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Parallel computational results for problems in dislocation mechanics are presented using the deal.II adaptive finite element
software and the Fast and Robust Overlapping Schwarz Preconditioner (FROSch).
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1 Mechanical Model

Fig. 1: Displacement u for the model problem
described in Section 1 with multiple dislocation
in the microstructure.

We consider a linear elastic problem

div � = 0,� = �
T
,� = C : "el,

describing a dislocation microstructure, where u is the unknown displace-
ment and "

el = 1
2

�
ru+(ru)T

�
. Here, � is the stress tensor, "el the elastic

strain tensor, and C the stiffness tensor. Dislocations are one-dimensional
defects in crystalline materials. A dislocation is the boundary of a planar
area where a displacement of the crystal planes by the so-called Burgers
vector ~b has occurred. Within the linear elastic model, dislocations can be
modeled using an eigenstrain approach [7,8] by expressing the total strain as
a sum "

tot = "
el+ "

eig
, where "eig is the eigenstrain contribution due to the

dislocation microstructure. The area enclosed by a dislocation, described by
a perpendicular vector ~A, is discretized, and the eigenstrain contributions of
each point are regularized using the non-singular formulation proposed by
Cai et al. [4], using d"eig = 1

2 (
~b⌦d ~A+d ~A⌦~b), similarly to the work [12];

see also [13, 14] for details.

2 The GDSW Preconditioner
The GDSW (Generalized Dryja–Smith–Widlund) preconditioner is a two-level overlapping Schwarz preconditioner [5,6,15];
it is based on a decomposition of the computational domain into overlapping subdomains and can be written in the form
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where Ki := RiKR
T

i
and Ri is the restriction to the ith overlapping subdomain. The rows of � correspond to the coarse basis

functions. For linear elliptic problems, the condition number is bounded by (M�1
GDSWK)  C
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where h is the size of a finite element, H the size of a nonoverlapping subdomain and � the size over the overlap [5, 6]. An
advantage of the GDSW preconditioner is that it can be constructed in an algebraic fashion from the assembled stiffness matrix.
An implementation of the GDSW preconditioner has been included in the Trilinos package ShyLU as the Fast and Robust
Overlapping Schwarz framework (FROSch) [9,10]. For the model problem described above, we interfaced the preconditioner
to the deal.II software library [2]. Deal.II provides wrapper classes to Trilinos based on the linear algebra package Epetra.

3 Numerical Results
To evaluate the strong scalability of the GDSW and the the more recent RGDSW preconditioner [11] for the model problem
decribed above, we performed experiments on High Performance Compute Cluster at the TU Bergakademie Freiberg; the
RGDSW preconditioner is a variant of the GDSW preconditioner, where the dimension of the coarse matrix K0 is significantly
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reduced. Sparse linear systems arising from the preconditioner were solved using the sparse direct solver KLU provided by the
Trilinos package Amesos [1]. All tests were performed using Q1 finite elements and an initial structured decomposition into
subdomains. The decomposition was performed by p4est [3]. For the GDSW preconditioner, we always choose an overlap
of one layer of elements. As a Krylov solver, we apply the GMRES implementation from the Trilinos package Belos with a
relative stopping criterion krkk/kr0k  10�6, where r0 and r

k are the initial residual and the residual in the kth iteration,
respectively. Solver Time denotes the time to solution consisting of the time to build the preconditioner (Setup Time) and
the time spent in the Krylov iteration (Krylov Time); the Setup Time also includes the matrix factorizations. Our results,
starting with 32 768 cells and performing one cycle of adaptive refinement, are presented in Table 1. The GDSW and RGDSW
preconditioners scale well when scaling from 8 to 64 cores; however, given the smaller coarse space, RGDSW outperforms
GDSW for the larger problem.

GDSW RGDSW
Refinement # Cores # D.o.f. Iter Setup Krylov Solver # D.o.f. Iter Setup Krylov Solver

cycle Time Time Time Time Time Time

0

8 107 811 75 90.03 s 8.55 s 98.58 s 107 811 120 83.86 s 15.83 s 99.69 s
16 107 811 112 19.14 s 5.92 s 25.06 s 107 811 143 17.96 s 8.56 s 26.52 s
32 107 811 93 5.64 s 2.72 s 8.36 s 107 811 120 4.10 s 3.90 s 8.00 s
64 107 811 69 2.85 s 1.41 s 4.26 s 107 811 92 1.88 s 1.74 s 3.62 s

1

8 364 410 119 651.48 s 53.60 s 705.08 s 364 410 151 107.89 s 90.42 s 198.31 s
16 363 942 134 141.38 s 27.00 s 168.38 s 363 942 170 53.56 s 44.22 s 97.78 s
32 363 480 120 45.98 s 12.48 s 58.46 s 363 480 153 37.14 s 14.66 s 51.80 s
64 363 165 115 34.99 s 9.83 s 44.82 s 363 165 137 14.48 s 7.60 s 22.08 s

Table 1: Strong scaling tests for the model problem described in Section 1 using the GDSW and RGDSW preconditioner.
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