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Summary

Monolithic preconditioners for incompressible fluid flow problems can significantly
improve the convergence speed compared to preconditioners based on incomplete
block factorizations. However, the computational costs for the setup and the appli-
cation of monolithic preconditioners are typically higher. In this paper, several
techniques to further improve the convergence speed as well as the computing time
are applied to monolithic two-level Generalized Dryja–Smith–Widlund (GDSW)
preconditioners. In particular, reduced dimension GDSW (RGDSW) coarse spaces,
restricted and scaled versions of the first level, hybrid and parallel coupling of the
levels, and recycling strategies are investigated. Using a combination of all these
improvements, for a small time-dependent Navier-Stokes problem on 240 MPI ranks,
a reduction of 86 % of the time-to-solution can be obtained. Even without apply-
ing recycling strategies, the time-to-solution can be reduced by more than 50 %
for a larger steady Stokes problem on 4 608 MPI ranks. For the largest problems
with 11 979 MPI ranks the scalability deteriorates drastically for the monolithic
GDSW coarse space. On the other hand, using the reduced dimension coarse spaces,
good scalability up to 11 979 MPI ranks, which corresponds to the largest problem
configuration fitting on the employed supercomputer, could be achieved.

KEYWORDS:
domain decomposition, overlapping Schwarz, reduced dimension coarse space, GDSW, algebraic precon-
ditioner, parallel computing, incompressible fluids, Stokes, Navier-Stokes

1 INTRODUCTION

We discretize the underlying partial di�erential equations of incompressible fluid flow problems with mixed finite elements. Fine
discretizations of the Stokes and Navier-Stokes equations using such mixed finite elements result in large and ill-conditioned
indefinite linear systems. In addition to the required inf-sup conditions for finite element discretizations of such saddle point
problems, special care has to be taken when constructing preconditioners for the discrete problem. The block structure and the
coupling blocks have to be handled appropriately to guarantee fast convergence of iterative methods.

We consider monolithic two-level preconditioners with Generalized Dryja–Smith–Widlund (GDSW) coarse spaces for incom-
pressible fluid flow problems introduced in1. GDSW coarse spaces were originally introduced in2,3 for linear second and fourth
order elliptic partial di�erential equations. For these elliptic problems, the GDSW coarse basis functions are energy minimal
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extensions representing the null space of the elliptic operator. In1, this concept was extended to coarse basis functions which are
saddle point extensions of the null spaces of velocity and pressure of the indefinite saddle point operator. One significant advan-
tage of GDSW coarse spaces is that they can be applied to arbitrary geometries and domain decompositions, whereas the use of
classical Lagrangian coarse basis functions requires a coarse triangulation. In particular, for unstructured meshes and domain
decompositions, a coarse triangulation is typically not available. Our monolithic GDSW approach is inspired by the work of
Klawonn and Pavarino4,5, who introduced monolithic two-level Schwarz preconditioners for saddle point problems for the first
time; however, the methods presented therein are less practical for realistic problems since Lagrangian coarse spaces were used.
Results without algorithmic details for monolithic GDSW coarse spaces were presented by Clark Dohrmann at a workshop on
adaptive finite elements and domain decomposition methods; cf. 6.

An overview of di�erent solution strategies for saddle point problems is given in7. Exact and inexact Uzawa algorithms are
among the first methods for the iterative solution of those saddle point problems; cf. 8,9. For these algorithms velocity and pressure
are decoupled and solved in a segregated approach. Another approach, which is based on the decoupling of the physical variables,
is SIMPLE (Semi-Implicit Method for Pressure Linked Equations); cf. 10. Furthermore, preconditioned iterative solvers such
as the Generalized Minimum Residual Method (GMRES) and its variants or the Conjugare Residual method are widely used.
Block-diagonal and -triangular preconditioners, based on block factorizations, have been developed in11,12,13,5,14,15,16,17,18. More
advanced block preconditioners are the PCD (Pressure Convection-Di�usion) preconditioner19,20,21, the LSC (Least-Squares
Commutator) preconditioner22, Yosida’s method23,24, the Relaxed Dimensional Factorization (RDF) preconditioner25 and the
Dimensional Splitting (DS) preconditioner26,27. Early studies of domain decomposition methods for the Stokes problem were
conducted in28. Domain decomposition based Schwarz preconditioners for Stokes and mixed elasticity problems have already
been used for the approximation of the inverse matrices of blocks in 5 and as monolithic preconditioners in4,29,30,31,32. Alternative
solvers for saddle point problems are, e.g., multigrid methods; cf. 33,34,35.

In order to improve the parallel performance of monolithic GDSW preconditioners, we will reduce the dimension of the coarse
spaces following the work by Dohrmann and Widlund36 on reduced dimension GDSW (RGDSW) coarse spaces; the smaller
dimension typically results in a significantly better parallel performance; cf. 37. Other earlier approaches to reduce the dimen-
sion of GDSW coarse spaces can be found in, e.g., 38,39. Moreover, we will consider restricted and scaled Schwarz operators,
introduced by Cai and Sarkis40, in the first level of our monolithic preconditioners. Furthermore, we employ two alternative
strategies to improve the additive and sequential coupling of the two levels which was used in1: multiplicative but sequential
coupling of the levels and additive coupling combined with the concurrent computation of the levels. Finally, for nonlinear or
time-dependent problems, we will employ di�erent recycling strategies ranging from the re-use of symbolic factorizations of the
local overlapping and nonoverlapping matrices to the complete re-use of the coarse basis and matrix. As we will show, recycling
of the coarse basis functions can eliminate the drawback of the expensive setup phase of GDSW coarse spaces.

The parallel implementation employed in our numerical simulations is based on our parallel implementation of monolithic
two-level preconditioners described in1,41,42. The implementation is available in the FROSch framework43 as a part of the ShyLU
package in Trilinos44.

This paper is structured as follows. In section 2 we introduce as model problems variational formulations of steady and time-
dependent incompressible fluid flow problems. Next, in section 3 we state the space and time discretizations of the underlying
partial di�erential equations. We describe the construction of our monolithic two-level Schwarz preconditioner with classical
GDSW and reduced dimension GDSW coarse spaces in section 4. We first display di�erent variants of a monolithic one level
method and continue with the introduction of reduced coarse spaces. We conclude this section with a presentation of coupling
strategies of the first and the second level. Numerical studies for the preconditioners and the considered improvements are
presented in section 5.

2 SADDLE POINT PROBLEMS

We construct preconditioners for incompressible fluid flow problems involving the Stokes and Navier-Stokes equations. Our
method can be constructed for two dimensional as well as for three dimensional model problems. Here, we concentrate on the
three-dimensional case of ⌦ œ R3 being a polyhedral domain.

2.1 Stokes equations



HEINLEIN ET AL 3

)⌦wall

)⌦wall

)
⌦
in

)⌦
out

FIGURE 1 Cross-section (left) and unstructured domain decomposition into nine subdomains of the three-dimensional back-
ward facing step geometry (right). The Dirichlet boundary )⌦

D
consists of the inlet )⌦in and the walls )⌦wall, the outlet )⌦out

is the Neumann boundary )⌦
N

; see section 2.1 for the resulting streamline solution of a Navier-Stokes problem.

FIGURE 2 Streamline solution of a three-dimensional backward facing step Navier-Stokes problem.

First, we will consider a linear model problem which is given by the Stokes equations. We seek to determine the velocity
u À V

g
:= {v À (H1(⌦))3 : v

)⌦
D

= g} and the pressure p À L
2(⌦) of an incompressible fluid with negligible advective forces

by solving the variational formulation: find (u, p), such that

 
⌦

(u : (v dx *  
⌦

div v p dx =  ⌦
f v dx ≈v À (H1(⌦))3,

*  
⌦

div u q dx = 0 ≈q À L
2(⌦),

with Dirichlet boundary )⌦
D

œ )⌦. We consider the three-dimensional Backward Facing Step (BFS) geometry shown
in section 2.1; cf. 45, Sec. 3.1 for the two-dimensional geometry.

The Dirichlet boundary conditions at the inflow and the walls are given by

g =
<

(16umaxx2(1 * x2)x3(1 * x3), 0, 0)T for x À )⌦in,

(0, 0, 0)T for x À )⌦wall.
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FIGURE 3 Inflow rate for the time-dependent Navier-Stokes problem in a coronary artery (left); see figs. 4 and 6 for the cor-
responding meshes and flow field. Magnitude of the solution to a three-dimensional Laplacian problem on the inflow boundary
(right).

At the outlet, we prescribe do-nothing boundary conditions, i.e.,
)u

)n
* pn = 0 on )⌦out ,

with outward pointing normal vector n. Furthermore, we choose the source term f í 0.

2.2 Navier-Stokes equations
Second, we consider the Navier-Stokes equations, which model the flow of an incompressible Newtonian fluid with kinematic
viscosity ⌫ > 0. We seek to determine the velocity u(x, t) À V

g
and the pressure p(x, t) À Q œ L

2(⌦) by solving the variational
formulation: find (u, p), such that

 
⌦

)u

)t
v dx + ⌫  

⌦

(u : (v dx +  
⌦

(u � (u) � v dx

*  
⌦

div v p dx =  
⌦

f v dx ≈v À V0,

*  
⌦

div u q dx = 0 ≈q À L
2(⌦)

We consider both, time-dependent problems, as well as steady-state Navier-Stokes problems where )u_)t = 0. The presence
of the convection term u � (u leads to a nonlinear system. In the steady case, we solve the system using Newton’s method,
cf. 45, Sec. 8.3, whereas, in the time-dependent case, we use a second order extrapolation u

< to linearize the convective part, i.e.,

u � (u ˘ u
< � (u.

We choose the source term f í 0 and, for the steady-state Navier-Stokes problem, we again use the domain and boundary
conditions of the backward facing step Stokes problem. In a dimensionless reformulation of the Navier-Stokes equations, the
Reynolds number Re specifies the relative contributions of convection and di�usion. We obtain Re = LÑu_⌫ with the character-
istic length scale L and maximal inflow velocity Ñu = 1.0. In our numerical tests for the steady Navier-Stokes problem, we set
L = 2 as the height of the outlet and choose ⌫ = 0.01; i.e., Re = 200.

For the time-dependent Navier-Stokes problem, we consider a geometry of a realistic coronary artery; cf. figs. 4 and 6. This
geometry was generated by bending a straight coronary artery geometry used for the simulation of stress distributions in the
walls of patient-specific atherosclerotic arteries in46,47.
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FIGURE 4 Coronary artery volume mesh with 1 032 k tetrahedral elements. Resulting Navier-Stokes systems discretized with
P2-P1 Taylor-Hood elements consists of 4.6 million degrees of freedom.

We prescribe a parabolic inflow profile with increasing flow rate for the first 0.5 s; cf. fig. 3. After a flow rate of Qsteady =
600mm3_s is reached, we keep the flow rate constant for further 0.5 s. Again, we apply no-slip and do-nothing boundary
conditions, respectively, at the wall and the outlet of the arterial geometry.

3 FINITE ELEMENT AND TIME DISCRETIZATION

For the spatial discretization of the incompressible fluid flow problems considered here, we use mixed finite elements. Therefore,
we first introduce a triangulation ⌧

h
of ⌦ with characteristic mesh size h, which can be non-uniform. Then, we introduce the

conforming discrete piecewise quadratic velocity and piecewise linear pressure spaces

V
h(⌦) = {v

h
À (C(⌦))d „ V : v

h


T
À P2 ≈ T À ⌧

h
} and

Q
h(⌦) = {q

h
À C(⌦) „Q : q

h


T
À P1 ≈ T À ⌧

h
},

respectively, of Taylor-Hood (P2-P1) mixed finite elements.
The resulting discrete Stokes and linearized steady Navier-Stokes systems have the generic form

Ax =
4

F B
T

B 0

5 4

u

p

5

=
4

f

0

5

= b, (1)

with A À Rnùn and x, b À Rn. Moreover, we discretize the time-dependent problem with BDF2 (Backward Di�erentiation
Formula). Thus, we obtain the discrete system

A
m+1xm+1 = b

m+1 with

A
m+1 =

3
�t

4

M 0
0 0

5

+
4

F
m+1 B

T

B 0

5

and

b
m+1 =

1
�t

4

M 0
0 0

50

4
4

u
m

p
m

5

*
4

u
m*1
p
m*1

51

(2)

for timestep m+1. m = 1, ...,M , and constant timestep size �t = T _M . The second order extrapolation reads u< = 2u
m
*u

m*1.

4 TWO-LEVEL OVERLAPPING SCHWARZ PRECONDITIONERS FOR SADDLE POINT
PROBLEMS

We solve the discrete saddle point problems eq. (1) or eq. (2) iteratively using a Krylov subspace method. Since the systems
become very ill-conditioned for small h, we need a scalable preconditioner to guarantee fast convergence of the iterative method.
Therefore, we will apply monolithic overlapping Schwarz preconditioners for saddle point problems; cf. 4,5,1. In particular, we
will improve the performance of the monolithic preconditioners with GDSW type coarse spaces introduced in1. In contrast to the
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FIGURE 5 A nonoverlapping subdomain (light green) of the three-dimensional BFS unstructured decomposition with overlap
� = 2h (dark green).

preconditioners described in4,5, which use Lagrangian coarse spaces, GDSW coarse spaces can be constructed in an algebraic
fashion without an additional coarse triangulation. We refer to1,48 for a detailed description of the parallel implementation of
GDSW coarse spaces for elliptic and saddle point problems, respectively.

Let ⌦ be decomposed into nonoverlapping subdomains
�

⌦
i

�N

i=1 with typical diameter H and corresponding overlapping
subdomains

�

⌦®
i

�N

i=1 with k layers of overlap, i.e., � = kh. The overlapping subdomains can be constructed from the nonover-
lapping subdomains by recursively adding one layer of elements to the subdomains; cf. section 4 for a subdomain with overlap
� = 2h. Even if no geometric information is given, this can be performed based on the graph of the matrix A.

Furthermore, let

� =
$

x À (⌦
i
„ ⌦

j
) ‰ )⌦

D
i ë j, 1 f i, j f N

%

(3)

be the interface of the nonoverlapping domain decomposition.
We decompose the spaces V h and Q

h into local spaces

V
h

i
= V

h(⌦®
i
) and Q

h

i
= Q

h(⌦®
i
),

i = 1, ...,N , respectively, defined on the overlapping subdomains ⌦®
i
. This decomposition yields corresponding restriction

operators

R
u,i

: V h ,ô V
h

i
and

R
p,i

:Qh ,ô Q
h

i
,

i = 1, ...,N . Consequently, RT

i,u
and R

T

i,p
are extension operators from local velocity and pressure spaces to the corresponding

global spaces.
We combine the restriction operators for velocity and pressure to obtain the corresponding monolithic restriction operators

of our global problem eq. (1) or eq. (2) to local overlapping saddle point problems

R
i
: V

h ùQ
h ,ô V

h

i
ùQ

h

i
,

i = 1, ...,N , which are of the form

R
i
:=

4

R
i,u

0
0 R

i,p

5

.
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The local saddle point matrices

A
i
= R

i
ART

i
, i = 1, ...,N , (4)

are extracted from the global problem matrix A and possess homogeneous Dirichlet boundary conditions for both, velocity and
pressure. Therefore, they are always nonsingular. If a zero mean value condition is prescribed for the global problem eq. (1)
or eq. (2), also a local zero mean value condition must be satisfied to guarantee numerical scalability; cf. 1.

Then, the monolithic one-level Additive Schwarz (AS) preconditioner can be written as

ÇB*1
AS

=
N
…

i=1
RT

i
A*1

i
R

i
.

4.1 Restricted and scaled first level
In many cases, the convergence of the iterative solver can be improved by using restricted or scaled first-level extension oper-
ators, resulting in a Restricted Additive Schwarz (RAS) or a Scaled Additive Schwarz (SAS) method, respectively; cf. 40. Both
approaches result from the idea to introduce alternative extension operators ÉRT

i
which satisfy

N
…

i=1

ÉRT

i
R

i
1 = 1,

where 1 À Rn is the vector of ones. The resulting preconditioner reads

ÇB*1
RAS_SAS =

N
…

i=1

ÉRT

i
A*1

i
R

i
.

For the RAS method, ÉRT

i
is obtained from a unique distribution of the degrees of freedom (d.o.f.) among the nonoverlapping

subdomains. Therefore, ÉRT

i
can be applied without communication in a parallel implementation of the RAS method.

In contrast, for SAS, the extensions ÉRT

i
are obtained from the RT

i
by an inverse multiplicity scaling, i.e.,

ÉRT

i
= diag

H

N
…

i=1
RT

i
R

i
1
I*1

RT

i
.

Here, the application of ÉRT

i
requires the same communication as the application of RT

i
but often improves the convergence of

the Schwarz method; cf. 49.
In the next section, we will describe coarse spaces for two-level overlapping Schwarz methods which are used to guarantee

numerical scalability in the case of many subdomains.

4.2 Monolithic GDSW preconditioner
Monolithic two-level additive preconditioners can be written as

ÇB*1
M

= �A*1
0 �

T +
N
…

i=1
RT

i
A*1

i
R

i
, (5)

where the matrix of the coarse problem reads A0 = �
TA� (6)

and the columns of the matrix � correspond to the coarse basis functions; cf. 4,5,1.
The GDSW preconditioner, which was introduced by Dohrmann, Klawonn, and Widlund in2,3 for certain elliptic problems, is

a two-level additive overlapping Schwarz preconditioner with energy minimizing coarse space and exact solvers. In particular,
a partition of the domain decomposition interface and discrete harmonic extensions from the interface to the interior d.o.f. are
used to construct the coarse basis in an algebraic way.

Here, we concentrate on the construction of GDSW type coarse spaces for Stokes and Navier-Stokes problems of the form (1)
or (2); cf. 1. Let the discrete interfaces �h

u
and �h

p
be the sets of finite element nodes on � for the velocity and pressure discretiza-

tions; only for equal order discretizations, they typically coincide. The interfaces �h

u
and �h

p
are further divided into connected



8 HEINLEIN ET AL

components, �h

u,i
, i = 1, ...,M

u
and �h

p,j
, j = 1, ...,M

p
. For standard GDSW coarse spaces, the connected components �h

u,i
and

�h

p,j
are chosen to be sets of nodes which belong to the same subdomains, i.e., vertices, edges, and faces.

Now, let Z be the null space of the global Neumann matrix, Z
u

the velocity part, and Z�h

u,i

the restriction of Z
u

to the interface
component �h

u,i
. Then, we construct corresponding matrices �h

�
u,i

, such that their columns form a basis of the space Z�
u,i

. Let
R�h

u,i

be the restriction from �h

u
to �h

u,i
, then the interface values of the velocity basis functions read

��
u

=
⌧

R
T

�
u,1
��h

u,1
... R

T

�h

u,Mu

��h

u,Mu

�

. (7)

We construct the interface pressure based basis functions ��h

p

accordingly and obtain the interface part of complete monolithic
coarse basis

�� =
L

��h

u

0
0 ��h

p

M

. (8)

Note that the columns of ��h

u

and ��h

p

are the restrictions of the null spaces of the Neumann operators corresponding to A and
B

T , respectively, to the vertices, edges, and faces. Typically, the null space of the operator BT consists of all pressure functions
that are constant on ⌦. Therefore, the columns of ��h

p

are chosen to be the restrictions of the constant function 1 to the vertices,
edges, and faces. For the three-dimensional flow problems considered here, the null spaces of A and B

T are spanned by

r
u,1 :=

b

f

f

d

1
0
0

c

g

g

e

, r
u,2 :=

b

f

f

d

0
1
0

c

g

g

e

, and r
u,3 :=

b

f

f

d

0
0
1

c

g

g

e

and r
p,1 :=

⌅

1
⇧

, (9)

respectively. To compute the values in the interior d.o.f., we distinguish between interface (�) and interior (I) d.o.f. in the
discrete system matrix

A =
4A

II
A

I�A�I A��

5

.

Each of the four above submatrices A<< is a block matrix of the form eq. (1) or eq. (2). Then, the basis functions of the GDSW
coarse space can be written as discrete saddle point extensions of �� to the interior d.o.f.:

� =
4

�
I

��

5

=
4

*A*1
II
A

I���
��

5

. (10)

Note thatA
II

= diagN
i=1(A(i)

II
) is a block diagonal matrix containing the local matricesA(i)

II
from the nonoverlapping subdomains.

Its factorization can thus be computed block by block and in parallel. As described in1, we drop the o�-diagonal blocks �
p,u0

and �
u,p0

from

� =
4

�
u,u0

�
u,p0

�
p,u0

�
p,p0

5

and obtain the coarse basis matrix

� =
4

�
u,u0

0
0 �

p,p0

5

.

Here, columns u0 and p0 belong to velocity and pressure basis functions, respectively. This reduces the costs for the computation
of the coarse matrix eq. (6) using an RAP matrix product without worsening the convergence.

4.3 Monolithic reduced dimension GDSW preconditioner
In order to reduce the dimension of our GDSW coarse spaces, we follow36,1 and introduce monolithic reduced dimension
GDSW (RGDSW) coarse spaces. More precisely, we combine the construction described in section 4.2 with a di�erent choice
of interface components and interface values.

For the parallel implementation of monolithic RGDSW coarse spaces, we extend our implementation of monolithic GDSW
coarse spaces1 and combine it with the parallel implementation of RGDSW coarse spaces for elliptic problems in FROSch;
cf. 37. We refer to these articles for details on the parallel implementation. As in37, we only consider Option 1 and Option 2.2
of the RGDSW variants proposed in36; Option 1 is algebraic and Option 2.2 additionally requires the coordinates of the finite
element nodes.
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Again, we will concentrate on the construction of the interface values of the velocity basis functions ��h

u

; the construction of
interface values for pressure basis functions ��h

p

is then performed analogously. We denote by S
c
u

the index set of all subdomains
which share the velocity interface component (i.e., vertex, edge, or face) c

u
. Here, we distinguish between velocity and pressure

components to allow for nonequal order discretizations or staggered grids. Furthermore, we define a hierarchy of all interface
components, where we call a component c

u,i
ancestor of c

u,j
if S

c
u,j

œ S
c
u,i

; conversely, we call c
u,i

o�spring of c
u,j

if S
c
u,j

– S
c
u,i

.
If a component c

u,j
has no ancestors, it is classified as a coarse component and its corresponding basis functions will be part of

the RGDSW coarse space. Now, let É�h
u,i

, i = 1, ..., ÉM
u
, be the coarse components of the RGDSW coarse space and

É�h

u,i
:=

Õ

S
cu
œS

É�
h

u,i

c
u

the union of the coarse component É�h
u,i

and its respective o�spring; the É�h

u,i
, i = 1, ..., ÉM

u
, define an overlapping decomposition

of the interface �h

u
.

Similar to the GDSW coarse space, let RÉ�h

u,i

be the restriction from É�h

u
to É�h

u,i
. Furthermore, let SÉ�h

u,i

À R

É�h

u
ù É�h

u
 be a suitable

scaling, such that we obtain an interface partition of unity
ÉM
u

…

i=1
SÉ�h

u,i

R
T

É�h

u,i

RÉ�h

u,i

1 = 1 É�
u

,

where 1 É�
u

À R

É�h

u
 is the vector of ones on the interface. Depending on the choice of the scaling matrices SÉ�h

u,i

, i = 1, ..., ÉM
u
, we

obtain di�erent reduced dimension coarse spaces. Now, we define
ÉRÉ�h

u,i

:= SÉ�h

u,i

RÉ�h

u,i

.

Then, the interface values of the velocity basis functions can be written in the same form as for the classical GDSW coarse spaces

� É�
u

=
⌧

ÉR
T

É�h

u,i

� É�h

u,1
... ÉR

T

É�h

u, ÉMu

� É�h

u, ÉMu

�

;

cf. (7). Here, as in the classical GDSW coarse spaces, the columns of � É�h

u,i

form a basis of the restriction of the null space Z
u

to
the É�h

u,i
, such that the columns of � É�

u

span the null space Z
u
.

Now, let us construct the scaling matrices SÉ�h

u,i

for variants of the RGDSW coarse space denoted as Option 1 and Option 2.2
in36. In Option 1,

sÉ�h

u,i

=
T

1_ ÛÛ
Û

C
c
u

Û

Û

Û

if c
u,i

À C
c
u

,

0 otherwise,

with C
c
u

being the set of all velocity ancestors of the interface components c
u
. The corresponding scaling matrices read

SÉ�h

u,i

= diag
⇠

sÉ�h

u,i

⇡

.

Another option to define the scaling matrices results from using basis function based on an inverse distance weighting
approach; cf. 36. In particular, the values of the scaling vectors are chosen as

sÉ�h

u,i

=
h

n

l

n

j

1_d
i
(c

u
)

≥

cu,jÀCcu
1_d

j
(c

u
)

if c
u,i

À C
u
n

,

0 otherwise
(11)

and d
i
(c

u
) is the distance from the component c

u
to the coarse component c

u,i
. This construction is denoted as Option 2.2 in36. It

relies on additional geometric information to allow for the computation of the distance between di�erent interface components.
Therefore, it can be regarded as less algebraic compared to Option 1.

The coarse pressure basis functions ��h

p

are built analogously. We obtain the monolithic interface values, analogously
to eq. (8), and extend them to the interior; cf. eq. (10).

The advantage of the reduced dimension coarse spaces over the classical GDSW coarse spaces is the significantly smaller
dimension of the coarse problem. As has been shown numerically in37 for elliptic problems in 3D and structured domain
decompositions, RGDSW coarse problems can be smaller by more than 85 %; this typically results in much better parallel
scalability.

For results on the improved parallel scalability for incompressible fluid flow problems due to the use of reduced dimension
GDSW coarse spaces, see section 5.1.
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4.4 Sequential and parallel computation of the levels
In our previous implementation of the two-level additive Schwarz preconditioner eq. (5), the levels are computed in a sequential
way; cf. 1,41,42. However, since the coarse problem is typically solved on a small subset of MPI ranks, most of the cores are idle in
the mean time. We will tackle this issue by two di�erent approaches, i.e., by multiplicative but sequential coupling of the levels
as well as by additive coupling combined with parallel computation of the levels. Both approaches improve the performance of
our solver; cf. section 5.3.

Multiplicative Coupling of the Levels
In general, a multiplicative coupling of the levels yields better convergence of the method. In particular, we use the hybrid
preconditioner

ÇB*1
hybrid = (I * P0) ÇB*1

AS(I * P0)T + �A*1
0 �

T
,with

P0 = �A*1
0 �

TA;

cf.50, Sec. 2.5.2. In a projected Krylov method with suitable initial vector x0 = �A*1
0 �

T
b, the application of the hybrid precondi-

tioner ÇB*1
hybrid requires only one additional application of the system matirx A compared to the two-level additive preconditioner

ÇB*1
M

. However, due to the multiplicative coupling of the levels, they have to be applied sequentially.

Parallel Computation of the Levels
When an additive coupling of the levels is used, a significant amount of work for the construction and the application of the
levels can be performed in parallel. Therefore, we split the MPI ranks among the levels. For a fixed total number of MPI ranks,
this decreases the number of subdomains and increases the size of the overlapping subdomains; since the number of MPI ranks
used for the coarse problem is typically small, the size of the overlapping subdomains is increased only slightly. In addition to
that, the coarse basis functions � and the coarse matrix A0 are computed on the MPI ranks assigned to the first level. However,
the factorizations and forward-backward solves of the local overlapping and the coarse problems can be computed in parallel.

We refer to section 5.3 for results on the speedup for to the above described coupling strategies compared to the sequential
additive coupling in the previous implementation.

5 NUMERICAL RESULTS

In this section, we present numerical results of our parallel implementation of the monolithic (R)GDSW preconditioners pre-
sented in the previous sections. Our largest fluid flow problems possess more than 400 million degrees of freedom. All parallel
computations were carried out on the magnitUDE supercomputer at University Duisburg-Essen, Germany. A regular node
on magnitUDE has 64GB of RAM and 24 cores (Intel Xeon E5-2650v4 12C 2.2GHz), interconnected with Intel Omni-Path
switches. Intel compiler version 17.0.1 and Intel MKL 2017 were used.

Our software framework is based on Trilinos44. In particular, our monolithic preconditioners are implemented within the
framework of FROSch, a subpackage of the Trilinos package ShyLU. We use the GMRES implementation of the Trilinos package
Belos and our Trilinos based implementation of the steady Stokes and Navier-Stokes problems as well as the implementation
of time-dependent Navier-Stokes problems of LifeV51; note that all our simulations are performed using the linear algebra
framework Tpetra except for the LifeV simulations, which are performed using Epetra instead. As a direct solver, we use
MUMPS 5.1.152,53 through the Amesos (Epetra based simulations) or the Amesos2 interface (Tpetra based simulations) from
Trilinos; we slightly modified the Amesos2 interface to facilitate the reuse of symbolic factorizations. The local overlapping
problems are solved in serial mode, whereas the coarse problem is solved in parallel mode. We use the default setting of FROSch
to determine the number of MPI ranks for the exact coarse solves; cf. 41,1. Furthermore, we use one MPI rank per core and one
subdomain per MPI rank.

The nonlinear steady-state Navier-Stokes problems are solved using Newton’s method with zero initial guess, which results
in the solution of a Stokes problem in the first Newton iteration. The stopping criterion is
Òr

(k)
nl
Ò_Òr(0)

nl
Ò f tolnl, with r

(k)
nl

being the k-th nonlinear residual. In order to solve the linear tangent problems, we apply
right preconditioned GMRES (Generalized minimal residual method)54 with the stopping criterion Òr

(k)
Ò f tolÒr

(0)
Ò, where

tol = 10*6 and tol = 10*4 are the tolerances for the Stokes and steady-state Navier-Stokes problems, respectively, and r
(k) =

b *A ÇB*1( ÇBx(k)) is the k-th residual.
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Prec. #cores 243 1 125 4 608 11 979

GDSW

#its. 84 116 160 202
setup 14.7 s 19.7 s 36.6 s 73.9 s
solve 10.7 s 20.9 s 37.5 s 220.0 s
total 25.4 s 40.6 s 74.1 s 293.9 s

RGDSW #its. 128 117 111 110
setup 12.6 s 13.7 s 16.2 s 24.0 s

Option 1 solve 14.8 s 15.1 s 21.3 s 36.2 s
total 27.4 s 28.8 s 37.5 s 60.2 s

RGDSW #its. 135 131 121 123
setup 12.2 s 12.8 s 15.8 s 22.7 s

Option 2.2 solve 15.7 s 16.9 s 17.9 s 39.4 s
total 27.9 s 29.7 s 33.7 s 62.2 s

TABLE 1 Weak scalability results for di�erent coarse spaces: standard, reduced Option 1 & 2.2 applied to the three-dimensional
BFS Stokes, H_h = 10, and � = 1h.

In the time-dependent fluid flow simulations for the realistic arterial geometry shown in fig. 4, we apply the inflow boundary
condition described in fig. 3 and use a time step length of �t = 0.01 s and a kinematic viscosity ⌫ = 3.0mm2_s. The length of
the artery is 12mm and the inflow diameter is approx. 2mm. Here, as for the steady Stokes problems, the linearized systems are
solved up to a tolerance tol = 10*6.

In the following numerical results, we report combined setup times of the first and second level since a distinction is not
straightforward for a parallel computation of the levels. The identification of the interface is omited from our setup times.
Furthermore, solve times and total times, which are the sums of the setup and solve times, are reported.

5.1 Comparison of monolithic GDSW and RGDSW coarse spaces
In section 5.1, we compare the performance of di�erent coarse spaces for our monolithic Schwarz preconditioner for the back-
ward facing step Stokes problem using structured meshes and domain decompositions in three dimensions. In particular, we
consider the GDSW coarse space1 as well as Option 1 and Option 2.2 of the RGDSW coarse space as described in section 4.3.

We obtain a significant reduction of the coarse space dimension when using the RGDSW coarse spaces. For the largest
problem with 11 979 subdomains, the dimension of the coarse problem for the standard GDSW coarse space is 305 157 (228 852
velocity and 76 305 pressure basis functions), whereas it is only 40 530 (30 390 velocity and 10 140 pressure basis functions) for
the reduced dimension coarse spaces. Thus, compared to the standard GDSW coarse space, the setup of both reduced dimension
variants is more than twice as fast for the largest BFS Stokes problem. Surprisingly, iterations counts for the reduced dimension
variants are also lower than for the standard GDSW variant for the largest problem. This is typically the opposite for elliptic
problems; cf. 36,37. In total, the time to solution for the reduced dimension coarse spaces is lower by more than 50% compared to
the standard GDSW coarse space on 4 608 cores. It is also important to note that Option 1 of the RGDSW coarse space performs
better than Option 2.2. This is also di�erent compared to elliptic problems; cf. 36,37. However, this is beneficial since Option 1
can be built in an algebraic fashion, whereas Option 2.2 relies on the coordinates of the finite element nodes.

5.2 Restricted and scaled first level variants
In section 5.2, we present weak scalability results for the three first level variants AS, RAS, and SAS presented in section 4.1
with overlap � = 1h, 2h. We observe that, even though the iteration counts are higher, an overlap of 1h yields the best total
computing times for all three di�erent approaches. Furthermore, the iteration counts are always lower for the scaled variant
(SAS) compared to the standard (AS) and the restricted (RAS) variants. Therefore, although we save some communication in
RAS, SAS performs best for all configurations in this comparison. Surprisingly, the iteration counts for RAS are even higher
than for AS for a wider overlap � = 2h.

From this point on, we will therefore use SAS with overlap � = 1h as our default first level.
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� = 1h � = 2h
First level #cores 243 1 125 4 608 243 1 125 4 608

AS

#its. 272 515 862 180 348 595
setup 8.7 s 9.1 s 10.3 s 16.6 s 17.6 s 22.5 s
solve 30.2 s 68.1 s 106.5 s 34.2 s 70.5 s 153.7 s
total 38.9 s 87.1 s 116.8 s 50.8 s 86.4 s 176.2 s

RAS

#its. 242 460 785 185 366 649
setup 8.9 s 9.6 s 9.9 s 17.1 s 22.0 s 20.7 s
solve 26.3 s 52.1 s 89.4 s 34.6 s 72.4 s 163.9 s
total 35.2 s 61.7 s 99.3 s 51.1 s 94.4 s 184.6 s

SAS

#its. 222 433 740 168 336 591
setup 8.7 s 9.1 s 10.4 s 16.7 s 17.5 s 19.1 s
solve 24.6 s 50.2 s 88.1 s 32.0 s 69.3 s 146.9 s
total 33.3 s 59.3 s 98.5 s 48.7 s 86.8 s 166.0 s

TABLE 2 Comparison of the di�erent monolithic one-level Schwarz preconditioners with H_h = 10 applied to the BFS Stokes
problem: AS, RAS, and SAS; cf. section 4.1.

#cores 243 1 125 4 608 11 979
Coupling #its. 120 114 105 108

sequential additive
setup 18.6 s 18.8 s 21.4 s 29.4 s
solve 17.6 s 19.2 s 20.5 s 27.6 s
total 36.2 s 38.0 s 41.9 s 57.3 s

parallel additive
(+1 core)

setup 17.7 s 17.9 s 19.8 s 27.9 s
solve 17.1 s 19.0 s 17.6 s 21.0 s
total 34.8 s 36.9 s 37.4 s 48.9 s
#its. 89 90 84 91

multiplicative
setup 17.6 s 18.1 s 19.1 s 29.6 s
solve 14.7 s 15.8 s 16.9 s 23.5 s
total 32.3 s 33.9 s 36.0 s 53.1 s

TABLE 3 Weak scalability results for monolithic preconditioners with SAS first level applied to the three-dimensional BFS
Stokes problem; H_h = 11, � = 1h, and RGDSW Option 1. We always use one core for the solution of the coarse problem;
therefore, for the parallel additive coupling, we allocate one additional core for the solution of the coarse problem.

5.3 Parallel coupling strategies for the levels
In order to further improve the performance of our simulations, we apply the parallel coupling strategies for the first and the
second level discussed in section 4.4. In section 5.3, we present parallel scalability results comparing sequential additive, parallel
additive, and multiplicative coupling; we use one core for the solution of the coarse problem, and to obtain the same domain
decompositions for all three approaches, we allocate one additional core for the solution of the coarse problem in the parallel
approach. Due to lower iteration counts, the hybrid version of the two-level preconditioner is more e�cient than the sequential
additive version. In particular, we save more than 7 % in total computing time on 11 979 cores. However, using the parallel
additive coupling, we are able to save even more computing time, i.e., more than 14 %.

In section 5.3, we vary the number of cores used for the solution of the coarse problem in our best approach, i.e., the parallel
additive coupling. As can be observed, increasing the number of cores from 1 to 10 yields a further speedup by more than 10 %.
We assume that a larger configuration with more cores will show an increasing advantage of the parallel additive approach.
However, a computation with 11 979 subdomains is the largest possible configuration of the backward facing step Stokes problem
on our supercomputer.
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#cores 243 1 125 4 608 11 979
Coupling #its. 120 114 105 108

parallel additive
(+1 core)

setup 17.7 s 17.9 s 19.8 s 27.9 s
solve 17.1 s 19.0 s 17.6 s 21.0 s
total 34.8 s 36.9 s 37.4 s 48.9 s

parallel additive
(+5 cores)

setup 17.6 s 18.5 s 20.0 s 25.3 s
solve 18.8 s 19.0 s 20.1 s 20.8 s
total 36.4 s 37.5 s 40.1 s 46.1 s

parallel additive
(+10 cores)

setup 17.3 s 18.6 s 18.1 s 22.8 s
solve 18.7 s 18.9 s 19.5 s 21.0 s
total 36.0 s 37.5 s 37.6 s 43.8 s

TABLE 4 Weak scalability results for monolithic preconditioners with SAS first level and parallel additive coupling applied to
the three-dimensional BFS Stokes problem; H_h = 11, � = 1h, and RGDSW Option 1. We allocate additional cores for the
solution of the coarse problem (in brackets).

Recyling strategy #cores 243 1 125 4 608

-

#its. 155.25 (4) 158.3 (3) 149.0 (3)
setup 28.4 s 23.7 s 30.1 s
solve 40.5 s 37.7 s 42.2 s
total 68.9 s 61.4 s 72.3 s

SF

#its. 155.25 (4) 158.3 (3) 149.0 (3)
setup 24.1 s 20.3 s 25.6 s
solve 40.7 s 35.0 s 42.1 s
total 64.8 s 55.3 s 67.7 s

SF + CB

#its. 157.0 (4) 159 (3) 151.0 (3)
setup 18.7 s 16.7 s 21.8 s
solve 40.7 s 35.1 s 42.4 s
total 59.4 s 51.8 s 64.2 s

SF + CB + CM

#its. 165 (4) 175.3 (3) 170.3 (3)
setup 18.0 s 15.4 s 19.4 s
solve 42.8 s 38.0 s 46.3 s
total 60.8 s 53.4 s 65.7 s

TABLE 5 Weak scalability results for monolithic preconditioners with coarse space recycling applied to the BFS Navier-Stokes
problem; tolnl = 10*6, H_h = 8, � = 1h, ⌫ = 0.01, Re = 200, and RGDSW Option 1. SF, CB, and CM denote the reuse of the
symbolic factorizations for the matrices A

i
and A(i)

II
, of the coarse basis �, and of the coarse matrix A0, respectively. The times

for the solution of a Stokes problem for the initial guess are included.

5.4 Recycling strategies
For nonlinear and time-dependent problems, we reuse information from the previous Newton or time iterations to save computing
time. In particular, all index sets, e.g., corresponding to the overlapping subdomains and the interface components, are typically
constant over all iterations and can safely be reused.

Whereas the entries of the system matrix change during Newton and time iterations, the nonzero pattern typically stays the
same. Therefore, the symbolic factorizations of the local matrices and the global coarse matrix could be reused. Unfortunately,
dropping small matrix entries in � before the computation of the coarse RAP product (6) also saves compute time but changes
the nonzero pattern of the coarse matrix. We observed that we save more time in the computation of the coarse RAP product by
dropping small matrix entries in� than by reusing the symbolic factorizations. We denote the reuse of the symbolic factorizations
of the local overlapping matricesA

i
and interior subdomain matricesA(i)

II
used in the saddle point extensions as the SF (Symbolic
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FIGURE 6 Solution of the time-dependent Navier-Stokes problem at time 1.0 s for the coronary artery; cf. section 2.2.

Factorization) recycling strategy. Note that, for a Navier-Stokes problem with H_h = 8 and � = 1h, the symbolic factorizations
take between 15 and 20 % of the total factorization time for overlapping subdomain matrices A

i
. The numeric factorization

requires approximately 3.6 s, while the symbolic factorization requires 0.7 s. The e�ect is similar for interior subdomain matricesA(i)
II

. For all following results we reuse the symbolic factorizations. Furthermore, we have observed that also reusing the numeric
factorization of the matrices A

i
is not a viable approach since it leads to significantly worse iteration counts.

With respect to the coarse level, we propose two recycling strategies, i.e., reusing the coarse basis � but recomputing the
coarse RAP product (6), denoted as the CB (Coarse Basis) recycling strategy, and reusing the coarse matrix A0 and therefore
saving time for computation of the coarse RAP product as well as for the coarse factorization, denoted as the CM (Coarse
Matrix) recycling strategy.

A comparison of completely recomputing the preconditioner and three di�erent combinations of the recycling strategies is
presented in section 5.4 for a steady-state Navier-Stokes problem. As expected, the SF approach should always be preferred to
completely recomputing the whole preconditioner. Furthermore, we observe that, for larger numbers of subdomains, the com-
bination SF+CB is most e�cient, whereas the scalability deteriorates for the combination SF+CB+CM. This can be explained
by the fact that a recycled basis can still represent the null space of the operator, whereas a recycled coarse problem might be a
bad approximation of the current linear tangent problem. In particular, we reach 69 % e�ciency from 243 to 4 608 cores with
basis recycling.

Further comparisons of the proposed recycling strategies for time-dependent problems are given in the next subsection. There,
we observe a substantial increase in e�ciency.

5.5 Speedup for a time-dependent Navier-Stokes problem
For small time steps, time-dependent problems are much better conditioned than their steady-state counterparts due to the added
mass matrix. For certain problems, not even a coarse space is needed for numerical scalability; see, e.g., 55, for the special
case of a symmetric parabolic problem in two-dimensions. Nonetheless, for the time-dependent incompressible Navier-Stokes
problem studied in this section, it is beneficial to use the RGDSW coarse space provided by FROSch since the iteration counts are
significantly lower; on average 82.8 iterations per timestep are required for the one level preconditioner, while only 38.5 iterations
are required for the additive two-level method with coarse basis and coarse matrix recycling. Furthermore, by making use of
the recycling methods presented in section 5.4, the additional time for the setup of the second level is neglectable. In section 5.5,
we compare a one-level SAS preconditioner with two-level hybrid and additive SAS preconditioners. We compare coarse basis
(SF+CB) and full recycling (SF+CB+CM) for the additive preconditioner and basis recycling for the hybrid preconditioner. We
do not consider full recycling (SF+CB+CM) since we could not observe good convergence for the hybrid preconditioner with
full recycling. This can be explained by the fact that the coarse operator has a larger e�ect if it is coupled in a multiplicative
way. For the additive two-level preconditioner with full recycling, only 7.7 s are spend for the construction of second level once,
namely in the first Newton iteration; 82.0 s of 480.5 s total computing time are spend on the application of the coarse level.
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FIGURE 7 Strong scaling results for time-dependent Navier-Stokes problem with 4.6 million d.o.f.. SAS for the first level with
� = 1h. Hybrid two-level preconditioner with coarse basis recycling and additive two-level preconditioner with coarse basis
and coarse matrix recycling. Simulation to final time of 1.0 s with �t =0.01 s. Hier noch auf das Modellproblem verweisen.

FIGURE 8 Timings for time-dependent Navier-Stokes problem with 4.6 million d.o.f. solved on 240 cores. SAS for the first
level with � = 1h. Hybrid and additive two-level preconditioners with di�erent recycling strategies.

Recycling with a full reset, i.e., recomputing the coarse basis functions � and the coarse matrix, after a certain number of time
steps showed no advantage w.r.t total computing time.

In section 5.5, we present strong scaling results for the realistic artery. Here, we solve a problem with 4.6 million d.o.f. using
a two-level additive RGDSW preconditioner with full recycling (SF+CB+CM) and a two-level hybrid RGDSW preconditioner
with basis recycling (SF+CB). From 120 to 480 cores both preconditioners scale roughly equally well. However, the speedup for
the hybrid preconditioner stagnates for more than 480 cores. This is not yet the case for the additive preconditioner. Therefore,
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FIGURE 9 Total time for the three-dimensional BFS Stokes tol = 10*6, H_h = 11, and � = 1h on 4 608 cores. Improved pre-
conditioner versions use SAS for the first level; cf. section 4.1. The improved (R)GDSW preconditioners with additive coupling
between the levels use parallel coarse solves with 10 dedicated MPI ranks for the coarse problem; cf. section 4.4.

the additive preconditioner should be preferred for this configuration since the total computing time is between 5 % and 25 %
faster than the hybrid preconditioner.

6 CONCLUSION

We have presented significant improvements to our monolithic GDSW preconditioner for incompressible fluid flow problems.
A combination of all presented strategies, i.e., using a reduced dimension coarse space, a scaled first level (SAS), and a multi-
plicative coupling of the levels, reduces the time to solution by 60 % compared to the previous implementation for a BFS Stokes
problem solved on 4 608 cores; cf. section 6 for timings.

For time-dependent and nonlinear problems, we can further make use of recycling of symbolic factorizations, the coarse
basis, and the coarse matrix. Solving the 10 time steps of the coronary artery problem, we achieved a reduction of 75 % and
85 % for the best configurations with monolithic GDSW and RGDSW coarse spaces, respectively, compared to the previous
implementation using the GDSW preconditioner; cf. section 6.

Our monolithic approach provides robustness and good parallel scalability for up to several thousand cores. Nonetheless, the
preconditioner can be constructed in an algebraic fashion from the fully assembled saddle point system, and we are therefore
able to provide a reduced and simple user interface to our implementation. Furthermore, unstructured meshes and domain
decompositions are no restriction as they are handled in the same way as structured cases. The monolithic GDSW and RGDSW
preconditioners are part of the FROSch framework in Trilinos and available to the public. Inexact local solvers for the first level
as well as for the computation of saddle point harmonic extensions could reduce the setup time of our methods, and multi-
level GDSW approaches could be considered to further improve the parallel scalability; cf. 56,57. Both are open topics for future
research.
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2 and the computing time granted by the Center for Computational Sciences and Simulation (CCSS) of the University of Duisburg-Essen
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FIGURE 10 Speedup for the time-dependent Navier-Stokes problem on 240 cores. Simulation of 0.1 s of the ramp phase, � = 1h.
Improved preconditioner versions use SAS for the first level and full recycling; cf. section 4.1 and section 5.4, respectively.
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