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Abstract
The main purpose of this thesis is the study of bounded derived categories
of gentle algebras and related problems by means of surface models.
In the first chapter we construct surface models for such categories and de-
scribe a variety of connections between the triangulated structure of the
derived category and the geometry of its associated model.

In the subsequent chapter, we study equivalences among generalizations
of the aforementioned categories which can be modelled by a surface in a suf-
ficient way. One of the main results of the chapter asserts that we can attach
a homeomorphism between the associated surfaces to every such equivalence.
Furthermore, we prove that we can study auto-equivalences of a large class
of gentle algebras in this way. As another application we obtain a complete
derived invariant for gentle algebras.

In the final chapter, we apply the theory of surface models to a particular
family of gentle algebras arising from algebraic geometry. In particular, we
provide an answer to a question raised by Polishchuk [62]: we prove that
the group of auto-equivalences of the bounded derived category of coherent
sheaves on an arbitrary cycle of projective lines acts transitively on the set
of spherical objects.

Zusammenfassung
Der Hauptgegenstand dieser Dissertation ist das Studium beschränkter, abge-
leiteter Kategorien sanfter Algebren und verwandter Fragestellungen mit
Hilfe von Flächenmodellen.

Im ersten Kapitel konstruieren wir eine Fläche zu jeder solchen Kategorie.
Anschließend beschreiben wir eine Vielzahl von Zusammenhängen zwischen
der triangulierten Struktur der abgeleiteten Kategorie und der Geometrie der
zu ihr assoziierten Fläche.

Im folgenden Kapitel untersuchen wir Äquivalenzen zwischen Verallge-
meinerungen der oben genannten Kategorien, welche durch eine Fläche in
hinreichender Weise modelliert werden können. Eines der Hauptresultate des
Kapitels besagt, dass wir zu jeder solchen Äquivalenz einen Homöomorph-
ismus zwischen den entsprechenden Flächen konstruieren können. Darüber
hinaus beweisen wir, dass sich auf diese Weise die Autoäquivalenzen bes-
chränkter, abgeleiteter Kategorien einer großen Klasse sanfter Algebren stud-
ieren lassen. Als eine weitere Anwendung erhalten wir eine abgeleitete In-
variante für die Klasse der sanften Algebren, die solche Algebren vollständig
bis auf abgeleitete Äquivalenz klassifiziert.

1



Im dritten und letzten Kapitel wenden wir die gezeigten Resultate auf eine
bestimmte Familie sanfter Algebren an. Insbesondere geben wir eine partielle
Antwort auf eine Frage von Polishchuk [62]: Wir zeigen, dass die Gruppe
der Autoäquivalenzen der beschränkten, abgeleiteten Kategorie kohärenter
Garben auf einem beliebigen Zykel projektiver Geraden transitiv auf der
Menge der sphärischen Objekte wirkt.
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Introduction

Gentle algebras were introduced in [8] as generalizations of iterated tilted
algebras of type A [6, 7] and type Ã [8]. Since then they have appeared in a
variety of contexts including dimer models [16, 17], categorical resolutions of
curves [25], enveloping algebras of Lie algebras [51] and cluster theory. They
appear in the form of m-cluster and m-Calabi–Yau tilted algebras as well as
instances of Jacobian algebras associated to surfaces with marked points on
the boundary [5, 40, 55].

Of particular interest is the appearance of the derived category of graded
gentle algebras in the context of partially wrapped Fukaya categories [48]
which are studied in the context of homological mirror symmetry.

Over the last few decades, gentle algebras have been subject of extensive
research and many aspects of their bounded derived categories are now well
understood, including

• a classification of their indecomposable objects ([12, 23, 21, 24, 22], see
also [26] for a generalization to unbounded homotopy categories);

• an explicit basis for morphisms between their indecomposable objects
([4]);

• a description of the Auslander-Reiten triangles in their subcategories
of perfect complexes ([13] and later in [4] via different methods);

• a description of isomorphism classes of mapping cones associated to
basis elements, by means of manipulations of diagrams ([31]).

Being defined in terms of quivers and relations, gentle algebras are combin-
atoric in nature and, from this point of view, it is even more remarkable that
the class of gentle algebras is closed under derived equivalences [66]. The
introduction of a combinatorial derived invariant by Avella-Alaminos and
Geiß (hereafter referred to as the AAG invariant) in [11] has sparked great
interest in understanding when two gentle algebras are derived equivalent,
see for instance [15, 10, 37, 36, 1, 2, 53, 14, 58]. However, there are gentle
algebras with the same AAG-invariants that are not derived equivalent.
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Another approach to the representation theory of gentle algebras arose
from the theory of partially wrapped Fukaya categories of graded surfaces
as considered in [48]. The authors showed that partially wrapped Fukaya
categories are equivalent to the bounded derived category of certain (graded)
gentle algebras. It was shown, independently in work of Lekili and Polishchuk
[58] and in work of Plamondon, Schroll and the author of this thesis [61], that
every (graded) gentle algebra admits a surface model and that the AAG-
invariant of a gentle algebra is encoded in the boundary of its surface.

Furthermore, it follows from [58] that, if the associated surfaces of gentle
algebras A, B of finite global dimension are homeomorphic in a compatible
way, then A and B are derived equivalent. However, the authors did not
show that derived equivalent algebras have equivalent surface models.

In what follows we describe the new results which are proved in this thesis.

Content of chapter I
In this chapter, for any gentle algebra A, we construct a geometric model of
its bounded derived category Db(A), which consists of
• an oriented surface with boundary,

• marked points on the boundary and a lamination (see Definition I.1.14)
of the surface, and

• a function ωA, which associates an integer (‘’winding number”) to each
loop on the surface.

In [67], see also [68], a ribbon graph was associated to every gentle algebra.
Our model is based on the embedding of said ribbon graph into its ribbon
surface. The marked points correspond to the vertices of the ribbon graph
embedded into the boundary of the surface. The lamination corresponds to
a form of dual ribbon graph within the surface. Furthermore, we show that
the fundamental group of the surface is isomorphic to the fundamental group
of the underlying graph of the quiver of A (Proposition I.1.20).

We give an explicit description of the correspondence between homotopy
classes of (infinite) curves on the surface and the indecomposable objects (up
to shift) in the derived category of a gentle algebra using methods based on
the homotopy strings and bands of [12] (Theorem I.2.5).

We show that basis elements of morphisms between two indecomposable
objects in Db(A), as described in [4], correspond to crossings of curves (The-
orem I.3.3). Based on the graphical mapping cone calculus given in [31], we
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show that the mapping cone of a map corresponding to a crossing of curves
is given by the resolution of the crossing (Theorem I.4.3).

Furthermore, the Auslander-Reiten triangle corresponding to a bounded
complex of projective modules (a “perfect object”) is described in geometric
terms. In particular, we show that the Auslander-Reiten translate of a perfect
object corresponds to the rotation of the endpoints on the boundary of the
corresponding curve in the surface (Corollary I.5.4).

We show that the AAG-invariant is encoded in the surface and can be
expressed in terms of the number of boundary components, the number of
marked points on each boundary component and the winding numbers of
certain boundary curves. (see Theorem I.6.1 and Corollary II.1.11).

Proofs of these results already appeared in in joint work with Plamondon
and Schroll [61].

In additio, we prove in Theorem I.7.1 that the composition of basis ele-
ments associated to intersections can be computed (up to a set of scalars) in
terms of immersed triangles and other geometric figures (“forks”). Finally, we
show that winding numbers of loops are closely related to certain sequences
of morphisms, which we call cycles of morphisms (Theorem I.8.1). Further-
more, in Chapter II, we show that this connection leads to an entirely cat-
egorical interpretation of winding numbers based on degrees of distinguished
self-extensions of objects.

Connections to other geometric models. The geometric model we de-
scribe in this thesis has various connections to other geometric models asso-
ciated to gentle algebras. A classification of thick subcategories of discrete
derived categories was obtained in [18] using a geometric model. Discrete
derived categories were classified in [72], where it was shown that they are
equivalent to bounded derived categories of a particular class of gentle algeb-
ras.
The geometric model constructed in [18] coincides with our model for the
class of discrete derived algebras.
Jacobian algebras of (ideal) triangulations of marked surfaces, whose marked
points are on the boundary, are gentle algebras [55, 5]. We note that the rib-
bon graph of such a gentle algebra corresponds exactly to the triangulation
of the surface. In this context, the indecomposable objects of the associ-
ated cluster category were classified in [19] in terms of arcs and loops on the
surface, and the Auslander-Reiten translation was described in [20]. Bases
for the extension spaces were described in terms of crossings of arcs in [33].
The results in [19], [20] and [33] above were subsequently extended to surfaces
with punctures (that is, marked points in the interior) and objects associated
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to arcs [63]. A complete description of indecomposable objects by means of
arcs and loops was given in [3]. Moreover, for gentle algebras associated to
triangulations of surfaces with marked points on the boundary, the geometric
description of the Auslander-Reiten translation turns out to coincide in both,
the associated module category [19] and the cluster category [19]. We show
in this thesis, that this holds true in the bounded derived category.
We also note that there is a correspondence between the triangulated surface
S corresponding to a gentle Jacobian algebra A and the surface underlying
our geometric model of Db(A). However, the sets of marked points do not
necessarily coincide.

Content of chapter II
In Chapter II we introduce the notion of Fukaya-like categories. These are
triangulated categories, the structure of which can be modelled by a pair
(S, ω) consisting of an oriented S with marked points and a winding number
function ω. As the name suggests, their definition is inspired by properties of
partially wrapped Fukaya categories as in [9] and [48], the latter of which has
been proved to generalize the class of bounded derived categories of gentle
algebras. Indeed, as a consequence of the results of Chapter I, we prove in
Proposition II.1.2 that the bounded derived category of every gentle algebra
is an example of a Fukaya-like category. In this sense, Chapter II can be seen
as a continutation of our studies of gentle algebras.
However, our focus shifts away from the combinatorial nature of gentle al-
gebras to the geometric nature of their bounded derived categories, which,
on one hand, allows us to study their auto-equivalences and find new derived
invariants for gentle algebras and, on the other hand, makes the used tech-
niques applicable to a (presumably) larger class of categories. In particular,
we hope to apply the results developed in Chapter II to arbitrary partially
wrapped Fukaya categories of surfaces as considered in [48] and [9].

The following new result are proved in Chapter II.

Theorem A. Let F and F ′ be Fukaya-like categories and let (SF , ωF) and
(SF ′ , ωF ′) be surface models of F and F ′. Assume that neither SF nor SF ′
is a disc with at most 3 marked points. Then the following statements are
true.

1) Every triangle equivalence T : F → F ′ induces a homeomorphism Ψ(T ) :
SF → SF ′ with the following properties:
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a) Ψ(T ) preserves the orientation and restricts to a bijection between
the sets of marked points,

b) Ψ(T ) preserves winding numbers, i.e. for all loops γ in SF ,

ωF ′ (Ψ(T ) ◦ γ) = ωF(γ),

c) if γX ⊂ SF is a curve that represents a quasi-linear indecomposable
object X ∈ F and γT (X) ⊂ SF ′ is a curve which represents T (X),
then

γT (X) '∗ Ψ(T ) ◦ γX ,

where '∗ is an equivalence relation slightly coarser than homotopy.

2) The map Ψ(−) gives rise to a group homomorphism

Ψ : Aut(F)→MCG(SF)

from the group of auto-equivalences of F (modulo natural isomorphism)
to the mapping class group of SF (see Section II.2.1).

The construction of the map Ψ(−) is given in Section II.2. Theorem A
contains the assertions of Theorem II.3.1, Proposition II.3.24, Proposition
II.3.25 as well as the results from Section II.4.1. The notion of a quasi-
linear indecomposable object (as appeared in Theorem A 1c)) is introduced
in Section II.1.1. If the ground field is algebraically closed, this is an empty
condition and every indecomposable object is quasi-linear.

The equivalence relation '∗ agrees with homotopy for most surfaces. In
the other cases, the equivalence relation '∗ identifies certain boundary loops
with closed arcs, see Definition II.2.16.

From Theorem A we deduce that the geometric model of a Fukaya-like tri-
angulated category is an invariant of the category.

Theorem B. Let F ,F ′ be Fukaya-like categories and let (SF , ωF), (SF ′ , ωF ′)
be surface models of F and F ′. If F ′ and F ′ are triangle equivalent, then
there exists an orientation preserving homeomorphism F : SF → SF ′, which
preserves winding numbers and restricts to a bijection between the sets of
marked points.

Combining Theorem B with the results of Theorem II.4.1, we then deduce
that the surface model of a gentle algebra is a complete derived invariant.
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Corollary C. Let A and A2 be gentle algebras, let SAi denote the surface of
Ai and let ωAi denote the corresponding winding number function.
Then, the algebras A1 and A2 are derived equivalent if and only if there exists
a orientation preserving homeomorphism H : SA1 → SA2, which restricts to
a bijection between the sets of marked points and preserves winding numbers.
Although our version of winding numbers ωA(−) is defined purely in terms
of the combinatorics of a gentle algebra, it seems likely that this winding
number arises from a line field.

Roughly speaking, a line field assigns a line (i.e. an unoriented tangent
vector) to each point of the surface in a continuous way. Given an immersed
closed curve, we can integrate the difference between the tangent line of the
curve and the line field over the curve. In this way one can assign an integer
to every closed curve and the result only depends on the regular homotopy
class of the curve. This leads to the definition of a winding number with
respect to a line field.

A result in [58] shows that if ωA1 and ωA2 arise from a line field, then a
homeomorphism as in Corollary C exists if and only if the AAG-invariants
of A1 and A2, and further, two additional invariants with values in {0, 1}
coincide. In particular, showing that ωA arises from a line field on SA, would
imply that whether or not two given gentle algebras are derived equivalent,
can be deduced entirely based on these three invariants.

In our final theorem, we investigate the kernel of Ψ, as appeared in Theorem
A, for a large class of gentle algebras. It contains the assertion of Theorem
II.5.1.
Theorem D. Let A = kQ/I be a gentle algebra, such that the quiver Q has
no oriented cycles and let SA denote its associated surface.
Then the kernel ker Ψ of Ψ : Aut(Db(A)) → MCG(SA) as in Theorem A
satisfies

ker Ψ ∼=

PGL2(k)× k× × Z, if Q is the Kronecker quiver;
R× Z, otherwise,

where R is a group which can be computed explicitly, see Section II.5.
We further provide an explicit description of ker Ψ as a certain subgroup of
the Picard group of A, see Theorem II.5.1.

Content of Chapter III
The third chapter focuses on applications of the results of Chapter II to
problems related to algebraic geometry.
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In our first result we apply the surface model of certain gentle algebras to
give a parametrization of the set of so-called spherical objects in the category
of perfect complexes over an n−cycle of projective lines En (n ≥ 1) which
is a singular algebraic curve. The following Theorem contains the result of
Theorem III.0.1.

Theorem E. Denote S the set of isomorphism classes of spherical objects
in Db(CohEn) modulo the action of the shift functor and denote Tn the torus
with n punctures. There is a one-to-one correspondence between S and pairs
(γ,V), where γ is the homotopy class of an embedded loop on Tn, whose
complement is connected, and V is a 1-dimensional local system on γ.

Roughly speaking, a local system on a loop is an generalization of a vector
bundle to arbitrary fields. A precise definition is given in the preliminaries.
The proof of Theorem E exploits the connections between the curves En and
a certain gentle algebras Λn. We give a more detailed account on this ap-
proach during the discussion of Theorem F below.

The curves En prominently appear in the study of solutions to various types
of Yang-Baxter equations, such as the classical, the quantum and the asso-
ciative Yang-Baxter equation, e.g. see [27, 29, 62].

In [62], spherical objects over cycles of projective lines were used to con-
struct solutions of the associative Yang-Baxter equation. Furthermore, spher-
ical objects are known to induce so-called spherical twists (see Section III.2)
which are interesting auto-equivalences of the derived category of En.

The second result of Chapter III is concerned with the following question by
Polishchuk [62]:

Let C be a singular projective curve C of arithmetic genus 1 with trivial
dualizing sheaf. Does the group of k-linear triangle auto-equivalences of
Db(CohC) act transitively on the set of isomorphism classes of spherical
objects in Db(CohC)?

In general, this questions remains unanswered. We tackle this question in
the case, where C = En is an n-cycle of projective lines.

It was proved in [28] that a subgroup of Aut(Db(CohE1)) acts transitively
on the set of isomorphism classes of spherical objects. In fact, this subgroup
is generated by a certain Fourier-Mukai transform, the Picard group and the
shift functor. In addition, the authors showed that every spherical object in

11



the bounded derived category of E1 is isomorphic to a shift of a simple vector
bundle or to a shift of a structure sheaf of a smooth point.

Another partial answer to the question was given later in [57] for gen-
eral cycles of projective lines by incorporating ideas from homological mirror
symmetry. The authors proved that the subgroup generated by all spherical
twist functors acts transitively on the set of isomorphism classes of shifts of
simple vector bundles. However, for n > 1, it is known that not all spherical
objects in Db(CohEn) are isomorphic to a shift of a skyscraper sheaf of a
smooth point or a shift of a simple vector bundle. As a consequence, full
transitivity in these cases remained open problems. The second theorem of
Chapter III generalizes the result in [57] and establishes full transitivity.

Theorem F. Assume that the ground field is algebraically closed and let
n ∈ N. Denote G the subgroup of Aut(Db(CohEn)) generated by

• the spherical twist TOEn associated to the structure sheaf of En;

• the shift functor and the derived tensor products − ⊗L L(x), where
x ∈ En is smooth and L denotes the vector bundle associated to x.

Then G acts transitively on the set of isomorphism classes of spherical objects
in Db(CohEn).

Theorem F coincides with Theorem III.0.1.

As a corollary to Theorem F we prove:

Corollary G. The subgroup of Aut(Db(CohEn)) generated by all spherical
twists and the shift functor coincides with the group G from Theorem F.

The statement of the corollary is the statement of Corollary III.6.4.
One of the challenges in the proof of Theorem F is to understand the ac-
tion of the twist functor TOEn on the level of objects. This requires a rather
good understanding of morphisms and mapping cones in the derived category
which seems to be unavailable at the moment.

To avoid calculations in the derived category of En, our approach to Theorem
E and Theorem F exploits the connection between the curves En and a certain
family of gentle algebras.

In [25] the authors defined for every positive natural number n a non-
commutative curve Xn whose bounded derived category is a categorical res-
olution of the bounded derived category of coherent sheaves of an n-cycle
of projective lines. They showed that Db(CohXn) admits a tilting object
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whose endomorphism ring is isomorphic to the opposite of a gentle algebra
Λn defined in Section III.1.

This yields an embedding of the category of perfect complexes over the
n-cycle into the bounded derived category of Λn, which allows us to study
spherical objects by means of their images under the embedding, where they
become spherical objects in Db(Λn). Via the correspondence between objects
and curves for the surface of this gentle algebra (which is a torus with n
boundary components) we establish the proof of Theorem E. Classical results
about the mapping class group of the punctured torus are then used to prove
Theorem F.
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Preliminaries

Conventions & general notation Unless stated otherwise, any algebra
will be assumed to be finite-dimensional over a base field k and all modules
over such an algebra will be assumed to be finite-dimensional. For any algebra
A, we write A − mod (resp. A − proj) for its category of finitely generated
(projective) left A-modules. The bounded derived category of left A-modules
is denoted by Db(A) and the bounded homotopy category over A − proj is
denoted by Perf(A). Objects in Perf(A) will also be referred to as perfect
objects and Perf(A) is referred to as the category of perfect complexes. If
(X,O) is a ringed topological space, e.g. an algebraic (non-commutative)
curve, we denote by CohX its category of coherent sheaves of O-modules.
By Perf(X) we denote its category of perfect complexes.

Arrows in a quiver are composed from left to right, whereas morphisms
and maps are composed from right to left. If α is an arrow in a quiver, we
denote by s(α) (resp. t(α)) the source (resp. the target) vertex of α.

The set of real numbers (resp. integers) is denoted by R (resp. Z). The set
of natural number is denoted by N and contains 0 by definition. If a, b ∈ Z
and n is an integer valued variable, we write n ∈ [a, b] instead of a ≤ n ≤ b
and similar for all other types of intervals.

Marked surfaces
For the main part of the present thesis we often consider surfaces with a set
of distinguished points.

Definition. A marked surface is a pair (S,M), where S is an oriented,
compact 2-dimensional real manifold with a non-empty boundary ∂S and
M ⊆ S is a subset of marked points, such that at least one boundary com-
ponent of S contains a marked point.

If there is no ambiguity, we often refer to S as the marked surface instead of
the pair (S,M).
For the rest of this section let S = (S,M) denote a marked surface.
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The set M is a disjoint union of its elements on the boundary and its
elements in the interior, the latter of which we refer to as punctures. A
boundary component of S is called unmarked if it contains no points of
M. The induced orientation on ∂S canonically induces a cyclic order on
M∩B for each boundary component B ⊆ ∂S. Regarding each puncture as
a cyclic ordered set with one element, this allows us to speak of successors
and predecessors of a marked point (inM). In particular, each puncture is
its own successor and predecessor.

We distinguish between various types of curves on marked surfaces.

• A curve on S is a continuous map of the form γ : I → S, where I is
an interval of the form (0, 1), (0, 1], [0, 1) or (0, 1), or I = S1 is the unit
circle, such that ∂I = γ−1(M).

• If a curve is defined on an interval it is called an arc if either, it is
defined on [0, 1], or, it is defined on an open or half-open interval and
each of it unbounded ends wraps infinitely many times around an un-
marked boundary component in counter-clockwise direction as shown
in Figure 1.

• An arc is said to be finite if it is defined on [0, 1] and both of its
endpoints are on the boundary; otherwise it is called infinite.

• A curve is a loop if it is defined on the circle.

Figure 1: An infinite arc
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Homotopies between curves. We say that two infinite arcs γ : (0, 1]→ S
and γ′ : (0, 1] → S (and similar for infinite arcs defined on [0, 1)) wrapping
infinitely many times around the same unmarked boundary component B
are homotopic if γ(1) = γ′(1) ∈ M and if for every closed neighborhood N
of B the induced maps γ, γ′ : [0, 1] → S/N are homotopic relative to their
endpoints.

In a similar way, we say that two infinite arcs γ : (0, 1) → S and γ′ :
(0, 1) → S are equivalent if they wrap infinitely many times around the
same unmarked boundary components B and B′ on each end and if for every
closed neighborhood N of B and N ′ of B′ the induced maps γ, γ′ : [0, 1] →
S/(N ∪N ′) are homotopic relative to their endpoints.

In all the remaining cases a homotopy of two curves is a homotopy
between the corresponding maps I → S relative to the boundary of I and
such a homotopy is required to restrict to a homotopy I \ ∂I → S \M. In
other words, homotopy classes of loops are free homotopy classes and for all
curves, homotopies are constant on end points. It means that, apart from
end points, we consider all marked points as being removed from the surface.

A boundary curve is a curve, which is homotopic (in the previous sense)
to a path in the boundary of S. Note that by definition, our curves come
with an orientation of their domain. However, we often consider them as
unoriented objects by identifying a curve γ and its inverse curve, which we
denote by γ.

Likewise, we often consider homotopy classes of unoriented curves, which
are the union of the homotopy class of a curve and its inverse.

Remark. It will sometimes be useful to think of unmarked boundary com-
ponents as punctures in the surface. Infinite arcs wrapping around such a
boundary component can then be viewed as arcs going to the puncture.

Convention. If not said otherwise we always assume that a loop γ : S1 → S
is primitive, i.e. there exists no m ∈ N ∪ {∞}, m > 1, such that γ is
homotopic to a loop that factors through an m-fold covering map S1 → S1.

Intersections and curves in minimal position Given distinct curves
γ1 : I1 → S and γ2 : I2 → S on S, we write γ1 ∩ γ2 for the set {(s1, s2) ∈
I1×I2 |γ1(s1) = γ2(s2)} of intersections. If it causes no ambiguity, we identify
p = (s1, s2) ∈ γ1∩γ2 and its image γ1(s1) = γ2(s2) ∈ S. A self-intersection
of γi is a pair (s, t) ∈ I2

i , such that s 6= t and γi(s) = γi(t).

Definition. A set of curves {γ1, . . . , γm} is said to be inminimal position if
for all (not necessarily distinct) i, j ∈ [1,m], the number of (self-)intersections
is minimal within their respective homotopy classes.
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We often make use of the following results about curves in minimal posi-
tion:

1. As pointed out in [71], it follows from [44] and [60], that every finite
set of curves can be homotoped to a set of curves in minimal position
and given a set {γ1, . . . , γm} in minimal position and set of curves
{γm+1, . . . , γn}, there exists a set of curves {γ′m+1, . . . , γ

′
n}, such that

γ′i ' γi for all i ∈ (m,n] and {γ1, . . . , γm, γ
′
m+1, . . . , γ

′
n} is in minimal

position.

2. It is shown in Lemma I.3.4 that if {γ1, γ2} are in minimal position, then
any of their lifts to the universal cover of S intersect at most once in
the interior and hence at most twice.

Oriented intersections. An important concept in all parts of this thesis is
the relationship between intersections on surfaces and morphisms in certain
categories. While the latter is a directed object (a morphism starts in its
source and ends in its target), it is a-priori not clear in what sense the former
allows for a notion of direction. However, it turns out that the following
definition is the right concept for us.

Definition. Let γ1 and γ2 be curves on a marked surface S. Then, we denote
by γ1

−→∩ γ2 the set of oriented intersections from γ1 to γ2. It is a subset of
γ1 ∩ γ2 and consists of the following intersections:

1) all interior intersections (including punctures);

2) boundary intersections of γ1 and γ2, such that locally around the in-
tersection, γ1 “lies before” γ2 in the counter-clockwise orientation as
shown Figure 2.

p

∂S
γ1

γ2

Figure 2
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Local systems
In this section, let k be an arbitrary field, let S = (S,M) be a marked surface
and let γ : S1 → S be a loop on S.

Definition. The fundamental groupoid π1(S) of S is the category whose
set of objects is S and whose morphisms from x to y are the homotopy
classes of all paths starting in x and ending in y. Composition of morphisms
is defined via composition of paths.

For all x ∈ π1(S), the identity morphism x→ x corresponds to the constant
path with image x. Every morphism of π1(S) is invertible.

Definition. A k-linear local system on γ is a covariant functor V from
π1(S1) to the category of finite dimensional k-vector spaces.

In other words, a local system is given by a family of vector spaces V =
(Vz)z∈S1 and a family of isomorphisms φp for every path p in S1 subject to
certain compatibility conditions.

The category of local system By definition, the class of local systems
becomes a category with morphisms given by natural transformations of
functors. The construction of direct sums of vector spaces naturally extends
to the definition of direct sums of local systems. In particular, we may talk
about isomorphism classes and indecomposable local systems. We give a
classification of indecomposable local systems below.

It is not difficult to see that a local system V ′ on γ is isomorphic to a
local system V , such that Vz = V1 for all z ∈ S1 and φp = Id for all paths
p of the form t 7→ exp(2πi · s) with s ∈ [0, 1). Such a local system V how-
ever is uniquely determined by the isomorphism φ1 : V1 → V1 associated
with the path [0, 1] → S1, t 7→ exp(2πi). In fact, isomorphism classes of
local systems are in bijection with isomorphisms V1 → V1 up to conjugation
by such isomorphisms. Indeed, the assignment V 7→ (φ1 : V1 → V1) defines
an equivalence from the category of local systems to the category of finite
dimensional k[X]-modules. As a consequence, one obtains the following clas-
sification of indecomposable local systems.

Lemma. The isomorphism classes of indecomposable local systems on γ over
k are in bijection with powers of irreducible polynomials over k.

Note that the bijection given above depends on our chosen basepoint of S1

(1 in our case) and is therefore not canoncal. The subclasses of linear and
quasi-linear local systems will be of special importance to us:
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Definition. We call an indecomposable local system V on γ irreducible
(resp. linear, resp. quasi-linear) if the associated characteristic polynomial
of φ1 is irreducible (resp. linear, resp. a power of a linear polynomial).

Note that the property of an indecomposable local system to be (quasi-)linear
or irreducible does not depend on the choice of the basepoint of S1 (which is
1 in our case).
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Chapter I

The surface of a gentle algebra

Layout of the chapter In Section I.1 we present a construction of a
marked surface SA of a gentle algebra A, its ribbon graph as well as a lam-
ination of SA. The correspondence between homotopy classes of curves with
objects in the bounded derived category Db(A) is given in Section I.2.
In Section I.3 we establish a correspondence between the basis of morphisms
in Db(A) given in [4] and crossings of the corresponding curves in SA.
The mapping cones of the basis of morphism in terms of resolutions of cross-
ings is given in Section I.4, and it is shown in Section I.5 that the Auslander-
Reiten translate corresponds to a rotation of both endpoints of the homotopy
class of curves corresponding to an indecomposable object in Db(A).
Section I.6 contains a description of the derived invariant of Avella-Alaminos
and Geiss in terms of the surface.
We further establish a connection between the winding numbers of loops and
an numbers attached to certain cyclic sequences of morphisms in Section
I.8. Finally, we show in Section I.7 how compositions of morphisms can be
re-intepreted geometrically.

I.1 From gentle algebras to surfaces with
boundary

In this section, we recall the construction of a surface with boundary asso-
ciated to a gentle algebra. Our main references in this section are [68] and
[56].
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I.1.1 Ribbon graphs and ribbon surfaces
A ribbon graph is an unoriented graph with a cyclic ordering of the edges
around each vertex. In order to give a precise definition, it is useful to define
a graph as a collection of vertices and half-edges, each of which is attached
to a vertex and another half-edge. More precisely:

Definition I.1.1. A graph is a quadruple Γ = (V,E, s, ι), where

• V is a finite set, whose elements are called vertices;

• E is a finite set, whose elements are called half-edges;

• s : E → V is a function;

• ι : E → E is an involution without fixed points.

We think of s as a function sending each half-edge to the vertex it is
attached to, and of ι as sending each half-edge to the other half-edge it is
glued to. This definition is equivalent to the usual definition of a graph, and
in practice we will draw graphs in the usual way.

Definition I.1.2. A ribbon graph is a graph Γ endowed with a permutation
σ : E → E whose orbits correspond to the sets s−1(v), for all v ∈ V . A
ribbon graph is a graph Γ endowed with a permutation σ : E → E such
that the cycles of σ correspond to the sets s−1(v), for all v ∈ V .

In other words, a ribbon graph is a graph endowed with a cyclic ordering
of the half-edges attached to each vertex.

Any ribbon graph can be embedded in the interior of a canonical oriented
surface with boundary, called the ribbon surface, in such a way that the
orientation of the surface is induced by the cyclic orderings of the ribbon
graph. Whenever we deal with oriented surfaces in this paper, we will call
clockwise orientation the orientation of the surface, and anti-clockwise
orientation the opposite orientation. When drawing surfaces or graphs in
the plane, we will do so that locally, the orientation of the surface or graph
becomes the clockwise orientation of the plane.

Definition I.1.3. Let Γ be a connected ribbon graph. The ribbon surface
SΓ is constructed by gluing polygons as follows.

• For any vertex v ∈ V with valency d(v) ≥ 1, let Pv be an oriented
2d(v)-gon.

• Following the cyclic orientation, label every other side of Pv with the
half-edges e ∈ E such that s(e) = v.
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• For any half-edge e of Γ, identify the side of Pv labelled e with the side
of the polygon Ps(ι(e)) labelled ι(e), respecting the orientations of the
polygons.

In this definition, we exclude the degenerate case where Γ has only one vertex
and no half-edges.

e1

f1

g1

e2

f2

g2

P1 P2

1 2

e1

f1

g1

e2

f2

g2

Figure I.1: Example of a ribbon graph Γ with orientation given by the planar
embedding and with half edge labelling on the left and on the right the
associated ribbon surface SΓ obtained by gluing the two polygons P1 and P2
corresponding to vertices 1 and 2 of the ribbon graph.

Note that SΓ is oriented, and that we can embed Γ in SΓ as follows: the
vertices of Γ are the centers of the polygons Pv, and the half edges of Γ
are arcs joining the center of each Pv to the middle of the side with the
same label. By [56, Corollary 2.2.11], SΓ is, up to homeomorphism, the only
oriented surface S in which we can embed Γ, preserving the cyclic ordering
around each vertex, and such that the complement of the embedding of Γ in
S is a disjoint union of discs (we say that Γ is filling for S). Moreover, by
[56, Proposition 2.2.7], the number of boundary components of SΓ is equal
to the number of faces of Γ, according to the following definition.

Definition I.1.4. Let Γ be a ribbon graph. A face of Γ is an equivalence
class, up to cyclic orientation, of tuples of half-edges (e1, . . . , en) such that

• ep+1 =

ι(ep) if s(ep) = s(ep−1),
σ(ep) otherwise,

where the indices are taken modulo

n;

• the tuple is non-repeating, in the sense that if p 6= q and ep = eq, then
ep+1 6= eq+1.
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I.1.2 Marked ribbon graphs
When we study gentle algebras in Section I.1.3, we will obtain ribbon graphs
endowed with one additional piece of information. We will call thesemarked
ribbon graph and we define them as follows.

Definition I.1.5. A marked ribbon graph is a ribbon graph Γ together
with a map m : V → E, such that for every vertex v ∈ V , m(v) ∈ s−1(v).

In other words, a marked ribbon graph is a ribbon graph in which we have
chosen one half-edge m(v) around each vertex v.

If Γ is a marked ribbon graph, we can construct its ribbon surface SΓ like
in Definition I.1.3. Moreover, with the additional information given by the
map m, we can do the following:

Proposition I.1.6. There is an orientation-preserving embedding of Γ in
SΓ which sends all vertices of Γ to boundary components of SΓ, such that for
each vertex v ∈ V , the boundary component lies between m(v) and σ(m(v)) in
the clockwise orientation. This embedding is unique up to homotopy relative
to ∂SΓ.

Proof. We use the notations of Definition I.1.3. In order to prove the exist-
ence of the embedding, it suffices to move v to the unlabelled side of Pv that
lies between the sides labelled with m(v) and σ(m(v)). Uniqueness follows
from the fact that there is precisely one boundary component inside every
face of Γ.

We call an embedding as in Proposition I.1.6 a marked embedding of Γ in
SΓ. We usually denote by M the set of marked points on SΓ corresponding
to the vertices of Γ.

I.1.3 The marked ribbon graph of a gentle algebra
Here, we follow [67], see also [68, Section 3]. Gentle algebras are finite-
dimensional algebras having a particularly nice description in terms of gen-
erators and relations. Their representation theory is well understood and
their study goes back to [46, 39, 73, 30]. Let us recall their definition:

Definition I.1.7. An algebra A is gentle if it is isomorphic to an algebra
of the form kQ/I, where

1. Q is a finite quiver;
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2. I is an admissible ideal of Q (that is, if R is the ideal generated by the
arrows of Q, then there exists an integer m ≥ 2, such that Rm ⊂ I ⊂
R2);

3. I is generated by paths of length 2;

4. for every arrow α of Q, there is at most one arrow β, such that αβ ∈
I \{0}; at most one arrow γ, such that γα ∈ I \{0}; at most one arrow
β′, such that αβ′ /∈ I; and at most one arrow γ′, such that γ′α /∈ I.

Definition I.1.8. For a gentle algebra A = kQ/I, let

• M be the set of maximal paths in (Q, I), that is, paths w /∈ I, such
that for any arrow α, αw ∈ I and wα ∈ I;

• M0 be the set of trivial paths ev, such that either v is the source or
target of only one arrow, or v is the target of exactly one arrow α and
the source of exactly one arrow β, and αβ /∈ I;

• M =M∪M0.

We callM the augmented set of maximal paths of A.
Then the marked ribbon graph ΓA of A is defined as follows.

1. The set of vertices of ΓA isM.

2. For every vertex of ΓA corresponding to a path ω, there is a half-edge
attached to ω and labelled by i for every vertex i of Q through which
ω passes. Note that this includes the vertices at which ω starts and
ends. Furthermore, if ω passes through i multiple times (at most 2),
then there is one half-edge labelled by i for every such passage.

3. For every vertex i of Q, there are exactly two half-edges labelled with
i. The involution ι sends each one to the other.

4. For each vertex ω of ΓA, the vertices through which the path ω passes
are ordered from starting point to ending point. The permutation σ
sends each vertex in this ordering to the next, with the additional
property that it sends the ending point of ω to its starting point.

5. The map m takes every ω to the half-edge labelled by its ending point.

Remark I.1.9. Instead of using M, the marked ribbon graph of a gentle
algebra can also be defined via the augmented set of all paths in Q, such
that any subpaths of length 2 is in I. This is the set of forbidden threads as
defined in [11].
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Using Section I.1.2, we can now define a surface with boundary and marked
points for every gentle algebra.

Definition I.1.10. Let A = kQ/I be a gentle algebra. Then, the ribbon
surface of A is the marked surface SA = (SA,M), where SA is the ribbon
surface of ΓA andM is given by the embedding of ΓA as in Proposition I.1.6.

Thus, SA contains no punctures and the marked points of SA are in bijection
with the vertices of ΓA. Morover, the edges of ΓA are in bijection with the
vertices of Q.

Example I.1.11. 1. Let A be the algebra defined by the quiver

1 α1−→ 2 α2−→ 3 α3−→ 4

with no relations. The ribbon graph ΓA of this algebra is

e1 α1α2α3 e4

e2 e3

and its ribbon surface SA is a disc.

•

•

•

••

2. Let A be the algebra defined by the quiver

1 α1−→ 2 α2−→ 3 α3−→ 4

with relations α1α2 and α2α3. The ribbon graph ΓA of this algebra is

e1 α1 α2 α3 e4

and its ribbon surface SA is, again, a disc.
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•

•

•

•

For any gentle algebra A, the edges of ΓA cut SA into polygons as follows.

Proposition I.1.12. Let A = kQ/I be a gentle algebra, and let ΓA and
SA = (SA,M) be as in Definitions I.1.8 and I.1.10 with ΓA being embedded
into SA by virtue of Proposition I.1.6. Then SA is divided into two types of
pieces glued together by their edges:

1) polygons whose edges are edges of ΓA, except for exactly one boundary
edge, and whose interior contains no boundary component of SA;

2) polygons whose edges are edges of ΓA and whose interior contains ex-
actly one boundary component of SA with no marked points.

Proof. Take any point X in the interior of SA which does not belong to any
edge of ΓA. Then this point belongs to a polygon Pv as in Definition I.1.3.
This polygon has 2d sides (for a certain integer d) and contains exactly one
marked point on one of its boundary segments, from which emanate d edges
of ΓA. Below is the local picture if Pv is an octogon:

We see that X belongs to a region of Pv (grayed on the picture) that is partly
bounded by a segment of a boundary component B of SA. Around this
boundary component are other polygons Pv1 , Pv2 , . . . , Pvr , each containing
exactly one marked point on one of its boundary segments. The picture
around this boundary component B is as follows (in the example, B is a
square).
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Two cases arise.
Case 1: There is at least one marked point on B. In this case, the point X
belongs to a polygon cut out by edges of ΓA and by exactly one boundary
edge on B, as illustrated in the following picture.

Case 2: There are no marked points on B. In this case, the point X belongs
to a polygon on SA cut out by edges of ΓA and which contains the boundary
component B, as illustrated below.

This finishes the proof.

Remark I.1.13. Let A be a gentle algebra with ribbon graph ΓA and asso-
ciated ribbon surface SA = (SA,M). Suppose that ΓA admits v vertices, 2e
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half-edges and f faces.
1) The complement of ΓA in SA is a disjoint union of open discs.
2) The Euler characteristic χ(ΓA) = v− e+ f of the ribbon graph Γ is equal
to the Euler characteristic of ŜA, where ŜA is the surface without boundary
obtained from SA by gluing an open disc to each of the boundary components
of SA.
3) The genus of SA (as well as the genus of ŜA) is equal to 1− χ(ΓA)/2 that
is the genus of SA is (e− v − f + 2)/2.

I.1.4 A lamination on the surface of a gentle algebra
On any surface with boundary and marked points on the boundary, the
notion of lamination is defined in [43, Definiton 12.1]. We will need to modify
the definition slightly for what follows.

Definition I.1.14. Let S = (S,M) be a marked surface . A lamination on
S is a finite collection of non-selfintersecting and pairwise non-intersecting
paths on S, considered up to isotopy relative to M . Each of these paths is
one of the following:

• a closed path not homotopic to a point; or

• a path from one non-marked point to another non-marked point, both
on the boundary of S. We exclude such paths that are isotopic to a
part of the boundary of S containing no marked points.

A path that is part of a lamination is called a laminate.

Remark I.1.15. In [43, Definition 12.1], the case of a path from a non-
marked point to another on the boundary that is isotopic to a part of the
boundary containing exactly one marked point is also excluded. For our
purposes, we need to allow such paths in our laminations.

We will now define a canonical lamination of the ribbon surface of a gentle
algebra.

Proposition I.1.16. Let A = kQ/I be a gentle algebra, and let SA =
(SA,M) be its ribbon surface as in Definition I.1.10. There exists a unique
lamination L of SA, such that

1. L contains no closed paths;

2. for every vertex i of Q (that is, every edge of ΓA), there is a unique lam-
inate γi ∈ L, such that γi crosses the edge labelled by i of the embedding
of ΓA once, and crosses no other edges;
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3. L contains no other laminates than those described in (2).

Proof. Every edge E of ΓA is part of two (not necessarily distinct) faces,
in the sense of Definition I.1.4, and each of these faces encloses a boundary
component in SA. Therefore, if a path γ in a lamination crosses E, then
either it starts and ends on these two boundary components, or it has to
cross at least another edge. Moreover, there is a unique path starting on one
of these two boundary components and ending on the other that crosses E
once and no other edges of ΓA.

Example I.1.17. We give the laminations for the two gentle algebras in
Example I.1.11.

(1)

1 2 3

α1 α2 α3

4

Figure I.2: On the right side is the ribbon graph embedded in the ribbon
surface as well as the lamination of the hereditary gentle algebra on the left.

(2)

1 2 3

α β γ

4

Figure I.3: On the right side is the ribbon graph embedded in the ribbon
surface as well as the lamination of the gentle algebra on the left with relations
αβ and βγ.

Definition I.1.18. Let A = kQ/I be a gentle algebra. Then we denote
by LA the lamination described in Proposition I.1.16, and we call it the
lamination of A.
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I.1.5 Recovering the gentle algebra from its lamination
The surface SA and lamination LA of a gentle algebra A contain, by construc-
tion, enough information to recover the algebra A. We record the procedure
in the following proposition.

Proposition I.1.19. Let A = kQ/I be a gentle algebra, and let LA be the
associated lamination (see Definition I.1.18). Define a quiver QL as follows:

• its vertices correspond to paths in LA;

• whenever two paths i and j in LA both have an endpoint on the same
boundary segment of SA, so that no other curve has an endpoint in
between, then there is an arrow from i to j if the endpoint of j follows
that of i on the boundary in the clockwise order.

Let IL be the ideal of kQL defined by the following relations: whenever there
are paths i, j and r in LA that have an endpoint on the same boundary seg-
ment of SA, so that the endpoint of r follows that of j, which itself follows
that of i, and if α : i → j and β : j → r are the corresponding arrows, then
βα is a relation. Then A ∼= kQL/IL.

I.1.6 The fundamental group of the surface of a gentle
algebra

We show that the fundamental group of the surface SA of a gentle algebra
A = kQ/I is isomorphic to π1(Q), the fundamental group of the graph
underlying its quiver Q.

Proposition I.1.20. Let A = kQ/I be a gentle algebra. Let π1(Q) be the
fundamental group of its underlying graph. There exists an isomorphism
π1(SA) ∼= π1(Q).

Corollary I.1.21. Let A = kQ/I be a gentle algebra. Then following are
equivalent
(i) the graph underlying Q is a tree
(ii) SA is a disc
(iii) A is derived equivalent to a path algebra of Dynkin type A.

Proof. The equivalence of (i) and (ii) directly follows from Proposition I.1.20,
the equivalence of (i) and (iii) is due to [6].

Corollary I.1.22. Let A = kQ/I be a gentle algebra. Then SA is an annulus
if and only if A has precisely one cycle.
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Proof. Follows directly from Proposition I.1.20 and the fact that the annulus
is the only (compact oriented) surface with fundamental group Z.

By [6], the algebras appearing in Corollary I.1.21 are precisely the algebras
which are derived equivalent to a path algebra of type A; by [11], those
appearing in Corollary I.1.22 are determined, up to derived equivalence, by
their AG-invariant (for more on the AG-invariant, see Section I.6).

Proof of Proposition I.1.20. It follows from Proposition I.1.19, that there
exists an embedding of Q into SA, such that each vertex is mapped to an
interior point on the corresponding laminate and such that each arrow is
mapped to a path with no intersection with the boundary and no intersection
with any of the laminates apart from its endpoints. For our assertions it is
sufficient to prove that this embedding is a strong deformation retract of
the surface. We do this by gluing deformation retractions of the individual
polygons cut out by the lamination.

For each polygon Pv, v ∈ M, denote by Q(v) the subquiver of Q, which
contains all arrows of the path v, if v ∈ M, and, in case v ∈ M0, let
Q(v) be the subquiver with a single vertex corresponding to v ∈ M0. We
define a strong deformation retraction of Pv onto the embedding of Q(v),
which contracts each laminate to a single point and projects each boundary
segment onto an arrow.

This is done in two steps. Every arrow α of Q(v) singles out a square in Pv
bounded by the edge α, a boundary segment and segments of the laminates
crossed by α. Pv is glued from these squares and another polygon P ′v, which
contains the marked point.

For each L ∈ LA and for aL ∈ [0, 1], such that L(aL) = pL, denote by HL

the homotopy from IdL to the constant map pL corresponding to t→ aL+(1−
t) · (t− aL). Convex linear combinations enable us to extend any homotopy,
which is constant on {0, 1}× {0}, from Id{0,1}×[0,1] to the map (a, t) 7→ (a, 0)
to a homotopy, which is constant on {0, 1} × [0, 1], from Id[0,1]2 to the map
(a, t) 7→ (a, 0). In particular, we find a homotopy from the identity of each
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square to a map, which projects the square onto the corresponding arrow of
Q(v) and which extends the contractions of the segments of laminates L to
the point pL (as restrictions of HL). We finally find a homotopy from IdP ′v ,
which is constant on all arrows of Q(v), to a map, which projects each point
of P ′v to a point of the embedding of Q(v). By construction, we can glue
all the homotopies showing that Pv strongly deformation retracts onto the
embedding of Q(v). All such homotopies can be glued at the laminates. This
completes the proof. 2

I.2 Indecomposable objects in the derived cat-
egory of a gentle algebra

Throughout this section let A = kQ/I be a gentle algebra. We prove that
the indecomposable objects of the bounded derived category Db(A) are in
bijection, up to shift, with certain curves on the surface SA.

I.2.1 Homotopy strings and bands
We briefly recall the classification of the indecomposable objects in the bounded
derived category of a gentle algebra in terms of homotopy string and band
complexes [12]. Another classification via a different approach was obtained
in [23] (see also [24, 22, 26]).

Throughout this section let A = kQ/I be a gentle algebra. Recall that there
is a triangle equivalence Db(A) ' K−,b(A− proj), where A− proj is the full
subcategory of A−mod given by the finitely generated projective A-modules,
K−,b(A− proj) is the homotopy category of complexes of objects in A− proj
which are bounded on the right and have bounded homology, and Db(A) is
the bounded derived category of A−mod.

For every a ∈ Q1, we define a formal inverse a where s(α) = t(α) and
t(α) = s(α). We denote by Q1 the set of formal inverses of the elements in
Q1, and we extend the operation (−) to an involution of Q1 ∪Q1 by setting
α = α.

A walk is a sequence w1 . . . wn, where wi ∈ Q1 ∪Q1, such that s(wi+1) =
t(wi). We also allow trivial walks eu for every vertex u of Q. A string
is a walk w, such that wi+1 6= wi and such that for all substrings w′ =
wiwi+1 · · ·wj of w with the wi, . . . , wj all in Q1 (or all in Q1), we have that
w′ /∈ I (or w′ /∈ I, respectively). We say that w = w1 . . . wn is a direct (resp.
inverse) string if for all 1 ≤ i ≤ n, we have wi ∈ Q1 (resp. wi ∈ Q1).
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A generalized walk is a sequence σ1 . . . σm, such that each σi is a string,
such that s(σi+1) = t(σi).

Definition I.2.1. Let A = kQ/I be a gentle algebra. A finite homotopy
string σ = w1 . . . wn, where wi ∈ Q1 ∪ Q1, is a (possibly trivial) walk in
(Q, I) consisting of subwalks σ1, . . . , σr with σ = σ1 . . . σr and such that

1. σj is a direct or inverse string;

2. if σj, σj−1 are both direct strings then σj−1σj ∈ I (resp. if both σj, σj−1
are inverse strings, then σj−1σj ∈ I).

If σk is a direct string it is called a direct homotopy letter, otherwise it
is called an inverse homotopy letter.

A homotopy band is a finite homotopy string σ = σ1 . . . σr with an equal
number of direct and inverse homotopy letters σi such that t(σr) = s(σ1) and
σ1 6= σr and σ 6= τm for some homotopy string τ and m > 1.

A homotopy string or band σ = σ1 . . . σr is reduced if σi 6= σi+1 for all
i ∈ {1, . . . , r − 1}.

A generalized walk is called a direct (resp. inverse) antipath if each
homotopy letter is a direct (resp. inverse) arrow.

Definition I.2.2. A left (resp. right) infinite generalized walk σ = . . . σ−2σ−1
(resp. σ = σ1σ2 . . .) is called a left (resp. right) infinite homotopy string
if there exists k ≥ 1 such that . . . σkσk+1 (resp. σ−k−1σ−k . . .) is a direct (resp.
inverse) antipath which is eventually periodic and eventually involves only
homotopy letters of length 1.

A two-sided infinite generalized walk σ = . . . σ−1σ0σ1 . . . is called a two-
sided infinite homotopy string if . . . σ−1σ0 is a left infinite homotopy
string and σ0σ1 . . . is a right infinite homotopy string.

To each homotopy string and homotopy band σ, as described above, there is
an associated (possibly infinite) complex of projective modules P •σ [12]. We
now recall this construction.

Definition I.2.3 ([12]). 1. Let σ = σ1 · · · σr be a finite reduced homo-
topy string. Define v0 = s(σ1) and vi = t(σi) for all i ∈ {1, . . . , r}.
Define further µ0 = 0 and

µi+1 =

µi + 1 if σi is a direct homotopy letter;
µi − 1 if σi is an inverse homotopy letter,
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and let µ(σ) := mini∈{0,1,...,r}(µi). Then the complex

P •σ = . . . −→ P−1 d−1
−−→ P 0 d0

−→ P 1 −→ . . .

is given by

• for all j ∈ Z,
P j =

⊕
0≤i≤r
µi=j

Pvi ,

where each Pvi is the indecomposable projective module associated
to the vertex vi;
• each direct (resp. inverse) homotopy letter σi defines a morphism
Pvi−1

σi−→ Pvi (resp. Pvi
σi−→ Pvi−1). These form the components

of the differentials dj in the natural way. We call P •σ a string
object.

2. The definition of P •σ when σ is an infinite reduced homotopy string is
similar, and we again call P •σ a string object.

3. Let σ = σ1 · · ·σr be a reduced homotopy band. Let M be a finite-
dimensional indecomposable k[X]-module, and let m = dimKM . Let
F be the matrix of the multiplication by X for a given basis of M .
Define v0, . . . , vr, µ0, . . . , µr as for homotopy strings.
Then the complex P •σ,F is defined by

• for all j ∈ Z,
P j =

⊕
0≤i≤r−1
µi=j

P⊕mvi ;

• for all i ∈ {1, . . . , r−1}, the direct (resp. inverse) homotopy letter
σi defines a morphism P⊕mvi−1

σiIdm−−−→ P⊕mvi (resp. P⊕mvi
σiIdm−−−→ P⊕mvi−1

),
where Idm is the m×m identity matrix. These form the compon-
ents of the differentials dj in the natural way.
• The homotopy letter σr defines a final component of the differen-

tial. If it is a direct letter, then the morphism used is P⊕mvr−1

σiF−−→
P⊕mv0 ; otherwise, the morphism is P⊕mv0

σiF−−→ P⊕mvr−1 .

In this case, P •σ,F is called a band object.
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Furthermore, it is shown in [12] that the isomorphism classes of indecompos-
able objects in Db(A) up to shift are in bijection with homotopy strings and
bands up to inverse. More precisely, the equivalence is modulo the equival-
ence relation σ ∼ σ for a homotopy string σ, infinite homotopy strings up
to inverse, and pairs consisting of a homotopy band up to inverse and up to
permutation and of an isomorphism class of indecomposable k[X]-modules.
This bijection is the one described in Definition I.2.3.

Remark I.2.4. If the field k is algebraically closed, then the matrix F of
Definition I.2.3 (3) can always be chosen to be a Jordan block Jm(λ) of sizem
corresponding to a scalar λ ∈ k. Note that form = 1, we have P •σ,J1(λ) = P •σ,λ.
In the text, if the result or proof does not depend on the scalar λ, we will
sometimes omit it in our notation and we will write P •σ instead of P •σ,λ .

I.2.2 Main result on indecomposable objects of the de-
rived category

We are now ready to prove our classification of indecomposable objects (up
to shift) in Db(A) using curves on the marked surface SA. Before stating
our main result, we recall, see for example [35, 54], the definition of the
orbit category Db(A)/[1] where [1] is the shift functor. Namely the objects
of Db(A)/[1] are the same as the objects of Db(A) and

HomDb(A)/[1](X, Y ) =
⊕
n∈Z

HomDb(A)(X, Y [n]).

Theorem I.2.5. Let A = kQ/I be a gentle algebra with marked ribbon graph
ΓA and a marked embedding in the associated ribbon surface SA = (SA,M).
Let [1] be the shift functor in Db(A). Then,

1. the isomorphism classes of the indecomposable string objects in Db(A)/[1]
are in bijection with homotopy classes of arcs on SA.

2. the isomorphism classes of the indecomposable band objects in Db(A)/[1]
are in bijection with pairs ([γ],V), where [γ] is a homotopy class of
loops on SA satisfying condition (3) of Lemma I.2.11 below and V is
an isomorphism class of indecomposable K[X]-modules.

More precisely, finite arcs correspond to homotopy string complexes, infinite
arcs correspond to infinite homotopy string complexes and loops correspond
to homotopy bands.
We will sometimes refer to a loop, which represents indecomposable objects
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as in Theorem I.2.5, as a gradable loop.

Before proving the theorem, we need some results on the geometry of the
lamination.
Lemma I.2.6. 1. The lamination LA subdivides SA into polygons whose

sides are laminates and boundary segments. The laminates of LA can
be chosen to be the “glued edges” of Definition I.1.3.

2. Each polygon contains exactly one marked point.

3. Every boundary segment of SA contains the endpoint of at least one
laminate of LA.

Proof. It suffices to observe that the “glued edges” of Definition I.1.3 cut the
surface SA into the polygons Pv of Definition I.1.3, which contain exactly one
marked point each by definition. Moreover, every boundary segment of these
polygons is adjacent to at least one laminate.

Once we know that a surface is cut into polygons, then any arc is determined
by the order in which it crosses the edges of the polygons. Note that the
edges crossed correspond exactly to the laminates.
Assumption I.2.7. Whenever in this section we shall be dealing with collec-
tions of curves on a surface, we will assume that they are in minimal position.
Lemma I.2.8. Let γ be a curve on SA and assume that every laminate of LA
that γ crosses is crossed transversally (we can assume this, up to homotopy).

1. If γ is an arc, then its homotopy class is completely determined by the
(possibly infinite) sequence of the laminates that it crosses.

2. If γ is a loop, then its homotopy class is completely determined by the
sequence of the laminates that it crosses, up to cyclic ordering.

The order in which a curve crosses the laminates gives rise to a homotopy
string or band, as we will see in Lemma I.2.11.
Definition I.2.9. Let Pv be a polygon on the surface SA, as per Lemma
I.2.6, and let Mv be the unique marked point in Pv. Let δ be a curve in Pv
starting and ending on edges `1 and `2 of Pv which are laminates.
• If Mv lies between `2 and `1 in the clockwise order, then let w1, . . . , wr

be the laminates between `1 = w1 and `2 = wr in clockwise order. By
Proposition I.1.19, these correspond to vertices of the quiver Q of A
which are joined by arrows α1, . . . , αr−1.
Then define σ(δ) := α1 · · ·αr−1.

36



• If Mv lies between `1 and `2 in the clockwise order, then let w1, . . . , wr
be the laminates between `2 = w1 and `1 = wr in clockwise order. By
Proposition I.1.19, these correspond to vertices of the quiver Q of A
which are joined by arrows α1, . . . , αr−1.
Then define σ(δ) := α1 · · ·αr−1.

α1
α2

α3
δ

Lemma I.2.10. Let Pv and δ be as in Definition I.2.9. Then σ(δ) is a
homotopy letter.

Proof. By Proposition I.1.19, the compositions of the arrows of σ(δ) are not
in the ideal of relations of A.

Lemma I.2.11. 1. Let γ be a finite arc on SA. Let `1, `2, . . . , `r be the
laminates crossed (in that order) by γ, as per Lemma I.2.8. For every i ∈
{1, 2, . . . , r− 1}, let γi be the part of γ between its crossing of `i and of
`i+1. Let

σ(γ) :=


∏r−1
i=1 σ(γi) if r > 1;

e`1 if r=1.

Then σ(γ) is a homotopy string.

2. Let γ be an infinite arc. Assume that on any infinite end of γ, the arc
cycles infinitely many times around a boundary component in counter-
clockwise orientation. Let (`i) be the sequence of laminates crossed by
γ (this sequence can be infinite on either side). For every i, let γi be
the part of γ between its crossing of `i and of `i+1. Let

σ(γ) :=
∏
i

σ(γi).

Then σ(γ) is an infinite homotopy string.
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3. Let γ be a primitive loop on SA. Let `1, `2, . . . , `r be the laminates
crossed (in that order) by γ. For every i ∈ {1, 2, . . . , r − 1}, let γi be
the part of γ between its crossing of `i and of `i+1, and let γr be the
part of γ between its crossing of `r and of `1. Let

σ(γ) :=
r∏
i=1

σ(γi).

If there is an equal number of inverse and direct homotopy letters among
the σ(γi), then σ(γ) is a homotopy band.

Proof. In all three cases, for any index i, if σ(γi) and σ(γi+1) are both direct
homotopy letters, then by Proposition I.1.19, composition of the last arrow of
σ(γi) and of the first of σ(γi+1) form a relation. The argument for consecutive
inverse homotopy letters is similar. This proves (1).

To prove (2), assume that γ is an infinite arc. Then γ eventually wraps
around one of the boundary components without marked points. By Lemma
I.2.6, there is at least one laminate with one endpoint on this boundary com-
ponent. Thus, by Proposition I.1.19, every full turn of γ around the boundary
component induces a subword of σ(γ) of the form α1 · · ·αr, where the αi form
an oriented cycle of Q such that every composition is a relation. Thus σ(γ)
is eventually periodic, with homotopy letters of length one. Since the infinite
ends of γ cycle around a boundary component in counter-clockwise direction,
we get that the start (or the end) of σ(γ), if infinite, is a direct (resp. inverse)
antipath. This proves (2).

To prove (3), assume that γ is a primitive loop. Write σ(γ) := ∏r
i=1 σ(γi)

as in the statement of the Lemma. Clearly, s(σ(γ1)) = t(σ(γr)) and σ(γ1) 6=
σ(γr). The condition on the number of inverse and direct homotopy letters
among the σ(γi) ensures that σ(γ) is a homotopy band.

Remark I.2.12. In Lemma I.2.11 (3), it should be stressed that the condi-
tion on the number of inverse and direct homotopy letters among the σ(γi) is
not satisfied by all loops. In Section I.8 we give a more general interpretation
of the difference between the numbers of direct and inverse homotopy letters.

Conversely, any homotopy string or band defines an arc or a loop on SA.

Lemma I.2.13. 1. For any finite homotopy string τ , there exists a unique
finite arc γ on SA (up to homotopy) such that τ = σ(γ).

2. For any infinite homotopy string τ , there exists a unique infinite arc γ
on SA (up to homotopy) such that τ = σ(γ).
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3. For any homotopy band b, there exists a unique loop γ on SA (up to
homotopy) such that b = σ(γ).

Proof. We only prove (1); the proofs of (2) and (3) are similar. Write τ =
τ1 · · · τr, where each τi is a homotopy letter. Write τi = α1

i · · ·α
si
i , where the

αji are either all arrows or all inverse arrows. By Proposition I.1.19, since
there are no relations in the (possibly inverse) path α1

i · · ·α
si
i , then there are

laminates `1
i , . . . , `

si+1
i inside a unique polygon Pv such that `ji and `

j+1
i have

an endpoint on the same boundary segment of Pv and `j+1
i follows `ji in the

clockwise order if τi is a direct homotopy letter, and counter-clockwise order
if τi is an inverse homotopy letter.

Define γi to be a segment in Pv going from `1
i to `si+1

i if τi is a direct
homotopy letter, or the other way around if τi is an inverse homotopy letter.
We can assume that the endpoint of γi is the starting point of γi+1.

If we define γ(τ) to be the concatenation of γ1, . . . , γr, then σ(γ(τ)) =
τ1 · · · τr = τ . This proves the existence result.

To prove uniqueness, assume that γ and γ′ are such that σ(γ) = σ(γ′). Let
τ be the (unique) reduced expression of the homotopy string σ(γ) = σ(γ′).
Then γ(τ) is homotopic to γ and γ′. Indeed, if σ(γ) is reduced, then τ = σ(γ)
and we are done. Otherwise, it means that in the expression σ(γ)1 · · ·σ(γ)r
of σ(γ) as a product of homotopy letters, there are two adjacent letters
σ(γ)i and σ(γ)i+1 that are inverse to each other. Then the correspond-
ing segments in the polygon Pv described above are the same path going
in opposite directions; their concatenation is thus homotopic to a trivial
path. Thus if we cancel the two inverse homotopy letters, we get that
γ
(
σ(γ)1 · · ·σ(γ)i−1σ(γ)i+2 · · ·σ(γ)r

)
is homotopic to γ

(
σ(γ)

)
. By induc-

tion on the number of reduction steps to get from σ(γ) to τ , we get that
γ
(
σ(γ)

)
= γ(τ).

The same applies if we replace γ by γ′. This proves the uniqueness, and
finishes the proof of the Lemma.

With the help of the previous lemma, we can now prove Theorem I.2.5.

Proof of Theorem I.2.5. It follows from the results of [12] that indecompos-
able objects of Db(A) are in bijection with homotopy strings (finite and infin-
ite) and homotopy bands paired with an isomorphism class of indecomposable
k[X]-modules. As explained in the preliminaries of this thesis, such an iso-
morphism class of k[X]-modules corresponds to an isomorphism class of an
indecomposable local system. By Lemma I.2.11, we can associate a homo-
topy string or band to each of the curves listed in the statement of Theorem
I.2.5. Then Lemma I.2.13 ensures that this defines the desired bijections.
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I.3 Homomorphisms in the derived category
of a gentle algebra

The morphism spaces in the bounded derived category Db(A) of a gentle
algebra A were completely described in [4]. Our aim in this section is to
describe a basis of the morphism spaces in the orbit category
Db(A)/[1] in terms of curves on the surface SA that was associated to A in
Section I.1.

I.3.1 Bases for morphism spaces in the derived cat-
egory

We now briefly recall the results of [4]. These results are proved in the case
where the base field k is algebraically closed; for the rest of this section,
we will assume that we are in this situation. Also, their results deal with
morphisms in Db(A), but we will immediately translate them to the setting
of the orbit category Db(A)/[1].
Let σ and τ be two homotopy strings or bands. Let P •σ and P •τ be the
associated indecomposable objects in Db(A)/[1] (if σ is a homotopy band
and λ ∈ k×, then we write P •σ instead of P •σ,λ). In all that follows, we
consider σ and τ only up to the action of the inverse operation ?; this means
that whenever we are comparing σ and τ , we also need to compare σ and τ
in order to get all morphisms.

Graph maps

Assume that σ and τ have a maximal subword in common, say σiσi+1 · · ·σj
and τiτi+1 · · · τj, with each σ` equal to τ`. We also allow this subword to be
a trivial homotopy string.

Consider the following conditions.

LG1 Either the homotopy letters σi−1 and τi−1 are both direct and there
exists a path p in Q, such that pτi−1 = σi−1, or they are both inverse
letters and there exists a path p in Q, such that τi−1 = σi−1p.

LG2 The homotopy letter σi−1 is either zero or inverse, and τi−1 is either
zero or direct.

RG1 Dual of (LG1).

RG2 Dual of (LG2).
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If one of (LG1) and (LG2) holds, and one of (RG1) and (RG2) holds, then one
can construct a morphism from P •σ to P •τ called a graph map. Note that if σ
and τ are infinite homotopy strings, then the definition above extends to the
case where the strings have an infinite subword in common: for instance, if
this subword is on the left, then one simply drops conditions (LG1) or (LG2).

We make following useful observation. Let u = α1 · · ·αn be a cycle, i.e. u
is an antipath, αnα1 ∈ I, and there exists no v with the same properties,
such that u is a power of v. Let σ = . . . σju1u2 . . . and τ = . . . τju

′
1u
′
2 . . .

(with ui = u = u′i) be infinite homotopy strings, which share a maximal
infinite common subword σi . . . σju1u2 . . . = τi . . . τju

′
1u
′
2 . . ., such that u is

not a suffix of σi . . . σj. Then, this common subword satisfies one of the left
end point conditions (and hence gives rise to a graph map) if and only if for
all l ∈ N their maximal common subword

u1u2 . . . = u′l+1u
′
l+2 . . .

satisfies one of the left end point conditions. By applying a similar argument
to the case when σ = τ are infinite homotopy strings, we see that graph
maps between infinite string complexes, which correspond to infinite common
subwords, occur in families. It is not difficult to see from the definition of the
associated chain maps, that in the above situation, these families of graph
maps correspond to morphisms fi : P •σ → P •τ [m+ i · n], where i ≥ 0 and n is
the length of the cycle as above.

Quasi-graph maps

Keep the above notations. If none of the conditions (LG1), (LG2), (RG1)
and (RG2) hold, then one can construct a morphism in Db(A)/[1] from P •σ
to P •τ , called a quasi-graph map. Again, this definition extends to infinite
homotopy strings in the natural way.
Note that a quasi-graph map gives rise to a homotopy class of single and
double maps, defined in the next section. In fact, all single and double maps
that are not singleton maps arise in this way, see [4].

Single maps

Assume that there are direct homotopy letters σi and τj and a non-trivial
path p, such that s(p) = t(σi) and t(p) = t(τj). (What follows also works if
σi and τj are both inverse letters by working with σ and τ instead).

Consider the following conditions:
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L1 If σi is direct, then σip ∈ I.

L2 If τi is inverse, then pτ i ∈ I.

R1 If σi+1 is inverse, then σi+1p ∈ I.

R2 If τi+1 is direct, then pτi+1 ∈ I.

If conditions (L1), (L2), (R1) and (R2) are satisfied, then p induces a morph-
ism of complexes from P •σ to P •τ called a single map.

Assume, moreover, that

• σi+1 is zero or is a direct homotopy letter of the form pσ′i+1, where σ′i+1
is a direct homotopy letter;

• τi is zero or is a direct homotopy letter of the form τ ′ip, where τ ′i is a
direct homotopy letter.

• p is neither a subword of σi nor a subword of τi+1.

If that is the case, then p induces a morphism from P •σ to P •τ in Db(A)/[1]
called a singleton single map.

Double maps

Keeping the above notations, assume now that there are non-trivial paths p
and q, such that s(p) = s(σi), t(p) = s(τj), s(q) = t(σi) and t(q) = t(τj), and
such that σiq = pτi.
If conditions (L1) and (L2) above are satisfied for p and conditions (R1) and
(R2) are satisfied for q, then p and q induce a morphism of complexes from
P •σ to (a shift of) P •τ called a double map.
If, moreover, there exists a non-trivial path r, such that σi = σ′ir and τi = rτ ′i ,
with σ′i and τ ′i direct homotopy letters, then p and q induce a morphism from
P •σ to P •τ in Db(A)/[1] called a singleton double map.

The basis

We can now state the main result of [4].

Theorem I.3.1 (Theorem 3.15 of [4]). A basis of the space of morphisms
from P •σ to P •τ in Db(A)/[1] is given by all graph maps, quasi-graph maps,
singleton single maps and singleton double maps in Db(A)/[1].

Definition I.3.2. The basis described in Theorem I.3.1 will be called the
standard basis.
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I.3.2 Morphisms as intersections
As before, let A = kQ/I denote a fixed gentle algebra and let SA = (SA,M)
denote its marked surface (see Section I.1). As before, we assume all sets
consisting of curves and laminates on SA to be in minimal position.

The main result of this section (Theorem I.3.3) is that the set of intersection
points of two curves δ1 and δ2 on SA gives rise to the standard basis of the
vector space of morphisms from P •σ(γ1) to P •σ(γ2) in Db(A)/[1]. Recall that SA
has no punctures and possibly boundary components without any marked
points. Throughout this section, we will replace all boundary components of
SA without marked points by punctures, and consider infinite arcs wrapping
around such a boundary component as infinite arcs going to the puncture as
explained in the preliminaries. We can do this, since according to our con-
ventions every infinite arc wraps around such a boundary component only
in one direction, namely the counter-clockwise direction. In our new marked
surface, every boundary component contains at least one marked point and
the set of punctures is in bijection with the unmarked boundary components
of our old surface.

Let us state the main result of this section.

Theorem I.3.3. Let γ1 and γ2 be arcs or loops on SA, and let B be the
standard basis of HomDb(A)/[1](P •σ(γ1), P

•
σ(γ2)). Then there exists an explicit

injection
B : γ1

−→∩ γ2 ↪→ B.

Moreover, the following hold true.

i) The map B is a bijection, unless γ1 and γ2 are the same loop and
P •σ(γ1),λ1

and P •σ(γ2),λ2
are isomorphic, or γ1 and γ2 intersect at a punc-

ture.

ii) If γ1 and γ2 are the same loop and P •σ(γ1),λ1
and P •σ(γ2),λ2

are isomorphic,
then B is not surjective, and the missing elements in its image are an
invertible graph map and the quasi graph map ξ that appears in an
Auslander-Reiten triangle

τP •σ(γ1) −→ E −→ P •σ(γ1)
ξ−→ τP •σ(γ1)[1]

(keeping in mind that in this case, τP •σ(γ1) = P •σ(γ1)[1] = P •σ(γ1) in
Db(A)/[1]).
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iii) For every puncture p at which γ1 and γ2 intersect, there exists an in-
finite family of elements (B(p)(i))i≥0 in B, where B(p)(0) = B(p).
Morover B is equal to the disjoint union of the image of B and all
elements of the form B(q)(j), where q ∈ γ1 ∩ γ2 is a puncture and
j ≥ 1.

The proof of Theorem I.3.3 occupies the rest of this section.

The Walk of an Intersection

It will be useful to lift intersection points of curves to a universal cover of SA.
Let π : S̃A → SA be a fixed universal covering map, and let L̃A be the set
of all lifts of laminates ` ∈ LA. Note that S̃A is a union of polygons whose
edges are either boundary segments or laminates in L̃A. We lift arcs on SA
to arcs on S̃A and loops on SA to infinite paths (0, 1)→ S̃A.

Let γ1 and γ2 be two arcs or loops on SA. Let q ∈ γ1
−→∩ γ2, and let q̃ be

any lift of q on S̃A. There are unique lifts γ̃1 and γ̃2 on S̃A, such that γ̃1 and
γ̃2 intersect at q̃.

Lemma I.3.4. The curves γ̃1 and γ̃2 intersect only at q̃.

Proof. It follows from [69] that γ̃1 and γ̃2 are simple. Assume that they
intersect twice in succession, say at r̃1 and r̃2. Then r̃1 and r̃2 are not two
lifts of the same intersection point of γ1 and γ2. Indeed, the sections of γ̃1
and γ̃2 between r̃1 and r̃2 form a disc. Around the boundary of this disc,
we can assume without loss of generality that γ̃1 comes before γ̃2 at r̃1 in
the orientation of the surface. But then γ̃2 comes before γ̃1 at r̃2, which is
impossible if r̃1 and r̃2 are lifts of the same intersection point of γ1 and γ2.

Therefore, by the bigon criterion (see [42], Proposition 1.7), we can find a
homotopy of γ̃1 which descends to a homotopy of γ1 that reduces the number
of intersections with γ2 - a contradiction with the assumption that the two
are in minimal position.

Next, we define a region Sq̃ of S̃A. Let P0 be the polygon of S̃A containing q̃.
Define a set of polygons Pn recursively by setting P0 = {P0} and by letting
Pn+1 contain all polygons of Pn and all polygons Pv adjacent to a polygon
of Pn, such that both γ̃1 and γ̃2 go through Pv. Then Sq̃ is defined to be the
union of all polygons belonging to one of the Pn. In other words, Sq̃ is the
region of S̃A containing the laminates intersected by both γ̃1 and γ̃2 as well
as q̃.

Lemma I.3.5. The surface Sq̃ is a union of finitely many polygons.
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δ1

δ2

The surface Sq̃: Dashed curves belong to L̃A, whereas the blue and the red
curve show δ1 and δ2, respectively, and solid black lines belong to ∂S̃A. In

this example σ(q) has 3 homotopy letters.

Proof. The result is trivial if γ1 or γ2 is an arc. Assume that γ1 and γ2 are
loops and suppose that Sq̃ contains an infinite number of polygons. Since a
fundamental domain of SA in S̃A contains only finitely many polygons, one
of the polygons in Sq̃ will contain another lift of q, say q̃′. At this lift, γ̃1 and
γ̃2 must intersect. This contradicts Lemma I.3.4.

Let δ1 and δ2 be the parts of γ̃1 and γ̃2 contained in Sq̃. In the interior of
Sq̃, the curves δ1 and δ2 cross the same laminates of L̃A in the same order.
These crossings define a (possibly empty and possibly infinite) homotopy
string σ(q). If σ(q) is non-empty, it is a subwalk of σ(γ1) and σ(γ2), where
we replaced γ1 and γ2 implicitely by the appropriate curves in the original
unpunctured surface SA in a canonical way. In case of a homotopy band
σ1 · · ·σn, we mean that σ(q) is a subwalk of the cyclic two-sided infinite walk
· · ·σ1 · · · σnσ1 · · · . If, on the other hand σ(q) is empty, it means that π ◦ δ1
and π ◦ δ2 are contained in a single polygon P of SA.

Remark I.3.6. Since we have replaced boundary components without marked
points by punctures, one should note that if γ1 and γ2 meet at a puncture,
then there exists lifts of them and an infinite number of lifted laminates that
are crossed by both lifts. In this case, the walk σ(q) is infinite on one side.

Lemma I.3.7. If σ(q) is empty, then the unique marked point in P as before
is contained inM (see Definition I.1.8).

Proof. Suppose the marked point in P is an element inM0. Then the only
laminate on the boundary of Sq̃ is a lift of the laminate ` associated to a
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vertex v ∈ Q0. But by definition of Sq̃, there exists i ∈ {1, 2}, such that γi
does not cross `. Thus, γi is contained in P and homotopic to a constant
path - a contradiction.

We now explain how an intersection gives rise to a morphism. For j ∈ {1, 2},
denote p1

j , . . . , p
m
j the ordered sequence of intersections of the curve δj with

the boundary or the laminates of LA. We may assume that if σ(q) is non-
empty, then for each i ∈ (1,m), pi1 and pi2 lie on the same laminate.

Then δ1 and δ2 in Sq̃ are homeomorphic to two arcs crossing in a closed disc;
their endpoints alternate on the boundary of Sq̃. We distinguish two cases:

a) if σ(q) is non-empty, then either p1
2 comes immediately before p1

1 in the
counter-clockwise orientation of ∂Sq̃, or vice versa;

b) if σ(q) is empty (i.e. m = 2), let X be the unique marked point on the
boundary of the polygon containing δ1 and δ2. Then either X is after
an endpoint of δ2 and before an endpoint of δ1 in the counter-clockwise
orientation of ∂Sq̃, or vice versa.

The subsequent lemmas prove that δ1 and δ2 encode a basis element of the
corresponding homomorphism space in a natural way.

Lemma I.3.8. Let B be the basis of HomDb(A)/[1](P •σ(γ1), P
•
σ(γ2)) described

in Theorem I.3.1, and let q ∈ γ1
−→∩ γ2. Then q gives rise to an element

B(q) ∈ B. Furthermore,

i) If σ(q) is non-empty, then B(q) is a graph map if p1
2 comes immediately

before p1
1 in the counter-clockwise orientation and a quasi graph map

otherwise.

ii) If σ(q) is empty, then B(q) is a singleton single or singleton double
map.

Proof. Suppose first that σ(q) is non-empty. Assume for the moment that q
is not on the boundary of SA and is not a puncture. Let Pv be the polygon in
which p1

1, p
1
2, p

2
1, p

2
2 are found, and let X be the marked point on its boundary.

Note that a left (resp. right) endpoint condition is satisfied if and only if γ1
and γ2 are arranged as in Figure I.5.
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γ1γ1γ1
γ2

Figure I.5: The arcs γ1 and γ2 in Pv.

The position of X with respect to p1
1 and p1

2 decides which of the conditions
(LG1) to (RG2) of Section I.3.1 is satisfied, as illustrated below. Note that
this includes the case that q is a boundary intersection, that is p1

1 and p1
2

both coincide with the marked point.

δ1
δ2

δ1
δ2

Figure I.6: The endpoint conditions LG1/RG1 (left) and LG2/RG2 (right)

As the analogous statements hold for pm−1
1 , pm−1

2 , pm1 and pm2 , it follows
that the intersection point q defines the data of a graph map if p1

2 comes
immediately before p1

1 in the counter-clockwise orientation and the data of a
quasi graph map otherwise.

Next, assume that q is on the boundary of SA, and that δ1 6= δ2. Then
(LG2) is automatically satisfied for σ(q), and we need only repeat the above
argument for pm−1

1 , pm−1
2 , pm1 and pm2 .

Now, assume that q is on the boundary of SA, and that δ1 and δ2 are equal.
This implies that γ1 and γ2 are the same arc, and that q is on the boundary
of SA. Then B(q) will be an identity map from one of P •σ(γ1) and P •σ(γ2) to
the other. Indeed, we can choose representatives of the arcs γ̃1 and γ̃2, such
that they only cross at their endpoints. In this case, one of the endpoints
will be in γ1

−→∩ γ2 and the other in γ2
−→∩ γ1. The image of these points by B

will be the identity graph maps P •σ(γ1) −→ P •σ(γ2) and P •σ(γ2) −→ P •σ(γ1).
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Finally, we note that in the case where δ1 and δ2 meet in one puncture,
then σ(q) is infinite on one side, and we need to look at the conditions (LG1)
to (RG2) on one side only. If they meet at two punctures, then γ1 and γ2 are
homotopic. Recall from Section I.3.1 that in any case, there exists a whole
family of graph maps (fi)≥0 attached to σ(q). These are the elements B(q)(i)
for i ≥ 0. In particular, if γ1 and γ2 are homotopic, then B(q) will be an
identity morphism, as above.

This finishes the proof for case i).

To prove case ii), suppose that σ(q) is empty and that q 6∈ ∂SA. Con-
sequently, δ1 and δ2 are contained in a single polygon Pv. Depending on the
position of the marked point in Pv, q gives rise to different types of singleton
maps. If the marked point lies between pj2 and pj1 in counter-clockwise order
for some j ∈ {1, 2}, then q defines the data of a singleton single map. In

δ1

δ2

δ1

δ2

Figure I.7

the other situation, i.e. the marked point lies between pj1 and pj2 in counter-
clockwise order, q gives rise to a singleton double map. In the previous
picture this is the situation we obtain by interchanging the labels δ1 and δ2.

Finally, if δ1 or δ2 have a marked endpoint it can be seen that q gives rise
to a singleton single map.

Remark I.3.9. The graph and quasi graph maps which occur in the previous
Lemma as B(q) cannot be invertible graph maps or maps of the form ξ
occuring in Auslander-Reiten triangles as described in Theorem I.3.3 (2).

Remark I.3.10. The precise definition of B depends on the homotopy rep-
resentatives of the curves γ1 and γ2

Indeed, suppose that γ1 and γ2 are the same arc, and that q is on the
boundary of SA. Recall from the proof of Lemma I.3.8 that the identity
morphisms between P •σ(γ1) and P •σ(γ2) are obtained as follows. First, choose
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δ1

δ2

Figure I.8

representatives of the arcs γ̃1 and γ̃2 which only cross at their endpoints.
Then one of the endpoints will be in γ1

−→∩ γ2 and the other in γ2
−→∩ γ1. The

image of these points by B will be the identity graph maps P •σ(γ1) −→ P •σ(γ2)
and P •σ(γ2) −→ P •σ(γ1).
Choosing different representatives of γ̃1 and γ̃2 could lead to the first inter-
section point belonging to γ2

−→∩ γ1 and the second one belonging to γ1
−→∩ γ2.

Then the images of these two points by B would be permuted.

Lemma I.3.11. Let f ∈ HomDb(A)/[1](P •σ(γ1), P
•
σ(γ2)) be an element of B

which is neither an invertible graph map nor a quasi graph map of the form
ξ occuring in Auslander-Reiten triangles as described in Theorem I.3.3 (2).
(see also Remark I.3.9). Then there exists a unique q ∈ γ1

−→∩ γ2, and, in case
q is a puncture, a unique i ≥ 0, such that

f =

B(q), if q is not a puncture;
B(q)(i), otherwise.

Proof. Let γ̃1 be a lift of γ1. We distinguish two cases.
First, assume that f is a graph or quasi graph map and let σ be the maximal
common subword associated to f as in Section I.3.1. Our assumptions imply
that σ is finite or σ(γ1) and σ(γ2) are infinite homotopy strings, in which
case σ is an (one- or two-)sided infinite homotopy string. The subword σ of
σ(γ1) corresponds to a section δ1 of γ̃1. Let γ̃2 be the unique lift of γ2, such
that the section δ2 corresponding to the subword σ passes through the same
polygons as δ1.
As we have seen in the proof of Lemma I.3.8, the conditions (LG1), (LG2),
(RG1) and (RG2) are equivalent to certain cofigurations of δ1, δ2 and of the
marked point in the first and last polygons that δ1 and δ2 cross (see Figure
I.6). These conditions force δ1 and δ2 to intersect in a (unique) point q̃. By
contruction, f = B(π(q̃)).
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Next, assume that f is a singleton single or singleton double map. If f is
a single map, denote by p the non-trivial path which appears in the definition
of single maps, see Section I.3.1. Otherwise, let p denote the non-trivial path
which was denoted by r in the definition of singleton double maps, see Section
I.3.1. There exists a polygon P of the surface S̃A, which corresponds to p
and is crossed by γ̃1. We write γ̃2 for the unique lift of γ2 which crosses P ,
and denote δi the restriction of γ̃i to P . The combinatorial conditions in the
definition of singleton single and singleton double maps are then equivalent
to certain configurations of the marked point in P and the endpoints of δ1
and δ2 as shown in Figure I.7 and Figure I.8. As above, this proves that δ1
and δ2 intersect in a (unique) point q̃ such that B(π(q̃)) = f .

The previous lemma finishes the proof of Theorem I.3.3.

I.4 Mapping cones in the derived category of
a gentle algebra

In this Section we will show that the mapping cone of a map in
Db(A)/[1] is given by the homotopy strings of the two curves resolving the
corresponding crossing.

Theorem I.4.1. [31] Let A be a gentle algebra and let P •σ and P •τ be in-
decomposable objects in Db(A)/[1] with homotopy strings or bands σ and τ .
Let f • ∈ HomDb(A)(P •σ , P •τ ) be an standard basis element which is neither
and invertible graph map, nor a quasi map of the form ξ occuring in an
Auslander-Reiten triangle as described in Theorem I.3.3. Then the indecom-
posable summands of the mapping coneM•

f• are given by the homotopy strings
and bands occurring in the green and red boxes resulting from the following
graphical calculus.

1. Let σ = . . . σi−2σi−1σi . . . σjσj+1σj+2 . . . and τ =
. . . τi−2τi−1τi . . . τjτj+1τj+2 . . . and suppose f • is a graph map
with common homotopy substring σi . . . σj = τi . . . τj Then
M•

f• = P •c1 ⊕ P •c2 with homotopy strings c1 = . . . σi−2σi−1τ i−1τ i−2 . . .
and c2 = . . . τ j+2τ j+1σj+1σj+2 . . . is given by:

• • • • • •

• • • • • •

· · ·σi−3σi−2

· · · τi−3τi−2

σj+2σj+3 · · ·

τj+2τj+3 · · ·

σi−1 σi σj σj+1

p q

τi−1 τi τj τj+1
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Similarly, if the one-sided infinite string σi . . . = τi . . . is the com-
mon substring of f •, then M•

f• is isomorphic to P •c , where c =
. . . σi−1τ i−1τ i−2 . . .

2. Let σ = . . . σiσi+1 . . . and τ = . . . τjτj+1 . . . and suppose f • is a
single map. Then M•

f• = P •c1 ⊕ P •c2 with homotopy strings c1 =
. . . σi−1σipτ jτ j−1 . . . and c2 = . . . σi+2σi+1pτj+1τj+2 . . . is given by:

• • •

• • •

· · ·σi−1σi−1 σi+2σi+3 · · ·

· · · τj−2τj−1 τj+2τj+3 · · ·

σi

p

σi+1

τj+1

τj

σi+1pτj+1

3. Let σ = . . . σi−2σi−1σiσi+1σi+2σi+3 . . . and τ = . . . τj−2τj−1τjτj+1τj+2 . . .
and suppose f • is a double map. Then M•

f• = P •c1 ⊕P
•
c2 with homotopy

strings c1 = . . . σi−2σi−1pτ j−1τ j−2 . . . and c2 = . . . σi+2σi+1qτj+1τj+2 . . .
is given by:

• • • •

• • • •

· · ·σi−3σi−2

· · · τi−3τi−2

σi+2σi+3 · · ·

τj+2τj+3 · · ·

σi−1 σi+1

τj+1

p q

σi

τiτj−1

Note that in the previous theorem, P •ci is zero if the corresponding diagram
obtained by graphical calculus is empty. In particular, if f • : P •σ → P •τ is
a standard basis element, then M•

f• is indecomposable or zero if σ or τ is a
homotopy band, or, if f • is a graph map corresponding to an infinite common
substring.

Remark I.4.2. Note that quasi-graph maps are implicitly treated in the
previous theorem, since they give rise to homotopy classes of single and
double maps.

Theorem I.4.3. Let σ and τ be homotopy strings or bands and f • : P •σ → P •τ
be a map in Db(A)/[1] associated to a crossing point q ∈ γ(σ)−→∩ γ(τ) of the
corresponding arcs γ(σ) and γ(τ). Suppose further that f • is different from
the identity and if σ is a band, different from the map P •σ → τP •σ [1]. Let
M•

f• = P •c1 ⊕ P
•
c2 be its mapping cone (as described in Theorem I.4.1). Then

the homotopy classes of arcs γ(c1) and γ(c2) corresponding to P •c1 and P •c2

are given by the following resolution of the crossing γ(σ)−→∩ γ(τ).
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γ(σ)γ(τ)

γ(c1)

γ(c2)

Figure I.9: Curves associated to the mapping cone M•
f• = P •c1⊕P

•
c2 of a map

f • : P •σ → P •τ .

Proof. We first consider the case when f • is a graph map. If q is not a
puncture but in the interior, then locally in the surface this corresponds to
the following configuration.

γ(: : : τi−2τi−1) γ(: : : σi−2σi−1)γ(c1)

γ(c2)

γ(σi : : : σj) = γ(τi : : : τj)

γ(τi+1τi+2 : : :)γ(σi+1σi+2 : : :)

Figure I.10: Curves associated to the mapping coneM•
f• = P •c1⊕P

•
c2 of a map

f • : P •σ → P •τ when f • is a graph map. In this picture we have decomposed
γ(σ) into segments γ(. . . σi−2σi−1), γ(σi . . . σj) and γ(σj+1σj+2 . . .) and γ(τ)
into segments γ(. . . τi−2τi−2), γ(τi . . . τj) and γ(τj+1τj+2 . . .).

The blue dotted region corresponds to the topological disc Sq̃ of Section I.3.2.
Thus we see that the curve γc1 at the top is split into two subcurves, so that
γ(c1) = γ(. . . σi−2σi−1)γ(. . . τi−2τi−1). This proves that P •c1 is has the form
in the statement of the theorem. A similar argument at the bottom of the
picture proves the result for P •c2 . The same arguments work if q is a puncture
or a boundary intersection.
Next, we treat the case of single maps. In that case, γ(σ) and γ(τ) meet in
a polygon which forms the whole of Sq̃.
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γ(: : : τi−2τi−1) γ(: : : σi−2σi−1)γ(c1)

γ(c2)
γ(τi+1τi+2 : : :)γ(σi+1σi+2 : : :)

γ(τi)γ(σi)

Figure I.11

We see that γ(c2) is obtained by γ(τi+1τi+2 . . .)γ(p)γ(σi+1σi+2 . . .), as in
the previous case. We also see that γ(c1) is obtained in a similar fashion, by
noticing that σipτ i contains one copy of p, since σi ends in (and τ i starts in)
p−1.
The remaining cases of a double map or of a single map arising from an
intersection on the boundary of SA are treated in a similar fashion.

I.5 Auslander-Reiten triangles

I.5.1 Reminder on Auslander-Reiten triangles
We recall the definition of Auslander-Reiten triangles.
Definition I.5.1. Let F be a triangulated category. A distinguished triangle

X Y Z X[1]u v w

is an Auslander-Reiten triangle if
1) X and Z are indecomposable, and

2) for all non-split morphisms h : W → Z, w ◦ h = 0.
The following is an immediate consequence of the definition

Lemma I.5.2. Let

X Y Z X[1]u v w

be an Auslander-Reiten triangle in a triangulated category F and let T : F →
F ′ be a triangle equivalence. Then

T (X) T (Y ) T (Z) T (X)[1]T (u) T (v) T (w)
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is an Auslander-Reiten triangle.

In case it exists, any of the objects X and Z determines the Auslander-
Reiten triangle uniquely up to a non-unique isomorphism. In particular, the
isomorphism class ofX determines the isomorphism class of Z and vice versa.
It gives rise to a partially defined bijection τ on the class of isomorphism
classes in F , such that τ applied to the isomorphism class of Z is by definition
the isomorphism class of X.

Auslander-Reiten triangles of gentle algebras. It follows from a result
in [49] that in the setting of Db(A), where A is a finite dimensional Gorenstein
algebra, τ is defined precisely for indecomposable objects in the category
of perfect complexes Perf(A) = Kb(A − proj). Furthermore it was shown
that ifS is a Serre functor on Perf(A) (e.g. the left derived functor of the
Nakayama functor), then τ(X) ∼= S(X)[−1]. Note that by a result in [45],
gentle algebras are Gorenstein.
For the remainder of this section, let A be a gentle algebra. Its indecom-
posable perfect objects in Db(A−mod) are given by the string objects with
finite homotopy string and the band objects. We recall some general facts on
Auslander-Reiten triangles in Kb(A− proj). The first explicit description of
such triangles for gentle algebras was given in [13]. Let P •σ ∈ Kb(A−proj) be
an indecomposable object, where σ is a finite homotopy string or a homotopy
band. Then, there exists an Auslander-Reiten triangle

P •σ Y Z X[1]f g h

in Kb(A− proj) and the following are true.

• The object Y is the direct sum of at most two indecomposable objects
and up to isomorphism the entries in f, g, h are standard basis elements
[4].

• If P•σ is a band complex associated to a m-dimensional K[X]-module,
then Z ∼= P •σ , that is τ−1P •σ = P •σ , and Y is (isomorphic to) a direct
sum of band complexes associated tom±1-dimensional K[X]-modules.

It can be shown that if P •σ is a band complex associated to a 1-dimensional
K[X]-module, then h as above is not represented by an intersection. In
particular, if the representing loop of Pσ is simple, then none of the maps in
an Auslander-Reiten triangle are represented by an intersection.
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I.5.2 Geometric description of Auslander-Reiten tri-
angles

The purpose of this section is to show that an Auslander-Reiten triangle of a
perfect string object P •σ is determined by the corresponding arc γ(σ) on SA.

For this, we follow the convention that given a finite homotopy string σ
with corresponding arc γ(σ), the start of γ(σ) corresponds to s(σ) and the
end of γ(σ) corresponds to t(σ) and we define the following:

1. Let sσ be the homotopy string corresponding the arc sγ(σ) obtained
from γ(σ) by rotating its start clockwise to the next marked point on
the boundary.

2. Let σe be the homotopy string corresponding the arc γ(σ)e obtained
from γ(σ) by rotating its end clockwise to the next marked point on
the boundary.

3. Let sσe be the homotopy string corresponding the arc sγ(σ)e obtained
from γ(σ) by rotating its end and it’s start clockwise to the next marked
point on the boundary.

γ(σ)
B B

0

γ(σ)e

sγ(σ)

Figure I.12: The arcs sγ(σ), γ(σ)e associated to γ(σ).

It follows from the above that sγ(σ) = γ(sσ), γ(σ)e = γ(σe) and
sγ(σ)e = γ(sσe). We can now state the main result of this Section.

Theorem I.5.3. Let P •σ ∈ Db(A−mod)/[1] be an indecomposable object with
finite homotopy string σ. Then the Auslander-Reiten triangle starting in P •σ
is given by

P •σ P •
sσ ⊕ P

•
σe P •

sσe P •σ [1]

(
sf
fe

)
( sg ge ) h

Furthermore, every morphism in the above triangle can be given by a stand-
ard basis element corresponding to the distinguished intersection as described
below.

55



It directly follows that the Auslander-Reiten translate τP •σ of P •σ corresponds
to rotating both endpoints of the corresponding arc γ(σ).

Corollary I.5.4. Let P •σ ∈ Db(A − mod)/[1] be an indecomposable object
with finite homotopy string. Let τ−1γ(σ) be the arc corresponding to τ−1P •σ .
Then

τ−1γ(σ) = γ(sσe).

In Figure I.13 we give an example of the geometric realisation of the Auslander-
Reiten translate of P •σ .

γ(σ)

τ
−1
γ(σ)

Figure I.13: The arcs associated to indecomposable perfect string objects P •σ
and τ−1P •σ in Db(A)/[1].

Remark I.5.5. A version of Theorem I.5.3 holds for string complexes of ho-
motopy strings which are infinite. Indeed, with a similar proof, one can show
that these irreducible maps [4] are represented by intersections of arcs γ(σ)
and sγ(σ) (resp. γ(σ)e), where s(−) (resp. (−)e) is extended to arcs which
end (resp. start) at a puncture. In this case, the corresponding intersection is
at the puncture and the associated map is a graph map given by an infinite
subword.

Distinguished intersections and fractional twists

By definition, γ shares its start point with γe and its end point with sγ.
They determine boundary intersections in γ

−→∩ γe and γ
−→∩ sγ, which we call

distinguished.
Write τ−1γ for s(γe). Then τ−1γ and (sγ)e are homotopic and if δ ' τ−1γ
and γ are in minimal position, then γ∩δ contains a distinguished intersection
as shown in Figure I.13. A more precise definition is given as follows.
Choose a lift γ̃ of γ to the universal cover of S and denote δ̃ the unique lift of
δ whose end points are successors of end points of γ̃. Then, the distinguished
intersection corresponds to the unique intersection of γ̃ and δ̃.

In fact, the action of τ−1 on homotopy classes is induced by the inverse of a
self-homeomorphism τ of S, which we describe next.
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Definition I.5.6. Let ‖‖ denote the norm in the complex plane. Let D be a
tubular neighborhood of a boundary component B ⊆ ∂S with N := |B∩M|
marked points and φ : D → {z ∈ C | 1 ≤ ‖z‖ ≤ 2} an arbitrary orientation
preserving homeomorphism such that φ(B ∩M) = {x ∈ C |xN = 1} is the
set of roots of unity of order N . Let exp : C→ C\{0} denote the exponential
function. The fractional twist associated with B is a τB : S → S map,
which restricts to the map

D D

x φ−1
(
φ(x) · exp

(
2πi
|I| · (2− ‖φ(x)‖)

))
.

on D and which restricts to the identity of S \D.

The homeomorphism τB rotates the surface in a neighborhood ofB in counter-
clockwise direction, as shown in Figure I.14.

τB

Figure I.14: The action of τB on arcs

The isotopy class of τB relative to the boundary is independent of the
choice of D and φ. Further, τB and τB′ commute up to isotopy relative to
the boundary. Assuming B 6= B′, this can be seen by choosing pairwise
disjoint neighborhoods of B and B′.
The homeomorphism τ is defined as ∏B τB, where B is indexed by the set
of boundary components of S. It is well-defined up to isotopy relative to the
boundary. On the level of homotopy classes of arcs its inverse τ−1 acts in the
same way as the operation τ−1 defined earlier.

Proof of Theorem I.5.3. We first note that since sγ(σ) = γ(σ)e, we have
sσ = (σe). Therefore it is enough to prove the result for fe, the proof for sf
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then follows. Furthermore, the proof for sg and ge then also follows noting
that sσe =s (σe) = (sσ)e.

To prove that fe is an irreducible map of the required form we follow
Algorithm 6.3 in [4] step by step. Algorithm 6.3 in [4] breaks down into five
cases. In each case, it suffices to prove that σe is the homotopy string of the
resolution of the boundary intersection of γ(σ) with the arc γB containing in
its homotopy class the boundary arc connecting the end of γ(σ) and the end
of γ(σ)e. Let ρ be the homotopy string of γB, that is γB = γ(ρ). Locally in
the surface we have the following configuration

γ(σ)
B B

0

γ(σ)e
γ(ρ)

For what follows, write σ = σ1 · · ·σn with homotopy letters σi.

Case 1: Suppose that there exists a maximal path q in Q (which then
corresponds to a single homotopy letter) and a maximal inverse antipath
θ = θ1 · · · θm, such that σqθ is a homotopy string. Note that by Remark
6.5 (4) in [4], θ is finite. Furthermore, γ(σ) ends on the marked point cor-
responding to the start of γ(q). Since t(q) = s(θ) and s(q) = t(σ), σqθ is
obtained from σ as the homotopy string of the mapping cone of the singleton
single map φ• : P •θ1···θn → P •σ induced by q and thus σe = σqθ. By max-
imality of θ, it follows that γ(θ) ∼ γ(ρ) and the single map φ• corresponds
to the boundary intersection γ(ρ)−→∩ γ(σ). Then fe is a graph map induced
by the subword σ and hence is represented by the distinguished intersection
γ(σ)−→∩ γ(σ)e as claimed.

The other cases are treated in a similar way and we only give an outline for
each.

Case 2: Suppose that σr+1 . . . σn is a direct antipath and that σr is an
inverse homotopy letter. Suppose further that there exists α ∈ Q1, such
that ασr /∈ I. Assume also that there exists a maximal inverse antipath θ,
such that αθ is a homotopy string. Then we have ρ = σn . . . σr+1 αθ and
σe = σ1 . . . σrαθ, which is the homotopy string of the mapping cone of a
graph map P •ρ → P •σ associated to the common subword σr+1 . . . σn and fe
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is a graph map associated to the common subword σ1 . . . σr of σ and σe.

Case 3: Suppose that σr+1 . . . σn is a direct antipath and that σr is an in-
verse homotopy letter. Suppose further that there exists no α ∈ Q1 such that
ασr /∈ I. In this case, σe = σ1 . . . σr−1 and ρ = σr+1 . . . σn where σe is the
homotopy string of the mapping cone of the graph map Pρ → Pσ associated
to the common subword σr+1 . . . σn and where fe is a graph map associated
to the common subword σe.

Case 4 Suppose that σr+1 . . . σn is a direct antipath and that σr is a direct
homotopy letter and write σr = qα where α ∈ Q1. Let θ be a maximal
inverse antipath such that σ1 . . . σr−1qθ is a homotopy string. Then one veri-
fies that σe = σ1 . . . σr+1qθ and ρ = θασr+1 . . . σn, where σe is the homotopy
string of a the mapping cone of the graph map P •ρ → P •σ associated to the
common subword σr+1 . . . σn and fe is given by the graph map determined
by the common subword σ1 . . . σr−1.

Case 5: Suppose that σ is a direct antipath and suppose that there exists
α ∈ Q1 such that ασ1 ∈ I. Let θ be a maximal inverse antipath starting at
s(α). Then σe = θ, which is the mapping cone of the graph map P •ρ → P •σ
associated to the subword σ, where ρ = θασ. In that case, fe is a singleton
single map.

If none of the above cases hold, then σe is empty and P •σe = 0, so there is
nothing to show.

Remark I.5.7. We provide an alternative proof of a (slightly weaker) version
of Theorem I.5.3 in Chapter 2 based on Section I.7 and Section I.8 below.

I.6 Avella-Alaminos–Geiss invariant on the sur-
face

In [11] Avella-Alaminos and Geiss define invariants for derived equivalence
classes of gentle algebras. We will refer to these invariants as AG-invariants.
In this Section we show that these derived invariants are encoded in the
ribbon surface of a gentle algebra. In their paper Avella-Alaminos and Geiss
show that two gentle algebras that are derived equivalent have the same
AG-invariant but they also give an example of two gentle algebras that are
not derived equivalent yet have the same AG-invariant. Since then, many
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other examples of non-derived equivalent gentle algebras with the same AG-
invariants have appeared in the literature, see for example [53, 1].

I.6.1 The Avella-Alaminos–Geiss invariant
We begin by briefly recalling the definition of the AG-invariants. Let A =
kQ/I be a gentle algebra with augmented set of maximal pathsM =M∪M0
(see Definition I.1.8). Let F be the set of paths w in (Q, I) such that if
w = α1 . . . αn then αiαi+1 ∈ I for all i ∈ {1, . . . , n − 1}, and such that w is
maximal for this property, that is for all β ∈ Q1, if t(β) = s(α1) then βα1 /∈ I
and if t(αn) = s(β) then αnβ /∈ I. Let F0 = {ev | v ∈ W0} where W0 is
the subset of Q0 containing all vertices that are either the source or target
of only one arrow and those vertices that are the target of exactly one arrow
α and the source of exactly one arrow β and αβ ∈ I.

Let H0 = m0 with m0 ∈ M. Set F0 = f0 where f0 is the unique element
in F , if it exists, such that t(f0) = t(m0) and such that if m0 = pα is non-
trivial with α ∈ Q1 then f0 = qβ with β 6= α and β ∈ Q1. If no such f0 ∈ F
exists then we set f0 = et(m0). Note that in this case et(m0) ∈ F0.

Now define H1 = m1 where m1 is the unique element inM, if it exists,
such that s(m1) = s(f0) and such that if f0 = γq is non-trivial with γ ∈ Q1
then m1 = δr with δ 6= γ and δ ∈ Q1. If no such m1 exists then we set
m1 = es(f0) and we note that es(f0) ∈M0.

Define Fi−1, and Hi for i ≥ 2 in an analogous way to the above. The
algorithm stops as soon as Hi = H0 and we set k = i. Set l equal to the
number of arrows in F0, . . . , Fk−1.

We repeat this process until every element of M has appeared once as
one of the Hi. This gives rise to a set of tuples (k, l). We add to this a pair
(0, n) for each full cycle of relations of length n.

The AG-invariant of A is the function φA : N × N → N defined by
sending (i, j) to the number of pairs corresponding to these entries in the
above algorithm. the boundary consists of as many boundary segments as
there are marked points.

Theorem I.6.1. Let A be a gentle algebra with associated ribbon surface SA
and lamination LA. Let B1, . . . , Bn be the boundary components in SA. Then
the AG-invariant of A is given by the set of pairs (bi, ci) for 1 ≤ i ≤ n where

• bi is given by the number of marked points on Bi,

• ci = li − bi where li is equal to the number of laminates starting or
ending on Bi.
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Furthermore, if bi 6= 0, we also have ci = ∑
j kj − 2 where j runs over all

kj-gons which have at least one side isotopic with a boundary segment of Bi.

Note that in Theorem I.6.1, if a laminate ends and starts on the same
boundary component, then it is counted twice.

Proof of Theorem I.6.1. First suppose that B is a boundary component
with no marked points. Then, by Proposition I.1.12, B lies in the interior
of an n-gon P which corresponds to an n-cycle with full relations in (Q, I).
Therefore it corresponds to a pair (0, n) in the algorithm of the AG-invariant.
Furthermore, by construction each side of P corresponds to exactly one lam-
inate incident with B.

Now let B be a boundary component with marked points m1, . . . ,mr

ordered in counter-clockwise occurrence onB. Then setH0 to be the maximal
path associated to the fan at m1 or if i1 is the only edge of ΓA incident with
m1 set H0 = ei1 . Let F0 be the inverse path corresponding to the arrows
inscribed in the polygon P1 with boundary segment between m1 and m2.
Clearly if P1 has k1 edges (exactly one of which is a boundary segment by
Proposition I.1.12) then there are k1 − 2 arrows inscribed in that polygon
giving an element in F except when k1 = 2 in which case we set F0 = ej1
where j1 is the only internal edge of P1. Now letH1 be the path corresponding
to the maximal fan at m2 or if this fan consists of a single edge i2 then set
H1 = ei2 . We set F1 to be equal to the inverse path consisting of k2 − 2
inverse arrows inscribed in the k2-gon P1 with (unique) boundary segment
between m2 and m3 where F1 = ej2 with j2 the only internal edge of P1 if
k2 = 2. We continue in a similar fashion along the boundary component B
in a counter-clockwise direction until we return to the fan at m1. At this
point the algorithm repeats and therefore stops and we move on to the next
boundary component. The number of steps in each part of the algorithm
is given by the number of fans on the boundary component which is equal
to the number of marked points on B. The total number of arrows in the
inverse paths at B corresponds to the sum of the arrows in the kj-gons Pj
incident with B, that is it is equal to ∑r

i=j kj − 2 as claimed. We repeat this
for every boundary component, thus covering every element in M exactly
once.
Given a kj-gon Pj with one side isotopic to a boundary component Bi, it
follows from the construction of the lamination LA that there are exactly
kj − 1 laminates incident with the only boundary edge of Pj and since there
are as many marked points on a boundary component as there are boundary
segments, we have ci = li − bi as claimed. 2

Remark I.6.2. We give an alternative proof of Theorem I.6.1 in Chapter
II based on geometric arguments in the context of Fukaya-like triangulated
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categories, see Corollary II.1.11.

I.7 Composition of basis elements
In this section, we show that compositions of basis elements between string
and band complexes can be modelled in terms of the topology of the surface
SA. We prove the following Theorem.

Theorem I.7.1. Let ρ, σ and τ be homotopy strings or bands. Let p ∈
γ(ρ)−→∩ γ(σ), q ∈ γ(σ)−→∩ γ(τ) be intersections and let B(p) : P •ρ → P •σ and
B(q) : P •σ → P •τ be associated standard basis elements. Assume that if ρ, σ
and τ are identical, then they are homotopy strings.
Then, the following are equivalent:

a) If z ∈ γ(ρ)−→∩ γ(τ), then the coefficient of B(z) in the decomposition
of B(q) ◦ B(p) with respect to any standard basis containing B(z) is
non-zero.

b) there exist lifts γ̃(ρ), γ̃(σ) and γ̃(τ) of γ(ρ), γ(σ) and γ(τ) to the uni-
versal cover of SA which intersect in a triangle, a fork or a bigon as
shown in Figure I.15 and Figure I.16 and Figure I.17.

p̃

γ̃(ρ)

q̃
γ̃(σ)

z̃

γ̃(τ)

Figure I.15: ∗̃ is a lift ∗ ∈ {p, q, z}.
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p̃ = q̃ = z̃

γ̃(τ)

γ̃(σ)

γ̃(ρ)

Figure I.16: A “fork”.

Figure I.17: A bigon

We like to stress that the orientation of the figures in Figure I.15 and
Figure I.16 are important. Before we begin with the proof of Theorem I.7.1,
we recollect some important facts about standard basis elements which will
we use throughout this section. All of these observations were already made
(at least implicitely) in [4]. We assume that our gentle algebra A is given by
a quotient kQ/I as in Definition I.1.7.

1. The set of single, double and graph maps form a basis of the space of
chain maps, see Proposition 4.1. in [4]. In what follows, we refer to
any of such chain maps as a standard chain map.

2. Every standard chain map can be reconstructed from any of its com-
ponents. By this we mean the following. Suppose σ, τ are homotopy
strings or bands and f : P •σ → P •τ is a standard basis element. Let
u : P → P ′ be a map between indecomposable projectives P and P ′

of P •σ and P •τ ,, such that u occurs as a component of f . In particular,
u is a multiple of a map induced from an admissible path in Q. Re-
constructing f from u now means that if g : P •σ → P •τ is another basis
element, such that u is a component of f , then f = g.

3. Given a chain map f : Pσ → P •τ and a component u : P → P ′ of f as
before, then there is a unique chain map g : Pσ → P •τ with component
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u and g is a summand of f when decomposed into standard chain maps.
Thus, we can decompose f inductively into a sum of standard chain
maps by looking at a single component of f at each time. Moreover,
the decomposition obtained in this way is unique.

4. The homotoy relation in the space of chain maps with fixed source and
target are generated by relations of the form f ' 0 and f ' g, where
f and g are standard chain maps.

Summarizing the observations above we see that all information about a basis
element in the homotopy category is stored in a single component of any of
its representing standard chain maps.

Hoping that the following will clarify the proof of Theorem I.7.1 even further,
we point out the following:

1. Let f : P •σ → P •τ be a standard basis element. Let p ∈ γ(σ)−→∩ γ(τ) be
an intersection corresponding to f and let γ̃(σ) and γ̃(τ) be lifts in the
universal cover of SA which intersect in a lift p̃ of p. Let be U be a
polygon in the subsurface Sp̃ (see Figure I.4) and let P (resp. P ′) be an
indecomposable projective module of P •σ (resp. P •τ ) which corresponds
to an intersection of γ̃(σ) (resp. γ̃(τ)) with a laminate on the boundary
of U . If P and P ′ sit in the same degree of their complexes, then there
exists a unique standard chain map P •σ → P •τ in the homotopy class f
which has a component P → P ′ as indicated by the dotted arrows in
Figure I.18.

Figure I.18

This can be seen as a uniform – yet rather inexplicit – way to describe
the homotopy class of chain maps associated to an intersection.
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2. As a converse to the previous entry in this list, every component of a
homotopically non-trivial standard chain map P •σ → P •τ determines a
lift γ̃(τ) of γ(τ) to the universal cover of SA for every fixed lift γ̃(σ)
of γ(σ). However, note that γ̃(τ) is only unique up to “full periods
of γ(σ)”. In more precise terms this means that γ̃(τ) is unique up to
the action of the group of Deck transformations corresponding to the
powers of γ(σ) (considered as an element in a fundamental group). In
particular, γ̃(σ) is unique if σ is a homotopy string.

Proof. We fix standard chain maps f : P •ρ → P •σ and g : P •σ → P •τ in the
homotopy classes of B(p) and B(q). Let u : P → P ′ be a component of
g ◦ f . It determines a unique standard chain map h which occurs in the
decomposition of g ◦ f into a sum of standard chain maps and u arises as a
composition u = u2 ◦u1 of components u1 of f and u2 of g. On the universal
cover this corresponds to a polygon U in the intersection of subsurfaces Sp̃
and Sq̃ associated to p and q. The components u1, u2 and u arise from
intersections of lifts γ̃(ρ), γ̃(σ) and γ̃(τ), of γ(ρ), γ(σ) and γ(τ), see Figure
I.19

Figure I.19: The components u, u1 and u2.

Now, the curves γ̃(ρ) and γ̃(σ) intersect if and only if h is not homotopic
to zero. This follows from Theorem I.3.3. Note that if they intersect, it
means that γ̃(ρ), γ̃(σ) and γ̃(τ) intersect pairwise and only once. As the
universal cover of SA can be embedded into the plane, we see that the curves
must form

• a triangle, if at least one of the intersections is neither on the boundary
nor a puncture, and

• a fork otherwise or bigon otherwise.

It follows that condition a) implies condition b).
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In order to show that condition b) implies condition a), it is sufficient to
show that no cancellation can occur which is caused by two homotopic but
distinct standard chain maps arising from different components of of g ◦ f .
First of all, note that such homotopic chain maps would give rise to the
same lifts of γ(τ) (up to “full periods of γ(σ)” as discussed above). But this
would require f and g to be graph maps and g ◦ f to be a quasi-map. Since
every component of a a representative of a quasi-map is non-invertible, it is
not difficult to see that this prevents the lifts from forming a triangle or a
fork.

Corollary I.7.2. Let ρ and τ be homotopy strings or bands and let σ be
a homotopy string. Furthermore, let f • : P •ρ → P •σ and g : P •σ → P •τ be
standard basis elements and assume that g arises from a boundary intersec-
tion between the corresponding curves. Then, g ◦ f is zero or a multiple of a
standard basis element.

Proof. There exists at most one triangle (up to the action of Deck transform-
ations) which contains a lift of p as a corner.

I.8 Winding numbers & cycles of morphisms
Let A be a gentle algebra. Suppose γ is a primitive loop on the surface SA of
A. As we have seen in Theorem I.2.5, γ corresponds to an indecomposable
object in Db(A) if and only if the number of direct homotopy letters in
σ = σ(γ) (see Lemma I.2.11), which was defined in terms of the intersections
of γ with the laminates of A (see Proposition I.1.16), coincides with the
number of its inverse homotopy letters. In that case, σ is the homotopy
band of the indecomposable complexes associated to γ.

For aribtrary γ, define ωA(γ) as the difference i− d, where d denote thes
number of inverse homotopy letters and i denotes the number of inverse ho-
motopy letters in σ. In other words, γ (equipped with an indecomposable
local system) represents an object in Db(A) if and only if ωA(γ) = 0. We
extend ωA to all loops by imposing the relation ωA(γl) = l · ωA(γ) for all
l ≥ 0. Note that by definition, ωA(γ) = −ωA(γ), where γ denote the inverse
loop of γ. We refer to the number ωA(γ) as the winding number of γ.

In the main theorem of this section, we show that the values of ωA on a all
loops γ on SA (not just the ones which represent objects) can be interpreted
by means of Db(A). Before we state the theorem we need to introduce some
notation.
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Cycles of morphisms. Let {γ1, . . . , γm} be a set consisting of finite arcs
and gradable loops, i.e ωA(γ) = 0, on S in minimal position. Assume γ is an
oriented loop without teardrops, i.e. γ contains no contractible subcurve.
Assume further that γ is glued from arcs δ1, . . . , δm (in cyclic order), where
each δi is a (possibly trivial) subarc of γi connecting crossings pi ∈ γi−1 ∩ γi
and pi+1 ∈ γi ∩ γi+1.

δ3

γ3

p3
δ2

γ2

p2

δ1

γ1

p1

δ0

γ0
p0

Figure I.20: A cycle of curves.

Let Y1, . . . , Ym+1 ∈ F be string complexes or linear band complexes, such
that for each i ∈ [1,m+ 1],

a) fi = B(pi) ∈ HomF(Ysi , Yti), where {si, ti} = {i− 1, i}, and,

b) γi ∈ γ(Yi), where γm+1 := γ1.
Let N ∈ Z be the unique integer, such that Y1 ∼= Ym+1[N ] and for each
i ∈ [2,m+ 1], set

σi :=

1, if γi−1 crosses γi at pi from the right hand side;
−1, otherwise.

By convention, we set σi := (ti − si) in case pi = pi+1.

A sequence of morphisms as above is called a cycle of morphisms and the
number N is called its degree.
In the case, where all pi are boundary intersections, the numbers ti − si are
uniquely determined by γ and we refer to the number

ωA(γ) + 1
2

(
m∑
i=1

σi +
m∑
i=1

(ti − si)
)
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as the weighted winding number of the cut curve γ. Before we finally
state the theorem, recall that loop γ has a teardrop, if there exists a closed
contractible subpath of γ.

We prove the following relation between degrees of cycles of morphisms and
the function ωA.

Theorem I.8.1. Let γ, γj, σj, pj,Yi,sj, tj and N be defined as above, where
i ∈ [1,m+ 1] and j ∈ [1,m] and assume that γ has no teardrops. Then,

ωA(γ) = N − 1
2

(
m∑
i=1

σi +
m∑
i=1

(ti − si)
)
.

Proof. We may assume that γ1, . . . , γm and the laminates of SA are in min-
imal position. First of all, we observe that we may assume w.l.o.g. that
ti − si = 1 for all i, such that pi is interior. This follows from the fact
that if we replace fi : Ysi → Yti by the morphism f ′i : Yti → Ysi [1] associ-
ated to pi and each morphism fj by f ′j := fj[1] for all i < j ≤ m + 1, then
the assertion is true if and only if it is true for the new sequence of morphisms
f1, . . . , fi−1, f

′
i , . . . , f

′
m+1, N ′ = N+1 and the sequences s1, . . . , si−1, ti, si+1, . . . , sm+1

and t1, . . . , ti−1, si, ti+1 . . . , tm+1.
Denote γ̃1 a lift of γ1 to the universal cover of S. Inductively one con-

structs lifts γ̃i of γi for each i ∈ [1,m], such that for all i ∈ [1,m + 1], γ̃i−1
and γ̃i intersect in a lift p̃i of pi, where γm+1 := γ1. Note that in general,
γ̃m+1 6= γ̃1. We label every intersection of γi with a laminate with the degree
of the corresponding indecomposable projective in Yi. In particular, if x, x′
are consecutive intersections on γi, then their labels differ by 1. Let ∆i de-
note the polygon, which is bounded by lifts of laminates and which contains
p̃i. Then there exists n ∈ N and a component u : P → Q of fi in degree n,
such that γ̃i−1 and γ̃i each have intersection with the boundary of ∆i labelled
by n and such that the corresponding projectives are P and Q as shown in
Figure I.21.
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γ̃ti

γ̃si

n

n

n+ 1

n+ 1

u

Figure I.21

Note that we obtain a lift of γ, if we resolve all the intersections p̃i sim-
ultaneously as determined by the intersection indices σi. Thus in order to
obtain ωA(γ) from N we need to subtract a correction term for every pi
arising from the resolution of the crossing. This is where the conditions
that γ has no teardrops is important. Suppose, i and j are, such that
∆i = ∆i+1 = · · · = ∆j. Identifying ∆ := ∆i with a disc with one marked
point, then γ̃i, . . . , γ̃j, for example, intersect as shown in Figure I.22

Figure I.22: A lift of γ (solid line) in the polygon ∆. Dashed lines indicate
the curves γ̃i, . . . , γ̃j

Indeed, since γ has no teardrops, its lift does not intersect itself in ∆. We
may assume that i and j were chosen in a way, such that i = 1 or ∆i−1 6= ∆
and j = m + 1 or ∆j+1 6= ∆. Suppose there exist a ∈ [i, j − 2], such that
σa = −σa+1. It follows that γ̃a−1 and γ̃a+2 have a (unique) intersection, say
q in ∆. For a better presentation of the argument, we assume that pa and
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pa+1 are interior. However, the other case is treated in an analogous way.
We claim that the degree of the cycle corresponding to all the p0, . . . , pm is
equal to the degree of a new cycle corresponding to p0, . . . , pa−1, q, pa+3, . . .
decreased by 1. Because the other case is dual with respect to flipping the
orientation of γ, we may assume that σa = 1 = −σa+1. Denote d1, . . . , d8
denote the degrees of the projective modules in the complexes corresponding
to the of intersections of γ̃i (i ∈ {a− 1, . . . , a+ 2}) with the boundary of ∆
as shown in Figure I.23. Then, we observe that d7 = d8− 1 regardless of the
position of the marked point.

d1

d6

d2

d5

d8 d3

d7 d4

Figure I.23

If for example the marked point is placed in Figure I.22, then the situation
is as in Figure I.24.

n

n+ 1

n− 1

n

n− 1 n

n− 2 n− 1

Figure I.24

The case a = j − 1 follows in the same way. Note that by construction,
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γ is homotopic to the curve corresponding to the new cycle and that the
intersection index σ(q) at q is equal to σa+2. Using that tj − sj = 1 for all
j ∈ {a, a+ 1} by assumption, the equation of the assertion is satisfied if and
only if

ωA(γ) = (N + 1)− 1
2

 ∑
i 6∈{a,a+1}

σi +
∑

i 6∈{a,a+1}
(ti − si)

 .
From what we said before the former equation coincides with the assertion
of the Theorem applied to our new cycle. By repeating this cancellation
process several times for each polygon ∆i, we are in the situation that if
∆i = ∆i+1 = · · · = ∆j, then σi = · · · = σj. Again, since γ has no tear drops,
this implies that j − i ≤ 1 (otherwise we immediately find a self-intersection
of γ). Therefore we have reduced the situation locally to two possible cases,
which can be verified by hand similar as in Figure I.24.
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Chapter II

Auto-equivalences and
invariants of Fukaya-Like
categories

Layout of the chapter
The present chapter is divided into three logical units.
In Section II.1, we introduce Fukaya-like categories and study the interplay
between geometric and algebraic concepts in such categories. As examples
of those correlations we prove the existence of Auslander-Reiten triangles for
the class of so-called ‘arc objects’ (see Proposition II.1.5) and a morphism
analogue of the dichotomy of boundary intersections and interior intersec-
tions (see Section II.1.3). The latter allows us to deduce a (preliminary)
characterization of the winding number function ωF in a Fukaya-like cat-
egory, see Corollary II.1.22.
In the subsequent section, we present a way to assign a homeomorphism to
every triangle equivalence between Fukaya-like categories. In Section II.3 we
then prove that the isomorphism class of an indecomposable object is determ-
ined by a certain sequence of morphisms in the same way as the homotopy
class of a curve is determined by its intersections with a triangulation. As
a consequence, we deduce that bijections of indecomposable objects arising
from triangle equivalences are realized by bijections of curves induced by
homeomorphisms.
The final section of this chapter is devoted to the study of the question about
how close the relationship between auto-equivalences of the derived category
of a gentle algebra and their associated homeomorphisms of its surface SA –
as defined in Chapter I – is and we obtain a complete answer for the large
class of triangular gentle algebras.
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II.1 Fukaya-like categories
Let F be a k-linear triangulated category and let [1] denote its shift functor.
We assume that F is Krull-Schmidt and its class of isomorphism classes of
indecomposable objects is a set.
Recall from Section I.2.2 that the orbit category F /[1] of F has the same
objects as F and morphisms given by the vector spaces ⊕i∈Z Hom(X, Y [i]).
In particular, isomorphism classes of objects in F /[1] are naturally in bijec-
tion with [1]-orbits of isomorphism classes of objects in F .

Let ω be a function, which associates an integer to every (not necessarily
primitive) loop on a given marked surface S, such that all of the following
conditions are satisfied:

W1) The function ω is constant on homotopy classes;

W2) If π : S1 → S1 is an m-fold covering map (m ∈ N), then ω(γ ◦ π) =
m · ω(γ) for all loops on S;

W3) If γ denotes the inverse of a loop γ on S, then ω(γ) = −ω(γ).

W4) ω(γ) 6= 0 for every loop γ that is contractible onto a puncture.

A loop γ on S is called ω-gradable if ω(γ) = 0.
By analogy to winding numbers on the surface of a gentle algebra, we often
refer to ω as a winding number function and we refer to ω(γ) as the
winding number of the loop γ with respect to ω.

Next, we define Fukaya-like triples and Fukaya-like categories. All of their
defining properties are inspired by the results of Chapter I on derived cat-
egories of gentle algebras.

Definition II.1.1. Let S be a marked surface and let ω be a winding number
function on S satisfying conditions W1)–W4) above. The triple (F ,S, ω) is
called Fukaya-like (and (S, ω is called a surface model for F) if all of the
following six relations between F and the pair (S, ω) hold true.

1) Indecomposable Objects & Curves: There exists a bijection
γ between the isomorphism classes of indecomposable objects in the
orbit category F /[1] of F and unoriented homotopy classes of arcs and
ωF -gradable primitive loops, equipped with the isomorphism class of
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an indecomposable k-linear local system (as defined in the preliminar-
ies)

In what follows let X1, X2, X3 ∈ T be indecomposable objects which are
represented by an arc or a loop equipped with a linear local system.

2) Intersections & Morphisms: Let γi ∈ γ(Xi) be a representat-
ive, such that γ1 and γ2 are in minimal position.
There exists an injection B of the intersections in γ1

−→∩ γ2 into a basis
of HomF /[1](X1, X2) consisting of morphisms.
Furthermore, for every intersection q ∈ γ1

−→∩ γ2 at a puncture there
exists a family of morphisms (B(q)(j))j∈N and m ∈ Z, such that
B(q)(0) = B(q) and B(q)(j) ∈ Hom(X1, X2[m + j · wq]), where wq
is the winding number of the simple loop, which winds around q once
in clockwise direction.
Moreover the following hold true:

i) If γ1 and γ2 are neither homotopic loops nor intersect in a punc-
ture, then B is a bijection.

ii) If γ1 and γ2 are homotopic loops, then B is not surjective and
the quotient of HomF /[1](X1, X2) by the image of B is spanned
by the residue class of an isomorphism and the residue class of a
connecting morphism h in an Auslander-Reiten triangle

X2[n] Y X1 X2[n+ 1].h

iii) If γ1
−→∩ γ2 contains a puncture, then a basis of Hom∗(X1, X2) is

given by the set consisting of
a) all morphisms B(p) for all p ∈ γ1

−→∩ γ2, which are not punc-
tures, and

b) all morphisms B(q)(j), where q ∈ γ1
−→∩ γ2 is a puncture and

j ∈ N.
iv) If Y ∈ T is represented by a loop with a non-linear local system,

then
dim Hom∗(Y, Y ) ≥ 3.
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3) Mapping Cones & Resolution of Crossings: Let γ1 and γ2
be as in 2) and let p ∈ γ1

−→∩ γ2 be different from a puncture. Then
the resolution of p (as shown in Figure II.1) is a representative of the
mapping cone of B(p).

p

γ1

γ2

p

γ1

γ2

Figure II.1

4) Compositions & Immersed Triangles: Let γi ∈ γ(Xi) be
representatives in minimal position. For i ∈ {1, 2}, let qi ∈ γi

−→∩ γi+1.
Then the following statements are true.

i) Assume that if γ(X1) = γ(X2) = γ(X3) are identical, then they
are arcs. Then, B(q2) ◦B(q1) is a linear combination of precisely
those morphisms B(q3) (q3 ∈ γ1

−→∩ γ3), such that there exist lifts
γ̃i of γi to the universal cover of S intersecting in a triangle, a fork
or a bigon as shown in Figure II.2,

q̃1

γ̃1

q̃2
γ̃2

q̃3

γ̃3

γ1

γ2

γ3

Figure II.2: q̃i is a lift qi
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ii) Suppose γ(X1) = γ(X3) are homotopy classes of loops and q1 =
q2 ∈ S. Then B(q2) ◦B(q1) is not a linear combination of morph-
isms associated to intersections.

5) Winding numbers & Degrees of Cycles of Morphisms: Let
γ1, . . . , γm be arcs or ω-gradable primitive loops on S equipped with
linear local systems, such that {γ1, . . . , γm} is in minimal position. As-
sume γ is an oriented curve such that γ contains no contractible loop
as a subcurve. Assume further that γ is glued from arcs δ1, . . . , δm
(in cyclic order), where each δi is a (possibly contractible) subarc of γi
connecting crossings pi ∈ γi−1 ∩ γi and pi+1 ∈ γi ∩ γi+1 as shown in
Figure II.3.

δ3

γ3

p3
δ2

γ2

p2

δ1

γ1

p1

δ0

γ0
p0

Figure II.3

Then,
w(γ) = N −

m∑
i=1

di,

where di ∈ {0,±1} andN ∈ Z are defined as follows. Let Y1, . . . , Ym+1 ∈
F be indecomposable, such that for each i ∈ [1,m+ 1],

a) fi = B(pi) ∈ HomF(Ysi , Yti), where {si, ti} = {i− 1, i}, and
b) γi ∈ γ(Yi), where γm+1 := γ1.

Then let N ∈ Z be the unique integer, such that Y1 ∼= Ym+1[N ] and

di := 1
2 · (σi + ti − si) ,
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where is the index of the intersection pi, i.e.

σi =

 1, if γi−1 crosses γi at pi from the right hand side;
−1, otherwise.

6) Auslander-Reiten Triangles:

– Let γ be a ω-gradable loop on S. Every object X represented by
γ is τ -invariant, i.e. there exists an Auslander-Reiten triangle of
the form

X Y X X[1].

Moreover, it is contained in a homogeneous tube in the Auslander-
Reiten quiver of the form

· · · X3 X2 X1.

There exists an irreducible polynomial P ∈ k[X], such that for
all d ∈ N, γ(Xd) = (γ,VP d), where VP d denotes the isomorphism
class of indecomposable local systems associated to P d.

– If X ∈ F is indecomposable, such that γ(X) contains arcs whose
end points are punctures, then there exists no irreducible morph-
ism starting in X.

– Auslander-Reiten triangles do neither start nor end in indecom-
posable objects which are represented by infinite arcs.

A triangulated category F is called Fukaya-like if there exists a Fukaya-like
triple of the form (F ,S, ω).

Convention. In most parts of this chapter we only consider indecompos-
able objects in a Fukaya-like triangulated category, which are represented by
either arcs or loops with a linear local system. This is due to the observation
that, if k is algebraically closed, the behavior of the homogeneous tube asso-
ciated to a loop is essentially determined by the behavior of its object at the
base. That being said, we stick to the convention that ‘indecomposable’ in a
Fukaya-like triangulated category shall refer to an indecomposable object of
the above type unless mentioned otherwise.
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As pointed out at the beginning of this chapter, bounded derived categor-
ies of gentle algebras are prototypical examples of Fukaya-like categories. We
prove the following.
Proposition II.1.2. Let A be a gentle algebra. Let SA denote its ribbon
surface (see Definition I.1.10), where we replace each boundary component
without marked points by a puncture, and let ωA denote the function defined
in Section I.8. Then (Db(A),SA, ωA) is a Fukaya-like triple. In particular,
Db(A) is Fukaya-like.
Proof. We have to verify 1)–6) of Definition II.1.1. Property 1) follows from
Theorem I.2.5, Property 2) is the statement of Theorem I.3.3 and Property
3) is the assertion of Theorem I.4.3. Finally, Property 4) and 5) follow from
Theorem I.8.1 and Theorem I.7.1, whereas Property 6) is a consequence of
the description of Auslander-Reiten triangles for band complexes, as recalled
in Section I.5.1, and Corollary 6.8 in [4].

II.1.1 Properties of Fukaya-like categories
In this section we collect and prove a variety of useful observations about
Fukaya-like categories.

Let (F ,S, ω) be a Fukaya-like triple, where S = (S,M). By its very defin-
ition, there are two types of indecomposable objects in F and we say that
an indecomposable object X ∈ F is a (finite or infinite) arc object if γ(X)
is a homotopy class of (finite or infinite) arcs. Otherwise we call it a loop
object.
This dichotomy roughly coincides with the dichotomy between τ -invariant
and non-τ -invariant objects and the approximative picture is that loop ob-
jects consitute ‘almost all’ τ -invariant indecomposables, i.e. up to the action
of the shift functor there exist only a finite number of homogeneous tubes
consisting of arc objects. We will make this more precise in Lemma II.1.10,
where we classify fractionally Calabi-Yau objects geometrically.
For convenience we refer to an arc object or a loop object associated to a
linear local system as a linear indecomposable. An indecomposable ob-
ject is called quasi-linear if it is an arc object or a loop object equipped
associated with a quasi-linear local system.

Our first consequence of Definition II.1.1 is the following.
Lemma II.1.3. Let X1, X2 ∈ F be indecomposable and let {γ1, γ2} be curves
in minimal position, such that γi ∈ γ(Xi). If p ∈ γ1

−→∩ γ2 is interior but not
a puncture and B(p) ∈ Hom(X1, X2[n]), then B(p) ∈ Hom(X2, X1[1 − n])
regarding p as an element in γ2

−→∩ γ1
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Proof. This is a special case of Property 5) in Definition II.1.1 with m = 2
and δ1, δ2 contractible paths. In particular, the winding number of the curve
glued from δ1 and δ2 vanishes.

The following lemma is a generalization of the fact that the identity morph-
ism of a string complex in a bounded derived category of a gentle algebra
corresponds to the tautological boundary self-intersection of its associated
arc, see Remark I.3.10.

Lemma II.1.4. Let γ1, γ2 be homotopic arcs on S in minimal position and
let p ∈ γ1

−→∩ γ2 be a marked point. If p ∈ ∂S, then B(p) is invertible. If p is
a puncture, then B(p)(0) is invertible.

Proof. We prove the assertion when p is on the boundary. The other case is
similar. Set f := B(p). It suffices to show that Hom(Y, f) and Hom(f, Y )
are surjective maps as this implies that there exist g, g′ ∈ Hom(Y,X), such
that g ◦ f = IdX and f ◦ g′ = IdY and g = g ◦ f ◦ g′ = g′. As the arguments
are the same in both cases we only show that Hom(Y, f) is surjective.
Let γ3 ' γ1, such that {γ1, γ2, γ3} is in minimal position. The elements
γ3
−→∩ γ2 correspond to a basis of Hom∗(X, Y ) consisting of morphisms. Let

γ̃1, γ̃2 be lifts of γ1 and γ2 to the universal cover of S, which intersect at their
end points. By replacing γ3 by another representative we may assume that
the lift p̃ ∈ γ̃1

−→∩ γ̃2 of p is an element in δ−→∩ γ̃1 and δ−→∩ γ̃2 for some lift δ of γ3.
Let q ∈ γ3

−→∩ γ2 and denote γ̃3 the lift of γ3, which intersects γ̃2 in a lift
q̃ ∈ γ̃3

−→∩ γ̃2 of q. As all arcs are in minimal position, γ̃3
−→∩ γ̃1 contains a single

element q̃′ and γ̃1 and γ̃2 bound a disc. By construction, p̃, q̃ and q̃′ form
a fork or the corners of a triangle in clockwise order. Thus, B(q) ◦ B(p)
is a non-zero multiple of B(q′), where q′ ∈ γ3

−→∩ γ1 is the projection of q̃′.
Since q was arbitrary and Hom(Y, f) is linear, this shows that Hom(Y, f) is
surjective.

As generalization of Theorem I.5.3, we show the existence of Auslander-
Reiten triangles for arc objects in a Fukaya-like category and that the homeo-
morphism τ on S is a geometric incarnation of the Auslander-Reiten transla-
tion. Recall from Section I.5.2 that γ and τγ have a distinguished intersection
if in minimal position.

Proposition II.1.5. Let γ be a finite arc on S. If p ∈ γ−→∩ τγ is the distin-
guished intersection, then B(p) is the connecting morphism of an Auslander-
Reiten triangle in F .

Proof. Choose a representative X of γ and a representative Y of τγ and
set h := B(p), i.e. h ∈ Hom(X, Y [m]) for some m ∈ Z. To begin with,
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observe that by Property 3) in Definition II.1.1, the mapping cone Z of B(p)
is represented by a boundary segment connecting consecutive marked points.
In particular, Z is indecomposable. Since F is Krull-Schmidt, it suffices to
show that h ◦ f vanishes for all non-invertible morphisms f : X ′ → X, where
X ′ is any type of indecomposable object in F , as in this case, being non-split
and being non-invertible are equivalent. By Definition II.1.1 2ii), it therefore
suffices to prove that h◦B(q) = 0 for all intersections q ∈ δ−→∩ γ for any curve
δ, such that {γ, δ} is in minimal position. Suppose, p is an interior point. By
Definition II.1.1 4), such a composition is then non-zero only if there exists
a triangle in the universal cover of S bounded by subarcs of lifts δ̃, γ̃ and τ̃γ
of δ, γ and τγ in clockwise order. Since {γ, τγ, δ} are in minimal position,
δ̃ intersects each of γ̃ and τ̃γ at most once in the interior. Since τ̃γ and γ̃
have neighboring end points we therefore conclude that at least one of the
corners of the triangle lies on the boundary. Suppose that two of the corners
of such a triangle were boundary intersections, then lifts of γ, τγ and δ would
be arranged in one of the ways shown in Figure II.4.

δ̃
τ̃γ

γ̃
δ̃

γ̃

τ̃γ

Figure II.4

Note that we do not assume that the shown boundary components are
distinct. However, in order for p to be interior, all endpoints of the lifts must
be pairwise distinct. In any case, we observe that the unique intersection of
τ̃γ and δ̃ only defines an element in τγ

−→∩ δ but not in δ−→∩ τγ, implying that
h ◦B(q) = 0.
In case only one of the corners lies on the boundary, then again, because
every pair of lifts intersects at most once in the interior, it follows that δ ' γ
or δ ' τγ showing that B(q) is invertible as shown in Lemma II.1.4.

Similarly, if p ∈ ∂S, then γ and τγ are arcs connecting consecutive marked
points on the boundary and at all lifts of p to a universal cover of S, there
exist lifts of γ and τγ, which intersect as in Figure II.5.

Figure II.5
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In particular, if h◦B(q) 6= 0, for some q and δ as above, q is required to be
a boundary intersection and certain lifts of γ, τγ and δ are required to form
a fork. However, because B(q) is a morphism from an object representing δ
to an object representing γ, q cannot coincide with the unique intersection of
the lifts of γ and τγ, unless δ ' γ, in which case B(q) is invertible according
to Lemma II.1.4. In any case, it follows that h ◦B(q) = 0.

Corollary II.1.6. Let X ∈ F be an arc object and let γ ∈ γ(X). Then the
Auslander-Reiten translate of X exists and τγ ∈ γ(τX).

In analogy to Corollary 6.3 in [13], the previous Corollary enables us to
identify the arcs which give rise to Auslander-Reiten triangle with indecom-
posable middle term:

Corollary II.1.7. Let X ∈ T be an arc object and let

X Y Z X[1]

be an Auslander-Reiten triangle. Then Y is indecomposable if and only if
γ(X) (or, equivalently, γ(Z)) contains a simple boundary arc which connects
consecutive marked points.

Proof. It follows from Lemma II.1.5 and Definition II.1.1 3) that the middle
term of such a triangle is indecomposable if and only if the distinguished
intersection in γ

−→∩ τ(γ) lies on the boundary which happens if and only if
γ(X) contains a simple arc connecting consecutive marked points.

Remark II.1.8. By similar arguments as used in the proof of Proposition
II.1.5 one can show that the distinguished intersection of an arc γ and γe
(resp. sγ), as defined in Section I.5.2, corresponds to irreducible morphisms.
This is analogous to Theorem I.5.3.

Corollary II.1.6 motivates the following definition of a perfect subcategory
in every Fukaya-like category.

Definition II.1.9. Let (F ,S, ω) be a Fukaya-like triple. Define the cat-
egory of perfect objects Perf(F) as the full subcategory of F containing
all objects, which are isomorphic to finite direct sums of direct summands of
objects occuring in an Auslander-Reiten triangle in F .

It is then a consequence of Definition II.1.1 6), Lemma II.1.5 and property
6) in Definition II.1.1 that Perf(F) is the full subcategory of objects, which
are isomorphic to finite direct sums of finite arc objects and loop objects.
In particular, if F = Db(A) for some gentle algebra A, then Perf(F) coincides
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with the usual definition of the category of perfect complexes.
The important feature of Perf(F) for general F is that every triangle equival-
ence between Fukaya-like categories restricts to an equivalence between their
perfect subcategories. However, we do not claim that Perf(F) is closed under
arbitrary mapping cones in general and hence a triangulated subcategory.

II.1.2 Boundary objects & segment objects
In this section we explore how the natural distinction between boundary and
interior of a surface can be re-interpreted algebraically as a dichotomy of two
classes of morphisms, so-called boundary morphisms and interior morphisms.
In order to do so, we begin with the study of ‘fractionally Calabi-Yau’ objects
in Fukaya-like categories and their connection with this idea.

Lemma II.1.10. Let X ∈ F be an arc object. There exist m,n ∈ Z, such
that τmX ∼= X[n] if and only if γ(X) contains a boundary arc γ with image in
a component B ⊆ ∂S and, in this case, m = |B ∩M| and n = nB := w(γB),
where γB is the simple boundary loop which winds around B in counter-
clockwise direction. In particular, τX ∼= X if and only if γ(X) contains a
boundary arc with image on a boundary component B with a single marked
point and such that nB = 0.

Proof. Lifting γ ∈ γ(X) to the universal cover, we see that τmγ ' γ implies
that γ is homotopic to a boundary arc with image in a component B ⊆ ∂S
and τmγ ' γ if and only if m equals the number of marked points on B. Sup-
pose τmX ∼= X[n] and let γ ∈ γ(X) be a boundary arc contained in a com-
ponent B ⊂ ∂S. For each i ∈ [0,m), denote pi the distinguished intersection
in τ iγ−→∩ τ i+1γ corresponding to a connecting morphism τ i X → τ i+1 X[1]
of an Auslander-Reiten triangle ending in τ iX. We obtain a whole sequence
of morphisms

X → τX[1]→ τ 2X[2]→ · · · → τmX[m] ∼= X[n+m].

The intersections p0, . . . , pm determine a loop which is homotopic to a simple
loop δ which winds around B in counter-clockwise direction. According to
property 5) in Definition II.1.1, we have nB = (n+m)−m · 1 = n.

The previous lemma shows that shift orbits of fractionally Calabi-Yau objects
are encoded in the number of marked points on the boundary components
and winding numbers of boundary curves. However, as shown in [11], this is
what the AAG-invariant of a gentle algebra counts. We obtain the following
variant of Theorem I.6.1.
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Corollary II.1.11. Let A be a gentle algebra and let B1, . . . , Bn be the bound-
ary components of SA. Let nBi be defined as in Lemma II.1.10. Then the
AG-invariant of A is given by the set of pairs (bi, ci) (i ∈ [1, n]), where

• bi is given by the number of marked points on Bi, and

• ci − bi = nBi.

If F is the bounded derived category of a gentle algebra, then the property
that τmX ∼= X[n] for an object X ∈ Perf(F) and integers m,n ∈ Z is
equivalent to X being fractionally Calabi-Yau, i.e. if S is a Serre functor for
F , then there exist m′, n′ ∈ Z, such that Sm′X ∼= X[n′], see Section I.5.1.
The assertion of Lemma II.1.10 suggest the following definition.

Definition II.1.12. Let X ∈ Perf(F) be an arbitrary indecomposable. We
say that X is a boundary object if the following hold true:

1) There exist integers m,n ∈ N such that τmX ∼= X[n].

2) If X is τ -invariant then for all indecomposable objects Z ∈ F ,

max{dim Hom∗(Y, Z), dim Hom∗(Z, Y )} ≤ 2.

A boundary object X is further called a segment object if the middle term
of any Auslander-Reiten triangle starting in X is indecomposable.

Note that if a loop object is a boundary object, then by Property 2 ii) of
Definition II.1.1, it sits at the mouth of its homogeneous tube.

Proposition II.1.13. Let X ∈ Perf(F) be an arbitrary indecomposable.
Then X is a boundary object if and only if γ(X) contains a simple boundary
curve with a linear local system. If X is a boundary object, then it is a
segment object if and only if it is represented by a loop with linear local system
or γ(X) contains a boundary arc connecting consecutive marked points (a
‘boundary segment’).

Proof. Due to Lemma II.1.10, simplicity of the representing arc of an arc ob-
ject is equivalent to condition 2) of II.1.12. By Corollary II.1.7 the condition
that the middle term of an Auslander-Reiten triangle starting (or equival-
ently, ending) in X is indecomposable, translates to the property that the
end points of an arc γ representing X have to be consecutive elements. In
other words γ is a boundary segment.
We therefore assume that X is represented by a loop γ and hence is τ -
invariant. If γ is homotopic to a boundary loop, it does not intersect any
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other loop, which is in minimal position with γ. Furthermore, it intersects
arcs only in a neighborhood of their end points and hence at most twice. If
the local system associated to X is linear, then each intersection determines
a single basis element Hom∗(X,Z) (resp. Hom∗(Z,X)). Note that the sim-
plicity of γ implies that dim Hom∗(X,X) ≤ 2.
Conversely, let γ be a gradable loop and U ∈ Perf(F) be a representative
of γ. In particular, U is τ -invariant. Assume that U satisfies condition 2)
and therefore that dim Hom∗(U,U) ≤ 2. It follows from Definition II.1.1 2
ii) that the local system associated to U is linear and that γ can be chosen
to be simple. Suppose γ is not homotopic to a boundary curve. We cut
S along γ and denote by S ′ the resulting surface, i.e. S ′ contains distinct
boundary components B1, B2, such that S ′ \ (B1 ∪B2) = S \ γ. Let m ∈ N.
We construct a simple arc δ on S, such that {γ, δ} is in minimal position and
|γ ∩ δ| ≥ m – yielding a contradiction.
W.l.o.g. we may assume that the connected component V of S ′, which con-
tains B1 on its boundary, contains a marked point of S which is not a punc-
ture. By our assumptions and since D is not nullhomotopic, each connected
component of S ′ is neither homeomorphic to a disc nor to a cylinder. As a
result, there exist m disjoint simple arcs E1

1 , . . . , E
m
1 in S ′ connecting distinct

points in B1, such that neither of them is homotopic to an arc with image in
B1. For example, choose any such simple arc E1

1 with this property and let
E2

1 , . . . , E
m
1 be small perturbations of E1

1 . In the same way, we may choose
disjoint simple arcs E1

2 , . . . , E
m
2 , such that s(Ei

2) = t(Ei
1) and t(Ei

2) = s(Ei+1
1 )

for all i ∈ (1,m). Furthermore, we choose simple arcsW1,W2 in V , such that

• for all i ∈ [1,m], W1 ∩ Ei
1 = ∅;

• the arcs W1 and W2 have no interior intersections;

• the end point (resp. start point) of W1 (resp. W2) agrees with the start
point (resp. end point) of E1

2 (resp. Em
2 );

• s(W1) and t(W2) are marked boundary points.

The concatenation δ := W2 ∗ Em
2 ∗ Em

1 ∗ · · · ∗ E1
2 ∗W1, as indicated by the

symbol ∗, is a simple arc in S and |γ ∩ δ| = m. Suppose {γ, δ} is not in
minimal position, then by [42], Proposition 1.7, γ and δ form a bigon. By
the assumptions we made on the Ei

j, such a bigon must be formed by a subarc
γ′ of γ and an arc Ea

b for some a ∈ [1,m] and some b ∈ [1, 2]. But this implies
that Ea

b is homotopic to δ′ which contradicts our assumptions on Ea
b .

Remark II.1.14. Proposition II.1.13 implies that if τU [1] 6∼= U , then
dim Hom(U, τU [1]) = 1 for every segment object U ∈ F showing that every
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connecting morphism in an Auslander-Reiten triangle starting (or ending) in
U is represented by the distinguished intersection. In case U ∼= τU [1], note
that, since End(U) is local, it follows dim rad End(U) = 1.

By Proposition II.1.13 we can characterize boundary and segment objects
purely in terms of geometric properties of their representing curves. The
notion of such objects is the key to distinguish morphisms “arising from
boundary intersection” from morphisms “arising from interior intersections”.
The precise definitions for this (almost correct) dichotomy are introduced in
the subsequent section.

II.1.3 The spaces of interior morphisms
Based on the previous section we define the distinguished subspaces of “in-
terior” morphisms between objects in Fukaya-like categories.

Definition II.1.15. Let X, Y ∈ F be indecomposable. A morphism
f : X → Y [i] is called interior, if X or Y is a τ -invariant boundary object,
or, both of the following two conditions are satisfied.

i) The connecting morphism of any Auslander-Reiten triangle ending in
a segment object U ∈ Perf(F) does not factor through f .

ii) The morphism f factors through an object in Perf(F).

If f is not an interior morphism, we call it a boundary morphism.

Notation II.1.16. For indecomposable objectsX1, X2 ∈ F , let HomInt(X1, X2)
denote the subset of interior morphisms.

By definition, being an interior (or a boundary morphism) is invariant
under triangle equivalences.

Lemma II.1.17. Let (F ,SF , ωF), (F ′,SF ′ , ωF ′) be Fukaya-like triples and
let T : F → F ′ be a triangle equivalence. Then, the isomorphisms

HomF(−,−) HomF ′(T (−), T (−))

restrict to bijections between the subsets of interior morphisms.

Our next goal is to show that interior morphisms form a subvector space
and are spanned by the basis elements associated to interior intersections. In
order to do so, we need the following lemma which characterizes morphisms
which factor through the category of perfect objects.
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Lemma II.1.18. Let X, Y ∈ F be indecomposable and let f : X → Y be a
morphism, such that f =

m∑
i=1

λi ·B(pi) for intersections p0, . . . , pm. Then f

factors through Perf(F) if and only if none of the pi is a puncture.

Proof. Suppose p0 is a puncture and suppose there exists Z ∈ Perf(F) and
morphisms g : X → Z and h : Z → Y , such that h ◦ g = f . In particular,
X, Y 6∈ Perf(F). To arrive at a contradiction, it is sufficient to show that
for any two morphisms g′ : X → Z ′ and h′ : Z ′ → Y with Z ′ ∈ Perf(F)
indecomposable, B(p0) cannot occur as a summand of h′ ◦ g′ if written as a
linear combination of basis vectors arising from intersections. However, since
Z ′ is represented by a finite arc or loop, g′ and h′ are sums of morphisms
associated to intersections which are not punctures. By Definition II.1.1 4),
a composition of such basis elements is a sum of morphisms associated to
intersections, which are not punctures.
Next, assume that none of the pi is a puncture. Because f factors through the
identity morphisms of X and Y , we may assume that X, Y 6∈ Perf(F). Since
Perf(F) is closed under finite direct sums, it is sufficient to show that each
B(pi) factors through Perf(F). Let γ̃X , γ̃Y be arcs on the universal cover S̃
of SF representing X and Y , such that γ̃X and γ̃Y intersect in a single lift of
pi. Let pX (resp. pY ) be an interior end point of γ̃X (resp. γ̃Y ), i.e. pX and
pY are punctures. In case pi lies in the interior, denote by γ a simple finite
arc in S̃, such thatpX , pY ∈ S̃ \ γ has a connected component homeomorphic
to a disc. We may further assume that the image of γ̃X , γ̃Y and γ̃ are in
minimal position. By construction, pi and the unique interior intersections
qX and qY of γ̃ with γ̃X and γ̃Y form a triangle. Hence γ̃, pX and pY give
rise to an object Z and morphisms B(qX) : X → Z and B(qY ) : Z → Y ,
such that B(qY ) ◦B(qX) is a multiple of B(pi).
If pi lies on the boundary, we choose lifts γ̃X and γ̃Y as above, which intersect
exactly once in a lift q of p and choose γ̃ to be a finite arc which intersects
γ̃X and γ̃Y only in its end point q and which lies between γ̃X and γ̃Y locally
around q. Then f factors through the morphisms determined by q.

The following lemma justifies the term ‘interior morphism’.

Lemma II.1.19. Let X1, X2 ∈ F and γi ∈ γ(Xi), such that {γ1, γ2} is in
minimal position. Let f = ∑m

i=1 λi ·B(pi) ∈ Hom(X1, X2), where λi ∈ k×

and p1, . . . , pm ∈ γ1
−→∩ γ2 are pairwise distinct intersections.

1) If X1 or X2 is τ -invariant, then f is interior.

2) If both X1 and X2 are not τ -invariant, then f is interior if and only if
all pi are interior intersections different from a puncture.
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Proof. If X1 or X2 is a τ -invariant boundary object, then by definition f
is interior. We therefore assume that neither X1, nor X2 is a τ -invariant
boundary object.
It follows from Lemma II.1.18 that f factors through Perf(F) if and only if
none of the pi is a puncture. Set fi := λi ·B(pi). Let U be a segment object,
γU a representing boundary segment or a boundary loop. Let h : U → τU [1]
be non-zero. As Hom(U, τU [1]) is 1-dimensional, h is unique up to a scalar
and a connecting morphism in an Auslander-Reiten triangle. Suppose h
factors through f . Let i ∈ [1,m] such that fi is represented by an interior
intersection.
We distinguish two cases. First, assume that U is an arc object. Then it
follows from property 4) in Definition II.1.1, that each composition fi ◦ α
and β ◦ fi, with α : U → X, β : Y → τU [1] being morphisms associated
to intersections, is either zero, or a sum of morphisms associated to interior
intersections. The same applies to β ◦ fi ◦ α. But a multiple of a morphism
in Hom(U, τU [1]) is represented by the distinguished (boundary) intersection
in γU

−→∩ τγU , proving β ◦ fi ◦ α = 0. Hence, if h factors through f as a map
β ◦ f ◦ α, then h equals the sum of all β ◦ fj ◦ α, such that pj 6∈ ∂SF .
Next, suppose that U is a loop object and denote by B the boundary compon-
ent which contains γU . None of the morphisms in Hom(U,U [1]) is represented
by an intersection. Thus, for β, α as before, β ◦ fi ◦ α is zero, unless β ◦ fi
and α correspond to the same interior intersection (see Definition II.1.1 4 ii))
and in this case, pi is the unique marked point on B. This shows that f is
interior if all pj are interior.
Conversely, suppose that for some i ∈ [1,m], pi lies on a component B ⊆ ∂S.
By assumption, X1 and X2 are not τ -invariant arc objects as such objects are
boundary objects according to Lemma II.1.10. We show that f is a boundary
morphism. Let δ be a simple boundary arc with image in B, connecting pi
and its successor, and let U ∈ F be a representative of δ. By Definition
II.1.1 4 i), pi encodes morphisms α : U [m]→ X and β : Y → τU [m+ 1] for
some m ∈ Z and β ◦ fi ◦ α is a multiple of B(q), where q ∈ δ−→∩ τδ is the dis-
tinguished intersection (see Section I.5.2). Finally, we observe that for all pj
with j 6= i, β◦fj◦α = 0 as none of the corresponding intersections form a fork
but Hom∗(U,U) = Hom(U,U [1]) is represented by a boundary intersection.
Hence, β ◦ f ◦ α is a multiple of B(q) and the proof is complete.

Corollary II.1.20. Let X1, X2 ∈ F be indecomposable and not represented
by the same homotopy class of loops. Then HomInt(X1, X2) is a subvector
space of Hom(X1, X2).

Proof. According to Lemma II.1.19 a morphism f : X1 → X2 is interior
if and only if f = ∑m

i=1 λi ·B(pi), where {p0, . . . , pm} is the set of interior
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intersections (different from punctures) between representing curves of X1
and X2.

Notation II.1.21. In the situation of the previous corollary, set

Hom∗Int(X1, X2) :=
⊕
n∈Z

HomInt(X1, X2[n]).

A categorical characterization of winding numbers As an applica-
tion of the dichotomy of interior and boundary morphisms, we present a
categorical characterization of the winding number function ω.
Let γ be a loop on S and let γ′ be any finite closed arc, such that γ′ is
homotopic to γ if regarded as a loop in the natural way. The boundary
self-intersection p of γ gives rise to a boundary intersection of γ and a ho-
motopic arc γ′. In this way, it gives rise to a self-extension B(p) : X → X[d]
for every representative X ∈ F of γ′. The degree d of B(p) is well-defined
and, according to Definition II.1.1, is equal to σ · ω(γ) + 1, where σ is equal
to 1 (resp. −1) if γ′ meets itself at p from the right (resp. left) hand side.
Let γ be a finite closed arc. It follows from Lemma II.1.19, that the degree
d of a morphism B(p) ∈ Hom(X,X[d]) associated to the unique boundary
self-intersection p of γ is characterized as the degree of every non-invertible
boundary morphism from X to any shift of X.

Corollary II.1.22. Let (F ,SF , ωF), (F ′,SF ′ , ωF ′) be Fukaya-like triples and
let T : F → F ′ be a triangle equivalence. Assume that

• γ ⊂ SF is a closed finite arc in minimal position;

• X ∈ Perf(F), such that γ ∈ γ(X);

• γ′ ∈ γ(T (X)) is in minimal position, such that both γ and γ′ intersect
themselves at the boundary from the same side.

Then, ωF(γ) = ωF ′(γ′), where we consider γ and γ′ as loops in the natural
way.

We will refine the statement of Corollary II.1.22 in the subsequent sec-
tions.

II.2 Homeomorphisms induced by auto-
equivalences

This section is mainly concerned with the construction of homeomorpisms
from triangle equivalences between Fukaya-like categories. It is based on
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the study of automorphisms of the so-called arc complex of a surface and
their connection to homeomorphisms of the surface as studied in [38]. After
discussing the observation that being a loop object is not preserved under
triangle equivalences, we propose a definition of families of τ -invariant ob-
jects, which remedy this failure (as shown in Theorem II.3.2). Throughout
this section, let S = (S,M) and S ′ = (S ′,M′) denote marked surfaces.

A homeomorphism of marked surfaces F : S → S ′, is a homeomorphism
F : S → S ′, which restricts to a bijectionM→M′.

II.2.1 Arc complexes and essential objects
Before we give the definition of an arc complex, we recall the necessary
definitions.

Definition II.2.1. An (abstract) simplicial complex is a set V and a
collection K of finite subsets of V , such that for all v ∈ V , {v} ∈ K and if
M is an element of K, then so is every subset of M . The sets {v} are called
the vertices of K. An m-simplex of K is a set M ∈ K with m+ 1 elements.
The 1-simplices are also called edges.

Remark II.2.2. To every simplicial complex, one can associate a topological
space. For example, in this construction every vertex becomes a point and
every 1-simplex becomes a line. Likewise every 2-simplex becomes a triangle
and every 3-simplex a tetrahedron. These elementary topological spaces are
then glued according to the subset relationship between the simplices. For
example, two edges E1, E2 are glued at one of their endpoints q if {v} =
E1 ∩ E2 and in this case q is the point associated to the vertex {v}.

Next, we present the definition of an arc complex and its building blocks,
essential arcs.

Definition II.2.3 (see [38]). A finite arc on S is called essential if it is
simple, i.e. has no interior self-intersections, and it is not homotopic to a
boundary segment connecting consecutive marked points. The arc complex
A∗ = A∗(S) of S is the cell complex defined as follows. The vertices of A∗
are in one-to-one correspondence with homotopy classes of essential arcs on
S. A set of distinct vertices {v0, . . . , vn} of A∗ is contained in an n-simplex
if and only if there exists a set of simple representatives γi of vi, such that γi
and γj have no interior intersections for all i 6= j.

Note that A∗(S) is empty if and only if S is a disc and M contains at
most 3 marked points but no punctures.
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Remark II.2.4. It is a theorem that two essential arcs are homotopic if
and only if they are isotopic, i.e. there exists a continuous family of homeo-
morphisms, which restricts to a homotopy of the given arcs. For a prove of
the related case of loops without self-intersections see [42].

Remark II.2.5. It follows from [41], Theorem 3.1 that A∗(S) is a flag com-
plex, i.e. n + 1 vertices of A∗(S) constitute an n-simplex if and only if they
are pairwise connected by an edge.

Isomorphisms of arc complexes and homeomorphisms

If A∗(S) is non-empty, then homeomorphisms of S act naturally on A∗(S)
by simplicial automorphisms. A simplicial automorphism of a simplicial
complex K over a set V is a bijection F : V → V , such that F (M) ∈ K if
and only if M ∈ K. Isomorphisms between simplicial complexes are defined
in the analogous way.
Given any homeomorphism F : S → S ′, it induces a bijection between ho-
motopy classes of essential arcs on S and essential arcs on S ′, which, by
the previous remark, can be extended to a simplicial isomorphism A∗(F ) :
A∗(S) → A∗(S ′). It is clear that A∗(F ) does not change if we replace F by
an isotopic homeomorphism.
Let Homeo(S,S ′) denote the equivalence classes of homeomorphisms S → S ′
modulo isotopies, which fix marked points. For two simplicial complexes
C,C ′ denote by Simp(C,C ′) the set of simplicial isomorphisms. The assign-
ment F 7→ A∗(F ) determines a map

Φ : Homeo(S,S ′) Simp(A∗(S), A∗(S ′)),

which is a homomorphism of groups if S = S ′ with multiplication being
given by composition. If S = S ′, the subgroup MCG(S) ⊂ Homeo(S,S)
consisting of classes of all orientation preserving homeomorphisms is called
the mapping class group of S.

A natural question to ask is whether Φ is surjective or injective and an
answer to this question is given in [38]. In order to state it, it is convenient
to introduce the following definition.

Definition II.2.6. We call a marked surface S special if its arc complex is
empty or is of dimension at most 1.

Theorem II.2.7 (Theorem 1.1 & Theorem 1.2, [38]). Let S,S ′ be marked
surfaces, such that A∗ (S) , A∗ (S ′) 6= ∅. Then Φ is surjective. If S is non-
special then Φ is a bijection.
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We write Φ for the induced bijective map

Φ : Homeo(S,S ′)/∼ Simp(A∗(S), A∗(S ′)),

where H ∼ H ′ if and only if Φ(H) = Φ(H ′).
We discuss special marked surfaces and provide a complete list of such in
Section II.4.1.

Essential objects

The main ingredient of our approach to study equivalences is the construction
of a map which associates with every exact equivalence T : F → F ′ an
element

A∗(T ) ∈ Simp(A∗(S), A∗(S ′)).

The idea is to find a homeomorphism S → S ′, which realizes the action of T
on isomorphism classes in F /[1] in terms of its action on homotopy classes
on curves. This is the approach we pursue below.

For X, Y ∈ F , denote Hom(X, Y )Perf(F) the set of all f : X → Y , such that f
factors through Perf(F). Since Perf(F) is closed under finite direct sums, it
is a subvector space of Hom(X, Y ). As usual, we write Hom∗(X, Y )Perf(F) as
the direct sum of all Hom(X, Y [i])Perf(F) (i ∈ Z). If X or Y is an arc object,
then by Lemma II.1.18, Hom∗(X, Y )Perf(F) is spanned by all basis elements
corresponding to intersections different from punctures.
In order to define A∗(T ), we need to consider an algebraic counterpart of
essential arcs. It is defined as follows.

Definition II.2.8. Let X ∈ F be an arbitrary indecomposable. Then X is
called essential if it satisfies the following conditions.

1) The dimension of Hom∗(X,X) is at most 2, if X ∈ Perf(F), and if
X 6∈ Perf(F), then the dimension of Hom∗(X,X)Perf(F) is at most one.

2) If X ∈ Perf(F), then the middle term Z of any Auslander-Reiten
triangle

X Z τ−1(X) X[1]

is decomposable.

It follows immediately that if X ∈ F is essential and T : F → F ′ a triangle
equivalence, then T (X) is essential. Our first observation about essential
objects is the following.
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Lemma II.2.9. Let X ∈ Perf(F) be essential. Then τX 6∼= X in F /[1]. In
particular, essential objects are arc objects.

Proof. Suppose τX ∼= X[n] for some n ∈ Z. By Lemma II.1.10, X must
be represented by a loop or a boundary arc γ contained in a boundary com-
ponent with a single marked point. Suppose X is represented by a loop. By
condition 2) in Definition II.2.8 and condition 3) in Definition II.1.1, it has to
sit at the base of its homogeneous tube, as otherwise dim Hom∗(X,X) > 2.
However, this violates condition 2). If γ is an arc, it must be homotopic to
a simple arc because of condition 1). Again, this implies that X violates
condition 2).

Corollary II.2.10. Let X ∈ F be an arbitrary indecomposable. Then X is
essential if and only if it is represented by an essential arc.

Proof. If X is represented by a simple arc, then dim Hom∗(X,X) ≤ 2, if
X is perfect, due to the at most two boundary intersections. If X is not
perfect, then none of its (graded) endomorphisms factors through Perf(F)
by Lemma II.1.18 and hence Hom∗(X,X)Perf(F) = 0. The condition that an
arc object X ′ is represented by a boundary segment connecting consecutive
marked points is equivalent to condition 2) in Definition II.2.8. By Lemma
II.2.9, this proves that every essential object is represented by an essential
arc.
For the converse, note that every interior self-intersection of a curve γ gives
rise to two distinct intersections of γ and γ′, if γ ' γ′ and {γ, γ′} is in
minimal position. In particular, the presence of an interior self-intersection
forces dim Hom∗(X,X)Perf(F) ≥ 2.

Next, we define the map

A∗(−) : Equ(F ,F ′) Simp(A∗(S), A∗(S ′)),

where Equ(F ,F ′) denotes the class of equivalence classes of k-linear triangle
equivalences modulo natural isomorphisms. The set Aut(F) := Equ(F ,F)
is a group with multiplication given by composition.

Definition II.2.11. Let (F ,S, w), (F ′,S ′, w′) be Fukaya-like triples and T :
F → T ′ a triangle equivalence. Define A∗(T ) ∈ Simp(A∗ (S), A∗(S ′)) as the
unique simplicial isomorphism, which sends a vertex γ(X) ∈ A∗(S), X ∈ F
essential, to γ(T (X)) ∈ A∗(S ′).

Lemma II.2.12. Let (F ,S, w), (F ′,S ′, w′) be Fukaya-like triples, such that
A∗(S) 6= ∅. Then, A∗(−) is well-defined and is a group homomorphism if
S = S ′.
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Proof. Let γ be an essential arc. By Corollary II.2.10, γ is represented by
the isomorphism class of essential objects Xγ ∈ F /[1]. Let T : F → T ′ be a
triangle equivalence. Then, every T (Xγ) is essential and hence represented
by a homotopy class of essential arcs. The assignment γ 7→ γ(T (Xγ)) gives
rise to a well defined (invertible) map between the vertices of A∗(S) and
A∗(S ′). We want to show that this map extends to a simplicial isomorphism
A∗(T ) : A∗(S)→ A∗(S ′). Since A∗(−) is a flag complex (see Remark II.2.5)it
is sufficient to prove that the condition that γ and γ′ are connected by an
edge in A∗(S) is equivalent to the condition that γ(T (Xγ)) and γ(T (Xγ′))
are connected by an edge of A∗(S ′).
By Lemma II.1.19, γ and γ′ are connected by an edge if and only if the space
of interior morphisms Hom∗Int(Xγ, Xγ′) trivial. Thus, the equivalence of the
two conditions follows from Lemma II.1.17, which implies that if X, Y ∈ F
are essential, then Hom∗Int(X, Y ) = 0 if and only if Hom∗Int(T (X), T (Y )) = 0
is.
Note that A∗(T ) is homotopic to the identity if T is isomorphic to the
identity functor, proving that A∗(−) is a well-defined map Equ(F ,F ′) →
Simp (A∗(S), A∗(S ′)). The second assertion follows immediately from the
definition of A∗(−).

Given an equivalence T ∈ Equ(F ,F ′) and assuming that S is non-special, we
set Ψ(T ) := Φ−1 ◦A∗(T ). This defines the desired map Ψ in case A∗(S) 6= ∅.
We discuss how to extend Ψ to the case of special surfaces in Section II.4.1.

As this is a composition of group homomorphisms in case S = S ′, the
second assertion of Theorem A follows immediately. By construction, Ψ
satisfies the following.

Corollary II.2.13. Let (F ,S, w), (F ′,S ′, w′) be Fukaya-like triples and let
T : F → F ′ be a triangle equivalence. Then for all H ∈ Ψ(T ), we have that
H(γ(X)) = γ(T (X)) for all essential objects X ∈ F .

We will discuss in Section II.2.2 to what extent the assertion of Corollary
II.2.13 holds true for other objects in a Fukaya-like category.

As a second an important consequence of the existence of Ψ, we obtain
that the surface of a gentle algebra is a derived invariant.

Corollary II.2.14. Let A = kQ/I and A′ = kQ′/I ′ be gentle algebras and
SA, SA′ their associated marked surfaces (see Chapter I). If A and A′ are
derived equivalent, then SA ∼= SA′.
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II.2.2 Families of τ-invariant objects
It seems natural to expect that the assertion of Corollary II.2.13 holds true for
all objects of a Fukaya-like triangulated category. However, in the presence
of τ -invariant arc objects this might not be the case, as illustrated by the
Kronecker quiver.

Example II.2.15. Let

Q = x y,

α

β

denote the Kronecker quiver and let A denote its associated (gentle) path
algebra. Its surface SA is a cylinder with one marked point on each bound-
ary component and ωA = 0. There exists a natural embedding PGL2(k) ↪→
Aut(Db(A)), the elements of the image of which we call coordinate trans-
formations. They are defined as follows. Let

M =
(
a b
c d

)
∈ GL2(k)

be an invertible matrix. Denote σ = σM the k-linear automorphism of A,
such that

σ(x) = x
σ(y) = y
σ(α) = a · α + c · β
σ(β) = b · α + d · β.

Denote σA the A-bimodule which as a right module is the regular A-module
and as a left module is the regular left A-module twisted by σ, i.e. a ∈ A
acts on x ∈ σA = A by a.x := σ(a) ·x. The derived functor σMA⊗L− defines
an element in Aut(Db(A)) and two of such functors associated to σM and
σM ′ are isomorphic if and only if M = λ ·M ′ for some λ ∈ k×. Consider the
family of A-modules

Bλ,µ = k k,

·λ

·µ

where λ, µ ∈ k are not both zero. Then Bλ,µ is a band object if and only if
λ, µ 6= 0 and, in this case, is represented by the primitive loop equipped with
a 1-dimensional indecomposable local system. The string complexes B0,µ
and Bλ,0 are represented by any of the two closed arcs, which are homotopic
(as loops) to the primitve loop. It is not difficult to see that GL2(k) acts
transitively on the family Bλ,µ in this way.
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The previous example shows that loop objects may be sent to ‘degenerations’
of themselves implying that whether a τ -invariant object is represented by
an arc or a loop can not be distinguished within the triangulated category.

However, we will show that this is the worst case and that every triangle
equivalence preserves families of isomorphism classes of τ -invariant objects
consisting of band objects and their degenerations.
The above considerations motivate the following definitions.

Definition II.2.16. Let (F ,S,M) be a Fukaya-like triple and S = (S,M).
Then the equivalence relation ∼∗ is defined as the relation which identifies a
gradable boundary curve γ with image in a boundary component B ⊆ S with
|B ∩M| = 1 with the simple closed boundary arc with image in B which
is homotopic to γ as a loop. The relation '∗ is defined as the equivalence
relation on the set of curves on S generated by homotopy and ∼∗.

Given an object X ∈ F , we write γ∗(X) for the equivalence class of curves
in γ(X) with respect to '∗.

Definition II.2.17. A family of τ-invariant objects in F is a collection
X = {Xi}i∈I ⊂ F of indecomposable τ -invariant objects, such that there
exists an '∗-equivalence class of curves γ∗(X ) which contains γ∗(Xi) for all
i ∈ I.
Such a family is further called complete if for every τ -invariant indecom-
posable object X ∈ F , which is represented by a curve in γ∗(X ), there exists
i ∈ I, such that X ∼= Xi.
An arc object in {Xi}i∈I is called a degenerated object of the family.

Every '∗-equivalence class of a fixed loop γ contains at most two distinct
homotopy classes of closed boundary arcs.
This suggests the following trichotomy for families of τ -invariant objects.

Definition II.2.18. Let X be a complete family of τ -invariant objects.
It is called

• k×-family if γ∗(X ) contains no homotopy classes of arcs;

• A1
k-family if γ∗(X ) contains precisely one homotopy class of arcs;

• P1
k-family if γ∗(X ) contains two distinct homotopy classes of arcs.

The following lemma shows that the presence of P1
k-families is a very rare

phenomenon.
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Lemma II.2.19. A P1
k-family of τ -invariant objects exists if and only if

(S,M) is a cylinder with a single marked point on each boundary component
and ω = 0. There exists at most one such family (up to isomorphisms of
objects).
Proof. Note that the cylinder is the only compact surface with two distinct
but homotopic boundary components meaning that the corresponding simple
boundary curves (or their inverses) are homotopic. Thus, the assertion fol-
lows from Lemma II.1.10.

In case F arises from a gentle algebra we can prove even more.
Lemma II.2.20. Let A = kQ/I be a gentle algebra, such that ωA = 0 and
that SA is homeomorphic to a cylinder with a single marked point on each
boundary component. Then, Q is the Kronecker quiver.
Proof. Let φA : N2 → Z denote the Avella-Alaminos-Geiss invariant of A,
see Section I.6.1. By Theorem I.6.1 (see also Theorem 3.2.2 in [58]), it then
follows that ∑t∈N2 φA(t) coincides with the number of boundary components
of SA and, by Remark 8 in [11], coincides with the number of arrows in Q.
Thus, |Q1| = 2. Since A is connected and the fundamental group of Q is
π1(SA) ∼= Z (Proposition I.1.20), Q has precisely two vertices. Furthermore,
A has finite global dimension because every boundary component contains
at least one marked point. This implies that Q contains no loops. Altogether
we conclude that the only gentle algebras in question for A are the Kronecker
algebra and gentle algebras given by quotients of kQ, where Q is the quiver

• •.

Quotients of Q are derived discrete (no band complexes), whereas the Kro-
necker algebra is not. In addition, one can see easily that their surfaces do
not coincide with SA.

II.3 Triangulations and characteristic sequen-
ces of objects

The main result of this section is a generalization of Corollary II.2.13. It
asserts the statement of Theorem A 1 c) of the introduction.
Theorem II.3.1. Let u = (F ,S, w) and u′ = (F ′,S ′, w′) be Fukaya-like
triples and T : F → F ′ be a triangle equivalence. If S is non-special, then
for every linear indecomposable X ∈ F ,

Ψ(T )(γ∗(X)) = γ∗(T (X)).
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The proof of Theorem II.3.1 is given in Section II.3.2. We extend its
result to special surfaces in Section II.4.1. As a corollary of Theorem II.3.1
we obtain:

Corollary II.3.2. Let u, u′ and T be as in Theorem II.3.1. Suppose X is
an I-family of τ -invariant objects as defined in Section II.2.2, where I ∈
{k×,A1

k,P1
k}. Then T (X ) is an I-family of τ -invariant objects.

Strategy of the proof of Theorem II.3.1

Our strategy for the proof of is to reduce the general case to the case of
essential objects, which is already covered by Corollary II.2.13. We achieve
this in the following way.
It is well-known that the homotopy class of a curve is uniquely determ-
ined by its sequence of (signed) intersections with a triangulation assuming
that the edges of the triangulation and the curves are in minimal position.
Pursuing the approach that homeomorphism invariant geometric properties
correspond to properties which are invariant under triangle equivalences, we
will define the notion of a triangulation of F and translate intersections into
well-behaved characteristic sequences of morphisms between X and objects
in a triangulation. We show that these sequences are sufficient to recover the
isomorphism class of an object X up to shift, if X is not τ -invariant, and suf-
ficient to recover the corresponding family of τ -invariant objects otherwise.
Although the idea is straightforward, there is no reason for γ(−) and the
correspondence between morphisms and intersections to be canonical. This
failure requires a rather careful choice of (technical) assumptions on such
sequences of morphisms. However, we hope to convey the idea behind all of
this along the way.

II.3.1 Triangulations of Fukaya-like categories
We introduce the notion of a triangulation of a Fukaya-like category which
mimicks the concept of a triangulation of a surface.
By a triangulation of a marked surface S = (S,M), we mean a collection of
homotopy classes of essential arcs on S, which form the vertices of a simplex
in A∗(S) of maximal dimension. The arcs of a triangulation cut S into
triangles. Note that besides embedded triangles this possibly includes self-
folded triangles. For technical reasons we will restrict ourselves to particular
types triangulations of the following kind. Let ∆ be a triangulation and
denote ∆′ ⊆ ∆ its subset of finite arcs. The triangulation ∆ is said to
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separate punctures if ∆′ is a triangulation of (S,M∩∂S) and each triangle
of ∆′ contains at most one puncture.

Lemma II.3.3. Let ∆ be a triangulation of a marked surface (S,M), such
that the set of finite arcs in ∆ is a triangulation of (S,M∩∂S). Then ∆
separates punctures if and only if ∆ contains no infinite arc, both end points
of which are punctures.

Proof. Let γ be an infinite arc of ∆. Since γ does not cross any other arc
of ∆ anywhere except at its end points, γ is contained in a single triangle
of ∆′, where ∆′ ⊂ ∆ denotes the subset of finite arcs. In particular, if ∆
contains an arc both end points of which are punctures, it follows that ∆
does not separate punctures. Conversely, suppose that ∆ does not separate
punctures. Thus, there exists a polygon P of ∆′, which contains at least
two distinct punctures. By definition they lie in the interior of P . Let p
be a puncture in P and let ∆′′ ⊆ ∆ denote the set of arcs every end point
of which is different from p. As ∆′ ⊆ ∆′′, ∆′′ cuts S into (possibly folded)
polygons. Denote Q the polygon of ∆′′ which contains p. By definition, p is
the only puncture in the interior of Q. We further observe that Q can not be
a polygon of ∆′, as otherwise P = Q proving that P contains only a single
puncture – a contradiction. In particular, the boundary of Q must contain
a puncture. Since ∆ is a triangulation, the set ∆ \∆′′ must contain all arcs
connecting p with any marked point on the boundary of Q proving that ∆
contains an arc both end points of which are punctures.

A well-known property of triangulations is that they allow us to translate
homotopy classes of curves into sequences of their intersections with the
triangulation. We state it in the following Lemma without further proof.

Lemma II.3.4. Let ∆ be a triangulation of a marked surface (S,M) and
let γ be a curve, such that ∆∪ {γ} is in minimal position and such that γ is
not homotopic to an arc in ∆. Then the following is true.

1. The homotopy class of γ is uniquely determined by the linear or cyclic
sequence of interior intersections of γ with arcs in ∆.

2. If Ei1 , . . . , Eim is a linear or cyclic sequence of elements in ∆, such
that for each j, Eij and Eij+1 are contained in the boundary of a single
triangle, then there exists a unique homotopy class of curves γ, such
that Ei1 , . . . , Eim is the sequence of interior intersections of γ with ∆.

Next, we introduce an algebraic counterpart of triangulations in the context
of Fukaya-like categories.
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Definition II.3.5. Let (F , S, w) be a Fukaya-like triple. A triangulation
of F is a set X = {Xi | i ∈ I} ⊂ F of essential objects with the following
properties.

1) For all i, j ∈ I, Hom∗Int(Xi, Xj) = 0 and Xi 6∼= Xj in F /[1] for all i 6= j.

2) X is maximal among all sets of essential objects satisfying 1).

A triangulation X ⊂ F separates punctures if further

a) X ∩ Perf(F) is a maximal subset of essential objects in Perf(F) satis-
fying condition 1) above and,

b) for all X ∈ X , X is not the source of a irreducible morphism.

The first observation is that if X ⊂ F is a triangulation and T : F →
F ′ is a triangle equivalence between Fukaya-like categories, then T (X ) is
a triangulation and X separates punctures if and only if T (X ) separates
punctures. Further, Lemma II.1.19 and the fact that no irreducible morphism
starts in an object represented by an arc which starts and ends at punctures,
imply the following.

Lemma II.3.6. Let (F , S, w) be a Fukaya-like triple. A collection of in-
decomposable objects X ⊆ F is a triangulation if and only if the associated
collection ∆ of homotopy classes is a triangulation of S. Moreover, X sep-
arates punctures if and only if ∆ separates punctures.

Every marked surface (S,M) with at least one marked point on the bound-
ary admits a triangulation which separates punctures. First, note that the
marked surface (S,M∩ ∂S) has a triangulation ∆. As ∆ cuts S into topo-
logical discs, the proof of the existence of a triangulation of (S,M) which
separates punctures reduces to the assertion that any marked disc admits
such a triangulation. The proof of the latter is left as an exercise. We ob-
tain:

Corollary II.3.7. Every Fukaya-like triangulated category admits a trian-
gulation which separates punctures.

II.3.2 Characteristic sequences
The next concept we introduce are so-called characteristic sequences of an
object. These are sequences of morphisms which allow us to recover the
isomorphism class (or an associated family of τ -invariant objects) of an object
in F but before we do so, we want to explain the idea that underlies their
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definition.
As before and unless stated otherwise, we assume that every indecomposable
object, which appears in any of the subsequent sections of the present chapter,
is either a string object or a linear loop object, i.e. a loop object associated
to a linear local system.

The intuition behind characteristic sequences Suppose γ is a grad-
able loop or arc on S, ∆ is a triangulation of S, such that ∆ ∪ {γ} is in
minimal position, and p1 and p2 are consecutive interior intersections of γ
with edges E1, E2 ∈ ∆. There exists a unique intersection q of E1 and E2,
such that p1, p2 and q lift to an embedded triangle in the universal cover of S.
Assuming that q ∈ E1

−→∩E2 and regarding pi as an element in γ−→∩Ei, we have
B(q)◦B(p1) = λ ·B(p2) for some λ 6= 0 as implied by Definition II.1.1. Sim-
ilarly, regarding pi as an element in Ei

−→∩ γ, we have µ ·B(p1) = B(p2) ◦B(q)
for some µ 6= 0. It suggest that our desired sequence of morphisms should
be such that every two consecutive morphisms in this sequence are related
via composition with a morphism between the corresponding objects of a
triangulation.

Arrow morphisms As there might be several boundary intersections in
E1
−→∩E2 we have to distinguish morphisms between essential objects which

are multiples of basis elements and proper linear combinations of these.
This motivates the following definition.

Definition II.3.8. Let f : X → Y [m] be a non-zero morphism between
distinct objects X, Y of a triangulation. The morphism f is called pure if
it is a multiple of B(p) for some intersection p of representing curves of X
and Y . A pure morphism f : X → Y [m] is called an arrow morphism
of X if f does not factor through a pure morphism g : X → X ′[n] where
X ′ ∈ X \ {X, Y }.

So far it is not clear if the notion of pureness is independent of the chosen
representing curves. The following is a direct consequence of Definition II.3.8

Lemma II.3.9. Let X be a triangulation. Arrow morphisms between objects
X, Y ∈ X are precisely the multiples of morphisms B(p), where p is the
corner of a triangle in the corresponding triangulation of S.

Our goal is to prove that being pure is invariant under triangle equivalences.
It follows from the subsequent lemmas. We distinguish between perfect and
non-perfect objects.
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Lemma II.3.10. Let f : X → Y [m] be a non-zero morphism between distinct
objects X, Y of a triangulation. If X, Y ∈ Perf(F), then f is pure if and only
if there exist segment objects X ′, Y ′ and non-zero morphisms g : X ′ → X
and h : Y [m]→ Y ′, such that f ◦ g = 0 = h ◦ f .

Proof. There is nothing to show if |γX
−→∩ γY | = 1. Assume therefore that

q, q′ ∈ γX
−→∩ γY are distinct intersections. In means that in a universal cover

of S, there exists a lift γ̃X of γX and lifts of γY arranged as in Figure II.6

γ̃X
q

q′

Figure II.6

We like to stress that the boundaries containing q and q′ might coincide.
However in that case, q and q′ are not consecutive marked points. As the
situation is analogous for q′, it is sufficient to prove the assertion for B(q).
Let δ denote the boundary arc connecting q′ with its predecessor inM. Then
δ and γ̃X have a unique intersection p ∈ γ̃Y

−→∩ δ. As δ and γ̃Y lie on different
sides of γ̃X it follows from Definition II.1.1 4) thatB(p)◦B(q) = 0. Similarly,
if p′ denotes the unique intersection in δ′−→∩ γ̃X , where δ′ is the boundary arc
connecting q′ and its successor in M, then B(q) ◦B(p′) = 0. This proves
that every multiple of B(q) and B(q′) satisfies the condition of the Lemma.
To prove the other implication, note that p and q′ give rise to a fork (see
property 4) in Definition II.1.1) and hence B(p) ◦ B(q′) is a multiple of
the morphisms associated to the unique intersection γ̃X

−→∩ δ. Similarly, if ε
denotes the boundary arc which connects q and its predecessor and u ∈ γ̃Y

−→∩ ε
is the unique intersection, then B(u) ◦ B(q) is a multiple of B(u′), where
u′ ∈ γ̃X

−→∩ ε denotes the unique intersection.
Now suppose g : Y → Y ′ is a morphism to a segment object Y ′ and g◦f = 0.
Then Y ′ is represented by δ or ε and by what we said before, g◦f = 0 implies
that f is a multiple of B(q) or a multiple of B(q′).

Lemma II.3.11. Let f : X → Y [m] be a non-zero morphism between distinct
objects X, Y of a triangulation, which separates punctures, such that X or Y
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is not an object of Perf(F). Then f is pure if and only if one of the following
conditions is satisfied:

i) f factors through Perf(F);

ii) f does not factor through Perf(F) and there exists a segment object U
and a morphism g : U → X, such that Hom(g, Y ) 6= 0 and f ◦ g = 0.

Proof. Let γX and γY be representing arcs of X and Y in minimal position.
By symmetry of the following arguments we may assume that γX is an infinite
arc. In particular, γX and γY share at most one boundary point p and, since
the triangulation separates punctures, at most one puncture q. It follows
from Lemma II.1.18 that condition i) is equivalent to the condition that f is
a multiple of B(p).
We show that the second condition is equivalent to f being a multiple ofB(q).
As in the proof of Lemma II.3.10, we see that there exists a segment object
U represented by a boundary segment, which connects p and its successor,
and a morphism g : U → X (unique up to a scalar), such that h ◦ g 6= 0 for
a morphism h : X → τU [1]. Write f = λ ·B(q) + µ ·B(p). Consequently,
g ◦ f = 0 if and only if µ = 0 if and only if f is a multiple of B(q). This
finishes the proof.

We showed that being a pure morphism attached to a triangulation can
be phrased in terms of the triangulated category. As usually, one shows:

Corollary II.3.12. Let X, Y be distinct objects in a triangulation of F (resp.
Perf(F)) which separates punctures. Let f : X → Y be a morphism and
T : F → F ′ a triangle equivalence. Then T (f) is pure (resp. an arrow
morphism) if and only if f is pure (resp. an arrow morphism).

Definition and properties of characteristic sequences

We are finally prepared to state the definition of the sequence of morphisms
which will allow us to recover the isomorphism class (resp. its family of τ -
invariant objects).

In order to unify notation, we extend the definition of τ to non-perfect
objects X by τX := X.

Definition II.3.13. Let X be a triangulation of F , which separates punc-
tures. Let X ∈ F be indecomposable and τ -invarant (resp. not τ -invariant),
such that X is not isomorphic to the shift of an object in X .
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A cyclic (resp. linear) sequence (φ0, φ0), . . . , (φm, φm) of pairs of non-zero
morphisms

(φj, φj) ∈ HomInt(X, Yj[nj])× HomInt(τ−1Yj[nj − 1], X),

where Y0, . . . , Ym ∈ X is called a characteristic sequence of X (with
respect to X ) if it satisfies all of the following conditions.

1) The set {φj | j ∈ [0,m]} is a basis of⊕
i∈I

Hom∗Int(X, Yi)

and the set {φj[−nj + 1] | j ∈ [0,m]} is a basis of⊕
i∈I

Hom∗Int(τ−1Yi, X);

2) For every j ∈ [0,m] (resp. j ∈ [0,m)), there exists a pair {σ1
j , σ

2
j} =

{j, j + 1} with the following properties:

a) There exists an arrow morphism

αj : Yσ1
j
[nσ1

j
]→ Yσ2

j
[nσ2

j
],

such that αj ◦ φσ1
j
is a non-zero multiple of φσ2

j
.

b) There exists an arrow morphism

αj : τ−1Yσ1
j
[nσ1

j
− 1]→ τ−1Yσ2

j
[nσ2

j
− 1],

such that φj ◦ αj is a non-zero multiple of φσ2
j
.

3) For all j ∈ [0,m], such that Yj ∈ Perf(F), φj ◦ φj is a connecting
morphism in an Auslander-Reiten triangle.

We refer to the cyclic (resp. linear) sequence Y0, . . . , Ym as a characteristic
sequence of objects of X.

Part 1) and 2) of Definition II.3.13 resemble our previous considerations. Al-
though this is not quite the case, 3) should be thought of as the algebraic
equivalent of the conditions that φi and φi are morphisms associated to the
same interior intersection up to the action of τ−1.

The following is straighforward.
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Lemma II.3.14. Let (F , S, w), (F ′, S ′, w′) be Fukaya-like triples, let X a
triangulation of F , which separates punctures. Let X ∈ F be indecomposable.
If (φ0, φ0), . . . , (φm, φm) is a characteristic sequence of X with respect to X
and T : F → F ′ is a triangle equivalence, then

(T (φ0), T (φ0)), . . . , (T (φm), T (φm)),

is a characteristic sequence of T (X) with respect to T (X ).

Existence of characteristic sequences The following lemma shows that
characteristic sequences exist under suitable assumptions.

Lemma II.3.15. Let (F , S, w) be a Fukaya-like triple, X = {Xi}i∈I be a
triangulation of F , which separates punctures, and let X ∈ T be indecompos-
able, such that X is not isomorphic to any shift of any object in X . Then X
has a characteristic sequence with respect to X .

Proof. Let ∆ be a complete collection of representatives of the homotopy
classes in γ(X ). Since X is not isomorphic to a shift of an object in X , γ is
not homotopic to any arc of ∆ and therefore intersects at least one arc of ∆
in the interior.
If X is τ -invariant, let γ be a loop, which represents the family of τ -invariant
objects associated to X. Otherwise, let γ ∈ γ(X) be an arc. In any case,
we may assume that {γ} ∪ ∆ is in minimal position. Let p0, . . . , pm be the
cyclic (resp. linear) ordered sequence of interior intersection points of γ with
arcs in ∆. For each j ∈ [0,m], let δj ∈ ∆, such that pi ∈ γ ∩ δi and denote
Yj ∈ X , such that δj ∈ γ(Yj).
If X is a loop object or not τ -invariant, set φj := B(pj) ∈ Hom∗(X, Yj). If X
is a τ -invariant arc object, then any homotopy H from γ to a representative
γ′ of X (which is a closed arc), such that {γ′} ∪ ∆ is in minimal position,
induces a bijection Ĥ : γ−→∩ δj → γ′

−→∩ δj and φj is defined as the morphism
associated to Ĥ(pi).
Every isotopy ψ (not necessarily relative to the boundary) from τ−1 to the
identity induces a bijection ψ̂ from γ

−→∩ δi to the subset of all interior in-
tersections in γ

−→∩ τ−1δi. If X is a loop object or not τ -invariant, define
φj := B(ψ̂(pj)) ∈ Hom∗(τ−1Yj[nj − 1], X). If X is a τ -invariant arc object,
one uses a homotopy as before to construct φj from ψ̂(pj). By construction,
pj, ψ̂(pj) and the distinguished intersection of δj and τ−1δj bound a triangle
if X is a loop object or not τ -invariant and they form a fork otherwise. Thus,
Definition II.1.1 4) and Proposition II.1.5 imply that φj ◦ φj is a connecting
morphism in an Auslander-Reiten triangle, whenever δj is a finite arc. In
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particular, φj ∈ Hom(τ−1Yj[nj − 1], X) in those cases. Property 1) of Defin-
ition II.3.13 follows from Lemma II.1.19 and Definition II.1.1 2) i) and iii).
Since pj+1 and pj lie on the boundary of the same triangle of ∆, there
exist σ1

j , σ
2
j with {σ1

j , σ
2
j} = {j, j + 1} and a (unique) intersection qj ∈

δσ1
j

−→∩ δσ2
j
, such that pj, pj+1 and qj form a triangle. Set αj := B(qj). In

particular, αj ∈ Hom∗(Yσj(1)[nσj(1)], Yσj(2)). By assumption, the composi-
tion αj ◦ φσj(1) is a multiple of the morphism associated to pσj(2) and hence
αj ∈ Hom(Yσj(1)[nσj(1)], Yσj(2)[nσj(2)]). The morphism αj is defined as the
morphism associated to τ−1(qj) and Property 2b) in Definition II.3.13 fol-
lows in a similar way.

II.3.3 Reconstructing an object from its characteristic
sequence

After we established their existence, we shall prove the uniqueness of charac-
teristic sequences up to inversion and rotation. As an application, we show
that the isomorphism class of an object, or, at least its τ -invariant family,
can be reconstructed from its characteristic sequence.

In what follows, let X be a triangulation of F , which separates punctures
and denote by ∆ a corresponding triangulation of S. Let further X ∈ F be
an indecomposable object and let γ ∈ γ∗(X) be a curve, such that {γ} ∪∆
is in minimal position. We write (pi)i for the linear or cyclic sequence of
intersections of γ with arcs in ∆.

Notation We introduce some notation for later reference. For the re-
mainder of this section, let (φj, φj)j be a characteristic sequence of X, let
(Yj) denote the corresponding sequence of objects in X and write δj ∈ ∆ for
the representative of Yj.

Depending on whether X is τ -invariant or not, we identify the paramet-
rizing set of indices j with either an interval of integers or elements in a cyclic
group in the natural way. For each j, let σ1

j , σ
2
j , αj and αj be as in Definition

II.3.13.
Finally for each j, we write

φj =
∑
l∈Ij

λl · bl,

where Ij is some finite index set, λl ∈ k× and bl is the morphism associated
to an interior intersection of γ and ∆.

In other words, {bl}l∈Ij is the set of basis elements that appear, when
decomposing φj as a linear combination. The notation for the coefficients
will not be used anywhere in the rest of this section.
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In a similar fashion, let Ij be a finite index set and let {bl}l∈Ij be the set
of basis elements associated to interior intersections of γ and arcs in the set
τ−1∆ that appear in a decomposition of φj as a linear combination of such
basis elements.

An important observation is that if α is an arrow morphism, such that α ◦ bl
is defined, then either α ◦ bl = 0 or it is a multiple of an element bl′ . This
serves as motivation for the following lemma.

Lemma II.3.16. Let j ∈ J .

1) If (σ1
j , σ

2
j ) = (j+1, j), there exists a canonical injection uj : Ij ↪→ Ij+1,

such that αj ◦ buj(l) is a multiple of bl for all l ∈ Ij;

2) If (σ1
j , σ

2
j ) = (j, j+ 1), there exists a canonical injection uj : Ij+1 ↪→ Ij,

such that αj ◦ buj(l) is a multiple of bl for all l ∈ Ij+1.

Proof. If (σ1
j , σ

2
j ) = (j + 1, j), then φj is a multiple of αj ◦ φj+1. Otherwise,

φj+1 is a multiple of αj ◦ φj. In the former case, note that for l ∈ Ij+1,
αj ◦ bl is zero or a multiple of some bf(l) for some unique f(l) ∈ Ij and it is
not difficult to verify that if f(l) and f(l′) are both defined and agree, then
l = l′. By the above mentioned relation between φi+1 and φi, every l′ ∈ Ij is
of the form l′ = f(l) for some l ∈ Ij and uj is then defined via uj(f(l)) := l
for all l ∈ Ij. The proof of the other case is analogous.

The previous lemma has a dual analogue which we state without further
proof.

Lemma II.3.17. Let j ∈ J . Then,

1) If (σ1
j , σ

2
j ) = (j+1, j), there exists a canonical injection uj : Ij+1 ↪→ Ij,

such that buj(l) ◦ αj is a multiple of bl for all l ∈ Ij+1;

2) If (σ1
j , σ

2
j ) = (j, j+1), there exists a canonical injection uj : Ij ↪→ Ij+1,

such that buj(l) ◦ αj is a multiple of bl for all l ∈ Ij.

The functions uj and uj allow us to pass from an intersection of γ with
the triangulation ∆ to its successor or predecessor. Ultimately, this would
allow us to reconstruct the homotopy class of γ.

However, the problem is that only one of uj and uj might be defined for
some j. This requires us to be able to switch between the sets Ij and Ij by
attaching a sort of dual in Ij to every in Ij.
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To be more explicit, note that Ij (resp. Ij) does not appear as the domain
of some ui (resp. ui) if and only if (σ1

j−1, σ
2
j−1) = (j, j − 1) and (σ1

j , σ
2
j ) =

(j, j + 1) (resp. (σ1
j−1, σ

2
j−1) = (j − 1, j) and (σ1

j , σ
2
j ) = (j + 1, j)).

On the other hand, Ij (resp. Ij) does appear as the domain of definition
of more than one ui (resp. ui) if and only if (σ1

j−1, σ
2
j−1) = (j − 1, j) and

(σ1
j , σ

2
j ) = (j + 1, j) (resp. (σ1

j−1, σ
2
j−1) = (j, j − 1) and (σ1

j , σ
2
j ) = (j, j + 1)).

The notion of duality is made precise in terms of Auslander-Reiten triangles:

Definition II.3.18. We say that elements l ∈ Ij and l′ ∈ Ij are dual if
bl ◦ bl′ is the connecting morphism of an Auslander-Reiten triangle.

Condition 3) of Definition II.3.13 implies that there exist dual elements l ∈ Ij
and l′ ∈ Ij for every j, such that Xj is finite.

Remark II.3.19. The elements l ∈ Ij and l′ ∈ Ij are dual if and only if their
corresponding intersections are related via the bijection between γ−→∩ δj and
the set of interior intersections in γ−→∩ τ−1δi, which is induced by any isotopy
ψ from τ−1 to the identity. In particular, the dual of an element is unique if
it exists.

Lemma II.3.20. The following hold true.

1) Suppose l ∈ Ij has a dual. If (σ1
j , σ

2
j ) = (j+ 1, j), then uj(l) has a dual

and if (σ1
j−1, σ

2
j−1) = (j − 1, j), then uj−1(l) has a dual.

2) Suppose l ∈ Ij has a dual. If (σ1
j−1, σ

2
j−1) = (j, j − 1), then uj−1(l) has

a dual and if (σ1
j , σ

2
j ) = (j, j + 1), then uj(l) has a dual-

Proof. We only prove 1). The proof of 2) is analogous. The conditions on
(σ1

j , σ
2
j ) and (σ1

j−1, σ
2
j−1) are the necessary conditions so that uj (resp. uj−1)

is defined on Ij. The dual of uj′(l) for j′ ∈ {j, j − 1} is the unique element
l
′ ∈ Ij−1t Ij, such that b

l
′ is a multiple of bl ◦αj, where l is the dual of l.

Note that for every pair (l, l) of dual elements, there exists j′, such that uj′(l)
is defined or there exists j′′, such that uj′′(l) is defined. In other words, the
family of maps {uj} and {uj} allow us to produce a whole sequence of dual
pairs.

In light of Remark II.3.19 we observe the following.

Lemma II.3.21. For every j the restriction of the maps uj and uj to ele-
ments which admit a dual are inverse up to taking duals. That is, if l is the
dual of some l in the domain of definition of uj and l′ denotes the dual of
uj(l), then l = uj(l′).
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We are now prepared to prove the main result of this section. It is an algebraic
analogue of Lemma II.3.4.

Proposition II.3.22. Let (F , S, w) be a Fukaya-like triple. Further, let X be
a triangulation of F , which separates punctures, and denote by ∆ an associ-
ated triangulation of S. Let X,X ′ ∈ T be indecomposable and not isomorphic
to any shift of any object in X . For Y0, . . . , Yn ∈ X a characteristic sequence
of objects of X and δj ∈ γ(Yj) ∈ ∆ the corresponding arcs, γ∗(X) contains
the class of a curve γ, which is in minimal position with ∆, such that the
sequence of interior intersections of γ with ∆ is given by δ0, . . . , δn.

Proof. First, assume there exists j, such that δj is a finite. It is sufficient to
produce a cyclic (resp. linear) sequence (l0, l0), . . . , (lm, lm) of pairwise dis-
tinct dual pairs (lj, lj) ∈ Ij × Ij, such that li = ui

′(li+1) or li+1 = ui
′(li) for

some i′. Clearly, such a sequence is sufficient to recover the characteristic se-
quence of objects Y0, . . . , Ym up to rotation and inversion, respectively. How-
ever, it is also sufficient to recover the sequence of intersections of γ (resp. the
inverse of γ) with the triangulation ∆. As a matter of fact, such a sequence
tells us, that the intersection points qi and qi+1 of γ with arcs in ∆, which
correspond to li and li+1, are consecutive elements in the whole sequence of
intersections. Because all li are pairwise distinct it follows that q0, . . . , qm
coincides with p0, . . . , pm up to rotating and inverting the sequence.
The sequence is constructed by virtue of the following algorithm.
Choose a dual pair (lj, lj) ∈ Ij × Ij. Its existence follows from condi-
tion 3) in Definition II.3.13. Suppose we have already constructed a se-
quence (lj, lj), . . . , (ls, ls) of dual pairs (li, li) ∈ Ii × I i. If (σ1

s , σ
2
s) = (s +

1, s), define ls+1 := u(ls) and ls+1 as the dual of ls+1 (which exists by
Lemma II.3.20). Otherwise, set ls+1 := u(ls) and define ls+1 as the dual
of ls+1. In the latter case, we know that ls = u(ls+1) (Lemma II.3.21).
If X is not τ -invariant, we proceed in the analogous way to produce pairs
(lj−1, lj−1), (lj−2, lj−2) . . . , (l0, l0).
In case X is τ -invariant, the finiteness of I guarantees, that (lj, lj) = (ln, ln)
for some n = j+ r. W.l.o.g. we assume that r is minimal with this property.
By condition 1) of Definition II.3.13, r ≤ m. We claim that all pairs are
pairwise distinct. Denote qi the intersection corresponding to li and observe
that, by construction, either for all j ∈ [0, n), qi+1 is the successor of qi or,
for all j ∈ [0, n), qi is the successor of qi+1. Thus, if X is not τ -invariant, all
pairs are distinct and the first property in Definition II.3.13 implies that the
homotopy class of γ is the unique class associated to the series of intersec-
tions q0, . . . , qn.
Consequently, the existence of identical pairs requires γ to be in the '∗-class
of a curve and contradicts the minimality assumption on r. In this case X
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is necessarily τ -invariant and the sequence q0, . . . , qr is a cyclic subsequence
of p0, . . . , pm up to inversion. The two sequences therefore coincide up to
inversion and rotation. This finishes the proof in case γ has at least one
intersection with a finite arc of ∆.
Finally, suppose all δj are infinite, i.e. Yj 6∈ Perf(F). Since X (and hence ∆)
separates punctures, there exists a unique puncture p ∈ S, such that p is an
end point of all δj. In other words, γ is contained in a polygon of the trian-
gulation ∆′ = {δ ∈ ∆ | δ finite} and winds around p. In case X is τ -invariant
this already determines the '∗-class of γ as the class of the simple loop wind-
ing around p. Suppose therefore that X is not τ -invariant, we then see that
(depending on whether γ winds around p clockwise or counter-clockwise) one
of the following conditions holds true.

1) (σ1
j , σ

2
j ) = (j, j + 1) for all j ∈ [0, n) and there exists l0 ∈ I0, such that

bl = B(p0).

2) (σ1
j , σ

2
j ) = (j + 1, j) for all j ∈ [0, n) and there exists ln ∈ In, such that

bl = B(pn).

Suppose for example that (σ1
j , σ

2
j ) = (j, j + 1) for all j ∈ [0, n). Then

0 6= φn = αn−1 ◦ · · · ◦ α0 ◦ φ0,

but
αn−1 ◦ · · · ◦ α1 ◦B(pi) = 0

for all i 6= 0, such that Yi = Y0. Hence B(p0) = bl for some l ∈ I0. As
a consequence, we obtain a sequence l0, . . . , ln (lj ∈ Ij), such that for all
j ∈ (0, n] (resp. j ∈ [0, n)) uj−1(lj) = lj−1 (resp. uj(lj) = lj+1).
We have proved that the sequence p0, . . . , pn can be reconstructed from the
morphisms φ0, . . . , φn. This finishes the proof.

The following is a consequence of Lemma II.3.4 and the previous propos-
ition:

Corollary II.3.23. Let (F , S, w) be a Fukaya-like triple and let X be a tri-
angulation of F which separates punctures. Let further X,X ′ ∈ F be in-
decomposable and not isomorphic to any shift of any object in X . If X and
X ′ are not τ -invariant, then X ∼= X ′ in F /[1] if and only if their charac-
teristic sequences coincide up to orientation. Furthermore, X and X ′ belong
to the same family of τ -invariant objects if and only if their characteristic
sequences of objects coincide up to rotation and inversion.

We are prepared to finalize the proof of Theorem II.3.1.
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Proof of Theorem II.3.1. Let X ∈ F be indecomposable, let X be any tri-
angulation of F and denote by A := γ(X ) the associated triangulation of
SF . By Corollary II.2.13, we may assume that X is not isomorphic to any
shift of any of the objects in X . The corollary also implies that the triangu-
lation Ψ(T )(A) of SF ′ coincides with γ(X ′), where X ′ := {T (Y ) |Y ∈ X}.
By Lemma II.3.14, every characteristic sequence of X with respect to X is
mapped to a characteristic sequence of T (X) with respect to X ′. In par-
ticular, the characteristic sequence of objects Y0, . . . , Ym of X is mapped
to a characteristic sequence T (Y0), . . . , T (Ym) of T (X). Proposition II.3.22
therefore implies that Ψ(T ) (γ∗(X)) = γ∗(T (X)).

II.3.4 Induced homeomorphisms preserve orientations
It turns out that the homeomorphism associated to a triangle equivalence
preserves the orientation as a consequence of the fact that the functor is
covariant. Together with Theorem II.3.1 the following proposition implies
Theorem A 1 a).

Proposition II.3.24. Let (F ,SF , ωF) and (F ′,SF ′ , ωF ′) be Fukaya-like triples
and assume that S non-special. Then for all triangle equivalences T : F →
F ′, the homeomorphism Ψ(T ) is orientation preserving.

Proof. Write SF = (S,M). Let ∆ = {γ1, . . . , γm} be a triangulation of
(S,M∩ ∂S) and let {X1, . . . , Xm} ⊂ F be a representing set of objects for ∆.
By assumption, ∆ contains no self-folded triangles. We claim the following. If
γσ0 , γσ1 , γσ2 are edges of a triangle in ∆, then the given order coincides with
the clockwise order in the orientation if and only if there exists an arrow
morphism in at least one of the sets Hom∗(Xσi , Xσi+1), where i ∈ {0, 1, 2}
(indices modulo 3). Recall, that by Lemma II.3.9, arrow morphisms (up to a
scalar) between objects corresponding to a triangle are in bijection with the
corners of said triangle. Let U be a triangle of ∆ and let Ũ be a lift of U to
the universal cover of S. Then Ũ is an embedded triangle and at least two
sides of it are arcs. Such a pair of arcs has a unique boundary intersection.
Moreover, this intersection defines a morphism Xi → Xj (which is an arrow
morphism by Lemma II.3.9) if and only if γi comes immediately before γj in
clockwise order.
To prove the claim it is sufficient to show that Ũ is not bounded by more
than one lift of the same arc γi. Suppose this was not the case, then the
two lifts, which we denote by δ and δ′, intersect at the boundary in a point
p. By uniqueness of lifts, p is the start point of δ and the end point of δ′ or
vice versa. But this implies that U contains an embedded Möbius strip in
contradiction to the orientability of S.
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The assertion follows from the fact that any homeomorphism H : S → S is
orienation preserving if it preserves the order of the edges of each triangle in
∆. However, by what we mentioned before, this is a consequence of Corollary
II.3.12

As a second application of Theorem II.3.1 we are able to prove Theorem
A 1b):

Proposition II.3.25. Let u = (F ,SF , ωF) and u′ = (F ′,SF ′ , ωF ′) be Fukaya-
like triples and assume that S non-special. Let further T : F → F ′ be a
triangle equivalence. Then, for all loops γ on SF ,

ωF ′(Ψ(T ) ◦ γ) = ωF(γ).

Proof. Set ω := ωF(γ). Let δ be any closed arc, such that γ ' δ regarded
as loops. Let X ∈ F be a representative of δ. According to Corollary
II.1.22, we know that there exists a non-invertible boundary morphism f ∈
Hom(X,X[d]) of degree d = σ · ω + 1, where σ ∈ {±1} and σ = 1 if
and only if δ intersects itself at the boundary from the right hand side.
Since T sends boundary morphisms to boundary morphisms, it follows that
T (f) ∈ Hom(T (X), T (X)[d]) is a non-invertible boundary morphism. By
Theorem II.3.1, if X is not τ -invariant, then T (X) is represented by δ′ :=
Ψ(T )(δ) and if X is τ -invariant, then an object in the family of τ -invariant
objects associated to T (X) is represented by δ′. Consequently, d = σ′ ·
ωF ′(Ψ(T ) ◦ γ)) + 1, where σ′ ∈ {±1} and σ′ = 1 if and only if Ψ(T ) ◦ γ
intersects itself at the boundary from the right hand side. Finally, Ψ(T ) is
orientation preserving (Proposition II.3.24) and hence preserves intersection
indices. Thus, σ = σ′ and the proof is complete.

II.4 Homeomorphisms induce derived equi-
valences

In this section we prove that gentle algebras with equivalent surface mod-
els are derived equivalent. It is a generalization of Corollary 3.2.4, [58], to
the case of (ungraded) gentle algebras of arbitrary global dimension. More
precisely, the main result of this section reads as follows.

Theorem II.4.1. Let A, B be gentle algebras and let (SA, ωA) and (SB, ωB)
be their associated surface models as defined in Chapter I. Assume that there
exists an orientation preserving homeomorphism F : SA → SB, such that
ωA = ωB ◦ F . Then, A and B are derived equivalent.
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The idea of the proof is simple. We choose a collection of arcs which
represent the indecomposable projective modules of A. In other words, our
collection might be thought of as a representative of the regular A-module.
Since A is a tilting object in Db(A), we expect that the image of the collection
of arcs under F represents a tilting object in Db(B) with endomorphism ring
Aop. In what follows, we prove that this intuition indeed correct.

Tilting complexes in derived categories of gentle algebras We recall
the definition of a tilting object in a form which is convenient for us. The
original definition is due to Rickard [64].

Definition II.4.2. Let A be a finite dimensional algebra. An object X ∈
Perf(A) is a tilting object if all of the following conditions are satisfied:

1) Hom∗(X,X) is concentrated in degree zero.

2) Let T denote the smallest triangulated subcategory of Db(A) which
contains X and is closed under taking direct summands. Then A ∈ T .

Remark II.4.3. The standard definition of a tilting object assumes that X
is perfect, satisfies the first condition of Definition II.4.2 and has the property
that D(A −Mod) is the smallest localizing subcategory of the full derived
category D(A − Mod) (A − Mod denoting the category of all A-modules)
which contains X. By Proposition 1.6.8 in [59], every localizing subcategory
of D(A−Mod) is closed under direct summands. Since A is always a tilting
object, Definition II.4.2 is equivalent to the original definition.

The following lemma provides a sufficient condition for a collection of arcs
to represent the direct summands of a tilting object.

Lemma II.4.4. Let T = {γ1, . . . , γn} be a set consisting of pairwise non-
homotopic simple finite arcs on SA which intersect each other only in the
boundary. Assume further that the following two conditions are satisfied:

1) The weighted winding number of every cycle of arcs in T (see Section
I.8) is zero.

2) For every finite arc δ on SA, there exists a sequence of finite arcs
δ1, . . . , δm ' δ, such that δ1 ∈ T and such that for all i ∈ (1,m),
δi+1 is the concatenation of δi and an arc of T at one of their end
points.

Then, there exists a tilting object X = ⊕n
i=1Xi ∈ Perf(A) with indecompos-

able direct summands Xi, such that γi represents Xi.
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Proof. Let U1, . . . , Un ∈ Db(A) be representatives of γ1, . . . , γn. We construct
integers a0, . . . , an, such that X := ⊕n

i=1 Ui[ai] has only self-extensions in
degree 0. Let i ∈ [1, n] and denote Z0(i) := {Ui}. Via induction, define

Zj+1(i) := {Ul | l ∈ [1, n],∃Z ∈ Zj : Hom∗(Ul, Z) 6= 0 or Hom∗(Z,Ul) 6= 0} .

This is an increasing sequence of subsets of {U1, . . . , Un} and hence stabilizes
to a subset

Z(i) :=
⋃
j∈N

Zj(i).

Note that either Z(i) = Z(j) or Z(i) ∩ Z(j) = ∅. The set Z(i) has a simple
description on the surface. Namely, regarding T as a graph G embedded
in SA with edges γi labelled by the elements in T , the objects in Z(i) are
those objects in {U1, . . . , Un} which correpond to the edges in the connected
component of γi in G.
Depending on a choice for ai ∈ Z we specify al for every l ∈ [1, n] such that
Ul ∈ Z(i). This is achieved as follows. By definition, for each Ul ∈ Z(i),
there exist a sequence Ui[ai] = Ui0 [bi0 ], . . . , Uis [bis ] = Ul[bis ] and morphisms
f0, . . . , fs, such that for each j ∈ [0, s),

• fj is a morphism from Uij [bij ] to Uij+1 [bij+1 ] or vice versa, and

• fj corresponds to an intersection of γij and γij+1 .

Set al := bis . We claim that if Ul ∈ Z(i), then the definition of al only
depends on the choice of ai and not on the choice of the sequences above. Let
Uj0 [cj0 ], . . . , Ujq [cjt ] and g0, . . . , gt be another chain of objects and morphisms
as before. Then, the sequences

Ul[bis ] = Uis [bis ], . . . , Ui0 [bi0 ], Uj0 [cj1 ], . . . , Ujt [cjt ] = Ul[cjt ]

and
fs, . . . , f0, g0, . . . , gt

correspond to a cycle of arcs in T . By assumption, its weighted winding
number vanishes and Theorem I.8.1 implies bis = cjt . The same argument
also shows that if f : Ua → Ub[i] and g : Ua → Ub[j] are two morphisms
associated with intersections of γa and γb, then i = j and, by definition
of ai and aj, it follows i = j = 0. Thus, the algebra of self-extensions of
X := ⊕n

i=1 Ui[ai] is concentrated in degree 0.
Theorem I.4.3 and the second condition imply that the smallest triangulated
subcategory of Db(A), which is closed under direct summands and which
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contains X, also contains every perfect indecomposable object which is not τ -
invariant (and hence is represented by a finite arc). In particular, it contains
all indecomposable projective modules of A and hence A. Altogether, we
showed that X is tilting.

For the regular A-module the converse of Lemma II.4.4 holds true.

Lemma II.4.5. Let P1, . . . , Pn denote a complete set of indecomposable pro-
jective modules of A and let T = {γ1, . . . , γn} be a set representatives of
P1, . . . , Pn in minimal position. Then T consists of simple finite arcs with dis-
joint interiors. Moreover, T satisfies conditions 1) and 2) of Lemma II.4.4.

Proof. The first assertion follows from the construction of the surface of A
and its lamination.
The proof of Lemma II.4.4 actually shows that condition 1) in Lemma II.4.4
is equivalent to the fact that A has no self-extensions in non-zero degrees.
To prove that every arc is obtained by a series of concatenations from arcs
in T , we use the combinatorial description of string objects. We obtain each
string complex X over A by a series of mapping cones. We may assume that
A is given by a quotient kQ/I of a quiver Q with respect to gentle relations.
Suppose σ = σ1 · · · σn is a homotopy string with homotopy letters σj. Then
for each i ∈ [1, n], we set ui := σ1 · · ·σi and define u0 to be the trivial
homotopy string attached to s(σ1). For each i ∈ [0, n) and depending on
whether σi+1 is inverse or direct, P •ui+1

is the mapping cone of a map P •ui →
Pt(ui+1) or a map Pt(ui+1) → P •ui which corresponds to a boundary intersection
of the arcs representing Pt(ui+1) and P •ui .
This finishes the proof since each such mapping cone corresponds to the
resolution of a crossing at a boundary.

As a consequence of the previous lemmas we show the following.

Proposition II.4.6. Let A and B be gentle algebras and H : SA → SB be an
orientation preserving homeomorphism of marked surfaces, such that ωA =
ωB ◦H. Let T = {γ1, . . . , γn} be a set of arcs representing all isomorphism
classes of indecomposable projective A-modules. Then, there exists a tilting
object X = ⊕n

i=1Xi in Perf(B), such that each Xi is indecomposable and is
represented by γi ◦H.

Proof. Note that T ′ := {γ1 ◦ H, . . . , γn ◦ H} is a set of simple arcs with
pairwise disjoint interior. Since H is a homeomorphism and T satisfies the
conditions of Lemma II.4.4 it follows from Lemma II.4.5 that T ′ satisfies the
conditions of Lemma II.4.4 as well. Thus, there exists a tilting object with
the desired properties.
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Next, we show that the endomorphism ring of a tilting object can be
recovered from a representing set of arcs. Together with Proposition II.4.6,
the following lemma concludes the proof of Theorem II.4.1.

Lemma II.4.7. Let X ∈ Perf(A) be a tilting object and assume that X =⊕n
i=1Xi (Xi indecomposable) is represented by a set of arcs T = {γ1, . . . , γn}.

Then, Hom(X,X) is isomorphic to the algebra kΓ/R, where Γ is a quiver
and R is an ideal generated by quadratic zero relations, given as follows:

• Γ has vertices {x1, . . . , xn} and the arrows from xi to xj are in one-
to-one correspondence with the directed intersections p ∈ γi

−→∩ γj, such
that there is no other arc of T ending between γi and γj.

• R is generated by all expressions pq, where p and q are composable
arrows of Γ and p 6= q as points in SA.

Proof. There exists an algebra homomorphism ϕ : kΓ/R → B, which sends
each vertex xi of Γ to the identity morphism of Xi which we regard as an
element in B in the natural way. We require also that ϕ sends an arrow
p ∈ γi

−→∩ γj to a morphism Xi → Xj associated to p. It follows from the
correspondences between intersections and morphisms on one hand and the
correspondence between compositions and the existence of forks (Theorem
I.7.1) on the other hand, that ϕ is surjective. By comparing dimensions
(which we can express in terms of intersections) we see that ϕ is an iso-
morphism.

Remark II.4.8. Note that Lemma II.4.7 provides a geometric proof of the
result in [66] that the class of gentle algebras is closed under derived equival-
ences.

II.4.1 Special surfaces
In the final section of this chapter we study special surfaces and prove variants
of our results on non-special surfaces. Recall from Definition II.2.6 that a
marked surface is special if its arc complex is empty or has dimension at most
1.
The following is a complete list of special marked surfaces and is taken from
[38], Figure 1. A marked surface S = (S,M) is special if and only if

• S is a disc with no punctures and |M | ≤ 5, or

• S is a disc with one puncture and at most two marked boundary points,
or
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• S is a cylinder with no puncture and a single marked point on each
boundary component.

Special surfaces occur as surface models of prominent examples of gentle
algebras. The surface of a quiver of type An is a disc with n + 1 marked
points on the boundary and no punctures and hence is special for n ≤ 4.
The second case in the list above is obtained as the surface of the algebra of
dual numbers k[X]/(X2). As shown in Lemma II.2.20, the Kronecker is the
only quiver which realizes the third entry of the list.

In what follows we describe the group of homeomorphisms of S up to isotopy
and the kernel of the group homomorphism

Φ : Homeo(S,S) Simp(A∗(S), A∗(S)),

for every special surface S = (S,M), such that A∗(S) 6= ∅. Note that the
mapping class group is a subgroup of index 2 in Homeo(S,S). Its non-trivial
coset contains the isotopy classes of orientation-reversing homeomorphisms.
In particular, Homeo(S,S) is generated by the mapping class group of S and
an orientation-reversing homeomorphism. The mapping class group can be
described using standard techniques as for example can be found in [42].

1) If S is a disc with 4 marked boundary points, then A∗(S) consists of
two disconnected points,MCG(S) is generated by τ (see Section I.5.2)
and ker Φ ∩MCG(S) is generated by τ2.

2) If S is a disc with 5 marked boundary points, then MCG(S) is gen-
erated by τ and A∗(S) is a 5-gon. Assume that all marked points are
evenly distributed on the boundary and denote by ρ the reflection at
the line through an arbitrary fixed marked point and the center of the
disc. The image of Φ is non-trivial which proves that the restriction of
Ψ to the mapping class group is injective. On the other handMCG(S)
and Simp(A∗(S), A∗(S)) have the same cardinality proving that the
restriction is an isomorphism.
It follows immediately that Φ has a kernel of order 2 which is generated
by ρ.

3) If S is a disc with two marked points, one of which is a puncture,
then A∗(S) is a point and Simp(A∗(S), A∗(S)) andMCG(S) are both
trivial. Assuming that the puncture coincides with the center of the
disc, Homeo(S,S) is generated by the reflection through the line con-
necting the marked points.
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4) If S is a disc with 2 marked points on its boundary and one puncture,
then A∗(S) is a graph of type A4 and hence its simplicial automorphism
group is isomorphic to Z/2Z the generator given by the reflection. As-
suming that the puncture is the center of the disc and that all marked
points lie on a single line, Homeo(S,S) is generated by the reflection ρ
at that said line and τ. The kernel of Φ is generated by ρ.
The mapping class group of S is generated by τ and has order 2. Φ is
non-zero, thus its restriction toMCG(S) is an isomorphism.

5) If S is a cylinder with a single marked point on each boundary compon-
ent, then, A∗(S) is an infinite line of vertices and has automorphism
group Z. Identifying S with (S1 × [0, 1], {(0, 0), (0, 1)}), MCG(S) is
generated by τB for any of its boundary components B and therefore
isomorphic to Z. Since Φ(τB) is a generator it follows that Φ is an
isomorphism.

As a consequence of the previous considerations we see that, with the excep-
tion of the disc with 4 marked points, the restriction Φ|MCG(S) is invertible
and we may define Ψ as Φ|−1

MCG(S) ◦ A∗. The same proof as in the general
case show that Ψ(T )(γ(X)) ' γ(T (X)) for all indecomposables X ∈ F and
all equivalences T : F → F .

In case of a disc with 4 marked points, every mapping class is uniquely
determined by its action on the set of marked points which itself is uniquely
determined by the action on the set of boundary segments. Thus, for every
auto-equivalence T of F , there is a unique mapping class Ψ(T ), such that
Ψ(T )(γ(X)) ' Ψ(T (X)). Similar, if S is a disc with at most 3 marked
points, then there for each auto-equivalence T of F (which has at most 3
indecomposable objects), there exists a unique mapping class of Ψ(T ) of S,
such that Ψ(T )(γ(X)) ' γ(T (X)) for all X ∈ F .

Altogether we have seen that Ψ can be defined for special surfaces and has
the desired properties.

II.5 The kernel of Ψ
We study the kernel of Ψ, where u = (Db(A),SA, ωA) is the Fukaya-like
triple associated to a gentle algebra A. The main result of this section is the
following proposition (Theorem E in the introduction).

Theorem II.5.1. Let A = kQ/I be a gentle algebra, such that Q is connected
and has no oriented cycles. Then ker Ψ is generated by rescaling equivalences
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if Q is not isomorphic to the Kronecker quiver. If Q is isomorphic to the
Kronecker quiver, then ker Ψ is generated by [1], all rescaling equivalences
and all coordinate transformations.

The definition of rescaling equivalences is given below. Note that in order
for Ψ to be defined, we henceforth assume that SA is not a disc with at most
3 marked points. This is a very mild condition as it rules out precisely all
path algebras of type A1 or A2. Indeed, this follows from Proposition I.1.20
and the classification of iterated-tilted algebras of type A, see [6]. Our proof
of Theorem II.5.1 builds on the ideas of [47].
Set D := Db(A). By the very construction of Ψ, T ∈ Aut(D) is contained in
the kernel of Ψ if and only if T fixes the isomorphism class of every essential
object up to a shift. It shows the following:

Lemma II.5.2. The shift functor is an element of ker Ψ.

From Theorem II.3.1 and the discussion on special surfaces in Section II.4.1,
we deduce the even stronger statement that T ∈ ker Ψ if and only if T fixes
the isomorphism class (in F /[1]) of every indecomposable object in F , which
is not τ -invariant, and T fixes all families of τ -invariant objects.

Examples of elements in ker Ψ We present further typical examples of
auto-equivalences in the kernel of Ψ. Recall that the map which attaches to
any algebra automorphism σ : A→ A its corresponding equivalence σ−1A⊗L
− : D → D, defines a group homomorphism

O : Autk(A) Aut (D) .

A short calculations shows that two such equivalences associated to auto-
morphisms σ, σ′ are naturally isomorphic as functors if and only if σA ∼= σ′A
as A-A-bimodules. It is well-known (see Chapter VII in [65]) that kerO con-
sists of the set of inner automorphisms. Thus, O descends to an embedding
of the group Out(A) of outer automorphisms of A into Aut(D).

As an important special case, suppose f : A→ A is an algebra isomorph-
ism that fixes every vertex of Q, such that f(α) = λα ·α for some λα ∈ k× for
all α ∈ Q1. In other words, f multiplies every arrow by a non-zero element
in k. The set of such automorphisms forms a subgroup of Autk(A) which
is isomorphic to (k×) |Q1|. Its elements we call rescaling automorphisms
and their associated equivalences O(f) are called rescaling equivalences.
We denote by R the subgroup of Aut(D) consisting of all rescaling equival-
ences (up to natural isomorphism).
Rescaling automorphisms are special cases of the broader class of so-called
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linear changes of variables, as defined in [47], and it follows from there that
there exists a short exact sequence of groups

0 (k×)|Q0|/k× (k×)|Q1| R 0,φ O

where the quotient on the left is taken with respect to the diagonal embedding
and the map φ is defined by

φ
(
(λx)x∈Q0

)
:= (λ−1

s(α) · λt(α))α∈Q1 .

The map on the right hand side is the canonical projection sending a rescaling
automorphism to its associated element in R. The image of φ are the so-
called acyclic characters of Q, see [47].

Lemma II.5.3. R is a subset of ker Ψ.

Proof. Let f ∈ Aut(A) be a rescaling automorphism and F = O(f) ∈
Aut(D) the corresponding equivalence. Then F maps projective modules
to projective modules and since f sends arrows to multiples of themselves, F
sends string complexes to string complexes with rescaled components of its
differential. This does not change the isomorphism class of a string complex.
For the same reasons, F may change the isomorphism classes of band com-
plexes, but only to a band complex in the same family of band complexes (a
family of τ -invariant objects). In particular, the representing homotopy class
of every indecomposable object in D remains unchanged under the action of
F showing that F ∈ ker Ψ.

In a similar way one proves:

Lemma II.5.4. Let Q be the Kronecker quiver, B = kQ and let T ∈
Aut(Db(B)) be a coordinate transformation as defined in Example II.2.15).
Then T ∈ ker Ψ.

Note that if Q is the Kronecker quiver, then rescaling automorphisms are
special cases of coordinate transformations.

The proof of Theorem II.5.1 The following lemma asserts that under
certain conditions every element of ker Ψ is a shift of an outer automorphism.

Lemma II.5.5. Let A = kQ/I be a gentle algebra, such that Q is connected
and has no oriented cycles. For every T ∈ ker Ψ, there exists an integer
n ∈ Z, such that T ◦ [n] ∈ Out(A).
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Proof. Let T ∈ ker Ψ. Every indecomposable projective module is an essen-
tial object and, consequently, T preserves their isomorphism classes up to
a shift. For P ∈ F a shift of an indecomposable projective A-module, let
mP ∈ Z, such that T (P ) ∼= P [mP ]. If P and P ′ are shifts of indecompos-
able projective A-modules, such that Hom∗(P, P ′) 6= 0, then Hom∗(P, P ′) is
concentrated in a single degree and it follows that mP = mP ′ . Since Q is
connected, it follows inductively that mP = mP ′ for all shifts of indecom-
posable projective A-modules P and P ′. Therefore, by composing T with
an appropriate shift, we may assume that T (P ) ∼= P for all indecomposable
projective A-modules P . Since Q has no oriented cycles, it follows from Pro-
position 2.4 in [34] that T is naturally isomorphic to a derived tensor product
σA⊗L − for some σ ∈ Autk(A)

Together with Lemma II.5.5 the following lemma provides a proof of Theorem
II.5.1.

Lemma II.5.6. Let A = kQ/I be a gentle algebra. Then, Out(A)∩ ker Ψ =
R.

Proof. The inclusion “⊆” was shown in Lemma II.5.3. To prove the opposite
inclusion, it is convenient to replace T with the derived functor T ′ of the
functor which sends an A-module M and its associated algebra homomorph-
ism φM : A → Endk(M) to the A-module M equipped with the structure
map φM ◦ σ : A→ Endk(M).
The map σ induces automorphisms on all powers of the radical of A. In
particular, it induces an automorphism σ on the semisimple quotient B :=
A/ rad(A) (rad(A) denoting the radical). As an algebra, B naturally de-
composes into the vector spaces spanned by the projections of idempotents
associated to vertices of Q. Since every T (and hence T ′) preserves the iso-
morphism class of every indecomposable projective A-module it follows from
[47] that we may assume σ(x) = x for all x ∈ Q0 after composition with
an inner automorphism. Note that since A is gentle, it is naturally graded
by its radical, i.e. A is isomorphic to the graded algebra associated with the
filtration of A by the powers of rad(A).
Suppose that for some α ∈ Q1, {σ(α), α} is linearly independent. Since A
is gentle, it follows that there exists at most one path β 6∈ I in Q differ-
ent from α which is parallel to α. As σ(x) = x for all x ∈ Q0, it follows
σ(α) = a · α + b · β for some a, b ∈ k and b 6= 0. Note that, if a = 0, then
T (P •α) ∼= P •β 6∼= P •α. Therefore, if a = 0, it follows from T ∈ ker Ψ that P •α
and P •β are τ -invariant, which implies that Q is the Kronecker quiver (Lemma
II.2.20).
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If a 6= 0, then T ′(P •α) is isomorphic to a τ -invariant band complex

· · · 0 Pt(α) Ps(α) 0 · · · ,a·α+b·β (II.1)

implying that P •α must be τ -invariant as well. In particular, if P •α is not
τ -invariant, then b = 0 and σ(α) = a · α. Applying a rescaling equivalence
we may assume that σ(α) = α for all α ∈ Q1, such that P •α is not τ -invariant.

Next, suppose there exists a path β 6∈ I in Q, such that P •β is τ -invariant.
According to Lemma II.1.10, P •β is represented by a boundary arc on a bound-
ary component B which contains a single marked point. By construction of γ
(see [61]), P •β must sit at the base of the homogeneous tube, or equivalently,
it is represented by a simple boundary arc. In particular, the middle term Y
in an Auslander-Reiten triangle

P •β Y P •β P •β [1]

is indecomposable. By Corollary 6.3. in [13] (see also Corollary II.1.7), β is
a maximal antipath, i.e. if α ∈ Q1 and αβ (resp. βα) is a path in Q, then
αβ ∈ I (resp. βα ∈ I). The simple boundary loop around B represents
a family of band complexes as in (II.1) above for some path (of arbitrary
length) α parallel to β. Since T ′ preserves the family of τ -invariant objects
associated to Xβ, there exist a, b, c, d ∈ k, such that σ(α) = a · α + c · β and
σ(β) = b · α + d · β. Since σ is invertible, so is the matrix

M =
(
a b
c d

)
.

If Q is the Kronecker quiver, it means that T is isomorphic to a coordinate
transformation.

For the rest of this proof we assume that Q is not isomorphic to the Kro-
necker quiver. Then, P •β is contained in an A1

k-family of τ -invariant objects
(see Lemma II.2.19). In particular, Xα is not τ -invariant, as otherwise it
would belong to the same family of τ -invariant objects as P •β yielding a P1

k-
family. Consequently, σ(α) = α. Suppose M is not diagonal, then M−1 is
not diagonal and there exists a (τ -invariant!) band complex which is mapped
under T ′ to P •α – a contradiction. Thus, M is diagonal. This shows that for
all β, such that P •β is τ -invariant, σ(β) = λβ · β for some λβ ∈ k×. Thus, σ
is a rescaling automorphism and the proof is complete.
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Chapter III

Spherical objects on cycles of
projective lines

The following Theorems are proved in the present chapter.

Theorem III.0.1. Let n ∈ N, n > 1. There exists a one-to-one corres-
pondence between isomorphism classes of spherical objects on an n-cycle of
projective lines, up to shift, and pairs (γ,V), where γ is the homotopy class
of a simple loop on the torus Tn with n punctures and V is a 1-dimensional
local system on γ, such that the complement of γ in Tn is connected.

Theorem III.0.2. Assume that k is algebraically closed and let n ∈ N. The
group of auto-equivalences of the category of perfect complexes acts transit-
ively on the set of isomorphism classes of spherical objects over an n-cycle
of projective lines.

Theorem III.0.1 and Theorem III.0.2 coincide with Theorem E and Theorem
F of the introduction.

III.1 Categorical resolutions of cycles of pro-
jective lines

We recall the definition of a cycle of projective lines and some of the results
in [25].

Definition III.1.1. Let n ∈ N, n ≥ 1. By an n-cycle of projective lines
we mean a reduced rational projective curve En of arithmetic genus 1, which
is a union of n copies of P1 glued transversally in a configuration of type
Ãn−1.
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By definition, En is the union of n irreducible components P1
i (i ∈ Z/nZ),

each of which is isomorphic to P1, such that for all i ∈ Z/nZ, P1
i and P1

i+1
intersect in a nodal singularity.
In particular, E1 is the Weierstraß nodal cubic. The curve E3 is shown in
Figure III.1.

Figure III.1: A 3-cycle of projective lines

Burban and Drozd constructed a fully faithful and exact functor

Perf(En) Db(CohXn),

where Xn is a certain non-commutative curve. They proved that Db(CohXn)
contains a tilting complex, the endomorphism algebra Λn of which is iso-
morphic to the quotient of the path algebra of the quiver

• • · · · •

• • · · · •

• • · · · •

d0

b0

d1
b1

b2 bn−1
dn−1

a0 c0 a1 c1 an−1 cn−1

by the ideal generated by the set R := {aibi, cidi | i ∈ [0, n)}. For example,
Λ1 is the quotient of the path algebra of

3 2 1
a

c

b

d

by the ideal (ba, dc). The algebras Λn are gentle of global dimension 2 and,
as a consequence, the Auslander-Reiten translation is defined for all its in-
decomposable objects.
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From the above, it follows that there exists an embedding of triangulated
categories

F : Perf(En) Db(Λn).

Burban and Drozd proved that the image of F is the full subcategory of
τ -invariant objects, i.e. all objects X ∈ Db(Λn) satisfying X ∼= τX. They
further computed the image of the Jacobian Pic0(E1) ∼= k× as well as the
images of the skyscraper sheaves k(x) of smooth points x ∈ E1.
The functor F identifies isomorphism classes of line bundle of degree 1 with
the isomorphism of the following family (O(λ))λ∈k× of complexes.

O(λ) = · · · 0 P1 P 2
2 P3 0 · · · .

( bd ) ( a λc )

The set {k(x) |x ∈ E1 smooth} is identified with the set of complexes
{k(λ) |λ ∈ k×}, where

k(λ) = · · · 0 P2 P3 0 · · · .a+λc

The underlined projectives indicate the degree zero part of O(λ) and k(λ).
In fact, k(λ) is quasi-isomorphic to the Λ1-module

k k 0
λ

1

It was communicated to us by Igor Burban, that for general n ∈ N, one
obtains the following descriptions of the images of Pic1(En) and k(x), where
Pic1(En) denotes the set of all line bundles on En of multi-degree 1 =
(1, . . . , 1) ∈ Zn.

Theorem III.1.2 (Burban). Let n ∈ N and let Y ∈ Db(Λn). Then there
exists L ∈ Pic1(En), such that Y ∼= F(L) if and only if Y is isomorphic to a
band complex P •σPic1 ,λ

, which is concentrated in degrees 0 and 1, where λ ∈ k×

and σPic1 = d0b1d1 · · · dn−1bn−1.
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P2[0] P1[0]

⊕ ⊕

P2[1] P1[1]

⊕ ⊕

... ...

⊕ ⊕

P2[n−1] P1[n−1]

b0

λd0

b1

d1

b2

bn−1

dn−1

Figure III.2: The images of Pic1 under F.

Theorem III.1.3 (Burban). Let n ∈ N and let Y ∈ Db(Λn). Then there
exists a smooth point x ∈ P1

i , such that Y ∼= F(k(x)) if and only if Y is
isomorphic to a band complex P •σk(x),i,λ

, which is concentrated in degree −1
and 0, where λ ∈ k× and σk(x),i = aici.

· · · 0 P2[i] P3[i] 0 · · · .λai+ci

Figure III.3: The images of k(x), x ∈ P1
i , under F.

The proofs of Theorem III.1.2 and Theorem III.1.3 were communicated to
the author by Igor Burban and can be found in the Appendix.

III.2 Spherical objects and spherical twists
In this section we recall the definition of a spherical object in a triangu-
lated category and their associated auto-equivalences, the so-called spherical
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twists. Spherical objects and spherical twists were first introduced in [70].
Throughout this section we fix a k-linear, Hom-finite triangulated category
T , i.e. Hom∗(X, Y ) is finite dimensional for all X, Y ∈ T .

Definition III.2.1. A Serre dual of an object X ∈ T is an object S(X) ∈
T , such that there exists a k-linear isomorphism of functors Hom(X,−) ∼=
Hom(−,S(X))∗, where (−)∗ denotes the duality over the ground field k.

By Yoneda’s lemma, the Serre dual of an object is unique up to unique
isomorphism if it exists. It further follows that the mapping X 7→ S(X) is
functorial on the subcategory of objects it is defined for. If S is defined for all
objects of T , then any such functor is called a Serre functor. In addition to
being unique up to unique isomorphism, Serre functors commute with every
k-linear triangle equivalence up to natural isomorphism.

Remark III.2.2. The categories Perf(En) and Db(Λn) have Serre functors.
In the former case, it is the left derived tensor product − ⊗L ω[1], where ω
denotes the canonical sheaf. In fact, ω is a trivial line bundle, showing that
the Serre functor is isomorphic to the shift functor [1].
Since Λn has finite global dimension, the left derived functor of the Nakayama
functor ν = (HomΛn(−, ΛnΛn))∗ : Λn −mod → Λn −mod is a Serre functor
of Db(Λn).

Definition III.2.3. An object X ∈ T is called d-Calabi-Yau (d ∈ Z) if
X[d] is a Serre dual of X. A d-Calabi-Yau object X ∈ T is d-spherical if
dim Hom∗(X,X) = 2 and is concentrated in degrees 0 and d, and if moreover
char k = 2 and d = 0, then Hom(X,X) ∼= k[U ]/(U2).

It follows from Remark III.2.2 that every object X ∈ Perf(En) is 1-Calabi-
Yau. In particular, all of its spherical objects are 1-spherical.

Example III.2.4. The following are examples of spherical objects.

1) Every simple vector bundle L ∈ Perf(En) is 1-spherical since Hom(L,L) ∼=
k and hence by Serre duality,

Hom(L,L[i]) ∼= Hom(L,L[1− i])∗ ∼=

k, if i = 1;
0 if i ≥ 2.

In particular, all line bundles on En are spherical.

2) Let x ∈ En be smooth. By a similar argument as before, the associated
skyscraper sheaf k(x) is an object in Perf(En) and is 1-spherical.
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Lemma III.2.5. Let X ∈ T be spherical. Then, X is indecomposable.

Proof. If X ∈ T is d-Calabi-Yau, then by virtue of the isomorphism

Hom(X,X[i]) ∼= Hom(X[i], X[d])∗ ∼= Hom(X,X[d− i])∗,

End∗(X) is concentrated in degrees 0 and d. Note that if char k 6= 2 and
d = 0, then Hom∗(X,X) ∼= k[U ]/(U2) by definition. In particular, End(X)
is local for any characteristic and hence X is indecomposable.

It was shown in [70] (see also [50]) that if T is algebraic (or more general, has
a DG-enhancement), every spherical object X ∈ T gives rise to a k-linear
exact auto-equivalence TX of T , called a spherical twist. By its definition,
for every Y ∈ T , the object TX(Y ) sits in a distinguished triangle of the form

Hom∗(X, Y )⊗k X Y TX(Y ) Hom∗(X, Y )⊗k X[1]ev

where ev denotes the canonical evaluation map.
In particular, given a basis f1, . . . , fm of ⊕i∈Z Hom(X[i], Y ) consisting of
morphisms fi : X[ni] → Y , then the above triangle is isomorphic to the
triangle

⊕m
i=1X[ni] Y TX(Y ) ⊕m

i=1 X[ni][1]
⊕

fi

Besides being useful for computations in Section III.5, it shows that twist
functors commute with embeddings on the level of objects.

Corollary III.2.6. Let T ′ be a k-linear, hom-finite and algebraic triangu-
lated category and let F : T → T ′ be a k-linear, exact and fully faithful
functor. Let X ∈ T be spherical and assume that F(X) is spherical. Then
for all Y ∈ T ,

F ◦ TX(Y ) ∼= TF(X) ◦ F(Y ).

In particular, if F is an equivalence and F−1 a quasi-inverse of F, then F ◦
TX ◦ F−1(Y ) ∼= TF(X)(F(Y )).

The previous corollary allows us to analyze the twist functor of any spherical
object X ∈ Perf(En) implicitely by analyzing the twist functor of F(X) ∈
Db(Λn).
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III.3 The surface model of Λn

We describe the surface SΛn , its laminations and the loops associated to
P •σPic1

and P •σk(x),i
.

The surface associated to Λn is a torus Tn, which we define in the following
way. Let n ∈ N and for all integer valued points (i, j) ∈ R2 denote Bj

i ⊆ R2

the open disc with radius 1
4 and center (i + 1

2 ,
1
2 + j). Denote Tn the torus

with n removed open discs, i.e. Tn is the quotient of

R2 \

 ⊔
(i,j)∈Z2

Bj
i

 ,
with respect to the equivalence relation generated by (t, l) ∼ (t, l + 1) and
(m, s) ∼ (m + n, s), where l,m, s, t ∈ R. Denote by ρ the corresponding
quotient map. Its fundamental domain is [0, n)× [0, 1). For convenience we
often refer to a point x ∈ Tn via a representative in R2.
Set M := {(i + 1

2 ,
3
4), (i + 1

2 ,
1
4) | 0 ≤ i < n} ⊆ ∂Tn. This is the set of

marked points. They are in bijection with the set of maximal admissible
paths {aidi, cibi+1 | i ∈ [0, n)}, i.e. the path aidi corresponds to the point
(i+ 1

2 ,
1
4) and the path cibi+1 to the point (i+ 1

2 ,
3
4). The lamination of Λn is

shown in Figure III.4

Figure III.4: Laminates of Λn

The laminates shown on the right hand side of Figure III.5 correspond to the
vertices s(ai) = s(ci) and laminates as shown on the left hand side correspond
to vertices t(di) = t(bi+1). The remaining laminates in Figure III.4 represent
the vertices t(ai) = t(ci) = s(di) = s(bi+1).
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Figure III.5

The lamination cuts Tn into 2n connected components, each of which is
homeomorphic to a 6-gon.
A representative of the homotopy class of loops associated to σPic1 is the
loop γPic1 : S1 → Tn defined by γPic1(exp(t)) := (n · t, 1

4), where exp denotes
the usual exponential map. Similarly, the loop γik(x) : S1 → Tn defined as
γik(x)(exp(t)) := (i+ 1, t) is a representative of γ(σk(x),i).

Figure III.6: The loops γPic1 and γ1
k(x).

III.3.1 Spherical objects in Db(Λn) and simple loops
We show that, up to shifts, isomorphism classes of spherical objects in Db(Λn)
are in bijection with a certain set of simple loops.
Let X ∈ Perf(En) be spherical. By Corollary 6 in [25], Y := F(X) is
τ -invariant and since F is fully faithful, Y is spherical.

Lemma III.3.1. Let Y ∈ Db(Λn) be indecomposable. Then Y is Calabi-Yau
if and only if it is isomorphic to a band complex.
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Proof. All band complexes are τ -invariant (see Section I.5.1) and hence 1-
Calabi-Yau. It follows from Lemma II.1.10 and the relation S = τ [1] that the
only Calabi-Yau arc complexes are represented by boundary arcs of boundary
components with a single marked point showing that there are no such string
complexes in Db(Λn).

The previous proposition has the following consequence.

Corollary III.3.2. If Y ∈ Db(Λn) is spherical, then Y ∼= F(X) for some
spherical object X ∈ Perf(En).

Proof. By Lemma III.3.1, Y is τ -invariant and hence in the essential image of
F. Since F is fully faithful, every (essential) preimage must be spherical.

Recall that a loop γ is called simple if it has no self-intersections.

Lemma III.3.3. Let Y ∈ Db(Λn) be indecomposable. Then Y is spherical if
and only if it is represented by a simple loop.

Proof. Suppose Y be spherical. By Lemma III.3.1, Y is represented by a
homotopy class of loops. Let γ, γ′ be representatives of this homotopy class
in minimal position. Then by Theorem I.3.3, γ and γ′ are disjoint. In
particular, γ can not have self-intersections, i.e. γ is simple.
Conversely, suppose γ is a simple loop which represents Y . In particular,
we find a simple loop γ′ homotopic to γ, such that γ and γ′ are disjoint.
Again by Theorem I.3.3, we conclude that ⊕i∈Z Hom(Y, Y [i]) has dimension
2 and is concentrated in degree 0 and 1 the generators being the identity
and a connecting morphism of an Auslander-Reiten triangle. Since Y is
τ -invariant, Y is spherical.

As a weaker version of Theorem III.0.1 we obtain:

Corollary III.3.4. The functor F : Perf(En)→ Db(Λn) gives rise to a bijec-
tion between the set of isomorphism classes of spherical objects in Perf(En)
and those homotopy classes of simple loops on Tn, which represent objects of
Db(Λn).

The surprisingly difficult part is, however, to determine, which loops on Tn
actually represent an indecomposable object of Db(Λn). We will do this in
Section III.6.
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III.4 The mapping class group of Tn
Recall from Section II.2.1 that the mapping class group MCG(Tn) of Tn is
the group consisting of all orientation-preserving homeomorphisms Tn which
restrict to a bijection of marked points modulo isotopy. Its subgroup of all
homeomorphisms, which restrict to the identity on ∂Tn, is called the pure
mapping class group and is denoted by PMCG(Tn). Similarly, it is useful
to consider the subgroup MCG(Tn)∂ of the mapping class group consisting
of all f , which preserve each boundary component of Tn as a set. We have
the following relationships between these groups.
There exist short exact sequences (see [42])

0 PMCG(Tn) MCG(Tn) (Z/2Z)n × Σn 0,

0 PMCG(Tn) MCG(Tn)∂ (Z/2Z)n 0.

Here Σn denotes the symmetric group on n elements. In the above sequences,
a mapping class f is projected to the induced bijections of the sets of marked
points and the set of boundary components, respectively.

Dehn twists A typical example of a pure mapping class is the class of a so-
called Dehn twist Dγ about a given (oriented) simple loop γ on S. If W is
a tubular neighborhood of γ, i.e. a neighborhood W with a homeomorphism
φ : S1× [−1, 1]→ W , such that φ|S1×{0} = γ, then Dγ : S → S is defined by
Dγ|S\W := IdS\W on S \W and on W by

Dγ(φ(z, t)) := φ(z · eπi(t+1), t).

While Dγ depends on W , its mapping class is well-defined. On the level of
homotopy classes, the twist Dγ sends the homotopy class of a curve δ, which
is in minimal position with γ, to the homotopy class of the curve obtained
by resolving all intersections of γ and δ at once, following the direction of γ.
That is, whenever δ crosses γ from the right (resp. left) hand side of γ, we
turn right (resp. left) at the intersection. When compared to the definition of
spherical twists while keeping in mind that resolution of crossings correspond
to mapping cones, it reveals the strong formal similarity between Dehn twists
and spherical twist which seems to be one of the intentions behind their
introduction in [70].
In analogy to spherical twists (see Corollary III.2.6) the set of mapping classes
of Dehn twists is closed under conjugation.
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Lemma III.4.1 ([42]). Let γ be a simple loop on an oriented surface S and
let F : S → S be a homeomorphism. Then DF◦γ and F ◦Dγ ◦F−1 define the
same mapping classes.

The following is a special case of a Theorem due to Humphries which can
be found in [42].

Theorem III.4.2 (Humphries). PMCG(Tn) is generated by the mapping
classes of n+1 Dehn twists about the loops γPic1 and γ0

k(x), . . . , γ
n−1
k(x) as defined

in Section III.3.

The Dehn twist of the previous theorem are referred to as the Humphries
generators of PMCG(Tn).

The action of PMCG(Tn) on simple curves With Theorem III.0.2 and
the expected correspondence between spherical twists and Dehn twists in
mind, we want to analyze the action of PMCG(Tn) on simple curves. We
characterize its orbits in terms of cut surfaces. The cut surface of a simple
loop γ on a compact surface S is the surface M with boundary components
B 6= B′, such that M \ (B ∪B′) = S \ γ. In particular, a subset of the
boundary components of the cut surface is canonically identified with the
boundary components of S.
The natural action of homeomorphisms on curves on a compact surface S
with boundary gives rise to an action ofMCG(S) on the set of isotopy classes,
or equivalently homotopy classes, of simple loops.

Definition III.4.3. Let γ, γ′ be simple loops with image in the interior of
a compact oriented surface S with boundary components B0, . . . , Bm ⊆ ∂S.
Denote M (resp. M ′) the cut surface of γ (resp. γ′). We say that γ and γ′
have the same strong topological type if there exists a homeomorphism
F : M → M ′, which restricts to homeomorphisms Bi → Bi for every i ∈
[0,m].

Remark III.4.4. In the literature the term topological type is used to refer
to simple loops γ, γ′, such that S \ γ and S \ γ′ are homeomorphic without
further assumptions on the homeomorphism.

The groupMCG(S) acts naturally on the set of homotopy classes of all simple
loops of any fixed topological type and it is well-known that this action is
transitive. Similarly, PMCG(S) acts naturally on the set of homotopy classes
of all simple loops of the same strong topological type. We adapt the proof
of the classical result (which can be found in Section 1.3 of [42]) and show
that this action is transitive as well.
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Proposition III.4.5. Let S be a compact, oriented surface with boundary
and γ, γ′ be a simple loops of the same strong topological type. Then there
exists a pure mapping class F ∈ PMCG(S) such that F ◦γ ' γ′ up to change
of orientation of γ′.

Proof. Denote {B0, . . . , Bm} the set of boundary components of S. Set
M := S \ γ and M ′ := S \ γ′ and equip them with the orientation in-
duced from S. By assumption, there exists a homeomorphism H : M →M ′,
which restricts to homeomorphisms Bi → Bi for all i ∈ [0,m]. By com-
posing H with an orientation reversing homeomorphism of M to itself, pos-
sibly followed by other orientation preserving homeomorphisms that permute
boundary components (so-called half-twists, see [42]), we may assume that
H is orientation preserving. By Lemma III.4.6 below we can extend every
orientation preserving homeomorphism Bi → Bi to an orientation preserving
homeomorphism of M , which restricts to identities on all its other boundary
components. We may therefore assume that for all i ∈ [1, n], H restricts to
the identity of Bi for all i ∈ [0,m].
H induces a homeomorphism S → S with the desired property by gluing
those boundary components of M and M ′ back together which correspond
to γ and γ′, respectively.

Next, we prove Lemma III.4.6, which was already used in the previous proof.

Lemma III.4.6. Let S be a compact oriented surface, B a boundary compon-
ent of S and f : B → B an orientation preserving homeomorphism, where B
is equipped with the induced orientation. Then for every closed neighborhood
W of B, f extends to a homeomorphism F : S → S, such that F restricts to
the identity outside the complement of W .

Proof. The mapping class group of the circle is trivial. In other words, every
orientation preserving homeomorphism S1 → S1 is isotopic to the identity.
In particular, we find an isotopy ψ : [0, 1]×B → B of f to IdB. For U ⊆ W
a tubular neighborhood of B with homeomorphism φ : U → [0, 1]×B define
F as the extension by the identity of the map ψ ◦ φ : U → U .

We are mainly interested in a particular strong topological type formed by
the so-called non-separating loops. A simple loop γ is called non-separating
if its complement S \ γ, or equivalently its cut surface, is connected. It is
clear from the definition, the set of non-separating loops splits into orbits of
the action of PMCG(Tn). However, as the following lemma asserts, they all
belong to a single orbit.

Lemma III.4.7. All non-separating loops have the same strong topological
type.
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Proof. Assume γ is a non-separating simple loop on a surface S with genus
g and boundary components B1, . . . , Bm. Then the cut surface M of γ is a
connected surface of genus g − 1 and m + 2 boundary components, which
follows from the additivity of Euler characteristics. In particular, if γ′ is
another non-separating loop on S, its cut surface is homeomorphic toM by an
orientation preserving homeomorphism. By a series of half-twists (compare
Lemma III.4.5), we can permute any two boundary components on M by
an orientation preserving homeomorphism which restricts to the identity on
all other boundary components. In this way we obtain a homeomorphism
M → M ′, which restricts to homeomorphisms Bi → Bi for every i ∈ [1,m].
We then proceed as in the proof of Proposition III.4.5 to obtain the desired
homeomorphism M →M ′.

Corollary III.4.8. PMCG(S) acts transitively on the set of non-separating
simple loops.

Corollary III.4.8 tells us that all we need to prove in order to finish the
proof of Theorem III.0.2 is the following:

1. A simple loop on Tn represents an object if and only if it is non-
separating.

2. For every Humphries generator H of PMCG(Tn), find F ∈ Aut(Db(Λn)
such that Ψ(F) acts on simple loops in the same way as H.

Remark III.4.9. If n 6= 1, 2, then the action of a homeomorphism Tn →
Tn on simple loops completely determines its mapping class and hence the
second entry in the previous list implies that in those cases PMCG(Tn) is
contained in the image of the homomorphism Ψ : Aut(Db(Λn))→MCG(Tn)
(see Section II.2). This follows from a result of Ivanov ([52]) which shows
that the group of simplicial automorphisms of the curve complex (which
is a variant of the arc complex introduced in Definition II.2.3) is equal to
the mapping class group for almost all types of (unmarked!) surfaces with
negative euler characteristic.

Example III.4.10. We provide a list of examples of separating loops on Tn
of different strong topological types. In fact, this list is exhaustive as we will
show below.
Let I be any (possibly empty) subset of components of ∂Tn. If I contains all
components of ∂Tn, let δI be any separating simple loop with image in the
interior of the fundamental domain (0, n)×(0, 1), which cuts the fundamental
polygon into a region with no boundary components and a region, which
contains all boundary components. Otherwise, let i0, . . . , im be the elements
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in Z/nZ in cyclic order, such that for all j ∈ [0,m], ij ∈ I and ij − 1 6∈ I.
Denote δI the homotopy class of loops as shown in Figure III.7 .

i0 i1

Figure III.7: Prototype of a separating simple loop

Lemma III.4.11. Every strong topological type of simple, separating loops
in Tn is represented by a loop from Example III.4.10.
Proof. Suppose γ, γ′ are separating, simple loops on Tn with cut surfaces M
andM ′. By assumptionM (resp.M ′) consists of two connected components.
Since the Euler characteristic of M (resp. M ′) and Tn agree and is additive
on disjoint unions, it follows thatM = M1tM2 (resp.M ′ = M ′

1tM ′
2), where

M1 (resp. M ′
1) has genus 1 and M2 (resp. M ′

2) has genus 0. In particular,
M2 and M ′

2 determine canonical subsets I and I ′ of the set of boundary
components of Tn and γ and γ′ have the same strong topological type if and
only if I = I ′.
Lemma III.4.12. Let I be a subset of boundary components of Tn and let δI
denote the loop from Example III.4.10. Then δI does not represent an object
in Db(Λn).
Proof. It is not difficult to verify that the number of clockwise and counter-
clockwise arrows in σ(δI) differs by 2. Thus, by Theorem I.2.5, it does not
correspond to an object in Db(Λn).

In the subsequent section we relate Dehn twists of the Humphries generators
of PMCG(Tn) and the spherical twists of the band complexes P •σ , where
σ ∈ {σPic1 , σk(x),0, . . . , σk(x),n−1}. With this in mind, Corollary III.4.8 should
be thought of as the geometric version of Theorem III.0.2.

III.5 Spherical twists in Db(Λn)
The main portion of this section is occupied with the proof of the following
result.
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Proposition III.5.1. Let λ ∈ k× and P • = P •σ,λ for any

σ ∈
{
σPic1,λ, σk(x),0, . . . , σk(x),n−1

}
.

Let Y be a linear band complex and let further

δ ∈
{
γPic1 , γ

0
k(x), . . . , γ

n−1
k(x)

}
be the simple arc corresponding to σ. Then γ(TP •(Y )) coincides with the
image of the homotopy class γ(Y ) under Dδ.

Below we will verify Proposition III.5.1 by direct computations. However,
before we do so, we use it to prove the following generalization of Corollary
5.8. in [28].

Theorem III.5.2. Let n ∈ N \ {1, 2}. Then there exists a short exact se-
quence

0 (k×)2n−1 × Z Aut
(
Db(Λn)

)
Im Ψ 0,Ψ

and MCG(Tn)∂ ⊆ Im Ψ ⊆ MCG(Tn). In particular, Im Ψ is a finite index
subgroupMCG(Tn).

Proof. It follows from Proposition III.5.1 and results of Ivanov [52] on the
simplicial automorphism group of arc complexes that Im Ψ contains the pure
mapping class group. Note that the condition n 6= 1, 2 is necessary in order
to apply Ivanov’s result. The images of fractional twists TB (see Definition
I.5.6) under Ψ, where B ⊂ ∂Tn is a connected component, are elements of
MCG(Tn)∂. This follows from the description of mapping cones by resolution
of crossings. Due to the second short exact sequence on page 131, it follows
that Im Ψ containsMCG(Tn)∂ hence is of finite index inMCG(Tn) according
to the first sequence on page 131. The kernel is obtained by Theorem II.5.1
and direct computations of the group rescaling equivalences via the short
exact sequence presented on page 119).

Remark III.5.3. The natural Z/nZ-action on the underlying quiver of Λn

induces an action on the mapping class group of Tn. The generator is mapped
to the mapping class g : Tn → Tn, g(x, i) := (x, i+1). However, it is not clear
to us which other permutations of boundary components can be realized by
restricting images of Ψ to the boundary.

As a first step in our proof of Proposition III.5.1, we give a description of
the ALP basis of the morphisms from any of the above spherical objects to
a linear band complex.
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Lemma III.5.4. Let Y = P •ρ be a linear band complex associated to a
homotopy band ρ 6= σk(x),i. Then, for P • = P •σk(x),i

the standard basis of
Hom∗(P •, Y ) consists of graph maps and quasi maps. Moreover,

1) the graph maps are in bijection with substrings of ρ of the form
di (ciai)m bi or its inverse, where m ≥ 0, and

2) the quasi maps are in bijection with substrings of ρ of the form
(aidi) (ciai)m (cibi) or its inverse, where m ≥ 0.

Proof. As all homotopy letters of σ = σk(x),i = aici are (inverse) paths of
length one, there exists no singleton single map and no singleton double map
from P • to any shift of Y . Suppose ρ and σk(x),i have a maximal (possibly
trivial) subword in common, say ρa · · · ρb and σa · · · σb. Then this common
subword satisfies condition LG2 if and only if σa ∈ {ci, ai} and it satisfies
no left endpoint condition if and only if σa ∈ {ai, ci}. As the right endpoint
conditions are dual, we conclude that graph maps correspond to maximal
subwords ciai · · · ciai of ρ. By maximality (and since ρ is a homotopy band)
it follows that di (ciai)m bi is a subword of ρ. Conversely, every such subword
determines a graph map. The proof is analogous for quasi maps.

Due to the structural similarity of σk(x),i and σPic1 we obtain

Lemma III.5.5. Let Y = P •ρ be a linear band complex associated to a homo-
topy band ρ 6= σPic1. Then, for P • = P •σPic1

the standard basis of Hom∗(P •, Y )
consists of graph maps and quasi maps. Moreover,

1) the graph maps are in bijection with substrings of ρ of the form
(aidi)bi+1di+1 · · · bj−1dj−1(cjbj) or its inverse, and

2) the quasi maps are in bijection with substrings of ρ of the form
cidibi+1 · · · dj−1bjaj, or its inverse.

Proof. The proof is analogous to the proof of Lemma III.5.4. As before,
by the fact that all homotopy letters of σPic1 are (inverse) paths of length
one, there exists no singleton single map and no singleton double map. We
observe that a maximal common subword ρa · · · ρb of ρ and σ satisfies LG1 if
and only if ρa ∈ {di, bi} for some i ∈ [0, n] and no left endpoint condition if
ρa ∈ {di, bi}. The assertion follows in the same way as in the proof of Lemma
III.5.4.

By Theorem I.4.3, it follows that the mapping cone of a graph map or
quasi map P • → Y as in Lemma III.5.4 and Lemma III.5.5 is represented by
the curve obtained by resolving the crossing of loops. As mentioned above
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(see p.131), the image of a homotopy class under a Dehn twist about a loop
γ can be computed by resolving all intersections of γ with a representative
of said homotopy class. As a consequence of this description, we deduce the
following algorithm for computing the homotopy band of a twisted loop.

Lemma III.5.6. Let σ be a homotopy band and γ = γ(σ) be a loop. For
each i ∈ [0, n), the homotopy band σ(Dγi

k(x)
◦ γ) is obtained from σ by the

following rules.

a) Replace every substring of σ of the form (up to inverting the substring)

di (ciai)m bi
by the substring di (ciai)

m−1 bi, if m ≥ 1;
(aidi)(cibi), if m = 0.

b) Replace every substring of σ of the form (up to inverting the substring)

(aidi) (ciai)m (cibi),

with m ≥ 0, by the substring

(aidi) (ciai)m+1 (cibi).

The Dehn twist about γPic1 is described in a similar fashion.

Lemma III.5.7. Let σ be a homotopy band and γ = γ(σ) be a loop, which
is in minimal position with the laminates on Tn. Then, σ(DγPic1

◦ γ) is a
homotopy band and is obtained from σ by the following rules.

a) Replace every substring of σ of the form (up to inverting the substring)

(aidi)umbi+1di+1 · · · bj−1dj−1(cjbj),

where u = bi+1di+1 · · · bidi, by the substring(aidi)um−1bi+1di+1 · · · bj−1dj−1(cjbj), if m ≥ 1;
aibidi−1 · · · bj+1djcj, if m = 0.
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b) Replace every substring of σ of the form (up to inverting the substring)

aibiv
mdi−1 · · · bj+1djcj,

where v = bidi−1 · · · bi+1di and m ≥ 0, by the substring

aibiv
m+1di−1 · · · bj+1djcj.

Our strategy to describe the isomorphism class of TP •(Y ) with P • and Y as
in Proposition III.5.1 is to prove that the mapping cone, which determines
TP •(Y ), can be computed by computing mapping cones of basis elements
locally. The necessary (however tedious) computations are subject of the
subsequent lemmas.
Lemma III.5.8. Let m ∈ N and let σ = udi (ciai)m biv be a homotopy string
with u and v denoting homotopy letters of σ. Let f : P •σk(x),i

→ P •σ be a
graph map associated to the common subword (ciai)m. Then its mapping
cone Cone(f) is isomorphic as a chain complex to P •τ ⊕Q, where

τ =

udi (ciai)
m−1 biv, if m ≥ 1;

u(aidi)(cibi)v, if m = 0.

and Q ∼= 0 in the homotopy category. The isomorphism can be chosen in such
a way that it restricts to a multiple of the identity on the indecomposable
projective summands corresponding to t(u) and s(v) occuring as prefix or
suffix in both τ and σ, respectively.
Proof. This is a special case of the standard procedure used to transform a
complex of projective modules into a minimal complex, see Lemma 2.4 in
[32].

Note that the previous lemma (with the exception of the assumption on the
isomorphism) is essentially the assertion of Theorem I.4.1. However, in order
to reduce all computations to computations of ‘local’ nature the choice of the
isomorphism is important. By the same argument as before we obtain:
Lemma III.5.9. Let m ∈ N and let

σ = p(aidi)umbi+1di+1 · · · bj−1dj−1(cjbj)q,

where u = bi+1di+1 · · · bidi, be a homotopy string with p and q denoting ho-
motopy letters of σ. Let f : P •σPic1

→ P •σ be a graph map associated to the
common subword umbi+1di+1 · · · bj−1dj−1. Then its mapping cone Cone(f)

τ =

p(aidi)um−1bi+1di+1 · · · bj−1dj−1(cjbj)q, if m ≥ 1;
paibidi−1 · · · bj+1djcjq, if m = 0.
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and Q ∼= 0 in the homotopy category. The isomorphism can be chosen in such
a way that it restricts to a multiple of the identity on the indecomposable
projective summands corresponding to t(p) and s(q) occuring as prefix or
suffix in both τ and σ, respectively.

Finally, we prove analogues of the previous lemmas for quasi maps.

Lemma III.5.10. Let m ∈ N and let σ = u(aidi) (ciai)m (cibi)v be a homo-
topy string with u and v denoting homotopy letters of σ. Let f : P •σk(x),i

→ P •σ
be a quasi map associated to the common subword (ciai)m. Then its mapping
cone Cone(f) is isomorphic as a chain complex to P •τ , where

τ = (aidi) (ciai)m+1 (cibi)

The isomorphism can be chosen in such a way that it restricts to a multiple
of the identity on the indecomposable projective summands corresponding to
t(u) and s(v) occuring as prefix or suffix in both τ and σ, respectively.

Proof. We present a series of basis transformations, which will gradually turn
the differential of Cone(f) into the desired differential. First, suppose m = 0.
Then, the matrix of the differential of Cone(f) (which is the matrix on the
left) is transformed as follows. In order to improve readability we omitted
the indices of the arrows.(

u 0 0
ad cb a
0 0 −(a+λc)
0 0 v

)
 

(
u 0 0
0 cb a
ad 0 −(a+λc)
0 0 v

)
 

(
u 0 0
0 cb a
ad −cb −(a+λc)
0 0 v

)
 

(
u 0 0
0 cb a
ad 0 −λc
0 0 v

)

In the first step we added the (−d)-multiple of the third column to the first.
In the second step we added the (λ−1b)-multiple of the third column to the
second and in the last step we added the second row to the third row. The
case m > 0 requires some more work.
Consider the following sequence of transformations applied to the differential
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of Cone(f). 

u
−(a+λc)

ad a c
a c

a
...
... c

a cb
v

  



u
ad −λc c

a c
a c

a
...
... c

a cb
v



 



u
ad −λc

a λ−1(a+λc)
a c

a
...
... c

a cb
v

  



u
ad −λc
−λa −(a+λc)

a c

a
...
... c

a cb
v



 



u
ad c

a −(a+λc)
a c

a
...
... c

a cb
v


In the first step, we added the second row to the first and afterwards sub-
stracted the d-multiple of the second column from the first column. In the
second step, we added the λ−1-multiple of the second column to the third
column. The fourth matrix is then obtained from the third by multiplying
the second row by −λ. Finally, we multiply the second column by −λ−1.
Observe that the last matrix contains a submatrix (obtained by deleting the
first row and the first column) which has almost the same form as the matrix
we started with. By repeating the above transformations several times, we
end up with the matrix

u
ad c

a c

a
...
... c

a −(a+λc)
a cb

v

  



u
ad c

a c

a
...
... c

a −λc cb
a cb

v



 



u
ad c

a c

a
...
... c

a −λc
a cb

v

  



u
ad c

a c

a
...
... c

a c
a −λcb

v


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All transformations were chosen carefully such that, beside a multiplication
by −λ−1, no further transformations have been applied to the projective
modules corresponding to t(u) and s(v).

Via the same approach one proves an analogue of the previous lemma for
quasi maps P •σPic1

→ Y . We finally give the proof of Proposition III.5.1.

Proof of Proposition III.5.1. By Lemma III.5.5 and Lemma III.5.4, we see
that the common subwords u, v of two distinct basis elements f, f ′ : P • → Y
can only intersect at their end vertices. Therefore, and by Lemma III.5.8,
Lemma III.5.9, Lemma III.5.10 and its analogue, it follows that the mapping
cone which defines TP •(Y ) is computed locally and it follows that the homo-
topy band defining TP •(Y ) is obtained by applying the replacement rules for
substrings in the lemmas above one after another (or all at the same time).
The description of the action of the corresponding Dehn twist in Lemma
III.5.6 and Lemma III.5.7 then shows that TP • and Dδ act on homotopy
bands in the same way. This finishes the proof.

III.6 Proofs of Theorem III.0.1 and Theorem
III.0.2

Corollary III.3.4 and the following Lemma imply Theorem III.0.1.

Lemma III.6.1. Let γ be a simple loop in Tn. Then, γ represents an object
in Db(Λn) if and only if γ is non-separating.

Proof. It follows from Proposition III.5.1, that the Dehn twists associated
to the loops γPic1 and γ0

k(x), . . . , γ
n−1
k(x) preserve the set of homotopy classes

of loops in Tn which represent objects in Db(Λn) and hence Theorem III.4.2
implies that every pure mapping class preserves this set as well. We have seen
that the pure mapping class group acts transitively on all homotopy classes
of a fixed strong topological type (Proposition III.4.5) and that all homotopy
classes of non-separating simple loops belong to the same strong topological
type (Lemma III.4.7). It therefore follows from the fact that γPic1 represents
an object in Db(Λn) (namely images of lines bundles of multi-degree 1), that
γ represents an object as well. The same arguments together with Lemma
III.4.11 and Lemma III.4.12 imply that no separating simple loop represents
an object of Db(Λn).

In what follows, denote Tw(Λn) the group of auto-equivalences generated by
all twists TP • , where P • = P •σ,λ for λ ∈ k× and σ ∈ {σPic1 , σk(x),i | i ∈ [0, n)}.
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We show that all spherical twists by objects in Db(Λn) correspond to the
Dehn twist of their associated simple curves.

Proposition III.6.2. Let X, Y ∈ Db(Λn), such that X is spherical and Y
is a linear band complex. Let further γ ∈ γ(X) be simple. Then γ(TX(Y )) is
equal to the image of the homotopy class of γ(Y ) under Dγ and there exists
an equivalence G ∈ Tw(Λn), such that G(X) ∼= P •σPic1,λ

[m] for some pair
(λ,m) ∈ k× × Z.

Proof. Set P •(λ) := P •σPic1,λ
. By Lemma III.6.1 and Corollary III.4.8, there

exists F ∈ PMCG(Tn), such that F ◦ γ ' γPic1 and, by Theorem III.4.2,
F is isotopic to a composition Dσ1

γ1 · · ·D
σm
γm for loops

γ1, . . . , γm ∈ {γPic1 , γ
0
k(x), . . . , γ

n−1
k(x)},

where σ1, . . . , σm ∈ {±1}. It follows from Lemma III.4.1 thatDγ = DF−1(γPic1 )
is isotopic to

F−1 ◦DγPic1
◦ F = D−σmγm ◦ · · · ◦D−σ1

γ1 ◦DγPic1
◦Dσ1

γ1 ◦ · · · ◦D
σm
γm .

For all i ∈ [1,m], denote Xi a spherical object corresponding to γi. Applying
Proposition III.5.1 2m+ 1 times then shows that for all µ ∈ k×

Dγ(γ(Y )) = γ
(
G−1 ◦ TP •(µ) ◦ T (Y )

)
= γ(TG−1(P •(µ))(Y )), (III.1)

where
G = T σ1

X1 ◦ · · · ◦ T
σm
Xm ∈ Tw(Λn).

By Proposition III.5.1, it follows F ◦ γ ' γPic1 and hence G(X) ∼= P •(λ)[m]
for a unique pair (λ,m) ∈ k××Z. This proves the second assertion. Choosing
µ := λ in (III.1) proves the first assertion.

Lemma III.6.3. Let λ, µ ∈ k×. Denote by P •(α) the complex P •σPic1 ,α
.

Then, there exists G ∈ Tw(Λn), such that G(P •(λ)) ∼= P •(µ).

Proof. For α ∈ k× set X•(α) := P •σk(x),0,α
and

Gα := T−1
X•(1) ◦ TX•(α).

Then, for all α ∈ k×, dim Hom∗(X•(α), P •(λ)) = 1 as it is equal to the
number of intersections of the corresponding loops. In particular the twist
TX•(α)(P •(λ)) is given by the mapping cone of a single graph map. By
Proposition 4.5, [31], it follows that TX•(α)(P •(λ)) ∼= TX•(1)(P •(α−1λ)) and
therefore Gλ−1µ(P •(λ)) ∼= P •(µ).
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Corollary III.6.4. The group Tw(Λn) coincides with the group of auto-
equivalences generated by all Dehn twists.

Proof. Proposition III.6.2 and Lemma III.6.3 show that Tw(Λn) acts trans-
itively on isomorphism classes of spherical objects up to shift. Thus, by
Corollary III.2.6, every spherical twist is conjugate to an element in Tw(Λn)
by an element in Tw(Λn).

Finally, we obtain the following result (see Corollary G in introduction):

Corollary III.6.5. The group of auto-equivalences of Db(CohEn) generated
by all spherical twists is generated by TOEn and the functors − ⊗ LL(x),
x ∈ En smooth, where L(x), denotes the line bundle associated to x.

Proof. By Corollary III.6.4, it follows that the twist functors associated to
smooth points together with the twist functor of an arbitrary line bundle
L of multi-degree 1 = (1, . . . , 1) generate the group of auto-equivalences
generated by all twist functors. As pointed out in Example 2.12 in [28], it
follows from [70], that Tk(x) ∼= −⊗L L(x). Finally, note that that there exist
x0 ∈ P1

0, . . . , xn−1 ∈ P1
n−1, such that L ∼=

⊗n−1
i=0 L(xi).
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Appendix

Images of skyscraper sheaves and line bundles
This section contains the proofs of Theorem III.1.2 and Theorem III.1.3 which
were explained to us by Igor Burban. We frequently use results from [25]. For
convenience of the reader we repeat the assertions of the theorems. Recall
that the gentle algebra Λn is the quotient of the path algebra of the quiver
Γn, given by

• • · · · •

• • · · · •

• • · · · •

d0

b0

d1
b1

b2 bn−1
dn−1

a0 c0 a1 c1 an−1 cn−1

by the ideal generated by the relations {aibi, cidi | i ∈ [0, n)}. The curve En
denotes an n-cycle of projective lines as defined in Section III.1.

Theorem (Burban). Let n ∈ N and let Y ∈ Db(Λn). Then there exists
L ∈ Pic1(En), such that Y ∼= F(L) if and only if Y is isomorphic to a band
complex P •σPic1 ,λ

, which is concentrated in degrees 0 and 1, where λ ∈ k× and
σPic1 = d0b1d1 · · · dn−1bn−1.

Theorem (Burban). Let n ∈ N and let Y ∈ Db(Λn). Then there exists a
smooth point x ∈ P1

i , such that Y ∼= F(k(x)) if and only if Y is isomorphic
to a band complex P •σk(x),i,λ

, which is concentrated in degree −1 and 0, where
λ ∈ k× and σk(x),i = aici.

Notation & Setup For the rest of this section fix n ∈ N and set X := En.
X is a union of irreducible component X0, . . . , Xn−1. Let π : X̃ → X denote
a normalization map. Since X is rational, X̃ = tn−1

i=0 X̃i, where X̃i
∼= P1
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is the normalization of Xi. By changing coordinates, we may assume that
0,∞ ∈ P1 are the preimages of the intersection of the singular locus with Xi.
Set Õ := π∗(O), where O = OX denotes the sheaf of regular functions on X
and denote I the ideal sheaf of the singular locus on X. Note that O is a
subsheaf of Õ. In [25] the authors defined the so-called Auslander-sheaf A
as the sheaf of orders on X given by

A =
(
O Õ
I Õ

)
.

O is embedded into A diagonally. In [25] the authors proved that the
bounded derived categoryDb(CohX) of coherent sheaves over the non-commutative
curve X = Xn = (En,A ) admits a tilting object H defined a follows. Let S
denote the torsion sheaf A -modules defined as the cokernel of the canonical
inclusion of

(
I
I

)
in
(
O
I

)
. Furthermore, set

F := A e1 =
(
O
I

)
and P := A e2 =

(
Õ
Õ

)
.

The tensor product F⊗O− defines a functor J : CohX → CohX. Moreover,
J is fully faithful and has a right adjoint. By definition, we have P = ⊕n−1

i=0 Pi,
where Pi := J(π∗(OX̃i)) =. Then

H := S[−1]⊕ P(−1)⊕ P .

Here, for every integer m ∈ Z we define

P(m) :=
n−1⊕
i=0
Pi ⊗O L,

where there tensor product is defined componentwise and L is any line bundle
of multi-degree (m, . . . ,m) on X. As shown in Lemma 4, [25], the isomorph-
ism class of P(m) (and hence the isomorphism class of H) is independent
of the choice of L. Burban and Drozd showed that Λop

n is isomorphic to the
endomorphism algebra of H by identifying the indecomposable summands of
H with the vertices of the quiver Γn.

Images of skyscraper sheaves of smooth points: Let x ∈ Xi be a
smooth point corresponding to a point (λ : µ) ∈ P1. Note that by our
assumption on the chosen coordinates, λ, µ 6= 0. Let x̃ ∈ X̃i denote the
unique preimage of x under π. Then, π∗(k(x̃)) ∼= k(x) and if zi0, zi∞ : O →
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O(1) correspond to the chosen coordinates on X̃i vanishing at 0 and ∞
respectively, then the cokernel of the map µz0(−1)−λz∞(−1) (−(m) denoting
the Serre twist) is k (λ : µ). Keeping in mind that J ◦ π∗(OX̃i(m)) = Pi(m),
we deduce that there is a short exact sequence

0 Pi(−1) Pi J(k(x)) 0.
µzi0−λz

i
∞

The tilting functor associated with H sends Pi(−1) to the indecomposable
projective of s(ai) and Pi to the indecomposable projective of t(ai) proving
that F(k(x)) is isomorphic to the complex described in the first theorem of
this section.

Images of line bundles of multi-degree (1, . . . , 1): Let L be a line
bundle on X of multi-degree (1, . . . , 1) and set G := J(L) = F ⊗O L. We
want to compute the dimension of the vector spaces Exti(S,G), Exti(P ,G)
and Exti(P(−1),G) for i ≥ 0. Note that by Theorem 2, [25], the global
dimension of CohX is 2.
Since S is a torsion sheaf and G is torsion-free it follows HomA (S,G) ∼= 0.
Therefore it global sections vanish, i.e. HomA (S,G) = 0. In a similar spirit,
we can deduce from local computation of Ext(S,G) and the local-to-global
spectral sequence that Ext1(S,G) ∼= k. Since S has a locally projective res-
olution of length one (by definition it is the cokernel of an injective map
between locally projective sheaves) ExtiA (S,G) = 0 for all i ≥ 2. An applic-
ation of the local-to-global spectral sequence implies ExtiA (S,G) = 0 for all
i ≥ 2.
By Corollary 4, [25], there exists an isomorphism of O-modules

I ∼= HomA (P ,F).

We have a sequence of isomorphisms

HomA (P(−1),G) ∼= HomA (P(−1)⊗O L∨,F) ∼= HomA (P(−2),F),

where L∨ denotes the dual of L. Using that P(−2) ∼=
(
I
I

)
and that

both F and P(−2) are torsion free, it follows from Proposition 6, [25], that
HomA (P(−1),G) ∼= Õ as O-modules. Since k ∼= Γ(X,O) ∼= Γ(X, Õ), we
deduce HomA (P(−1),G) ∼= k. Moreover, it follows from Corollary 3, [25],
that Exti(P(−1),G) = 0 for all i ≥ 1.
Since F(L) is indecomposable, we conclude by the classification of all τ -
invariant indecomposable objects in Db(Λn) (these are precisely the band
complexes) that F(L) is a band complex of the shape described in the second
theorem above.
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