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Abstract

Colloidal suspensions widely exit in our daily life, in the form of food, medicaments,

biological materials, or cosmetics, among other examples. Hydrodynamic interactions

in colloids suspensions at non-equilibrium give rise to many intriguing phenomena, where

the shape of colloidal particles plays an important role. For instance, colloidal ellipsoids

tumble and kayak in shear flow. Flexible polymers deform, or multicomponent systems

in various phases. Besides the tumbling of elongated colloids, further characteristics are

expected in shear flow when the particles are chiral, like a helical structures which display

a drift in the vorticity direction. Furthermore, the helix may generate locomotion, when

external actuation is able to deform its shape in non-reciprocal ways. Artificial systems

have been recently synthesized showing that it is possible to generate net motion by

smoothly deforming their helical body, as a response to changing temperature.

We combine a theoretical approach based on the Smoluchowski equation and flow-

dichroism experiments to measure hydrodynamic aspect ratios and polydispersity of

nano particles, which is not feasible with standard methods similar to light scattering.

A mesoscale hydrodynamics simulations are used to study the transport of helix in shear

flow and swimming of deformable helix at low Reynolds numbers. The particle-based

approach of multi-particle collision dynamics also enables simulations of colloids at non-

equilibrium where thermal fluctuations are not negligible.

The first part of tis thesis investigates the validity of flow dichroism as a characteriza-

tion tool by employing dispersions of prolate and oblate quantum dots (QDs). Flow

dichroism quantifies the tumbling motion of QDs in shear flow by optical means, which

provides a characteristic signature of the particle shape, hydrodynamic friction, and size

distribution. Particle size, shape, polydispersity, and shear rate have an important ef-

fect on the temporal evolution of the flow-induced alignment which we discuss in detail

on the basis of numerical solutions of the Smoluchowski equation describing the QDs

motion in the basis of the probability of the orientation of colloids in shear flow. This

combination of flow dichroism and the Smoluchowski equation approach is not only use-

ful for determining shape and anisotropic of colloidal QDs, but also for other nanoscale

systems.

The second part of this thesis discusses the transport of a deformable helical polymer in

a uniform shear flow. The rigidity of the helix essentially affects its configuration under

shear stress. The deformable structure still keep helicity while it is compressed and

stretched periodically (breathing), and tumble simultaneously in the shear flow below

certain shear stress, above which the helix performs noticeable chaotic motion. The

tumbling motion follows Jefferys theory for rigid rod-like particles, although with an

effective aspect ratio value which depends on flexibility and chirality parameters. The

lateral drift shows to be a hydrodynamic effect with a maximum impact between rod and

tube limits, obtained by changing the geometry of rigid helix. The flexibility also plays

an important role on the lateral drift because its geometry and chirality keep changing.

Finally, we investigate the transport of a perfectly deforming helix interacting with a

viscous fluid by hydrodynamic simulations. Maintaining the helical structure and a single
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handedness along its entire length, we first discuss how the deformation periods, helix

configuration, and fluid viscosity impact the net rotational swimming stroke and identify

its principle direction of motion. We then explore how the presence of confinement in a

planar slit influences the rotation speed, trajectory, and position of the deformable helix.

Interestingly the active helix shows to consistently migrate to the channel center while

passive helix and helix with reciprocal deformation do not show significant migration

in any direction. These results including second part provide important criteria to

consider in the design and optimization of helical machines at the nanoscale, and in the

understanding of some biological functions, for example of flagellated structures.

In summary, non-equilibrium dynamics of anisotropic colloids are studied, which include

rods and helices in shear flow, and actuated helices. These results show the importance

of shape anisotropy in hydrodynamics of colloidal suspensions, which has significant

potential in practical applications and solution of some fundamental questions.



Zusammenfassung

Wir begegnen in unserem täglichen Leben häufig kolloiden Suspensionen in Form von Es-

sen, Medikamenten, biologischen Materialien oder Kosmetik. Hydrodynamische Wech-

selwirkungen in kolloiden Suspensionen rufen außerhalb des Gleichgewichtszustandes

viele faszinierende Phänomene hervor, wobei die Form des kolloiden Teilchens eine

wichtige Rolle spielt. Beispiele hierfür sind das Taumeln ellipsoidaler Kolloide und

die Paddelbewegung in Scherströmungen. Flexible Polymere verformen sich und Sys-

teme, die aus mehreren Komponenten bestehen, ergeben verschiedene Phasen. Weitere

Merkmale neben der Taumelbewegung werden in Scherströmungen erwartet, wenn das

Teilchen eine spiralförmige Struktur besitzt. Ein Beispiel hierfür ist ein Drift in Ver-

tizitätsrichtung. Die Helix kann Bewegung erzeugen, wenn äußere Kräfte ihre Form

nicht zu sehr deformieren. Helikale Kolloide wurden kürzlich synthetisiert und zeigen

eine Netto-Bewegung durch reibungsloses Verformen der Helix als Reaktion auf Tem-

peraturänderung.

In dieser Arbeit verbinden wir einen theoretischen Ansatz basierend auf der Smolu-

chowski Gleichung mit den Messungen der Experimente zum Flussdichroismus. Dabei ist

das Ziel, hydrodynamische Seitenverhältnisse und Polydispersität von Nanopartikeln zu

vergleichen, welche nicht mit Standardmethoden wie den Lichtstreuverfahren umsetzbar

sind. Mesoskale hydrodynamische Methoden werden verwendet, um den Transport einer

Helix in einer Scherströmung und das Schwimmen einer verformbaren Helix bei niedrigen

Reynolds-Zahlen zu simulieren. Der teilchen-basierte Ansatz der Vielteilchenkollisions-

dynamik ermöglicht Simulationen eines Kolloids im Nichtgleichgewichtszustand, wobei

thermische Fluktuationen nicht vernachlässigbar sind.

Im ersten Teil dieser Arbeit wird die Dispersion von Stäbchen und scheibenförmigen

quantum dots (QDs) als Modellsystem eingesetzt, um die Gültigkeit des Flussdichro-

ismus zu untersuchen. Flussdichroismus quantifiziert die Taumelbewegung von QDs in

Scherströmungen durch optische Methoden, welche charakteristische Eigenschaften wie

die Teilchenform, die hydrodynamische Reibung und die Verteilung der Teilchengröße

bestimmen lassen. Teilchengröße, Form, Polydispersität und Scherrate haben einen

wichtigen Einfluss auf die zeitliche Entwicklung der strömungsinduzierten Ausrichtung.

Dies wird auf Basis der numerischen Lösung der Smoluchowski Gleichung, welche die

zeitliche Änderung der Wahrscheinlichkeit der Orientierung von Kolloiden in Scher-

strömungen beschreibt, ausführlich erörtert. Diese Verbindung von Flussdichroismus

und dem Ansatz der Smoluchowski Gleichung wird nicht nur für die Bestimmung der

Form und der Anisotropie von kolloiden QDs, sondern ebenfalls für Systeme im Nanobere-

ich, nützlich sein.

Im zweiten Teil der Arbeit untersuchen wir den Transport eines verformbaren und spi-

ralförmigen Polymers in einer gleichförmigen Scherströmung. Die Steifheit der He-

lix beeinflusst im Wesentlichen ihre Konfiguration unter Scherung. Die verformbare

Struktur behält ihre spiralförmige Gestalt solange sie periodisch zusammengedrückt

und gestreckt wird (breathing) und taumelt gleichzeitig in der Scherströmung unter-

halb einer bestimmten Strömungsspannung. Oberhalb dieser Spannung zeigt die Helix
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chaotisches Verhalten. Die Taumelbewegung folgt weiterhin der Jeffery Theorie für

rigide stäbchenförmige Teilchen, wenn auch mit einem effektivem Wert für das Seiten-

verhältnis, welcher von der Flexibilität und dem Chiralitätsparameter abhängig ist. Der

laterale Drift zeigt sich als hydrodynamischer Effekt mit einer maximalen Auswirkung

zwischen den Grenzwerten von Stab und Rohr, welche durch die Änderung der Helix-

geometrie erhalten werden. Die Flexibilität spielt ebenfalls für den lateralen Drift eine

wichtige Rolle, da sich Geometrie and Chiralität stetig ändern.

Inspiriert von diesen Systemen untersuchen wir den Transport einer sich ideal verfor-

menden Helix in einer viskosen Flüssigkeit mit hydrodynamischen Simulationen. Die

spiralförmige Struktur und die Händigkeit wird entlang ihrer ganzen Länge aufrecht er-

halten, um zu diskutieren wie sich die Perioden der Verformung, die Helix-Konfiguration

und die Viskosität der Flüssigkeit auf die Netto- Rotation eines Schwimmschlags auswirken

und um die prinzipielle Bewegungsrichtung zu identifizieren. Wir untersuchen da-

raufhin, wie sich eine einschränkende Geometrie in Form eines Spaltes auf die Rotation-

sgeschwindigkeit, die Trajektorie und die Position der verformbaren Helix auswirken. In-

teressanterweise wandert die aktive Helix durchgängig zum Zentrum des Kanals, während

eine passive Helix und eine Helix mit wechselseitigen Verformungen keine wesentliche Be-

wegung in eine ausgezeichnete Richtung zeigen. Diese Ergebnisse bieten ein wichtiges

Kriterium für die Gestaltung und die Optimierung spiralförmiger Kolloide im Nanobere-

ich und ein Verständnis biologischer Funktionen wie zum Beispiel die gegeoßelter Struk-

turen.

Es wurde die Nichtgleichgewichtsdynamik von anisotropen Kolloiden studiert, welche

Stäbe und Helices in Scherströmung beinhalten. Die Ergebnisse heben die Bedeutung

von anisotropen Formen in der Hydrodynamik von kolloiden Suspensionen hervor, welche

großes Potential in der praktischen Anwendung und Lösung grundlegender Fragestellun-

gen haben.
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Dr Rotational diffusion coefficient

D‖ Parallel diffusion coefficient

D⊥ Perpendicular diffusion coefficient

f Deformation frequency of helix

h Collision time step

Le End-to-end length of helix

M Mass of monomer

m Mass of solvent particle

p Aspect ratio of rod

P (r, t) Probability density function

Per Peclet number

Per Pressure

R Radius of helix

Re Reynolds number

s Arc length of helix

T Tumbling period
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t time

TH Deformation period of helix

Wû(t) Mean-squared displacement

Vectors

û Long axis of particle

v̂ Velocity of particle

v̂‖ Parallel component of velocity of particle

v̂⊥ Perpendicular component of velocity of particle

D Diffusion tensor

Fs,Fh,FBr Force

g Pressure tensor

Mθ Strength of the vector field

r Position of particle

U Flow velocity





Chapter 1

Introduction

Colloidal suspensions are systems of particles immersed in a solvent, also commonly

referred to as complex fluids, in which the solute particles move significantly slower than

the solvent particles. As shown in Fig 1.1, the sizes of the colloidal particles roughly range

from a few nanometers up to the micrometer scale, whereas typical solvent molecules,

such as water, are in the Ångström range. In the early day of condensed-matter physics,

the observation of the undirected and seemingly erratic motion of colloidal particles

has led to a strong backing of the atom hypothesis [1, 2]. As discussed in Ref. [3],

“It has allowed calculation of the size and number of molecules driving the Brownian

motion [4]. Despite the undirected and irregular nature of the movements, Einsteins and

Smoluchowskis predictions of a linearly growing mean square displacement has been

verified by Perrin [1, 2, 4], who was, at the same time, able to calculate Avogadros

number”. The huge difference in the typical time scales of motion of a solvent molecule

and a colloidal particle leads to a separation of the dynamics. This fact allows one to

regard the influence of the suspending medium as a very short-time correlated random

process. Moreover, one typically defines the Brownian time, τB, describing the time

that is needed for a particle to cover a distance of its own size. Beyond this time,

the motion can be considered overdamped, which means that the motion is no longer

systematically ballistic in its character.

Figure 1.1: The skematic of colloids’ length scales. The particles from left to right: Au
nanoparticles, metal composite particles, Au nanorod+silica shell, core-shell microgels,

porous structure of catalyst . Figure taken from Ref. [5]
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As a colloidal particle translates or rotates, it induces a fluid flow in the solvent which

affects other Brownian particles in their motion. These interactions are mediated via

the solvent and standardly called as hydrodynamic interactions, which lead to rich

phenomena of particles motion. This dynamics strongly depends on particle shape and

relevant examples of our interest are rod-like colloids or structure with chiral symmetry

such as helices. Rods tumble and kayak in shear flow [3, 6–9]. Chiral particles migrate in

vorticity direction of shear flow [10–12]. Helical microorganisms can translate or rotate

in solvent by a non-reciprocal deformation [13–17].

1.1 Application of colloids system

There are plenty of colloidal products in our daily lives as shown in Fig. 1.1, such as

dairy products [18], cosmetics and paint, recent advances in chemical synthesis allow

production of functional colloids as well as self-propelled or complexly shaped particles

[19]. On one hand, there are practical considerations for the use of colloids in a variety

of fields, such as microfluidics, material design, pharmaceutics or drug delivery [20]. On

the other hand, fascinating systems can be designed to address fundamental relevant

questions. Mutually attached spheres, for example, are sometimes referred to as colloidal

molecules as they resemble atomic molecules in their shapes and it is possible to control

the bond-angles and overall size and shape [21]. Thus, colloids may be regarded as

models for atomic or molecular systems, which simplify the investigation of analogous

systems due to slower time scales and larger sizes of the particles [22]. Moreover, on

this fundamental level, colloids enable the understanding of the mechanisms of phase

transitions and arrested states [23].

(a) (b) (c)

(d) (e) (f)

Figure 1.2: Types of colloids in our daily life. (a) Icecream (b) milk (c) hydrogel (d)
blood (e) paints (f) cosmetics. Copy right @ prochemicalanddye.net
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1.2 Anisotropic colloids’ shape and non-equilibrium dy-

namics

In general, colloidal particles are anisotropic in shape, which was considered in the light

of mineral sheets, rod-like viruses and flexible polymer chains by Perrin and Onsager in

the 1930s and 1940s [24, 25]. Suspensions of anisotropic particles have been studied by

many researchers, e.g. spherocylinders as models for micro-organisms [26, 27]. Recent

advances in the chemical synthesis and fabrication of colloidal particles have resulted

in a wide variety of shape and size of shape-anisotropic particles, such as rods [28, 29],

plates [30], dumbbells [31], hollow objects, microcapsules, patchy particles, cubes [32],

octahedra [33], tetrahedra [34], nanostars [35], and colloidal caps, [34] as illustrated in

Fig. 1.2.

(a) (b) (c)

(d) (e) (f)

Figure 1.3: Scanning electron micrographs of particles. (a) rod (b) octahedra (c)
cube (d) tetrahedra (e) stars (f) cap. Figures taken from [28, 32, 34, 34, 35]

In equilibrium, anisotropy gives rise to novel phases, such as the PC or rotator phase,

nematic or liquid crystalline states [36, 37]. At different temperature, for example rod-

like liquid crystal molecules exhibits different levels of orientational and positional order

as shown in Fig. 1.4. Furthermore, the anisotropy of the suspended particles may be of

great importance for dynamical quantities as well as structural formation under external

fields [38, 39].

Fascinating phenomena are observed in colloids under the influence of external fields

[41]. In processing suspensions, various kinds of external fields are applied to colloids,

which may be electrical [42], magnetic [43], also flow fields [44] or gravity [45], to name a

few [46]. In fact, even walls or confining boundaries can be seen as a method of external

control. The application of external fields can change the equilibrium of the system

[47], lead to non-equilibrium steady states or drive the system into full transient non-

equilibrium [48]. Under gravity, for example, the coexistence of different phases may be

observed due to density gradients [49].
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Figure 1.4: Illustration of rod-like liquid crystal molecules exhibiting different levels
of orientational and positional order in the crystal, smectic, nematic, and isotropic
phases as a function of increasing temperature with melting and clearing points noted.

Figure recreated from [40]]

A very important class of external fields are flow fields, which can be quite complex. This

spatial or temporal complexity is strongly dependent on the boundary conditions and

the driving forces causing media to flow. One of the most elementary flows is the simple

shear flow, where the velocity is unidirectional and depends linearly on the distance

from the walls. Couette flow is the laminar solution for fluid confined between two

plates one of which is moving and the other is fixed at a certain distance with no-slip

boundary conditions [50]. Shear flows are very common in processing and transport of

material as they are inevitably present due to typical boundary conditions on the flowing

medium. In order to analyse the response of a medium to shear, one typically chooses

simple shear with an oscillatory or steady time dependence. In the context of colloidal

flow, shear can lead to a multitude of phenomena: shear fields may be used to induce

crystallisation in colloidal hard sphere glasses, [51] or drive gelation in dilute suspensions

of charge-stabilised particles [52]. It may be desirable to prevent crystallisation or glass

formation in a process, as solidification can hamper the transport of material. The

behaviour of particles under shear have rich phenomena. In Fig. 1.5, for example,

semi-flexible polymers exhibit tumbling motion, i.e., they undergo a cyclic stretch and

collapse dynamics, with a characteristic frequency which depends on the shear rate and

their internal relaxation time [44].

Figure 1.5: Snapshot of semiflexible polymers under shear flow. Figure taken from
Ref. [44]
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1.3 Rheo-optical approach for particle charaterization

The knowledge of the precise size and shape of colloidal particles is frequently important,

as they have a strong effect on the rheological, optical, and/or mechanical properties

of suspensions. Preparation of samples for electron microscopy is often laborious and

expensive and the analysis of the images is not trivial. Light-scattering methods, as

used in many commercial particle-sizing instruments, are not designed to assess particle

shapes. Special methods requiring multiple detectors are needed for this purpose, as the

angular dependence of the scattered light needs to be analyzed [53]. Measurements of

changes in the polarization state of the scattered light provide a possible alternative for

nonspherical particles with a given orientation. The establishment of new approaches

to determine size and shape of colloids is therefore timely and relevant.

Particle dynamics is governed by the particle geometry, which for example determines

the manner of rotation in the flow. For a given particle, the angular velocity is not

necessarily constant in time. If the particle is elongated it slows down as its orientation

approaches the flow direction and it increases whne it is not oriented. It has been

shown that polarimetry measurements of birefringence and especially linear conservative

dichroism can be used to study the dynamics of dilute colloidal suspensions in simple

shear flow [54–56] .

Linear conservative or scattering dichroism is a property related to anisotropic scattering

of light. It is defined as the difference in the principal eigenvalues of the imaginary part of

the refractive-index tensor. In a dilute system of nonspherical particles, the magnitude

of the linear conservative dichroism reflects the degree of alignment induced by the

shear flow. Here, however, it is more convenient and simple to consider evolution of

the average orientation angle χ, which is given by the projection of the principle axis

of the imaginary part of the refractive-index tensor in the flow-velocity gradient plane.

It is a purely geometrical property, the determination of which is not affected by the

size for samples with uniform optical properties. For that reason it is more suited to

characterize suspensions of nonspherical particles. Existing methods have shown that the

combination of rheo-optical approach and theoretical results of particle orientation can

obtain aspect ratios and polydispersity of particles under assumptions of nearly spherical

particles, narrow distribution of size, negligible Brownian motion [57, 58] illustrated in

Fig. 1.3.
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(a) (b)

Figure 1.6: (a) Transmission electron micrographs of nonspherical gold nanoparticles.
(b) Orientation angle χ as a function of strain for (a). Figures taken from Ref. [58]

1.4 Motion of chiral objects

A chiral object has two distinct forms that are mirror images to each other, but each

can not be converted into the other by pure spatial rotations as shown in Fig. 1.7. The

study of the dynamics and interactions of chiral obejcts is an interesting and fascinating

subject. The pioneering observation by Louis Pasteur in 1848 linked the chirality of the

sodium ammonium salt crystals to light polarization [59]. Chirality in macromolecules

has led to many important structural properties, especially in liquid crystals [60]. As

for example, the double helix of DNA is chiral and always right handed [61]. All but

one of natural amino acids, the building blocks of proteins, are chiral and are only in

the left-handed forms. Many other molecules important to life are chiral, and it is still

a mystery why only one of the two enantiomers is used by living organisms [62].

Figure 1.7: Illustration of chirality by helices. Figure taken from Ref. [63]

Recently, synthetic helical particles at the nanoscale, with radii smaller than 100nm

have become available [64, 65]. Controlled and directed motion of chiral particles has

important applications as in the case of targeted delivery of genetic material and drugs,

this is since such particles can be tailored to facilitate their efficient uptake by various

cells or tissues. Controlled motion and cargo transport of magnetic helical particles has

been demonstrated [43]. Application of time-dependent magnetic fields on magnetic

screw-like particles induces a torque that rotates the particle and propels it in the fluid.

Manipulation of the direction of the rotating magnetic fields makes it possible to load

microspheres as cargo into the holder of a helical particle, transport the cargo and then

release it at a preferred site [43]. In the interesting work shown in Fig. 1.8, externally
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driven microhelices can be used to assists sperm to delivery on immotile live cell [66],

see Fig. 1. 8.

Figure 1.8: (i) Sperm cell captured by by magnetic helcal micro particle (ii) transport
(iii) approach to the oocyte membrane (iv) and release. Figure taken from Ref. [66]

Chemical syntheses of chiral molecules in laboratories usually produce roughly equal

amounts of the two enantiomers, such that separation of enantiomers becomes an im-

portant issue inspite of difficult process. Currently, the main methods consist in driving

the enantiomer mixtures through specific chiral filling materials, often with not so satis-

factory efficiencies [67, 68]. Motion and kinetics of chiral objects are largely determined

by their spatial anisotropy since it leads to a coupling between the translational and

rotational degrees of freedom. De Gennes already suggested dragging by external forces

an enantiomer crystal along the surface of a liquid or solid [69]. As illustrated in Fig.

1.9, the friction on helix under shear could then produce a chiral-specific lateral forces,

although it was noted that the crystal needs to be macro-sized to overcome the thermal

fluctuations. It was then proposed that a microfluidic flow with spatially varied vortic-

ity could separate enantiomers, due to intricate interplay between the particle transport

and thermal fluctuating diffusive motions [70].

Figure 1.9: Motion of chiral particles placed in shear flow. If the particle P moves
with the velocity V in the shear flow, the mirror-imaged particle P will move with the

velocity V′, which is the mirror image of V. Figure taken from Ref. [71]
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1.5 Microswimmer at low Reynolds number

Active matter is a fascinating new field in soft matter physics. It concerns the macro-

scopic properties of interacting active particles, which are individually able to convert

energy into directed motion. As disccussed in Ref. [72], “Locomotion is a major achieve-

ment of biological evolution and is an essential aspect of life. Search for food, orientation

toward light, and spreading of the own species are only possible due to locomotion. The

spectrum of biological active system in microscopic world is vast, ranging from sperma-

tozoa [73], bacteria [72, 74], to the cytoskeleton in living cells [75–78]. Yet, highly active

systems are not just limited to examples from nature and the development of synthetic

microswimmers is recently making an enormous progress [79]”. Hence, studying the

dynamics of active matter is a key element on the way to a better understanding of

autonomous biological systems, the development of novel biomedical technologies, and

new designs of microfluidic devices. A common characteristics of active matter is the

utilization of energy from the environment for, or the internal conversion of chemical

energy into, directed propulsion [72, 74, 79–83].

The physics of microswimmers is fairly different from that we experience in our macro-

scopic world. While for, e.g., swimming humans, inertia is dominating over the viscous

forces, for microswimmers it is the other way around. The ratio between the inertial and

viscous forces is known as Reynolds number. The value of the Reynolds number spans

over several orders of magnitude from 106 of swimming humans to 10−5 of bacteria. At

high Reynolds numbers, the momentum transferred from the swimming body to the sur-

rounding fluid convects and slowly dissipates from larger to smaller length scales. At low

Reynolds numbers there is almost no inertial delay in time between the applied forces

and the fluid response. Therefore, at zero Reynolds number, every reciprocal motion,

i.e., every periodic motion, which after time reversal is identical to its original dynamics,

will not lead to self-propulsion. This property is known as the scallop theorem [14, 82].

Artifical microswimmers can be constructed by using similar design principles as those

found in biological systems. As explained in Ref. [72], “A by now classical example is

a swimmer which mimics the propulsion mechanism of a sperm cell [84]. The flagel-

lum is constructed from a chain of magnetic colloid particles and is attached to a red

blood cell, which mimics the sperm head. This artificial swimmer is set into motion

by an alterating magnetic field, which generates a sidewise oscillatory deflection of the

flagellum. However, the swimming motion is not the same as for a real sperm cell; the

wiggling motion is more a wagging than a travelling sine wave, and generates a swim-

ming motion toward the tail end, opposite to the swimming direction of sperm. A recent

example of a biohybrid swimmer which mimics the motion of sperm has been presented

by Williams et al. [85]. In this case, the microswimmer consists of a polydimethylsilox-

ane filament with a short, rigid head and a long, slender tail on which cardiomyocytes

(heart-muscle cells) are selectively cultured. The cardiomyocytes contract periodically

and deform the filament to propel the swimmer. This is a true microswimmer because

it requires no external force fields. The swimmer is about 50 µm long and reaches a

swimming velocity up to 10 µm/s”. A more recent experimental work [86] has shown

for the purposefully shaped microhydrogels that the kinematics of a cyclic body shape



1.6 Objectives and outline of the thesis 9

variation can be tuned to differentiate between the forward and the backward motion as

shown in Fig. 1.5. Thus, the first deformation stroke (upon heating) is not reciprocated

by the second deformation stroke (during cooling), even though the cycle ends up at its

starting configuration. Based on this, a light-fueled and light-controlled microswimmer

has been designed, which can rotate and move forward by its body deformation.

(a) (b)

Figure 1.10: Actuation characteristics of a microgel ribbon helix under stroboscopic
irradiation. a) Microscopy images from time-lapse videos of the helix during irradiation.
b) Instantaneous helix length and diameter during one irradiation cycle. The left part
corresponds to when the light is on, while the right part corresponds to when the light

is off. Figures taken from [86]

1.6 Objectives and outline of the thesis

Chapter 2: The related theoretical framework will be introduced by including the

dynamics of shape-anisotropic colloids, hydrodynamics in Stokes regime, and some the-

oretical methods applied in microswimmers. Then a hybrid simulation method will be

introduced, which combines multi-particle dynamics with molecular dynamics.

Chapter 3: Since the hydrodynamic aspect ratios and polydispersity of particles are im-

portant for the application of nano-particles, a charaterization technology is developed.

The Smoluchowski equation can be generalized on arbitrary aspect ratios, polydispersity,

and include thermal fluctuation, which goes beyond the limits of the existing methods

[57, 58]. The numerical results of Smoluchowski equation contain the shear rate, the

equivalent hydrodynamic aspect ratio, and the associated polydispersity. Then they can

be obtained from a fit to the experimental data, as will be demonstrated for a model

system containing quantum dots.

Chapter 4: The non-equilibrium dynamics of helix have been studied [11, 45, 71]. For

example, the study has shown that twisted ribbons can be separated by shear flow as

illustrated in Fig. 1.6. Previous studies are still restricted to rigid particles or flexi-

ble tetrahedron. Therefore, open questions still include how the chiral geometry and

flexibility of helix affect the efficiency and migration speed. We address these issues by

Molecular dynamics coupled Multi-particles dynamics simulation [87, 88], which intrin-

sically involve thermal fluctuations hydrodynamic interactions and varying flexibility.
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(a) (b)

Figure 1.11: (a) Sketch of the rheological separator. (b) Mean migration velocity of
twisted ribbon of length in the limit of large Peclet number is plotted against the pitch.

Figures taken from Ref. [71]

Chapter 5: Aritifical microswimmers have a huge potential applications in drug delivery

and micro-robots. Recent experimental work developed a novel gel which can deform by

responsing to temperature as shown in Fig. 1.5. As a results the actively driven helix

has a net rotation. Later theoretical work [89] demonstrated that the net rotation is due

to non-reciprocal deformation of helix. However, the effect of fluid viscosity and walls on

the swimming and migration of helix was not considered. Therefore, we investigate these

issues, including the effect of helix configuration, fluid viscosity, deformation periods on

the propulsion of helix herein by the same former simulation method.



Chapter 2

Theoretical background and

simulation Methods

2.1 Theoretical Background

2.1.1 Dynamics of dilute non-spherical colloids

Shear flow is typical case where the dynamical behavior can be investigated in a station-

ary nonequilibrium state. Shear flow affects microstructural order of colloidal systems

in two respects : center-to-center correlations are affected by flow and flow can induce

changes in orientational order. For spherical colloids, flow-induced changes of macro-

scopic properties find their origin entirely in shear-induced changes of center-to-center

correlations. For non-spherical colloidal particles, flow also tends to align single col-

loidal particles due to the torque that the flowing solvent exerts on their cores. For very

elongated colloids, single particle alignment is dominant over shear-induced changes of

center-to-center correlations. For such systems, equations for one-particle orientational

distribution functions, with the neglect of flow-induced distortions of center-to-center

correlations, are sufficient to predict their macroscopic behaviour under flow. For spher-

ical colloidal particles, however, one-particle distribution functions are not affected by

flow, so that theory for spheres should be based on equations for correlation functions.

2.1.1.1 The velocity gradient tensor

A linear flow profile is characterized by means of the velocity gradient tensor G, where

the flow velocity U at position r is written as U = G · r. In case of simple shear flow,

the gradient velocity tensor is usually denoted as Γ, and is equal to

Γ = γ̇

0 1 0

0 0 0

0 0 0

 , simple shear flow. (2.1)

11
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Figure 2.1: (a) Simple shear flow. (b) Elongational flow, sometimes also referred to
as extensional flow (where the elongational and compression axes are indicated), and

(c) Rotational flow. Arrows indicate the flow direction.

The corresponding flow profile is a flow in the x-direction, with its gradient in the y-

direction, as sketched in Fig. 2.1a. The z-direction is commonly referred to as the

vorticity direction. The strength of the flow is characterized by the shear rate , which

equals the spatial gradient ∂Ux/∂y of the flow velocity Ux in the x-direction. For elon-

gational or extensional flow, the velocity gradient tensor is denoted as E, and reads,

E =
1

2
γ̇

0 1 0

1 0 0

0 0 0

 , elongational flow. (2.2)

the corresponding flow is sketched in Fig. 2.1b. In such an elongational flow, deformable

objects tend to elongate along the so-called extensional axis, and compressed along the

compressional axis. With this coordinate these two directions are in the diagonal of x−y
axis as indicated in fig. 2.1b. Whenever it is not specified whether simple shear flow or

elongational flow is considered, the velocity gradient tensor can be generally denoted as

G.

It is instructive to use velocity calculus method, which allow to decouple any arbitrary

matrix in its symmetry GS and asymmetry GA parts G, G = GS + GA with GS =
1
2(G + GT) and GA = 1

2(G−GT), where the superscript T stands for the transpose of

the corresponding tensor. For elongational flow, the velocity gradient tensor is already

symmetric, such that GS = E and GA = 0 . For simple shear flow we have GS = 1
2E

and GA = 1
2Ω with Ω the rotation matrix:

Ω =
1

2
γ̇

 0 1 0

−1 0 0

0 0 0

 , simple shear flow (2.3)

The flow velocities corresponding to rotational flow in Eq. 2.3 are sketched in fig. 2.1c,

Note that,
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Γ = E + Ω (2.4)

so that simple shear flow can be decomposed into a linear combination of elongational

and rotational flow, which is relevant to explain the rotate polymer dynamics.

2.1.1.2 Translational diffusion

For non-spherical colloids, the friction coefficient is not isotropic since it depends on

the orientation of the rod/plate relative to it’s velocity. The orientation of a rod is

characterized by a unit vector û along it’s long axis (see Fig. 2.2a). When the rod

moves through the fluid along û, the friction coefficient ζ|| is different from the friction

coefficient ζ⊥ when the rods moves in a direction perpendicular to û. A velocity v with

arbitrary direction can be decomposed in it’s components v‖ parallel to it’s long axis

and it’s perpendicular component v⊥. The parallel component is equal to v‖ = ûû · v,

while the perpendicular component is equal to v⊥ = v − v‖ = [Î − ûû] · v (where Î is

the identity tensor). The friction force Fh is thus equal to [90],

Fh = −ζ‖v‖ − ζ⊥v⊥ = −
{
ζ‖ûû + ζ⊥

[
Î− ûû

]}
· v, (2.5)

A colloid moving in a fluid with constant velocity has no net applied force such that

Fh + FBr = 0 (where the superscript ”Br” stands for ”Brownian”),

FBr = −kBT∇ lnP (r, t). (2.6)

By combination of Eq. 2.5 and Eq. 2.6, we can get

v = −D(û) · ∇ lnP (r, t), (2.7)

with the diffusion tensor

D = D‖ûû +D⊥

[
Î− ûû

]
(2.8)

where P (r, t) is the probability density function (pdf) of colloid the center-of-mass po-

sition r = (x, y, z) of a colloidal particle, at time t and,

D‖ =
kBT

ζ‖
, D⊥ =

kBT

ζ⊥
. (2.9)

are the parallel and perpendicular diffusion coefficients. According the continuty equa-

tion [91, 92], we thus finally arrive at the diffusion equation for translational motion of

a non-sperical particle,
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∂

∂t
P (r, t) = ∇ ·D(û) · ∇P (r, t) (2.10)

The most simple average that characterizes Brownian motion is the so-called mean −
squared displacement W (t) =

〈
r2
〉

(with r = |r| the distance of the center-of mass from

the origin). W (t) can be calculated by first multiplying Eq. 2.10 on both sides with r2.

Since W (t = 0) = 0, this implies that,

W (t) = 6Dt. (2.11)

In order to analyze the motion of a rod we therefore need a similar diffusion equation

for the orientation of the rod.

2.1.1.3 Rotational diffusion

For non-spherical macromolecules it is not only the center-of-mass that exhibits random

Brownian motion due to collisions with fluid molecules, but also it’s orientation changes

as a result of these interactions.

We consider a rod-like Brownian particle, the orientation of which is specified by a unit-

vector û. For a rod-like particle this vector lies along the long axis of the rod, while for a

platelet this vector can be chosen to be perpendicular to the face of the platelet (see Fig.

2.2)a The tip of the unit-vector û lies on a unit-spherical surface. Changes in orientation

leads to motion of the tip of û. on a unit-spherical surface (as depicted in Fig. 2.2b). We

define the probability density function (pdf) P (û, t)dû is the probability that û takes

a value within the small surface area element dû on the unit-spherical surface (see Fig.

2.2c). The rotational diffusion equation:

∂

∂t
P (û, t) = DrR̂2P (û, t) (2.12)

where Dr is rotational diffusion coefficient. The rotational operator is defined as,

R̂(· · ·) = û×∇û(· · ·) (2.13)

The time dependence of the average of the orientation vector û can be obtained from

Eq.2.12 by multiplying both sides with û and integrating over the unit-spherical surface,

d 〈û〉 (t)
dt

= Dr

∮
dûûR̂2P (û, t) = Dr

∮
dûP (û, t)R̂2û = −2Dr 〈û〉 (t) (2.14)

A partial integration is performed in the second equality. The orientational equivalent

of mean-squared displacement is Wû(t) =
〈
|û− û0|2

〉
, where û0 is the orientation of

the particle at the initial time. From the above results is found that,
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hbt!

Figure 2.2: (a) A platelet (left) and rod-like (right0 colloidal particle, where the unit
vector ”û” defines their orientations. (b) The tip of the unit vector û, in red, lies on
an unit-spherical surface (the surface of as sphere with radius unity). The red ”point-
particle” exerts Brownian motion on the unit-spherical surface. (c) The orientations of

two rods are mimicked as different points on the unit-spherical surface

Wû(t) =
〈
û2
〉

+ û2
0 − 2 〈û〉 û0 = 2 [1− exp {−2Drt}] (2.15)

For small times, with Drt � 1, Wû(t)is the displacement of the tip of û on the two-

dimensional plane perpendicular to û0. Expanding the exponent function (using that

expx = 1 + x + · · · ) leads to Wû(t) = 4Drt, which indeed complies to Eq. 2.11 for

translational diffusion in two dimensions.

2.1.1.4 Diffusion in the presence of shear flow

In the present section we discuss probability density functions (pdfs) and orientational

order parameter matrices for a single Brownian rod subjected to flow. On applying a

stationary flow, the orientational pdf of a single rod attains a stationary form. This

time independent pdf is determined by the interplay of the aligning effect of the flow

and isotropy-restoring rotational diffusion. The stationary form of the Smoluchowski

equation [91] for a single rod reads,

0 = R̂2P (û)− PerR̂ · [P (û)û× (G · û)] , (2.16)

where the dimensionless parameter Per is commonly referred to as the rotational Peclet

number, which is defined as,

Per =
γ̂

Dr
(2.17)

This Peclet number is a measure for the effect of the shear flow relative to isotropy-

restoring rotational diffusion. For small Peclet numbers, rotational diffusion is relatively

fast, so that the pdf is only slightly anisotropic.
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The stationary equation of motion can be solved in closed analytical form when the

velocity gradient tensor G is symmetric (as for elongational flow). When the velocity

gradient tensor is not symmetric (as for simple shear flow), the solution cannot be

obtained in a simple closed analytical form, but must be obtained by numerical methods.

However, expansion of the orientational pdf for small Peclet numbers is feasible.

In case of shear flow and for small rotational Peclet numbers the deviation of the pdf

from the isotropic solution is small, so that the solution of the stationary equation of

motion 2.16 can be expanded as,

P (û) =
1

4π
+ PerP1(û) + Pe2rP2(û) + · · ·. (2.18)

Substitution of this expansion into Eq. 2.16 and equating coefficients of equal powers of

Per, one readily finds the following recursive set of differential equations for the as yet

unknown functions Pj ,

R̂2Pj(û) = R̂ · [Pj−1(u)u× (Γ · u)] , j ≥ 1, (2.19)

where P0(û) = 1/4π is the isotropic pdf without shear flow. Normalization requires

that,

∮
dûPj(û) = 0 , j ≥ 1. (2.20)

Let us consider the first two terms in the expansion 2.18. For j = 1, using that P0(û) =

1/4π, Eq. 2.19 reads,

R̂2P1(û) =
1

4π
R̂ · [û× (Γ · û)] = − 3

4π
(û ·E · û) , (2.21)

where Ê is the symmetric part of the gradient velocity tensor Γ̂ in Eq. 2.1, that is,

Ê = 1
2(Γ̂ + Γ̂T ). The above equation follows from the relations given in [91, 92]. Using

these relations once more immediately leads to the expression in a spherical coordinates,

P1(û) =
1

8π
(û ·E · û) =

1

8π
sin2(θ)sin(φ)cos(φ), (2.22)

Substitution of this solution for P1 into Eq. 2.19 for j = 2 yields,

R̂2P2(û) =
1

8π
R̂ ·
[
(û ·E · û)

(
û× Γ̂ · û

)]
=

1

8π

[
û2 − 5(û ·E · û)2

]
. (2.23)

The solution to Eq. 2.23 is given by,
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P2(û) =
1

32π

[
(û ·E · û +

1

3
(û21 − û22)−

1

15
)

]
=

1

32π

[
sin4(θ) sin2(φ) sin2(φ) +

1

3
sin2(θ)(cos2(φ)− sin2(φ))− 1

15

]
,

(2.24)

The constant 1/15 between the square brackets is the result of considering the normal-

ization constraint 2.20.

Summarizing the previous results, we thus obtain the following small Peclet number

expansion (valid up to O(Pe3r)),

P (û) =
1

4π
+ Per

1

8π
(û ·E · û) + Pe2r

1

32π

[
(û ·E · û +

1

3
(û21 − û22)−

1

15
)

]
(2.25)

For small Peclet numbers, rods spend most of their time in a direction where χ =

45◦ (angle between the director and the flow direction) and eventually perform some

rotations. This is the result of the interplay between the Brownian torque on the rod

and the torque that the fluid exerts on the rod. A preferred alignment along the flow

direction implies a strongly peaked orientational pdf. Brownian torque tends to diminish

the strongly peaked pdf in the flow direction, while the fluid torque tends to make it

more peaked [90, 91].

2.1.2 Hydrodynamics

Most every day soft matter systems, such as gel-like structures, are typically multi-

component systems, and the forming objects, polymers, colloids, etc. are dissolved

in a fluid solvent. This fluid significantly influences or even dominates the dynamical

behavior of the embedded objects. Fluid motion induced by the displacement of the

embedded particle leads to a dynamical response of other particles due to the long-

range character of the fluid-mediate interactions. Those are the well-know hydrodynamic

interactions.

A theoretical description of hydrodynamic interactions is challenging because of the

large length-scale difference between a fluid particle, e.g., a water molecule, and the

embedded nano- to micro-meter size particle. Hence, the fluid is often described in

terms of linearized Navier-Stokes equations, which can be solved analytically.

2.1.2.1 Navier-stokes equations

The Navier-Stokes equations on large length and time scales of an incompressible fluid

determind the mass and momentum conservation of a fluid element and read as [91, 93]:
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ρ∇u = 0, (2.26)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇ps + ηs∇2u + f(t) (2.27)

where ps and ηs are pressure and solvent viscosity, respectively. The terms ρ and

u = u(r, t) are mass density and velocity field of the fluid at position r and time t,

respectively. Eq. 2.26 is the mass conservative or continuity equation. Eq. 2.27 is

the conservative of momentum equation. The additionally assumed incompressibility,

which is justified in most applications. The nonlinear term (u · ∇)u is the convection

acceleration of fluid. The left hand-side of equation 2.27 expresses the inertia for the

system. The term −∇p is the pressure gradient. The sign indicates that the force on the

fluid is towards the lower pressure. The term ηs∇2u is the viscous friction forces which

appear as restricting forces due to velocity gradients within the fluid. Viscous friction

and pressure gradient (−∇ps + ηs∇2u ) follow by the divergence from the stress tensor,

which is defined as

σs = psI + T (2.28)

The tensors I and T are the identity tensor and deviatoric stress tensor, respectively.

The gradient of the shear stress tensor gives ηs∇2u. The last term in equation 2.27,

f(t), is related with any external volume force, e.g., gravity.

2.1.2.2 Stokes equation

In order to analyze the contributions of the various terms in the Navier-Stokes equations,

we rescale

u′ = u/V0, r
′ = r/L0, t

′ = t/T0 (2.29)

where V0 is a typical velocity, L0 is a typical length and T0 is the timescale of the problem

at hand. In those new variables and after multiplying by L2
0/(ηsV0), the Navier-Stokes

equations read

ρL2
0

ηsT0

∂u′

∂t′
+ Re u′ · (∇′u′) = −∇′p′s + ∆′u′ + f′(t) (2.30)

where we defined the dimensionless pressure p′ = L2
0η
−1V −10 p, the dimensionless force

f = L2
0η
−1
s V −10 f, and ∇′ = ∂/∂r′. Furthermore, we introduced a dimensionless number,

the Reynolds number Re
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Re =
ρV0L0

ηs
, (2.31)

For Re � 1 we can neglect the nonlinear advective term in Eq. 2.27, yielding the

linearized Navier-Stokes equations

ρ
∂u

∂t
= −∇p+ η∆u + f (2.32)

For small Reynolds numbers and on the diffusive time scale, the Navier-Stokes equation

2.26 and 2.27, therefore simplifies to,

0 = ∇ · u (2.33)

0 = −∇p+ η∆u + f (2.34)

The Stokes equations are also known as creeping flow equations. They are time-independent

and linear. The latter allows for superposition of solutions, which greatly simplifies the

theory. To describe hydrodynamic interactions, where nano- to micrometer size objects

are dissolved in a fluid, the convection term is typically neglected, i.e., low Reynolds

number fluids are considered [91], or the inertia term is neglected and Eq. 2.27 turns

into the Stokes equation.

2.1.2.3 The Oseen tensor

An external force acting on a single point r′ of the fluid is mathematically described by

a delta distribution,

f ext(r) = f0δ(r− r′) (2.35)

The prefactor f0 is total force
∫

dr′f ext(r′) acting on the fluid. Since the creeping flow

equations are linear, the fluid velocity at some point r in the fluid, due to the point force

in r′, is directly proportional to that point force. Hence,

u(r) = To(r− r′) · f0 (2.36)

The tensor To is commonly referred to as the Oseen tensor,. The Oseen tensor connects

the point force at a point r′ to the resulting fluid flow velocity at a point r. Similarly,

the pressure at a point r is linearly related to the point forces,

p(r) = g(r− r′) · f0 (2.37)
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The vector g is referred to here as the pressure vector.

Consider an external force which is continuously distributed over the entire fluid. Due

to the linearity of the creeping flow equations, the fluid flow velocity at some point r is

simply the superposition of the fluid flow velocities resulting from the forces acting in

each point on the fluid. Hence,

u(r) =

∫
d(r′T(r− r′) · f ext(r′) (2.38)

The same holds for the pressure,

p(r) =

∫
d(r′g(r− r′) · f ext(r′) (2.39)

substitute Eqs. 2.38 and 2.39 into the creeping flow equations (2.34, 2.33), leads to,

∇ ·T(r) = 0 (2.40)

∇2g(r)− η0∇2T(r) = Iδ(r) (2.41)

2.1.3 Models for filamentous swimmer

Exact analytic results for the drag coefficients of certain high-symmetry shapes such as

spheres and ellipsoids can be obtained in the Stokes limit. For more complex shapes such

as chiral particles, the boundary integral formulation of the Stokes equation can be used

[94–96], which reduces the full three-dimensional problem of solving for the fluid flow

to the two-dimensional problem of determining source distributions on the bounding

surfaces. The typical Reynolds number in experiments of driven magnetic helices at the

micron scale and at the nanoscale are about 10−8 and 10−9 [97]. Hence zero Reynolds

number approximation is justified. The resistive force theory (RFT) and the slender

body theory (SBT) are the usual approaches used to study the propulsive motion of

rigid helices and flagellar propulsion.

2.1.3.1 Resistive force theories

In the 1950s, Gary and Hancock [98] developed resistive force theory to provide a de-

scription of HI applied to flexible filaments. It represented a breakthrough in the theory

of Stokes flows, which is still widely used [99–101].

In formulating resistive force theory, the filament is assumed to be thin, with a circular

cross section. In this way, one can first consider an average force per unit length acting

on the filament centerlines, rather than a force per unit area acting over the surface.

In addition, the cross-sectional symmetry allows us to consider just two independent,
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Figure 2.3: A two-dimensional representation of the resistive force theory approxima-
tion. The local velocity of a slender filament of circular cross section can be separated
into components tangential and perpendicular to the filament. Figure cited from [102]

non-trivial coefficients CN and CT relating forces to velocities for the filament in the

normal and tangential directions, since the binormal and normal are interchangeable.

Decomposing the local filament velocity into its normal, tangential, and binormal direc-

tions, i.e., v = vN + vT + vB, with an analogous expression for the local viscous force

per unit length acting on the filament, f = fN + fT + fB, then resistive force theory

formally states that the local viscous drag forces and filament velocities are related by

fT = −CTvT, fN = −CNvN, fB = −CNvB, (2.42)

Simple kinematical and symmetry arguments based on linearity are sufficient to demon-

strate that a linear, symmetric tensor relates viscous drag to velocity for a sufficient long,

straight cylinder, and thus, via a suitable choice of axes, such that the above equation

emerges. However, the power of resistive force theory is the demonstration that these

relationships hold locally for any slender body with circular cross section, at least to

logarithmic accuracy in the body aspect ratio, given appropriate estimates for CN and

CT.

For a filament of length L, the net viscous force and net torque are given by

F(t) =

∫ L

0
f(s)ds = −CN

∫ L

0
vN(s)ds− CN

∫ L

0
vB(s)ds− CT

∫ L

0
vT(s)ds (2.43)

and

M(t) =

∫ L

0
X(s)× f(s)ds =− CN

∫ L

0
x(s)× vN(s)− CN

∫ L

0
X(s)× vB(s)ds

− CT

∫ L

0
X(s)× vT(s)ds

(2.44)
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X(s) is the centerline of helix. For the propulsion of helical flagellum Hancock [98]

explored the resistive coefficients by using singular solutions to Stokes equation, and

obtained

CT =
2π

ln 2λ
b −

1
2

, γ =
CN

CT
= 2. (2.45)

where b is the cross-sectional radius of the flagellum and λ the wavelength of flagellum.

The ratio, γ = 2, given by Gray and Hancock [98] is only correct for the limiting case

of a vanishingly thin helix.

The calculations for the propulsive velocity of rigid helix are carried out by summing the

drag and thrust contributions of the rotating helical particles [99, 100]. Also the method

is widely used in propulsion of micro-robots such as bacteria or sperm [101, 103].

2.1.3.2 Slender body theories

The need for a more general and accurate modeling framework for the motion of slender

filaments in viscous fluids motivated the development of slender body theory. This

theory emerged from the studies of Cox [104] and also Batchelor [105] who used a

systematic matched asymptotic expansion in the logarithm of the filament aspect ratio.

However, these expansions are complex and cumbersome and, due to a logarithmic

dependence on the aspect ratio, require large numbers of terms for accuracy. Lighthill

[106] greatly simplified the mathematics underlying filament dynamics by constructing

solutions from potential diploes as well as Stokeslets on the centerline of a cylindrical

filament. This reduced the three-dimensional flow problem to an integral equation for

Stokeslets and potential dipoles along the filament centerline and was applied initially

for refining resistive force theory as discussed above.

Slender-body theory allows us to derive an approximate relationship between the velocity

of the body at each point along its length and the force per unit length experienced by

the body at that point.

Consider slender body of length L and typical diameter 2a with L� 2a surrounded by

a fluid of viscosity µ, whose motion is governed by the Stokes equations, see Fig 2.4.

Let the axis of the body be described by X(s), where s is an arc-length coordinate. By

virtue of the slenderness of the body, the force exerted on the fluid at the surface of

the body may be approximated by a distribution of Stokeslets along the axis with force

density f(s) per unit length. f(s) is assumed to vary only over lengths much greater than

a, see Fig 2.4.

The fluid velocity u(x) at a general point x due to such a distribution can be written

in terms of an integral of the Oseen tensor (see 2.2.3), which acts as a Green’s function

for a single Stokeslet,

u(x) =

∫ L

0

f(s)

8πµ
·
(

I

|x−X|
+

(x−X)(x−X)

|x−X|3

)
ds (2.46)
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Figure 2.4: In slender body theory, Stokeslets and higher order singularities are
distributed along the centerline X(s) with the aim of matching the velocities at surface
points x(s0, ϕ) to the required local velocity at X(s0) for each s0 ∈ [0, L] and ϕ ∈ [0, 2π].

Figure taken from [102]

Asymptotic analysis can then be used to show that the leading-order contribution to the

integral for a point x on the surface of the body adjacent to position s0 comes from the

force distribution at |s − s0| = O(a). Since a � L , we approximate f(s) ≈ f(s0), and

then obtain

∂X

∂t
∼ ln(L/a)

4πµ
f(s) · I +

(
∂X

∂s

∂X

∂s

)
(2.47)

The expression can be inverted to give the force density in terms of the motion of the

body:

f(s) ' 4πµ

ln(L/a)

∂X

∂t
·
(

I− 1

2

∂X

∂s

∂X

∂s

)
(2.48)

The drag force F on a rigid cylinder (length L , radius a) moving at a velocity u,

F =

∫
L

f(s)ds (2.49)

either parallel to its axis F‖ or perpendicular to it F⊥ can be obtained. The parallel

force reads,

F‖ ∼
2πµLu

ln(L/a)
(2.50)

while the perpendicular case gives

F⊥ ∼
4πµLu

ln(L/a)
(2.51)

Note that the dominant length scale in the above expressions is the longer length L;

the shorter length a has only a weak effect through the logarithm of the aspect ratio.

In slender-body theory results, there are O(1) corrections to the logarithm, so even for

relatively large values of L/a the error terms will not be that small. Note that the
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Stokes’ paradox which states that the limit of infinite aspect ratio L/a→∞ is singular,

as no Stokes flow can exist around an infinite cylinder.

2.2 Simulation Methods

Powerful and efficient computational approaches play a fundamental role in applied sci-

ence and engineering, enabling systematic studies of abroad range of soft matter systems.

Numerical simulations allows us to cover a broad range of length scales and complex-

ity and probe physical behavior of a system under a set of varying parameter condi-

tions. Numerical techniques make it feasible to measure the system properties locally

within molecular scales (meso-, nano- and even sub-nano scales), where experimental

approaches are frequently limited. Here we describe a hybrid simulation method, multi-

particle collision dynamics (MPC), in combination with molecular dynamics simulations

(MD), which will be used in some parts of our work.

2.2.1 Molecular dynamics simulation

In classical mechanics the dynamics of point particles is governed by Newtons equations

of motion. The equations of motion for a system consisting of N particles of masses mi

and the positions ri (i = 1, 2, ..., N) are

mi
d2

dt2
ri = Fi (2.52)

where Fi is the net force acting on the i-th particle and is obtained from the poten-

tial energy U via Fi = −∇U(ri). Molecular dynamics simulations provide a numerical

solution of Newtons equations of motion for the particles in the system and thereby sup-

plies the time evolution or dynamics of the system. An efficient and standard technique

to integrate the equations of motion is the velocity Verlet algorithm that updates the

positions and velocities of the particles at the time t+ ∆tMD according to [107]

ri(t+ ∆tMD) = ri(t) + vi(t)∆tMD +
Fi(t)

2mi
∆2
MD (2.53)

vi(t+ ∆tMD) = vi(t) +
Fi(t+ ∆tMD) + Fi(t)

2mi
∆t2MD (2.54)

This algorithm is time reversible and it has shown to provide a very reasonable energy

conserving for conservative forces.
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Figure 2.5: Streaming step of the multiparticle collision dynamics method (MPC) in
two dimensions. The particles move ballistically.

2.2.2 Multiparticle collision dynamics

Multiparticle collision dynamics, MPC, is a mesoscale simulation method for fluids in-

troduced by Malevanets and Kapral in 1999 [87, 88, 108]. In this technique, instead of

calculating pair interactions between individual fluid particles, simultaneous multiparti-

cle collisions are considered in collision cells. In MPC, mass, energy, and momentum are

conserved on the collision cell level. Therefore, this simulation method captures both

hydrodynamics, heat transfer and thermal fluctuations [88]. This means for example

that the MPC fluid fulfills the compressible Navier-Stokes equations for a Newtonian

fluid on not too small length scales [108, 109]. MPC consists of two steps: streaming

and collision step.

Streaming step The fluid is composed of N point particles of equal mass m, with the

positions ri and the velocities vi(i = 1, ..., Ns). In the streaming step, the particles move

ballistically during a time increment h, which is called the collision time (Fig. 2.5). The

new positions of the particles after streaming are

r(t+ h) = r(t) + hv(t) (2.55)

If an external flow field is applied, an extra term has to be added.

Collision step In the MPC collision step, the particles interact among each other by

a stochastic process. As we mentioned before, momentum has to be conserved locally

for ensuring hydrodynamics, thus the collisions have to fulfill this condition. Therefore,

we divide the simulation box into smaller cubic cells of size a, which are called collision

cells, and sort all particles into these cells.

Imagine a box with a number of balls inside they may be billiard balls which collide

elastically. If we shoot the balls towards each other to collide and compare their proper-

ties at times t1, just before collision, and t2, right after collision, we find that the total

momentum and energy are conserved, and the center of mass velocity remains constant.

Therefore, if we go to the center-of-mass reference frame and look at the collisions again,
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the particles velocity vectors are rotated after collision. This is what is implemented

in the MPC collision step. In the MPC collision step, the elastic collision of the par-

ticles is generalized and coarse-grained. Instead of considering only pair collisions, in

the Stochastic Rotation Dynamics (SRD) version of MPC, the velocities of the parti-

cles in a collision cell are updated by rotating them around an arbitrary vector in the

center-of-mass frame. Thereby, we first calculate the center-of- mass velocity for each

cell:

vcm,i(t) =

∑(i)
j mjvj(t)∑

jmj
, (2.56)

where vj(t) is the velocity of particle j located in the cell i at time t. Then, we rotate

the velocity of the j-th particle in the center-of-mass reference frame by an angle α (See

Fig. 2.6 a).

vj(t+ h) = vcm,i(t) + <(α)[vj(t)− vcm,i(t)] (2.57)

<(α) is the stochastic rotation matrix and can be defined by the Euler rotation matrix

around the arbitrary unit vector u = (ux, uy, uz).

<(α) =

∣∣∣∣∣∣∣
c+ u2x(1− c) uxuy(1− c)− uzs uxuz(1− c) + uys

uyux(1− c) + uzs c+ u2y(1− c) uyuz(1− c)− uxs
uzux(1− c)− uys uzuy(1− c) + uxs c+ u2z(1− c)

∣∣∣∣∣∣∣ (2.58)

where c = cosα and s = sinα. For each cell and each MPC simulation step, we define

a random rotation vector u. By updating the velocities through this procedure, energy

and momentum remain conserved at each cell before and after collision. Angular mo-

mentum is only conserved on average at larger scales, but not at the cell level. Andersen

thermostat version of MPC does however conserve both linear and angular momentum

at the cell level, but not kinetic energy [110].

2.2.2.1 Random shift

As previously mentioned, in the MPC collision step, the particles are sorted in collision

cells and solely interact with the particles located in their cell. When the mean free

path of the particles λ̂ = h is smaller than the cell size a, the particles move slowly and

have little chance to leave the cell. Moreover, if we change our reference frame and for

example consider a frame moving with a constant velocity then the particles will see and

interact with some diferent particles, which affects the results. Thereby, the Galilean

invariance is destroyed. To overcome this problem, a random shift is applied to the

collision grid before execution of the collision step [109, 111]. This can be implemented

by shifting all particles along a random vector; its components are random numbers

chosen from a uniform distribution in the interval [a/2,+a/2]. After the collision, the

particles are shifted back to their original positions (Fig. 2.6 b).
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Figure 2.6: MPC collision step: (a) rotating the velocity of particle j in the i-th cell
(vj(t) vcm,i(t)) in a reference frame co-moving with the center-of-mass by the angle
α. (b) Random shift of the collision-cell grid. L is the simulation box size and a is the

collision cell size

2.2.2.2 Hybrid algorithm

In the previous sections, two simulation algorithms were introduced: the MD and MPC

methods. These two schemes can be combined to simulate complex fluids. Thereby,

we simulate the fluid particles by MPC and the objects dissolved in the fluid by means

of MD and also MPC. The interaction between solvent and solute particles has been

modeled in two ways depending on the nature of problem. In phoresis for example,

where the details of the surface interactions are important [112], MD interactions are

considered. This is not the case in most polymer solutions where MPC interactions have

shown to be very efficient in including HI interactions [113]. In this case, the velocities

of the solute particles are updated in both, MD and MPC steps the positions in the MD

streaming step and velocities in MPC collision step.

In case that a monomer size (segment size) as large as the collision cell size, i.e., η = a

is considered. Consequently in a collision cell, we typically do not have more than one

monomer. Here we use the MPC coupling between the solvent and the solute such that

the solvent particles can penetrate the monomer, which is placed in their collision cell.

MPC treats the monomers in the same way as the fluid particles [111]. The center-of-

mass velocity of a cell, with one monomer inside is

vcm,i(t) =
Mkv

m
k (t) +

∑(i)
j mjvj(t)

MK +
∑

jmj
, (2.59)

where Mk and vmk (t) are mass (which is larger than a fluid particle mass) and velocity

of the k-th monomer, which is inside the i-th cell, respectively. Alternatively Kapral.

[87, 111] introduced an interaction force between solvent and solute particles in the
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collision step. In order to treat this force appropriately, we need to execute several MD

integrations during one MPC step h [114].

As mentioned before, MD is indeed integration of the equations of motion, therefore,

the shorter the MD time step, the more accurate the integration. On the other hand,

choosing shorter time steps is less efficient. In our simulations, we consider N = h/∆t

MD time steps between two MPC collisions, with typically N = 50, which has shown to

be good for the employed potentials.

2.2.2.3 Thermostat

Since the MPC algorithm conserves kinetic energy and momentum for the closed systems,

we can calculate a uniform temperature via the equipartition theorem. We can set the

energy to a desired value at the beginning of the simulation. Monitoring the energy

(temperature) during the simulation is a way to check the validity of the MPC algorithm.

The application of an external field or specific boundary conditions might imply an

input or output of momentum and energy which suppose a breakdown of the momentum

and energy conservation in the system and consequently may change the temperature.

Therefore, in order to fix the temperature, we have to thermalize the system [115]. The

applied thermostat should conserve the momentum locally. Hence, we will use a cell-

level thermostat to fix the temperature in each collision cell. At equilibrium, the velocity

distribution function of the particles is a Maxwell - Boltzmann distribution.

2.2.2.4 Viscosity and dimensionless numbers

Transport properties in general, and viscosity in particular have been calculated by

means of kinetic theory [109, 116] and simulations. The total viscosity ηs of a MPC

fluid consists of two terms, the kinetic ηkin and collisional ηcoll viscosity, i.e.,

ηs = ηkin + ηcoll (2.60)

In three dimensions [116, 117], these two terms can be calculated and are given by

ηcoll =

√
kBTa2/m

λ̂

1− cosα
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(
1− 1

ρ

)
(2.61)

ηkin = λ̂
√
kBTa2/m

[
1

4− 2 cosα− 2 cos 2α

5ρ

ρ− 1
− 1

2

]
(2.62)

where ρ is the average number of fluid particles in a collision cell. For systems of small

ρ, density fluctuations have pronounced affects and should be considered in the viscosity

calculations. For the system of ρ = 10 these effects are negligible [116, 117].
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Table 2.1: Parameters in simulation

Symbols Description Value in simulation units

L simulation box size 50a− 80a
α rotation angle 130◦

h MPC time step 0.1
√
ma2/kBT

∆tMD MD time step 0.0001
√
ma2/kBT

M Monomer mass 10m
ρ fluid particle density in cells 10a−3

ε Lennard-Jones potential depth 1kBT
ηs fluid viscosity 8.7

√
mkBT/a

2

Re Reynold number uL/ν
Sc Schmidt number ν/D
Pr Prandtl number ν/ζ

In the coarse-grained modeling, here consider of all the particles in the system (solvent

and solute particles) have been described as point particles. The nature of the approach

does not permit a straightforward relation with physical units, such that comparisions

are typically made of dimensionless relevant numbers. Thus we define the relevant

length, mass, and energy, and then the rest of the system quantitiies can be referred to

the ones,and time scales associated to the system:

· Length: a; MPC collision cell size

· Mass: m; mass of a fluid particle

· Energy: kBT

· Time: ma2/kBT

· u: the velocity of the fluid with respect to the object (m/s)

· L: a characteristic linear dimension (m)

· D: the mass diffusivity (m2/s)

· ν: the kinematic viscosity in units of (m2/s)

· ζ: thermal diffusivity (m2/s).

The parameters of our simulations in these units are listed in Tab. 2.1.

2.2.2.5 Boundary conditions

In simulating a physical system, we are limited by the number of particles to be con-

sidered, since two important factors prevent us to deal with massive systems: computer

power and simulation time. For instance, it is impossible to simulate a bulk fluid system,

or even a system with one Mol (O(1023)) of particles. By considering a small part of a

bulk system, finite size effects may lead to deviation of the simulation results from the

measured quantities. On the other hand, for systems in confinement, the particles close

to the borders have a smaller number of neighbors than particles that are located in the

middle of the box, therefore, they experience different forces. We circumvent surface

effects by using periodic boundary conditions.
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Figure 2.7: Illustration of periodic boundary conditions in two dimensions.

Using periodic boundary conditions, we replicate our simulation box in all directions and

create a virtual infinite lattice of our system. When one particle moves in the simulation

box, all images of that particle in other virtual boxes move in the same direction. If

one particle leaves the simulation box, its image will enter the box through the opposite

side, hence the number of particles remains constant during the simulation [107].

To reduce the numerical efforts, an interaction range for the particles is defined. Each

particle can interact with all particles that are within its interaction range. The inter-

action range depends on the type of the interactions between the particles. Particles

can also interact with the images, which are inside their interaction ranges, thus, surface

effects will be eliminated. This is called minimum image convention (see Fig. 2.7). The

interaction range should be less than L/2 to prohibit particles to interact with their own

images.

Periodic boundary conditions in non-equilibrium situations

One of the main objectives in the work is to study of the system behavior response to

shear flow. Shear flow can be imposed in the system in two ways. In the first one, the

simulation box is placed between two confining walls, and the walls move in opposite

directions with a constant relative velocity. The second approach is a modification of

the periodic boundary conditions, by moving the upper and lower replicated simulation

boxes in opposite directions (Fig. 2.8); this is called Lees-Edwards periodic boundary

conditions [107]. In this situation, we create a velocity gradient in the simulation box

perpendicular to the shear direction.

When a particle crosses one boundary, it comes back through the opposite boundary,

but because of the movement of the boxes, the displacement of the particle and its image

along the shear direction is δx = uxh, where ux = γ̇L is the shear velocity. The shear

velocity is added to the velocity of the particle entering the original box. The average

velocities of the particles in the shear direction is then a linear function of their positions

in the shear gradient direction,
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Figure 2.8: (a) Illustration of Lees-Edwards boundary conditions for a simulation box
under shear flow. The upper and lower virtual boxes move in opposite directions with
shear velocity ux. If a particle enters the upper or lower boxes, the box velocity will be
added to its velocity. (b) Velocity gradient; the flow velocity is a linear function of the

position in y direction. γ̇ is the shear rate.

〈vx〉 = γ̇y (2.63)

where γ̇ is the shear rate.

Note that although both periodic boundary conditions and Lee-Edwards boundary con-

ditions were designed for MD, they have shown to be perfectly applicable in MPC.

2.2.3 Random MPC

To assess the effect of hydrodynamic interactions, the simulation can be carried out

without HI, using as the method known as random MPC simulation of helix. In random

MPC [118], each monomer is coupled not with an explicit solvent, but with an effective

solvent momentum P which is directly chosen from Maxwell-Boltzmann distribution

of variance mρkBT and a mean given by the average momentum of the fluid field -

which is zero at rest, or (mργ̇riy, 0, 0) in the case of an imposed shear flow. The total

center-of-mass velocity is then given by

vcm,i =
Mvi + P

mρ+M
(2.64)

with which the collision step in equation 2.56 is performed. Note that similarly to the

MPC solvent, the polymer trajectory is sampled by MD and the interaction with the

solvents is performed every collision time h. The random MPC solvent has therefore

similar properties as the MPC solvent, except those associated with HI. The relevant

parameters in both methods are the density ρ, the rotation angle α, and the collision

time h which can be chosen be the same.





Chapter 3

Tumbling of quantum dots

.

3.1 Introduction

Colloidal quantum dots (QD) are semiconductor nanocrystallites with sizes typically

ranging between 2 and 20 nm [119]. Although such nanocrystals already have the crys-

tal structure of their bulk counterparts, their opto-electronic properties are strongly

size-dependent. Due to quantum confinement, the QD band gap increases with de-

creasing QD size, which results in a broadband absorption spectrum with a size-tunable

absorption onset and a narrow photoluminescence spectrum with a central wavelength

that concomitantly shifts to shorter wavelengths [120]. A further tuning of the opto-

electronic properties is possible by exploiting shape anisotropy [121, 122]. Rod-like

nanocrystals, for example, preferentially absorb and emit light linearly polarized along

their long axis [123, 124].

QD have gained attention as an optical material in lighting and display application [125,

126], solar energy conversion [127], photodetection [128, 129] and lasing [130, 131]. In

addition, they have raised extensive interest as a luminescent probe in biomedical appli-

cations, such as biolabeling and immunoassays [132–136]. In almost all of these appli-

cations, QD are first dispersed in suitable liquid medium to form colloidal suspensions,

and these QD dispersions are then processed to obtain a desired QD-coating or QD-

composite. For example, QD dispersed in a polymer solution can be spun into aligned

nanowires to produce waveguides with high polarization ratio [137]. Similarly, QD sus-

pensions are used in other techniques such as electrohydrodynamic Jet Printing [138],

screen-printing [139], or roll-to-roll printing [140] to control the deposition, distribution,

and alignment. In all the above techniques, the rheological properties of the suspension

play a crucial role not only to optimize processing conditions, but also to control the

final alignment and ordering of nanoparticles [141, 142].

The rheological properties of a particular colloidal suspension depend on a number of fac-

tors such as colloid concentration, shape of the colloids, and colloid-colloid interactions.

33
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While for very dilute solutions the colloid size has in principle no effect on the viscosity,

for higher concentrated systems the effect of Brownian motion and its competition with

the applied deformation rate strongly affects the flow properties and requires thus a de-

tailed characterization of the colloid dimensions. Moreover, for nanocolloids the required

stabilization in the form of colloid charge and an associated Debye length, or steric sta-

bilization via grafted polymers or surfactants, will lead to an additional alteration of

their effective hydrodynamic dimension [90, 143–147]. Two geometric parameters that

are particularly effective in influencing the rheological properties of a suspension during

deposition are the shape anisotropy of the colloid, specifically the hydrodynamic aspect

ratio, and the polydispersity thereof, which also plays a crucial role in formation of the

more complex structures during post processing [141, 142, 148–150].

A problem that arises when characterizing these parameters is that although many

techniques are available to obtain information on colloid dimensions and polydispersity,

such as electron microscopy or UV-Vis spectrometry for gold and silver nanocolloids[151–

153], they only provide absolute physical dimensions of the colloids and not rheologically

relevant hydrodynamic dimensions. For anisotropic colloids, this effect is amplified when

their size decreases to the nanometer regime, since the ratio of the thickness of the

stabilizing layer and the dimension of the colloidal particles diverges when approaching

the dimensions of QD. In addition, these techniques provide statistically poor data due

to the small sampling size. Other techniques, such as dynamic and depolarized dynamic

light scattering that do provide statistically relevant hydrodynamic dimensions, are only

suitable if the colloids are larger than the dimensions of the probe light [154, 155].

Furthermore, obtaining polydispersity using light scattering can be ambiguous due to

the arising complex scattering patterns [91]. Given the typical sizes of QD (2-20 nm),

investigations with scattering techniques therefore are usually not possible since each

colloid acts as a Rayleigh point scatterer and hence does not provide any information

about the colloidal shape.

One possibility to optically access the dimensions of QD is with linear flow dichroism

(LFD). Dichroism measurements probe the polarization dependence of the turbidity

that arises from scattering. The transmitted intensity is reduced due to scattering,

while the scattered intensity depends on the polarization direction of the incident light

for those cases where there is a preferred direction of orientation of shape-anisotropic

colloids. Such a preferred direction of orientation can be induced when a colloidal

suspension is subjected to a controlled flow field using a rheometer. Linear dichroism

is then simultaneously probed using modulated polarized light [57, 156]. Colloids with

an anisotropic shape tumble in such a flow field due to the differences in torque at

either end of the colloid. For this, the hydrodynamic forces must be sufficiently large

to overcome Brownian motion, and thus align the colloids on average towards the flow

direction and rotate (tumble) them in the flow gradient plane. A sufficiently large Peclet

number, Pe = γ̇/Dr, to meet this requirement (where γ̇ is the applied shear rate and Dr

is the rotational diffusion coefficient of the colloid) can be achieved for nanocolloids by

suspending the colloids in a high viscous, Newtonian matrix fluid. For the dimensions

and rotational diffusivities of QD, viscosities on the order of 1-10 Pa·s are sufficient to
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reduce Brownian rotational diffusion allowing to reach high Pe within an experimentally

accessible shear rate-range of 1-10 s−1.

Pioneering works from Fuller and co-workers [54–57, 156] on colloids of micron and sub-

micrometer dimensions have shown that, using transient flow dichroism data, both the

hydrodynamic aspect ratio as well as polydispersity can be obtained simultaneously.

Recently, LFD has been used by Vermant and coworkers to push the colloid diameter

measurement limit down to 50 nm, using shape anisotropic gold nanocolloids. Although

their minimum length scale was close to the Rayleigh scattering regime, they could

still rely on the localized surface plasmon resonance of gold nanocolloids to resolve

scattering along and across the length of nanocolloid to obtain dichroism and orientation

angle [58]. Information about hydrodynamic aspect ratio and polydispersity for all

the above cases was obtained by fitting the experimental LFD data to a simplified

Smoluchowski equation with the assumptions of a very high Pe regime and near spherical

colloids.

In this chapter, we push the detection limit of LFD further down to particle dimensions

of 10 nm to resolve the tumbling motion of QD, and extend the theoretical analysis to

arbitrary values for Pe and arbitrary aspect ratios. We exploit the fact that QD retain

their crystalline lattice structure even on their small dimensional scale. Measurements

of the strong internal anisotropy of the lattice can be used as a ’pointer’ for the colloid

orientation, even for QD with a small shape anisotropy.

As dichroism is a measure of the change in the imaginary part of the refractive index,

the oriented crystalline lattice of QD during tumbling leads to a significant change in

dichroism even for the small dimensions of QD. Typically, dichroism values of around

1e-6 to 1e-5 represents a good signal-to-noise ratio [57, 156]. Recently, tumbling was

captured with dichroism values reaching 1e-7 for plasmonic gold rods and disks [58].

In this article we will show that with a low signal-to-noise ratio QD tumbling can be

detected even at dichroism values of 1e-8. Here, we show that linear flow dichroism can

be used to determine the orientation and thus rotary motion of QD, from which both

their hydrodynamic aspect ratio and polydispersity are obtained, quantities that have

not yet been determined for QD by any other technique. As the QD are very small,

reaching the very large Pe regime is experimentally not feasible. This implies that the

existing approximations of tumbling theories valid in the high Pe regime [58] are not

applicable. Therefore, we here present the use of the full Smoluchowski equation, which

is numerically solved to fit transient LFD data to obtain both hydrodynamic aspect

ratio and polydispersity of QD at intermediate Peclet numbers where Brownian motion

cannot be ignored.

3.2 Experimental Section

Synthesis of QD

CuInS2 quantum dots (CIS QD) were synthesized through a method described before by

Dierick et al [157]. To obtain the relatively large, tile-shaped CIS nanocrystallites used
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Sample description a/b p̄TEM

A CdSe/CdS nanorod 17.3/4.6 3.76
B CdSe/CdS nanorod 11.8/5.6 2.10
C CdSe/CdS nanorod 12.1/3.8 3.18
D CuInS2 tile 10.0/19.19 0.52
E CuInS2 tile 7.77/15.38 0.50

Table 3.1: Physical dimensions of the five analyzed samples of quantum dots obtained
from TEM images. Here a refers to the radial length, b to the axial length, and p̄TEM

to the averaged aspect ratio. The lengths are given in nm.

here, 1 mmol of Cu(acac)2 (0.262 g) 1 mmol of In(acac)3(0.412 g) and 2.1 mmol (0.067

g) elemental S were added to 30 mL of 1-octadecene in a three-neck flask. This flask

was then attached to a Schlenk line, after which the heterogeneous mixture was flushed

with nitrogen for 1 h. Next, 2 mL of oleylamine was injected, followed by increasing the

temperature to 240 oC. An infrared heating lamp was used to fix the heating rate at 80
oC/min. Upon reaching 240 oC, the reaction was allowed to continue for 1 h. After this

period, the flask was cooled down using a water bath, and the CIS QD were washed using

toluene and ethanol. The nanocrystallites were then collected by centrifugation and the

brown-red supernatant was discarded. The nanocrystallites pellet was redissolved in

toluene and the resulting clear black solution was stored in the fridge. Under these

synthesis conditions, we obtained tile shaped CIS QD (samples D and E in table 3.1).

CdSe/CdS nanorods (samples A, B and C in table 3.1) were synthesized according to an

established procedure [158]. First, CdSe cores (seeds) were synthesized in trioctylphos-

phinoxide (TOPO), using a mixture of cadmium oxide (CdO), octadecylphosphonic

acid, and trioctylphosphineselenide (TOPS) as precursors. To synthesize the CdSe/CdS

nanorods, the CdSe seeds were co-injected with a TOPS precursor into a hot reaction

mixture containing octadecyl- and hexylphosphonic acid, TOPO and CdO.

3.2.1 Linear flow dichroism measurements

Linear flow dichroism was measured using a home-built optical train combined with a

Couette flow geometry in a stress controlled rheometer, MCR300 (Paar Physica, Aus-

tria) [58, 159]. The optical train used to measure dichroism was designed following

the rules laid out in Ref. [156] and is composed of a He-Ne laser (λ= 632.8 nm, 10

mW), a Glen-Thompson polarizer at 0◦ (Newport, USA), a photoelastic modulator at

45◦ (PEM, Beaglehole Instruments, New Zealand), a quarter-wave plate at 0◦ (Newport,

USA), and a double prism to bend the horizontal light in the vertical direction such that

it passes through the Couette cell along the shear-gradient plane, probing the tumbling

of colloids. The scattered light emerging from the Couette cell after passing through

the sheared sample is collected using a photodiode. The Couette cell was custom built

with quartz disks at the top and bottom of the cell to provide optical access and to

eliminate scattering from the air-liquid interface. The Couette cell has an inner radius

of 16.95 mm, an outer radius of 17.95 mm, and a height of 21 mm. The photodiode
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provides two outputs, a direct current (DC), which provides the intensity of the scat-

tered light, and the alternating current (AC), which contains the intensity fluctuations

due to the colloids tumbling. The AC signal is passed through a low-pass filter and

sent to two lock-in-amplifiers (Stanford Research Systems Model 830) together with the

signal from the PEM. The first (R1) and the second (R2) harmonic outputs from the

lock-in-amplifiers, along with the DC signal, are used to obtained both the magnitude

of dichroism and the orientation angle. The dichroism is given by [156]

∆n′′ = −sgn(R2) tanh−1

{
1

2

√
R1

−J1(A)
+

R2

−J2(A)

}
× λ

2πl
, (3.1)

where λ is the wavelength of light (632.8 nm), l is the optical path length (21 mm), J1

and J2 are Bessel functions of the zeroth order, and A is a constant that depends on the

photoelastic-modulator, such that J0(A) = 0. Similarly, the orientation angle, that is,

the average angle of alignment of the colloids relative to the flow direction, is given by

χ =
1

2
tan−1

{
R1/J1(A)

R2/J2(A)

}
. (3.2)

To reduce Brownian motion and to increase Pe within the experimentally accessible

shear rates (0.1-10 s−1), the QD were dispersed in mineral oil with a viscosity of 4.9

Pa·s. The setup was calibrated using the same mineral oil without QD. All experiments

were conducted at 22 oC.

Linear flow dichroism experiments were conducted on rod-like and disk-like quantum

dots as those shown in fig 3.1, and whose physical dimensions, determined using TEM,

are given in table 3.1. Note that these physical dimensions only represent core particle

dimensions without taking into account other additional characteristics such as polymer

coatings, or asymmetric charge distributions when dispersed in a liquid, or bullet shape

for prolate QD and flat disk shape for oblate QD. These additional factors will be

reflected in the hydrodynamic particle dimensions, which are crucial for determining the

rheological properties of QD suspensions.

Figure 3.1: Example of transmission electron images of rod-like (sample A) and disk-
like (sample D) quantum dots.
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3.3 Results and discussion

3.3.1 Linear flow dichroism (LFD)

LFD is one of the most effective techniques to determine the hydrodynamic aspect ra-

tio and polydispersity of shape anisotropic colloids. Typically, a non-spherical colloidal

particle in a shear flow performs tumbling or kayaking motions (Jeffrey orbits) if hydro-

dynamic forces are sufficiently large to overcome Brownian motion. The hydrodynamic

forces result in a torque on the colloid that causes it to periodically tumble in the flow

gradient plane. Such periodic orientational motions are referred to as Jeffery orbits [160].

For negligible Brownian motion, the time period T for a tumbling event is given by,

T =
2π

γ̇

{
p+

1

p

}
(3.3)

where p is the colloids hydrodynamic aspect ratio [160]: p > 1 for rod-like colloids,

p = 1 for a sphere, and p < 1 for disk-like colloids. For an anisotropic colloid, the

rotational velocity during a tumbling cycle is not constant since the colloid resides longer

at orientations corresponding to lower hydrodynamic torques, which occurs when the

long axis is parallel to the shearing direction. However, since the torque on any finite

size colloid will not vanish completely, the colloid will eventually rotate out of this

preferential position to quickly flip and approach this position again.

For long times and/or multiple colloids, an average tumbling period is determined from

the overall orientational distribution function (ODF), which quantifies the probability

for a colloid to attain a certain orientation at a certain time. At rest, Brownian force

causes the colloid orientation to be uniformly distributed, so that each orientation is

equally likely to occur. However, at the start-up of shear the colloid rotates quickly

into the preferential flow aligned orientation and then performs its tumbling rotation.

For samples with monodisperse colloids, and in the limit where Brownian motion can

be neglected (limit of Pe → ∞), this synchronised tumbling motion will maintain its

correlation indefinitely under an applied shear force. However, when Brownian motion

is significant, and for samples with colloids that are polydisperse with respect to their

aspect ratio, the tumbling motion, is averaged over all colloids being present in the

sample, loses its correlation in time, leading to phase mixing. At a fixed Pe, colloids

with smaller hydrodynamic aspect ratios tumble faster than their larger counter parts,

since the tumbling period is directly proportional to the hydrodynamic aspect ratio.

As time progresses, the phase mixing dampens the optical response of the ODF (while

maintaining the average tumbling period T ) and eventually approaches an apparent

steady state, corresponding to an average orientation angle of the colloid’s long axis

and the flow direction between 45◦ (isotropic) and 0◦ (perfect alignment along the flow

direction) depending on Pe. Perfect alignment is only achieved when increasing the

shear rate to infinitely large values, where Brownian motion can be neglected. It should

be noted that, in the hydrodynamically dilute regime, the magnitude of the dichroism

is a linear function of the concentration, whereas the orientation angle is independent of
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concentration. Because of this, the averaged orientation angle is the preferred quantity

to analyse and to obtain the hydrodynamic aspect ratio and polydispersity.

3.3.2 Smoluchowski equation for tumbling of colloids

The Smoluchowski equation describes the time evolution of the probability distribution

function P (û, t) of the unit vector û that characterizes the orientation of a colloid: û is

pointing along the long axis of the rod, or pointing along the normal to the face of a disk.

For very dilute dispersions, where interactions between the colloids can be neglected,

the Smoluchowski equation reads

∂

∂ t
P (û, t) = DrR2 P (û, t)−R · {ω P (û, t) } , (3.4)

where R(· · · ) = û × ∇û(· · · ) is the rotation operator (with ∇û the gradient operator

with respect to the Cartesian coordinates of û). The above Smoluchowski equation

(eq 3.4) does not include interactions between the colloidal particles, and therefore ap-

plies only to very dilute suspensions.The first term on the right hand-side accounts for

orientational Brownian motion, and the second term describes the effect of shear flow,

where ω is the resulting colloid angular velocity. This angular velocity corresponds to

Jeffery orbits [160], and can be written in vector form as

ω = γ̇
p2 − 1

p2 + 1
û× (Γ · û) + γ̇

2

p2 + 1
û× (Ω · û) . (3.5)

For simple shear, with flow in the x-direction and the velocity gradient in the y-direction,

the velocity gradient tensor Γ has been shown in Eq. 2.1, the rotational part of the

velocity-gradient tensor in Eq. 2.3 in Sect. 1.2.1.1.

In the following, we explore the effect of aspect ratio, Peclet number, and polydispersity

on the colloid orientation in a flow field using the full numerical solution of the Smolu-

chowski equation (eq 3.4). This will later allow us to fit actual experimental data to

the corresponding numerical solution. Earlier related comparisons were performed by

Mason et al. [161], who performed experiments with millimeter sized rod-like colloids

and obtained an almost exact fit to experimental data using a reduced Smoluchowski

equation where Brownian motion was neglected. For colloids with dimensions in the mil-

limeter to micrometer range, large Pe can be achieved with relative ease using standard

rheometers with flow rates and matrix viscosities within the experimentally accessible

range [54–57]. The Mason approximation is valid in the infinite Peclet number limit, but

for intermediate Pe, typical for smaller colloids, the probability distribution function for

the rod orientation can only be obtained by numerically solving the full Smoluchowski

equation.
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3.3.3 Dependence of the orientation angle on the strength of the ap-

plied flow

The tumbling of the orientation angle of a monodisperse sample of rods with small and

a larger aspect ratio is displayed in fig 3.2 as a function of the strain. The Mason

approximation (see supporting information for the detailed implementation) is plotted

together with the numerical solution of the Smoluchowski equation (eq 3.4), for values of

Pe ranging from 102 − 1010. Mason’s approximation shows a perfect periodic tumbling

motion where the orientation angle oscillates between ±π/4 degrees with a period that is

a function of the aspect ratio as given by the Jeffery expression in eq 3.3. The solutions

of the Smoluchowski equation shown here correspond to finite values of Pe and thus

show phase mixing, where the amplitude of the oscillating orientation angle χ decreases

with increasing strain. This damping becomes stronger both with Pe and aspect ratio.

The values of the Peclet number at which Mason’s approximation (eq 3.4 without the

first term) can be considered valid are surprisingly large, and these values increase with

the aspect ratio. For rods with small aspect ratio (close to spheres) the tumbling in

fig 3.2a shows reasonable agreement with Mason’s approximation at Pe = 104, while for

p = 4 in fig 3.2b agreement occurs only at Pe = 1010, and for p = 7 in fig 3.2c Mason’s

approximation does not come close to the real values, even at enormously high shear

rates.
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Figure 3.2: The orientation angle as a function of strain calculated from the Smolu-
chowski equation in eq 3.4 at large values of Pe and compared to Mason’s approxima-

tion, for aspect ratios a) p = 1.1, b) p = 4.0, and c) p = 7.0.
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The damped evolution of the orientation angle obtained from the numerical solution

of the Smoluchowski equation at smaller values of the applied shear rate are shown

for p = 2 in fig 3.3. For large enough values of Pe, the oscillations of the orientation

angle eventually vanish at large strain values reaching a steady orientation angle of

π/4 > χs > 0. The amplitude and the number of oscillations before reaching the steady

state also decrease with decreasing Pe, eventually disappearing. The strain at which

the steady behaviour is reached also decreases with Pe, as well as the steady orientation

values. In the case shown in fig 3.3, it can be seen that for Pe = 50 there is on average

still one single oscillation observered, while lowing the flow rate to Pe = 10 the rotational

diffusion dominates the flow and the rods reach the steady orientation angle even before

the first tumbling event is completed.

Figure 3.3: Orientation angle as a function of strain for p = 2 showing damped
oscillations in a large rage of Pe values.

Figure 3.4 shows measurements of how the asymptotic orientation angle χs for very

large strains, in the stationary state, varies as a function of Pe. Very small values of Pe

(typically Pe . 1) show very small orientation approaching χs = π/4, which corresponds

to the isotropic state. At larger values of Pe, χs shows a clear power law decay with

Pe. Solutions of the Smoluchowski equation are compared in fig 3.4 with hydrodynamic

simulation results by et. al. [7] who used multiparticle collision dynamics coupled to

molecular dynamics to determine the averaged asymptotic angles χs as a function of

Pe for a bead model of rod like colloids with p = 10. The simulations showed an

approximate power law behaviour χs ∝ Pe−0.46 for Pe > 5, behaviour also observed

previously for flexible polymers in shear flow [162]. Our numerical results in fig. 3.4 are

in good agreement showing the similar power law, for aspect ratios p = 10 and p = 20.

Important to note is that the agreement of our results with power law scaling does not

require any additional fitting parameter. Numerical results for a smaller aspect ratio of

p = 2 in fig 3.4 show however a faster decrease of χs. This steeper slope reflects the fact

that a rod of small aspect ratio is easier to orient towards the flow axis than large ones at

the same Pe. Interestingly, from fig 3.4 it can be seen that for large enough aspect ratios,

the asymptotic orientation angles do not depend on the colloid aspect ratio. We note



42 Tumbling of quantum dots

that our theoretical prediction obtained numerically from the Smoluchowski equation

(in eq 3.4) requires orders of magnitude less computing time than the simulation results.

Figure 3.4: Normalized asymptotic orientation angle (χs) as a function of Pe for
p = 2, 10 and 20, compared with the hydrodynamic simulation results for p = 10 from

Ref. [7].

3.3.4 Dependence of the orientation angle on the colloid aspect ratio

The aspect ratio of the rods has strong and non-trivial effects on the angular velocity

and the time dependent orientation angle in shear flow. As can be seen in fig 3.5, the

intrinsic shape of the curve changes when the aspect ratio is increased, given a constant

value of Pe. On average, the colloids spend more time oriented in the flow direction

when the aspect ratio is larger. At the same time, the oscillations show larger damping

for larger aspect ratios. Comparing fig 3.5a and fig 3.5b, the amplitude and number of

the oscillations at the same aspect ratio is reduced as the Peclet number is decreased.

Figure 4b clearly indicates that the aspect ratio (for p > 3) has only a small influence

on the asymptotic angles χs for large Pe. This agrees with the conclusions previously

derived from fig 3.4.

The period of the tumbling rotations can be characterized via the first half period T̃12,

which can be obtained from the strain at which the first minimum of the averaged orien-

tation angle is found, as seen for example in fig. 3.5. The strains at these first half-periods

are displayed in fig 3.6 as a function of the aspect ratio and the Peclet number, and are

compared with the prediction provided by Jeffery’s theory in eq 3.3 [160]. Figure 3.6a

shows how the full Jeffery approximation gradually deviates from the solution of the full

Smoluchowski equation with increasing aspect ratio and decreasing Pe. Furthermore,

Fig.3.6a shows that the rotation period at large applied shears grows approximately

with (p + 1/p) as predicted by Jeffery, while it is becames almost independent of the

aspect ratio for the smallest applied shears. In order to analyze the dependence of the
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Figure 3.5: Orientation angle as a function of strain at various aspect ratios for
a) Pe = 104 and b) Pe = 102.

actual rotation period with the Peclet number, it is illustrative to display the half-period

strains normalized by the corresponding Peclet number, this is also the period, times

the rotational diffusion factor, which is constant for each value of the aspect ratio, as

shown in Fig. 3.6b. The Jeffery approach considers no thermal motion at all, such that

rotational diffusion can be consider to be vanishing. This means that direct comparison

is not really possible, although the dependence with the applied shear and aspect ratio

can still be contrasted. The decay with the Peclet number rotation period shows to be a

power law in Fig. 3.6b, but with an exponet smaller than one in the presence of thermal

noise, a decay which shows to be slower the larger the aspect ratio.
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Figure 3.6: a) Strain at the first half-period as a function of the aspect ratio p for
several values of Pe. Solid line correspond to the prediction by the Jeffery orbits in
eq 3.3, and the dashed lines are guides to the eye. b) Rotation half period adimension-
alized with the rotational diffusion as a function of the Peclet number for two values of
the aspect ratio. Solid line indicates the inverse linear dependence predicted by Jeffery,

and dashed lines indicate power law decays with exponents smaller than one.

3.3.5 Dependence of the orientation angle on sample polydispersity

In addition to the effects of shear rate and aspect ratio on the temporal behaviour of the

orientation angle, also the sample polydispersity can have a large influence. Although
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we consider the effect on dilute samples, where no interactions are taken into account,

measurements are performed which probe an average over a large number of colloids.

Realistic dispersions are sometimes quite polydisperse, containing a wide variety of,

for example, rods with different lengths. To analyze the effect of polydispersity, the

Smoluchowski equation 3.4 is solved for a number of different aspect ratios, and the

resulting orientation angles are then averaged according to a log-normal distribution

of the aspect ratio. The parameter σ that quantifies the degree of polydispersity is

the width of the log-normal distribution (see the supplementary information for more

details). The effect of polydispersity is shown in fig 3.7 as a function of strain for a fixed

p = 2 and for two Peclet numbers Pe = 104 and 102. Increasing polydispersity σ lead to

the expected increased damping of the oscillations, and the effect is stronger for larger

Pe, as can be seen by comparing fig 3.7a and fig 3.7b. Since the period of revolution

of a colloid depends on its aspect ratio, each colloid length will tumble with a different

frequency which clearly results in phase mixing.
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Figure 3.7: Orientation angle as a function of strain for varying polydispersity and
p = 2 at a) Pe = 104 and b) Pe = 102.

3.3.6 Numerical fit to experimental dichroism data

The previously discussed features of the temporal evolution of the orientation angle

(effect of shear rate, aspect ratio, and polydispersity) allow us to fit our numerical results

to experimental data. The three related parameters Peclet number (Pe), polydispersity

(σ), and aspect ratio (p), which are in principle unknown for the our QD suspensions,

can therefore be determined. For the expected aspect ratio range of the QD measured

in this study, and the experimentally accessible Pe, the tumbling period T will exhibit

only a weak dependence on the Peclet number as can be concluded from our numerical

results shown in fig 3.2, fig 3.3, and fig 3.6, as well as on the polydispersity σ as shown

in fig 3.7. We therefore initially fit the four measured shear rate data to the same

tumbling period T to obtain a unique estimated Pe and p (see fig 3.8) for the sample A.

Subsequently, the following fitting procedure is used to obtain the hydrodynamic aspect

ratio and polydispersity:

1. Experimental determination (for example via microscopy) whether the colloids are

prolate (rod-like with p > 1), or oblate (disk-like with p < 1).
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2. First estimation of the colloid aspect ratio (p) from the first half-period (T̃12) of the

time dependent average orientation angle.

3. Estimation of the value of Pe from the asymptotic orientation angle χs.

4. Solution of Smoluchowski equation using the previously obtained p and Pe and

assuming σ = 0, and subsequent optimiztion of the agreement of T̃12 and χs by iteratively

modifying the values of Pe and p.

5. Improving the matching of the oscillation amplitudes by solving the Smoluchowski

equation with higher values of the polydispersity σ.
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Figure 3.8: Comparison of experimental orientation angle as a function of strain for
sample A to the prediction given by Smoluchowski equation (eq 3.4) with p = 2.1,

σ = 0.08 and Pe = 100.

A comparison of fitting result to experimental data for sample A is shown in fig 3.8,

where a good agreement of the tumbling period, the asymptotic behaviour at larger

strains, and the decay in oscillation amplitude can be observed. Fitting curves obtained

using the same method for other samples are shown in fig 3.9 where the method is

applied for both, rod-like QD (samples B, C) and disk-like QD (samples D, E). The

fitted values of p, σ, and Pe for both rod and disk shape quantum dots are are listed in

table 3.2.

The hydrodynamic aspect ratio obtained from LFD is consistently smaller than the

aspect ratio obtained from TEM, as shown in table 3.2. This is expected as our QD

colloids are coated with a stabilizing polymer layer that decreases the effective p̄, and

which is detected by LFD but not with TEM and explains the difference between the

p̄ from LFD and p̄TEM data for the prolate particles in table 3.2. For the oblate QD a

uniform polymer layer alone can not explain the difference between the LFD and TEM

results. A similar finding for oblate particles has been reported before [58]. A plausible

explanation for the discrepancy in case of the oblate QD is that the stabilization polymer

layer is not homogeneously distributed over their surface. It seems that the polymer
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Figure 3.9: Orientation angle as a function of strain comparing experiments and
Smoluchowski equation for samples B-E.

Sample p̄ σ Pe p̄TEM

A 2.10±0.10 0.08±0.05 100 3.76
B 1.80±0.10 0.07±0.04 70 2.10
C 2.00±0.14 0.07±0.05 90 3.18
D 0.45±0.02 0.07±0.02 100 0.52
E 0.40±0.03 0.06±0.02 160 0.50

Table 3.2: Estimated average hydrodynamic aspect ratio, polydispersity, and Peclet
number. The last column shows the physical aspect ratio from TEM for comparison.

coating at the edges of the oblate QD is slightly denser as compared to the flat face,

although there is no independent proof that sustains this observation. However, this

supports the necessity of independent direct measurements of the hydrodynamic aspect

ratio as with the LFD presented here, as not even the knowledge of the protective layer

allows to fully theoretically predict the effective p̄. But it should also be noted that the

experimental LFD data have a rather large scatter, which is connected to the extremely

small size of the QDs, leading to a small signal to noise ratio. This large scatter in the

experimental data does not permit to make independent fits for each applied shear rate

separately, but only to provide an average fit which corresponds to an averaged shear

rate. In spite of this, a combination of experimental LFD and the fitting procedure

using the Smoluchowski equation at intermediate Pe gives a robust estimate of the

hydrodynamic aspect ratio and polydispersity for shape anisotropic QDs.
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3.4 Summary

Combining experimental rheo-optics and the numerical solution of the Smoluchowski

equation is a powerful approach to characterize the effective aspect ratio of anisotropic

colloidal systems for which other techniques fail, as is the case with quantum dots

(QD) dispersed in a liquid. For this the time evolution of the orientation angle of dilute

suspensions of non-spherical colloids upon inception of shear flow is monitored by means

of a polarisation modulation method that probes linear flow dichroism (LFD). The time

evolution of the orientation angle depends on three parameters: the Peclet number Pe,

the hydrodynamic aspect ratio p, and the particle polydispersity σ. Numerical solutions

of the rotational Smoluchowski equation for prolate and oblate colloids, including both

Brownian motion and shear flow, reveal the importance of these parameters on the

temporal evolution of the degree of alignment as quantified by the orientation angle.

Based on this an analysis procedure for experimental LFD data is proposed for arbitrary

values of Pe, p, and σ. Interestingly, although the LFD signal to noise ratio is low due

to the small size of the QD, the hydrodynamic aspect ratio and polydispersity of QD

can still be obtained reliably, which has been shown here for both prolate and oblate

QD. We expect that this optical technique probing dichroism, and the data analysis

based on numerical solutions of the orientational Smoluchowski equation, will be widely

used for the characterization of the hydrodynamic properties of single particles ranging

in sizes down to those of QD. We also anticipate that by matching the refractive index

of the suspending medium to that of the particles, the method will soon be extended

to the characterization of dense systems, where particle-particle interactions becomes

important.





Chapter 4

Helix in shear flow

4.1 Motivation

Objects whose mirror image can’t be superimposed with the original one by rotation

are called chiral. Most biological organisms and molecules are totally or partially chiral

which significantly influence their chemical and physical behaviors. Motion and kinetics

of chiral objects are largely determined by their spatial anisotropy since chirality leads

to a coupling between the translational and rotational degrees of freedom. Objects with

different handedness symmetry might rotate, drift, or form structures along opposite

directions under non-equilibruim conditions.

Recently, a lateral drift of screw-like objects in shear flows was experimentally demon-

strated for bodies with a linear extension of the order of centimeters [163], millimeters

[11], and micrometers [10]. Clemens et al [164] have experimentally demonstrated sep-

aration of racemic mixtures by exposing left and right-handed chiral molecules to a

rotating electric field. The control of actively moving nano-structured propellers was

studied by Ghosh and Fisher [95]. D’Urso etal [165] described the formation of chiral

assembles made of achiral components in a vortex flow and showed that stirring shifted

the equilibrium of a racemic mixture towards the side chosen by the vortex chirality.

On the theoretical side, Brenner [166] formulated the Stokes resistance of an arbitrary

particle shape and discussed the possibility of migration of helicoidal particles in shear

flow. Kim et al [167] studied the motion of helical particles and suggested the possibility

of separating helical particles since right- and left- handed particles have opposite drift

direction. Exact analytic results for the drag coefficient of certain high-symmetry shapes

such as spheres and ellipsoids can be obtained in the Stokes limit. The influence of

the chirality of a macroscopic object on its transport properties were conducted for

sedimentation [71] and for shear flows [45]. The latter described the vorticity drift of

twisted ribbons in shear flow with direction determined by the particle chirality.

Chiral enantiomers were studied for separation in clover leaf flows [12] and in flows

in channels of various geometries [168–170]. Alcanzare et al [171] optimized the helical

shape of particles at nanoscale in terms of maximising the vorticity displacement velocity.

49
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In these studies, fluctuating forces were taken into account in order to include the effect

of thermal fluctuations on the molecules by the surrounding fluid.

For flexible particles, Watari and Larson [172] considered achiral objects with respect

to their geometry in equilibrium, but with differently deformable bonds between four

atoms which can be separated in shear flow. The objects consisting of four mutually in-

teracting spheres with different equilibrium bond lengths and identical bond strengths,

were demonstrated to experience a lateral drift in uniform shear flow [173]. For bi-

ological system, resistive force theory (RFT) and slender body theory (SBT) are the

usual approaches used to study the propulsive motion of flagellar propulsion [99, 174–

176]. These two methods can also be used to analyze flexible helix. Macros et al [177]

recognized bacterial rheotaxis, a purely physical phenomenon, coming from the subtle

interplay between velocity gradients and the helical shape of flagella.

All previous studies of chiral objects under shear, however, are restricted to rigid helixes

[12, 45, 71, 166–171] and flexible tetrahedron. Most of helical polymers in reality are

not perfectly rigid, particularly in biological systems. It’s still unclear how the flexibility

affects the deformation and dynamics of helix in shear flow. Here, we address theses

issues by employing a hybrid approach in which the polymer conformations are sampled

by standard molecular dynamics simulations (MD), whereas the solvent is described by

multi-particle collision dynamics (MPC) [108].

4.2 Method and model

4.2.1 Method

The simulation method used here has been introduced in Sect 2.4. The solvent is de-

scribed by Multi-particle Collision (MPC) simulation while the solute (helix) by Molec-

ular Dynamics (MD). The coupling between solvent and solute is by inclusion of the

monomers in the MPC collision step.

4.2.2 Model of helix

We investigate polymers with helical structure using a generic coarse-grained bead ho-

mopolymer model [173]. The equilibrium configuration of a free object, i.e. a stable

configuration with bonding forces between the spheres, is assumed to be of helical form.

This form is constructed by positioning the centers of the beads on a cylinder surface

of radius R. Given the location of the first sphere X 1, the next one, X 2, is found

upon rotation by an angle β around the cylinder axis combined with a translation by

hp parallel to the cylinder axis, and similarly with the third and fourth spheres yielding

the respective positions X 3 and X 4, as illustrated by Fig 4.1. Here, the helix is set up

as a left-handed helix. The positions of beads take then the form
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Figure 4.1: The configuration of a spiral object

x = R cos[(n− 1)β)]

y = hp(n− 1) n = 1, 2, · · ·N.
z = R sin[(n− 1)β)]

(4.1)

The geometry of helix can be changed by adjusting parameters hp, β, R in Eq. (4.1)

and the total number of bead conforming the helix. These parameters will determine

helix input dimensions, namely the end-to-end length 2Lh, the helix wavenumber Np

of complete helix turns, and then the derived the aspect ratio p = 2Lh/2R, pitch c =

2Lh/Np.

Figure 4.2: The geometry of helix with parameters (a) R = 2, hp = 0.25, p0 =1.5, c
= 3. (b) R = 3, hp = 0.15, p0 =1.5, c = 2. (c) R = 2, hp = 0.3, p0 =4.5, c = 5

Once the initial location of the beads is given, molecular dynamics considers the bead

connected to each other by harmonic bonds, bond bending, and torsional potentials.

The energy associated with the harmonic bonds which fix together consecutive monomers

is calculated using the spring potential:

Ubond =
κbond

2

Nm∑
i=2

(|X i −X i−1| − l0)2 (4.2)

where κbond is the harmonic constant and l0 is the equilibrium bond length. Xi is the

position vector of bead i.
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Ubend =
κbend

2

Nm∑
i=3

(cos θi − cos θ0)
2 (4.3)

A bending potential is introduced to control the flexibility of the chain, where κbend
is the bending force constant and θi is the bending angle formed by bead i, i + 1 and

i+ 2. θ0 is the equilibrium bending angle. The bending angle follows from the relation

cos θi = ∆X i ·∆X i−1/(|∆X i||∆X i−1|),

An additional potential associated with the dihedral angles to maintain the initial helical

order by exerting a torsional effect on polymer bonds:

Utors =
κtors

2

Nm∑
i=4

(cos τi − cos τ0)
2 (4.4)

where κtors is the torsional force constant and τi is the torsional angle formed by bead

i, i+ 1, i+ 2 and i+ 3. τ0 is the equilibrium torsional angle. The torsional angle from

cos τi = (∆X i×∆X i−1)(∆X i−1×∆X i−2)/(|∆X i×∆X i−1)||∆X i−1×∆X i−2|), where

∆X i = X i−X i−1. Each potential can be toned independently by changing κbond, κbond
or κtors.

Figure 4.3: Sketch of a chain segment containing four monomers. The bond length
is represented by Xi−Xi−1 and the torsion angle is by τ (blue) and the bending angle

by θ (red)

Furthermore, a repulsive and truncated Lennard-Jones potential

ULJ =

{
4ε
[(

σ
r

)12 − (σr )6]+ ε, r < 21/6σ,

0, otherwise,
(4.5)

is used to account for excluded-volume interactions between non-consecutive beads that

happen to be in a certain distance range. This interaction prevents, for example, flexible

helix from crossing itself.
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The dynamics of the beads is then described by the Newton equations of motion, which

are integrated by the velocity-Verlet algorithm with time step ∆tMD = 10−6 for the

largest value of κ.

The bead particles are coupled to the fluid in the collision step with so-called MPC

coupling algorithm described in sec. 2.4.2.2. Finally, Lees-Edwards boundary conditions

are employed in order to impose a linear velocity profile vy = vz = 0, vx = γ̇y in the

fluid in the absence of a polymer, with a tunable shear rate γ̇. The method has been

presented in sec. 2.4.2.5

4.2.3 Parameters

The size of the simulation box is taken to be Lx = Ly = Lz, with Lx varied from

30a3 to 80a3 to test the convergence for the simulations, a being the side length of

the collision cell. The mass of a helix bead is set to Mh = 10m in order to enhance

the hydrodynamics coupling [117]. In this work, the default configuration which will

be used unless otherwise specified is, number of beads for one-turn helix is Nm = 20,

hp = 0.3, R = 2, β = 2π/Nm, which yield the equilibrium bond length l0 =0.694, the

equilibrium bending angle φ0 = 16.2◦, and the equilibrium torsional angle τ0 = 172◦.

Here, the helix is inextensible. So the bond force constants is fixed to rigid condition

kbond/
√
kBT = 107 such that polymer contour length doesn’t change with fluctuations,

nor with any strength of the applied field, such that Lh = (Nm − 1)l0Bending and

torsional force constants are varied from 107 to 104, what covers the range of very stiff

to very flexible helices.

4.3 Results and discussions

4.3.1 Rotational diffusion of helix

When the helix is of micro-scale size, thermal fluctuations are considerable and they are

naturally taken into account in our simulation. In order to characterize the rotational

diffusion coefficient of the helix, the mean-squared angular displacement W (t) is calcu-

lated in simulation by Eq. (2.15). The results of W (t) is shown in Fig. 4.4, from which

we can obtain rotational diffusion coefficients of helix at different aspect ratios. The

value of Dr is much smaller than theoretical one of rod-like rigid cylinder with same

aspect ratio [178]. It is because compared to rod with same aspect ratio, the helix corre-

sponds to hollow structure and has much longer contour length, which leads to smaller

rotational diffusion coefficient.

4.3.2 Tumbling and Breathing of flexible helix

Many soft matter systems, ranging from rod-like colloids to linear or star polymers,

droplets, and vesicles, have been studied under shear flow conditions, since this is typical

case where the dynamical behavior can be investigated in a stationary nonequilibrium
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Figure 4.4: (a) Mean-squared angular displacement vs. time for a the helix with
R = 2a, L = 18a,Np = 3. (b) Rotational rotation coefficient of helix vs. Aspect ratio.

Helix radius R = 2a, pitch c = 6a and pitch numbers Nw varies from 1 to 4.

state [3, 179]. A rich dynamical behavior has been found for deformable soft objects

under shear flow, such as tumbling, kayaking, tank-treading, stretching, and collapsing

[180–182]. Helical polymers present a special structure, in which the torsional potentials

lead to its chirality.

In order to investigate the effect of the flexibility we modify both the bending and the

torsional potential strength by fixing both constants the same value. κ = κbend = κtors.

In this way, the limit of vanishing κ corresponds to a flexible polymer with no helicoidal

character, and the limit of κ→∞ corresponds to a fixed helix. Intermediate values of κ

corresponds to flexible helixes, in which the end-to-end distance is not fixed , the central

cylinder is not completely straight, and in which the distance between consecutive helix

turns is not constant.

When the shear rate is big enough or helix is flexible enough, the helix will be subjected

to larger shear stress when the main axis of helix is perpendicular to the flow direction.

Then the helix will be largely stretched. The shear stress is reduced when the main axis

of helix is aligned to flow direction. Figure 4.5 indicates the helix tumbles in flow due

to its interaction with the applied flow field. Here, y/y0 relates to the time dependent

position in gradient direction of one of the beads at the extreme of the helix while L/2Lh
refers to the normalized end-to-end length. The particle is subject to strongest shear

stress and stretched, such that end-to-end length of helix reaches a peak value when

its main axis is perpendicular to flow direction. Then the end-to-end length of helix

decreases till the main axis of helix is aligned to flow direction and increases again when

the angle between the main axis of helix and flow direction becomes bigger. We refer as

breathing to the stretching and collapsing of the total helix length, and as tumbling to

the periodic orientation rotation of the complete helix. So in one tumbling period there

are two breathing ones. During the process, the dynamics of helix shows the perfect

coupling of tumbling and breathing.

4.3.2.1 Stability phase diagram

In shear flow the helix shrinks and partially folds quickly in case where the shear stresses

are larger that these applied by the bending and torsional potentials, such that the helical
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Figure 4.5: Temporal evolution of the normalized end-to-end length of helix L/L0

(blue line) and the normalized y label of first bead (red line). At t = 0, the main axis
of helix is parallel to the flow direction. The rigidity of helix κ = 107. The shear rate

γ̇ = 0.1.

structure is broken. In our simulations we obtain the stability diagram gathering at the

prevalence of the helical structure for one single case of the initial helix geometry as

shown in Fig. 4.6. If the helix has much bigger aspect ratio and under larger shear rate,

the rigid helix would be bended besides stretched and collapsed.
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10-1  keep the helical structure
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  Boundary

 

 

k

Figure 4.6: Diagram of helix state. R = 2, Np = 3, L = 18. The red points represent
the helix is in folding and chaotic due to shear stress. The blue points means the helix
still can keep helical structure, and tumbling and breathing even subjects to shear flow.

Green line is boundary between two states.

4.3.2.2 Breathing and tumbling

Firstly, in Fig. 4.7, the average length of helix increases with rigidity. It’s interesting

to note that the length of more flexible helix is still smaller than at equilibrium for all

investigated cases, even though the helix is stretched during some time. This indicates

that the semi-flexible helix is always compressed if the pitch is not so small to prevent

the compression .
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In Fig 4.8, the difference between average and maximum length shows to decrease with

rigidity. This is because the flexible helix can be stretched easily under same shear rate.
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Figure 4.8: Changed amplitude of helix length varies with the rigidity of helix from
104 to 107. The shear rate γ̇ = 0.1.

In Fig. 4.9 the position (y) of the helix end along the shear-gradient axis characterizes

the tumbling process since where the tumbling takes place is the flow-gradient plane.

Besides the effect of thermal fluctuations, Fig 4.9 shows that the helix tumbling motion

is similar to that a rod-like colloid. From Fig 4.9, the rigid helix tumbles periodically

same as rigid rod. When the rigidity of helix decreases to 105, the periodicity of the

tumbling looses some coherence but it is still clear but does not anymore occur when the

rigidity is equal to 104. For this flexibility and this shear strength the structure of the

helix is not really preserved. In this case, the helix keeps tumbling but starts to tangle

and fold itself, becomes eventually chaotic.

According to Jeffery’s theory in Eq. (3.3), the tumbling period of a rigid rod increases

with aspect ratio of the rod. We perform two sets of simulations, one with fixed hp
(length) and changed R, and vice versa that are shown in the table 4.1 and Fig. 4.10.

The green line is Jeffery’s theory by Eq. 3.3 at γ̇ = 0.1 varying with aspect ratio of rods

(p0 = L/2R). The simulation results show that the two ways of changing geometries
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Figure 4.9: Temporal evolution of the normalized y label of first bead for helixes of
various flexibilities (red line for κ = 106, blue for κ = 105, green for κ = 104). At t = 0,

the main axis of helix is parallel to the flow direction.

overlap, which means that we don’t need to know either length or radius of helix but

the aspect ratio of helix for the tumbling periods.

Table 4.1: Different geometries of helix

hp=0.15

R Le0 p0 c

2 9 2.25 3
2.5 9 1.8 3
3 9 1.5 3
4 9 1.15 3

R=2

hp Le0 p0 c

0.1 6 1.5 2
0.15 9 2.25 3
0.2 12 3 4
0.3 18 4.5 6
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Figure 4.10: Tumbling period of helix as function of aspect ratio for simulations with
γ̇ = 0.1 and κ = 106. Red points is from fixed length of helix, blue from fixed diameter
of helix. Green line is from Eq.3.3 at ˙γ = 0.1. The inset is the fitting from Eq. 3.3 in

terms of tumbling period.

In Fig 4.10, the green line is still Jeffery’s theory with p = p0. When the helix is

rigid with bigger aspect ratios , the simulation results can be nicely fitted by Jeffery’s

theory. It’s understandable since the same aspect ratios for rods and helices lead to same

torque that rises same rotational speed. However, there is some displacement away from

Jeffery’s theory when the helix has smaller aspect ratio. This is due to that helix with

smaller aspect ratio becomes more compressible under same shear, compared to the helix
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with same bending and torsional potentials. Therefore, in Fig 4.10, the helices have the

aspect ratios less than 1 when p0 is close to 1. Then the helices becomes more disk-like

and have bigger tumbling periods that rise the displacement from theory.

However, in Fig. 4.11, it is very interesting that the results of helix at intermidiate

flexibility (κ = 105) can be still fitted with Jeffery’s theory at an another effective

hydrodynamic aspect ratio p = 2.79, which is clearly smaller than the initial one. But

when the rigidity of helix is decreased to values smaller than κ = 104, then the fitting

to Jeffery’s theory becomes quite unclear, which indicates that the tumbling doesn’t

follow Jeffery’s theory anymore since the helix became too flexible and chaotic. This

shows that Jeffery’s theory can applied in the behaviour of helix if the helix can just

keep tumbling and breathing.
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Figure 4.11: Tumbling period of helix varies with shear rate. Red, purple, and blue
points are for rigidity κ = 104, 105, 106, respectively, dashed lines are fitting from

Eq.3.3, Green line is from Eq..3.3 at p0 = 4.5.

Figure 4.12 indicates how the effective aspect ratios are related to flexibility. For the

helix with p0 = 4.5, the effective p0 increases to 4.5 with rigidity. This can be understood

from Fig. 4.7, where the average length of helix increases with rigidity. This happens

to another helix with p = 7.5 as well.
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Figure 4.12: Effective aspect ratio as function of κ. The shear rate γ̇ = 0.1,
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4.3.3 Vorticity displacement

4.3.3.1 The effect of HI

Besides the tumbling and breathing of helix under uniform shear, the helix drifts along

the vorticity direction of flow. As explained in Ref. [45, 171, 173], the main mechanisms

leading to a lateral drift of the helices, i.e. to a motion perpendicular to the flow direction

and to the direction in which the flow speed changes, can be summarized as follows. The

shear field of the flow leads to a rotation of the helix, which then, like a small propeller,

moves in, or opposite to, the direction of the vorticity of the flow. The particles with

different handedness drift in opposite directions. In order to assess the reason of lateral

drift, we perform random MPC simulations, which eliminate hydrodynamic interactions.

The results are shown in Fig. 4.13. ∆z, is the average displacement along the vorticity

on 16 individual samples. In contrast to the result from the MPC simulation with full

HI, the displacement in random MPC simulation shows to be very clear vanishing at

same shear rate. This allows us to conclude that the lateral displacement is driven by

hydrodynamics.
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Figure 4.13: Temporal evolution of the displacement of helix along vorticity direction
with and without HI, at γ̇ = 0.1 and R=2.

4.3.3.2 Dependence of shear rate

The shear flow must first orient the particles before it can induce any drift. One would

expect higher shear rate leads to bigger angular velocity of helix which would is related to

its drift velocity. To study this dependence on shear rate, we have varied the shear rate

in terms of the dimensionless quantity called the rotational Peclet number Per = γ̇/Dr.

Figure 4.14 shows the mean displacement of the particles in the vorticity direction plotted

against the shear strain γ̇t for various shear rates γ̇. For large Per, Fig. 4.14 shows that

the displacement linearly increases with time. It indicates that the particles move with

constant average migration velocity. For smaller Pe, ∆z shows considerable fluctuation,

which is a result of dominant Brownian motion along the z axis.
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Figure 4.14: Temporal evolution of the displacement of helix along vorticity direction
at different Pelect number from at R = 2

An analytical expression for the migration velocity as function of Peclet number has

been obtained by Doi and Makino [11, 45] in the context of twisted ribbons:

vD =

{
FRrbγ̇P e

2 Pe� 1

GRrbγ̇ P e� 1
(4.6)

where 2Rrb is ribbon’s width. F and G are constants dependent on the shape of the par-

ticle, which are identically zero for non-chiral particles, and non-zero for chiral particles.

The underlying mechanism, the shear-induced drift of chiral particles in the vorticity

direction, is a nonlinear effect in bulk solution, since the helix orientation is isotropic

and vD is proportional to γ̇3 at Per � 1. The migration velocity is proportional to the

shear rate at high Peclet number. This is a general result of the Stokesian dynamics

where the effect of Brownian motion is negligible.

Our simulation results of helix in Fig 4.15 also show the migration velocity vD depends

on shear rate linearly when Pe > 300. The linearly fit with Eq. (4.6), the parameter

C is equal to 0.278 for the parameters here employed, although in the following we see

that this number depends on the helix geometry and flexibility. Due to strong thermal

fluctuation, it will take timely prohibitedly to check if our results are consistent with

the theory in the regime of small Per, this would be at Per � 1 in Eq. (4.6).

4.3.3.3 Effect of geometry

The drift velocity is not only determined by shear rate but also by the parameters

characterizing the helix. In previous discussion, we already described how the tumbling

period is affected by its aspect ratio in Jeffery’s theory [160]. Figure 4.16.a shows that the

migration velocity increases monotonically with number of pitches, and that it saturates

to a constant value with for a large value of the number of pitches. The asymptotic

value is a function of pitch over radius c/R only.
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Figure 4.15: Drift velocity vD as function of Peclet number from 0 to 3×103. Rota-
tional diffusion coefficient of the helix Dr = 3.3× 10−5.

Figure 4.16: Drift velocity as a function of the number of helix pitches for (a) fixed
radius R and pitch c. The red and blue points are for radius R = 1.5 and 2, respectively

and pitch of helix c = 6a. (b) fixed end-to-end length and radius, varied pitch c.

It is also interesting to fix the aspect ratio by fixing the diameter and end-to-end length

of helix but change the number of pitches. Figure 4.16.b shows that the migration

velocity varies for the particle of fixed end-to-end length 2Lh = 18a. It is seen that

the migration velocity has a peak, where the pitch number Np = 1.5, and the pitch

length c = 2Lh/Np = 12a is approximately equal to 2πR, here R = 2a. This result is

consistent with Doi’s work [45], which studied twisted ribbon in shear flow by simulation

and theory. One can understand the behavior qualitatively as the crossover between two

well-defined limits. There are the limit of pitch c→∞ (corresponds to rod limit) and the

limit of c = 0 (corresponds to tube limit). In both limits, the particle loses chirality, and

the migration velocity should vanish, such that a maxima can be expected in between.

The same phenomenon can be observed when the number of pitches and end-to-end

length of helix are fixed but the radius is changed. There is also a maximum in Fig.

4.17, where, however, the pitch length c = 6a is approximately equal to πR . And the

two limits are: the radius of helix R = 0 (the rod limit) and the radius R → ∞ (the

ring limit).

Then the contour length and number of pitches are fixed but the diameter is changed.
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Figure 4.17: Drift velocity varies with radius of helix. The end-to-end length and the
number of pitches are fixed

Fig. 4.18 shows that there are still peaks, where the pitch length c = 10a is approxi-

mately equal to 2πR (R = 1.5a). There are two limits, one of which is the radius R

vanishes (the rod limit), and another is that the gap between consecutive pitches van-

ishes. The peaks appear at c = 2πR regardless of shear rate and number of pitches in

Fig. 4.18. This would help us understand how to optimize the helix geometry in terms

of drift velocity.
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Figure 4.18: Drift velocity as function of the radius of helix . The contour length and
the number of pitches are fixed. The blue points: the number of pitches Np = 3, shear
rate γ̇ = 0.1. The red points: Np = 2, γ̇ = 0.1. The green points: Np = 2, γ̇ = 0.05.

At the peaks: the pitch c = 10a and the radius R = 1.5a.

4.3.3.4 Effect of flexibility

For flexible helixes, pitches keep being changed when the helix is in shear flow, see Fig.

4.7. The average pitch length of flexible helix is always smaller than the one of more

rigid helixes. Meanwhile, the average diameter of flexible helices is bigger than the one

of more rigid ones.

Therefore, the migration velocity would decrease with flexibility if the equilibrium pitch

of helix c ≤ 2πR (located in the right of peaks in Fig. 4.19). In Fig. 4.19, the equilibrium
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pitch of helix c = 6a, definitely smaller than 2πR. The migration velocity is increased

with rigidity, then reaches an asymptotic value due to rigid condition since the end-to-

end length keeps asymptotic.

From a different perspective, it can be understood that the drift velocity is a property of

the intrinsic chirality of the helix, which is dependent on helix geometry when the helix

is rigid. Furthermore, the chirality is relevant to the helix rigidity as well. It is clear

that the behaviour of a flexible helix should be close to the one of flexible rod. This is

why in Fig. 4.19 the drift velocity increases with rigidity. The helix still have lateral

drifts when the helix is very flexible at κ = 103 to 104 and becomes chaotic under shear

rate γ̇ = 0.1.
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Figure 4.19: Drift velocity varies with the flexibility of helix from κ = 103 to 107

under shear rate γ̇ = 0.1. Parameters of helix: R = 2a, c = 6a.

4.4 Summary

We have studied the behavior of a helix-like colloid in shear flow. For a helix with

a strong rigidity the shape is well preserved in the flow and the motion can be well

understood with the Jeffery theory [160] for rod-like colloids. The rigid helix keeps

tumbling or kayaking subject to shear stress. If the helix is not completely rigid, it

tumbles and breaths in shear flow until a critical shear rate is reached. This means that

eventual small deformations do not really affect the overall motion. The flexible helix

transits to chaotic motion once the rigidity of helix can’t support it’s helical structure

and behaves just as a flexible polymer .

We demonstrated that the lateral drift of chiral particles in uniform shear flow is driven

by hydrodynamics. The drift velocity increases linearly with shear rate because of the

Stokesian dynamics. Not only the strength of the applied shear determines the value

of the vorticity velocity, but also the helix geometry. For rigid helix, the drift velocity

shows a maxima between rod and tube limits when its radius or end-to-end length is

changed and other parameters of helix geometry are fixed. When we fix the contour

length of the helix and change the pitch, there is still a maximum value of drift velocity.
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The above results also help us understand how the migration velocity is influenced by the

helix rigidity. The end-to-end length of flexible helix is shorter but the radius is larger

compared to more rigid ones in shear flow. This smaller effective aspect ratio implies that

more flexible helix has smaller tumbling frequency and also smaller migration velocity

in same shear flow.

Vorticity displacement of the helix in the presence of shear flow is an interesting char-

acteristic both in fundamental research or industry applications. These results can be

helpful to design and to optimize artificial helix or flagella in terms of lateral drift ve-

locity, which can be used in medicine delivery or transport in biological systems.

This work doesn’t investigate chaotic state of helix in shear flow in detail, which can

indicate the dynamics and elastic properties of helix under critical shear stress. Thie

work also can be extended to the helix with higher aspect ratios which can be bended

by shear stress.

h



Chapter 5

Swimming of a deformable helix

5.1 Motivation

Cell motility is a major achievement of biological evolution and is essential for a wide

spectrum of cellular activities. The net movement of micro-swimmers critically depends

on the anisotropy of the viscous drag within the fluid [13], and requires a non-reciprocal

swimming stroke to break the time-reversal symmetry of the underlying equations of mo-

tion as theoretically proven by Purcell and the so called scallop theorem [14]. The motion

of model cellular swimmers, such as spermatozoa, bacteria, and algae, has been studied

characterizing how they swim in bulk fluids [15, 16], in search for food sources [17], and

moving near boundaries [183, 184]. The motion of some of these micro-swimmers is

produced classically by the rotation of rigid helical structure although the deformation

of a helix has also shown to produce motion [185, 186]. The helical flagellar filaments of

Escherichia coli (E.coli), for example, can switch form producing them a rotation and

propulsion in a different direction [187], leading to random reorientations of the bacteria

as a whole what characterized the so-called run-and-tumble motion. For the bacterium

Rhodobacter sphaeroides, these reorientation events were previously thought to be gov-

erned by Brownian rotation, but recent results suggest that the polymorphic change itself

actively rotates the swimmer [188]. A different phylum of bacteria, the Spirochaetes,

can also use the deformation of helical shape to generate propulsion. These bacteria

encase their flagellar filaments within a thin sheath around their bodies [189]. When

the helical filaments are rotated, their motion deforms the cell body through a set of

waves and helical shapes, which in turn creates motion [190]. Similarly Spiroplasma, a

group of small helical unflagellated bacteria, are able to generate thrust by propagating

a switch in helix handedness along its body length [191].

These systems have also inspired the creation of artificial microswimmers with helical

tail. One example is a flexible flagellum-like tail of magnetic particles bridged by DNA

molecules and end-linked to a red blood cell as a head. The structure could be actuated

and directed by an oscillating external magnetic field [84]. The second example is a

biohybrid swimmer that consists of a polydimethylsiloxane filament on which cardiomy-

ocytes have been adhered. The cardiomyocytes contract periodically and deform the

65
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filament to propel the swimmer [192]. Recently Mourran et al. developed a deforming

helical microswimmer made by a temperature sensitive gel [86, 193]. When periodically

heated and cooled with a laser, these gels expand and contract such that they retain their

helical shape while changing their helix radius and axial length in a controlled manner.

When the deformations are non-reciprocal, they have shown to lead to a net rotation

parallel and perpendicular to the helix axes (as illustrated in Fig. 5.1). Later, Koens et

al [89]., explored the net translation and rotation of general unbounded perfect deform-

ing helices by resistive force theories, which reveal that the rotational displacements are

optimised at small axial lengths while translational displacements are optimised at large

axial lengths.

Motivated by these recent experimental and theoretical results and by the importance

of deforming helices in biological systems, this chapter explores how a deforming helix

can generate motion by a hybrid simulation method. The theoretical results [89] ne-

glected the effect of thermal fluctuations, which is not very accurate considering that

the experimental helixes are on the order of 10 µm where the stochastic interactions

with the solvent are still relevant. First we consider the motion generated by a perfect,

inextensible deforming helix in an unbounded fluid. We demonstrate that this simple

shape can rotate by generating a non-reciprocal swimming stroke in bulk conditions.

Then the effect of confining walls is taken account, and we can characterize how the

rotation speed and helix position are affected with respect to walls.

Figure 5.1: Net rotating motion of a deforming gel helix [86]; (a) Schematic diagram
of the helix of length 2Lh (measured along the helix axis) and diameter 2rh, with a
definition of the two angles (θ,Ω) by which it may rotate; (b) Angular displacements
of the helix as it periodically deforms in a non-reciprocal manner. Light yellow regions
indicate when the light is on, while dark blue regions reflect when the light is off. Figure

adapted from Ref. [86]

5.2 Method and model

We employ a hybrid simulation method similar to that in Chapter. 4. The helix is

simulated by molecular simulation as described in Sect. 4.2.3, while solvent is dealt by

MPC described in Sect. 2.4.2. The coupling between helix and solvent is done with

MPC as explained in Sect. 2.4.2.2.
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In order to include the actuated deformable character of the helix we employ a generic

coarse-grained bead-spring model for elastic, self-interacting gels with torsional interac-

tion. The gel is represented by a linear chain of N monomers. A perfectly deforming

helix is expected to maintain a helical shape throughout its entire motion. Hence its

centreline or the positions of beads, X(s, t), can always be written as

X(s, t) = {αh(t)s,R(t) cos[(k(t)s], R(t) sin[(k(t)s]} (5.1)

where t is time, αh(t) is the cosine of the helix angle, R(t) is the helix radius, k(t) is the

wavenumber, s ∈ [−l, l] is the arc length and 2l is the contour length of the helix along

its centreline in Fig 5.2. In this configuration, the length along the helix axis is given

by 2Lh(t) = 2α(t)hl. Provided that this helix is inextensible, the configuration follows

the additional mathematical constraint

αh(t)2 +R(t)2k(t)2 = 1 (5.2)

Figure 5.2: Sketch of helix configuration. αh = Lh/l. The contour length of the helix
centreline is 2l. The helix becomes a tube for αh = 0, and a rod at αh = 1.

Figure 5.3: Illustration of a perfect helix undergoing non-reciprocal deformation with
centreline described by Eq. 5.1 and a circular cross-section.

at all times. In what follows, we scale all lengths in the problem by half the contour

length l. The centreline condition Eq. 5.1, and inextensibility constraint, Eq. 5.2, show

that a helix is uniquely defined by two of the three conformation parameters: αh, R,

and k. A deforming helix therefore has two independent degrees of freedom which can

be varied sequentially or simultaneously. As discussed by Purcell in his seminal article

on locomotion at low Reynolds numbers [14], two independent degrees of freedom are

sufficient to create a non-reciprocal stroke (by a non-identical deformation under a time-

reversal symmetry) and thus are the minimal requirement needed to induce net motion.

An example of a non-reciprocal stroke, generated by a deforming helix, is shown in Fig.
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5.3. This stroke was obtained by alternatively varying the axial length, Lh = αh(t)l,

and helix radius, R, while keeping the other parameters fixed.

To stabilize the helix in the simulation, the interaction among the monomers are bond,

bending and torsional potentials, similar to those in chapter. 4. In order to calculate

these potentials and forces, the distance of two monomers (Xi−Xi−1), bending angle θ,

and torsional angle τ can be obtained when the configuration of helix is determined as.

αh(t)

R(t)

k(t)

⇒
(Xi −Xi−1)(t)

θ(t)

τ(t)

 (5.3)

Here, the configuration of the helix is changed periodically. However the change of

distance between monomers ((Xi − Xi−1)(t)) is restricted within 0.5% by setting high

harmonic potential (κbond = 107) since the helix is assumed to be inextensibe.

Since the helix deforms periodically, an approximate deformation loop of the gel helix

can be parametrised as

αh(t)) = ᾱh + ∆αh sin(2πft)

R(t) = R̄+ ∆R cos(2πft+ φ)
(5.4)

where φ is the phase between the two oscillations and k is given by Eq. 5.2. The

frequency of deformation is 2πf , and Th = 1/f is the period of deformation. Note that

for φ = (π/2, 3π/2). Eq. (5.4) describes reciprocal deformations while for φ = (0, π) the

deformations will be non-reciprocal, which will determine the existence, and direction

of an eventual net rotation.

5.3 Results and discussions

5.3.1 Rotation in bulk

The net rotation of the actuated helical swimmer is governed by its interaction with the

surrounding viscous fluid as determined by the hydrodynamic interaction. The details of

these hydrodynamic interactions dictate how the forces and torques on the body relate

to its velocity and shape. The transient angles of helix in space can be characterized by

(θ, ϕ) of main axis of helix in the coordinate system of Fig. 5.4. They can be calculated

from the eigenvalues (x, y, z) of the gyration tensor of helices as

θ = arccos
z√

x2 + y2 + z2

ϕ = arctan
y

x

(5.5)
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Figure 5.4: Schematic of rotational angles (polar θ, azimuth ϕ) that can be obtained
from its cartesian coordinates (x, y, z). The initial postion of helix: the main axis of

helix is parallel to x− y plane.

From Fig.5.5, we can observe the angular displacement increases with the number of

actuated period in θ direction, but the displacement is miuch less clear in ϕ due to in-

sufficient statistics. To clarify this, average over multiple realizations could be necessary.
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Figure 5.5: Angular displacement vary with periods. The parameters of deformation
loop in Eq. 5.4 are: R̄ = 0.06, ∆R = 0.4 and ᾱh = 0.6, ∆αh = 0.15. Deformation

period Tp/TH = 4. Phase φ = 0.

The direction of the rotation is determined by the system parameters, and it can be

changed by the value of the phase between the two oscillations, as analyzed by Koens

et al [89]. in Fig. 5.6. For the loops considered, each displacement shows a different

non-sinusoidal dependence on the phase lag, ϕ.

In Fig. 5.6, the direction of rotation predicted at φ = 0 is opposite to that at φ = π.

Our simulation results in Fig. 5.7 showed a qualitatively agreement with the theoretical

one in Fig. 5.6. The helices in simulation have opposite rotation direction in Fig 5.5 and

Fig 5.7. However, the amplitude of net displacement are similar at φ = 0 and φ = π.
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Figure 5.6: Net rotational displacement generated from a small-radius helix deforming
according to Eq. 5.4, as a function of the phase, φ. For this deformation loop, the
parameter values are R̄ ≈ 0.077, ∆R = 0.026, ᾱh ≈ 0.903, and ∆αh = 0.047 to reflect
the typical dimensions of the experimental gel swimmer in Ref. [86]. Figure adapted

from [89]
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Figure 5.7: Angular displacement varies with periods. The parameters of deformation
loop in Eq. 5.4 are: R̄ = 0.06, ∆R = 0.4 and ᾱh = 0.6, ∆αh = 0.15. Deformation

period Tp/TH = 4. Phase φ = π.

5.3.1.1 Effect of deformation velocity

In order to ensure the presence of hydrodynamic interactions in the system it is important

to consider the time TH which we define as the time that a hydrodynamic perturbation

takes to propagate a distance equal to the polymer end-to-end distance. This time is

related to the solvent viscosity µ by

TH = (2Lh)2/µ (5.6)

In this way when considering times much smaller than TH , the effect of HI is not guar-

anteed to be fully developed. In experiments, this time scale is typically orders of mag-

nitude smaller than the relevant motion (10 ms), while in simulations this separation is

not so clear becoming then an important control parameter, to verify the applicability

of the method.
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Therefore, in order to capture the hydrodynamics interaction in our simulation, we esti-

mate long enough deformation period, which means at least comparable with TH . Here,

the end-to-end length of helix is approximately equal to 35, and the minimal hydro-

dynamics time TH in Eq. (5.6) is 2000 for the employed MPC parameters. Different

periods are tested to probe the period effect on the net rotation. From Fig. 5.8, the

rotation mostly disappears when the period of deformation is half, or identical to TH .

The angular displacements become more obvious from the period equal to Tp/TH = 2.

And the rotational angle is bigger at Tp/TH = 4 than Tp/TH = 2. Therefore, the longer

deformation period leads to a larger net angular displacement. Thus, in this system,

bigger periods should be chosen in order to guarantee the enough hydrodynamics inter-

action. In the flowing, Tp/TH = 4 is used. Although it has to be considered that imply

also long simulation times making the results are computationally costy.
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Figure 5.8: The time dependence of angular displacement (θ, ϕ) with NT the number
of completed periods for different values of the period time Tp as compared with TH :
Employed parameters in Eq: 5.4 are R̄ = 0.06, ∆R = 0.4 and ᾱh = 0.6, ∆αh = 0.15.

The net rotational displacements in both of θ and ϕ direction are averaged over 7

deformation periods and displayed in Fig. 5.9. The deformation periods exhibit less

impact on ∆θ, while the net angular displacement ∆ϕ increases with increasing periods

time. Here, it should be noted that the net displacement will not be increased once the

deformation period covers the full of hydrodynamic interaction, where a constant value

is expected to be independent of Tp.
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Figure 5.9: Average net angular displacement vs. deformation period. The net
angular displacements are averaged over seven periods in Fig. 5.8 and Fig. 5.5

5.3.1.2 Effect of fluid viscosity

It was discovered a few decades ago that many micro-organisms swim faster in more

viscous fluids than in less viscous ones. Shoesmith [194], reported already in 1960 the

increased motility of Pseudomonas viscosa, Bacillus brevis and Escherichia coli for a

small increase in the viscosity of the solution; larger increases led to a motility decrease.

Similarly, Schneider and Doetsch [195] reported that many flagellated bacteria showed

an increase in the velocity when the solution viscosity rose to a characteristic value, and

a decrease thereafter. Many other studies [196–198] have corroborated this phenomenon

of the swimming being enhanced with an increase in the fluid viscosity. Pande et al. [199]

calculated analytically the velocity of a bead-spring microswimmer driven by sinusoidal

forces. They have shown that the swimmer exhibits both the conventional and the

aberrant kinds of behavior (defined as a decrease and an increase, respectively, of the

swimming velocity with the fluid viscosity) for expected ranges of the time scale ratio.

In order to understand this effect we perform simulations with different solvent viscosi-

ties, which are obtained by varying the MPC parameters h, α and ρ. Here, we employ

four values of fluid kinetic viscosity µ ranging from 0.62 to 1.67 as shown in Table 5.1.

The result at µ = 0.87 has shown in 5.9.d and others in Fig 5.10. The deforming he-

lix rotates in the solvents with all investigated viscosities in θ direction as indicated in

Fig. 5.10. The net angular displacements of single period are averaged them over seven

deformation periods and show to vary with viscosity. In Fig. 5.11, the net angular

displacements in θ direction shows to be small and with a non-monotonous dependence

with µ, which is most probably due to the lack of statistical precision. The dependency

of ∆θ on fluid viscosity is not so clear, but seems keep oscillating around 0. Neverthe-

less, the net rotational displacements in ϕ direction tend to increase with fluid viscosity.

Especially, the increase of ∆ϕ with viscosity is much sharper from µ = 0.62 to 0.87 com-

pared to µ = 0.87 to µ = 1.67, where the increase seems to reach an asymptotic value

or transition to decrease if the fluid viscosity keeps growing. These results are partially

consistent with ones in [199], which found that the velocity of swimmer exhibits decrease

with fluid vicosity until a critical value then incrcrease with fluid viscosity.
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Table 5.1: Solvent kinetic viscosity µ varied by MPC parameters collision time step
h and stochastic rotation angle α.

h α µ ∆θ ∆ϕ

0.1 100 0.62 -6.6 -4.4
0.1 130 0.87 -19 1.4
0.08 150 1.22 -22 -12.6
0.05 130 1.67 -28 -8.6

In order to understand this effect we have to consider that the typical hydrodynamic time

TH in Eq.(5.6) varies with viscosity. This is the time that a hydrodynamic perturbation

needs to connect the two ends of the helix is shorter the larger the viscosity, and it

seems that this times is setting the rotation frequency. Then the helix can have larger

net rotational displacement when it swims in more viscous fluid during same period.

Extension of this work to investigate more viscous conditions will show the rotation

velocity of helix would eventually decreases with fluid viscosity.
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Figure 5.10: Time dependence of the angular displacement with NT the number of
completed periods. Employed parameters in Eq: 5.4 are R̄ = 0.06, ∆R = 0.4 and

ᾱh = 0.6, ∆αh = 0.15.

5.3.1.3 Effect of helix configuration

It is now important to investigate the relation between parameters of the imposed de-

formation and the net resulting rotation. Koens et al. [89] investigate this system and

define a vector field by balancing the torques of the helix, which are only related to the
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Figure 5.11: Average net angular displacement (∆θ,∆ϕ) varied with fluid vicosity µ.
The net angular displacements are averaged over seven periods in Fig. 5.10 and Fig.

5.5

helix deformation parameters α, R, k. The strength of this field Mθ = (M θ,r
r,αh ,M

θ,αh
r,αh , 0)

is shown as a function of two deformation parameters as a colormap in Fig. 5.12. Any

closed loop in this vector field would correspond to a possible deformation cycle, and

the integral of Mθ over the area V in the closed loop in Fig. 5.12 determines the value

of the net rotation as

∆θ =

∫ ∫
V

(∇×Mθ) · x̂dRdαh (5.7)

where V is the area within the loop in configuration space and x̂ is the unit vector

perpendicular to the configuration space. Inspection of the map in Fig. 5.12 revealed

the general trends of the swimmer, and clearly showed the large density of iso-contour

lines in Fig. 5.12 at small helix radius. The argument indicates (∇×Mθ) · x̂ strongly

oscillates between positive and negative values of almost equal magnitude but increasing

frequency when changing the radius,. This increasing rate of oscillation suggests that it

is better for the swimmer to have a larger helix radius than larger loops which do not

cross a zero contour are possible, thereby reducing the sensitivity of the results to small

changes while maximising the area within the loop.

In Ref. [86], the mean (scaled) helix radius of the reported gel swimmers deformation is

R̄ ≈ 0.077 and it varies by ∆R = 0.026 throughout one cycle. Similarly the mean scaled

axial length is ᾱh ≈ 0.903, and it variea by ∆αh = 0.047. This loop is shown in Fig.

5.12 as a solid red circle. At these parameters, the experimental [86] and theoretical [89]

results show that a net rotation displacement exists even though it is quite small (around

1 degree per period). However, our simulation results for these parameters shown in Fig.

5.13 are not able to capture this and it seems that the variations in the orientation do

not constitute any net rotation, but only a statistical variation around a constant value.

This occurs because of the employed parameters, where thermal fluctuation is more

significant than hydrodynamics interactions, which in principle could be obtained by

averaging overvarious realizations.

In order to find parameters in which the net rotation is enhanced, and to understand

the effect of shape on rotation, we chose another deformation loop in Fig. 5.12 (shown
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Figure 5.12: Motility map: Density plots of the rotation functional (∇×Mθ) · x̂ as
a function of the scaled helix radius, rh, and scaled axial length, αh. The dashed lines
represent iso-contours of the functional. The solid red loop represents an approximate
path in configuration space taken by the deforming gel swimmer from Ref. [86] (Eq.
5.4 when ϕ = 0). The yellow loop is employed in this work. The functions have been
scaled such that the total displacement over a loop is the integral of the function within

the loop. Lengths scaled with respect to l. Figure adapted from Ref. [89]

with yellow circle), where R̄ = 0.06, ∆R = 0.4 and ᾱh = 0.6, ∆αh = 0.15. This loop

has much larger area and within negative value, such that a large net displacement is

expected from Eq. (5.7). The simulation results have been shown in Fig. 5.8.d, where

the helix has shown angular displacements up to 20 degrees per periods ,which is very

large also in comparison with experimental parameters [86].
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Figure 5.13: Time dependence of the angular displacement with NT the number of
completed periods. Parameters here same as experiments in Ref. [86]: ∆R = 0.026

ᾱh ≈ 0.903, and ∆αh = 0.047. The deformation period Tp/TH = 4

5.3.2 Motion under confinement

Many biological microswimmers regularly encounter surfaces and confinement, from

sperm cells in the reproductive tract to microorganisms in the soil [200]. Moreover,

microorganisms often rely on the presence of surfaces for their function and survival; for
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example, bacteria form biofilms on surfaces for spreading, to enhance cell-cell exchange

and nutrient uptake. And regarding synthetic microswimmers, equally important is

that modern microfluidic devices can be used to investigate, control, and manipulate

microswimmers in many diverse manners[201]. Therefore, in order to make predictions,

and to interpret, and to understand experimental results, it is thus important to account

for the effect of confinement.

5.3.2.1 Helix rotation

Using a boundary element method, Zhu et al. [202] already showed that spherical

squirmers with tangential deformations decrease their swimming velocity with increas-

ing confinement, while swimmers with normal deformations swim faster in confinement.

Ledesma et al. [203] found that reduced model swimmers always move towards the

center of rigid tube and show to move faster in parallel confinement. While most other

swimmers show naturally accumulate at the walls.

We perform simulations in which the helix is confined between two parallel walls sep-

arated by a distance Lw in Fig. 5.14, and with periodic boundary conditions in other

two directions. In Fig. 5.15, the rotational displacements in (θ, ϕ) are shown for two of

the confinement values (Lw/2Lh = 2 and Lw/2Lh = 1). It seems that the walls enhance

the rotation of the helix, this is narrower slit leads to a faster rotation. In order to

quantify this effect, we define the net rotational displacement velocity in ϕ direction in

bulk is ωb, and ωc for the confinement. Employing the similar idea in Ref. [203], where

the enhanced effect of tube confinement on translation was studied, they have a linear

relation:

ωc = gωb (5.8)

where g is a factor controlled by the proximity to the wall, here, which is the width of

slit Lw/2Lh.

Figure 5.14: Schematic of helix confined by a slit with width Lw/2Lh

The average net angular displacements in ϕ direction are −26◦ and −29◦,are respectively

for Lw/2Lh = 2 and Lw/2Lh = 1. Therefore, the enhanced factor g in Eq. 5.8 are 1.37

and 1.58.
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This increase of swimming speed in the slit can be related to the problem of micro-scale

locomotion in polymeric solutions. It is well known that actuated biological flagella gen-

erate drag-based thrust due to larger resistance of the normal with respect to tangential

motion [204]. When swimming in polymer solutions, flagella undergoing motion normal

to its shape push directly onto the neighbouring polymer network, whereas tangential

motion barely perturb these micro obstacles [198]. In this case, the drag force increases

more in the normal direction than in the tangential one, resulting in larger swimming

speeds.
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Figure 5.15: Time dependence of the angular displacement (θ, ϕ) with NT the number
of completed periods for a helix confined in a slit with Lw = 4Lh. The parameters of
deformation loop in Eq. 5.4 are: R̄ = 0.06, ∆R = 0.4 and ᾱh = 0.6, ∆αh = 0.15.

Deformation period Tp/TH = 4.

5.3.2.2 Helix migration

Understanding the trajectories of the swimmers is important in controlled swimming

applications. Lauga et al. [205] and Gompper et al. [72] report that bacteria swim in

circular trajectories under force-free and torque-free swimming conditions. For artificial

swimmers under confinement, two distinct trajectories stand out, one of which is a

helical trajectory close to the channel boundaries when the tail is pushing the head

(called pusher-mode) and a straight trajectory close to the center of the channel when

the tail pulls the head (called puller-mode) [206].

Here, we tested the trajectories of the deformable helixes for the two different confine-

ment values. The initial position of the mass center of helix is chosen to be a displaced

±z = 0.5Lh away from the slit center in z direction, with the axis of helix parallel to the

channel walls. From Fig. 5.16, it can be inferred that the helix tends to drift towards the

slit center in the two different investigated confinement and also for the two symmetric

simulation above and below the center.

Although the fluctuating trajectories do not permit a precise quantification, the results

in Fig 5.16 show that a well defined drift velocity to the channel center which very clearly

increases with confinement. For more confined condition, the helix reaches the slit center

at around NT = 2, while the less confined helix drifts more slowly and reaches the slit

center at about NT = 3.5. However, the position of helix is oscillating around the slit
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center. And the oscillation for Lw/2Lh = 1 is between (-2.5, +2.5) while the amplitude

of oscillation around 5 for the wider slit (Lw/2Lh = 2), which is almost twice as the

narrower one. These different behaviors in different slits aredue to the hydrodynamic

interactions between helix and walls, which are stronger in narrower slit.
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Figure 5.16: Time dependence of helix mass center in z direction with NT the number
of periods in a slit. Blue and navy: the width of slit Lw/2Lh = 2. Purple and magenta:
Lw/2Lh = 1. the initial z/2Lh is ±0.25 for both slits. Employed parameters in Eq: 5.4

are R̄ = 0.06, ∆R = 0.4 and ᾱh = 0.6, ∆αh = 0.15.

In order to probe that helix migration is an effect related to the hydrodynamics interac-

tions at the non-reciprocal deformation, we perform additional simulation for a passive

helix and a helix with reciprocal deformation and quantify also the helix center of mass

position. The results in Fig. 5.17 show migrations don’t happen to passive helix and

helix of reciprocal deformation within 5 periods. For passive helix, there is no hydro-

dynamic interaction. So the helix just has a Brownian motion. Interestingly, the helix

of reciprocal deformation doesn’t migrate to slit center, which indicates the reciprocal

deformation is non-effective on the hydrodynamic interaction with walls.
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Figure 5.17: Time dependence of helix mass center in z direction with NT the number
of periods in a slit. Lw/2Lh = 2. The initial position z/2Lh is ±0.25 for both slits.
a) the helix here performs a reciprocal deformation φ = π/2. b) passive case, the rigid
helix here doesn’t have a any deformation. Here NT indicates a similar time frame as

a).
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5.4 Summary

Helices are iconic shapes in the mechanics of small-scale locomotion, with many types

of swimmers using rotating helicial flagella to generate thrust. Deforming helices are a

example of synthetic swimmers which can also create a non-trivial motion. Inspired by

the large range of biological systems displaying motion from the deformation of a helix,

we considered how an inextensible deforming helix can propel at low Reynolds number.

By imposing that the helical shape changes periodically in a non-reciprocal way in a

hydrodynamic solvent, we confirm the presence of a helix rotation. This is performed

both in bulk and in confinement by means of hydrodynamic simulations. When requiring

the swimmer to maintain helical shape at all times, we show that deforming helices can

create non-reciprocal rotation in bulk and confinement by a hybrid simulation method.

The value of the net displacements over one period of oscillation depended strongly on

the deformation period due to the time scale of hydrodynamic interaction. The helix

configuration loop also affects the rotation speed and direction. Furthermore, the more

viscous fluid can lead to a faster propulsion until the velocity increases to a peak then

decrease with fluid velocity. Our simulation results have good qualitative agreement

with experimental [86] and theoretical works [89] where the thermal fluctuations were

ignored.

We found that the confinement of the helix in a slit increases the net rotation displace-

ment by directly pushing against the surrounding slit wall. Compared to passive helix

or helix of reciprocal deformation, the non-reciprocally deformable helix always tend to

migrate to the slit center. The slit width has significant effect on this migration velocity,

which is bigger at narrow slit compared to wider silt. The position oscillation is also

dependent on the slit width. The narrow slit rises the higher amplitude of oscillation

around slit center.

These results in turn can potentially be used to guide the design of other artificial

deforming helix systems, similar to the gel helix from Ref. [86]. These predictions could

be further improved by obtaining larger statistics or by considering how gel extensibility

affects the dynamics. This investigation and optimisation could also lead to the design

of tunable artificial swimmers, by introducing to our model how the swimmers react

to external fields. Finally, the combination of this model with specific deformation

models for the body of a Spirochaetes or the polymorphic transitions of a bacterial

flagellum, could also help to improve our understanding into how biological systems

employ deforming helices to generate motion and their efficiency in doing so.





Chapter 6

Summary and Conclusions

We have investigated the hydrodynamics of rods and helices in dilute suspensions, from

tumbling of rods and transport of inextensible helices under shear flow to swimming of

active helices.

First, a method has been presented to determine the equivalent hydrodynamic aspect ra-

tio and associated polydispersity for nonspherical axisymmetric nano particles dispersed

in a medium. The time evolution of the average orientation angle of dilute suspensions of

nonspherical particles upon inception of a shear flow is monitored by means of the polar-

ization modulation method. The orientation angle is a geometric property, such that the

time evolution of the orientation angle is essentially dependent on three parameters: hy-

drodynamic aspect ratio, size polydispersity, and Peclet number. Numerical results have

been obtained from Smoluchowski equation under the assumption that the suspension

is sufficiently dilute. The advantages of the present method are that it can be applied to

arbitrary shear ratio, aspect ratio of particle, and polydispersity. The usefulness of the

technique has been demonstrated by determining the aspect ratio and polydispersity in

a model quantum dots sample with which other techniques have previously failed. We

also anticipate that by matching the refractive index of the suspending medium to that

of the particles, the method could soon be extended to the characterization of dense

systems, where particle-particle interactions become important. Smoluchowski equation

used herein assumes prolate- or oblate-shaped colloids. It is in principle possible to

extend our method to more complex-structured colloids. First of all, the Smoluchowski

equation should be extended to include bi- or even triaxiality where two or three mu-

tually coupled orientations are involved, and second, the relation between the tumbling

frequency and shape parameters must be determined from hydrodynamic numerical cal-

culations and/or simulations. Once this is accomplished, the experimental method can

be applied in the same way as for elongated colloids.

Then, we presented a simulation study of the transport of deformable helix in a uniform

shear flow. The rigid helices have same tumbling periods with cylinders with same

aspect ratios. Tumbling of a flexible helix is coupled with breathing. Moreover, the

tumbling periods of flexible helix still follow Jeffery’s theory by considering an effective

aspect ratio of a cylindrical particle . This effective aspect ratio depends on the helix

81
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flexibility and equilibrium geometry and tends to the equilibrium aspect ratio in the

limit of long and rigid helices. The flexible helix would go to chaotic dynamics if the

shear stress is big enough and behaves as a flexible polymer. We found hydrodynamics

is required to obtain lateral drift, which has a positive linear relation with shear rate,

in agreement with experimental results [71]. With respect to the lateral migration,

the drift velocity increases with the number of pitches until an asymptotic value. For

other geometrical parameters, such as the pitch, the drift velocity shows a maximum

at intermediate values which can be understood as a transition between two limits in

which the helix is more similar to a rod or to a tube or hollow cylinder. More flexible

helices have slower drift velocity since the changing of helix geometry under shear is

always located in smaller aspect-ratio regime, in which the drift velocity is smaller than

for bigger aspect ratios. These results might be used to design micro-delivery system in

medicine. For example, Ref. [66] presents artificially motorized sperm cells - a novel type

of hybrid micromotor, where customized microhelices serve as motors for transporting

sperm cells with motion deficiencies to help them carry out their natural function. The

geometrical structure and flexibility of the microhelix can be tuned to best conditions

to optimize the transport velocity of the microhelices. Since the microhelices always

transport in some confinement in terms of channel or tubes, the effect of walls can’t be

negligible in practice. Therefore, before such practical applications can be envisaged,

the hydrodynamic interactions between different helices of same and different chirality

as well as between helices and walls confining the fluid should all be taken into account.

Finally, we consider “active” helices which are driven by changing cyclicly the helix shape

through two degrees of freedom as total length, end-to-end length or wavenumber. We

demonstrated that a non-reciprocal deformation leads to net rotation propulsion, which

is qualitatively consistent with previous theoretical results [89]. This net rotational

displacement can be obtained only when the hydrodynamic interaction can propagate

faster or in comparable time as the deformation period. The net rotation is also enhanced

by the fluid vicosity within the studied regime. Furthermore, confinement in term of

a slit geometry is taken into account for more practical conditions. The slit increases

the rotation speed of helix if the slit width is comparable to the end-to-end length of

the helix, such that more confined helix has bigger rotational velocity. The deformable

helix tends to move towards the slit center because of the wall effect. This is quite

different from passive helix and helix with reciprocal deformation, which just does not

display this migration behaviour. These results provides criteria for design this sort of

artificial helix microfluidic. Especially, the understanding of the helix behaviours under

confinement is helpful for experimentists to develop more applications. For instance,

this approach may be useful for designing new microfluidic devices that can mix, sort,

and circulate fluid. Due to demanding simulations, here the statistics is averaged over

7 deformation periods only which is not enough to obtain more general results. In next

step, more complicated confinement, such as tube, or soft walls, should be considered

since microswimmers can be expected to be applied for medical purposes, such as soft

tubes in organisms.

In summary, the three aspects investigated in this thesis show that the shape-anistropy
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of colloids at non-equilibrium can produce many fascinating phenomena in dilute sys-

tems. These studies can be extended to consider interaction between multiple polymers

structures or dense systems, where the hydrodynamic interactions become more complex

and might produce even more interesting collective phenomena.





Appendix A

Numerical solution of the

Smoluchowski equation

The time-dependent orientation angle χ is determined by the time evolution of the

probability distribution function P (û, t) of the orientation û as given in eq. 4 of the

paper. For the case of Rayleigh scatterers, Frattini and Fuller [54] employed the following

expression for χ in terms of spherical coordinates (θ, φ)

tan 2χ =

〈
sin2 θ sin 2φ

〉〈
sin2 θ cos 2φ

〉 . (A.1)

This expression provides numerical predictions in good agreement with experimental

results [54, 55]. The average 〈A〉 is calculated according to

〈A〉 =

∫ π

0

∫ 2π

0
A(θ, φ)P (θ, φ; t)dθdφ , (A.2)

where a monodisperse suspension is considered. In order to calculate the time evolution

of the orientation angle χ, the time dependence of P (θ, φ; t) has to be accounted for.

The Smoluchowski equation can be expressed in spherical coordinates as

∂P

∂τ
=

1

Pe

[
1

sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
+

1

sin θ2
∂2P

∂φ2

]
− p2 − 1

p2 + 1

[
sinφ cosφ

sin θ

∂

∂θ

(
P sin2 θ cos θ

)
− ∂

∂φ
(P sin2 φ)

]
(A.3)

− 1

p2 + 1

(
1

2

∂P

∂φ

)
,
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where τ = γ̇t is the strain, or dimensionless time. For the boundary condition at the

two poles, θ = 0 and θ = π, the probability density function is given by:

P |θ=0 =

[
Nθ∑
1

(4P (1, jθ)− P (2, jθ)) /3

]/
Nθ (A.4)

P |θ=π =

[
Nθ∑
1

(4P (Nθ − 1, jθ)− P (Nθ − 2, jθ)) /3

]/
Nθ (A.5)

where P (iθ, jφ) is the value of probability density function at the grid point (iθ, jφ). The

probability density function is also continuous so that the periodic condition applies in

the azimuthal direction φ.

The equation for the averages is here numerically solved for each fixed value of the aspect

ratio p, and Peclet number Pe. We use a finite difference method, in which the time

term is discretized by 3rd order TVD (total variation diminishing) Runge-Kutta, while

the space terms are discretised by a central difference scheme on a grid domain with N

intervals for the θ variable with (0 ≤ θ ≤ π), and 2N intervals for the φ variable with

(0 ≤ φ ≤ 2π). The central difference scheme is 2nd order, which, however, gives rise

large spurious numerical oscillations for high values of Pe and large time steps when it

is used in the convection term. Therefore, in order to guarantee the numerical stability

and accuracy of the method, we tested different grids. The grid sensitivity analysis

reveals that an accurate solution is obtained by grid systems with N = 40 for values

from Pe = 0.1 to 103; grids with N = 60 for Pe = 103 to 105; and grids with N = 150 for

Pe ≥ 105. The integration is here performed by discretizing each of the three terms in

eq. A.3, since splitting the second term into smaller terms leads to undesired divergences.

In order to consider the effect of polidispersity, the orientation angle includes an addi-

tional averaging with respect to the aspect ratio

〈A〉 =

∫ π

0

∫ 2π

0

∫ ∞
0

A(θ, φ)P (θ, φ; t)m(p)dθdφdp , (A.6)

where both A and P are implicitly p-dependent. The distribution of aspect ratios m(p)

can be approximated by a log-normal distribution

m(p) =
1

p(2π)1/2s
exp

[
−(ln p− µ)2

2s2

]
, p > 0. (A.7)

where µ is the location parameter and s the scale parameter, respectively. The average

aspect ratio p̄, polydispersity σ are then given by

p̄ = eµ+s
2/2 (A.8)

σ2 = e2µ+s
2
(es

2 − 1). (A.9)

The continuous distribution of aspect ratios is discretized into Nσ = 30 discrete values,

which proves to be sufficient to obtain accurate results. The program calculates χ(γ̇t),
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for various input values, namely the physical parameters (Pe, p, σ), and the integrating

parameters (N,Nσ).
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[79] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe.

Active particles in complex and crowded environments. Reviews of Modern

Physics, 88(4):045006, 2016.

[80] T. Vicsek. Collective motion. Physics Reports, 517:71, 2012.

[81] M. C. Marchetti, J-F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao,

and R. A. Simha. Hydrodynamics of soft active matter. Reviews of Modern

Physics, 85(3):1143, 2013.

[82] E Lauga and T. R. Powers. The hydrodynamics of swimming microorganisms.

Reports on Progress in Physics, 72(9):096601, 2009.

[83] M. C. Marchetti, Y. Fily, S. Henkes, A. Patch, and D. Yllanes. Minimal model

of active colloids highlights the role of mechanical interactions in controlling the

emergent behavior of active matter. Current Opinion in Colloid & Interface Sci-

ence, 21:34–43, 2016.

[84] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, and J. Bibette.

Microscopic artificial swimmers. Nature, 437(7060):862, 2005.

[85] William M Durham, John O Kessler, and Roman Stocker. Disruption of vertical

motility by shear triggers formation of thin phytoplankton layers. Science, 323

(5917):1067–1070, 2009.

[86] A. Mourran, H. Zhang, R. Vinokur, and M. Möller. Soft microrobots employ-
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on the German abstract. Moreover, I would like to thank Prof. Dr. Christian Clasen,

Prof. Dr. Zeger Hans, and Dr. Naveen Reddy for the excellent collaboration during

the project of quantum dots. Moreover, I thank Frau Meike Kleinen and Frau Roswitha

Gielen for their help in my living in Germany. Furthermore, I deeply acknowledge my

officemates Sebastian Rode, Rapheal hornung, Nirmalendu Ganai, Debarati Sarkar for

the many hours together: chatting, discussing, but most importantly, the always friendly

atmosphere.

Last but not least, I’m deeply grateful to Horizon 2020 project under the DiStruc Marie

Sklodowska Curie innovative training network (grant agree ment no. 641839), which

provids funding to support my first 3-years study. I’d like to acknowledge the coordinator

Prof. Dr. Dirk Aarts in Oxford university, other supervisors and fellows in this netwrok

for their generous help, comments and suggestions on my work.

105



106
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Prüfung vorgelegen hat; dass sie − abgesehen von unten angegebenen Teilpublikationen
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