesis, a number of in silico models are employed to study var-
ious aspects of cell-membrane deformations and adhesion. In particu-
lar, we identify the physical mechanisms leading to stress-induced cell
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blebbing and the RBC deformations through the adhesion of malaria
parasites.

In chapter 2, a short introduction into the broad field of computa-
tional physics is given. We present two simulation frameworks, dis-
sipative particle dynamics [65] and Brownian dynamics, which allow
the modeling of hydrodynamic interactions and cell mechanics.

A cell model is introduced in chapter 3. Cells are described by a
number of simulation particles, which represent a volume-spanning
cytoskeletal network and a lipid-bilayer cell membrane. The elastic
properties of the cell are quantified by simulating cell compression by
microplates [66]. We investigate the effect of different membrane and
cytoskeleton parameters on the total cell deformation and show that
the elastic response of the cell is a superposition of the inner network
and membrane responses.

Cell blebbing is a common cell phenomenon occurring in various
processes such as cell motility and cell death [67–73]. A bleb is a
cell membrane protrusion, which appears when membrane and cy-
toskeleton disconnect locally. Blebbing may occur due to different
mechanisms, one of which is stress-induced cell blebbing. Here, the
active contraction of an actin network by myosin motors leads to bleb-
bing [74]. In chapter 4, stress-induced cell blebbing is studied. We
extend the cell model by adding network contraction and a dynamic
membrane-cytoskeleton adhesion [25, 75]. By quantifying the effects
of various parameters, we obtain criteria for the existence of stress-
induced cell blebbing.

Another biological process considered in this thesis is the adhesion
of malaria parasites to RBCs. Malaria is caused by parasites, which
employ RBCs to progress through various stages of a complex life
cycle and ensure their survival [76]. The invasion of human RBCs
by parasites is an important step in this cycle. Before the invasion,
parasites interact with a targeted RBC and induce various levels of
deformation of the cell membrane [77–86]. We study the pre-invasion
stage of malaria parasites with a cell membrane model of a healthy
RBC in chapter 5. The RBC interacts with a parasite through an ad-
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hesive interaction, which is either represented by an attractive poten-
tial interaction model or by a bond-based, dynamic adhesion model.
The models are used to investigate the passive compliance hypothe-
sis, which explains the membrane deformations purely by mechanical
interactions [86].
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2 Simulation Methods

Physics is a broad field that aims to explain a wide range of phenom-
ena, starting from the movement of the stars and planets within the
universe to the mechanics of the smallest particles that form this uni-
verse. Clearly, these problems have different length- and timescales
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Quantum
Mechanics
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Mechanics

Mesoscale
Modeling

Continuum Mechanics

Figure 2.1: Overview of length- and timescales in the realm of physics.
Over the last decades, a number of different theoretical and compu-
tational descriptions and methods have been developed to tackle the
problems involving the various scales.

and their investigation requires different approaches (see fig. 2.1).
Therefore, a multitude of different methods have been developed to
tackle them. One type of approach are numerical simulations, where
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complex mathematical models employ the capabilities of modern com-
puters.

For solving different mathematical problems, a variety of compu-
tational methods exists, e.g. finding roots of an equation or solving
large systems of linear equations. In this thesis, we focus on advanced
computer simulations, which are used to study complex systems with
a large number of components, e.g. the number of elements in a
cell membrane or a fluid. These simulations are generally classified
into particle-based and continuum-based simulation techniques. In
particle-based simulations, the studied system is discretized into a
number of particles that interact with each other. These particles
may e.g. represent molecules or small molecular structures, leading
to the method of molecular dynamics (MD) simulations. The com-
plexity of MD simulations results from the large number of degrees
of freedom representing atomic and molecular structures and there-
fore MD simulations are often used to study relatively small length-
and timescales. Several examples of MD simulations can be found in
references [87–93].

Problems at large scales are generally studied with continuum sim-
ulation methods. Such methods, e.g. finite elements methods (FEM),
utilize partial differential equations (PDEs), such as the Navier-Stokes
equation for fluid flow. PDEs are usually discretized by dividing the
space into smalls elements (finite elements) and approximating the
equation locally at these elements resulting in a numerical solution for
the studied system. Examples of continuum methods can be found in
[94–98].

Biophysical problems mostly evolve around cells, their constituents
and the networks they form. Cells have different shapes and sizes
in the range from 1 µm to 100 µm; thus they are best described by
mesoscopic models. At cellular lengthscales, physical models have to
address an interesting mix of different problems. On the one hand,
the number of atoms, which form a single cell, is too high to model
cells with atomistic representation using molecular dynamics. There-
fore, one has to average out a large number of these atoms to obtain
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manageable systems, which reproduce the properties of cells. This
process, known as coarse-graining, is a vital step in the establishment
of mesoscopic models. On the other hand, supra-molecular, cellular
structures such as membranes are important to capture cell mechan-
ics. Therefore, we need to be careful while averaging, such that this
essential information is not lost during coarse-graining. Hence, the
level of coarse-graining generally depends on the problem of interest
and questions addressed.

Cell cytosol is generally represented by a fluid environment. At the
same time, cells are suspended into some fluid medium. Therefore, a
typical cell simulation includes required structural elements of a cell to
represent cell mechanics and two fluids (i.e. cytosol and suspending
medium) separated by the cell membrane. A number of simulation
techniques have been established to study this type of system, such as
multi-particle collision dynamics (MPCD) [99, 100]), smoothed parti-
cle hydrodynamics (SPH) [101–104], and Lattice Boltzmann methods
(LBM) [105–108]. In this chapter, we introduce the dissipative particle
dynamics (DPD) framework, where hydrodynamic effects are modeled
by fluid particles, and the Brownian dynamics (BD) framework, which
incorporates fluid interactions implicitly. In the following chapters, a
number of different cell models are presented, which employ these fluid
methods.

2.1 Dissipative Particle Dynamics

To model hydrodynamic interactions, the framework of DPD is used.
In DPD, the fluid is modeled by a number of particles and each par-
ticle is described by its position ri, velocity vi, and mass mi. These
particles represent small volumes of the fluid; thus the number of par-
ticles is much smaller than the number of molecules. The amount of
simulation particles is described by the number density ρ. The fluid
particles interact by a pairwise force

Fij = FC
ij + FD

ij + FR
ij (2.1)
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which conserves the linear and the angular momentum of the fluid
[109]. We follow the standard implementation by Español [65] to
describe these forces.

The term FC
ij is a soft, repulsive conservation force that prevents

particle overlapping and is given by the relation

FC
ij = wC (rij) eij , (2.2)

where rij = ri−rj is the distance vector between the particles i and j,
rij = |ri − rj | and eij = rij/rij . The function wC is a weight function
and is modeled as a decaying function

wC (rij) =

{
aij

(
1− rij

rc

)
rij ≤ rc

0 rij > rc
, (2.3)

where aij is the interaction strength and rc is the cutoff radius of the
interaction. Their values are chosen to ensure incompressibility of the
modeled fluid. They depend on the number density ρ and the thermal
energy kBT of the system.

The force FD
ij models the fluid viscosity η by introducing a dissipa-

tive force and the term FR
ij models the effects of thermal fluctuations.

They are given by

FD
ij = −γwD (rij) [vij · eij ] eij , (2.4)

FR
ij = σwR (rij) θijeij , (2.5)

where γ is a friction constant and σ is the coefficient of the random
force. The vector vij = vi − vj is the velocity difference between
the particles. The random component of FR

ij is θij . It models Gaus-
sian white noise that is symmetric in i and j to ensure momentum
conservation. It fulfills the relations

〈θij (t)〉 = 0, (2.6)

〈θij (t) θkl (t′)〉 = (δikδjl + δilδjk) δ (t− t′) . (2.7)
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2.1 Dissipative Particle Dynamics

To obtain detailed balance, the weight functions need to satisfy

wD (r) =
[
wR (r)

]2
. (2.8)

Then the version of the fluctuation-dissipation-theorem in DPD be-
comes

σ2 = 2γkBT/m, (2.9)

which connects the friction and random contributions to the thermal
energy kBT . The weight function is given by

wD (rij) =
[
wR (rij)

]2
=


(

1− rij
rc

)k
rij ≤ rc

0 rij > rc,
(2.10)

similar to the weight function of the conservative force. The additional
exponent k is used to control the viscosity of the fluid, where k = 1
reproduces the original DPD algorithm [110].

The time evolution of one DPD particle x is determined by Newton’s
second law of motion mẍ = F, where F is the sum of all forces acting
on the particle. Since each particle is influenced by its neighbors,
the particle trajectory is obtained by numerical integration using the
verlet algorithm, which is given by the equations

x (t+ ∆t) = x (t) + ẋ (t) ∆t+
1

2
ẍ (t) ∆t2, (2.11)

ẋ (t+ ∆t) = ẋ (t) +
1

2
[ẍ (t) + ẍ (t+ ∆t)] ∆t, (2.12)

where the timestep ∆t is selected.

2.1.1 Measurement of Fluid Viscosity

An important property of a fluid is the viscosity η. In the DPD frame-
work, it depends on the interaction parameters γ, a, k, the thermal
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F

F

F

F
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Figure 2.2: Sketch of the reverse Poiseuille flow setup. The simulation
box is divided into four parts. A constant force is applied to each par-
ticle, the direction of the force alternating between the parts. The re-
sulting parabolic flow profile is sketched by the red line. The dash line
indicates periodic boundary conditions.

energy kBT , and the number density ρ of DPD particles. η is mea-
sured using a Poiseuille flow setup, as shown in fig. 2.2. The simulation
box is divided into four parts in the x-direction. A constant force is
exerted on all particles, but its direction alternates between the four
simulation parts, as indicated by the arrows in fig. 2.2. We choose
a division into four parts to guarantee the development of the flow
profile at the inner lines without interference of the applied boundary
conditions.

The resulting flow profile for each of the four parts is derived from
the Navier-Stokes equations and is given by

vy =
Fρ

2η
x (H − x) , (2.13)

where vy is the velocity in the direction of the applied force, x is
the position within the box, and H is the width of each of the four
simulation parts. To reduce effects of the applied boundary conditions,
the profile is only measured in the two boxes in the middle of the setup.
[111]
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2.2 Brownian Dynamics

The DPD framework allows a high level of coarse-graining, therefore
reducing the computational cost to model a fluid dramatically in com-
parison to a fully atomistic description. Nevertheless, the amount of
computational cost might still be very high for a hydrodynamic rep-
resentation. Therefore the BD method is introduced. It incorporates
friction and thermal effects implicitly without explicitly modeling the
fluid particles, thus significantly reducing the computational effort at
the cost of loosing the effects of momentum transfer within the fluid.

At the core of the BD method is again Newton’s second law of mo-
tion for the simulation of particles. These particles may represent e.g.
the constituting particles of cell membranes, which will be introduced
in the next chapters. For a particle with position x, the equation of
motion is given by

mẍ = −γẋ +
√

2γkBTR (t) + FI. (2.14)

This equation is known as the Langevin equation. The first term
on the right-hand side introduces a dissipative force with the friction
coefficient γ. The second term models thermal fluctuations governed
by the thermal energy kBT . The random component R(t) models
Gaussian white noise, which fulfills the relations

〈R (t)〉 = 0, (2.15)

〈R (t)R (t′)〉 = δ (t− t′) . (2.16)

In contrast to the DPD method, the random contribution is orientated
arbitrary in space and not parallel to the distance vector between two
particles. The last term FI represents all other interactions that act
on the simulation particles.

To obtain the BD method from the Langevin equation, we can as-
sume the overdamped limit i.e. mẍ = 0, which is a realistic as-
sumption in biological systems. The obtained dynamics becomes
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purely diffusive, if no other interactions are introduced. The Einstein-
Smoluchowski relation defines the diffusion constant of a particle as

D = kBT/γ. (2.17)

Furthermore, the friction coefficient is connected to the viscosity of
the implicitly modeled fluid through the Stokes equation as

γ = 6πηa, (2.18)

where η is the viscosity and a is the effective radius of the simulated
particles. To obtain the dynamics of the particles, these equations of
motion are integrated in time by the Verlet algorithm.

The BD framework can be used for simulations, in which the dis-
sipation within the fluid plays a vital role, but other hydrodynamic
effects can be neglected.

2.3 Simulation Units

Parameters in numerical simulations are selected in simulation units.
A number of scales may be defined, allowing to connect the simulation
values to the physical parameters. In general, energy-, length- and
timescales are required.

Let E be a simulation parameter with the dimension of energy.
For soft matter problems, a well established energyscale is the ther-
mal energy kBT . The connection of the simulation parameters to the
physical values is done through the dimensionless quantity

EM

(kBT )
M

=
EP

(kBT )
P
, (2.19)

where the superscript M denotes a simulation parameter and P the
physical values. The physical value of E is then obtained by

EP =
(kBT )

P

(kBT )
M
EM (2.20)
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where only the physical quantity (kBT )
P needs to be known. For

example (kBT )
P

= 4.282 pN nm for experiments at room temperature.

In the same way, lengthscaling is established as

xP =
DP

0

DM
0

xM , (2.21)

where x is a value with the dimension of length and D0 is a character-
istic lengthscale. For cell simulations, the average cell diameter can
be used for this purpose. Timescaling may be achieved by combining
energyscale, lengthscale, and the viscosity η of surrounding fluid to
obtain

tP =
ηP

ηM

(
DP

0

)3(
DM

0

)3 (kBT )
M

(kBT )
P
tM . (2.22)

Using the fundamental scales of energy, length, and time, other
quantities can be calculated. The physical values of a force F are
found as

FMDM
0

(kBT )
M

=
FPDP

0

(kBT )
P
, (2.23)

FP =
DM

0

DP
0

(kBT )
P

(kBT )
M
FM . (2.24)

This scheme is easily adapted for other quantities of interest.

In this thesis, both simulation and physical values will be used.
If not stated otherwise, a quantity given in physical units refers to
a transformed value as described above. If a value is given without
physical dimension, it refers to a simulation or model value.

19





3 Cell Model

Cells fulfill a variety of tasks within any living body. Consequently,
this diversity of functions and environments requires a similar amount
of models to study cells (see fig. 3.1). Cell models may be divided into
two major categories, which depend on the required resolution of the
studied cell. Micro- and nanostructure models focus on the cytoskele-

Mechanical models 
for living cells

Continuum Approach Micro/Nanostructural
Approach

Viscoelastic models Biphasic model

Cortical shell-liquid
core models

- Newtonian
- Compound

- Shear thinning
- Maxwell

Solid Models

- Elastic
- Viscoelastic

Fractional derivative
model

- Power law 
structural damping

Cytoskeletal models
for adherent cells

- Tensegrity model
- Tensed cable 

networks
- Open-cell foam

model

Spectrin-network 
model for erythrocytes

Figure 3.1: Selection of different types of models to study the properties
and behavior of various cells [112–118].

tal and single filament contributions toward the cell mechanics. The
developed models have been used extensively to study the mechan-
ics of adherent cells (see [112–116]). Continuum models neglect these
characteristics and treat cells as comprised material with continuous
mechanical properties such as Young’s modulus and Poisson’s ratio.

21



3 Cell Model

These properties are derived using experimental methods and allow
an effective description of bigger cell systems [118].

The particle-based cell model introduced in this chapter may be
counted as a continuous cell model, where we coarse-grain the studied
biological system to obtain a tractable model, that can represent whole
cells on available computers. Thus, in the introduced systems, each
particle does not represent single molecules or filaments, but models a
discrete area or volume of a cell with homogeneous average properties
of that area or volume. A drawback of the coarse-graining process is
the loss of information at smaller scales. Therefore, effective potentials
need to be introduced to mimic cell properties.

The aim of this chapter is to derive a coarse-grained cell model that
incorporates properties of a bulk cytoskeleton and a lipid-bilayer mem-
brane with underlying cell cortex. The model is used to study how
applied mechanical stresses induce deformations of complex, cellular
structures. To this end, the deformation of different structural ele-
ments of the cell is studied using a microplate compression setup. The
results supply information about the interaction between cell mem-
brane and bulk cytoskeleton.

3.1 Bulk Cytoskeleton

The usage of a coarse-grained modeling approach allows us to neglect
the details of different fibers, which form a cytoskeleton and model
it as an elastic, random mesh network. This network consists of a
number of vertices N that are distributed within a volume V . The
vertices are connected by NS springs, which are established between
direct neighbors. The network templates used in our simulations are
created using TetGen [119].

The springs correspond to a harmonic potential that is given by

Unetwork({li}) =
∑NS

i=1

λ

2

(
li − l0i

)2
, (3.1)
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where li is the instantaneous length of the spring i and l0i is the corre-
sponding rest length. The value λ is the spring constant, characteriz-
ing the strength of each spring. The model is implemented within the
BD framework, which represents thermal fluctuations and dissipation
from an implicit fluid.

The cytoskeletal material is assumed to be isotropic and its me-
chanic properties are described by two elastic constants. Using elastic
theory, the values of Poisson’s ratio ν and the bulk modulus K are
established as

ν = 1/4, (3.2)

K =
1

9

NS

V

〈
λ
(
l0i
)2〉

. (3.3)

The value of ν shows that the elastic network is compressible. Other
elastic constants can be derived from ν and K. For example, the
elastic or Young’s modulus is given by

Y =
1

6

NS

V

〈
λ
(
l0i
)2〉

. (3.4)

All mechanical properties can be calculated through the properties of
the mesh as well as the spring constant. [120, 121]

3.1.1 Microplate Compression Setup

The elastic material properties are measured by performing microplate
compression tests in silico [66, 122]. The modeled material is put be-
tween two rigid plates, as sketched in fig. 3.2. The upper plate is
moved down toward the material with a constant velocity, leading to
deformation. The engineering strain ε is used to quantify the defor-
mation. It measures the relative change in height ∆D with respect to
the initial height D0:

ε =
∆D

D
=
D0 −D
D0

. (3.5)
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Figure 3.2: Sketch of a microplate compression experiment for a spheri-
cal elastic particle. The particle is put between two plates and the up-
per plate is moved down with a constant velocity. The induced defor-
mation of the network is quantified by the engineering strain ε. Due to
the elasticity of the material, the reaction force Fcompress is obtained.

The microplates are represented by rigid walls, which interact with
the deformed particle using the repulsive part of the Lennard-Jones
(LJ) potential:

Uwall(r) = 4εLJ

[(σ
r

)12

−
(σ
r

)6
]
, r ≤ 6

√
2σ. (3.6)

The potential acts between the wall and the vertices of the network.
A large value for the interaction energy εLJ and a small value for the
characteristic length σ are chosen to ensure a hard wall approximation.

The LJ potential is also used to measure the reaction force Fcompress,
as the particle resists the induced deformation. The force is calculated
by summing all force contributions in the compression direction from
the vertices within interaction range. To overcome the effects of ther-
mal noise, the simulation is divided into compression and measure-
ment parts. During the first part, the cell is compressed, while during
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3.1 Bulk Cytoskeleton

the second part, the strain ε and the force Fcompress are measured.
This allows averaging over a long enough time period, leading to reli-
able results. At the same time, the information about time evolution
is not considered, so that no timescales are used in the simulations.

3.1.2 Comparison Between Theory and Simulation

A number of simulation parameters are required to perform the mi-
croplate compression tests. The main parameters, that are constant
for all simulations performed in this chapter, are summarized in ta-
ble 3.1.

Parameter Simulation Value Physical Value

kBT 0.0001 4.282× 10−21 J
D0 10 10× 10−6 m
γ 50

∆t 0.005

Table 3.1: Overview of the main simulation parameters for microplate
compression tests. The thermal energy kBT and the average size of a
particle D0 are used as energy- and lengthscales. γ and kBT are re-
quired to use the BD framework. A timescale is not used on the simu-
lations, as only quasi-static deformations are studied.

The compression tests are performed for a cubic volume of the elas-
tic material with an initial side length of D0 = 10 µm.

To measure Poisson’s ratio ν, the strain ε in the compression di-
rection as well as strains in the other directions are monitored. ν is
calculated as

ν = −εx + εy
2ε

. (3.7)
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Figure 3.3: Poisson’s ratio ν for a simulation setup with N = 69 051 ver-
tices and NS = 499 779 springs. The simulated values agree well with
the theoretical prediction, marked by the dashed line. The deviations
are a result of surface effects.

For the simulation parameters in table 3.1, the measured values of ν
are shown in fig. 3.3. The average relative deviation

∆ν =

〈
ν − 1/4

1/4

〉
(3.8)

is calculated and a good agreement between the theoretical value and
the simulation results is observed. The small deviations from the
theoretical values are a result of surface effects, as the cubic material
does not stay in the cuboid shape due to small buckling at the surface.
For this reason, the applied strain needs to be lower than ε ≤ 0.1 to
obtain reliable results.

Additionally, the values of the reaction force Fcompress are computed.
Young’s modulus is obtained by fitting the relationship

Fcompress = Y Aε, (3.9)
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3.1 Bulk Cytoskeleton

to the simulation data, where A is the surface area of one side of the
cube. The data and the fit are shown in fig. 3.4. The relative deviation
∆Y of the fitting parameter from the expected value is calculated and
a good agreement between theory and simulation is observed.
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Figure 3.4: Force and strain measured for the compression of a cu-
bic elastic network. Equation (3.9) is fitted to the data to establish
Young’s modulus. A good agreement between theory and simulation
is observed. As the material buckles in x- and y-direction under large
stresses, only strain values of ε ≤ 0.1 can be used to obtain reliable
results.

In table 3.2, the results for different levels of discretization and
different values of the spring constant λ are summarized. A good
agreement between simulations and theory is shown for the tested
levels of discretization. For setups with less vertices, surface effects
become more prominent, leading to deviations of up to 10 %. How-
ever, the computational time for these setups is reduced dramatically.
Choosing the best level of mesh discretization is therefore a trade off
between simulation time and the correspondence of elastic properties
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3 Cell Model

to the theoretical values. Additionally, smaller values of λ may have
a significant effect on the quality of the results, as the network is not
able to stay in its initial structure under pressure and can partially
collapse.

N NS V/µm3 〈l0i
2〉/µm2 λ/pN µm−1 ∆ν ∆Y

8044 59 943 1000 0.346 85.64 10.9 % 10.5 %
8044 59 943 1000 0.346 856.40 0.5 % 9.4 %
8044 59 943 1000 0.346 8564.00 2.0 % 10.2 %

15 625 115 041 1000 0.222 8564.00 0.7 % 6.8 %
29 791 218 050 1000 0.146 8564.00 2.0 % 3.2 %
69 051 499 779 1000 0.083 856.40 0.6 % 0.3 %
69 051 499 779 1000 0.083 8564.00 1.2 % 0.8 %

Table 3.2: Comparison of the elastic constants for different levels of
mesh discretization and spring constants. A good agreement between
simulation and theory is obtained for all listed values. Using a larger
number of vertices improves the quality of the mesh but significantly
increases the computational cost. For lower values of λ, the quality of
the network may become poor, as the modeled material is not able to
stay in cuboid shape under high pressure.

3.2 Spherical Elastic Particles

Cell shapes may differ, depending on cell type, environment, and cur-
rent function. For many cells and similar constructs such as vesi-
cles, a spherical shape is a good approximation. Therefore, we create
spherical elastic particles with an initial diameter of D0 = 10 µm and
perform compression tests.

While the geometry has no influence on the calculation of the elas-
tic constants, it does alter the interaction between the cell and the
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Figure 3.5: Force-strain curve for an elastic sphere for a setup with N =
4197 vertices and NS = 28 621 springs. The relation is non-linear and
fitted with eq. (3.10), showing a good agreement between theory and
simulation.

walls. To derive the relationship between strain, force and the elastic
material constants, we use the ideas of the field of contact mechanics
[121]. The obtained relation, known as Hertz law, is derived for the
contact between an elastic sphere and two rigid, non-deformable half
spaces. The force has a characteristic dependence of ε3/2 on the strain

Fcompress =
4Y

3 (1− ν2)
RM

2ε
3/2, (3.10)

where RM is the initial radius of the sphere. This solution is only
valid for small deformations, limiting the range of applicable strains
for the spherical geometry.

For the parameter set in table 3.1, the measured simulation data
points are shown in fig. 3.5. The simulated values are fitted with
eq. (3.10), where the theoretical value of ν = 1/4 is used. A good
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agreement between theory and simulations is obtained for Young’s
modulus.

N NS V/µm3 〈
(
l0i
)2〉/µm2 λ/pN µm−1 ∆Y

4197 28 621 521 0.418 277.47 2.7 %
4197 28 621 521 0.418 2774.74 2.9 %
4197 28 621 521 0.418 27 747.36 2.7 %
9608 63 920 523 0.244 277.47 1.2 %
9608 63 920 523 0.244 2774.74 1.0 %
9608 63 920 523 0.244 27 747.36 2.1 %

Table 3.3: Measured Youngs’s modulus for different settings and spring
constants of elastic spheres. The good agreement between theory and
simulation is less dependent on the discretization level then for the cu-
bic particle, as surface effects are less critical for the spherical geome-
try.

We also test two different meshes and a number of spring constants λ
and find a good agreement between simulations and theory. The data
in table 3.3 show that the discretization level is not as important as
for the cuboid, since the surface effects are partly taken into account
by eq. (3.10). This allows us to use spherical cell setups with less
vertices than those for cubic geometry.

3.3 Cell Membrane

The introduced elastic network models the effect of a bulk cytokeleton.
Another important building block of cells is a lipid-bilayer membrane.
This membrane consists of two leaflets of lipids, that self-organize to
form a thin sheet surrounding the cell (see fig. 1.1).

The membrane is modeled as a two-dimensional, spherical shell,
that surrounds an elastic network. To form the membrane, a number
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3.3 Cell Membrane

Figure 3.6: Sketch of a lipid-bilayer cell membrane model. The mem-
brane model is a two-dimensional spherical shell, on which NM ver-
tices are distributed in a regular pattern. They are connected by NM

S

springs that form NM
T triangles. The mechanics of the membrane is de-

termined by an area constraint, a volume constraint and the bending
rigidity.

of vertices NM are distributed on this surface using a regular triangu-
lation. These vertices are connected by NM

S springs, that form NM
T

triangles, as depicted in fig. 3.6.

The potential energy of the membrane is given by

Umembrane = Ubending + Uarea + Uvolume, (3.11)

where Uarea and Uvolume are the area and volume constraints. Uarea

penalizes a change in the surface area of the lipid bilayer, while Uvolume

ensures a constant volume within the cell. The volume constraint
models an effect of an enclosed fluid, which prevents rapid volume
changes. Both potentials utilize the triangles of the membrane and
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are given by

Uarea = kag

(
A−A0

)2
2A0

+
∑NM

T

i=1
kal

(
Ai −A0

i

)2
2A0

i

, (3.12)

Uvolume = kvg

(
V − V 0

)2
2V 0

. (3.13)

In these equations, A and V are the instantaneous total surface area
and enclosed volume of the membrane. They are obtained by summing
the area and volume contributions of each triangle. The corresponding
values A0 and V 0 are targeted values of these quantities. The variable
Ai represents the area of triangle i with A0

i being the corresponding
rest value. The three constants kag, kal and kvg define the strength
of the global area and local area constraints as well as the volume
constraint.

The term Ubending describes the resistance of the lipid bilayer to
bending of flexural deformation. It is described through the Helfrich
Hamiltonian [10] whose discrete version used in the simulation model
is given by

Ubending =
κ

2

∑NM

i

1

σi

{∑
j(i)

σi,jri,j
ri,j

}2

. (3.14)

Here, the first sum runs over all membrane vertices i, while the sec-
ond sum iterates over the bonded neighbors j of i. The vector ri,j
is the bond vector between vertices i and j, with ri,j = |ri,j |. The
variable σi,j = ri,j [cot (θ1) + cot [θ2]] /2 is the length of the bond vec-
tor in the dual space, with θ1 and θ2 being the angles of the two
triangles opposite to the shared bond vector ri,j . Lastly, the factor
σi = 0.25

∑
j(i) σi,jri,j is the total area of the dual cell around ver-

tex i [123]. The parameter κ is called the bending resistance of the
membrane and determines its strength.

Microplate compression tests are performed for the membrane cy-
toskeleton model. The force-strain data points are shown shown in
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3.3 Cell Membrane

fig. 3.7. To mimic a realistic situation, the values of the cytoskeletal
Young’s modulus are chosen to be in a range of 1 kPa and 100 kPa,
while the parameters for the membrane are chosen according to previ-
ous simulations of RBCs [124]. A fit using the Hertz Law in eq. (3.10)
shows some disagreement, since the membrane contribution is not
properly included.
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Figure 3.7: Force-strain data for a compression test with the membrane-
cytokeleton model. The data points are fitted by the sum of expres-
sions from eq. (3.10) and eq. (3.15). This leads to a good agreement
between theory and simulation. The blue-shaded area shows the con-
tribution of the cytoskeleton, while the orange area marks the influence
of the membrane. The simulation parameters for the inner network and
the membrane are Y = 9.7 kPa, κ = 70 kBT, kag = 9 × 10−2 N m−1,
kal = 1.8 × 10−3 N m−1 and kvg = 6 × 106 N m−2.

The effect of the membrane to the elastic response can be described
by a balloon shell, which is filled with an incompressible fluid [66,
125]. The relation is given by

Fcompress = 2πỸ RM ε
3, (3.15)

33



3 Cell Model

where Ỹ , the effective two dimensional contribution to the Young’s
modulus, is introduced. Fitting the data with the sum of the two
expressions from eq. (3.10) and eq. (3.15) leads to a good agreement
between simulated data and fit function. The blue area in fig. 3.7
marks the contribution of the bulk cytoskeleton, while the orange-
shaded area gives the contribution of the membrane. The values of Y
are consistent with the theoretical values given by eq. (3.9).

105 106 107

kvg in N m−2

0.02

0.04

0.06

0.08

0.10

0.12

Ỹ
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Figure 3.8: Contribution of the volume constraint characterized by kvg

to the membrane response Ỹ . Different values of Y are marked by vari-
ous colors and lead to different values of Ỹ . This is an effect of the area
constraint. A stable plateau is observed for high vaules of kvg, as the
volume constraint has no effect on the deformation of the cell if the cell
volume is conserved. Except for kvg and Y , all parameters are chosen
equal to those in fig. 3.7.

The various potentials in eq. (3.11) affect the value of Ỹ differ-
ently. Their effects are studied systematically by changing one value
while keeping the others constant. Additionally, different values for
the Young’s modulus Y of the inner network are used. For all param-
eter sets, the value Ỹ is established by combined fitting from both
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eq. (3.10) and eq. (3.15).
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Figure 3.9: Contribution of the bending rigidity characterized by κ to
the membrane response Ỹ . The bending rigidity has no visible effect
on the elastic response, as the deformations of the bulk cytoskeleton
and the stretching of the membrane lead to significantly higher contri-
butions. Performing simulations with values of Y � 1 kPa leads to a
non-negligible effect of κ, which is not considered further. The simula-
tion values are chosen as in fig. 3.7, except for κ and Y .

Figure 3.8 presents the results for different values of kvg, where
each color corresponds to a different value of Y . The distinct levels
for Ỹ are a result of the area constraint, as will be discussed later
in this chapter. For high values of kvg, Ỹ reaches a stable plateau
and the onset of this plateau depends on Y . This demonstrates the
complex interaction between membrane and cytoskeleton. While the
volume constraint tries to conserve the volume of the cell, the elastic
network acts against it. For high kvg, the membrane contribution
dominates this relation, leading to constant values of Ỹ . We conclude
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that large values of kvg do not affect cell deformation and ensure
volume conservation of the cell.

The effect of κ on cell deformation is shown in fig. 3.9. The influence
of the bending rigidity is negligible for the elastic response, which is
consistent with the discussion around the derivation of eq. (3.15) in
Lulevich et al. [66].
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Figure 3.10: Contribution of the area constraints to the membrane re-
sponse Ỹ . In contrast to the volume constraint and the bending rigid-
ity, the strength of the area constraints influences the elastic response.
By rescaling both Ỹ and kag by Y , all curves fall onto a master curve,
showing that the relative mechanical response depends only on the ra-
tio of area constraint contribution and the strength of the inner net-
work.

For testing the effect of the area constraint, both parameters kag and
kal need to be considered. As their effect on deformation is similar,
we focus on a fixed ratio of kag = 50kal and only vary kag in fig. 3.10.
The effect of kag is significant for all shown values. By rescaling the
values of Ỹ and kag, the measured curves collapse onto one master
curve, shown in fig. 3.10. This shows a complex interaction between
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membrane and cytoskeleton, where the relative contribution of both
parts is dependent on the ratio kag/Y .

3.4 Conclusions

In this chapter, we have introduced a coarse-grained, spherical model
of a cell that includes elastic volume-filling cytokeleton and a thin
membrane shell. By performing microplate compression tests, we de-
termine the contributions of both parts toward the total elastic re-
sponse. We show that the inner network contributes purely elastically,
while the membrane acts as a thin balloon shell.

By studying the influence of the membrane parameters on cell de-
formation, we determine that the volume constraint has no effect for
high values of kvg and the bending rigidity contribution is neglectable
for cells with Young’s moduli between 1 kPa and 100 kPa. Therefore,
we can choose arbitrary values for these parameters without altering
the mechanical properties of the cell. In contrast, the area compres-
sion moduli kag and kal strongly influence the elastic response. By
rescaling the data for cell deformation we show that the relative con-
tributions of the cytoskeleton and the membrane are dependent only
on the ratios kag/Y and kal/Y .

The investigated effects of the different membrane potentials on cell
deformations are used as a starting point for studying cell blebbing in
the next chapter.

The studied model focuses on the contribution of an elastic inner
network. For eukaryotic cells, the cell nucleus will effect the elastic re-
sponse as well. It may be incorporated by introducing an elastic sphere
within the network, which models different elastic properties (usually
stiffer than the cytoskeleton). Depending on the position within the
cell volume, the resulting contributions to the elastic response may
differ.

The cell model incorporates the cytoskeletal contribution through
a homogeneous elastic network, which is a simplification of reality.
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To study the effects of various filaments and structures contributing
to the elastic cell response, we need to incorporate their differences
in more detail and study an inhomogeneous system. Additionally,
we ignored the possibility of dynamic reorganization of the cell under
pressure. This may lead to local stiffening by increasing the concentra-
tion of filaments or to a different cell-membrane-network interaction
through a local change in binding. In the next chapter, we introduce
a mechanism to model this interaction in more detail.
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4 Stress-Induced Cell
Blebbing

The adhesion between a cell membrane and the underlying structures,
such as the cytoskeleton or the cortex, plays an important role for the
stability and function of cells. In most cases, the adhesion between

Figure 4.1: Sketch and confocal-microscopy image of cell blebbing. Left:
The formation of a bleb after the cortex is ruptured locally. A pressure
difference between inside and outside of the membrane generates the
protrusion. Right: The shape of the membrane may be altered by such
protrusions as shown in the confocal-microscopy image. Picture taken
from [126] with permission and modified.

membrane and inner network is established by a number of linker
molecules [127]. Depending on the type of molecules, they may have
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4 Stress-Induced Cell Blebbing

complex kinetics of binding and unbinding over the lifetime of the
cell. This dynamics can be influenced by exerted stresses due to e.g.
osmotic pressure or active forces generated by molecular motors [128].
As a result, some cell membranes may form blebs, which are membrane
protrusions that occur when the membrane locally detaches from the
underlying network, as shown in fig. 4.1. These blebs are connected to
a number of processes, such as apoptosis [67, 68], cell spreading [69],
cytokinesis [70], and cell motility [71–73].

In this chapter, we discuss the mechanics of stress-induced bleb-
bing in a complex synthetic cell, which has been observed in exper-
iments [74]. To understand the mechanisms of blebbing, we adapt
the cell model introduced in chapter 3 by allowing contraction of the
cytoskeleton and a dynamic, bond-based adhesion between the mem-
brane and the inner network. We quantify the effects of the introduced
bond model as well as the membrane parameters on cell blebbing and
compare simulation predictions with the experimental results.

4.1 Stress-Induced Blebbing in Synthetic
Cells

Since blebbing is connected to various cell processes, different mech-
anisms may lead to the formation of a bleb. One example is stress-
induced blebbing, which results from mechanical stress acting on the
linkers between membrane and cytoskeleton. This has been observed
in recent experiments with synthetic cells. These cells consist of a
spherically-shaped lipid-bilayer membrane, that encapsulates a mix-
ture of actin filaments, the cross-linking protein anillin, and the molec-
ular motor protein myosin. Under the right conditions, the con-
stituents of the cell self-assemble into a volume spanning actin network
within the membrane as shown in fig. 4.2, where anillin provides the
stability of the network by cross-linking the actin filaments.

The cytoskeletal network is anchored to the lipid-bilayer membrane
through the interaction between the anillin cross-linker and Ni-NTA
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Figure 4.2: Synthetic cells consisting of a lipid-bilayer membrane and
an active actin network. (A) Sketch of the model system. As a result
of activity, blebs can be induced by network contraction. (B) For the
right conditions and concentrations of network components, the actin
and other constituents self-assemble into a volume spanning network,
tightly bound to the membrane. (C) The actin is distributed over the
whole diameter of the cell. Picture taken from [74] (open access) and
modified.

lipids. A number of these lipids are immersed into the membrane and
depending on the concentration, they allow a tight or loose binding
between the inner network and the membrane. It has been shown
by single-molecule experiments that the resulting connection becomes
unstable under a force of a few pN [129, 130], leading to a stress-
sensitive binding between the inner network and the membrane.

Due to the addition of myosin motors to the network, it may con-
tract when the system’s temperature is increased. The resulting forces
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4 Stress-Induced Cell Blebbing

exerted on the membrane-cytoskeleton connection can lead to the for-
mation of blebs, as shown in fig. 4.3. The occurrence of this effect de-
pends on different aspects of the cells, such as the contraction strength
of the network controlled by the myosin motor concentration and the
number of Ni-NTA lipids within in the membrane.

Figure 4.3: Formation of stress-induced blebs. (A) For a large anillin to
myosin ratio, a stable protrusion forms. This bleb is stable over time.
(B-E) For lower anillin to myosin ratios, the contractility of the net-
work is stronger and the network shrinks until it detaches completely
from the membrane, restoring its spherical shape. Picture taken from
[74] (open access) and modified.

When blebbing is observed, different dynamics can emerge, moder-
ated by e.g. the cross-linker anillin. Depending on its concentration,
the stability of the inner network is altered. For a large concentra-
tion, a stable and permanent bleb is formed, since the cytoskeleton
cannot shrink below a certain size (see fig. 4.3, (A)). For lower values
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of the anillin concentration, the network may disassemble completely,
leading to a permanently growing bleb over time (see fig. 4.3, (B-E)).
[74]

In this chapter, we investigate the formation of the observed bleb-
bing using a simulation approach based on the cell model introduced
in the previous chapter. The main aim is to quantify the effects of
different building blocks of the synthetic cells, such as the number
of binding sites and the strength of the contracting network, on the
blebbing process.

4.2 Simulation Model of Cell Blebbing

We start with the cell model introduced in chapter 3 and add the
ability of the inner network to contract as well as a dynamic adhesion
between the inner network and the cell membrane. This adhesion
is mediated by a number of bonds, as sketched in fig. 4.4. These
bonds can form and dissociate dynamically and are sensitive to stress,
allowing the formation of blebs. The model is immersed in the BD
framework that accounts for the viscous damping effects and thermal
fluctuations from a surrounding fluid.

4.2.1 Contractile Inner Network

The elastic network is modeled through a number of vertices N , which
are connected by NS springs. To add contractile behavior, the poten-
tial energy of these springs is given by

Unetwork(l1, . . . , lNS
) =

∑NS

i=1

λ̃C

2

(
li − cl0i

)2
, (4.1)

where λ̃C is the spring constant for a single bond and c is the con-
tractile factor. This factor is within the range c ∈ [0, 1] and allows to
shorten the rest length of each network spring. If c = 1, the network
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Figure 4.4: Schematic of the model to study cell blebbing. The mem-
brane (red) behaves as described in the previous chapter, while the in-
ner network can contract to mimic the effect of myosin motors. The
membrane and inner network are not permanently bound to each other,
but interact through a number of bonds (green) that can form and dis-
sociate dynamically.

shows no contraction, but for c < 1, a contractile force is applied, as
the springs contract toward their new rest lengths.

To quantify the effect of contraction on the whole network, we re-
place eq. (4.1) by a potential that is dependent only on network vari-
ables. As the employed geometry is spherical, a radius dependent
potential,

Unetwork(R) =
λC

2

(
R− cR0

C

)2
, (4.2)

is chosen as ansatz, where R is the instantaneous radius of the net-
work and R0

C is the initial radius. We introduce λC to be the total
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4.2 Simulation Model of Cell Blebbing

spring constant of the spherical network. A coordinate transformation
cannot alter the potential energy, so that

Unetwork(R)
!
= Unetwork(l1, . . . , lNS

) (4.3)

must hold. Assuming R = R0
C and li = l0i for all springs, which is

true at the beginning of the contraction process, eq. (4.3) becomes

λC

2
(1− c)2 (

R0
C

)2
=
λ̃C

2
(1− c)2

∑NS

i=1

(
l0i
)2 (4.4)

⇔ λC = λ̃C

∑NS

i=1

(
l0i
)2
/
(
R0

C

)2 (4.5)

⇔ λC = λ̃CNS

〈(
l0i
)2〉

/
(
R0

C

)2
, (4.6)

where the effective spring constant is dependent on details of the net-
work simulation setup as well as on the spring constant λ̃C. With the
volume of the network given by

V =
4

3
π
(
R0

C

)3 (4.7)

and eq. (3.9), the spring constant λC can be related to the previously
discussed Young’s modulus Y as

λC = 8πR0
CY. (4.8)

The entire elastic network reacts to the shortening of the springs
by the contraction factor c through reducing its rest radius R0

C by the
same factor. Therefore, we obtain a controllable contraction mecha-
nism for the inner network. From the potential energy, we establish
the surface force as F = −∂/∂RU :

FC(R) = −λC

(
R− cR0

C

)
. (4.9)

This force is directed from the surface of the inner network to its core.
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4 Stress-Induced Cell Blebbing

While c is well defined by eq. (4.1), its interpretation is counterintu-
itive, since a value of c = 1 corresponds to a stress-free system, while
c = 0 results in a system, which contracts toward a single point. We
therefore redefine the contraction C as

C := 1− c, (4.10)

for this scale to be reversed.
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Figure 4.5: Measurement of the inner network radius R over the course
of different simulations. As a result of the large amount of bonds, the
dynamics of the spherical surface is complex, but it converges to the
predicted rest state R = (1 − C)R0

C .

Simulations are performed using the elastic network contracted by
various values of C. The main simulation parameters are summarized
in table 3.1. The data in fig. 4.5 show the instantaneous cytoskeleton
radius R over the simulation time T . As the dynamics of network
vertices is complex due to the large number of coupled springs, the
time evolution may only be obtained numerically. For each value of
C, the radius approaches the rest state given by R = (1 − C)R0

C , as
predicted by the potential energy.
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Figure 4.6: Comparison between the potential energies of a contracting
network calculated by eq. (4.1) (points) and eq. (4.2) (lines). We ob-
serve a good agreement between both equations, which confirms the
generality of the derived effective spring constant λC.

The established relation for λC is verified by measuring the potential
energy stored in the inner network over the course of a simulation using
eq. (4.1). Using the following constant

A = λC/λ̃C, (4.11)

eq. (4.2) is fitted to the simulated data and the fitting parameter
is compared to the theoretical value of A given by eq. (4.6). A good
agreement between theory and simulations is obtained, but it depends
on the contraction level C. For large values of C, small defects in the
network are more pronounced due to the high forces whose effect does
not fully disappear through the applied averaging of the total network.

Both measurements confirm that the introduced mechanism con-
tracts the network in a controllable way. This is an important aspect
for the remainder of this chapter, as it permits a further theoretical
analysis of the cell blebbing problem.
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4 Stress-Induced Cell Blebbing

4.2.2 Membrane-Cytoskeleton Interaction

For stress-induced cell blebbing, the membrane locally detaches from
the inner network as a result of the applied tension. To model this
adhesion between the membrane and the inner network, they are con-
nected via dynamic harmonic springs, as depicted in fig. 4.7. These

FC

kon koff

Figure 4.7: Two-dimensional sketch of the interaction between the
membrane (red) and the inner network (blue). They interact through
harmonic springs which can associate and dissociate. This process is
stochastic and depends on the rates kon and koff . To model slip-bond
behavior, koff increases with an increase of tension. Therefore, the con-
nection is sensitive to the applied contraction force FC.

bonds can associate and dissociate dynamically between the vertices of
the membrane and the inner network over the course of a simulation.
Note that the bonds are force sensitive.

The potential energy and the force of each spring are given by

UI (l) =
λI

2
(l0 − l)2

, (4.12)

FI (l) = λI (l − l0) , (4.13)

where λI is the spring constant of a bond, l0 is the rest length and l
is the instantaneous length.

To model association and dissociation, each bond can have two
states: bound and unbound. Bonds can only be formed between a
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4.3 Cell Blebbing Results

vertex on the membrane surface and a vertex of the inner network, as
depicted in fig. 4.7. The transition between the two states is governed
by the association- or on-rate kon and the dissociation- or off-rate koff ,
that determine the number of events per unit time:

kon = k0
on, (4.14)

koff = k0
off exp

(
FI

FB

)
. (4.15)

While the on-rate is chosen to be constant, the off-rate is used to
model slip behavior. Hence, the lifetime τ = 1/koff of a formed bond
decreases with increasing tension. The tension is measured by the
internal force FI of the spring and the lifetime decreases exponentially,
depending on the force scale FB . This phenomenological ansatz used
by Bell [75] has been justified by the theoretical treatment [131–133]
of modeling thermally assisted escape from a metastable state [25].
As these transition rates break detailed balance, the resulting system
becomes an active system.

4.3 Cell Blebbing Results

Simulations are performed using the introduced cell model. While a
number of parameters are varied to study the effects of the membrane
properties and the bond model on cell blebbing throughout this chap-
ter, several main parameters are kept constant. They are summarized
in table 4.1, top part.

For a general impression about the simulated blebbing process, we
choose a simulation setup with N = 1000 membrane vertices and fixed
values of λI, λC, k0

on, k0
off , FB , and of the membrane parameters κ,

kvg, kag, and kal. Their values are summarized in table 4.1. For this
parameter set, simulations are performed with various values of C.
Figure 4.8 shows snapshots from three simulations at different times
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4 Stress-Induced Cell Blebbing

Parameter Simulation Value Physical Value

kBT 0.0001 4.282× 10−21 J
D0 10 10× 10−6 m
γ 5

∆t 0.001

λC 1293.24 5.53× 104 pN µm−1

λI 1.62 69 pN µm−1

k0
on 10.0
k0

off 0.01
FB 0.333 14 pN

κ 35 kBT 1.5× 10−19 N m
kag 34.02 1.46× 10−3 N m−1

kal 0.68 2.9× 10−5 N m−1

kvg 14000 6× 105 N m−2

Table 4.1: Overview of the main simulation parameters for cell blebbing
simulations. The thermal energy kBT and the average diameter of a
RBC D0 are used as energy- and lengthscales. γ and kBT are required
for the use of the BD framework. The dimensionless timescale τ =
tk0

off is introduced later in the chapter. The second part of the table
summarizes the parameters relevant to the adhesion process, while the
last part of the table summarizes the cell membrane parameters.

characterized by the dimensionless time τ , given by

τ = tk0
off . (4.16)

As it will become clear later in this section, τ is the appropriate
timescale for the cell blebbing problem. To visualize the interior of
the cell, the snapshots in fig. 4.8 are two-dimensional slices through
the three-dimensional cells. For a better visual comparison of different
snapshots, the cells are rotated using the gyration tensor, such that a
bleb is aligned along the x-direction.

The shown time series are representative examples of three possible
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C = 0.2350 C = 0.2604 C = 0.2893

τ = 0.00

τ = 25.00

τ = 50.00
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τ = 75.00

τ = 0.00

τ = 25.00

τ = 50.00

τ = 75.00

Figure 4.8: Time series for different values of C. Depending on the level
of contraction, the cell can show a stable behavior (left row), blebbing
with a late onset (middle), or nearly instantaneous blebbing (right).

systems. For C = 0.2350, the connection between the membrane and
cytoskeleton does not rupture during the simulation time. This type of
configuration is referred to as stable or unblebbed further in the text.
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4 Stress-Induced Cell Blebbing

While the overall connection is stable, local deformations may be seen
at the membrane surface. These result from thermal fluctuations, the
applied stress, as well as from stochastic transitions between bound
and unbound states for the connection bonds.

The second example in fig. 4.8 shows a blebbing transition, as the
membrane disconnects from the inner network for a larger value of
C = 0.2604. The transition is not instantaneous and occurs during
the last quarter of the simulation. Before this transition, the bonds
between the inner network and the membrane balance the applied
contraction stress, resulting in stronger deformations of the membrane
than for C = 0.2350. The sharp spikes are due to the two-dimensional
representation and the discrete, particle-based cell model. In three
dimensions, the deformations are smoother due to the applied bending
rigidity.

For a value of C = 0.2893, the blebbing transition occurs very fast
and the cell remains in the blebbed state for the rest of the simulation
time. Here, the applied tension is released through the blebbing and
the inner network relaxes to its minimum energy state.

Each of the configurations in fig. 4.8 is the result of one simulation.
To obtain reliable information about the onset of blebbing, a number
of simulations, usually between 10 and 20, are performed for every
parameter set. While these simulations may differ slightly, e.g. in the
blebbing time, they generally show quite similar behavior and shapes.

To identify a blebbed configuration, the bleb volume Vbleb is intro-
duced as an order parameter. It is defined as

Vbleb = Vmem − Vcyto, (4.17)

where Vmem is the volume of the membrane and Vcyto is the volume of
the cytoskeleton. The bleb volume is zero in the unblebbed case and
greater than zero when the cell is blebbed. For the parameter set in
table 4.1, the bleb volume is measured as a function of C in fig. 4.9,
where every data point corresponds to the average of all simulations
performed. The shadow indicates the 95 % confidence interval of the
measurements.
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Figure 4.9: Blebbing transition measured through the bleb volume. To
characterize the blebbing transition, the bleb volume is measured for
each independent simulation and a number of simulations are aver-
aged. The transition between non-blebbed and blebbed states is fast
and corresponds to a contraction value that depends on the simulation
parameters, especially on those of the interaction model.

The data indicate that the transition between non-blebbed and
blebbed states is nearly instantaneous when the contraction value is
larger than a critical value Cmeas

crit . Beyond this critical value, blebbing
is possible but is not always guaranteed, as shown by the confidence
interval. This situation refers to the second case shown in fig. 4.8, as
in this case the average waiting time before blebbing varies. For high
enough values of C, the blebbing transition always occurs, leading to
stable values for the bleb volume.

The results in fig. 4.9 show the transition for one parameter set.
Clearly, the blebbing transition may occur at different contraction
values when simulations are performed with various parameter sets.
In the next section, we derive a theoretical prediction for the blebbing
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4 Stress-Induced Cell Blebbing

transition depending on the simulation parameters.

4.3.1 Theoretical Prediction of the Blebbing Onset

We use a mean-field approach to predict the onset of the blebbing
transition. This approach has been used extensively to study the ad-
hesion between cells, where the cells are modeled as two rigid surfaces
which are separated by a constant force [75, 134].

We start with the following rate equation

dN ′

dt
= −N ′k0

off exp

(
FI

FBN ′

)
+ k0

on

(
NM −N ′

)
, (4.18)

where N ′ is the instantaneous number of bonds which are formed
between the membrane and cytoskeleton and FI is the total force
acting on N ′ bonds. The other variables are the parameters of the
bond interaction as introduced before. The first term on the right
hand side gives the rate of bond reductions as a result of the off rate
and the applied stress, while the second term describes the growth of
bonds being formed. We limit the number of bonds for every vertex
to 1. Thus, only NM bonds can be formed in total.

Dividing eq. (4.18) by k0
off gives us a dimensionless rate equation

with the dimensionless timescale τ , which is used in this chapter. Fur-
thermore, the dimensionless value φ = k0

on/k
0
off appears, representing

the binding-unbinding ratio without applied stress.

Before blebbing occurs, we observe a stable tug-of-war process be-
tween the contracting inner network and the connecting bonds. Thus,
we are interested in the steady state, simplifying the equation to

0 = −N ′ exp

(
FI

FBN ′

)
+ φ

(
NM −N ′

)
. (4.19)

The total force acting on the bonds is given by summing up the
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contributions from all formed bonds

FI = λI

N ′∑
i=1

(
li − l0i

)
(4.20)

= λIN
′ (〈li〉 − 〈l0i 〉) , (4.21)

where the sum over all bonds is replaced by the average. To obtain
an equation that depends only on the radius of the inner network
R, 〈li〉 needs to be expressed in terms of this radius. In fig. 4.10, all
radii, which describe the (spherical) cell, are sketched. The membrane

RM

R C R

F
C

Figure 4.10: Sketch of the relevant radii within a cell model. R is the
instantaneous radius of the inner network, RC is the target radius of
the inner network, depending on C. RM is the radius of the membrane.
As a result of a strong volume constraint, RM remains constant as long
as the cell is spherical.

radius is constant as a result of the applied volume constraint, as long
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as the cell remains spherical. Since bonds are formed between the
membrane and the inner network, the average bond length can be
replaced by

〈li〉 = RM −R, (4.22)

which leads to the relation

FI(R) = λIN
′ (RM −R− 〈l0i 〉

)
(4.23)

= λIN
′ (R0

C −R
)
, (4.24)

where we find the initial radius of the cytoskeleton R0
C again. Using

this equation, we can express the total force applied to the connec-
tion bonds as a function of the instantaneous number of bonds N ′,
the instantaneous radius R of the cytoskeleton and other simulation
parameters.

To obtain an equilibrium state of force balance, the contraction
force FC and the force exerted on the connection bonds FI need to
cancel each other:

FI + FC = 0 (4.25)

⇔ λIN
′ (R0

C −R
)

= λC

(
R0

C (1− C)−R
)

(4.26)

⇔ R = R0
C

λC (1− C) + λIN
′

λC + λIN ′
. (4.27)

Note that the radius R depends on the instantaneous number of bonds
N ′, which is governed by the rate equation (4.19). To test eq. (4.27),
simulations are performed without unbinding with k0

off = 0, so that
N ′ = NM is guaranteed. For different ratios of λIN

M/λC, the re-
sulting radius R is shown in fig. 4.11 as a function of the applied
contraction C.

Without any free parameters, a good agreement between the simu-
lation data and the theoretically predicted radii is observed, so that
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Figure 4.11: Instantaneous radius R for contracted cells without un-
binding (i.e k0

off = 0) as a function of the contraction C. The data
points are obtained by simulations, while the solid lines are given by
eq. (4.27). A very good agreement is observed without any free param-
eters, justifying the assumptions made.

we can use eq. (4.27) to obtain the two forces

FI = λIR
0
CN

(
1− λC (1− C) + λIN

′

λC + λIN ′

)
, (4.28)

FC = λCR
0
C

(
(1− C)− λC (1− C) + λIN

′

λC + λIN ′

)
. (4.29)

If eq. (4.28) is inserted into eq. (4.19), the resulting equation still
involves two variables, namely the contraction C and the number of
bonds N ′. If we know the contraction, we can obtain the average
number of bonds. Additionally, for the case of two rigid plates, which
are separated by a constant force, a critical force was derived by Bell
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[75] at which the connection develops a cascading instability:

Fcrit = FBN
Mpln (φ/e) . (4.30)

Here, the product logarithm pln(a) is the solution of x expx = a,
similar to the definition of the natural logarithm ln a as the solution
of expx = a.

To use this relation, the constant separating force needs to be re-
placed by the contractile force FC that shrinks the inner network. It
leads to a second relation

Fcrit = FC (4.31)

⇔ Fcrit = λCR
0
C

(
(1− Ccrit)−

λC (1− Ccrit) + λIN
′
crit

λC + λIN ′crit

)
(4.32)

⇔ N ′crit =
λCFcrit

λIλCR0
CCcrit − λIFcrit

(4.33)

between Ccrit and N ′crit that is plugged into eq. (4.19). The resulting
equation is non-linear and cannot be solved analytically. Therefore,
we use Sympy [135] and its implementation of the secant method to
solve the equation for the critical contraction Ctheo

crit . This solution
gives us the predicted contraction, at which we expect the blebbing
transition to take place. For a fixed geometry, as used in this chapter,
Ctheo

crit is dependent only on the parameters of the bond model:

Ctheo
crit = Ctheo

crit

(
NM , R0

C , λC, λI, φ, FB

)
. (4.34)

4.3.2 Results for Rigid Membranes

To verify the theoretical arguments for Ctheo
crit , simulations are per-

formed with a rigid spherical shell which neither moves nor fluctuates,
preventing any contribution of the outer shell to the detachment of
the inner network. The inner network and the connection bonds are
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Figure 4.12: Instantaneous radius R as a function of the simulation time
τ for cells with rigid membranes and different contractions. Solid lines
are the results of the simulations, while dashed lines correspond to the
equilibration radius as calculated by eq. (4.27) for the applied contrac-
tion. Different colors mark different values of C, normalized by Ctheo

crit .
The stability of the simulated configurations is quantified by the equi-
libration time τequi that measures how long the simulated radius and
its theoretical value match. If τequi ≈ τmax (i.e. maximum simulation
time), the system is considered stable.

modeled as introduced. For the parameter set in table 4.1, the instan-
taneous radius R as a function of the simulation time τ is shown in
fig. 4.12 for different values of C. The contraction values are normal-
ized by Ctheo

crit , such that blebbing is expected for C/Ctheo
crit ≥ 1 which

is the case for the data in fig. 4.12. Furthermore, a good agreement
between the simulation data and the theoretical equilibrium radius
given by eq. (4.27) is observed for the case of no blebbing.

To quantify the blebbing behavior, the equilibration time τequi is
introduced as an order parameter. It measures the timespan, dur-
ing which R is equal to the theoretical value. For τequi ≈ τmax (i.e.
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maximum simulation time), the system is stable and does not show
blebbing over the course of the simulation. For lower values, the bleb-
bing transition is observed. We measure τequi in each simulation and
average it for configurations with the same parameters. In fig. 4.13,
the blebbing results are shown for the parameters given in table 4.1
but three different values of FB . To compare the results, the values
of C are normalized by the respective value of Ctheo

crit and the expected
blebbing transition is marked by the dashed line.
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Figure 4.13: Average equilibration time τequi as a function of applied
contraction. For the comparison of the results, the contractions are
normalized by the corresponding values of Ctheo

crit . Blebbing is expected
to happen for C/Ctheo

crit = 1.0, which is a good approximation for all
shown configurations. Small deviations for the blebbing onset from the
theoretical results are mostly due to the sensitivity of the connecting
bonds to various fluctuations.

We define a blebbing transition point Cmeas
crit as the contraction value,

at which blebbing occurs, i.e. τequi < τmax. In general, a good agree-
ment between the predicted and simulated transition points is ob-
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served. Depending on the parameter set, small deviations from the
theoretically predicted values are observed. These deviations are the
result of fluctuations (thermal, binding-unbinding) and other pertur-
bations such as mesh errors, which are emphasized differently depend-
ing on the simulation parameters. To average out these differences, a
number of parameter sets are simulated, summarized in the top part
of fig. 4.14. The values of Cmeas

crit are measured and plotted against the
theoretical values of Ctheo

crit in the bottom part of fig. 4.14.

NM λC/pN µm−1 λI/pN µm−1 φ FB/pN Ctheo
crit Cmeas

crit

1000 5.54× 104 69.4 1000 14.27 0.460 0.440
1000 5.54× 104 69.4 1000 8.56 0.276 0.266
1000 1.11× 105 69.4 1000 15.29 0.369 0.367
1000 1.11× 105 69.4 1000 12.23 0.295 0.299
1000 1.11× 105 69.4 1000 10.70 0.258 0.263
1000 1.11× 105 104.1 1000 10.70 0.201 0.199
1000 1.11× 105 104.1 1000 8.56 0.161 0.158
1000 1.11× 105 104.1 1000 7.14 0.134 0.132
1000 1.11× 105 138.7 1000 28.55 0.460 0.440
1000 1.11× 105 138.7 1000 23.79 0.384 0.367
1000 1.11× 105 138.7 1000 21.41 0.345 0.330
3000 8.89× 104 69.4 1000 5.35 0.248 0.240
3000 1.78× 105 104.1 1000 14.27 0.369 0.357
3000 1.78× 105 104.1 1000 7.14 0.185 0.183

Table 4.2: Measured values of Cmeas
crit compared to their theoretically pre-

dicted values Ctheo
crit for rigid cell membranes. The simulation parame-

ters shown above as well as parameters in table 4.1 are used.

The data points are fitted with the proportionality relationship

Cmeas
crit = αCtheo

crit , (4.35)

in which α represents the correspondence between simulations and
theory. For the simulations with a rigid membrane, α deviates by 2.2 %
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Figure 4.14: Measured values of Cmeas
crit compared to their theoretically

predicted values Ctheo
crit for rigid cell membranes. The data points in

table 4.2 are fitted using eq. (4.35), where α defines the correspondence
between simulations and theory. α differs from the expected value by
2.2 %, which is a good agreement. The simulation parameters shown
above as well as parameters in table 4.1 are used.

from the theoretical prediction, indicating a very good agreement.
Therefore, we conclude that the proposed theoretical prediction for
Ctheo

crit works well for rigid spherical membranes.

4.3.3 Results for Flexible Membranes

A similar analysis is performed for cells using the full membrane model
from eq. (3.11), which includes bending rigidity as well as the area
and volume constraints. In fig. 4.15, the results for τequi are shown
for three configurations with different values of FB , and otherwise for
the same simulation parameters given in table 4.1. The values of C
are normalized by corresponding values of Ctheo

crit for every set.
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The curves in fig. 4.15 are grouped together in a similar way as the
results for a rigid membrane in fig. 4.13 using the same normalization.
Simulations with flexible membranes also show that the instability of
the bond connections leads to the onset of blebbing. However, the
results in fig. 4.15 are not grouped around C/Ctheo

crit = 1 due to ef-
fects of the membrane on the blebbing transition, since the membrane
properties are not captured by eq. (4.34).
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Figure 4.15: Average equilibration time τequi as a function of the ap-
plied contraction for flexible cell membranes. As a result of the normal-
ization by the corresponding Ctheo

crit , the curves are grouped together.
In contrast to the results of rigid cell membranes, the grouping is not
around C/Ctheo

crit = 1.0, as the flexible membrane also contributes to the
blebbing onset.

Further, we discuss the effects of various membrane potentials on
the blebbing onset. From the results in chapter 3, a negligible ef-
fect of the volume constraint and bending rigidity on blebbing is ex-
pected, while the area constraints and the resistance of the membrane
to stretching play an important role.
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4 Stress-Induced Cell Blebbing

4.3.4 Effects of Bending Rigidity and Volume
Constraint

The fixed parameter set in table 4.1 is used to test the influence of
kvg on the blebbing onset. The value of kvg is varied by several orders
of magnitude to study whether this parameter affects blebbing. The
measured values of τequi are shown in fig. 4.16. For values kvg ≥
6× 103 N m−2, the curves show the same blebbing behavior within
the limits of stochasticity in the system.
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Figure 4.16: Average blebbing time as a function of C/Ctheo
crit for differ-

ent volume constraint constants kvg. The measured times are within an
acceptable error margin for all configurations with kvg ≥ 6 × 103 N m−2,
indicating no significant dependence of blebbing on the volume con-
straint. For smaller values of kvg, τequi cannot be established in a re-
liable way, as the volume constraint is not able to resist the applied
tension through the contraction.

For small values of kvg, τequi becomes zero. To better understand
this, we take a look at some example shapes in fig. 4.17, corresponding
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4.3 Cell Blebbing Results

to the three lowest and the highest value of kvg in fig. 4.16. The
simulations are performed with a contraction C = 0.2821 and fig. 4.17
shows the final state from each simulation. For high values of kvg,
the shapes are very similar within an acceptable error margin, but
for kvg = 6× 102 N m−2, the volume constraint is too weak and is
not able to keep the targeted spherical shape of the membrane under
the contractile stress, resulting in spikes at the membrane surface and
other non-physical shapes. Since the resulting network radius does

kvg = 6× 102 N m2 kvg = 6× 103 N m2

kvg = 6× 104 N m2 kvg = 6× 107 N m2

Figure 4.17: Example cell shapes for simulated configurations with vari-
ous volume constraints. All simulations are performed with C = 0.2821
and the final cell shape of each simulation is shown. For high enough
values of kvg, the observed shapes are similar, as the influence of the
volume constraint on blebbing is negligible. For smaller values of kvg,
the resulting shapes become non-physical as the volume constraint can-
not resist the applied stress.

not match the predicted equilibrium state given by eq. (4.27), τequi

cannot be established.
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Figure 4.18: Values of τequi for different bending rigidities κ (top) and
two shape examples (bottom). Similar to the volume constraint, no
significant dependence of blebbing on κ is visible for both τequi and the
obtained shapes, as the contribution of the bending energy is too small
in comparison to the applied stress through the contraction.

In agreement with the results in chapter 3, the influence of the
volume constraint parameter kvg on blebbing onset can be neglected,
when the constraint is strong enough to conserve the cell volume.
Therefore, we choose kvg = 6× 105 N m−2 for the rest of this chapter.
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Similar tests are performed using values of the bending rigidity κ
varying between 1.5× 10−21 N m and 1.5× 10−18 N m. The measured
values of τequi and two shape examples are shown in fig. 4.18. No
effect of κ on blebbing is observed for both τequi and the resulting
shapes, since the contribution of the bending energy is too small in
comparison to the applied stress.

Even though the bending rigidity has no effect on the blebbing
onset, it facilitates realistic physical cell shapes with a smooth mem-
brane surface (no sharp spikes). This is true even if κ becomes small.
Therefore, κ = 1.5× 10−19 N m is used in all further simulations.

4.3.5 The Effect of the Area Constraints

In contrast to the bending rigidity κ and the volume constraint coeffi-
cient kvg, the effect of both area constraints is significant. We measure

NM λC/pN µm−1 λI/pN µm−1 φ FB/pN Ctheo
crit Cmeas

crit

1000 5.54× 104 69.4 1000 14.27 0.460 0.249
1000 5.54× 104 69.4 1000 8.56 0.276 0.158
1000 5.54× 104 69.4 1000 5.35 0.173 0.092
1000 1.11× 105 69.4 1000 15.29 0.369 0.201
1000 1.11× 105 69.4 1000 12.23 0.295 0.171
1000 1.11× 105 69.4 1000 10.70 0.258 0.154
1000 1.11× 105 104.1 1000 10.70 0.201 0.107
1000 1.11× 105 104.1 1000 7.14 0.134 0.067

Table 4.3: Cmeas
crit measured against theoretical values Ctheo

crit for fixed ra-
tio λC/kag = 38.01. The simulation parameters shown above as well as
parameters in table 4.1 are used.

the parameter α from eq. (4.35) depending on the ratio between the
strength of the inner network λC and the area constraints kag and kvg.
In fig. 4.19, α is shown for the ratio λC/kag = 38.01 and a fixed value
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4 Stress-Induced Cell Blebbing

of kal. The different types of symbols correspond to different inner
network strengths λC, indicating that only the relative contribution
λC/kag plays a role. Since the data show a linear dependence between
Ctheo

crit and Cmeas
crit , we can find α = 0.551± 0.011 for λC/kag = 38.01.

0.0 0.1 0.2 0.3 0.4
Ctheo

crit

0.00

0.05

0.10

0.15

0.20

0.25

C
m

ea
s

cr
it

Cmeas
crit = (0.551± 0.011)Ctheo

crit

Figure 4.19: α is established by fitting the data in fig. 4.19 using
eq. (4.35). The obtained rescaling factor shows the importance of the
calculated bond instability, but rescaling is needed to incorporate mem-
brane properties.

Performing simulations for other values of the ratio λC/kag with a
constant kal and for the ratio λC/kal with a constant kag allows us to
establish α for various configurations. Figure 4.20 summarizes these
results, where the red dot marks α for the rigid membrane case, while
the other points are measured for flexible membranes. We observe
that an increase in kag and kal leads to larger values of α, as the area
constraint penalizes the expansion of the membrane area. For a very
strong area constraint, we expect to obtain the same α as that for the
rigid membrane in the previous section.

While both area constraint influence the blebbing onset, they also
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Figure 4.20: α as a function of the ratios λC/kag and λC/kal. For both
curves, a strong increase in α is observed when the area constraints
are increased. For very strong area constraints, which do not allow
any change in the membrane area, the results for the rigid membrane
should be reproduced. For lower values of the area constraint, the
dependence of α starts to level off, indicating that the resulting cell
shapes become nearly independent on the values of kag and kal.

have a significant effect on the resulting shapes. In fig. 4.21, simulated
cell shape for various ratios λC/kag are shown. All setups are per-
formed with simulation parameters given in table 4.1, FB = 8.56 pN,
and C = 0.2400, so that only the value of kag is varied. In addition,
the relative area change ∆A = (A − A0)/A0 is calculated for these
configurations to quantify the expansion of the membrane.

For large values of kag, the resulting cell shapes stay nearly spherical
after the blebbing transition. These spherical shapes do not agree well
with the experimental shapes shown in fig. 4.1. Note that even small
changes in ∆A already result in a strong increase of α from about
α = 0.76 to α = 0.82. This confirms the pronounced dependence of α
on the membrane stiffness close to a perfect area conservation.
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λC/kag = 76.03, ∆A = 5.16 % λC/kag = 38.01, ∆A = 4.23 %

λC/kag = 19.01, ∆A = 3.32 % λC/kag = 3.80, ∆A = 1.60 %

λC/kag = 0.38, ∆A = 0.10 % λC/kag = 0.04, ∆A = 0.09 %

Figure 4.21: Cell shape examples for various values of the ratio λC/kag.
All simulations are performed with the same parameter set shown in
table 4.1, with FB = 8.56 pN, C = 0.2400, and variable kag. The re-
sulting blebbed shapes become more spherical for an increased value
of kag, as a sphere requires less amount of extra membrane area than
non-spherical shapes. For lower values of kag, the shapes show features,
which are comparable to the experimental results.

For lower strengths of the area constraint, its effect on the shape
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and of α is not that strong. While the cell shapes still differ, they show
similar features for lower values of kag. Additionally, the average value
of ∆A is within a realistic range of area change for membranes [41].
By comparing the simulated shapes to the experimental observations,
we find a good correspondence between simulations and experiments
for α ∈ [0.5, 0.6].

4.3.6 Theoretical Analysis of Blebbing

We have shown that the dependence of the blebbing onset on mem-
brane properties can be described well by the pre-factor α. Since this
is a purely linear rescaling of Ctheo

crit and the effects of the membrane
parameters have been already discussed, we can focus now on the
parameters given in eq. (4.34). To this end, we assume α = 1.

In the experiments by Loiseau et al. [74], the number of membrane
binding sites is controlled by the concentration of binding lipids within
the lipid-bilayer membrane. Blebbing is observed only for certain
values of this concentration. In simulations, the number of binding
sites is limited, as the computational cost scales non-linearly with a
change in NM . Therefore, all performed simulations have employed
NM = 1000 or NM = 3000 vertices. Assuming binding site densities
up to ρ0 = 120 µm−2 [136] and an average cell size betweenRM = 5 µm
and RM = 30 µm [74, 136], we obtain a number of binding sites up
to NM ≈ 1.3× 107. Thus, we need to systematically analyze the
influence of the number of binding sites on the blebbing process.

An increase in the number of binding sites stabilizes the connection
linearly, as shown by eq. (4.30). More binding sites also result in an
increased force needed for the unbinding event, which can be achieved
by a larger pulling strength of the inner network λC. In fig. 4.22, the
values of Ctheo

crit are plotted as a function of the spring constant λC and
the number of bonds is indicated by various colors. The area below the
curves corresponds to a stable configuration where no blebbing occurs,
and above the curves, blebbing is expected. We observe a linear scaling
between λI and NM , because the resulting values of Ctheo

crit depend only
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Figure 4.22: Dependence of Ctheo
crit on the number of binding sites, the

contraction strength λC, and the strength of the adhesion bonds λI.
An increase in the number of binding sites can be counteracted by the
same increase in λC, such that blebbing transition is dependent only
on the ratio NM/λC. For low values of λI, the system relaxes before
blebbing occurs, leading to a relatively large value of Ctheo

crit required for
blebbing.

on their ratio. Therefore, an increase in the number of binding sites
has to be counteracted by the same increase in the stress of the inner
network, which may not be possible in vitro, since an increase in the
number of myosin motor proteins leads to an instable cytoskeletal
network. This explains the experimental observation that blebbing is
only possible for certain Ni-NTA lipid concentrations.

Another important factor for the onset of blebbing is the strength
λI of the connections between membrane and cytoskeleton since it
controls the equilibrium radius of the inner network. For small values
of λI and C, the inner network relaxes to a configuration where the
applied forces on the membrane are small. In this state, the onset
of blebbing becomes independent of the contraction strength of the
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inner network. The curves in fig. 4.22 show that the minimum value
of Ctheo

crit is independent of the strength of the inner network as well as
the number of bonds. This demonstrates how different binding inter-
actions between cell membrane and inner network may not result in
blebbing, since the single-bond dissociation can require much stronger
contractions.

10−5 10−4 10−3 10−2 10−1 100 101

pln (φ/e)

0.0

0.2

0.4

0.6

0.8

1.0

C
th

eo
cr

it

NM

1× 103

1× 104

1× 105

1× 106

1× 107

FB

14.27 pN

71.37 pN

Figure 4.23: Dependence of Ctheo
crit on the number of binding sites, the

binding-unbinding ratio φ and the force sensitivity FB . If too many
bonds are formed in comparison to the dissociation of bonds, blebbing
becomes not possible since no cascading catastrophe can occur. The
value of FB has a similar effect as the bond strength on the minimal
value of Ctheo

crit required for blebbing, since FB shifts the required energy
barrier for the catastrophe.

In fig. 4.23, the values of Ctheo
crit are shown as a function of pln (φ/e),

where φ corresponds to the binding to unbinding ratio. A large value
of φ stabilizes the connection between membrane and inner network
for all configurations. In contrast to the results in fig. 4.22, we observe
a non-linear dependence between NM and pln (φ/e). Nevertheless, for
all configurations, a large value of φ leads to no blebbing transition,
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since not enough bonds can be broken.

In fig. 4.23, we also observe that a minimum value of Ctheo
crit for the

blebbing onset is independent of NM and φ but can be shifted by
the bond sensitivity FB . This shift can be explained by the resulting
equilibrium states determined through the spring constants. If the
applied stress in the equilibrium state is too low to unbind enough
bonds, blebbing is not possible. This energy barrier is determined by
the force sensitivity FB .

In summary, our results show that blebbing is possible only for a
small range of parameter sets, as the transition is sensitive to all bond
interaction parameters. We observe that the minimum Ctheo

crit is deter-
mined by the strength of connection bonds λI and the force sensitivity
FB , as they determine, whether the applied stress in the equilibrium
configuration is large enough to allow blebbing. Furthermore, an in-
crease in the number of membrane binding sites has to be counteracted
either by an increase in the strength of the contracting network λC or
by a reduction of the binding-unbinding ratio φ. This explains why
blebbing is observed only for a small parameter range in vitro, as the
two mentioned options are not easily achievable.

4.4 Conclusions

In this chapter, we have introduced a model, which reproduces cell
blebbing as a result of a contractile inner network. In this model, a
lipid bilayer membrane is connected by stochastic bonds to an elastic
network, which is able to contract in a controllable way. Using this
model, blebbing behavior can be simulated and the model parame-
ters can be adapted such that the resulting configurations are similar
to experimental observations of blebbing. The simulation parameters
possess realistic values with the Young’s moduli of the relaxed inner
network on the order of several kPa and the sensitivity of the con-
necting bonds in the range of a few pN. We observe the existence of a
critical contraction value for the blebbing transition, below which no
blebbing is observed.
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Using a mean-field approach, we are able to predict the blebbing
transition characterized by the critical contraction Ctheo

crit for the bond-
based interaction model. We verify this theoretical prediction for rigid
membranes, where the cell membrane is not able to deform. In the
case of flexible membranes, we observe a proportionality scaling of
the measured blebbing transition values Cmeas

crit and Ctheo
crit with the

pre-factor α. Using the theory and simulations, we can separate the
effects of the membrane properties and the bond adhesion model on
cell blebbing, allowing us to study various parameters in more detail.

By probing the effects of different membrane parameters on bleb-
bing, we observe that bending rigidity and volume constraint have no
significant effects on the blebbing onset as well as the final cell shapes.
In contrast, a strong dependence of blebbing on the local and global
area constraints is observed, since blebbing is possible only through an
increase in the membrane area. By comparing the simulation results
with experimental observations of blebbed vesicles, we conclude that
realistic bleb models are obtained for α ∈ [0.5, 0.6].

By calculating Ctheo
crit for various sets of the bond interaction param-

eters, we obtain boundaries for the existence of blebbing. The number
of binding sites plays a vital role, since it stabilizes the connection be-
tween the membrane and the inner network. An increase in NM can
be counteracted by the same increase in the contraction strength of
the inner network λC. An increase in the number of binding events
in comparison to the number of unbinding events also stabilizes the
connection between membrane and inner network, leading to stable
cell systems. Lastly, the strength of the connection bonds between
membrane and inner network and the sensitivity of the slip bonds con-
trol the barrier under which blebbing is not possible, since the applied
stresses relax instantly. This effect may explain how different cells pre-
vent cell blebbing by using different types of membrane-cytoskeletal
connections.

In summary, the proposed cell model and theoretical analysis are
able to reproduce stress-induced cell blebbing and to quantify several
key scaling laws required for the existence of blebbing.
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To use the introduced coarse-grained model for the quantification of
experiments, more experimental data regarding some of the discussed
parameters are required. By precisely measuring e.g. the number of
binding sites within the membrane, other parameters of blebbing may
be quantified using the simulation model. Similarly, we can predict
main membrane properties by knowing the details about adhesion
between the membrane and cytoskeleton.

The employed model has been driven by the experiments with syn-
thetic vesicles. To extend it to complex biological cells, additional
features, such as different types of interaction bonds, might be re-
quired, i.e. the addition of catch-bond-interactions with increasing
bond lifetimes under stress.
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5 Malaria Parasite Alignment

Malaria still remains one of the most devastating diseases around the
world and accounts for about 500 000 deaths every year [76, 137].
While this number is slowly but steadily decreasing thanks to ad-
vancements in treating and preventing malaria, a better understand-
ing of the infection process has still a high priority. This research is
largely motivated by the search for new therapies, but in recent years,
a new focus on the biophysical mechanics of the disease is observed
[138–140].

This chapter focuses on a critical stage for the survival of the malaria
parasite in a human host, the so called pre-invasion- or alignment-
stage. First we introduce the general malaria cycle and discuss the
importance of this stage. Then we introduce two simulation mod-
els that focus on open key questions for the mechanics of this stage.
Both models are discussed in detail in the subsequent parts of this
chapter and their results are compared to a number of experimental
observations.

5.1 The Malaria Cycle

Malaria is caused by a parasite from the Plasmodium genus, in most
cases by Plasmodium falciparum. To ensure its own survival, the par-
asite follows a certain number of events to multiply, see fig. 5.1. This
closed malaria cycle starts with a bite of a female Anopheles mosquito,
by which the malaria parasite is introduced into the skin of the human
host. During the human part of the blood cycle, the parasite exists in
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different forms, which are named sporozoites, merozoites, and game-
tocytes. The transitions between these stages occur between various
steps of the malaria cycle.

Figure 5.1: Schematic of the malaria cycle within humans. The host is
infected via a mosquito bite, that introduces sporozoites into the skin.
These sporozoites travel to the liver, where they multiply and are re-
leased into the blood stream as merozoites. Then RBCs are invaded by
the merozoites, resulting in the common malaria symptoms. Some ga-
metocytes are picked up by another mosquito during blood meal and,
after a number of stages within the animal, can infect further hosts.
Picture taken from [76] with permission.

Once introduced into the skin [141], sporozoites find the nearest
bloodstream and are transported by blood flow via the vascular system
to the liver of the host. Within the liver, each sporozoite can produce
thousands of merozoites that are released from the liver into the blood
stream [142, 143].

While the sporozoite has a long and thin shape, which is optimized
for movement during the skin stage [145–149], the merozoite adapts a
pear- or egg-like shape, as depicted in fig. 5.2. To ensure the survival
of the parasite, the merozoite has to reproduce by invading red blood
cells (RBCs) in the bloodstream. After around 48 hours past invasion,

78



5.1 The Malaria Cycle

Figure 5.2: Schematic view of the merozoite during the blood stage. Its
average shape is pear- or egg-like with an average size between 1 µm
and 2 µm. It contains a distinct apex structure that needs to be aligned
head-first perpendicular to a RBC membrane to successfully invade it.
Once within the RBC, it reproduces asexually and then bursts the in-
fected cell, releasing about 20 new merozoites to invade further RBCs.
Picture taken from [144] with permission.

the membrane of the infected RBC bursts open, releasing around 20
new merozoites into the bloodstream. This repeating process within
the full malaria cycle in fig. 5.1 is called the blood stage or blood
cycle. The common symptoms of a malaria infection such as fever,
tiredness, vomiting and headaches [150] can be observed during the
blood stage since changes in the elastic properties and the bursting
of the infected RBCs occur, altering the behavior of blood in the
vascular system. The human part of the malaria cycle is completed
by turning a number of parasites into gametocytes. These can be
picked up by another mosquito blood meal and after several stages
within the mosquito, new humans can be infected as described above.
[76]
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5.2 Invasion of a Red Blood Cell

The successful invasion of a RBC by a merozoite is the key aspect dur-
ing the blood stage, as the malaria parasite can only survive within the
host if enough merozoites are able to reproduce [144, 151, 152]. There
are two stages in the invasion process. In the first stage called parasite
alignment, the merozoite aligns itself on the surface of a RBC. After a
successful alignment, the actual invasion takes place. The alignment
stage is short and takes between 2 s and 50 s, as the merozoite looses its
ability to invade a RBC after about 3 min [77]. To date the alignment
period is poorly understood, even though a number of experiments
have pointed out several key aspects of the alignment [78–86, 144].

Figure 5.3: Different stages of a successful invasion event. At the first
contact of the parasite, the head is aligned arbitrarily to the surface of
the RBC (A). Through a yet unknown mechanism, the parasite aligns
its head perpendicular to the RBC (B). This process is often accompa-
nied by strong deformation as a result of the interaction of the mem-
brane with the parasite. After alignment, the apex structure forms a
tight junction complex, which allows the penetration of the membrane
(C-E). Picture taken from [144] with permission.

The merozoite has a pear-like shape with an average size of around
1 µm to 2 µm and a distinct head or apex structure (see fig. 5.2) [144,
153]. For a successful invasion, this structure needs to be aligned
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head-first perpendicular to the membrane surface (see fig. 5.3) [84,
144]. This alignment is controlled by the parasite, as its first contact
with a potential invasion target is random and the orientation of the
apex toward the membrane is arbitrary. After the first contact, several
agonists, that coat the parasite, can form bindings between the two
cells. These bounds are of various lengths between 20 nm and 150 nm
[79] and are reversible, leading to strong movement of the parasite
during alignment.

Figure 5.4: Examples of different membrane deformations in vitro. The
deformations range from not visually detectable to a complete loss of
the biconcave shape of the RBC. Based on the visible deformation, a
deformation index can be assigned. Different experiments show a pos-
itive correlation between this score and the probability for a successful
invasion event [85, 86]. Picture taken from [85] (open access).

The pre-invasion stage is often accompanied by membrane fluctu-
ations of various intensity, as depicted in fig. 5.4 [82]. The induced
deformation ranges from small indentations at the RBC surface to a
total loss of the original RBC biconcave shape. To quantify the defor-
mation in experiments, a discrete deformation index Id is introduced
[85]. It is divided into four categories, which can be summarized as

Id = 0 No visible deformation.

Id = 1 Small and local deformation.
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Id = 2 Partial wrapping of the parasite by a membrane with local
deformation.

Id = 3 Strong wrapping of the parasite, such that the RBC shape is
globally deformed.

Several experiments show a positive correlation between this deforma-
tion index and the probability for a successful invasion event [85, 86],
implying that the deformation is actively introduced by the parasite
to enhance its chance of alignment and invasion.

The current working hypothesis based on available information sug-
gests that local changes in calcium mediate membrane deformation.
In this scenario, the parasite can induce a local change in the cal-
cium concentration within the RBC, leading to the softening of the
membrane. This mechanical change then leads to a more successful
alignment and subsequently to a higher chance of invasion.

In most recent experiments however, no increased calcium concen-
trations were detected [86], indicating that the response of the RBC
is rather passive than active. This leads to the passive compliance
hypothesis [86], which suggests that the deformation is aiding the
alignment of the parasite, but instead of an active reaction of the
membrane to calcium concentration changes, the membrane reacts to
mechanical stress induced by the parasite. To this end, the observed
parasite adhesion applies forces onto the membrane, leading to the
deformation of the RBC membrane [154]. A number of early obser-
vations support this hypothesis, for example the experiments in ref.
[79].

While the experiments point toward the direction of a mechanical
approach, a number of fundamental questions still remain unanswered,
for example:

1. Is the parasite able to induce the observed deformation purely
by mechanical interaction? Is the required interaction strength
in accordance with experimental measurements?

2. Does the described mechanism represent a suitable and realistic
way to align the parasite?
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3. Is the observed deformation facilitating the alignment of the
parasite?

In this chapter, we address these questions using two simulation mod-
els, which implement the fundamental idea of the passive compliance
hypothesis, and compare simulation results to the experimental ob-
servations.

5.3 Simulation Models

To study the alignment process, we introduce two models. Both mod-
els contain a RBC and a merozoite, but they differ in the type of inter-
action between the two cells. The first model utilizes an interaction
potential and is used to assess the general feasibility of the passive
compliance hypothesis, focusing on the membrane deformation and
the adhesion forces.

The second model represents an active interaction between the par-
asite and RBC by using a two-state bond model. These bonds can
form and break, leading to a stochastic dynamics of the parasite on
its targeted cell. We discuss the observed dynamics, the achievable
deformations, the importance of the parasite shape, as well as the
contribution of different types of bonds to a successful parasite align-
ment.

5.3.1 Red Blood Cell Model

Similar to the membrane model introduced in chapter 3, the RBC is
represented by a two dimensional surface mesh, where NM vertices
are distributed. The typical shape of a healthy RBC is a discocyte,
biconcave shape as shown in fig. 5.5. Most of the interactions, which
govern the behavior of the RBC, were introduced in chapter 3. The
full potential is given by

Umembrane = Ubending + Uarea + Uvolume + Uspec, (5.1)
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Figure 5.5: Schematic of a RBC model. The typical discocyte shape is
modeled by NM vertices that are distributed on the membrane surface.
The vertices are connected by bonds, providing elastic properties of a
RBC.

where the bending energy, the area and the volume constraints are
given by eqs. (3.12) to (3.14), respectively. The last term models an
elastic contribution of the spectrin network of the RBC. Its potential
energy is given by

Uspec =

NM
S∑

i=1

[
kBT lm

(
3x2

i − 2x3
i

)
4lp (1− xi)

+
λp

li

]
, (5.2)

where NM
S is the number of bonds within the triangulated network, li

is the length of the i-th spring, and lm is the maximum spring exten-
sion. The ratio xi = li/lm gives the maximum length ratio for each
spring. The other parameters are the persistence length lp and the
spring constant λp. To set a stress free state for the elastic network,
a non-zero equilibrium length l0i is assigned to each bond such that
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l0i is set individually for each bond according to the initial triangu-
lated shape [124]. For a regular hexagonal triangulation, this potential
corresponds to the membrane shear modulus given by

µ0 =

√
3kBT

4lplmx0

(
x0

2 (1− x0)
3 −

1

4 (1− x0)
2 +

1

4

)
+

√
3λp

2l30
, (5.3)

where l0 is the average equilibrium spring length and x0 = l0/lm
[110]. Combining the elastic energy and the area constraints given by
eq. (3.12), the area-compression module is given by

K = 2µ0 + kag + kal (5.4)

and the two-dimensional Young’s modulus can be calculated as

YM =
4Kµ0

K + µ0
(5.5)

and is used to quantify the membrane elasticity throughout this chap-
ter.

5.3.2 Parasite Model

Similar to the RBC, the parasite is modeled by a two-dimensional
shell. The shape of a parasite is similar to an egg or a pear, which
can be described by the shape equation

r4 = Rar
3
x + (Ra −Rb)rx

(
r2
y + r2

z

)
, (5.6)

where Ra = 1 µm and Rb = 0.7 µm provide a good match for the
average parasite shape [153]. To analyze the influence of the parasite
shape, different ellipsoids are used, with their shapes given by

r2
x

a2
+
r2
y

b2
+
r2
z

c2
= 1, (5.7)

where a, b, c are characteristic lengths to control the shape of the par-
asite. They are chosen in such a way, that the surface area of different
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Figure 5.6: Sketch of the different shapes used to model the parasite.
The left, egg-like, shape is given by the eq. (5.6) and represents the
best shape of real parasites. To test the influence of the parasite shape,
a sphere and two ellipsoids are introduced, such that all shapes share
the same surface area and roughly the same number of vertices.

Name Type of shape Characteristic lengths Npara

PA egg-like Ra = 1 µm, Rb = 0.7 µm 310
SP sphere a = b = c = 0.4 µm 312
ES short ellipsoid a = 0.5 µm, b = c = 0.356 µm 306
EL long ellipsoid a = 1.0 µm, b = c = 0.205 µm 306

Table 5.1: Characteristic parameters of the introduced parasite shapes.

shapes is similar as well as the number of vertices used to discretize
the surface. The shapes used in this chapter are shown in fig. 5.6 and
their characteristic parameters are summarized in table 5.1.

From experimental videos, we observe that the parasite does not
deform itself while interacting with the RBC. Therefore, the para-
site is modeled as a rigid body. The parasite dynamics is therefore
established by the following algorithm:

1. The forces on all parasite vertices are calculated.

2. All forces are applied to the center of mass of the parasite. The
resulting translational force and torque are calculated and the
equations of motion are integrated.

86



5.3 Simulation Models

3. The parasite vertices are moved accordingly to model the dy-
namics of the whole parasite.

5.3.3 Hydrodynamic Interactions

The simulations are performed within the DPD framework, which rep-
resents hydrodynamic interactions and was introduced in section 2.1.
The modeled viscosity is established as discussed in section 2.1 and
the viscosity of water is chosen as reference value.

5.3.4 Potential Adhesion Interaction

To model the interaction between the merozoite and the RBC, we
introduce an adhesive LJ potential. We assume that the agonists on
the membrane surface contribute an average amount of energy to the
interaction, approximated by an average potential. The interaction
is defined between every vertex on the RBC membrane rrbc and the
corresponding vertices on the parasite surface rpara as

Uadh (rrbc, rpara) = 4ε (rpara)

[(σ
r

)12

−
(σ
r

)6
]

r ≤ rcutoff . (5.8)

r = |rrbc − rpara| is the distance between the particles, while rcutoff

is the maximum interaction length, ε is the effective strength of the
interaction and σ characterizes the length scale of the interaction. The
minimal energy of the LJ potential is at rsize = 6

√
2σ, such that below

this value the potential is repulsive and above attractive. We attribute
the length rsize to the effective size of the parasite. For the simulations,
σ = 0.15 µm and a cutoff of rcutoff = 0.4 µm are chosen, which lead to
a maximal attractive interaction range of rcutoff − rsize = 0.23 µm.

Another possibility discussed in the literature is the existence of an
interaction gradient, where the number of agonists is higher around
the head of the parasite than at the back. To study the impact of such

87
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a gradient, we describe the density of the agonists by the relation

ρ (rpara) = ρaξ (rpara)
a
, (5.9)

where ρa is the overall density of the agonists and ξ (rpara)
a models

the dependence at the position on the parasite surface. The exponent
a leads to different interaction models, where a = 0 reproduces the
classical LJ interaction which is the same everywhere on the surface
of the parasite. The value ξ is chosen in such a way that for a = 1,
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Figure 5.7: Schematic of the vectors used to calculate the interaction
gradient. The directional vector n of the parasite is orientated from
its back to its head. Depending on the position of a vertex rpara, the
strength of the interaction between parasite and membrane is calcu-
lated using eq. (5.10). This equation is chosen in such a way that the
interaction for a = 1 decreases linearly from a maximum at the head to
zero at the back. By using higher values of a, head-dominated interac-
tions are established and should improve head alignment.

the interaction strength decreases linearly from its maximum at the
head to zero at the back of the parasite:

ξ (rpara) =
n · (rpara − rcm)

2n2
+ 0.5. (5.10)
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n is the directional vector of the parasite, pointing from its back to
its head and rcm is the position of its center of mass. The vectors
and the resulting gradients are shown in fig. 5.7. For values a ≥ 1,
the interaction is strongly localized around the head of the parasite,
which will lead to a better alignment of the parasite.

In the employed coarse-grained, discrete description of the parasite,
each vertex represents a surface patch Ac and therefore an effective
number of agonists Acρ (rpara). We assume that on average, each of
the agonists contributes the same amount of energy ε to the effective
interaction, so that the total strength is given by

ε (rpara) = εAcρaξ (rpara)
a

= εaξ (rpara)
a (5.11)

with the interaction strength εa. Depending on this strength and the
exponent a, the parasite will adhere differently to the membrane.

5.3.5 Two-State Adhesive Bond Model

The second model focuses on an interaction that cannot be described
by an average potential. It has two major components. The first
one models the size of the parasite, using the repulsive part of the
LJ potential. It ensures that the parasite and the RBC cannot over-
lap. The second part of the attractive interaction is modeled through
a reversible, bond based two-state model. A number of bonds can
form and dissociate between the vertices of the RBC membrane and
the merozoite surface. These bonds, which represent the interactions
between the two cell, have two types: long bonds with a maximum
length of 200 nm and short bonds of 20 nm. They are described by
elastic springs with the potential energy

Uad (l) =
λtype

ad

2
(l0 − l)2

, (5.12)

where l is the instantaneous length and l0 is the spring length at rest.
The rest length is chosen as l0 = 6

√
2σ, corresponding to the effective
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surface of the parasite. The constant λtype
ad is the strength of the elastic

bonds of a given type.

To model the dynamic interaction, we introduce constant on- and
off-rates

ktype
on (l) = ktype

on , (5.13)

ktype
off (l) = ktype

off (5.14)

to simplify the model behavior and reduce the number of parameters.
The bonds can form between the particles on the RBC and the parasite
surface if the distance between them is short enough, but their number
is limited to one bond per vertex for every bond type. To reduce the
amount of parameters, we choose the same spring constant and the
same off-rate for both bond types. Therefore, we refer to them as λad

and koff further in this text.

5.4 Results of the Potential Interaction
Model

One key aspect of the passive compliance hypothesis is the ability of
the parasite to deform the membrane of a RBC through the mechan-
ical interactions of the agonists on the parasite surface. This section
focuses on this process by using the potential adhesive model. We
compare the simulation results to experiments, introduce the defor-
mation energy to quantify deformations, and measure the adhesion
forces in order to check whether the membrane deformations are in-
duced by realistic interaction forces. Lastly, the interaction gradients
are investigated.

The simulation setup contains one RBC and one parasite, both
emersed in the DPD fluid. We investigate the effects of the strength
of the adhesive potential and the type of the interaction in regard to
the questions mentioned in the beginning of this chapter. A number
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Parameter Simulation Value Physical Value

kBT 0.01 4.282× 10−21 J
D0 6.5 6.5× 10−6 m
η 1.85 1× 10−3 Pa s

∆t 0.005 6.31 µs

NM
para 310
NM

rbc 3000
κ 70 kBT 3.0× 10−19 J
YM 1.82× 105 kBT/D2

0 1.84× 10−5 N m−1

Table 5.2: Overview of the main simulation parameters. The thermal en-
ergy kBT , the average diameter of a RBC D0, and the viscosity of the
fluid are used to define the energy-, length-, and timescales. The num-
ber of vertices for the parasite and RBC are constant in all simulations.
The parameters for the RBC model are chosen to model a healthy RBC
under physiological conditions.

of general parameters, which are kept constant in all simulations, are
summarized in table 5.2. The membrane parameters are chosen to
model a healthy RBC under physiological conditions [110].

To establish the energyscale, the thermal energy kBT is used as a
reference value as described in section 2.3. Similarly, we introduce the
diameter of the RBC D0 =

√
A/π, where A is the area of the cell,

as lengthscale. On average, this size is found to be 6.5 µm for a real
RBC. To define the timescale of our simulations, the viscosity η of the
modeled DPD fluid is combined with the length- and energyscale to
obtain the relation

tP =
ηP

ηM

(
D0

P
)3(

D0
M
)3 (kBT )

M

(kBT )
P
tM (5.15)

for the physical time. The viscosity of water η = 1 mPa s is used as a
reference.
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For each simulation, the merozoite is brought directly into its in-
teraction range with the RBC, as we focus on the mechanical aspects
of the adhesion and neglect other aspects like the probability for a
first contact. To study a worst case scenario, the head of the parasite
points away from the membrane at the beginning of the simulation.
During the simulation, the parasite is let to adhere to the membrane
of the RBC. Depending on the starting configuration, this adhesion

Figure 5.8: Example of a parasite adhering to a RBC. At the begin-
ning, the parasite is brought into interaction range with the membrane,
so that it adheres to the membrane surface. This adhesion is strong
enough to suppress further diffusion of the parasite, therefore the final
configuration is stable over the course of a simulation.

occurs either at the side or top of the RBC. As the interaction poten-
tial is permanent, the adhesion suppresses the diffusion of the parasite.
Therefore, the system comes to a stable configuration over the course
of each simulation. In fig. 5.8, a short time series of one simulation is
shown.

5.4.1 Membrane Deformations

The snapshots in fig. 5.8 show that the RBC deforms as a result of
the interaction with the parasite. To quantify the deformation, we
introduce the deformation energy

∆Erbc = Umembrane(deformed)− Umembrane(equilibrium) (5.16)
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as the energy difference of the RBC energy given by eq. (5.1) between
the equilibrium state and the deformed state. Through the interac-
tion with the fluid, the membrane exhibits thermal fluctuations which
affect this energy. The energy measurements are therefore averaged
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Figure 5.9: Deformation energies for the simulation shown in fig. 5.8.
Reliable results are obtained by averaging over the time of the simula-
tion, once the parasite has tightly adhered to the RBC surface. From
the four parts of the deformation energy, only the bending and elastic
energies contribute a non-negligible amount to the total deformation
energy, as shown by the orange and and green lines.

over the equilibration and interaction stage. The latter is possible,
because the deformed configurations are stable over time, as shown in
fig. 5.9. Additionally, we see that the time between the beginning of
the simulation and reaching the stable and adhered configuration is
with t � 0.1 s much shorter than the experimentally observed times.
This result is similar for all simulations performed in this section.

The main significant contributions to the deformation energy are
the bending and elastic energies, illustrated in fig. 5.9. The volume
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Figure 5.10: Deformation energy for a = 0 and different values of εa.
The total energy grows with increasing interaction strength. The two
main contributions are the bending and stretching energies. For small
interaction strengths, both contributions remain small. For small mem-
brane deformations, the bending energy dominates, while the stretch-
ing energy stays negligible. For strong adhesion, the stretching energy
starts to dominate the deformation energy.

and area constraints are chosen in such a way that they maintain the
shape of a RBC, but do not strongly contribute to the energy and
dynamics.

To study the effect of the adhesion strength on deformations and the
deformation energy, we vary εa and the point of initial contact, which
can be at the side or on the top of the RBC. The deformation energies
shown in fig. 5.10 are the averaged values from multiple simulations
with the same cell parameters and a = 0. In fig. 5.11, several examples
of final configurations are presented. In the top row, the first contact
is at the side of the RBC, while in the lower row, the parasite adheres
at the top.
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Figure 5.11: Examples for different deformation indices. By increasing
the interaction strength, different levels of deformation are obtained. In
experiments, these are classified by the discrete deformation index Id,
which is assigned by eye, while in the simulations, we use the deforma-
tion energy to assign this score. The criteria for both are summarized
in table 5.3. The exact value of the deformation energy depends on the
point of contact, e.g. at the top or side of the RBC. A stable average
value is observed for all simulations.

Both the visible deformation and the energy grow with an increased
adhesion strength, whereas the total energy increases nearly linearly
with εa. The contributions of the bending and stretching energies have
a different dependence. For weak interactions, both energies do not
show significant contributions and there are no visible deformations
at the surface of the membrane. The first visible deformation can be
connected to a rise in bending energy while the elastic contribution
stays small. When the membrane begins to partially wrap the para-
site, the elastic energy can contribute on a similar level as the bending
energy. Strong wrapping and the resulting considerable deformations
correlate with a dominating elastic energy. Interestingly, these four
deformation categories correlate well with the discrete deformation in-
dex Id introduced to quantify the experimental deformations, which
in our simulations were assigned to judge the visible deformations.
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Therefore, we can define energy barriers for the four scores which are
summarized in table 5.3. The values for the barriers have to be consid-
ered with care as a discrete score was assigned by visual assessment of
membrane deformation, but they provide a convenient way to quantify
the deformations of the RBC.

Id Level of deformations ∆Erbc/kBT

0 No visible deformations. [0, 150)
1 Small and local deformations. [150, 800)
2 Partial wrapping of the para-

site, local deformations.
[800, 2000)

3 Strong wrapping of the para-
site, RBC shape globally de-
formed.

≥ 2000

Table 5.3: Discrete deformation index to quantify the level of deforma-
tion. To quantify deformations, the discrete deformation index Id is in-
troduced. It is assigned by eye in the experiments. In the simulations,
we use the deformation energy ∆Erbc to quantify the results. The en-
ergy barriers are defined by assigning the scores according to the visible
deformations.

Next, different interaction gradients a ∈ [0, 1, 2, 3] are used. We
perform a number of simulations and the corresponding deformation
energies are shown in fig. 5.12. In general, all interaction models be-
have similar, as the deformation of the RBC increases with increasing
strength of the adhesion. The defined deformation scales, marked by
the dashed lines in fig. 5.13, are used to assign the deformation indices
for all configurations. The major difference between the models is the
slope of nearly linear curves. Higher values of a lead to lower slope
values, as the effective area of the parasite interacting with the mem-
brane becomes smaller. This is due to the interaction being centered
around the head of the parasite.
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Figure 5.12: Deformation energy for different values of a = 0. For all
interaction models, the energy increases when the interaction strength
εa grows and we obtain similar energy levels. For higher values of a,
the slope of the curve becomes smaller. This is due to the interaction
being localized at the parasite head, resulting in a smaller interaction
area between parasite and membrane.

The main purpose of a gradient pointing toward the head of the
parasite is to facilitate its aligning. In fig. 5.13, several configura-
tions are shown in order to compare different interaction models with
roughly the same deformation energy. The gradient is indicated on
the parasite surface by the color, where purple marks the maximum
interaction strength and green corresponds to the minimal values. The
main difference between a = 0 and the other values is the preferred
orientation of the parasite. For a = 0, the parasite lies sideways, as it
maximizes its interaction area in this position. However, for all gradi-
ents, the parasite will align perfectly by pointing its head toward the
membrane. This occurs for all values of εa and all models with a > 0.
By comparing the simulated configurations with the experiments by
Crick et al. [77], we establish that configurations for a = 0 generally
look more realistic.
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a = 0 a = 1 a = 2 a = 3

Figure 5.13: Examples of the adhered parasite for a = 0, 1, 2, 3 (left to
right). The color at the parasite surface indicates the strength of the
interaction given by ξ (rpara) in eq. (5.10) where purple indicates the
maximum interaction strength and green the minimum strength. The
important difference between a = 0 and the other models is, that when-
ever there is an interaction gradient, the parasite aligns itself perfectly
at the membrane surface.

5.4.2 Adhesive Force

∆L

v

Figure 5.14: Schematic of the pulling test to measure the adhesion force.
The center of mass of the adhered parasite is tethered to a spring at
the beginning. The RBC is pulled away from the parasite with a con-
stant velocity v. As a result, both the RBC and the spring extend as
long as the parasite stays adhered to the membrane. The adhesion
force is measured through the elongation of the spring when the con-
nection ruptures.

So far, we have shown that the parasite is able to deform the mem-
brane similar to observed deformation in the experiments, using the
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adhesive potential model. So verify that these deformations are associ-
ated with realistic adhesion strengths, the adhesion force is measured.
To this end, pulling tests inspired by the work of Crick et al. [77] are
performed, where a non-active parasite was adhered to two RBCs.
Due to little or no activity of the parasite, the setup remains stable.
Then one of the RBCs is pulled away with a constant velocity by opti-
cal tweezers, resulting in stretching of the RBCs until the connection
between the parasite and one of the cells ruptures. The adhesion force
is measured through the elongation of the RBC, as the cell can be in-
terpreted as a spring for small enough pulling velocities. The obtained
range of rupture forces is between 10 pN and 40 pN.
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Figure 5.15: Pulling test to measure the adhesion force. The center of
mass of the parasite is tethered by a spring. As a result of the RBC
being pulled away, the length of the spring increases by ∆L. The adhe-
sion force is measured when the connection between parasite and mem-
brane ruptures, indicated by a sudden drop in the spring elongation.

To perform similar tests in silico, one of the RBCs is replaced by
a spring that is tethered to the center of mass of the merozoite. The
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other RBC is pulled away from the adhered parasite with a constant
velocity v, as shown in fig. 5.14. The adhesion force is calculated
through the elongation ∆L of the spring, when the connection between
the parasite and membrane ruptures, as

Fad = k∆L, (5.17)

where k is the spring constant chosen to be k = 20 pN µm−1 to approx-
imate the RBC that has been replaced by the spring [77]. In fig. 5.15,
an example of such a measurement shows that the maximum elonga-
tion of the spring can be found easily when the parasite detaches from
the RBC membrane.
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Figure 5.16: Determination of the strain rate γ̇. The adhesion force de-
pends on the pulling speed of the RBC. To obtain comparable results
with the experiments, the velocity is chosen in such a way that the
strain rate is about γ̇ ∼ 0.1 s−1.

The pulling velocity v is chosen carefully, as the measurement of
the adhesion force depends on it. To approximate the original exper-
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iments, the strain rate of the RBC

γ̇ = (D −D0)/D0T (5.18)

is set to be on the order of γ̇ ∼ 0.1 s−1. D0 is the initial RBC length in
pulling direction, D is the instantaneous length and T is the duration
of the experiment. The value of γ̇ is calculated by fitting the strain
as a linear function of time within the part where the merozoite is
adhered to the membrane, as shown in fig. 5.16.
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Figure 5.17: Adhesion force as a function of the interaction strength for
the different interaction models. The adhesion force depends strongly
on the interaction strength and can be tuned to be within the exper-
imental range of 10 pN to 40 pN. For all models, first a linear growth
in the adhesion force is observed, while for stronger deformations, the
force grows non-linearly. The non-linear part is a result of the defor-
mations, as they increase the interaction area between parasite and
membrane.

With this setup, the adhesion force is measured for different inter-
action strengths and values of a. To exclude the effect of different

101



5 Malaria Parasite Alignment

points of initial contact and thermal fluctuations, the results shown in
fig. 5.17 correspond to the averaged values from multiple simulations.
For all interaction models, the measured forces are within the range
of 10 pN to 40 pN, which can be tuned by the interaction strength.
Similar to the deformation energy, for higher values of a, the adhesion
force grows slower with increasing the adhesion strength. In contrast
to the deformation energy, the force curve is only linear for small val-
ues of εa. For higher values of εa, the force grows non-linearly as the
induced deformations increase the wrapped area of the parasite.
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Figure 5.18: Adhesion force as a function of the interaction strength for
stiffened RBCs. The membrane stiffness is chosen to be so high that
the parasite cannot deform the RBC for the used interaction strengths.
As a result, the adhesion force has a linear dependence on εa.

A positive effect of the RBC deformation in connection to parasite
adhesion is verified by introducing a rigid RBC. The shape of the cell
stays biconcave and the membrane stiffness is increased by two orders
of magnitude. As a result, the parasite does not induce any kind of
deformation independent of the interaction strength εa. The pulling
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tests are performed for a = 0 and a = 1, and the resulting forces are
shown in fig. 5.18. For rigid RBCs, the force grows linearly with εa
and no positive feedback for adhesion can be observed, as only a small
difference between the interaction models is visible.

5.4.3 Discussion of the Potential Interaction Model

The key aspect studied in this section is the ability of a parasite to
induce deformations only through mechanical interactions. We show
that this is possible for all investigated interaction models. Further-
more, we show that the levels of deformation can be tuned by the
interaction strength and all levels of the experimentally observed de-
formations can be reproduced. By performing pulling tests, we quan-
tify the strength of the adhesion for different conditions. The resulting
forces are within the experimentally measured range of 10 pN to 40 pN,
thus the observed behavior is realistic.

A second aspect is whether the passive compliance hypothesis ac-
counts for a positive effect of cell deformation for the parasite adhe-
sion. By probing the adhesion force for both healthy and rigid RBCs,
we show that the adhesion strength is enhanced due to cell deforma-
tions. The parasite would therefore less likely lose its contact to a
RBC due to external perturbations, thanks to the deformability of
RBCs.

While the employed interaction gradient models produce similar
deformations and adhesion forces as the model for a = 0, the resulting
visible configurations do not resemble those in the experiments well.
As a result, any considerable gradient leads to the alignment of the
parasite with the head oriented towards the RBC membrane. The
experiment by Crick et al. [77] would be problematic in this case, as
the parasite would not be able to adhere to two RBCs at the same
time. Therefore we conclude that a (permanent) interaction gradient
is likely not a suitable explanation for the alignment behavior of the
parasite.
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Lastly, we observe that the average alignment respectively reorien-
tation times for all simulated configurations are with t � 0.1 s much
faster than the measured range between 2 s and 50 s. This observation
shows that the potential is too effective in adhering and orientating
the parasite to the membrane and is not able to reproduce the correct
parasite dynamics.

In summary, the potential interaction model represents some key
aspects of the passive compliance hypothesis, but the results do not
fully approximate the behavior of parasites observed experimentally.

5.5 Results of the Dynamic Bond Model

In this section, we employ the bond-based interaction model for the
parasite-RBC adhesion. We focus mainly on the dynamics of the par-
asite and its alignment ability. The latter is assessed by three observ-
ables: head distance, alignment angle, and alignment time. Further-
more, the effects of the parasite shape and the interaction parameters
on the alignment efficiency are studied. Lastly, the effects of mem-
brane fluctuations are considered in this context.

The simulation setup is the same as before such that a parasite
and a RBC are brought into interaction range at the beginning of
the simulations, leading to the adhesion of the parasite. The main
simulation parameters are summarized in table 5.2, while in table 5.4,
the additional interaction parameters are listed. The selection of these
parameters is not a straightforward task, as no information is available
about the kinetics of the agonists that coat the merozoite surface. As
a starting point, existing biologically feasible rates are used in this
study. The parameters ε0 and σ are used for the repulsive part of the
LJ potential. To ensure a hard shell of the parasite, the interaction
strength is chosen as high as possible, such that the simulations remain
stable. Preliminary tests have shown that the value of the interaction
strength does not play an important role for the results discussed
in this section. The value of σ is chosen slightly longer than in the
previous section to prevent any effect of the discretization.
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Parameter Simulation Value Physical Value

ε0 1000 kBT 4.282× 10−18 J
σ 0.2 0.2 µm

klong
on 0.05 39.6 s−1

kshort
on 0.5 396.0 s−1

koff 0.1 79.2 s−1

λad 100 42.82 pN µm−1

Table 5.4: Interaction parameters for the bond adhesion model. The
parameters are used as a reference configuration and any changes are
specified in text.

The on- and off-rates are determined by trial and error. From the
first observations of agonists by Bannister et al. [79], the existence of
longer and shorter bonds was reported. We choose the on-rates so
that kshort

on = 10klong
on , as the number of short bonds is much larger

than that of the long ones. The off-rate is important for the observed
dynamics. We will discuss its effect later in this section. Lastly, the
strength of the bonds is chosen such that the observed deformations
are on the same level as for the first model with potential interaction.
This is due to the result of the previous section, that the observed
levels of deformations are achieved by reasonable binding strengths.

Figure 5.19 shows shapshots of a simulation performed with the pa-
rameters from table 5.4. The RBC orientation is adjusted by rotating
its main axes in order to obtain an impression of the parasite move-
ment relative to the RBC. In contrast to the simulations performed
in section 5.4, the parasite moves dynamically on the membrane and
changes its orientation.
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Figure 5.19: Snapshots from one simulation with dynamic bond model.
The parasite is brought into contact with the RBC at the beginning
of the simulation and interacts with the membrane through long and
short bonds. The resulting dynamics is much more vivid than the re-
sults shown in section 5.4, as the parasite moves at the surface of the
membrane and changes its orientation.
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5.5.1 Surface Velocity of an Adhered Parasite

We quantify the dynamics of a parasite by its surface velocity both
in experiments and simulations. The velocity is measured by tracking
the position of the parasite at fixed time intervals. As the movement
process is diffusive, the obtained velocity depends on the time inter-
val. The available experimental videos allow a resolution of ∆t = 1 s.
TrackPy in connection with Python3.7 is used to obtain the parasite
positions in the videos from Weiss et al. [85]. A number of snapshots
with a tracked parasite are shown in fig. 5.20. The data points are
obtained only for parasites that are visible over a time of about 10 s
and when the corresponding RBC is not moving too much. From the
positions, the velocity is calculated as v = ∆d/∆t, where ∆d is the
traveled distance during one time interval.

0 50 100 150 200 250

x in px

0

50

100

150

200

250

y
in

px

0 50 100 150 200 250

x in px
0 50 100 150 200 250

x in px
0 50 100 150 200 250

x in px

Figure 5.20: Surface velocity of the parasite computed by frame by
frame analysis of in vitro experiments. The position of the parasite is
tracked in 1 s intervals to average out thermal noise. The parasite is
tracked using Trackpy with Python3.7. Original video taken from [85]
(open access).

In simulations, the required data points are taken from simulated
three-dimensional parasite trajectories. To compare the experimen-
tal and simulation results, the same time interval is chosen and the
measurement is only performed for adhered parasites. To obtain the
relative parasite movement in regard to the RBC, the membrane ori-
entation is kept constant for this measurement. As the parasite shows
a highly stochastic behavior in experiments and simulations, a range
of velocities is measured and their distributions are compared by a
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boxplot representation in fig. 5.21, where the median is marked by
the central line, the colored area shows the range between the lower
and upper quartiles, and the whiskers give the range of the distribu-
tions. The plots show a good agreement between the experimental
and simulation values, indicating that the model can reproduce the
observed experimental behavior.
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Figure 5.21: Distributions of the surface velocities from experiments and
simulations. The distributions are represented by their boxplots, where
the line represents the median, the colored area the range between the
upper and lower quartiles and the whiskers show the total range of the
distribution. A good agreement between experiments and simulations is
obtained.

The chosen simulation parameters are a result of trial and error
adjustments and therefore the influence of the interaction parameters
on the adhesive behavior of the parasite is studied thoroughly in this
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Figure 5.22: Surface velocity and average number of bonds for different
cases, where the koff rate is altered for different ratios of kshort

on /klong
on .

The average surface velocity decreases with an increased number of
bonds. This effect is visible for both bond populations.

section. The parameters in table 5.4 are taken as a reference configura-
tion, since the observed velocities correspond well to the experiments.
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The parasite trajectory is dominated by stochastic effects of the
interaction and is mainly dependent on the rates klong

on , kshort
on , and

koff . To study the effect of the bond rates on the surface velocity, the
value of klong

on is kept constant while three parameter sets are tested:
only long bonds (kshort

on = 0), kshort
on /klong

on = 1, and kshort
on /klong

on =
10. Additionally, koff is altered. For all cases, the surface velocity is
measured and the number of bonds is compared in fig. 5.22.

The surface velocity decreases for smaller off-rate values, which can
be explained by a larger number of bonds. The number of bonds is
shown in the lower part of fig. 5.22, where the upper bars represent the
number of long bonds and the bottom bars correspond to the short
bonds. In general, a larger number of bonds stabilize the parasite-
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Figure 5.23: Surface velocity for different parameter sets. The color
marks different values of klong

on , while the ratio kshort
on /klong

on = 10 is kept
constant. In contrast to the measurements in fig. 5.22, a larger number
of bonds still lead to a slight increase in the surface velocity. This effect
is a result of the crawling motion of the parasite that is affected by the
average lifetime of bonds of the two-state interaction model.

membrane connection, thus reducing the surface velocity. For a large
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number of bonds, the surface velocity is nearly reduced to zero, repro-
ducing the behavior of the potential interaction model. The stabilizing
effect exists for both bond populations and additionally, a small in-
crease in the number of long bonds is observed when more short bonds
are formed. Later in this chapter, we will see that a large number of
bonds correlates with a higher level of deformation, leading to a larger
effective interaction area, similar to the observations in section 5.4.

In fig. 5.23 and fig. 5.24, the ratio kshort
on /klong

on is kept constant
and the absolute values of klong

on and koff are varied. When the ratio
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Figure 5.24: Average number of bonds for different parameter sets. The
color marks different values of klong

on , while the ratio kshort
on /klong

on = 10
is kept constant. In contrast to the measurements in fig. 5.22, a larger
number of bonds still lead to a slight increase in the surface velocity.
This effect is a result of the crawling motion of the parasite that is
affected by the average lifetime of bonds of the two-state interaction
model.

klong
on /koff is kept the same, the average number of bonds remains

similar for each column. A small increase in the number of bonds for
higher values of the on-rate is again a result of stronger deformation.
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In contrast to the first measurements in fig. 5.22, the surface velocity
can even increase when the number of bonds increases. This is due to
the crawling type of motion that is induced by the bond interaction
model. At every given time, the parasite may stochastically form
new bonds, which pull the parasite away from its current attachment
point. When the lifetime of each bond becomes short, this effect gets
more pronounced, leading to a larger surface velocity. We refer to this
effect in the rest of this chapter as a high turn-over kinetics, since the
number of association and dissociation events is increased.

In summary, an increase in the number of bonds has a stabilizing
effect onto the surface velocity as the parasite is bound strongly to
the membrane. In contrast, when we decrease the average lifetime
of the bonds, the surface velocity may increase. The resulting surface
velocities compare well to the experimental results, but the introduced
reference configuration provides best agreement. Therefore we use it
as a starting point for the further analysis.

5.5.2 Parasite Alignment Characteristics

Experimental observations suggest that the alignment of the para-
site with its head toward the RBC membrane is a crucial step for a
successful invasion. From early experiments, the interaction range of
the agonists at the parasite head, which guide the invasion process,
is known to be around 8 nm [79]. Recent studies also suggest that
the parasite needs to align strictly perpendicular to the membrane
surface to achieve successful invasion [84]. We translate these obser-
vations into two properties: the head distance d and alignment angle
θ. The head distance is defined as the shortest distance between the
head of the parasite rhead and the membrane vertices ri:

d = min (|rhead − ri|) . (5.19)

The alignment angle θ is defined as the angle between the directional
vector of the parasite (a vector from the center of mass to the head)
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n

ni

Figure 5.25: Visualization of the head distance and angle measure-
ments. The head distance d is measured between the head of the para-
site, marked in orange, and the closest vertex of the membrane surface
(green vertex). The alignment angle θ is measured between the direc-
tional vector of the parasite (a vector through its head and the center
of mass) and the normal vector of a triangle that is closest to the head
(green membrane normal vector). Only membrane triangles, which are
within the blue circle, corresponding to the cutoff range of long bonds,
are considered for the angle measurement. While the sketch is two di-
mensional, this definition works also in three dimensions.

and the normal vector ni of a membrane triangle closest to the parasite
head:

θ = arccos (n,nmin) . (5.20)

The alignment angle cannot be uniquely defined when the head of
the parasite is not in close proximity to the membrane, so that only
membrane triangles within the interaction range of the head are con-
sidered. The interaction range is defined by the maximum length of
long bonds. A sketch illustrating the calculation of these two proper-
ties is shown in fig. 5.25.

Similar to the surface velocity, both d and θ are well represented by
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a distribution. In figs. 5.26 and 5.27, these properties are shown for
the reference configuration. These measurements include a number of
simulations with the same parameters but varying starting positions.
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Figure 5.26: Distribution of the head distance d for the reference setup.
The histogram shows the full distribution of the distance. The dashed
line marks the effective range of the parasite, below which the repulsive
part of the LJ potential is applied. The distribution shows that the
head of the parasite is within the interaction range of long bonds most
of the time. The upper plot shows the corresponding boxplot that will
be used for comparison of different parameter sets.

The parasite head distance has a distribution, which spreads from
being close to the membrane to being aligned sideways. This stochas-
tic behavior of the head distance d suggests a possible alignment pro-
cess described by the two-state interaction model: the parasite moves
and rotates stochastically at the membrane, allowing a finite probabil-
ity for the head to get close to the membrane surface. This observation
is also confirmed by the alignment angle distribution in fig. 5.27. By
definition, a perfect alignment is obtained for θ = π. As the an-
gle measurement is performed by considering the orientation of one
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membrane triangle, which may not necessarily be positioned centrally
in front of the parasite, all values of θ ≥ 0.8π are assumed as aligned
configurations. Similar to the head distance, the alignment angle dis-
tribution yields a finite probability for parasite alignment.
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Figure 5.27: Distribution of the alignment angle θ for the reference
setup. The histogram shows the total distribution, while the boxplot
summarizes the important information that will be used to compare
different configurations. Perfect perpendicular alignment is given by
θ = π, but because of the way the angle is measured, we assume that
every angle above 0.8π represents parasite alignment. Pcontact quantifies
how often the parasite head is close enough to the membrane to obtain
the alignment angle θ.

The information obtained by the measurements of d and θ is useful
to quantify the ability of the parasite to align, but another key aspect
is the alignment time. The alignment time is measured as the time
interval between the first contact of the two cells and the time, when
the parasite first becomes aligned. To achieve successful alignment in
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the simulations, two criteria are introduced

d ≤ 8 nm, (5.21)

θ ≥ 0.8π. (5.22)

For a number of independent simulations with the reference setup,
the alignment time distribution is shown in fig. 5.28.
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Figure 5.28: Alignment time for the reference configuration. The align-
ment time is measured by considering the time interval between the
first contact of the parasite with the membrane and when the parasite
becomes successfully aligned first. The data show that this time is dis-
tributed over a broad range, as a result of the stochastic nature of the
alignment process.

The alignment time is distributed over a wide range between 0 s
and 5 s. This range is within the experimental range of alignment
times. The main limitation of measurement is the computational cost
to obtain the distribution. The number of performed simulations is
close to 100 and each simulation represent roughly the total time of

116



5.5 Results of the Dynamic Bond Model

T = 12 s. The employed fluid model and the RBC require an average
simulation time of 3 node hours (or 72 core hours) using JURECA,
the supercomputer at Juelich Supercomputing Center. The number of
simulations is feasible for one parameter set, but a number of setups
are analyzed in the rest of this chapter. Especially, when the average
alignment times exceeds T = 12 s, the computational cost becomes
prohibitive. Therefore, we use an MC simulation approach to obtain
relative timescales for different simulation setups.

To perform MC simulations, the phase-space of the two observ-
ables d and θ is discretized into a number of states (di, θj). The
probabilities for each of these states are obtained from long enough
simulations of parasite adhesion. Hereby, the angle is measured at
every timestep, even when the value becomes difficult to determine
uniquely. In fig. 5.29, the resulting two-dimensional probability dis-
tribution P (di, θj) for the reference configuration is shown. The gray
area marks those states, which the parasite never reaches in any sim-
ulation.

Using this distribution, a number of MC simulations are performed
as follows:

1. To model random first contact, a random point (di, θj) with
P (di, θj) > 0 of the phase space is chosen as an initial state.

2. The phase space is sampled by allowing jumps between near
neighbors. This sampling is done using the Metropolis algorithm
and the probability distribution map.

3. The simulation is integrated until a configuration that fulfills
the alignment criteria (green area in fig. 5.29) is reached. The
number of steps for parasite alignment directly represents the
alignment time.

The key part of these simulations is the sampling step. For each
MC step, the current state can be switched to a neighboring state.
Assuming that the current state is a, the next step can be selected by

1. Proposing one of the neighboring states as the new state. Each
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Figure 5.29: Two dimensional probability distribution of (di, θj). Each
bin represents one state and the color indicates the probability to find
the parasite in this configuration. To perform MC simulations, this
distribution is used to perform next-neighbor jumps. The green area
marks the alignment condition.

direction can be proposed with the same probability. The pro-
posed state is b.

2. Checking if the move is accepted. If P (b) ≥ P (a), the move
is always accepted. Otherwise, a random number Ξ is drawn
and compared against P (b)/P (a). The move is accepted when
Ξ < P (b)/P (a) and rejected otherwise.
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3. Repeat until the termination condition for alignment is reached.

The described steps correspond to the Metropolis algorithm. It fulfills
detailed balance and is an efficient way to sample a given distribution.
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Figure 5.30: Distribution of the alignment times using MC simulations
for the reference configuration. The shape of the distribution is similar
to that shown in fig. 5.28, but it is much smoother as more samples are
used. Since there is no inherent timescale in the MC simulations, the
resulting alignment time is represented by the number of steps instead
of real times.

The MC simulations are used to sample a larger number of align-
ment events and the distribution of alignment times for the reference
configuration is shown in fig. 5.30. The shape of the distribution is
the same as that in fig. 5.28 but it becomes much smoother as more
samples are used to create it. As the MC simulations do not have
an intrinsic timescale, the resulting times are given by the number of
MC steps which are proportional to real alignment time. This is in-
dicated by the subscript n to show the discrete nature of MC results.
We study relative differences between different parameter configura-
tions by comparing average alignment times 〈tn〉 to the value for the
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reference configuration 〈tn,ref〉. Thereby, the value 〈tn〉/〈tn,ref〉 = 1
corresponds to an alignment time of 1.11 s as shown in fig. 5.28.
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Figure 5.31: Distribution of the deformation energy for the reference
configuration. As a result of the dynamic interaction, a broad distribu-
tion of energies is observed. Instead of assigning a discrete deformation
index to these data, the boxplot will be used to compare deformations
for different configurations. In the previous section we identified that
∆E ≥ 800 kBT leads to strong deformations, which are clearly visible at
the surface of the membrane.

The parameters d and θ quantify the quality of the parasite align-
ment. A key question in this chapter is how membrane deformations
effect the alignment efficiency. As shown in the previous section, the
deformation energy given by eq. (5.16) can be used to measure the
levels of deformation. Similar to the other parameters, the energy
distribution is measured for each parameter set, as shown in fig. 5.31.
The introduced deformation index is not assigned here, as this dis-
crete score cannot capture the energy distribution properly. Instead,
such distributions will be used to compare the levels of deformation
for different configurations. In section 5.4, we found that a deforma-
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tion energy ∆E ≥ 800 kBT indicates that the deformations start to
influence the shape of the membrane. For the distribution shown in
fig. 5.31, the parasite induces small deformations most of the time,
but as a result of the stochasticity of the two-state interaction model,
higher levels of deformation are also observed.

The discussed alignment parameters and distributions show that
the employed interaction model represents the alignment of the para-
site well. This is mainly a result of the stochasticity of the interaction
model, which allows the parasite to reorient constantly while inter-
acting with the RBC. This alignment mechanism agrees well with the
experimental observation that alignment is a game of chance [84]. In
the rest of this chapter, we study the alignment parameters for differ-
ent configurations in order to understand the effect of various aspects
of the parasite-RBC interaction on to the alignment efficiency.

5.5.3 Effect of the Parasite Shape

The shape of the parasite is pear- or egg-like with a distinctly formed
apex structure. Under the assumption that the parasite shape is the
result of an evolutionary development, its alignment abilities should
be superior in comparison to other shapes such as spheres or ellipsoids.

We introduce four different shapes: a pear-like parasite shape (PA),
a spherical parasite shape (SP), a short-ellipsoid parasite shape (ES),
and a long-ellipsoid parasite shape (EL) as shown in fig. 5.6 and ta-
ble 5.1. PA is characterized by a distinct head structure, breaking
the symmetry along its long axis. To test the effect of this broken
symmetry, ES is chosen to have a similar overall design but head and
back are identical. SP has no distinct features and the head is a ran-
domly assigned vertex on its surface. The last tested shape, EL, has
the structure of a long rod with the long axis that is double as long as
for the original PA. All used shapes have nearly (up to 1 %) the same
surface area and number of vertices.

The simulations in this section employ the interaction parameters
of the reference configuration (see table 5.4) and only koff is varied.
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Figure 5.32: Deformation energies for different shapes and different val-
ues of koff . As the off-rate controls the average lifetime of the bonds,
a smaller value leads to more bonds, stabilizing adhesion. A small koff

also leads to stronger deformations, as indicated by the shown ener-
gies. Note that the membrane deformation energy appears to be nearly
independent of the shape of the parasite.

Generally, less than 30 simulations are performed for each parameter
set to obtain smooth enough distributions as illustrated in the previous
section. However, for setups with long alignment times, the number
of simulations can be larger than 30.

Figure 5.32 shows the deformation energies for all shapes marked by
different colors. No significant differences in the deformation energy
between the shapes are observed, but the deformations are stronger
for lower values of koff . From the discussion about the surface ve-
locity above, we know that smaller values of the off-rate lead to a
larger number of formed bonds. This stronger interaction with the
membrane leads to more pronounced deformations. Therefore we use
the variation of koff to compare setups that show significant defor-
mations with configurations that reproduce the deformation behavior
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of the potential-interaction parasite model in order to analyze their
effect for the alignment. On average, the head distances shown in
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Figure 5.33: Head distance distributions for different shapes (marked by
various colors) and different values of koff . For all shapes, the general
trend shows a smaller distance for lower values of koff , as the adhesion
is more stable, leading to stronger deformations. SP corresponds to
the largest distance, as the head is not clearly defined by the shape,
leading to a rotation of the parasite throughout the alignment process.
EL is found to be frequently attached sideways to the membrane. As
the shape is very thin, the head distance d is still small. The ES and
PA values for d are in between, with slightly better values of d for the
original parasite shape.

fig. 5.33 are smaller for stronger levels of deformation, as a result of
the stable adhesion. This positive correlation is a strong indicator
that the RBC deformation is indeed very useful for the parasite align-
ment. The various shapes show different behavior. Since SP does not
have any distinct surface features, it rotates arbitrarily while adhered
to the membrane. The resulting distribution of the head distance d
is therefore very broad and on average the worst of all shapes. The
rod-like EL is on the other side of the spectrum. It aligns with its

123



5 Malaria Parasite Alignment

0.5 1.0 2.0 4.0 8.0
koff/k

long
on

0.4

0.5

0.6

0.7

0.8

0.9

1.0

θ/
π

0

1

p

klong
on = 39.6 s−1, kshort

on /klong
on = 10.0

Parasite shape

SP EL ES PA

Figure 5.34: Distributions of the alignment angle for the different
shapes. The lower part of the plot compares values of the alignment
angle θ. The upper part shows the fraction of time when the align-
ment angle was measured in comparison to the total time of the par-
asite being bound to the membrane. While SP has the highest values of
θ, the head of the parasite is not within the interaction range very fre-
quently in comparison to the other shapes. EL has the highest rate of
θ measurements, but the lowest value of the alignment angle. For both
shapes, this indicates a poor alignment behavior. ES and PA show sim-
ilar values for the alignment angle, but a small advantage is noticeable
for the parasite shape, indicating that the asymmetric structure aids
the alignment.
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long-axis parallel to the membrane surface and the head is closest to
the membrane because the shape is very thin. The other shapes show
a behavior between these two extremes, as they can partly rotate and
move, leading to broader distributions than for EL, but profiting from
their distinct head structures to obtain on average better d values
than SP. A small advantage of the asymmetric PA is observed as ES
alternates between an aligned head and back.

To better discuss the alignment angle distributions in fig. 5.34, an-
other measurement is introduced. The values Pcontact, shown as bars
at the top part of the plot, provide the fraction of time that the par-
asite head is within the interaction range and the alignment angle θ
is measured. The results for θ show the same general behavior as the
head distance. Whenever the parasite is bound stably to the mem-
brane and induces strong deformations, the quality of the alignment is
better, but the results differ for the various shapes. EL, that was best
before, has the worst alignment angle, as the parasite adheres with its
long axis parallel to the membrane surface and is not able to rotate.
In contrast, SP shows the best alignment angle, but it is measured
only during a small fraction of the simulation time due to the free
rotation of the parasite. PA and ES show a better behavior, as the
average alignment angle is close to the targeted value of θ = 0.8π and
the measured fraction of time is reasonably high.

Taking into account both d and θ, the different shapes behave quite
distinctly and PA exhibits the best alignment behavior. These results
further emphasize that both characteristics are needed to quantify
the parasite alignment, such that judging the efficiency by only one of
them would miss important aspects for successful alignment.

To finish the shape discussion, the alignment times obtained by MC
simulations for all parameter sets are shown in fig. 5.35. The align-
ment times are compared by the ratio 〈tn〉/〈tn,ref〉, where the reference
time is measured for PA. Note that missing bars correspond to con-
figurations that do not lead to the parasite alignment in the original
simulations and therefore no pathways into the alignment area exist
within the probability distributions. These configurations might still
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result in the parasite alignment, but due to the mentioned computa-
tional restrictions, the average alignment timescales are too long and
cannot be resolved. The absolute values, which significantly exceed
the reference time, should also be considered carefully. To obtain
reliable distributions, more simulations are performed for such con-
figurations, however the phase-space may still be poorly resolved in
comparison to the reference configuration. Therefore, we interpret
these times as being quite long for the parasite alignment, but we do
not discuss their absolute values.
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Figure 5.35: Average relative alignment time for different shapes. The
missing bars indicate that the parasite is not able to get aligned during
simulations. In general, a lower alignment time is found for stronger de-
formations, since the parasite has a larger contact area with the mem-
brane due to partial wrapping. SP often shows the worst alignment
time, but is still successful when there are no deformations, while PA
exhibits generally the best alignment time.

The presented results are consistent with the previous discussions
such that the alignment probability decreases strongly when the value
of koff is increased and the level of deformations decreases. How-
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ever, different shapes profit differently from membrane deformations.
PA has the shortest alignment times as long as membrane deforma-
tions are induced. Only when the parasite is bound loosely to the
membrane, SP surpasses PA, as it can rotate more easily around all
axes. This free rotation is the reason that the alignment times of the
sphere are influenced least by the level of deformations. The other two
shapes show reliable alignment only when the induced deformations
are strong enough, as this allows to overcome the shape restrictions
by strong wrapping of the parasite surface by the membrane.

All studied characteristics lead to the conclusion that membrane de-
formation is a key aspect for the parasite alignment and the different
shapes profit differently from these deformations. From the results
for the surface velocity, we know that the configurations for small
koff values show nearly no surface movement, reproducing the sta-
ble behavior of the potential interaction model. Therefore, the most
realistic configurations are found for koff/k

long
on ≈ 2, as these show

both the parasite dynamics and the membrane deformations similar
to experimental observations. For this parameter set, PA exhibits the
most efficient alignment behavior, supporting the passive compliance
hypothesis as a fundamental mechanism for the parasite-RBC inter-
action.

5.5.4 Are Different Bond Types Required?

In section 5.5.1, we discussed the effect of different bond populations
on the surface velocity and concluded that both, short and long bonds,
stabilize the adhesion. Here, we investigate the effect of bonds on the
alignment efficiency by considering the various alignment characteris-
tics.

The alignment times and deformation energies shown in fig. 5.36
confirm the general observation that a higher level of deformations
leads to a better and faster alignment. Again, this trend is true for
both bond populations, as the alignment time is always lower for the
configurations marked green.
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Figure 5.36: Alignment times and deformation energies for different ra-
tios kshort

on /klong
on for short and long bonds. For all tested values of koff ,

a higher value of kshort
on leads to shorter alignment times. This obser-

vation correlates well with higher deformation energies, as the short
bonds exert more force on the RBC membrane.

To test the importance of long bonds, a new setting is studied where
klong

on = 0 s−1 (no long bonds), while the on-rate for the short bonds
is set to the maximum level considered before. To ensure that the
parasite is able to interact with the membrane, it is brought into
close contact with the membrane at the beginning of the simulation.
The resulting alignment times are compared to those for the reference
configuration in fig. 5.37 and indicate that only short bonds do not
lead to reliable parasite alignment. The parasite cannot be rotated
efficiently by the short bonds and the potential energy per bond is
small as a result of short bond length. Both effects lead to a significant
decrease in the alignment times.

In conclusion, the role of short bonds is purely supportive as they
stabilize parasite adhesion, increasing the deformation level and the
alignment efficiency, but cannot align the parasite on their own. This
observation is consistent with the experimental assumption that the
short bonds are damaged longer agonists, which are still attached to
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Figure 5.37: Alignment time for a configuration with and without long
bonds. When only short bonds interact with the RBC, the parasite
is not able to align properly for low koff rates, as the short bonds are
not able to dynamically rotate the parasite in the same way the longer
bonds do.

the parasite surface [79].

5.5.5 Influence of the Average Bond Lifetime

The absolute values of the different on- and off-rates have a significant
effect on the dynamics as we have demonstrated in the first part of
this section. The measured alignment time and deformation energies
in fig. 5.38 are also influenced by these parameters.

The dependence of the alignment times on koff is consistent with
the previous results explained by an increased deformation level. In
the case of higher rates or a higher turn-over kinetics of the bonds,
the average length of each existing bond is longer. As each bond will
relax over its lifetime to exert less amount of force, shorter lifetimes
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Figure 5.38: Alignment times for different values of klong
on . On average,

a higher on-rate leads to smaller alignment times for the same ratios of
koff/k

long
on .

allow less relaxation, leading to the elongated springs. As a result,
the stress induced at the membrane surface increases with a decrease
in bond lifetime, leading to stronger deformations and an improved
alignment efficiency.

5.5.6 Rigid RBC Membrane

So far, we focused on the influence of the parasite shape and the inter-
action parameters on the alignment efficiency. The parasite properties
are important for its alignment, but changes in RBC rigidity should
also have an effect. In simulations, the membrane does not have any
active response to the parasite and is deforming purely through the
applied stress. We therefore focus on the effect of RBC rigidity by
increasing membrane stiffness by two orders of magnitude. This case
mimics rigid RBC, since the parasite is not able to induce any defor-
mations at the cell surface.

The simulations are performed using the interaction parameters
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Figure 5.39: Comparison of the alignment times between rigid and flex-
ible RBCs. While for a healthy RBC, an increase in the off-rate leads
to longer alignment times, this behavior is opposite for a rigid RBC. It
emphasizes the importance of membrane deformations for a successful
alignment.

summarized in table 5.4. The alignment times for a rigid RBC are
compared to the results for a healthy RBC in fig. 5.39. A clear differ-
ence to the previous results is that the alignment time becomes smaller
with an increased value of koff instead of larger. As the parasite can-
not deform the RBC, it relies on the rotational motion to align itself
correctly at the membrane and cannot profit from its shape. Bond
interactions support and intensify this motion, but the effect depends
on the relation between on- and off-rates, as discussed in the previous
sections. The results show that a higher turn-over kinetics without
membrane deformations might lead to a slightly more efficient align-
ment than in case of a stable adhesion between parasite and mem-
brane. However, even in a best case scenario, the average alignment
time is more than ten times larger than the alignment time obtained
for the reference configuration.
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Figure 5.40: Head distance and alignment angle for rigid and flexible
RBCs. While the flexible RBC shows a strong dependence on the off-
rate, the results for the rigid membrane are on average independent
of koff . Only the width of the measured distributions depends on koff ,
leading to different alignment times for rigid RBCs.

The data in fig. 5.40 supports the hypothesis that membrane de-
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formations induced by the parasite are useful and even mandatory
for its alignment. The head distance and the alignment angle for
healthy and rigid RBCs are very different. While the flexible mem-
brane shows a strong dependence on the value koff and thus on the
level of induced deformations, the results for the rigid membrane are
on average independent of koff . The similarity in the alignment times
for koff/k

long
on = 8.0 are due to the fact that even the flexible RBC is

not deforming much for such fast kinetic rates. In conclusion, a rigid
RBC significantly suppresses successful parasite alignment.

5.5.7 Discussion of the Dynamic Bond Model

We show in this section that the introduced two-state interaction
model for the parasite-RBC adhesion is able to properly reproduce
the behavior a merozoite during the pre-alignment stage. Using the
surface velocity, we are able to match the general dynamics of the par-
asite such that visible deformations resemble those in the experiments
well.

We introduce the head distance, the alignment angle, and the sub-
sequent alignment time to study the ability of the parasite to align
perpendicular to the RBC membrane. We observe that a good align-
ment is possible, because the mechanism relies on the stochasticity of
the model and the resulting alignment times are within the range of
experimental observations.

We test the alignment ability for different shapes and find that the
experimentally measured egg- or pear-like shape of a parasite exhibits
the highest efficiency in aligning the parasite. We also show that
both short and long bond populations, which have been observed ex-
perimentally [79], have a positive effect on the alignment efficiency.
Interestingly a population made of only short bonds is not able to
reliably align the parasite.

All performed simulations show a strong, positive correlation be-
tween the level of membrane deformation and the ability of the par-
asite to align. In particular, tests with a rigid RBC indicate that
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the deformations are mandatory for an efficient alignment, as with-
out such membrane undulations, the parasite relies on its rotational
motion alone and the resulting alignment times are much longer than
those measured in the experiments.

5.6 Conclusions

The aim of this chapter is to test the passive compliance hypothesis for
the merozoite and RBC interaction. To this end, two in silico mod-
els are introduced to model the interaction based on this hypothesis.
The first focuses on a potential interaction between parasite and mem-
brane, while the second model utilizes two-state, stochastic bonds for
the interaction. We performed various simulations using these models
to answer three fundamental questions:

1. Can a parasite induce deformations at the level observed in the
experiments? If yes, are the interaction strengths required for
such deformations realistic?

2. Is an interaction model based on the passive compliance hypoth-
esis able to align the parasite, which is needed for a successful
invasion event?

3. Do the observed deformations aid the alignment process of the
parasite?

To answer the first question, we focus on the potential interaction
model and show that it is able to induce deformations up to very
high levels, such that the membrane shape is changed dramatically.
We measure the adhesion force between the parasite and RBC and
find that it corresponds well to the observed range of 10 pN to 40 pN.
Both results support the passive compliance hypothesis in explaining
experimental observations. Additionally, tests with a rigid RBC with-
out any deformations show a positive effect on the stability of parasite
adhesion.
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To discuss the effect of a possible agonist gradient at the surface
of the parasite on its alignment, we introduce such a gradient for the
interaction potential. While these types of models are still able to
reproduce the deformations and adhesion forces, the resulting con-
figurations do not correspond well to the experimental observations.
The alignment with such a gradient is too fast in comparison to the
experimental observation. Therefore, we conclude that a significant
interaction gradient is not realistic.

We tackle the second and third questions using the two-state in-
teraction model. We introduce several characteristics to measure the
dynamics and the alignment of the parasite and show that the model
is able to successfully and reliably represent the parasite alignment.
The alignment time is measured for a configuration, whose parasite
dynamics matches the experiments best. The time is established to
be to be about 1 s, which compares well with the experimental value.
The mechanism, which leads to the alignment, utilizes the stochastic-
ity of the interaction model, which is in agreement with the assump-
tion that alignment is a game of chance [84]. We discuss the shape
of the parasite and find that the egg-like shape, that is measured for
merozoites [153], leads to the highest alignment efficiency. This is a
strong supporting argument for the passive compliance hypothesis, as
we expect the merozoite to have evolved evolutionary into the best
possible shape to guarantee alignment.

For all performed simulation setups, we are able to identify a pos-
itive correlation between the level of induced deformations and the
alignment efficiency. Again, using rigid RBCs, we are able to show
that such deformations are indeed mandatory to obtain a reliable
alignment, as otherwise the parasite needs to rely on rotational mo-
tion alone to align. The resulting alignment times are generally an
order of magnitude slower than those with deformations.

In summary, the three key questions are successfully answered using
the in silico models and support the passive compliance hypothesis
as an explanation for the parasite alignment during the pre-invasion
stage.
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The studied systems have focused so far on the interaction between
a single RBC and merozoite. In many in vitro and in vivo systems,
there is a larger number of cells and parasites and a correlation be-
tween the cell density and the alignment efficiency is found [86]. The
introduced models can be used to study this correlation and elucidate
the mechanism that leads to this observation.

For single cell simulations, a more advanced alignment study can
be performed. The head, that consists of a single point in the current
study, can be modeled more realistically, and the agonists that form a
tight junction can be introduced. Additionally, if experiments would
provide more data about the nature of the agonist interaction, more
precise results can be obtained for the influence of different interaction
parameters on parasite alignment.

In contrast to the mentioned in vitro experiments, the parasite in-
vasion occurs in vivo in a flowing environment. This induces further
challenges for the parasite, as the flow changes the behavior of the
RBCs and leads to additional forces acting on the parasite-membrane
connection. Simulations in this type of environments can be performed
to study these effects in more detail.

136



6 Summary, Conclusions, and
Outlook

We study various aspects of cell mechanics and adhesion for different
biological processes, such as cell blebbing and the invasion of RBCs by
malaria parasites. To this end, we use computer simulations and in-
troduce various coarse-grained cell models that incorporate a number
of cell elements, such as a lipid-bilayer membrane and cell cytoskele-
ton. The models are used within different fluid frameworks and allow
us to study cells under realistic conditions.

In chapter 3, we introduce a cell model consisting of a cell mem-
brane and a bulk cytoskeleton. Both are characterized by separate
elastic properties and we analyze the elastic response of the cell us-
ing microplate compression tests. We systematically study the effect
of various membrane and cytoskeletal parameters and show that the
total elastic response can be described as a superposition of the in-
dividual contributions. This total response is mostly affected by the
bulk Young’s modulus and the membrane area compression modu-
lus, while other parameters, e.g. the membrane bending rigidity and
volume constraint, are negligible.

A further improvement of the studied cell model can be the incorpo-
ration of different cell inhomogeneities. These can include structural
differences between the area close to the cell membrane and the inside
of the cell, e.g. the introduction of a separate cell cortex. Another pos-
sibility is to add details about cytoskeletal filaments, for example the
different stiffnesses of microtubules, intermediate filaments, and actin
filaments. Finally, the addition of a cell core may change the elastic
response as well, since a cell nucleus is generally much stiffer than the
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surrounding network. The addition of these parts should increase the
precision of the model, but will lead to more model parameters and
will therefore require a large number of simulations.

The introduced cell model is extended to study stress-induced cell
blebbing in chapter 4. By adding network contraction of the bulk
cytoskeleton and a dynamic, bond-based adhesion between cell mem-
brane and inner network, this model can produce blebs. Blebs are
formed by patches of cell membrane, which detach from the inner
network and form a protrusion. By combining theoretical calcula-
tions and simulations, we are able to determine parameter ranges in
which cell blebbing exists. We find that this process is primarily dom-
inated by the properties of the adhesion model and the membrane
stiffness, characterized by the area compression modulus. The rela-
tion between the contraction strength of the inner network and the
area compression modulus plays a key role in determining the cell
shapes and effects the onset of blebbing. Other membrane properties,
such as the bending rigidity and volume constraint, are negligible.

By studying the analytical solution, we show that the main aspects
of stress-induced blebbing are the number of binding sites within the
cell membrane and the kinetic parameters of the adhesive bonds, mak-
ing blebbing sensitive to the contraction force and average binding
rates. A limitation of the introduced model is that a larger number of
parameters is needed to describe the adhesion. To verify the model,
the results should be combined with future experimental observations
to determine a number of these parameters. This model can then
be used to study various cell characteristics, such as cell membrane
properties.

The used cell-blebbing model is designed to mimic contracting syn-
thetic cells with a volume-spanning actin network. To study blebbing
in other contexts, such as cell-motility or cell-division, different types
of linker molecules may be needed. One example is catch-bonds, for
which the lifetime increases with applied stress. Mixtures of different
types of linkers should lead to locally different blebbing behavior and
can be important for modeling directed cell motility. The mentioned
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inhomogeneities of the cytoskeleton, such as the introduction of a cell
nucleus, will also lead to inhomogeneous contraction behavior, affect-
ing the blebbing onset.

In chapter 5, we investigate RBC-membrane deformations due to
the interaction with a parasite during a malaria infection. In the
blood stage of a human malaria infection, the parasite needs to in-
vade healthy RBCs to reproduce. This invasion process is accompa-
nied by various levels of deformation of the target cell membrane. To
test the passive compliance hypothesis, which attributes the deforma-
tion to the adhesive interaction between malaria parasite and RBC
membrane, we introduce coarse-grained RBC and parasite models.

In the first part of chapter 5, the adhesion is modeled through an
attractive potential. We show that the parasite is able to induce de-
formations of a similar amplitude as observed in vitro. By performing
parasite pulling tests, we show that the interaction strength required
for these deformations leads to realistic detachment forces in the range
between 10 pN and 40 pN. We conclude that the passive compliance
hypothesis is a feasible explanation for the observed membrane defor-
mations.

In the second part of chapter 5, the adhesion between RBC mem-
brane and the parasite is represented by a dynamic, bond based model.
It is a more realistic representation of the parasite-RBC interaction,
which is governed by agonists at the parasite surface. The model
leads to a realistic dynamics, which includes membrane deformation
and parasite movement on the membrane surface.

For successful parasite invasion of RBCs, the parasite head needs
to be aligned toward the cell membrane. We quantify the alignment
by a number of characteristics such as head distance, alignment an-
gle, and alignment time, and study its dependence on various model
aspects. We show that the alignment is a stochastic process and the
best alignment behavior is obtained for bonds with a length of ap-
proximately 200 nm, since shorter bonds do not induce the parasite
motion efficiently. Furthermore, the lifetime of the bonds should be
long enough to induce membrane deformations but not too long, so
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that the parasite is not permanently adhered to the RBC. This opti-
mized attachment behavior leads to sufficient movement of the par-
asite, while profiting from the RBC membrane deformations. Addi-
tionally, the symmetry-breaking pear-like shape of the parasite leads
to the best alignment results. By comparing the alignment behavior
for rigid and flexible RBC membranes, we show that the induced de-
formations are a key aspect for successful parasite alignment, since it
allows an effective reorientation of the parasite head.

We conclude from our results, that the passive compliance hypothe-
sis is a plausible explanation for the membrane deformations observed
in experiments and that it leads to an effective parasite alignment
mechanism. Performed simulations highlight the importance of RBC
membrane deformations for successful parasite alignment. The para-
site alignment effect needs to be studied in vitro and in vivo in more
detail to explore the possibility of finding a target for the treatment
of malaria.

Future studies using such in silico models may explore different
aspects of adhesion, e.g the number of binding sites at the RBC mem-
brane, the length of the different bonds, and the strength of the in-
teraction bonds. All properties will have an effect on the alignment
behavior and testing may identify new ways of future malaria treat-
ment. Additionally, simulations should be performed in a flow envi-
ronment to study the stability of the adhesion. An important aspect
may be the RBC shape, which differs for different confinements and
flow speeds. The resulting shapes differ in their surface stresses and
are therefore different in their deformation behavior. As a result, the
point of first contact might play a more vital role in comparison to
the relaxed discocyte shape. Further, experiments show a correlation
between the RBC density and the parasite invasion efficiency. This
may be explained by an effective stiffening of the RBCs thanks to
the increased density. Another possibility is that the malaria para-
sites interact with more than one RBC at the same time, reducing the
effectiveness of the alignment mechanism. Simulations with a larger
number of cells and parasites need to be performed for stationary and
flowing environments to test this hypotheses.
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