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Summary 
Plants rely on a multi-layered, cell autonomous immune system to combat a plethora of 

pathogens. While a first, broad defence response is sufficient to restrict growth of most 

invaders, some pathogens have evolved means to overcome this. In an evolutionary arms 

race plants have evolved intracellular receptors that recognise host-adapted pathogens and 

initiate a sustained and potent immune response call ETI (effector-triggered immunity). 

EDS1 (ENHANCED DISEASE SUSCEPTIBILITY 1) and its signalling partners PAD4 

(PHYTOALEXIN DEFICIENT 4) or SAG101 (SENESCENCE-ASSOCIATED GENE 101) 

form a central convergence point for those intracellular receptors and act as a decision-

making node for SA (salicylic acid) dependent and SA independent transcriptional 

reprogramming. Despite our increasing knowledge about plant immunity the molecular 

function of the EDS1/PAD4 complex and how these proteins are regulated remains unclear. 

Recent work established an antagonistic regulation between the JA (jasmonic acid) key TF 

(transcription factor) MYC2 and EDS1. While MYC2 enhances bacterial virulence by 

repressing the EDS1 promoter, ETI activated EDS1 represses MYC2 signalling and 

dampens pathogen growth. This cross-regulation represents an intersection of ETI and JA 

signalling and allows fine-tuning of the plant’s immune response. How EDS1 controls 

MYC2 accumulation and activity is not known. 

Here, I show regulation of MYC2 abundance and MYC2 transactivation activity by EDS1 

family proteins. Further, I present evidence for the underlying molecular mechanisms of this 

regulation and identify new components in this pathway. Specifically, PAD4 and SAG101 

but not EDS1, stabilise MYC2 protein while EDS1 but not PAD4 or SAG101, promote 

MYC2 transactivation activity. Thus, protein accumulation is not indicative of MYC2 

transcriptional output. MYC2 activity promotion is lost in a JAZ repressor uncoupled MYC2 

variant (MYC2s) or when co-expressed with the bacterial virulence protein avrRPS4, 

indicating i) regulation of JAZ proteins by EDS1 and ii) immunity context dependent 

regulation of MYC2. Functional characterisation of this regulation shows that besides JAZ 

repression MYC2 is phosphorylated in an EDS1 dependent manner. In eds1-2 plants 

MYC2S123 is phosphorylated, suggesting that EDS1 either represses a protein kinase or 

activates a protein phosphatase. I show interaction of the protein kinase EDR1 

(ENHANCED DISEASE RESISTANCE 1), a negative regulator of plant immunity, with 

PAD4 and with MYC2 in Arabidopsis (Arabidopsis thaliana) protoplasts. Whether EDS1 

regulates MYC2 via EDR1 or another, so far unknown, component remains to be tested.  
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Results presented in this work provide insights into the regulatory relationship of EDS1 and 

MYC2. EDS1 promotes MYC2 transactivation activity as shown by enhanced MYC2 target 

gene expression. Molecularly, EDS1 regulates MYC2 via JAZ proteins and likely via 

MYC2 phosphorylation. More detailed analysis will be necessary to address this entirely. 

Ultimately, the impact of the presented data depends on the functional relevance of this 

regulation. For this, in planta experiments in pathogen challenged and unchallenged 

conditions will be key.  
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Zusammenfassung 
Pflanzen sind auf ein vielschichtiges, zellautonomes Immunsystem angewiesen, um eine 

Vielzahl von Krankheitserregern zu bekämpfen. Während eine erste, breite Abwehrreaktion 

ausreicht, um das Wachstum der meisten Eindringlinge einzuschränken, haben einige 

Krankheitserreger Wege gefunden, um dies zu überwinden. In einem evolutionären 

Wettrüsten haben Pflanzen intrazelluläre Rezeptoren entwickelt, die wirtsangepasste 

Pathogene erkennen und eine dauerhafte und starke Immunantwort (ETI - Effektor-

ausgelöste Immunität) auslösen. EDS1 (ENHANCED DISEASE SUSCEPTIBILITY 1) und 

seine signalgebende Partnerproteine PAD4 (PHYTOALEXIN DEFICIENT 4) oder SAG101 

(SENESCENCE-ASSOCIATED GENE 101) bilden einen zentralen Konvergenzpunkt für 

diese intrazellulären Rezeptoren und fungieren als Entscheidungsknoten für SA 

(Salicylsäure) abhängige und SA-unabhängige Umprogrammierung der Genexpression. 

Trotz unseres zunehmenden Wissens über die Immunität von Pflanzen ist die molekulare 

Funktion des EDS1 / PAD4-Komplexes und dessen Regulierung unklar. Jüngste Arbeiten 

haben eine antagonistische Regulierung zwischen dem JA (Jasmonsäure)-Kern-TF 

(Transkriptionsfaktor) MYC2 und EDS1 etabliert. Während MYC2 die bakterielle Virulenz 

durch Unterdrückung des EDS1-Promotors verstärkt, unterdrückt ETI-aktiviertes EDS1 den 

MYC2-Signalweg und dämmt das Wachstum von Erregern ein. Diese Kreuzregulierung 

stellt eine Kreuzung von ETI- und JA-Signalwegen dar und ermöglicht eine 

Feinabstimmung der pflanzlichen Immunantwort. Wie EDS1 die Menge und Aktivität von 

MYC2 steuert, ist nicht bekannt. 

Hier zeige ich die Regulierung der MYC2 Menge und der MYC2 Transaktivierungsaktivität 

durch Proteine der EDS1-Familie. Darüber hinaus präsentiere ich die molekularen 

Mechanismen dieser Regulation und identifiziere neue Komponenten in diesem Signalweg. 

Insbesondere stabilisieren PAD4 und SAG101, aber nicht EDS1, das MYC2-Protein, 

während EDS1, nicht jedoch PAD4 oder SAG101 die MYC2 Transaktivierungsaktivität 

fördert. Daher ist die Proteinakkumulation kein Indikator für die Aktivität von MYC2 als 

TF. Die Erhöhung der MYC2 Aktivität geht in einer JAZ-entkoppelten MYC2-Variante 

(MYC2s) oder bei gleichzeitiger Expression des bakteriellen Virulenzproteins avrRPS4 

verloren, was auf i) die Regulierung von JAZ-Proteinen durch EDS1 und ii) die immun-

kontextabhängige Regulation von MYC2 hinweist. Die funktionale Charakterisierung dieser 

Regulierung zeigt, dass MYC2, neben Regulation durch JAZ-Proteine, EDS1-abhängig 

phosphoryliert wird. In eds1-2 Pflanzen ist MYC2S123 phosphoryliert, was darauf schließen 
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lässt, dass EDS1 entweder eine Proteinkinase unterdrückt oder eine Proteinphosphatase 

aktiviert. Ich zeige die Interaktion der Proteinkinase EDR1 (ENHANCED DISEASE 

RESISTANCE 1), einem negativen Regulator der Pflanzenimmunität, mit PAD4 und mit 

MYC2 in Arabidopsis (Arabidopsis thaliana) Protoplasten. Ob EDS1 MYC2 über EDR1 

oder eine andere bisher unbekannte Komponente reguliert, muss noch getestet werden. 

Die in dieser Arbeit präsentierten Ergebnisse geben Einblick in die regulatorischen 

Beziehungen zwischen EDS1 und MYC2. EDS1 fördert die MYC2 

Transaktivierungsaktivität, wie durch die verstärkte Expression von MYC2 abhängigen 

Genen gezeigt wird. Insgesamt reguliert EDS1 die MYC2 Aktivität über JAZ-Proteine und 

wahrscheinlich über MYC2 Phosphorylierung. Eine genauere Analyse wird jedoch 

erforderlich sein, um dieses Problem vollständig zu lösen. Letztendlich hängt die 

Wichtigkeit der dargestellten Daten von der funktionalen Relevanz dieser Regulierung ab. 

Um dies zu klären, werden in planta Experimente in Pathogen infizierten und nicht-

infizierten Bedingungen ausschlaggebend sein. 
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1 Introduction 

Given the evolutionary distance between plants and animals, their innate immune systems 

are rather alike. Both rely on a two-phase system that firstly recognises intruders via 

unspecific, commonly present clues. Secondly, a more specific and more powerful immune 

response is initiated. Compared to animals, plants face numerous complications in terms of 

pathogen and pest defence. Being sessile organisms, plants cannot physically move away 

from pathogen pressure. Further, plants cannot rely on mobile, highly specialised immunity 

cells, since the cell wall prevents cell motility. Rather, every individual cell needs to be 

equipped with the full defence potential. This is reflected by the fact that plants do not 

possess adaptive immunity like animals, but rather an innate and a systemic immune 

response. In the past 20 years we have gained extensive insights into the sophisticated 

principles of the plant immunity network (Dangl et al. 2001, Jones et al. 2006) and while we 

understand pathogen recognition and subsequent defence outputs rather well, our knowledge 

on signal integration and decision-making remains limited. 

1.1 Recognition of conserved microbial patterns - an initial barrier 
for pathogens 

The first layer of plant immunity is typically referred to as non-host, or basal immunity. It 

relies on perception of pathogens via cell surface receptors called PRRs (pattern recognition 

receptors) that recognise conserved molecular patterns common to most microbes. PRR 

mediated immunity is therefore called PAMP- (pathogen-associated molecular pattern) or 

MAMP- (microbe-associated molecular pattern) triggered immunity (PTI) (Zipfel 2009). 

This form of immune response is usually potent enough to restrict growth of host non-

adapted microbes. The Arabidopsis (Arabidopsis thaliana) genome encodes more than 600 

PRR genes of which almost half are up-regulated by biotic stresses (Lehti-Shiu et al. 2009). 

Of this plethora of PRRs, numerous members have been characterised and shown to differ in 

their phylogenetic distribution, epitope recognition, and interaction partners. The best 

characterised PRR is FLS2 (FLAGELLIN SENSING 2). Upon recognition of the bacterial 

peptide flg22 (flagellin), FLS2 and its signalling partner BAK1 (BRASSINOSTEROID 

INSENSITIVE1-ASSOCIATED KINASE 1) phosphorylate the cytoplasmic kinase BIK1 

(BOTRYTIS-INDUCED KINASE 1), which in turn phosphorylates the NADPH oxidase 

RBOHD (RESPIRATORY BURST OXIDASE HOMOLOGUE D). This results in an 
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antimicrobial ROS (reactive oxygen species) burst. In parallel, activated FLS2/BAK1 induce 

MAPK (MITOGEN-ACTIVATED PROTEIN KINASE) signalling leading to WRKY TF 

phosphorylation and ultimately to transcriptional reprogramming (Couto et al. 2016, Wang 

et al. 2018). A hallmark of PTI is its rapid induction with kinase phosphorylation and ROS 

burst occurring within 5-10 min after receptor activation. 

 

1.2 NLR resistance - the next level 
Selection pressure on pathogens to overcome PTI led to the evolution of effector proteins 

that suppress PTI and cause ETS (effector-triggered susceptibility). These virulence factors 

have numerous structures and functions and many are secreted into the plant cell, usually via 

a T3SS (type III secretion system) to suppress PTI. In an arms race plants evolved 

intracellular receptors that sense bacterial effector proteins and trigger a second, more 

powerful immune response named ETI (effector-triggered immunity). These intracellular 

receptors resemble mammalian NOD-like receptors and are called nucleotide binding 

domain-leucine rich repeat receptors (NLRs). Dependent on their N-terminal domain NLRs 

can be further specified into CC-NLRs (coiled-coil domain, CNLs) and TIR-NLRs (Toll-

Interleukin1-Receptor domain, TNLs) (Jones et al. 2016). The long-standing dogma of NLR 

signalling was that each NLR represents a R (resistance) gene that directly recognises a 

bacterial effector, thereby conferring resistance (fitting the gene-for-gene hypothesis) (Flor 

1971, Ellis et al. 2000, Jones et al. 2016). In this scenario pathogens face substantial 

selective pressure to evolve their effector proteins in order to dodge plant immunity. 

Likewise, plants have to keep up with effector diversification by adapting existing or 

inventing new R genes. Nowadays a more universal notion is accepted.  

Besides direct NLR-effector interaction, other recognition mechanisms have been proposed 

and characterised. Numerous NLRs do not directly detect an effector, but monitor effector 

target proteins, so called “guardees”, or “decoys”. Hence, modification of a guardee/decoy 

leads to NLR activation. While the function of guardees and decoys is similar, guardees 

usually have an additional role in immune signalling. Decoys, however, serve exclusively as 

baits for effectors. A variation of the decoy model is a class of NLRs with an integrated 

decoy domain. Here, the NLR contains an effector virulence target domain. Combination of 

these recognition mechanisms enables relatively few NLRs (ca. 150 in Arabidopsis) to cover 

a vast diversity of bacterial effectors (Jones et al. 2016). 
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How NLRs are activated mechanistically is still subject to debate. Generally, activation is 

thought to correlate with conformational changes and possibly via oligomerisation (Jones et 

al. 2016, Zhang et al. 2017). Our understanding of the events after NLR activation is more 

advanced. All TNLs, and certain CNLs, converge on the EDS1/PAD4 signalling hub. This 

protein complex functions as a signal relay positioned downstream of TNL activation, but 

upstream of transcriptional reprogramming (Wirthmueller et al. 2007, Garcia et al. 2010). 

Successful initiation of ETI includes various defence responses, among which pcd 

(programmed cell death), also known as HR (hypersensitivity response), and accumulation 

of SA are the most prominent ones. A simplified overview of PTI, ETI, and EDS1/PAD4 

positioning within immune signalling is depicted in Figure 1.1. 

 
 
Figure 1.1 Plant immune signalling. Simplified illustration of different layers of plant immunity. 
Pathogens are recognised by two mechanisms. Extracellular PRRs (pattern recognition receptors) 
detect conserved molecular patterns called PAMPs (pathogen-associated molecular patterns) and 
initiate a universal first immune response, PTI (pattern-triggered immunity). In the cytoplasm, 
secreted bacterial effectors counteract PTI, causing ETS (effector-triggered susceptibility). Adapted 
hosts in turn detect bacterial effectors via TNLs that convert on the signalling hub EDS1/PAD4. 
Upon nuclear localisation, EDS1/PAD4 heterodimer dependent transcriptional reprogramming 
occurs which results in SA accumulation and a sustained, pathogen specific immune response, ETI 
(effector-triggered immunity). 
 



Introduction 

 
 4 

PTI and ETI were seen as processes employing distinct recognition and output machineries. 

In recent years however, evidence for interlaced immunity signalling between PTI and ETI 

has accumulated. Rather than quality, quantity seems to be the decisive factor between PTI 

and ETI. For instance genes that are differentially expressed during PTI and ETI overlap 

strongly, but vary in their abundance and timing (Tao et al. 2003). MAPK activation also 

suggests shared signalling components. During PTI, MPK3/6 activation is short-lived, but 

rapid. In presence of effectors though, MPK3/6 activation was sustained over several hours 

(Tsuda et al. 2013), suggesting context-specific adjustment of common signalling sets. 

Interestingly, successful PTI can partially suppress ETI, thereby limiting fitness costs for the 

plant (Hatsugai et al. 2017). In a recent review, Alhoraibi et al. discuss the distinct, but also 

the common features of PTI and ETI and propose a more interconnected relationship of the 

two immune responses (Alhoraibi et al. 2018). 

 

1.3 The EDS1/PAD4 signalling node 
EDS1 was identified in a forward genetic suppressor screen of Arabidopsis resistance 

against the oomycete Hyaloperonospora parasitica (Parker et al. 1996). Over time, EDS1 

has emerged as a major component of various aspects of plant immunity. In the following 

chapter I will summarise our current understanding of the EDS1 resistance node and the 

implications that arise from it. EDS1 is a nucleo-cytoplasmic protein with multi-facetted 

functions in plant immunity. It functions in basal (post-infection) and TNL-triggered 

immunity, but also in some CNL-triggered immune responses (Aarts et al. 1998, Rusterucci 

et al. 2001, Venugopal et al. 2009, Wang et al. 2009, Garcia et al. 2010, Makandar et al. 

2015, Cui et al. 2018). Further, SA dependent and SA independent roles have been shown 

(Glazebrook et al. 2003, Zhang et al. 2003, Bartsch et al. 2006, Gloggnitzer et al. 2014, Cui 

et al. 2016). 

1.3.1 Subcellular localisation determines EDS1 function  

EDS1 localisation depends on the cell’s immune status. In unchallenged tissues EDS1 

localises nucleo-cytoplasmically, while infection with avirulent Pseudomonas syringae pv. 

tomato DC3000 (hereinafter Pst) avrRPS4 causes EDS1 accumulation in the nucleus. This 

nuclear pool of EDS1 is essential for transcriptional reprogramming and resistance to 

bacterial and oomycete pathogens. Simultaneously, a cytoplasmic EDS1 fraction is 
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maintained and necessary for complete resistance (Garcia et al. 2010). Following this 

observation, distinct functions of nuclear and cytoplasmic EDS1 were found. While nuclear 

EDS1 steers transcriptional reprogramming to dampen bacterial growth, cytoplasmic EDS1 

elicits host cell death. This might allow the plant to fine-tune defence pathways for most 

efficient pathogen growth inhibition (Heidrich et al. 2011). Tight control of this nucleo-

cytoplasmic shuttling is crucial, as high levels of nuclear EDS1 cause DM2h 

(DANGEROUS MIX 2) dependent auto-immunity (Stuttmann et al. 2016). 

1.3.2 EDS1 and its signalling partners PAD4 and SAG101 constitute a 
unique plant protein family  

Genetic and molecular studies identified two signalling partners of EDS1, PAD4 

(PHYTOALEXIN-DEFICIENT 4) and SAG101 (SENESCENCE-ASSOCIATED GENE 

101) (Falk et al. 1999, Feys et al. 2001, Feys et al. 2005). Together these three proteins form 

a unique plant protein family with a N-terminal LP (lipase-like) domain with homology to 

α/β hydrolases (Ollis et al. 1992) and an unique C-terminal “EP” (EDS1-PAD4) domain 

with no known homologies (Feys et al. 2001, Feys et al. 2005, Wagner et al. 2013). EDS1 

and PAD4 contain a S-D-H catalytic triad common to lipase-like domains. Yet no enzymatic 

activity has been shown for EDS1, and catalytic triad mutants were fully functional in basal 

and TNL-triggered immunity, suggesting that EDS1 and PAD4 are not enzymatically active 

(Rietz et al. 2011, Wagner et al. 2013). SAG101 lacks the catalytic triad (Feys et al. 2005). 

With no catalytic activity of the LP domain and a previously unknown EP domain, 

mechanistic insights of the EDS1 protein family were difficult to gain.  

On a protein level, EDS1 forms exclusive heterodimers with PAD4 or SAG101, resulting in 

stabilisation of both interaction partners (Feys et al. 2001, Feys et al. 2005). Resolving the 

crystal structure of the EDS1/SAG101 heterodimer and subsequent modelling of the 

EDS1/PAD4 heterodimer provided crucial insights into the interaction mode of the three 

proteins (Wagner et al. 2013) (Figure 1.2). Heterodimer formation mainly relies on an 

interface of a hydrophobic EDS1 helix that fits into a corresponding pocket of SAG101, or 

PAD4, respectively. Mutation of several residues in the EDS1 hydrophobic helix (EDS1LLIF) 

abolishes interaction with SAG101, or PAD4, and renders EDS1 non-functional. Likewise, 

corresponding mutations in SAG101 (SAG101LLIY), or PAD4 (PAD4MLF) strongly, but not 

entirely, impair heterodimer formation (Wagner et al. 2013). Genetically, pathogen 
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challenged EDS1LLIF expressing plants resemble an eds1-2 null mutant, with 

hypersusceptibility to the oomycete Hpa (Hyaloperonospora arabidopsisdis). 

These features underline the importance of the EDS1/PAD4 or EDS1/SAG101 heterodimer 

in Arabidopsis immunity. SAG101 genetically partially compensates for loss of PAD4, 

suggesting similar signalling properties of the EDS1/PAD4 and the EDS1/SAG101 

heterodimer. However, SAG101 localises exclusively to the nucleus, while PAD4 is present 

nucleo-cytoplasmically, suggesting potential functional distinction (Feys et al. 2005, 

Wagner et al. 2013). Recent work in our group supports distinct roles of PAD4 and SAG101 

in plant immunity. While the TNL-activated EDS1/SAG101 heterodimer promotes cell 

death, the TNL-activated EDS1/PAD4 heterodimer limits bacterial growth (Lapin et al., 

submitted). 

 

 
Figure 1.2 Crystal structure of the EDS1/SAG101 heterodimer. Both proteins contain a lipase-
like domain (EDS1: light blue, SAG101: yellow) and the family specific EP domain (EDS1: light 
purple, SAG101: green). EDS1 contains a conserved S-D-H triad typical for lipases. Taken from 
Wagner et al. 2013 
 
Further, Wagner et al. (2013) showed that both the LP and EP domains are necessary for full 

EDS1 resistance signalling and while the LP domain is stable by itself, the EP domain relies 

on stabilisation by the LP domain. Together with the fact that heterodimer formation 

depends on residues in the LP domain, and the absence of catalytic activity, this suggests a 

scaffolding function of the LP domain and a signalling function of the EP domain. This is in 

line with recent work in the group which established a specific role of the EP domain within 
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an EDS1/PAD4 heterodimer in timely reprogramming of the Arabidopsis immune response 

(Bhandari et al. 2019). 

1.3.3 EDS1/PAD4 control SA dependent and SA independent pathways 

The characterisation of EDS1/PAD4 proteins revealed that the EDS1/PAD4 complex signals 

upstream of SA in both basal and TNL-triggered immunity with EDS1/PAD4 supporting SA 

accumulation (Zhou et al. 1998, Jirage et al. 1999, Feys et al. 2001). On the other hand, 

exogenous application of SA enhances transcript and protein levels of EDS1 and PAD4, 

supporting the idea of an EDS1/PAD4 - SA positive feedback loop which fortifies SA 

dependent resistance signalling (Jirage et al. 1999, Feys et al. 2001). 

Adding another layer of complexity to this signalling network, EDS1/PAD4 also employ SA 

independent pathways for resistance signalling (Li et al. 2001, Zhang et al. 2003, Bartsch et 

al. 2006). Recently, our group disentangled these SA dependent and SA independent 

processes. My colleagues showed that overexpressed EDS1 and PAD4 act in parallel with 

SA signalling and protect the SA pathway from pathogenic or genetic perturbations (Cui et 

al. 2016). For this, EDS1 and PAD4 engage hormone crosstalk. Specifically, TNL-activated 

EDS1/PAD4 shelter SA signalling from JA antagonism by interfering with the JA master TF 

MYC2 (Cui et al. 2018). This exemplifies a characteristic of ETI which protects crucial 

defence sectors like the SA node to ensure robust resistance signalling. The EDS1/PAD4 

compensatory mechanism fits with the notion of network buffering where interactions 

within the immune signalling network constitute a robust and dynamic defence response 

(Cui et al. 2016, Hillmer et al. 2017). 

Hormone crosstalk regulation presents a new function of the EDS1/PAD4 complex and will 

be addressed in more detail in this study. In summary, the EDS1 regulatory node allows the 

plant to respond to multi-facetted immune challenges in an effective and efficient manner by 

prioritising and integrating signalling pathways.  

 

1.4 SA signalling  
The role of SA in plant defence is rather well understood. SA is typically associated with 

resistance against microbial biotrophic pathogens (Glazebrook 2005). Chemically, SA is a 

phenolic acid and is predominantly synthesised via ICS1 (ISOCHORISMATE SYNTHASE 

1) (Wildermuth et al. 2001). Upon pathogen attack SA levels increase significantly, with 
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EDS1 and PAD4 mediating TNL-triggered immune responses (Wiermer et al. 2005) and the 

resistance protein NDR1 (NON RACE-SPECIFIC DISEASE RESISTANCE 1) mediating 

CNL-triggered signalling (Aarts et al. 1998). Once SA accumulates, it initiates relocalisation 

of NPR1 (NON-EXPRESSOR OF PR GENES 1), which in the absence of SA forms 

oligomers in the cytoplasm. SA induced changes in the cell’s redox state promote NPR1 

monomerisation and translocation into the nucleus where it acts as a co-activator of defence 

genes (Tada et al. 2008). The underlying mechanism is well understood. Within the nucleus, 

NPR1 binds to and activates TGA TFs (members of the bZIP TF family) that sit at the 

promoter of SA-responsive genes like PR1 (PATHOGENESIS-RELATED GENE 1) or 

WRKYs (Despres et al. 2000, Eulgem et al. 2007). To restrict SA signalling NPR1 is 

phosphorylated and subjected to 26S proteasomal degradation (Spoel et al. 2009).  

The nature of the SA receptor has been a long-standing matter of debate in the scientific 

community. While NPR1 acts as the SA signal transducer (Dong 2004, Yan et al. 2014), 

opposing views on the SA binding capabilities of NPR1 exist. In 2012 the NPR1 paralogues 

NPR3/NPR4 were shown to bind SA with different affinities (Fu et al. 2012) and in the 

same year, NPR1 was proposed to be the SA receptor (Wu et al. 2012). More recently, both 

NPR1 and NPR3/NPR4 were described as SA receptors, but with opposing roles in 

transcriptional reprogramming during plant immunity (Ding et al. 2018). The perception of 

SA by multiple, non-redundant receptors is unique in the plant hormone network and 

explains the seemingly controversial observations in the search for a SA receptor. 

 

1.5 The core JA pathway  
Besides SA, JA is of exceptional importance for plant defence. Analogous to SA repressing 

biotrophic microbes, JA primarily antagonises necrotrophic pathogens (Glazebrook 2005). 

The starting point for JA biosynthesis are fatty acid precursors, which are processed via 

multiple biochemical reactions to JA. “JA” is usually used as a generic term that spans a 

broad spectrum of JA metabolites. These can be conjugated and modified in multiple ways, 

resulting in JA derivatives with diverse functions. Generally, the conjugate jasmonoyl 

isoleucine (JA-Ile) is the predominant biologically active compound (Wasternack 2007, 

Wasternack et al. 2013). Interestingly, plant pathogens like Pst have evolved functional 

mimics of JA-Ile such as COR (coronatine) (Mittal et al. 1995, Brooks et al. 2004). COR is a 

small molecule that competes with JA-Ile to activate the JA pathway. Initiation of JA 

signalling antagonises SA dependent immunity and enhances Pst virulence (Brooks et al. 
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2004, Brooks et al. 2005, Zheng et al. 2012). JA signalling relies on the repression of 

repressors. Molecularly, this means that key JA TFs are kept inactive by a family of 

repressor proteins, the so-called JAZ (JASMONATE ZIM DOMAIN) proteins (Chini et al. 

2007, Thines et al. 2007). Together with the co-repressors NINJA (NOVEL INTERACTOR 

OF JAZ) and TPL (TOPLESS) JAZ proteins keep the JA pathway in check (Pauwels et al. 

2010).  

Active JA-Ile is bound by COI1 (CORONATINE-INSENSITIVE 1), an E3 ubiquitin-ligase 

that is part of the SKP1-Cullin-F-box complex SCFCOI1, which leads to ubiquitin dependent 

proteasomal degradation of JAZ proteins (Sheard et al. 2010). The removal of JAZ proteins 

sets key JA TFs free. JA signalling can be divided in two branches: the MYC 

(MYELOCYTOMATOSIS ONCOGENE HOMOLOG) branch (Lorenzo et al. 2004, 

Dombrecht et al. 2007) and the ERF (ETHYLENE RESPONSE FACTOR) branch (Lorenzo 

et al. 2003, Pre et al. 2008). The MYC branch is controlled by MYC class IIIe bHLH (basic 

helix-loop-helix) TFs, with its most prominent members being MYC2/3/4. Well-known 

marker genes of this branch are VSP1/2 (VEGETATIVE STORAGE PROTEIN 1/2) and 

LOX3 (LIPOXYGENASE 3) for instance. The ERF branch on the other hand is regulated by 

AP2/ERF (APETALA2/ETHYLENE RESPONSE FACTOR) TFs. Typical genes regulated 

by this branch are PDF1.2 (PLANT DEFENSIN 1.2) or ORA59 (OCTADECANOID-

RESPONSIVE ARABIDOPSIS 59). Interestingly, ERF branch genes can be repressed by 

MYC2 (Zhai et al. 2013). On contrast to the MYC branch, activation of the ERF branch 

involves the plant hormone ethylene and is more complex and less well understood (Lorenzo 

et al. 2003, Pre et al. 2008). Functionally, the two pathways are thought to differ in their 

responsiveness to different attackers. The MYC pathway is activated by wounding and 

herbivorous damage (Lorenzo et al. 2004, Kazan et al. 2013), while microbial necrotrophic 

pathogens activate the ERF branch (Berrocal-Lobo et al. 2002, Lorenzo et al. 2003). A 

simplified overview of JA signalling is depicted in Figure 1.3. 
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Figure 1.3 Scheme of JA signalling in context of plant immunity. In absence of JA the JA master 
TF MYC2 is repressed by the JAZ protein family. JA or its bacteria derived functional mimic COR 
lead to COI1 dependent proteasomal JAZ degradation, thereby releasing MYC2 and activating 
MYC2 specific gene expression. Generally, MYC2 activation correlates with decreased resistance to 
biotrophic pathogens and increased resistance to necrotrophic ones. 
 

1.5.1 The JAZ protein family represses JA signalling 

Since JA signalling needs to be tightly regulated, diverse (auto-)regulatory mechanisms have 

been observed. For instance, JA biosynthesis is promoted by JA itself, ensuring a robust JA 

response when necessary. Further downstream in the signalling cascade MYC2 restricts its 

own transcription twofold: i) by binding a G-box motif in its own promoter, and ii) by 

rapidly inducing JAZ transcription (Chini et al. 2007, Dombrecht et al. 2007). Besides this 

transcriptional regulation, an additional auto-regulatory MYC2 mechanism has been 

described. Once activated, MYC2 promotes the MTB (MYC2-TARGETED BHLH) 

proteins, a small subgroup of bHLH proteins. MTBs compete with MYC2 for binding of 

MED25 (MEDIATOR 25), a transcriptional co-activator of MYC2, thereby attenuating 

MYC2 transactivation activity (Liu et al. 2019).  
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The probably most dynamic and versatile tool to fine-tune JA signalling are the JAZ 

repressor proteins. 13 JAZs have been identified so far (Chini et al. 2016) and while the 

majority seems to act redundantly, there are gradually more insights gained into functional 

specification of single JAZ proteins. Common to all JAZs is their transcriptional regulation. 

In presence of JA, JAZ proteins are degraded by the 26S proteasome, thus releasing their 

target genes. At the same time, JAZ transcription is enhanced which allows a quick 

replenishment of JAZ proteins if necessary (Chini et al. 2007, Pauwels et al. 2011). JAZ 

specificity is accomplished by different means, for instance JAZ1/2/5-10 are highly up 

regulated after Pst infection (Demianski et al. 2012). Yet only jaz10 mutants show 

hypersusceptibility to Pst (Demianski et al. 2012). This was further supported by the finding 

that JAZ10 acts synergistically with JAZ5 in restricting COR cytotoxicity, as jaz10/jaz5 

double mutants showed enhanced chlorosis in Pst infected leaves (de Torres Zabala et al. 

2016). JAZ6 takes part in circadian regulation of plant defence against Botrytis cinerea. 

Arabidopsis is more susceptible to B. cinerea during the night, than at dawn. However, jaz6 

mutant plants lose this daytime dependent susceptibility, indicating a specific role for JAZ6 

in this context (Ingle et al. 2015). JAZ2 localises exclusively to guard cells and mediates 

COR induced stomatal re-opening (Gimenez-Ibanez et al. 2017) and JAZ4/7/8 have been 

identified as important components of JA-induced leaf senescence (Jiang et al. 2014, Yu et 

al. 2016). Finally, JAZ3 interacts with the bacterial effector HopBB1 leading to degradation 

of the JA pathway repressor TCP14 and promotion of bacterial virulence (Yang et al. 2017).  

To extend the regulatory repertoire of JAZ proteins they are able to form homo- and 

heteromers within the JAZ family, but we are still missing a detailed understanding of the 

functional implementations this has (Chini et al. 2009, Chung et al. 2009). The diversity of 

JAZ proteins also helps to re-suppress JA signalling and avoids hyperactivation. Means to 

accomplish this are specific JAZ degrons and alternative splice variants. JAZ8 for instance 

lacks the typical COI1 recognition motif that mediates COI1-JAZ binding and is therefore 

less prone to COI1 dependent proteasomal degradation (Shyu et al. 2012). A similar 

observation has been made for JAZ13 (Thireault et al. 2015). To increase the regulatory 

range even further, alternative splice variants of certain JAZ proteins have been described in 

context of re-suppressing JA signalling. A well-known example is JAZ10, which exists in 

three isoforms. The shortest of these isoforms (JAZ10.4) lacks the Jas domain that is 

necessary for COI1 binding and subsequent degradation (Chung et al. 2009). Consistent 

with this, JAZ10.4 did not bind COI1, even in presence of high (200 µM) COR. Other tested 
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interactions including MYC2 and several JAZs were unchanged, suggesting a specific COI1 

related function. Overexpressing this variant led to coi1 like hyposensitivity to JA and 

associated elongated root length and impaired seed set phenotypes (Chung et al. 2009, 

Chung et al. 2010). This dominant-negative effect has been also observed in other JAZ 

proteins and supports the notion that alternatively spliced JAZ proteins that evade COI1 

mediated degradation keep activated JA signalling in check (Chung et al. 2010).  

1.5.2 MYC2 is the master TF in JA signalling 

As mentioned, a large number of JA outputs rely on the bHLH TF MYC2 (Kazan et al. 

2013). MYC2 function is largely, but not exclusively, redundant with MYC3 and MYC4. 

For instance, MYC3 and MYC4 act additively to MYC2 in transducing JA signalling 

(Fernandez-Calvo et al. 2011) and in driving gene expression for producing glucosinolates 

to restrict insect feeding (Schweizer et al. 2013). Recent work from our group shows that 

MYC2/3/4 also act additively in antagonising expression of EDS1 (Qiu et al., in prep.). The 

high redundancy again raises the question of functional and regulatory specificity. Part of 

the answer might lie in the spatio-temporal expression of these proteins. While MYC2 

transcript is found predominantly in the root, MYC3 and MYC4 mRNAs are present in the 

aerial parts of the plant (Fernandez-Calvo et al. 2011, Gasperini et al. 2015). MYC5, a less 

regarded member of the MYC family, localises exclusively to the stamen where it acts 

together with MYC2/3/4 in stamen development (Qi et al. 2015). Temporally, MYC2 

accumulation correlates with circadian clock connecting time-of-day regulation with the JA 

pathway (Shin et al. 2012). MYC2/3/4 homo- and heterodimerise with each other and 

interact with nearly all JAZ proteins, indicating that signalling specificity is not achieved via 

distinct protein interaction (Fernandez-Calvo et al. 2011, Chini et al. 2016). 

A major step forward in understanding how JAZ proteins repress MYC was the successful 

crystallisation the JAZ9/MYC3 complex. When bound to JAZ9, MYC3 undergoes 

substantial conformational changes and, consequently, cannot interact with its 

transcriptional activator MED25. Thus, JAZ9/MYC3 interaction provides a molecular 

switch that allows changing between transcriptional repression and activation (Zhang et al. 

2015).  

For a detailed discussion of SA-JA crosstalk during plant immunity please refer to chapter 

3.3. 
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1.6 Thesis aims 
In an evolutionary arms race plants have evolved sophisticated defence mechanisms against 

a plethora of pathogens. In turn, pathogens have evolved strategies to maintain and/or 

enhance their virulence. In this context, the EDS1 signalling node represents a central 

convergence point for basal and TNL-triggered immunity which acts in signal relay between 

activated NLRs and the transcriptional reprogramming machinery. Despite new mechanistic 

insights, our understanding of how EDS1 family proteins ensure a robust and strong immune 

response remains limited. 

Antagonistic crosstalk between SA and JA is well established and distinct roles for SA and 

JA have been identified in context of plant immunity (Robert-Seilaniantz et al. 2011, 

Pieterse et al. 2012, Thaler et al. 2012). Recent work in our group revealed a molecular basis 

for this antagonism that connects EDS1 to the JA master TF MYC2. MYC2 was found to 

interact with all EDS1 family proteins and to repress EDS1 promoter activity, leading to 

enhanced COR dependent Pst virulence (Cui et al. 2018, Qiu et al., in prep.). Similarly, we 

could show that during ETI, EDS1 represses MYC2 outputs, thus attenuating COR 

dependent virulence and reinforcing SA dependent defence (Cui et al. 2018). These data 

reveal that a central immune node intervenes with hormone crosstalk.  

I started this work knowing that EDS1 and MYC2 were functionally connected. However, 

the nature of this relationship and its molecular basis were unclear. I decided to focus on 

EDS1 and its regulation of MYC2 and divided my approach in two parts. First, I tested 

systematically if EDS1 family members altered MYC2 accumulation on protein and 

transcript levels and if so, how this affected MYC2 transactivation activity. Second, I aimed 

to identify and functionally characterise the mechanism(s) by which EDS1 regulates MYC2 

activity. Specifically, I analysed MYC2 regulation by repressor proteins and MYC2 PTMs 

(post-translational modifications). 
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2 Results 

This thesis is divided into two sections. Section 2.1 addresses if and how the EDS1 protein 

family impacts MYC2 transcript, protein, and target genes. To test this, I first characterised 

and then employed the Arabidopsis mesophyll protoplast system to probe MYC2 mRNA 

and protein levels when co-expressed with EDS1, PAD4, and/or SAG101. To test 

correlation of MYC2 abundance with its transactivation activity I tested MYC2 regulated 

genes. 

The aim of section 2.2 was to find a mechanistic explanation for EDS1/PAD4 dependent 

MYC2 regulation. To this end I analysed MYC2 dimerisation properties, JAZ proteins, and 

MYC2 post-translational modifications. 

 

2.1 Impact of EDS1 family proteins on MYC2 abundance and 
transactivation activity 

2.1.1 Arabidopsis protoplasts are responsive to avrRPS4 and COR 

Previous work in the group had shown that EDS1, PAD4, and SAG101 can interact with 

MYC2 in vitro (Cui et al. 2018). To assess whether EDS1 family proteins modify MYC2 

abundance, i.e. transcript and/or protein accumulation I decided to use the established 

Arabidopsis protoplast system used in our group, which is based on the protocol published 

by the Sheen group (Yoo et al. 2007). The advantages of using this system are i) relatively 

high sample number with results in short time, ii) use of protoplasts of specific genetic 

background, and iii) intact Arabidopsis cell signalling in isolated cells. Figure 2.1A shows a 

simplified workflow of protoplast isolation. Inevitably, the isolation procedure stresses cells 

and might alter cell signalling in unexpected ways. Therefore, I first tested whether 

protoplasts are still able to induce a defence response by transforming the bacterial effector 

protein avrRPS4 into eds1-2/pad4-1/sag101-2 (hereinafter called eps) cells. Upon infection, 

Pst avrRPS4 triggers EDS1/PAD4 dependent ETI as shown by induction of marker genes 

such as ICS1 and PBS3. Co-expression of EDS1-YFP, PAD4-YFP and avrRPS4-HA 

induced ICS1 and PBS3 significantly, while EDS1 and PAD4 alone, or together with the 

inactive effector variant avrRPS4KRVY (Sohn et al. 2009) did not (Figure 2.1B). 
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Consequently, isolated cells induce ETI-like signalling upon transient gene expression 

making the protoplast system a potent mimic of in planta conditions. To ensure similar 

transformation efficiency I adjusted the transformed plasmid volumes if necessary with 

“neutral” 35S:GUS plasmid between samples. 

 

 
Figure 2.1 Protoplast isolation and characterisation. 
(A) Schematic workflow of protoplast isolation from Arabidopsis leaves. 3 - 4 leaves from healthy, 
4-week-old plants were cut with a scalpel, digested with cellulase and macerozyme, filtered, washed 
and transformed via PEG to obtain transiently transformed cells.  
(B) eps protoplasts initiate ETI-like signalling if transformed with EDS1-YFP, PAD4-flag, and 
avrRPS4-HA, but not if transformed with EDS1-YFP and PAD4-flag alone, or with inactive 
avrRPS4KRVY-HA. RNA was extracted 14 h after eps protoplast transformation. Relative transcript of 
ICS1 and PBS3 was determined by qRT-PCR and normalised to ACTIN2. Asterisks indicate 
statistical difference (mixed linear model, adjusted p-value≤0.001). Error bars represent normalised 
mean standard error. Data from three independent experiments.  
(C) WT and eps protoplasts respond to 2 µM COR treatment. myc234 protoplasts served as negative 
control. -COR are MOCK (DMSO) treated samples. RNA was extracted 16 h after isolation with 2 h 
2 µM COR treatment preceding harvesting. Relative transcript of LOX3 and MYC2 was determined 
by qRT-PCR and normalised to ACTIN2. Asterisks indicate statistical difference (mixed linear 
model, adjusted p-value≤0.001). Error bars represent normalised mean standard error. Data from 
three independent experiments. ns: not significant 
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Since protoplast isolation exerts physical stress on cells I wanted to assess if protoplasts are 

still responsive to exogenous JA stimulation, i.e. addition of COR. To address this, I tested 

JA marker gene expression of LOX3 and MYC2 with or without COR application in WT, 

eps, and myc234 protoplasts. 2 h treatment with 2 µM COR significantly induced LOX3 and 

MYC2 expression in WT and eps cells, but not in myc234 (Figure 2.1C) demonstrating that 

protoplasts are responsive to COR treatment. 

In summary, the obtained protoplasts induce ETI-like gene expression and react to COR 

treatment suggesting that the endogenous cell signalling network is intact and responsive. 

2.1.2 PAD4 and SAG101, but not EDS1 increase MYC2 protein level 

While all EDS1 family proteins interact with MYC2, the interaction of PAD4 or SAG101 

with MYC2 is seemingly stronger than with EDS1 (Cui et al. 2018). To test effects of EDS1, 

PAD4, and SAG101 on basal MYC2 protein level I co-expressed SH-MYC2 with EDS1-

flag, PAD4-YFP, or SAG101-YFP respectively and visualised protein amounts via 

immunoblotting. In presence of EDS1, MYC2 protein level was similar to a YFP control 

sample. Interestingly, in presence of PAD4 or SAG101 MYC2 was clearly more abundant 

(Figure 2.2A). This observation cannot be explained by transcript level, as native MYC2 

transcript was not affected by expressing YFP, EDS1-flag, PAD4-YFP, SAG101-YFP, 

EDS1-flag with PAD4-YFP, or EDS1LLIF-flag, a heterodimerisation-deficient version with 

PAD4-YFP (Figure 2.2B). This suggests a post-translational effect of PAD4 and SAG101 

on MYC2. 

In context of ETI the formation of an EDS1/PAD4 heterodimer is necessary for intact 

defence signalling (Feys et al. 2001, Wagner et al. 2013). SAG101 has been shown to act 

largely redundantly with PAD4 (Feys et al. 2005) which is why the following experiments 

include PAD4, but not SAG101. So far, little is known about functions of EDS1, PAD4, 

(and SAG101) as monomers. This prompted me to test MYC2 protein levels in presence of 

the EDS1/PAD4 heterodimer in immune non-challenged (without avrRPS4) and immune 

challenged (with avrRPS4) cells. Co-expressing PAD4-YFP with EDS1-flag abolished the 

PAD4 promoting effect on MYC2 abundance while this was not the case with EDS1LLIF-flag 

(Figure 2.2C), suggesting that heterodimer formation affects MYC2 protein accumulation. 

The addition of avrRPS4-HA had no effect (Figure 2.2C). 
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I conclude that PAD4 (and SAG101) stabilise MYC2 on protein level and that this 

stabilisation is impaired by EDS1/PAD4 heterodimer formation. This seems to be 

independent of the immune status of the cell, as this was observed in avrRPS4 expressing 

and non-expressing samples. 

 
  

Figure 2.2 PAD4 and SAG101 stabilise 
MYC2 protein but not MYC2 transcript. 
(A) SH-MYC2 protein accumulation in eps 
protoplasts co-expressed with EDS1-flag, 
PAD4-YFP, or SAG101-YFP 14 h after 
transformation. YFP served as control. Note 
how PAD4 and SAG101, but not ESD1 
stabilise MYC2. 
(B) Native MYC2 transcript is unchanged by 
transient expression of EDS1 family proteins. 
Relative transcript of MYC2 was determined by 
qRT-PCR normalised to ACTIN2. Different 
letters indicate statistically significant 
differences (mixed linear model, adjusted p-
value≤0.01). Error bars represent normalised 
mean standard error. Data from two 
independent experiments. 
(C) EDS1-PAD4 heterodimer formation 
abolishes PAD4 stabilisation of MYC2. SH-
MYC2 protein accumulation in eps protoplasts 
co-expressed with EDS1-flag and PAD4-YFP 
or EDS1LLIF-flag and PAD4-YFP. AvrRPS4-
HA did not affect this.  
(A,C) Ponceau-S staining shows equal sample 
loading. Experiments were repeated three times 
with similar results. SH: StrepII-3xHA. 
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2.1.3 PAD4 does not stabilise MYC2 via 26S proteasome or JAZ 
inhibition 

To find a mechanistic explanation for the observed MYC2 levels I interrogated the role of 

the 26S proteasome. MYC2 is under strict control of the 26S proteasome and proteasome 

inhibition stabilizes MYC2 protein (Shin et al. 2012, Zhai et al. 2013, Jung et al. 2015). 

Thus, a simple explanation for high MYC2 amounts would be PAD4 protecting MYC2 from 

proteasomal degradation. As before, I expressed SH-MYC2 with PAD4-YFP, with PAD4-

YFP and EDS1-flag, or with PAD4-YFP and EDS1LLIF-flag, but added 50 µM MG132, a 

potent proteasome inhibitor. MG132 increased overall MYC2 levels, yet PAD4 still 

enhanced MYC2 abundance and addition of EDS1 counteracted this (Figure 2.3A). Thus, 

the observed MYC2 amounts are unlikely to be caused by changed 26S proteasome activity. 

 
Figure 2.3 PAD4 does not stabilise MYC2 via 26S proteasome or JAZ protein regulation. 
(A) SH-MYC2 protein accumulation in eps protoplasts co-expressed with PAD4-YFP, PAD4-YFP 
and EDS1-flag, or PAD4-YFP and EDS1LLIF-flag, 14 h after transformation. YFP served as control. 
Addition of 50 µM MG132 (2 h) enhanced overall MYC2 protein levels, but did not change MYC2 
stabilisation by PAD4 and EDS1 inhibition. 
(B) EDS1/PAD4 dependent MYC2s accumulation pattern resembles MYC2WT. 
(A,B) Ponceau-S staining shows equal sample loading. Experiments were repeated three times. SH: 
StrepII-3xHA. 
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Besides the 26S proteasome, JAZ proteins are well-known regulators of MYC2 (Chini et al. 

2007, Kazan et al. 2013, Zhang et al. 2015). The single amino acid change D105N releases 

MYC2 form JAZ suppression and results in a gain-of-function MYC2 referred to as “super-

MYC2”, (MYC2s) (Goossens et al. 2015). If PAD4 and/or EDS1 interfered with MYC2-

JAZ regulation this JAZ-uncoupled MYC2 variant should behave different to MYC2WT. 

Similar to MG132 treated samples, SH-MYC2s samples showed elevated MYC2 levels, yet 

the observed abundance pattern for MYC2WT was unchanged when co-expressed with 

various EDS1/PAD4 combinations (Figure 2.3B). The different MYC2 amounts can 

therefore not be explained by regulation of JAZ proteins. This means that quantity, but not 

quality of MYC2 accumulation depends on 26S proteasome and JAZ proteins. 

2.1.4 EDS1 enhances MYC2 transactivation activity 

Since MYC2 is a transcription factor mere transcript or protein abundance are of limited 

information when it comes to functional implications. Even very low levels of a TF can be 

biologically active (Cheng et al. 2007). To address this I used a transactivation assay in eps 

protoplasts that measures MYC2 activity. MYC2 activates expression of LOX3 and VSP1 

and represses expression of ORA59 (Lorenzo et al. 2004, Verhage et al. 2011). By adding 

SH-MYC2 alone or with EDS1-flag, PAD4-YFP, or EDS1-flag with PAD4-YFP I tested 

whether MYC2 activity was changed EDS1/PAD4 dependently. Compared to YFP, SH-

MYC2 induced LOX3 and VSP1 levels and decreased ORA59 levels providing functional 

proof for the assay. Intriguingly, co-expression of EDS1-flag and SH-MYC2 significantly 

increased LOX3 and VSP1 levels compared to YFP and SH-MYC2 suggesting a promoting 

effect of EDS1 on MYC2 (Figure 2.4A,B). This stimulation was not observed by co-

expressing PAD4-YFP, or EDS1-flag with PAD4-YFP indicating an EDS1 specific feature, 

which is abolished by PAD4. EDS1 also enhanced the repressive function of MYC2 on 

ORA59, yet to similar levels as PAD4 or EDS1 with PAD4 did (Figure 2.4C). The results for 

ORA59 are therefore less clear and should be interpreted with caution.  
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Figure 2.4 EDS1 promotes MYC2 transactivation activity. 
MYC2 transactivation activity assay via qRT-PCR. SH-MYC2 was expressed separately, or together 
with YFP, EDS1-flag, PAD4-YFP, or EDS1-flag plus PAD4-YFP and LOX3 (A), VSP1 (B), and 
ORA59 (C) transcript was measured 14 h after eps protoplast transformation. Different letters 
indicate statistically significant differences (mixed linear model, adjusted p-value<0.01 (A), adjusted 
p-value≤0.05 (B and C)). Error bars represent normalised mean standard error. Data from four 
independent experiments. (D) Immunoblot confirming expression of proteins in samples of (A-C). 
Ponceau-S staining shows equal sample loading. Note that high MYC2 transactivation activity in 
EDS1 co-expressed samples does not correlate with high MYC2 protein amounts. SH: StrepII-
3xHA. 
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Testing protein accumulation confirmed proper protein expression showing that the 

observed changes in MYC2 transactivation activity are not due to protein amounts (Figure 

2.4D).  

Overall, this data demonstrates an EDS1 specific, positive function on MYC2 activity and is 

in contrast to the observed protein abundance described in Figure 2.2A were MYC2 was 

most abundant when co-expressed with PAD4. Consequently, MYC2 protein abundance and 

transactivation activity do not correlate, suggesting post-translational regulation. 

2.1.5 EDS1 does not enhance MYC2s transactivation activity 

EDS1 could promote MYC2 activity by releasing it from JAZ suppression. To test this 

hypothesis I co-expressed YFP, EDS1-flag, PAD4-YFP, or EDS1-flag with PAD4-YFP with 

SH-MYC2WT or with SH-MYC2s. While EDS1 enhanced LOX3 and VSP1 levels when co-

expressed with MYC2WT, it failed to do so when co-expressed with MYC2s. Consistent with 

the previous experiment, PAD4 and EDS1 with PAD4 did not affect expression (Figure 

2.5A,B). ORA59 was not tested. As EDS1 could not promote the activity of a JAZ 

uncoupled MYC2 this indicates that EDS1 releases MYC2 from JAZ suppression. 

Interestingly, VSP1 expression was higher in all MYC2s samples compared to MYC2WT 

samples which is in line with a JAZ uncoupled MYC2. However, this was not true for 

LOX3, as expression was similar between MYC2s and MYC2WT. This suggests different 

regulatory pathways.  

To rule that the absence of EDS1 promotion on MYC2s was due to a lack of protein, I 

verified protein levels for all transformed constructs, i.e. YFP, EDS1-flag, PAD4-YFP, SH-

MYC2WT and SH-MYC2s. In short, all constructs are expressed well and MYC2s is more 

stable than MYC2WT (Figure 2.5C). Again, protein amount does not correlate with 

transactivation activity and is therefore not indicative of functional impact. 
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Figure 2.5 EDS1 does not promote MYC2s transactivation activity. 
MYC2 transactivation activity assay via qRT-PCR. SH-MYC2 or SH-MYC2s was transformed with 
YFP, EDS1-flag, PAD4-YFP, or EDS1-flag plus PAD4-YFP and LOX3 (A) and VSP1 (B) transcript 
was measured 14 h after eps protoplast transformation. Note the overall enhanced VSP1 levels in 
MYC2s samples. Different letters indicate statistically significant differences (mixed linear model, 
adjusted p-value≤0.05). Error bars represent normalised mean standard error. Data from three 
independent experiments. (C) Immunoblot confirming expression of proteins in samples of (A) and 
(B). Ponceau-S staining shows equal sample loading. SH: StrepII-3xHA. 
 

2.1.6 MYC2s interacts with EDS1 family proteins 

With MYC2s not being promoted by EDS1 I hypothesised that MYC2s might not interact 

with EDS1. To test this I expressed SH-MYC2WT and SH-MYC2s in eps protoplasts together 

with YFP, EDS1-YFP, PAD4-YFP, SAG101-YFP, or EDS1-flag with PAD4-YFP. As 

reported earlier (Cui et al. 2018), MYC2WT co-immunoprecipitated (co-IPed) with all EDS1 

family proteins. Interestingly, MYC2s showed similar, yet weaker interaction (Figure 2.6).  
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Figure 2.6 MYC2s retains interaction with EDS1 family proteins. 
Co-IP analysis of EDS1-YFP, PAD4-YFP, SAG101-YFP or PAD4-YFP plus EDS1-flag co-
expressed with SH-MYC2 or SH-MYC2s 14 h after transformation of eps protoplasts. GFP trap IP 
shows that MYC2s retains interaction with EDS1 family proteins, but with weaker intensity than 
MYC2WT. YFP served as control. Ponceau-S staining shows equal sample loading. SH: StrepII-
3xHA. Performed thrice with similar results.  
 
This is remarkable, as MYC2s is more stable than MYC2WT (see input), but co-IPs less, 

suggesting that the MYC2D105N mutation affects MYC2-EDS1 interaction. Still, interaction 

is clear and is unlikely to be the cause for the lack of EDS1 dependent MYC2s promotion. 

 

2.1.7 AvrRPS4 abolishes the EDS1 promoting effect on MYC2 
transactivation activity 

Given the well-established SA/JA antagonism it was unexpected to find EDS1 promoting 

MYC2. Further, this is a rare case where EDS1 functions as a monomer and not in context 

of an EDS1/PAD4 heterodimer. This led me to test whether the results I obtained in 

pathogen unchallenged conditions were consistent in ETI-like conditions. Adding avrRPS4-

HA to the previously described experiment indeed abolished EDS1 promotion of MYC2 



Results 

 
 25 

transactivation activity (Figure 2.7A,B). As these experiments were done in eps protoplasts, 

only the last sample contains EDS1 and PAD4, i.e. the functional EDS1/PAD4 heterodimer, 

which is crucial for ETI signalling after avrRPS4 recognition. The fact that avrRPS4 

changes MYC2 output in samples containing EDS1 alone indicates that avrRPS4 affects the 

EDS1-MYC2 relationship independent of EDS1/PAD4 dependent dimerisation and 

canonical ETI signalling. Again, I verified protein expression to ensure the lack of 

transactivation activity was not due to lack of protein (Figure 2.7C).  

   
Figure 2.7 AvrRPS4 abolishes the EDS1 promoting effect on MYC2. 
MYC2 transactivation activity assay via qRT-PCR. SH-MYC2 and avrRPS4-HA were co-expressed 
with YFP, EDS1-flag, PAD4-YFP, or EDS1-flag plus PAD4-YFP and LOX3 (A) and VSP1 (B) 
transcript was measured 14 h after eps protoplast transformation. YFP alone served as control. Note 
how in the presence of avrRPS4, EDS1 does not promote MYC2 transactivation activity. Further, 
MYC2 induced LOX3 transcript, but not VSP1 transcript. Different letters indicate statistically 
significant differences (mixed linear model, adjusted p-value≤0.05). Error bars represent normalised 
mean standard error. Data from three independent experiments. (C) Immunoblot confirming 
expression of proteins in samples of (A) and (B). Ponceau-S staining shows equal sample loading. 
Note that MYC2 transactivation activity does not correlate with high MYC2 protein amounts. SH: 
StrepII-3xHA. 
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2.1.8 EDS1 does not promote other TF classes 

With EDS1 positively regulating MYC2 I wondered if this is specific to MYC2. Therefore I 

tested the effect of EDS1 on PIF4 (PHYTOCHROME INTERACTING FACTOR 4), like 

MYC2 a bHLH TF, which has not been described in EDS1 dependent immune signalling. 

IAA19 is positively regulated by PIF4 and was used as a readout in this assay (Sun et al. 

2013). Surprisingly, EDS1 also promoted PIF4 activity resulting in increased IAA19 levels 

(Figure 2.8A).  

 

 

Figure 2.8 EDS1 promotes PIF4, but not SOC1 or MYB33 transcription activities. 
(A) qRT-PCR analysis of SH-PIF4 co-expressed with YFP, EDS1-flag, PAD4-YFP, or EDS1-flag 
plus PAD4-YFP. IAA19 transcript was measured 14 h after eps protoplast transformation. 
(B) qRT-PCR analysis of SH-SOC1 co-expressed with YFP, EDS1-flag, PAD4-YFP, or EDS1-flag 
plus PAD4-YFP. AP1 transcript was measured 14 h after eps protoplast transformation.  
(C) qRT-PCR analysis of SH-MYB33 co-expressed with YFP, EDS1-flag, PAD4-YFP, or EDS1-
flag plus PAD4-YFP. LFY transcript was measured 14 h after eps protoplast transformation.  
(A-C) Different letters indicate statistically significant differences (mixed linear model, adjusted p-
value≤0.05). Error bars represent normalised mean standard error. Data from three independent 
experiments. 
 
Since PIF4 belongs to the same TF class as MYC2 the EDS1 promotion effect might apply 

to bHLH TFs in general. Therefore I decided to test two other classes of TFs, MADS-box 

TFs and MYB TFs. SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CO 1) is a MADS-

box TF, which leads to AP1 expression, while MYB33 (MYB DOMAIN PROTEIN 33) 

increases LFY expression. Both SOC1 and MYB33 were not promoted by EDS1 indicating 
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specificity of EDS1 promoting activity to certain TFs or to bHLH TFs in general (Figure 

2.8B,C). 

2.1.9 MYC2 protein is elevated in eds1-2 plants  

Besides protoplast assays I wanted to quantify EDS1 dependent MYC2 protein levels in 

planta. MYC2 is regulated by the E3-Ubiquitin ligase PUB10 and was shown to accumulate 

after Pst avrRPS4 infection (Jung et al. 2015, Cui et al. 2016). I used transgenic myc2-3 or 

myc2-3/eds1-2 Arabidopsis lines expressing C-terminally 3xflag tagged MYC2 under its 

native promoter (pMYC2:MYC2-flag). 4-week-old plants were either MOCK treated or 

infected with Pst (basal immunity), Pst avrRPS4 (ETI), or Pst avrRPS4 ∆cor (ETI, no 

COR). To bypass COR dependent effects on stomata aperture I infiltrated bacteria into the 

abaxial leaf side with a needleless syringe. Samples were taken at 24 hpi and protein was 

visualised by immunoblot. In pMYC2:MYC2-flag, myc2-3 background MOCK samples 

accumulated low levels of MYC2, which increased after bacterial treatment, even in the Pst 

avrRPS4 ∆cor sample (Figure 2.9A). In pMYC2:MYC2-flag, myc2-3/eds1-2 background 

MYC2 generally accumulated to higher levels even in MOCK samples with highest levels in 

Pst and Pst avrRPS4 samples. Pst avrRPS4 ∆cor did not induce MYC2 (Figure 2.9A). From 

this data the following can be concluded: i) in pMYC2:MYC2-flag, myc2-3, Pst infection 

increases MYC2 protein which seems to be largely COR independent as Pst avrRPS4 ∆cor 

induced MYC2 levels, too, ii) by removing EDS1 basal (MOCK treated) MYC2 increases, 

iii) in pMYC2:MYC2-flag, myc2/eds1-2 MYC2 levels increase after infection mainly 

because of bacterial COR, as Pst and Pst avrRPS4 strongly induced MYC2, while Pst 

avrRPS4 ∆cor did not. 
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Figure 2.9 MYC2 levels depend on pathogen infection and presence of EDS1. 
(A) MYC2-flag protein accumulation in transgenic pMYC2:MYC2-flag myc2-3 or pMYC2:MYC2-
flag myc2-3/eds1-2 plants at 24 hpi with MOCK, Pst, Pst avrRPS4, or Pst avrRPS4 ∆cor. 4-week-
old plants were infiltrated with bacterial solutions (OD600=0.002) and total protein was extracted for 
immunoblot analysis. Note i) overall increased MYC2 protein levels in myc2-3/eds1-2 plants except 
after Pst avrRPS4 ∆cor treatment ii) induced MYC2 after pathogen treatment except in Pst avrRPS4 
∆cor myc2-3/eds1-2. Ponceau-S staining shows equal sample loading.  Repeated four times with 
similar results. 
(B) To the experimental setup from (A) DMSO or 2 µM MG132 was added to the infiltrated 
solution. MYC2-flag protein was visualized via immunoblot with similar results as in (A). Note how 
MG132 treatment decreased MYC2 stability in myc2-3 plants, but increased MYC2 stability in 
myc2-3/eds1-2 plants. Regardless of genetic background MOCK treated MYC2 levels were not 
changed by MG132. Repeated four times with varying results. One representative replicate is shown. 
 
 

After establishing that MYC2 levels in planta at least partially depend on EDS1 I 

hypothesised that EDS1 might steer 26S proteasome activity to modulate MYC2. MYC2 is 

subject to proteasomal turnover and stabilised by MG132 (Shin et al. 2012). To test this I 

performed the same experiment, this time treating each sample with MOCK or 2 µM 

MG132. A total of 4 experiments showed high variation. Figure 2.9B is exemplary for the 

obtained results. Again, in myc2-3 samples Pst infection increased MYC2 levels, but 

surprisingly MG132 lowered MYC2 levels. In myc2-3/eds1-2 plants MG132 treatment led 
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to MYC2 stabilisation as previously reported. Therefore I conclude that in this setup EDS1 

does influence proteasomal regulation of MYC2 although precise conclusions are difficult. 

 

2.1.10 Summary section 2.1 

Data presented in this section establishes a general regulation of MYC2 protein 

accumulation and MYC2 transactivation activity by EDS1/PAD4. Characterisation of the 

used Arabidopsis protoplast system showed that eps protoplasts respond to the bacterial 

effector avrRPS4 when co-expressed with EDS1 and PAD4, but not by mere overexpression 

of EDS1 with PAD4, or by replacing avrRPS4 with the inactive variant avrRPS4KRVY 

(Figure 2.1B). Further, eps cells initiated JA signalling after COR treatment, indicating 

intact signal mechanisms and JA receptive cells (Figure 2.1C). By measuring protein 

accumulation of transiently expressed MYC2 I could show that PAD4 and SAG101, but not 

EDS1 stabilise MYC2 in protoplasts (Figure 2.2A). Native MYC2 transcript was not affected 

by expression of EDS1 family proteins (Figure 2.2B). The fact that EDS1, but not the 

heterodimer deficient version EDS1LLIF dampens the positive PAD4 effect on MYC2 (Figure 

2.2C) indicates that this is a PAD4 specific function that is counteracted by EDS1. As 

MG132 treatment and use of MYC2s showed no qualitative difference in MYC2 

accumulation (Figure 2.3) it is unlikely that the observed differences are linked to 26S 

proteasome or JAZ activity.  

Transactivation assays showed that relatively low levels of MYC2 in EDS1 samples were 

more active, suggesting that the presence of EDS1 is beneficial for MYC2 activity (Figure 

2.4). This is supported by loss of activation of MYC2s (Figure 2.5A,B). This lost promotion 

is not caused by lost interaction between EDS1 and MYC2s although interaction was weaker 

than with MYC2WT (Figure 2.6). Further, the immune status of the cell seems to influence 

EDS1 in its ability to modify MYC2 activity since addition of avrRPS4 abolished MYC2 

promotion (Figure 2.7A,B). The function of avrRPS4 in this context is EDS1/PAD4 

heterodimer independent, because eps protoplasts transformed with EDS1 or PAD4 alone 

showed similar results as protoplasts transformed with EDS1 and PAD4. 

I further show that EDS1 can promote another bHLH TF, PIF4, suggesting that EDS1 might 

act TF class specifically (Figure 2.8A). This is supported by the fact that SOC1 and MYB33, 

a MADS-box and a MYB TF, respectively, were not promoted by EDS1 (Figure 2.8B,C).  
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In planta infection assays using transgenic myc2-3 or myc2-3/eds1-2 lines expressing 

pMYC2:MYC2-flag showed elevated MYC2 accumulation in MOCK treated myc2-3/eds1-2 

plants (Figure 2.9A). This seems contradictory to the promotion on transactivation activity, 

yet as I have shown previously, protein amount and protein activity do not always correlate 

(Figure 2.2, 2.4, 2.5, 2.7). Infection with Pst or Pst avrRPS4 induced MYC2 which was 

stronger in myc2-3/eds1-2 background (Figure 2.9A). Surprisingly, Pst avrRPS4 ∆cor in 

myc2-3 induced MYC2 even stronger, while in myc2-3/eds1-2 the lack of COR was 

mirrored by low MYC2 levels. Adding the proteasome inhibitor MG132 generally had 

opposing effects. It reduced MYC2 accumulation in myc2-3 background, but stabilised 

MYC2 in myc2-3/eds1-2 plants (Figure 2.9B). 

By unravelling a general role of EDS1 family members in MYC2 regulation the question 

arises how this takes place mechanistically and what the biological significance is.  
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2.2 Exploring mechanistic regulation of MYC2 by EDS1 
Section 2.1 established a general regulatory link between EDS1/PAD4 and MYC2. The 

nature of this regulation depends likely on the immune status of the cell (unchallenged, 

basal, ETI), developmental stage, and time. While it is challenging to find the “right” setting 

to observe the specific regulation in the respective context, some basic regulatory features 

can be identified and tested. In this section I address three major ways of MYC2 regulation 

and test whether EDS1/PAD4 alter them. These include MYC2 homodimerisation, JAZ 

repression, and MYC2 post-translational modifications. 

2.2.1 EDS1 does not change MYC2 dimerisation properties 

For correct function MYC2 needs to dimerise and bind DNA. Given the positive effect 

EDS1 had on MYC2 transactivation activity (see Figure 2.4) I hypothesised that EDS1 

might influence MYC2 dimerisation. I tested this by co-expressing SH-MYC2 with MYC2-

flag in Arabidopsis eps protoplasts with YFP, EDS1-YFP, or EDS1-YFP, PAD4-YFP with 

avrRPS4-HA. The latter sample tells whether simulated ETI would affect MYC2 

dimerisation. MYC2-flag co-IPed SH-MYC2 in all samples showing clear 

homodimerisation regardless of presence or absence of EDS1 or ETI signalling (Figure 

2.10). Therefore I conclude that MYC2 dimerisation properties are not affected by EDS1 

and are irrelevant for the observed regulation of MYC2 protein and its activity. 

 
Figure 2.10 EDS1 does not interfere with MYC2 
homodimerisation. 
Co-IP analysis of MYC2-flag with SH-MYC2, with 
or without co-expressed EDS1-YFP, PAD4-YFP, 
avrRPS4-HA or SH-YFP. IP with flag beads 14 h 
after transformation of eps protoplasts. SH-YFP 
served as control. Asterisk indicates low avrRPS4 
expression in input sample. SH: StrepII-3xHA. 
Ponceau-S staining shows equal sample loading. 
Performed twice with similar results. 
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2.2.2 EDS1 does not interact with JAZ9 or JAZ10 

MYC2 activity is restricted by JAZ repressor proteins. Unpublished data from our 

collaborator Alain Goossens (VIB, Ghent, BE) indicated interaction between EDS1 and the 

majority of JAZ proteins, including JAZ9 and JAZ10, in Y2H (yeast-two-hybrid) assays 

(personal communication). To answer whether EDS1 interacts with JAZ proteins in 

Arabidopsis I co-expressed EDS1-flag with JAZ9-YFP or JAZ10-YFP. EDS1 did not IP 

JAZ9 or JAZ10, but strongly co-IPed PAD4 serving as positive control and giving context 

of interaction strength (Figure 2.11). Changing tags, the position of tags (N-terminal vs. C-

terminal), or direction of IP had no effect on this (data not shown). Since I test only two JAZ 

members here, I cannot rule out that EDS1 interacts with other JAZ proteins.  

 
Figure 2.11 EDS1 does not interact with JAZ9 or JAZ10. 
Co-IP analysis of EDS1-flag co-expressed with JAZ9-YFP, JAZ10-YFP, or PAD4-YFP. IP with 
flag-beads 14 h after transformation of eps protoplasts. GUS-flag served as control. EDS1 does not 
co-IP JAZ9 or JAZ10, but strongly binds to PAD4. Ponceau-S staining shows equal sample loading. 
SH: StrepII-3xHA. Performed thrice with similar results. 
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2.2.3 EDS1 does not change MYC2 ubiquitination 

MYC2 is a master TF in JA signalling and has been studied extensively (Kazan et al. 2013). 

This is why numerous post-translational modifications have been discovered. Most well 

understood is the ubiquitin dependent proteasomal turnover by the 26S proteasome. 

Phosphorylation of MYC2T328 is necessary for maintaining MYC2 turnover and 

transactivation activity (Zhai et al. 2013) while the E3 ligase PUB10 polyubiquitinates 

MYC2 (Jung et al. 2015). The observed EDS1 promotion effect on MYC2 might be caused 

by high protein turnover ensuring a pool of active MYC2. To test whether altered MYC2 

ubiquitination levels supported this I co-expressed MYC2-flag with YFP or EDS1-YFP in 

Arabidopsis eps cells. Samples with 10 µM MG132 or with GUS-flag instead of MYC2-flag 

served as controls. I performed flag IP to enrich protein and visualised ubiquitination in 

input and IP samples with a commercially available primary anti-ubiquitin antibody (see 

section 4.1.5 in Materials).  

         
Figure 2.12 EDS1 does not affect MYC2 ubiquitination. 
Immunoblot analysis of MYC2-flag expressed in eps protoplasts with or without EDS1-YFP and 10 
µM MG132. YFP and GUS-flag served as controls. Protein was extracted 15 h after transformation 
and detected by anti-ubiquitin antibody. Note how MG132 treatment increases overall ubiquitination, 
but EDS1 does not change the MYC2 specific ubiquitination pattern. Ponceau-S staining shows 
equal sample loading. Performed thrice with similar results. 



Results 

 
 34 

MG132 stabilised ubiquitination on MYC2, but I did not observe EDS1 dependent changes 

in the ubiquitination pattern (Figure 2.12).  

While it is still possible that EDS1 affects ubiquitination of certain MYC2 residues only, I 

conclude that EDS1 does not change the overall MYC2 ubiquitination profile. 

2.2.4 MYC2 is phosphorylated in an EDS1 dependent manner 

Analysing my immunoblots of MYC2 I observed a weak second band at higher molecular 

weight (see Figure 2.2C, 2.3, 2.6). Given published information (Durek et al. 2010, Zhai et 

al. 2013, Sethi et al. 2014) I hypothesised this to be phosphorylated MYC2. To confirm this 

I co-expressed SH-MYC2 with YFP or PAD4-YFP in eps protoplasts and treated the 

extracted protein with lambda protein phosphatase (λ-PP) or phosphatase inhibitors (P-stop). 

I chose to test MYC2 in presence of PAD4 because PAD4 stabilises MYC2 protein 

simplifying protein detection. Separating the protein via regular SDS-PAGE was sufficient 

to resolve the slight migration changes caused by phosphorylation. Addition of λ-PP 

reduced the second band and caused the overall protein to run at lower molecular weight, 

indicating lost phosphorylation (Figure 2.13A). Addition of P-stop had the opposite effect 

(Figure 2.13A). This shows that MYC2 is phosphorylated in Arabidopsis eps protoplasts and 

that separation via regular SDS-PAGE is sufficient for resolving phosphorylation dependent 

migration patterns. 
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Figure 2.13 MYC2 is phosphorylated in eps protoplasts and transgenic plants. 
(A) MYC2 phosphorylation assay of SH-MYC2 expressed in eps protoplasts for 14 h. Protein was 
separated and visualised by standard immunoblot analysis. PAD4-YFP was co-expressed to increase 
MYC2 accumulation. Note how λ-PP treatment decreases molecular weight. Asterisks indicate 
additional band of phosphorylated MYC2. λ-PP: lambda protein phosphatase; P-stop: phosphatase 
stop.  
(B) MYC2 protein accumulation in transgenic pMYC2:MYC2-flag myc2-3 or pMYC2:MYC2-flag 
myc2-3/eds1-2 plants at 24 hpi with MOCK, Pst, Pst avrRPS4, or Pst avrRPS4 ∆cor. 4-week-old 
plants were infiltrated with bacterial solutions (OD600=0.002) and total protein was extracted, treated 
with or without λ-PP and used for immunoblot analysis. Neither infection, nor genotype (myc2-3 vs. 
myc2-3/eds1-2) affected the observed MYC2 phosphorylation. 
(A,B) Ponceau-S staining shows equal sample loading. Performed thrice with similar results. 
 
 

To connect MYC2 phosphorylation to EDS1 function I extracted MYC2 protein from 

pMYC2:MYC2-flag myc2-3 or myc2-3/eds1-2 plants infiltrated with MOCK, Pst, Pst 

avrRPS4, or Pst avrRPS4 ∆cor (OD600=0.002, 24 hpi). Protein was then split in a λ-PP 

treated and a non-treated fraction. I hypothesised that MYC2 phosphorylation would either 

depend on immune status of the plant, or presence/absence of EDS1. Again, λ-PP treatment 

caused the overall protein to run lower, but this was observed in all treatments (MOCK and 
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infection) and therefore not immunity related (Figure 2.13B). Further this seems to be 

independent of EDS1, as phosphorylation patterns were identical between myc2-3 and myc2-

3/eds1 plants (Figure 2.13B). I therefore conclude that overall MYC2 phosphorylation is 

independent of pathogen infection and/or EDS1.  

2.2.5 Mass spectrometry reveals EDS1 dependent phosphorylation of 
MYC2S123 

Testing global protein phosphorylation via SDS-PAGE is rather crude and modifications on 

single residues are easily missed or cannot be mapped. To investigate the role of EDS1 on 

MYC2 phosphorylation in more detail I designed an IP-nLC-MS/MS experiment. My goal 

was to create an EDS1 dependent in planta phosphorylation profile of MYC2 in pathogen 

challenged and unchallenged conditions. The experimental setup can be seen in Figure 

2.14A. pMYC2:MYC2-flag plants with (myc2-3) or without EDS1 (myc2-3/eds1-2) were 

either MOCK or Pst avrRPS4 (OD600=0.1, 6 hpi) treated followed by protein extraction, 

MYC2-flag IP, purification, digestion, and nLC-MS/MS phospho-analysis. I chose a high 

bacterial load to ensure rapid and strong initiation of ETI and harvested samples 6 hpi in the 

hope to catch early, transient changes of MYC2 status. For feasibility, I focused on 

comparing MOCK and Pst avrRPS4, omitting Pst and Pst avrRPS4 ∆cor. ETI was induced 

in harvested samples as shown by EDS1 and PBS3 induction in pMYC2:MYC2-flag myc2-3 

leaves (Figure 2.14B). Protein digestion, handling of mass spectrometer, and data analysis 

was performed by our MPIPZ core facility. Analysis showed a MYC2 sequence coverage of 

47.2 % consisting of 22 unique peptides. Within the identified peptides, one amino acid was 

phosphorylated in an EDS1 dependent, but infection independent manner. MYC2S123 

(hereinafter S123) was phosphorylated in both MOCK and Pst avrRPS4 treated samples 

lacking EDS1 (for analytical details see section 4.2.3.6 in Methods) but was not 

phosphorylated in presence of EDS1. This suggests that EDS1 either removes, or prevents 

S123 phosphorylation. Upstream of S123 are two more serines, S121 and S122, that were 

also identified to be phosphorylated, although with a lower probability (Figure 2.14C). 

Interestingly, S123 lies in the JID (JAZ interaction domain) of MYC2 and is therefore an 

interesting candidate for EDS1 regulation on MYC2 via JAZ proteins (Figure 2.14D). If 

S123 had a crucial role in mediating the MYC2-JAZ regulation it should be phylogenetically 

conserved. To address this I aligned MYC2 protein sequences ranging from monocot species 

(e.g. Zea mays), to solanaceous species (e.g. Solanum lycopersicum), to Brassicaceae (e.g. 
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Arabidopsis thaliana). S123 was conserved in 5 out of 9 tested species, suggesting an 

important role across many, but not all tested plant species (Figure 2.14E). 

 

 
 

Figure 2.14 MYC2S123 is phosphorylated EDS1 dependently. 
(A) Scheme of IP-nLC-MS/MS experimental setup. 4-week-old transgenic pMYC2:MYC2-flag 
myc2-3 or pMYC2:MYC2-flag myc2-3/eds1-2 plants were infiltrated with MOCK or Pst avrRPS4 
(OD600 = 0.1) and samples were taken 6 hpi. After flag IP and washing, protein extracts were trypsin 
digested and analysed for MYC2 phosphorylation by nLC-MS/MS. Three replicates from the same 
experiment were analysed, showing similar results. 
(B) qRT-PCR analysis of EDS1 and PBS3 showing activation of immune signalling in sampled 
tissue. Statistical analysis with mixed linear model, * = adjusted p-value≤0.01, *** = adjusted p-
value≤0.001. Error bars represent normalised mean standard error.  
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(C) Identified MYC2 peptide with EDS1 dependent phosphorylation pattern. S123 was 
phosphorylated only in absence of EDS1. Pst avrRPS4 treatment did not have an effect. S121 and 
S122 were identified to be phosphorylated, too, but with a lower probability (for detailed cut-offs, 
FDR, and data analysis please see section 4.2.3.6 in Methods). Three replicates from the same 
experiment were analysed, showing similar results. 
(D) Scheme of MYC2 protein domains. S123 lies in the JID. JID: JAZ interaction domain, TAD: 
transactivation domain, bHLH: DNA binding domain. Numbers indicate amino acid position. 
(E) Phylogenetic conversation of AtMYC2S123 (highlighted box) in various species including 
Poaceae (monocots), Solanaceae and Brassicaceae (both dicots). 
 

2.2.6 MYC2S123A/D retain interaction with EDS1 family proteins and 
JAZ9/10 

With S123 lying in the JID and being partly conserved I decided to mutate this serine to 

phospho-mimic aspartate (D) or phospho-dead alanine (A) (Thorsness et al. 1987, Chen et 

al. 2015) and test putative functional implications.  

I generated SH-MYC2S123A and SH-MYC2S123D variants. An approach to mutate S121, 

S122, and S123 altogether did not succeed (for discussion of this see section 3.2.3). First, I 

tested whether MYC2S123A/D retained interaction with EDS1 family proteins in eps 

protoplasts. Both SH-MYC2S123A and SH-MYC2S123D showed similar interaction like SH-

MYC2WT with strong interaction with PAD4-YFP and weak interaction with EDS1-YFP, 

SAG101-YFP or EDS1-flag/PAD4-YFP heterodimer (Figure 2.15, compare to (Cui et al. 

2018)). Thus, changing S123 to alanine or aspartate does not affect MYC2 interaction with 

EDS1 family proteins. 
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Figure 2.15 MYC2S123A and MYC2S123D retain interaction with EDS1 family proteins. 
Co-IP analysis of SH-MYC2S123A or SH-MYC2S123D with EDS1-YFP, PAD4-YFP, SAG101-YFP, or 
PAD4-YFP plus EDS1-flag. Proteins were transiently expressed in eps protoplasts, harvested 14 h 
after transformation, and IPed using GFP-trap beads. YFP served as control. Interaction resembles 
MYC2WT (Cui et al. 2018). SH: StrepII-3xHA. Ponceau-S staining shows equal sample loading. 
Performed twice with similar results. 
 

Given that S123 lies in the JID I decided to test MYC2S123A/D interaction with JAZ proteins. 

As before I tested two JAZ members for MYC2 interaction, JAZ9 and JAZ10. Like SH-

MYC2WT, SH-MYC2S123A and SH-MYC2S123D were co-IPed by JAZ9-YFP and JAZ10-

YFP, respectively (Figure 2.16). Therefore the S123A/D mutation does not affect MYC2 

binding to JAZ9 or JAZ10, but could interfere with interaction of other JAZ proteins. 
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Figure 2.16 MYC2S123A and MYC2S123D retain interaction with JAZ9 and JAZ10. 
Co-IP analysis of SH-MYC2, SH-MYC2S123A, or SH-MYC2S123D with JAZ9-YFP or JAZ10-YFP. 
Proteins were transiently expressed in eps protoplasts, harvested 14 h after transformation, and IPed 
using GFP-trap beads. YFP served as control. Like MYC2WT, MYC2S123A and MYC2S123D interact 
with JAZ9 and JAZ10. SH: StrepII-3xHA. Ponceau-S staining shows equal sample loading. 
Performed twice with similar results. 
 

2.2.7 MYC2S123A/D transactivation activity is changed 

With protein-protein interactions unchanged I investigated whether MYC2S123A/D 

transactivation activity was still enhanced by EDS1. I transformed eps protoplasts with SH-

MYC2WT, SH-MYC2S123A, or SH-MYC2S123D and checked LOX3 and VSP1 transcript. 

MYC2WT replicated the earlier observation of EDS1 promoting MYC2 outputs (Figure 

2.17A,B). The same was true for MYC2S123D (Figure 2.17A,B). Interestingly, EDS1 did not 

promote MYC2S123A activity in the VSP1 branch, but showed MYC2WT like expression in 

the LOX3 branch (Figure 2.17A,B). LOX3 expression levels in YFP plus MYC2WT, 

MYC2S123A, and MYC2S123D were similar, but for VSP1 YFP plus MYC2S123A samples 

showed elevated VSP1 levels even in YFP co-expressed samples (Figure 2.17A,B). This 

suggests a higher basal activity of MYC2S123A and might explain why EDS1 does not 

promote its activity further. This data indicates that LOX3 and VSP1 are differentially 

affected by S123A/D mutation, possibly because of different MYC2 signalling branches. 
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Again, I verified correct protein expression to exclude that the observed effects are caused 

by lack of protein (Figure 2.17C). 

 
Figure 2.17 EDS1 does not promote the VSP1 branch of MYC2S123A. 
MYC2 transactivation activity assay via qRT-PCR. SH-MYC2WT (grey bars), SH-MYC2S123A (blue 
bars), or SH-MYC2S123D (green bars) was expressed with YFP, EDS1-flag, PAD4-YFP, or EDS1-
flag plus PAD4-YFP and LOX3 (A), or VSP1 (B) transcript was measured 14 h after eps protoplast 
transformation. Different letters indicate statistically significant differences (mixed linear model, 
adjusted p-value≤0.05). Error bars represent normalised mean standard error. (C) Immunoblot 
confirming expression of proteins in samples of (A,B). Ponceau-S staining shows equal sample 
loading. SH: StrepII-3xHA. Data from three independent experiments. 
 

2.2.8 The protein kinase EDR1 interacts with MYC2 

The fact that EDS1 prevents S123 phosphorylation suggests the involvement of protein 

kinases or phosphatases. Y2H data from Roger Innes’ group indicated interaction of the 

protein kinase EDR1 (ENHANCED DISEASE RESISTANCE 1) with EDS1 and PAD4 as 

well as with MYC2 (personal communication). I decided to verify these observations in our 

Arabidopsis protoplast system. I used eps protoplasts to co-express YFP-EDR1 and SH-
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MYC2 with or without EDS1-flag/PAD4-flag and with or without avrRPS4-HA. These 

combinations cover basal and immune activated cell states and address whether MYC2-

EDR1 interaction relies on activated immune signalling or not. Regardless of presence of 

EDS1-flag/PAD4-flag or avrRPS4-HA, YFP-EDR1 co-IPed SH-MYC2 (Figure 2.18), 

confirming previous results from the Innes group. Therefore, the MYC2-EDR1 interaction is 

independent of EDS1/PAD4 presence and EDS1/PAD4 heterodimer activity. 

 

     
Figure 2.18 MYC2 interacts with EDR1. 
Co-IP analysis of SH-MYC2 with YFP-EDR1 with or without EDS1-flag, PAD4-flag, and avrRPS4-
HA. SH-PIF4 served as control. Proteins were transiently expressed in eps protoplasts, harvested 14 
h after transformation and IPed using GFP-trap beads. Asterisks indicate MYC2 bands with lower 
molecular weight. Note: the PIF4 negative control seems contaminated here. In two additional, 
independent experiments this was not the case. However, in those replicates I did not observe the 
shifted MYC2 band when co-expressed with EDS1/PAD4. In total this experiment was performed 
thrice and showed consistently binding of EDR1 to MYC2. SH: StrepII-3xHA. Ponceau-S staining 
shows equal sample loading.  
 

2.2.9 EDR1 interacts with PAD4, but not EDS1 

To probe the relationship between MYC2, EDR1, and EDS1/PAD4 further I decided to test 

interaction of YFP-EDR1 with EDS1-YFP and with PAD4-YFP, respectively. Again, I co-

expressed avrRPS4-HA to address putative differences in basal vs. ETI conditions. GFP IP 
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shows that SH-EDR1 is co-IPed by PAD4-YFP in presence or absence of avrRPS4-HA, but 

not by EDS1-YFP (Figure 2.19A). The same is true for reciprocal GFP IP, where YFP-

EDR1 co-IPed PAD4-flag, but not EDS1-flag (Figure 2.19B). However, none of the samples 

contains EDS1 plus PAD4 meaning that avrRPS4 would not trigger EDS1/PAD4 

heterodimer dependent ETI.  

 
Figure 2.19 EDR1 interacts with PAD4, but not with EDS1. 
(A) Co-IP analysis of SH-EDR1 with EDS1-YFP or PAD4-YFP, with or without avrRPS4-HA. 
Proteins were transiently expressed in eps protoplasts, harvested 14 h after transformation, and IPed 
using GFP-trap beads. SH: StrepII-3xHA. Ponceau-S staining shows equal sample loading. 
Performed three times with similar results. 
(B) Reciprocal GFP-IP with EDR1-YFP, EDS1-flag, PAD4-flag, and avrRPS4-HA. 
 

2.2.10 Overall MYC2 phosphorylation is independent of EDS1 or PAD4 
and EDR1 

With EDS1 not interacting with EDR1 a functional connection seems unlikely. However, 

PAD4 might act as a scaffolding protein that brings EDS1 and EDR1 in close proximity that 

could allow functional interaction. Next, I wanted to test the effect of EDS1/PAD4 on 

MYC2 phosphorylation in more detail. For this, I co-expressed SH-MYC2 with YFP-EDR1 

alone, with EDS1-flag, with PAD4-flag, with EDS1-flag/PAD4-flag, with EDS1LLIF-flag, or 

with EDS1LLIF-flag/PAD4-flag. SH-SOC1 served as control. After GFP IP, samples were 

split in two fractions, treated with λ-PP or MOCK, and separated via SDS-PAGE. MYC2 

co-IPed in all samples with EDR1. λ-PP treatment decreased MYC2 molecular weight as 

seen previously (Figure 2.20A), but this was independent of any EDS1-PAD4 combination. 
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In conclusion, EDS1 and PAD4 do not alter overall MYC2 phosphorylation in an EDR1 

dependent manner in Arabidopsis protoplasts. Remarkably, here EDR1 did not interact with 

EDS1 or PAD4, which suggests MYC2 out-competing EDS1 and PAD4 for EDR1 binding. 

 

    
Figure 2.20 Overall MYC2 phosphorylation does not depend on EDR1 or EDS1 family 
proteins. 
(A) Co-IP analysis of SH-MYC2 and YFP-EDR1 with or without EDS1-flag, PAD4-flag, or 
EDS1LLIF-flag. SH-SOC1 served as control. Proteins were transiently expressed in eps protoplasts, 
harvested 14 h after transformation and IPed using GFP-trap beads. Beads were treated with λ-PP 
which resulted in lower MYC2 molecular weight. Co-expressing EDS1-family proteins did not affect 
this. SH: StrepII-3xHA. Ponceau-S staining shows equal sample loading. Performed three times with 
similar results.  
(B) Identical experiment as 2.13A, but in edr1 protoplasts. MYC2 phosphorylation in edr1 and eps 
protoplasts is identical. Performed twice with similar results. 
 
Figure 2.13A shows clear phosphorylation of MYC2 when expressed in eps protoplasts. If 

this phosphorylation was EDR1 dependent it should be lost in edr1 protoplasts. Therefore I 
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repeated the experiment shown in Figure 2.13A using edr1 protoplasts and tested SH-MYC2 

phosphorylation in presence of YFP or PAD4-YFP and treated with λ-PP or P-stop. MYC2 

phosphorylation was not affected by the edr1 mutation indicating that the overall changes of 

MYC2 phosphorylation seen on SDS gels are not EDR1 dependent (Figure 2.20B). 

Consequently, it is unlikely that EDS1 (and PAD4) regulate MYC2 phosphorylation via 

EDR1. While this holds true for overall MYC2 phosphorylation, it is still possible that 

EDR1 acts on specific MYC2 residues only and that this is regulated by EDS1.  

 

2.2.11 Phospho-regulatory proteins are mis-expressed in eds1-2 
plants 

EDR1 was an interesting candidate to test as it is a protein kinase reported to be a negative 

regulator of immunity that interacts with MYC2 and PAD4. However, EDS1 might target 

any other kinase, phosphatase or immunity-related gene that would lead to altered MYC2 

phosphorylation. For further insights I made use of an available RNA-seq (RNA-

sequencing) dataset described by our group earlier (Bhandari et al. 2019). I analysed RNA-

seq data from Arabidopsis WT and eds1-2 plants focussing on genes linked to 

phosphorylation or immunity. For statistical analysis a cut-off of |log2 FC| ≥1, and a 

FDR≤0.05 was used. Transcript of genes of interest like MYC2, EDR1, FER (FERONIA, see 

section 3.2.6 in discussion), MKK6, MPK3/6, BIK1, CNI1 was unchanged. Genes repressed 

by EDS1 (transcript up in eds1-2) include MAPKKK13, 15, 17, GSO1, JAZ9, and JAZ10 

although the latter two were not statistically significantly changed. Genes promoted by 

EDS1 (transcript down in eds1-2) include MKK4, MPK11, SERK4, WAK3, CRK7, CRK36, 

PBS3 and PYL6 (Figure 2.21).  
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Figure 2.21 Numerous phosphorylation-related proteins are mis-regulated in eds1-2 plants. 
RNA-seq data analysis of WT (Col-0) and eds1-2 plants showing genes related to immunity and/or 
protein phosphorylation. Asterisks indicate genes passing filtering with a |log2 FC| ≥1, FDR≤0.05 
cut-off. 
 
While this list by no means is exhaustive, it does show that the transcript of numerous genes 

that are linked to protein phosphorylation or immunity is regulated by EDS1 and provides 

potential new candidates for further studies. 

 

2.2.12 Summary section 2.2 

The EDS1 dependent regulation of MYC2 transactivation activity shown in section 2.1 

could be explained by various mechanisms. In this section I have demonstrated that EDS1 

regulates MYC2 most likely via MYC2 phosphorylation, but not via MYC2 dimerisation 

(Figure 2.10) or MYC2 ubiquitination (Figure 2.12). To what extent JAZ proteins and 26S 

proteasome are involved needs further investigation. 

MYC2 is known to be phosphorylated in planta (Heazlewood et al. 2008, Zhai et al. 2013, 

Sethi et al. 2014) and I observed phosphorylation of transiently expressed MYC2 in 

Arabidopsis protoplasts (Figure 2.13A, 2.20) as well as in plants treated with MOCK or Pst 

(Figure 2.13B). Mass spectrometry identified MYC2S123 to be phosphorylated in an EDS1 

dependent manner, indicating direct or indirect regulation of S123 phosphorylation status by 
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EDS1 (Figure 2.14). This is of interest since S123 is positioned in the JID of MYC2 and is 

partly conserved (Figure 2.14). Mutation of S123 to phospho-mimic aspartate (D) or 

phospho-dead alanine (A) did not affect MYC2 interaction with EDS1 or PAD4 (Figure 

2.15), or with JAZ9 or JAZ10 (Figure 2.16).  

Testing the ability of EDS1 to promote MYC2S123A/D transactivation activity, I found that 

MYC2S123A/D was behaving like MYC2WT when testing LOX3 levels (Figure 2.17A). 

Regarding VSP1, EDS1 enhanced MYC2S123D transactivation activity, but not MYC2S123A 

transactivation activity (Figure 2.17B). This suggests phospho-dependent, EDS1-dependent 

MYC2 regulation via S123 that might differ between distinct MYC2 signalling branches.  

S123 being phosphorylated in the absence of EDS1 could be explained by EDS1 inhibiting a 

kinase or promoting a phosphatase. I demonstrate that PAD4, but not EDS1 binds the 

protein kinase EDR1 (Figure 2.19) and that EDR1 does bind MYC2 (Figure 2.18). These 

interactions are independent of avrRPS4, i.e. independent of the cell’s immune status. 

However, I could not connect overall MYC2 phosphorylation to be regulated by EDR1. 

Also, my data do not suggest EDS1 (or PAD4) regulating EDR1 kinase activity (Figure 

2.20A). The fact that overall MYC2 phosphorylation is unchanged in eps and edr1 

protoplasts (compare Figure2.13A and 2.20B) suggests that EDR1 does not affect the 

MYC2 phosphorylation pattern, but it is still feasible that EDS1 regulates EDR1 in order to 

control single residues like S123. 

Comparing WT and eds1-2 RNA-seq data allows to screen for genes of interest like kinases, 

phosphatases, or genes related to the 26S proteasome machinery or in general plant 

immunity in order to provide new potential candidates to test. Interesting candidates include 

FER, MKK4/11, MPK3/6, MAPKKK13/15/17, CDPK1, SERK4, WAK3, PYL6 and others 

(Figure 2.21). 
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3 Discussion 

EDS1 and its interaction partners PAD4 and SAG101 are crucial proteins in plant immunity. 

Roles for EDS1 have been described in basal and TNL triggered immunity (Falk et al. 1999, 

Feys et al. 2001, Wiermer et al. 2005, Rietz et al. 2011). In context of TNL signalling EDS1 

functions as a decision-making node, triggering SA dependent and independent pathways 

(Wiermer et al. 2005, Venugopal et al. 2009, Cui et al. 2016). While eds1 or pad4/sag101 

plants are unable to transduce TNL signalling, many (but not all) CNLs act EDS1 

independently (Wiermer et al. 2005, Xiao et al. 2005, Day et al. 2006, Bhandari et al. 2019). 

Why this is and if EDS1/PAD4 phylogenetic conservation across seed plants is important 

remains elusive. EDS1 interacts with various TNLs such as RPS4, RPS6, and SNC1 

(Bhattacharjee et al. 2011), VICTR (Kim et al. 2012) and the effector protein avrRPS4 

(Bhattacharjee et al. 2011, Huh et al. 2017) suggesting that EDS1 serves as a junction for 

further immune signalling. With its central role the EDS1/PAD4 node represents a 

worthwhile target for effectors in order to overcome plant immunity. Despite its importance, 

our understanding of EDS1 molecular function remains scarce. 

Recently, our group employed a forward genetic screen in Arabidopsis to find components 

that are repressed by TNL-activated EDS1. To this end, EMS (ethane-methyl sulfonate)-

mutagenised eds1-2 plants were infected with Pst avrRPS4 and screened for restored 

resistance. From ~650000 M2 plants, 12 independent mutations in COI1 were found. COI1 

encodes a F-box protein that binds active JA-Ile or COR and initiates JA signalling (Sheard 

et al. 2010). Further analysis showed that COI1 is required for COR dependent virulence of 

Pst avrRPS4 and that TNL-activated EDS1 represses JA signalling. Bacterial growth was 

similar in eds1-2/myc2-3, and eds1-2/coi1-41 plants, being intermediate between WT and 

eds1-2. This indicates that EDS1 represses COR induced bacterial virulence mainly by 

repressing the MYC2 branch of JA signalling. These experiments reveal a new intersection 

between ETI and JA signalling with ETI-activated EDS1 repressing MYC2 activity (Cui et 

al. 2018). 

With MYC2 being a promising candidate to gain insights about the molecular function of 

EDS1, I decided to interrogate the relationship between EDS1 and MYC2 further. My aim 

for this thesis was to i) probe the effect of EDS1 family proteins on MYC2 accumulation 

and activity in non-triggered conditions, and to ii) find a mechanistic basis for EDS1 
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regulation of MYC2 activity. In the following section I will summarise my results, discuss 

their functional implications and their shortcomings, and put them in context of current 

literature. In the last paragraph I will discuss future experiments. 

 

3.1 Impact of EDS1 family proteins on MYC2 abundance and 
transactivation activity 

EDS1 represses the MYC2 branch of JA signalling during Pst avrRPS4 infection, but not in 

non-infected conditions (Cui et al. 2018). However, all EDS1 family members interact with 

MYC2 in basal, i.e. non-infected conditions (Cui et al. 2018). While it is reasonable that an 

external trigger like avrRPS4 initiates EDS1 repression on MYC2, two observations are 

striking. First, the aforementioned interaction of EDS1, PAD4, and SAG101 with MYC2 in 

basal conditions and second, the difference in protein accumulation and the seemingly 

different interaction strength with strong interaction between MYC2 and PAD4 or SAG101 

and weak interaction with EDS1 (Cui et al. 2018). If EDS1-MYC2 interaction is necessary 

and sufficient for EDS1 repression of MYC2 signalling remains unknown. 

3.1.1 PAD4 and SAG101 stabilise MYC2 protein levels 

To get a basic understanding of the EDS1-MYC2 relationship I co-expressed MYC2 with 

each one of the EDS1 family proteins in Arabidopsis eps protoplasts. Interestingly, MYC2 

protein was stabilised by PAD4 and SAG101, but not by EDS1 (Figure 2.2A). This cannot 

be explained by elevated MYC2 transcript levels, as native MYC2 transcript was not affected 

by expression of EDS1 family proteins (Figure 2.2B). Further tests showed that formation of 

the EDS1/PAD4 heterodimer abolishes the PAD4 stabilising effect on MYC2 (Figure 2.2C). 

This data indicates that PAD4 (and SAG101) regulate MYC2 post-translationally. This was 

not changed by addition of avrRPS4, which induces ETI-like signalling when co-expressed 

with EDS1 and PAD4 (Figure 2.1B), and is therefore independent of the cells immune status 

in this transient assay (Figure 2.2C). Higher MYC2 accumulation in presence of PAD4 

would explain the apparent stronger interaction observed by Cui et al. (2018). Noteworthy, 

PAD4 or SAG101 did not bind MYC2 in Y2H assays, indicating indirect interaction of these 

proteins (Cui et al. 2018). An interesting aspect is that EDS1, PAD4, and SAG101 interact 

with MYC2 in their monomeric, i.e. non-EDS1/PAD4 or EDS1-SAG101 heterodimer form 

(Cui et al. 2018) and here I show monomer specific effects on MYC2 protein accumulation 

(Figure 2.2A) and MYC2 transactivation activity (Figure 2.4, 2.5). So far, we know very 
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little about the function of EDS1 family proteins as monomers. Overexpression of either 

EDS1 or PAD4 does not lead to autoimmunity or defence priming, while constitutive 

expression of EDS1 with PAD4 does cause autoimmunity (Cui et al. 2016). For PAD4, 

numerous studies reported an EDS1 independent function in resistance signalling against 

green peach aphid (GPA). Detailed analysis showed that PAD4 is necessary and sufficient 

for proper resistance to GPA (Pegadaraju et al. 2005, Pegadaraju et al. 2007, Louis et al. 

2012). Recent work in our group further showed that PAD4LLD, an EDS1 non-interacting 

mutant, is fully functional in GPA resistance signalling, while being defective in ETI 

signalling (Dongus, J., personal communication). Thus, PAD4 acts distinctly different in 

resistance to GPA compared to ETI. EDS1 and PAD4 are best characterised in the context 

of ETI, where they act as a heterodimer and heterodimerisation-deficient mutants like 

EDS1LLIF are non-functional during ETI (Feys et al. 2001, Wagner et al. 2013). Further, 

PAD4 did not stabilise MYC2 in presence of EDS1 (Figure 2.2C), indicating different 

functions of PAD4 and EDS1/PAD4 in context of MYC2 protein accumulation. 

3.1.2 PAD4 specific MYC2 stabilisation is independent of proteasomal 
activity and JAZ repression 

PAD4 could stabilise MYC2 by different means. Among other things, it could protect 

MYC2 from protein turnover by the 26S proteasome, or by releasing it from JAZ 

suppression. Proteasomal turnover of MYC2 had been observed before (Shin et al. 2012, 

Zhai et al. 2013) and had been confirmed by Jung et al. (2015) showing PUB10 dependent 

polyubiquitination and subsequent degradation of MYC2. Since neither MG132 treatment, 

nor use of the JAZ repressor uncoupled MYC2 variant MYC2s (Goossens et al. 2015) 

showed qualitative difference in MYC2 stabilisation by PAD4 (Figure 2.3), I concluded that 

the observed differences in MYC2 accumulation have another cause. 

3.1.3 EDS1 promotes MYC2 transactivation activity  

While protein accumulation can be informative about a protein’s function, protein amount 

and protein activity are not necessarily correlated (Lipford et al. 2005, Collins et al. 2006, 

Spoel et al. 2009). To understand the functional relevance of stabilised MYC2 by PAD4, I 

employed a qRT-PCR based transactivation activity assay. To my surprise, this assay 

showed that MYC2 activity, measured by relative expression of MYC2 target genes LOX3, 

VSP1, and ORA59, was promoted by EDS1, but not by PAD4, or by EDS1 with PAD4 
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(Figure 2.4A-C). This is in clear contrast to the observed MYC2 protein accumulation 

pattern in which PAD4, but not EDS1 promoted MYC2 accumulation (Figure 2.2A,C, 

2.4D). Notably, MYC2 repression of ORA59 was promoted by EDS1, PAD4, and EDS1 

with PAD4 making the ORA59 results more difficult to interpret. Nevertheless, the observed 

trend holds true for promotion of MYC2 transcriptional activation and repression functions. 

MYC2 is a TF and has been shown to rely on an “activation by destruction” mechanism 

(Zhai et al. 2013). In their work the authors hypothesise that constant destruction and 

subsequent de novo synthesis of MYC2 ensures a primed, “ready-to-act” protein pool. This 

could explain the discrepancy between high MYC2 protein accumulation and low MYC2 

activity in presence of PAD4 and low MYC2 protein abundance, but high MYC2 activity in 

presence of EDS1. In this scenario, the accumulated MYC2 in PAD4 samples represents an 

inactive pool of MYC2, which either cannot be activated or has been activated earlier. The 

“activation by destruction” relies on phosphorylation of MYC2T328 (Zhai et al. 2013) and I 

will discuss MYC2 phosphorylation more detailed in section 3.2.3. 

3.1.4 MYC2s is not promoted by EDS1 but retains interaction with EDS1 
family proteins 

To find the mechanism behind MYC2 regulation by EDS1 I made use of the JAZ uncoupled 

MYC2s (MYC2D105N, Goossens et al. 2015). My reasoning was that EDS1 might promote 

MYC2 activity by releasing it from JAZ suppression. If true, MYC2s should not be 

promoted by EDS1. Indeed, LOX3 and VSP1 levels were unchanged in MYC2s samples, but 

promoted by EDS1 in MYC2WT samples (Figure 2.5A,B). This was not caused by low 

protein expression (Figure 2.5C), or lost interaction of EDS1 with MYC2s (Figure 2.6). 

However, interaction with MYC2s was considerably weaker than with MYC2WT, suggesting 

that the JID, and specifically MYC2D105 is important for EDS1 protein family interaction 

with MYC2. It is conceivable that EDS1 and JAZ proteins share a common structural motif 

via which they competitively bind MYC2. Preliminary tests by my colleague Deepak 

Bhandari do not support this, but more detailed analysis will be needed to answer this 

definitely (Bhandari, D., personal communication). 

Taken together, EDS1 is likely to steer MYC2 activity by interfering with MYC2-JAZ 

regulation. Another experiment to address this in more detail in planta relies on myc2-3 or 

eds1-2/myc2-3 transgenic lines expressing 35S:SH-MYC2WT or 35S:SH-MYC2s. These lines 
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are being selected and results will hopefully be obtained in summer 2019. Please refer to 

Perspectives (section 3.4) for further notes on this. 

When co-expressed with PAD4, EDS1 lost its promoting activity, resembling my previous 

observations that these results are specific to the monomeric protein and not to EDS1/PAD4 

heterodimers. 

3.1.5 Expression of avrRPS4 abolishes EDS1 promotion of MYC2 

Since Cui et al. (2018) showed EDS1 repressing MYC2 in TNL-triggered immunity 

conditions my opposing observation of EDS1 promoting MYC2 transactivation activity 

(Figure 2.4) was puzzling. However, a major difference of the two analyses is the immune 

context of the experiment. EDS1 repressed MYC2 only in Pst avrRPS4 infected tissues. In 

my assays cells are non-infected. Therefore I examined whether promotion of MYC2 by 

EDS1 would be affected by addition of the bacterial virulence factor avrRPS4. Co-

expression of avrRPS4 with MYC2 and EDS1 indeed abolished EDS1 dependent MYC2 

promotion (Figure 2.7). This shows that EDS1 regulates MYC2 differently depending on the 

immunity context and subsequently on the status of EDS1. An alternative explanation is that 

in presence of avrRPS4, EDS1 focuses on its heterodimer function with PAD4 and is 

therefore not available to promote MYC2. However, in this assay I use eps protoplasts, 

which means that transiently expressed EDS1 cannot heterodimerise with native PAD4 or 

SAG101. The observed differences in avrRPS4 expressing samples can therefore not be due 

to EDS1/PAD4 dependent ETI signalling, but are likely to account for an EDS1/PAD4 

independent activity of avrRPS4. In terms of EDS1 independent functions little to nothing is 

known about avrRPS4. Full virulence function relies on proteolytic processing of the 

effector within the plant cell where both N- and C-terminal peptides contribute to virulence. 

Further, the N-terminal KRVY motif is essential (Sohn et al. 2009, Halane et al. 2018). 

AvrRPS4 interacts with WRKY TFs and likely targets them to promote bacterial virulence 

(Sarris et al. 2015), yet no biochemical activity has been found so far.  

Notably, LOX3 and VSP1 showed different expression patterns in transactivation assays. 

While the EDS1 promoting effect holds true for both genes, VSP1 was elevated in MYC2s 

samples, consistent with a JAZ uncoupled MYC2, while LOX3 was not (Figure 2.5A,B). 

Similarly, in presence of avrRPS4 VSP1 was hardly induced by MYC2, but LOX3 was 

strongly increased, although not promoted by EDS1 (Figure 2.7A,B). This suggests that 
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MYC2 outputs vary between different targets and provides a possibility for EDS1 specific 

regulation of certain, but not all MYC2 outputs. 

Overall, these results suggest an EDS1 specific promotion of MYC2 transactivation activity 

that is related to JAZ proteins and affected by avrRPS4. 

3.1.6 EDS1 specifically promotes bHLH TFs 

EDS1 promoting MYC2 transactivation activity might be a generic feature of EDS1 and not 

limited to MYC2. To address EDS1 promotion specificity I tested if EDS1 affects PIF4 

transactivation activity. PIF4 has been found to balance temperature sensitive plant growth 

and defence by repressing the plant immune system (Gangappa et al. 2016). Still, it was 

unexpected to find EDS1 promoting PIF4 (Figure 2.8A) as no direct functional connection 

between these two proteins had been reported. However, PIF4 and MYC2 are both class IIIe 

bHLH TFs suggesting a more general function of EDS1. This could mean that i) EDS1 is 

not promoting MYC2 by releasing it from JAZ suppression, ii) that EDS1 has different ways 

of promoting different bHLH TFs, or iii) that MYC2 and PIF4 are regulated by the same 

components. MYC2 and PIF4 belong to the type IIIe class of DNA binding bHLH TFs and 

dimerise in order to bind to DNA and initiate transcriptional reprogramming (Toledo-Ortiz 

et al. 2003, Kazan et al. 2013, Goossens et al. 2016). Our group could show via FRET-FLIM 

experiments that EDS1 associates with DNA, likely on chromatin level (Lapin, D., 

Bhandari, D., personal communication). Therefore it is feasible that EDS1 might regulate 

DNA associated TFs when encountering them at the DNA, or in general, making the 

chromatin more accessible for DNA-binding TFs. This is in line with data showing that 

EDS1 does not promote SOC1 and MYB33, both non-bHLH TFs (Figure 2.8B,C). In this 

context it would be interesting to test EDS1 dependent DNA methylation as DNA 

methylation and TF binding can be linked (Zhu et al. 2016). Another, maybe more likely 

explanation of EDS1 promotion of PIF4 is JAZ related. There is no evidence for direct 

regulation of PIF4 by JAZ proteins. However, analogous to MYC2 repression by JAZs, 

PIF4 is repressed by DELLA proteins, the key repressors of GA signalling (Sun 2011). Hou 

et al. (2010) have shown that DELLA proteins interact with JAZ1. This interaction 

sequesters JAZ1 away from MYC2, thereby activating MYC2 target genes like LOX2. With 

this interesting observation of JA pathway regulation by GA signalling components it seems 

possible that this regulation works vice versa, too. Hypothetically, by interacting with 

DELLA proteins, JAZ proteins could repress DELLAs and promote GA signalling. In della 
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quadruple or pif4 mutants, JA inhibition of hypocotyl growth was significantly attenuated, 

suggesting that JA steers photomorphogenesis via DELLAs and/or PIF4 (de Lucas et al. 

2008, Hou et al. 2010). It is tempting to speculate that JAZ proteins indeed release PIF4 

from DELLA suppression. Assuming that EDS1 binds JAZs this would explain how EDS1 

could promote both MYC2 and PIF4 transactivation activities. Further, this is in line with 

the notion that MYC2s cannot be promoted by EDS1 because it is already uncoupled from 

JAZ suppression (Figure 2.5). A caveat of this model is that I could not detect interaction of 

EDS1 with two tested JAZ proteins, JAZ9 and JAZ10 (Figure 2.11). With these promising 

results it will be worth testing the remaining 11 JAZs (JAZ1-8, JAZ11-13) for interaction 

with EDS1 to identify the relevant ones.  

My results further show that the mere over-expression of EDS1 with a TF does not lead to 

enhanced TF activity. The functional relevance of this observation is still to be tested. If 

EDS1 indeed promotes MYC2 activity in a biological meaningful manner this could be a 

means to fine-tune SA-JA crosstalk in basal and ETI conditions. My colleague Jingde Qiu 

showed that MYC2 inhibits EDS1 expression by binding to the EDS1 promoter. With this 

mutual regulation enhanced MYC2 activity might be a self-regulatory loop by which EDS1 

regulates itself (Qiu et al., in prep.).  

3.1.7 MYC2 accumulates in eds1-2 plants 

While transient expression in Arabidopsis protoplasts has its benefits, in planta experiments 

are necessary to address functional implications of the observed results. Comparing MYC2 

protein accumulation in a stable transgenic lines expressing pMYC2:MYC2-flag in myc2-3 or 

myc2-3/eds1-2 background revealed elevated MYC2 levels in i) EDS1 lacking lines (myc2-

3/eds1-2), ii) all infected myc2-3 lines, and iii) Pst and Pst avrRPS4 infected myc2-3/eds1-2 

lines (Figure 2.9A). Elevated MYC2 levels in basal, i.e. MOCK treated myc2-3/eds1-2 lines 

indicate a negative role of EDS1 on MYC2 accumulation even in basal conditions. This 

effect is consistent in Pst and Pst avrRPS4 infected myc2-3/eds1-2 lines, but not in Pst 

avrRPS4 ∆cor infected tissue. One explanation for the high MYC2 levels in Pst and Pst 

avrRPS4 and the low MYC2 levels in Pst avrRPS4 ∆cor infected myc2-3/eds1-2 lines is 

pathogen growth. In eds1-2 plants, growth of avirulent bacteria is ~100-1000 fold higher 

than in WT plants (Feys et al. 2005). Numbers of bacteria producing COR is therefore 

higher, leading to higher MYC2 accumulation. Consequently, COR lacking Pst avrRPS4 

∆cor does not induce MYC2 accumulation. The limitation of this model is that i) MYC2 
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was also enriched in MOCK treated samples, and ii) MYC2 is enriched in Pst avrRPS4 ∆cor 

treated myc2-3 background. Similar to data shown in Figure 2.2A and 2.4, high protein in 

MOCK treated myc2-3/eds1-2 plants could be inactive, while low protein in myc2-3 could 

represent an active protein pool. Therefore I propose a model in which MYC2 accumulation 

depends on EDS1 (basal and TNL-activated), bacterial growth, and COR. Which of these 

components is relevant for MYC2 functional outputs in specific conditions remains to be 

tested in more detail.  

MYC2 accumulation at least partially depends on the 26S proteasome as MG132 treatment 

stabilised MYC2 levels in all myc2-3/eds1-2 lines infected with Pst, but not in MOCK 

treated myc2-3 lines (Figure 2.9B). This is consistent with published results where MYC2 

protein level was elevated in eds1-2 plants (Shin et al. 2012). Strikingly, I observed the 

opposite for myc2-3 lines, suggesting EDS1 dependent regulation of MYC2 by the 26S 

proteasome. Possibly, EDS1-MYC2 regulation on protein level is in a fine-tuned balance, 

which is revealed in absence of COR, but overshadowed by COR during bacterial infection. 

Further complexity is added by the fact that MYC2 is regulated by the circadian clock (Shin 

et al. 2012). To avoid daytime dependent effects on my experiments, all samples were taken 

at 10 a.m.  

The new dimension in my presented data is that monomeric EDS1 and PAD4 influence 

MYC2 in basal, i.e. non-challenged conditions as seen by elevated MYC2 protein levels in 

presence of PAD4, increased transactivation activity in presence of EDS1, and higher basal 

protein accumulation in MOCK treated pMYC2:MYC2-flag myc2-3/eds1-2 plants (Figure 

2.2, 2.4, 2.9). 

The impact of these results ultimately relies on whether one can show function implications 

for EDS1/PAD4 regulation of MYC2 protein accumulation and transactivation activity. In 

planta experiments are necessary to address this in full scope and to elucidate the 

physiological relevance in context of basal and pathogen challenged conditions. 
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3.2 Exploring mechanistic regulation of MYC2 by EDS1 
Together with data from Cui et al. (2018) the previously discussed results establish a 

functional connection between the ETI signalling node EDS1 and the JA master TF MYC2. 

In section 2.2 I addressed possible mechanisms by which EDS1 might regulate MYC2. 

Specifically, I tested MYC2 dimerisation properties, regulation by JAZ proteins, and the 

post-translational modification phosphorylation. 

3.2.1 MYC2 dimerisation is not affected by EDS1 

As discussed section 3.1.6, MYC2 is a bHLH TF that needs to dimerise and to bind to DNA 

for proper function. (Activated) EDS1 did not affect MYC2 dimerisation in transient assays 

(Figure 2.10), making it unlikely that EDS1 would steer MYC2 activity by regulating 

MYC2 DNA binding. Yet this experiment is rather crude and two alternatives remain. First, 

EDS1 could impact MYC2 dimerisation in a more subtle manner which cannot be resolved 

by immunoblot analysis. This could be addressed by using 

microscale thermophoresis (MST), a method that allows high-resolution quantification of 

protein-protein, or protein-nucleic acid interaction. It would be interesting to test if and how 

MYC2 homodimerisation and/or DNA binding changes in presence or absence of EDS1. 

Second, EDS1 might change MYC2 localisation, thereby interfering with its nuclear TF 

activity. However, we have not observed this (multiple group members, unpublished). EDS1 

shuttles between nucleus and cytoplasm with distinct, compartment specific immunity 

outputs (Garcia et al. 2010, Heidrich et al. 2011). It is therefore possible that localisation of 

EDS1 determines its impact on MYC2. TNL-activated, nuclear EDS1 might repress MYC2 

signalling (Cui et al. 2018), while this might differ for non-activated nuclear or cytoplasmic 

EDS1. However, I have not tested this. 

3.2.2 EDS1 does not interact with JAZ9 or JAZ10 

Unpublished Y2H data from Alain Goossens’ group suggested interaction between EDS1 

and the majority of JAZ proteins (personal communication). This would be in line with the 

idea of EDS1 competing with JAZ proteins for MYC2 binding, thereby releasing MYC2 

from JAZ suppression. However, I could not show interaction of EDS1 with JAZ9 or JAZ10 

(Figure 2.11), suggesting that either other JAZ proteins are of importance or that EDS1 

indirectly affects JAZ function. JAZ9 and JAZ10 were promising candidates, as JAZ9 

participates in COI1 dependent JA signalling during stomatal plant immunity (Lee et al. 
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2018) and JAZ10 confers enhanced resistance to Pst infection (de Torres Zabala et al. 2016). 

Further, both JAZ9 and JAZ10 were induced upon Pst infection in a COR dependent, but 

MYC2 independent manner (Demianski et al. 2012). 

With lost promotion of MYC2s by EDS1 in transient assays it is clear that EDS1 does 

regulate MYC2 via JAZ proteins, but the precise mechanism remains unknown. It is 

unlikely that EDS1 needs to be activated or relies on additional components to interact with 

JAZs, because EDS1 did interact with JAZ proteins in Y2H assays (A. Goossens, personal 

communication). Alternatively, EDS1 might interact with COI1 and guide it to close 

proximity with MYC2. This would represent a more upstream control of JA signalling by 

EDS1 and could be tested easily (see Figure 3.1). 

Even if EDS1-JAZ interaction were observed it would be difficult to show functional 

relevance. Therefore I designed an experiment to answer to what extent JAZ proteins are 

relevant for MYC2-EDS1 regulation. Transgenic Arabidopsis lines are being generated and 

first results are expected in June 2019. In this setup C-terminally 3xflag tagged MYC2 

driven by its own promoter (pMYC2:MYC2-flag) is expressed in a myc2-3 or a myc2-3/eds1-

2 genetic background and compared to the JAZ uncoupled MYC2s in the same genetic 

backgrounds (pMYC2:MYC2s-flag). Testing transcript, protein, and target gene expression 

before and after Pst avrRPS4 infection will tell whether EDS1 is affecting the MYC2-JAZ 

regulation and if this has a role in EDS1 immune signalling. 

3.2.3 MYC2S123 is phosphorylated in an EDS1 dependent manner 

Another possibility for MYC2 regulation is via post-translational modifications (PTMs). 

Even though MYC2 has been characterised extensively, information on PTMs is scarce. The 

most well understood MYC2 PTM is phosphorylation. The PhosPhAt database counts 

approximately 10 MYC2 phosphorylation sites (Heazlewood et al. 2008) and functional 

relevance for certain residues has been shown. For instance, MPK6 phosphorylates 

MYC2S123 in blue light conditions during seedling development (Sethi et al. 2014). Zhai et 

al. (2013) connected phosphorylation coupled proteasomal turnover to MYC2T328 in 

promoting JA responses. In their proposed model, MYC2 proteolysis is part of an 

“activation by destruction” regulatory loop that ensures a pool of “ready-to-act” protein. 

Phosphorylation often precedes ubiquitination and subsequent activation of the 26S 

proteasome (Geng et al. 2012). Consequently, two studies show regulation of MYC2 via 
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ubiquitination by the U-box protein PUB10 (Jung et al. 2015), and deubiquitination by the 

ubiquitin proteases UBP12 and UBP13 (Jeong et al. 2017). MYC2 was destabilised by 

overexpression of PUB10 and stabilised in pub10, or PUB10C249A mutants, indicating 

ubiquitin dependent proteolysis of MYC2. Deubiquitination of MYC2 by UBP12 and 

UBP13 prolongs MYC2 half-life and acts antagonistically to PUB10. Direct evidence for 

phosphorylation dependent MYC2 ubiquitination is still elusive, though. When testing 

MYC2 ubiquitination in a transient assay, I did not observe EDS1 dependent changes in the 

MYC2 ubiquitination pattern (Figure 2.12). 

Regarding phosphorylation, I was able to resolve MYC2 phosphorylation via SDS-PAGE 

and show that transiently overexpressed MYC2 is phosphorylated and that MYC2 from 

stable transgenic plants is phosphorylated independently of EDS1 or infection (Figure 2.13). 

An IP-nLC-MS/MS experiment to identify residue specific MYC2 phosphorylation showed 

EDS1 dependent, but infection independent phosphorylation of MYC2S123 (Figure 2.14). 

Since published literature (Heazlewood et al. 2008, Zhai et al. 2013, Sethi et al. 2014) and 

previous test runs had identified multiple phosphorylation sites of MYC2 it is surprising that 

here I identified one phosphorylated residue only. This residue was phosphorylated in 0/6 

replicates (pMYC2:MYC2-flag, myc2-3), and in 5/6 replicates (pMYC2:MYC2-flag, myc2-

3/eds1-2). S123 is the last in a row of three serines and one could claim that if S123 is 

mutated, S121 or S122 might compensate for a non-functional S123. Two instances argue 

against this. First, Sethi et al. demonstrated that MPK6 phosphorylates MYC2 specifically at 

S123 (Sethi et al. 2014) and second, S123, but not S121 or S122 was identified in a large 

Arabidopsis phospho-proteasome profiling study (PhosPhAt database, version 4.0) 

(Heazlewood et al. 2008), making it unlikely that S121 or S122 would act redundantly with 

S123.  

Since S123 is situated in the JID of MYC2 phosphorylation of S123 might prevent MYC2-

JAZ binding consistent with the idea that absence of EDS1 leads to phosphorylation and 

consequently to lost JAZ binding. To test this further I created phospho-dead MYC2S123A 

and phospho-mimic MYC2S123D variants which both retained interaction with JAZ9 and 

JAZ10 similar to MYC2WT level (Figure 2.16). Again, it is possible that other JAZ proteins 

are involved. Also, MYC2S123A/D interacted with EDS1 family members resembling 

MYC2WT, indicating that phosphorylation status of S123 is not important for these protein-

protein interactions (Figure 2.15). 
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With nLC-MS/MS one can also test for other PTMs such as ubiquitination or acetylation. 

However, this increases the experimental and analytical efforts drastically. The advantage of 

a high-resolution methods like nLC-MS/MS is the capture of more transient, single residue 

changes. While we know very little about the functional implications of TF acetylation 

(Pireyre et al. 2015), ubiquitination is rather well understood (Sharma et al. 2016, Adams et 

al. 2018). Commonly, polyubiquitinated proteins are subject to 26S proteasomal 

degradation. Monoubiquitination on the other hand can be a means to regulate protein 

activity independent of 26S proteasomal degradation enhancing both, positive and negative 

outputs (Geng et al. 2012). The existence of deubiquitinating enzymes like UBP12 and 

UBP13 supports a transient, proteasome independent role of (mono)ubiquitination, also with 

relevance for MYC2 regulation (Jeong et al. 2017). 

EDS1 family members are highly conserved among flowering plants (Wagner et al. 2013) 

and so is JA signalling (Thaler et al. 2012). If S123 were of functional importance one 

would expect it to be phylogenetically conserved. As Figure 2.14E shows S123 was partially 

conserved across tested species, supporting an important role in many, though not all 

species. How the respective MPK-target sites are conserved across these species still needs 

to be addressed. 

3.2.4 EDS1 does not promote MYC2S123A transactivation activity on 
VSP1 

Next, I tested whether EDS1 could still promote MYC2S123A/D transactivation activity. While 

MYC2S123A/D resembled MYC2WT activity in promoting LOX3 expression, VSP1 was not 

promoted by EDS1 phospho-dead MYC2S123A (Figure 2.17B). Two conclusions can be 

made: first, LOX3 and VSP1 differ in their expression profiles, supporting the notion that 

distinct MYC2 signalling branches are regulated differently by EDS1. Second, MYC2S123D 

was still promoted by EDS1, suggesting that phosphorylation of S123 is necessary for the 

EDS1 effect. For detailed analysis of MYC2S123A/D function I have transformed myc2-3 and 

myc2-3/eds1-2 Arabidopsis plants with 35S:SH-MYC2S123A and 35S:SH-MYC2S123D, 

respectively. Plants are being selected and will help to gain insights in MYC2S123A/D function 

in the context of EDS1 (i.e. in myc2-3 vs. myc2-3/eds1-2) and Pst avrRPS4 induced ETI. 
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3.2.5 The protein kinase EDR1 associates with MYC2 and PAD4 but is 
unlikely to regulate MYC2 phosphorylation 

Searching for an EDS1 associated kinase, I found that EDR1 interacts with MYC2 and with 

PAD4, making it an interesting candidate for functional studies (Figure 2.18 and 2.19). 

Interaction was independent of avrRPS4, supporting the notion that EDS1 effects MYC2 

independent of ETI induction. EDR1 was identified in a forward genetic screen for gain-of-

resistance mutants against Pst (Frye et al. 1998). Interestingly, edr1 hyper-resistant plants 

are not autoimmune and do not show constitutive expression of defence genes like PR1 

(Frye et al. 1998). Therefore, loss of EDR1 either primes plants for defence, or EDR1 is 

activated upon pathogen infection only. Further work showed that EDR1 antagonises SA 

dependent defence against the powdery mildew pathogen E. cichoracearum (Frye et al. 

2001) and more recently, the molecular mechanism underlying EDR1 repression was 

described (Zhao, et al. 2014). EDR1 suppresses the MKK4/MKK5-MPK3/MPK6 kinase 

cascade by binding to MKK4/MKK5, providing functional insights into how EDR1 works 

(Zhao, et al. 2014). 

In spite of EDR1 interaction with PAD4 and MYC2 in co-IP assays, I did not detect EDR1 

dependent changes in MYC2 phosphorylation on protein SDS-gels (Figure 2.20). Higher 

resolution methods like mass spectrometry will provide details about single residue 

modifications that cannot be observed on SDS gels. Furthermore, in vitro kinase activity 

assays using recombinant proteins expressed in E. coli could answer if EDS1 and/or PAD4 

regulate EDR1 kinase activity or other kinases in general.  

3.2.6 Finding genes of interest - how does EDS1 regulate 
phosphorylation? 

RNA-seq data analysis of genes involved in protein (de)phosphorylation, proteolysis, or ETI 

showed that some but not all tested genes were differentially regulated in an EDS1 

dependent manner. The receptor-like kinase FER (FERONIA) for instance is unchanged 

between WT and eds1-2 plants, but might be still worth testing as an EDS1 regulated kinase. 

FER phosphorylates MYC2 at more than a dozen residues, including S123 and MYC2 

phosphorylation leads to its destabilisation (Guo et al. 2018). Further, FER inhibits MYC2 

dependent JA pathway gene expression and restricts MYC2 promoted Pst virulence (Guo et 

al. 2018). With FER modulating MYC2 phosphorylation in bacteria challenged and 
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unchallenged conditions it is tempting to speculate that FER is being utilized by EDS1 to 

control MYC2 phosphorylation. S123 was phosphorylated in myc2-3/eds1-2 background 

only (Figure 2.14), which could be explained by EDS1 preventing FER activity. This could 

be tested by comparing MYC2 phosphorylation in WT plants with eds1, fer, and eds1/fer 

mutants.  

Alternatively, MPK6 is an interesting candidate gene. MPK6 has been reported function 

largely redundantly with MPK3 in promoting plant immunity both in PTI and ETI (Meng et 

al. 2013). Like FER, MPK6 was shown to phosphorylate MYC2S123 (Sethi et al. 2014) and 

earlier work demonstrated that MPK6 inhibits MYC2 dependent JA signalling (Takahashi et 

al. 2007). This is in line with the observation that COR represses MPK3/6 activity by 

inducing protein phosphatases that dephosphorylate MPK6 and render it less active (Mine et 

al. 2017). Our group addressed whether MPK3/6 kinase activity is EDS1 dependent. 

Preliminary results suggest that MPK3/6 are more active (i.e. phosphorylated) in eds1-2 

plants compared to WT in MOCK treatment, indicating repression of MPK3/6 by EDS1 

(Bhandari, D., personal communication). If EDS1 suppressed MPK3/6 mediated 

phosphorylation of S123, this would explain how EDS1 modulates MYC2 activity. 

Intriguingly, MPK3/6 are downstream targets of EDR1 (Zhao et al. 2014), providing new 

support for EDR1 involvement in this regulation. 

Ultimately, a functional connection between EDS1 and FER or MPK3/6 in phosphorylating 

MYC2 and its relevance to MYC2 transcriptional activity needs to be demonstrated. For 

instance it will be interesting to test whether EDS1 has general potential to change protein 

kinase activity. In context of interesting candidates, activity of FER and MPK3/6 with and 

without EDS1 could be tested in a recombinant system using protein expressed in E. coli. 

Further, genetic evidence by crossing kinase mutants to eds1-2 plants would be informative. 

Assuming that EDS1 antagonises phosphorylation of MYC2, phosphorylation will be 

enhanced in eds1-2 mutants and lost in double mutants of eds1-2 with the functional kinase. 

Because mpk3/6 double mutants are lethal conditional loss-of-function mutants exist and 

could be used (Wang et al. 2007, Wang et al. 2008). 

A final remark regarding the shown RNA-seq data is that naturally, genes with high 

expression changes between WT and eds1-2 plants seem most interesting. However, as I 

show in this work and others have shown before, gene expression often does not correlate 
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with protein activity making it possible that even transcriptionally unchanged genes 

represent useful candidates to test. 

The regulatory network shown in Figure 3.1 connects data presented in this and other studies 

in order to explain the observed EDS1-MYC2 regulation. Here, I assume EDS1 to be “non-

activated”, i.e. in non-triggered conditions. As EDS1 promoted MYC2WT, but not JAZ 

uncoupled MYC2s in transient transactivation assays (Figure 2.4, 2.5), I propose that EDS1 

releases MYC2, directly or indirectly, from JAZ suppression. If this occurs by competitive 

binding, or by other means, and which JAZ proteins are involved remains to be tested. 

Further, I could show that MYC2S123 is phosphorylated in absence of EDS1 (Figure 2.14). 

MPK6 phosphorylates MYC2 at S123 (Sethi et al. 2014) and inhibits its transactivation 

activity (Takahashi et al. 2007). If S123 is the only phosphorylation site and thus the 

decisive one for MPK6 dependent regulation is unclear. Nevertheless, this raises the 

possibility that EDS1 enhances MYC2 transactivation activity by dampening MPK6 

activity, possibly via EDR1. This is supported by low levels of phosphorylated MPK6 in 

MOCK treated WT plants, compared to eds1-2 plants (Bhandari, D., personal 

communication, preliminary). This aspect needs further testing, as MYC2S123A/D LOX3 

transcription was still promoted by EDS1 (Figure 2.17A), but EDS1 did not enhance 

MYC2S123A dependent VSP1 expression (Figure 2.17B). A possible explanation for this 

would be different regulatory mechanisms for LOX3 and VSP1 signalling by MYC2. 

Alternatively, EDS1 could act via another, unknown component (Figure 3.1, “FACTOR 

X”). Figure 2.21 illustrates EDS1 dependent candidate genes that are involved in protein 

phosphorylation and/or plant immunity and might be worth testing.  
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Figure 3.1 Scheme illustrating EDS1 regulation of MYC2 transactivation activity in pathogen 
unchallenged conditions. MYC2 is repressed via MPK6 dependent phosphorylation and JAZ 
protein binding. The observed promotion of MYC2 transactivation activity as measured by LOX3 
and VSP1 transcript can be explained by EDS1 inhibiting MPK6 or JAZ activity. If EDR1 is 
connected to the EDS1 regulation of MYC2, directly or indirectly, is unclear. Alternatively, a so far 
unknown “FACTOR X” could be involved. Dashed lines represent hypothesised or preliminary 
connections. P: phosphorylation 
 

One mode of MYC2 regulation that I haven’t addressed in my work is the relationship of 

MYC2 and MED25. MED25 is a subunit of the MEDIATOR complex that links DNA-

associated TFs to RNA-polymerase II, thereby steering gene transcription (An et al. 2017, 

Kazan 2017). MYC2 relies on MED25 binding for its transactivation activity. Interestingly, 

JAZ proteins bind MED25, too. This leads to competitive binding to MED25 and allows 

JAZ proteins to repress MYC2 via MED25 (Kazan 2017). My colleague Dacheng Wang 

investigated whether EDS1 family proteins interfere with MYC2-MED25 binding and if so, 

if this has functional implications. He showed that EDS1 or PAD4, but not SAG101 interact 

with MED25 in Arabidopsis protoplasts, but this interaction did not affect MYC2 binding to 

MED25, suggesting distinct interaction motifs (Wang, D., personal communication). I 

concluded that EDS1 most likely does not regulate MYC2 by directly interfering with 

MYC2-MED25 interaction. Rather, EDS1 might release MED25 and promote MYC2 

indirectly by sequestering JAZ proteins. 
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3.3 SA-JA crosstalk in plant immunity 
This study needs to be considered in the context of hormonal crosstalk during plant 

immunity. By the end of the last century it became increasingly clear that crosstalk between 

certain phytohormones provides a means for the plant to fine-tune and prioritise defence 

pathways (Reymond et al. 1998). Now, the concept of hormonal crosstalk is well-established 

and all known phytohormones take part in fine-tuning the plant’s immune response (Robert-

Seilaniantz et al. 2011, Pieterse et al. 2012). Traditionally, the crosstalk between SA and JA 

pathways has received the most attention in context of plant-microbe/insect interactions 

although it is still unclear whether the evolution of SA-JA crosstalk goes along with 

adaptive advantages for the plant (Thaler et al. 2012). The common notion is that SA mainly 

prevents growth of microbial (hemi-) biotrophic pathogens. By contrast, JA signalling 

primarily counteracts necrotrophic pathogens and herbivores (Glazebrook 2005). The 

molecular basis for SA and JA pathway signalling is well understood and described in 

Introduction (section 1.4 and 1.5). Despite, or maybe because of our sound knowledge of SA 

and JA signalling, a major conceptual question remains: how do these two pathways coexist 

and mutually regulate each other in context of plant immunity, while maintaining highly 

specific, yet functionally diverse outputs? 

First, I will focus on the SA portion of SA-JA crosstalk. Spoel et al. were among the first to 

identify a molecular player of the SA-JA crosstalk in context of Pst infection. Upon 

infection, SA levels rise and induce PR1. This is accompanied by decreased JA levels and 

reduced LOX2 and VSP1 transcript. The novel finding was that NPR1, the key SA signal 

transducer, was required for this crosstalk (Spoel et al. 2003). Later, it was found that 

infection with (hemi-) biotrophic Pst renders plants more susceptible to the necrotrophic 

Alternaria brassicicola, providing further functional proof of NPR1 dependent SA-JA 

crosstalk (Spoel et al. 2007). Another component in SA-JA crosstalk regulation is MPK4. 

Mpk4 mutants were autoimmune, and with high SA accumulation and PR1 expression, 

failed to induce the JA marker PDF1.2 (Petersen et al. 2000). Multiple other components 

have been implicated in SA-JA crosstalk, too, including WRKY TFs, redox regulators like 

GRX480 (GLUTAREDOXIN 480), TGA (TGACG MOTIF-BINDING PROTEIN) TFs, the 

fatty acid desaturase SSI2 (SUPPRESSOR OF SA INSENSITIVE 2), and the catalase CAT2 

(CATALASE 2) (Pieterse et al. 2012, Yuan et al. 2017). In ETI specifically, our group 

showed that EDS1/PAD4 protect and boost the SA pathway in part by repressing MYC2 

(Cui et al. 2018). The described components that establish the SA-JA crosstalk indicate that 



Discussion 

 
 66 

this mutual regulation occurs downstream of hormone accumulation. This is further 

supported by work showing that even though SA targets JA biosynthesis genes, SA 

represses PDF1.2 and VSP2 in JA biosynthesis deficient aos/dde2 plants (Leon-Reyes et al. 

2010). Consistent with this, the JA responsive TF ORA59 was identified as a target for SA 

to repress JA pathway genes (Van der Does et al. 2013). Overall, the molecular mechanisms 

by which SA pathways dampen JA signalling are manifold and mirror the high complexity 

of hormone signalling networks in Arabidopsis. 

Interestingly, JAZ proteins have not been found to be directly involved in SA-JA crosstalk, 

but present an integrative node for JA crosstalk with other plant hormones like ABA and GA 

(Chini et al. 2016). 

How the JA pathway represses SA outputs is less well understood. Our group could show 

that on the molecular level MYC2 attenuates EDS1 expression. This effect depends on 

MYC2 binding to the EDS1 promoter, suggesting transcriptional rather than translational 

regulation (Qiu et al., in prep.).  

Additionally, numerous examples show that the SA-JA antagonism can be exploited by 

(hemi-) biotrophic pathogens such as Pst. By producing COR, a functional mimic of 

bioactive JA-Ile, Pst inhibits the SA pathway, resulting in enhanced bacterial virulence 

(Brooks et al. 2004, Brooks et al. 2005, Zheng et al. 2012). Besides small molecules like 

COR, Pst also produces effector proteins, which act as virulence factors. One such effector 

is HopX1 which was shown to initiate JA signalling by degrading JAZ repressors, providing 

an alternative means for Pst to dampen the plant’s SA response (Gimenez-Ibanez et al. 

2014). Another example of effector mediated virulence is HopBB1. Once secreted into the 

plant cell HopBB1 interacts with JAZ3 and the JA repressor TCP14. This causes TCP14 

degradation by the SCFCOI1 degradation complex, de-repression of JA pathway signalling, 

and ultimately enhanced pathogen virulence (Yang et al. 2017). An overview of bacterial 

effectors and their respective impact on hormone signalling was provided by Kazan and 

Lyons (Kazan et al. 2014). 

While not the focus of this discussion, it is worth mentioning that beneficial microbes 

evolved distinct means to manipulate plant defence, including SA-JA crosstalk (Pieterse et 

al. 2014).  

Besides mutually negative regulation, neutral and positive correlations in SA-JA crosstalk 

have been observed as well (Schenk et al. 2000, van Wees et al. 2000, Mur et al. 2006, Liu 
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et al. 2016). Recently, Mine et al. (2017) identified an incoherent feed forward loop that 

allows JA to promote or attenuate SA accumulation dependent on the immune status of the 

plant. The authors showed that JA induces expression of EDS5, a crucial gene for SA 

accumulation, via MYC2, while simultaneously dampening expression of PAD4, a positive 

regulator of EDS5 expression. With this mechanism the plant is able to limit SA dependent 

growth repression in absence of pathogens and to initiate robust SA accumulation during 

PTI (Mine et al. 2017). 

The seemingly contradictory observations that JA accumulation coincides with SA 

accumulation could be explained by segmenting SA-JA occurrence into spatially distinct 

domains. Indeed, a recent study showed spatio-temporal dynamics of the SA marker gene 

PR1 and the JA marker gene VSP1 during ETI in Arabidopsis (Betsuyaku et al. 2017). The 

concentric pattern of SA accumulation in the centre and JA accumulation at the periphery of 

the infection site separates contributions of the SA and JA pathways during ETI and allows 

spatially restricted, domain specific immune signalling (Betsuyaku et al. 2017). 

Given this multifaceted and complex relationship between the two pathways, general 

statements like “SA and JA antagonise each other” are often oversimplifying. The nature of 

SA-JA crosstalk usually depends on i) time and duration of elicitation, ii) sequence of 

triggers, and iii) strength of stimulus and is therefore highly dynamic and context specific 

(Koornneef et al. 2008, Leon-Reyes et al. 2010). This multi-layered, finely tuneable 

regulation makes sense since plants usually face a plethora of harmful organisms. Proper 

timing and prioritisation of responses determine the best use of limited resources and the 

most promising strategy of defence. Taken together, this explains how two distinct, yet 

connected pathways can coexists and mutually regulate each other over the plant’s lifespan.  

As mentioned, we know relatively little about the molecular mechanisms underlying the SA-

JA crosstalk. This study, together with the latest work by colleagues in the group, 

illuminates the molecular basis by connecting the SA pathway component EDS1 with the JA 

master TF MYC2. EDS1 (and PAD4) antagonise MYC2 in ETI, thereby ensuring a strong 

SA response during pathogen infection (Cui et al. 2018). Conversely, MYC2 dampens EDS1 

expression by binding the EDS1 promoter, making the plant more susceptible to Pst 

infection (Qiu et al., in prep.). Here, I interrogated how EDS1 modulates MYC2 activity 

mechanistically. Collectively, my data argue for EDS1 control of MYC2 by directly or 

indirectly releasing MYC2 from JAZ inhibition. Further, I provide evidence of EDS1 
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dependent MYC2 phosphorylation. As these are partially contradictory observations, it will 

be crucial to test the biological relevance of the observed molecular relationships. With the 

previously described highly diverse regulatory network of SA-JA crosstalk, multiple, 

synergistic and antagonistic connections of EDS1 and MYC2 seem plausible.  

 

3.4 Perspectives 
Our group recently established an antagonistic relationship between EDS1/PAD4 complexes 

and the JA key TF MYC2. By antagonizing bacterial COR-stimulated MYC2 transcriptional 

induction of JA pathway genes EDS1/PAD4 restrict bacterial virulence during TNL-ETI 

(Cui et al. 2018). 

In this study I identify a positive connection between MYC2 and EDS1 with EDS1 

promoting MYC2 transactivation activity. Functionally, this involves EDS1 dependent 

regulation of JAZ proteins (indirect evidence) and protein phosphorylation. For a more 

detailed understanding and especially for biological relevance however additional 

experiments are necessary.  

Assuming that EDS1 releases MYC2 from JAZ suppression it would be interesting to see 

whether EDS1 shares any surface structure with (certain) JAZ proteins, which might explain 

competition with JAZs for MYC2 binding. Preliminary analysis by my colleague Deepak 

Bhandari suggests that this is not the case, but more detailed analysis will be needed to 

answer this definitely (Bhandari, D., personal communication). Also, it is worth testing 

EDS1 interaction with further JAZ proteins. To address functional relevance of promoted 

MYC2 activity by EDS1 stable transgenic Arabidopsis lines are needed. For this I am 

generating transgenic lines expressing C-terminally 3xflag tagged MYC2 or JAZ uncoupled 

MYC2s, driven by its own promoter (pMYC2:MYC2-flag or pMYC2:MYC2s-flag) in myc2-3 

or myc2-3/eds1-2 background. By testing transcript, protein, and target gene expression 

before and after Pst avrRPS4 infection this will tell whether EDS1 is affecting the MYC2-

JAZ regulation and to what extent pathogen challenge influences this. 

The nLC-MS/MS experiment described in Figure 2.14 focused on phosphorylation as a 

putatively changed PTM by EDS1. With more analytical power and time one could rather 

easily test for SUMOylation, ubiquitination, or acetylation and resolve even single residue 

modifications that might be missed by other, more crude methods. 
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With MYC2S123 phosphorylated in an EDS1 dependent manner, it will be interesting to test 

whether S123 phosphorylation is important for MYC2 function in context of EDS1 

signalling. As for MYC2 and MYC2s, I am generating transgenic lines expressing 

pMYC2:MYC2S123A-flag or pMYC2:MYC2S123D-flag in myc2-3 or myc2-3/eds1-2 

background. This will allow to interrogate MYC2 activity in planta in pathogen challenged 

and unchallenged conditions.  

Further, it will be interesting to test whether EDS1 is capable of directly modulating kinase 

activities of potential strong candidate protein kinases such as EDR1, FER, and MPK6, in a 

recombinant system. If so, this will also tell whether EDS1 requires additional components 

for this regulation or not. Also, predicting the likelihood of MYC2S123 being a MPK target 

site will be useful for further characterisation. 

The complexity of the EDS1 and the MYC2 node respectively complicates identification of 

biologically relevant regulation. Providing evidence for functionally relevant promotion of 

MYC2 transactivation signalling by EDS1, whether through JAZ interference or protein 

phosphorylation control is therefore of highest priority. 
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4 Materials and Methods 

Materials and methods are separated into two parts. Section 4.1 lists materials used in this 

work including plant lines, pathogen and bacterial strains, antibodies, chemicals, enzymes, 

media, etc. Experimental procedures and peculiarities are described in the second part, 4.2. 

4.1 Materials 

4.1.1 Plant Materials 

The Arabidopsis thaliana lines used in this study are listed in table 1. 

Table 1 - Arabidopsis thaliana lines used in this work 

Genotype Accession Reference 

WT Col-0 
Dangl lab, University of North Carolina, 

NC, USA 

edr1 Col-0 (Frye et al. 1998) 

eds1-2 Col-0/(Ler)* (Bartsch et al. 2006) 

eds1-2/pad4-1/sag101-2 Col-0 Parker lab, MPIPZ, Cologne 

myc2-3 Col-0 (Shin et al. 2012) 

myc2-3/eds1-2 Col-0 Parker lab, MPIPZ, Cologne 

myc234 Col-0 (Fernandez-Calvo et al. 2011) 

pMYC2:MYC2-flag Col-0 (Hou et al. 2010) 

pMYC2:MYC2-flag/eds1-2 Co-0 Parker lab, MPIPZ, Cologne 

* Ler eds1-2 allele introgressed into Col-0 background, 8th backcrossed generation, referred 

to as "eds1-2" in this work 

For Agrobacterium tumefaciens dependent transient expression assays I used Nicotiana 

benthamiana 310A plants from the seed stock of MPIPZ, Cologne, GER.  

4.1.2 Pathogen Strains 

Throughout this work Pseudomonas syringae pv. tomato DC3000 (Pst) was used as a hemi-

biotrophic pathogen strain. The strain was either transformed with the empty vector pVSP61 



Materials and Methods 

 
 72 

or with pVSP61 carrying avrRPS4, an effector gene from Pseudomonas syringae pv. pisi 

(Hinsch et al. 1996). 

The coronatine lacking strain Pst DC3000 ∆cor was obtained from Renier van der Hoorn 

(MPIPZ). To generate Pst avrRPS4 ∆cor, the pVSP61-avrRPS4 plasmid was transformed 

into Pst ∆cor.  

4.1.3 Bacterial Strains 

An overview of bacteria used in this study is given in table 2. 

Table 2 - Bacterial strains used in this work 

Species Strain Genotype 

E.coli DB3.1 F- gyrA462 endA Δ(sr1-recA) mcrB mrr hsdS20 (rB- 

mB-) supE44 ara14 galK2  

lacY1 proA2 rpsL20 (StrR) xyl5 λ- leu mtl1  

E.coli DH5α  F- Φ80dlacZΔM15 Δ(lacZYA-argF) U169 deoR recA1 

endA1 hsdR17(rk -, mk+) phoA supE44 λ- thi-1 gyrA96 

relA1 

E.coli DH10b F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacX74 deoR recA1 endA1 araΔ139 Δ(ara, leu)7697 

galU galK λ- rpsL (StrR) nupG  

A. tumefaciens GV3101 pMP90RK (Deak et al. 1986) 

4.1.4 Antibiotics 

Table 3 shows antibiotics used in this study. Aqueous stocks were sterile filtered before use. 

Table 3 - Antibiotic stock solutions 

Name stock concentration 

(mg/ml) 

working concentration 

(µg/ml) 

solved 

in 

Ampicillin 100 100 ddH2O 

Carbenicillin 100 50 ddH2O 

Kanamycin 50 25 ddH2O 

Gentamycin 25 25 (Pst)/15 (Agrobac.) ddH2O 

Rifampicin 40 100 DMSO 

Spectinomycin 100 100 ddH2O 
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4.1.5 Antibodies 

Antibodies used in this study are listed in table 4. 

Table 4 - Antibodies 

Antibody Source Dilution Supplier Group 

α-flag rabbit polyclonal 1:5000 Sigma-Aldrich primary 

α-GFP rabbit monoclonal 1:5000 Cell Signaling 

Technology 

primary 

α-HA rabbit monoclonal 1:5000 Cell Signaling 

Technology 

primary 

α-myc rabbit monoclonal 1:5000 Cell Signaling 

Technology 

primary 

α-Ubiquitin rabbit polyclonal 1:1500 Cell Signaling 

Technology 

primary 

α-rabbit IgG-HRP goat polyclonal 1:5000 Sigma-Aldrich secondary 

 

4.1.6 Chemicals 

All chemicals met laboratory use purity and were obtained by various laboratory suppliers 

including Merck (Darmstadt, GER), Roth (Karlsruhe, GER), SERVA (Heidelberg, GER), 

Sigma-Aldrich (Hamburg, GER), ThermoFisher (MA, USA), and VWR (Langenfeld, GER). 

 

4.1.7 Enzymes 

4.1.7.1 Restriction Enzymes 
For DNA digestion restriction enzymes from either New England Biolabs (NEB, Frankfurt, 

GER) or ThermoFisher Scientific (MA, USA) were used to the manufacturer's 

recommendations.  

4.1.7.2 DNA Polymerases 
Different DNA Polymerases were used according to cloning purpose and complexity. An 

overview is given in table 5. 
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Table 5 - DNA Polymerases used in this work 

Name Purpose Supplier 

Phire II standard PCR ThermoFisher 

Phusion HF HF, proofreading for cloning ThermoFisher 

Takara PrimeStar HF, proofreading, for GC-rich templates CloneTech 

 

4.1.7.3 Other enzymes 
Other enzymes used include T4 DNA ligase (ThermoFisher), cDNA Synthesis SuperMix 

(Bimake, Munich, GER), Gateway® pENTR™/D-TOPO™ Kit (ThermoFisher), Gateway® 

LR Clonase® II Enzyme Mix (ThermoFisher), PhosSTOP™ Phosphatase Inhibitor (Merck, 

Darmstadt, GER), Lambda Protein Phosphatase (NEB), Cellulase Onozuka R-10, and 

Macerozyme R-10 (both SERVA, Heidelberg, GER). 

 

4.1.8 Oligonucleotides 

Primers are given in table 6. For regular oligo design primer3 (http://bioinfo.ut.ee/primer3/) 

was used while SDM primer were created by the primerX 

(http://www.bioinformatics.org/primerx). Oligonucleotides were ordered at Sigma-Aldrich 

(Hamburg, GER). Lyophilised primer were resuspended in ddH2O to 100 µM stock 

concentration and diluted 1:10 to reach a working concentration of 10 µM. 

 

Table 6 - Oligonucleotides 

Name Orientation Sequence 5' - 3' purpose 

ACTIN fw ATGGAAGCTGCTGGAATCCAC qRT-PCR 

ACTIN rv TTGCTCATACGGTCAGCGATA qRT-PCR 

AP1 fw CTCTCTCATCAGCCATCTC qRT-PCR 

AP1 rv AACGGGTTCAAGAGTCAGTTC qRT-PCR 

EDS1 fw AGATTATTCAGGTGATCGAGCA qRT-PCR 

EDS1 rv TTTATGGGCTTGACACTTTGG qRT-PCR 

IAA19 fw GGTGTGGCCTTGAAAGATGG qRT-PCR 

IAA19 rv TCTCAACCTCTTGCATGACTCT qRT-PCR 

ICS1 fw TTCTGGGCTCAAACACTAAAAC qRT-PCR 
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ICS1 rv GGCGTCTTGAAATCTCCATC qRT-PCR 

LFY fw TCAGGTACGCGAAGAAATCA qRT-PCR 

LFY rv GAAGCTTCTTCGTCTAGGCA qRT-PCR 

LOX3 fw CGCGAGTTTCATCTCCCATC qRT-PCR 

LOX3 rv CGCATCTCCTGTCCAAATCG qRT-PCR 

MYC2 fw GAACGACCCGTCTATGTG qRT-PCR 

MYC2 rv TTCGGTTATTGTGCTTGA qRT-PCR 

ORA59 fw GCCGAGATAAGAGACTCAACG qRT-PCR 

ORA59 rv AGATTCTTCAACGACATCCGC qRT-PCR 

PBS3 fw ACACCAGCCCTGATGAAGTC qRT-PCR 

PBS3 rv CCCAAGTCTGTGACCCAGTT qRT-PCR 

VSP1 fw TCATACTCAAGCCAAACGG qRT-PCR 

VSP1 rv ATCCTCAACCAAATCAGC qRT-PCR 

MYC2_S123A fw GGAGATCGAGTGCTCCGCCGTTTTC SDM 

MYC2_S123A rv GAAAACGGCGGAGCACTCGATCTCC SDM 

MYC2_S123D fw GGAGATCGAGTGATCCGCCGTTTTC SDM 

MYC2_S123D rv GAAAACGGCGGATCACTCGATCTCC SDM 

 

4.1.9 Vectors 

Vectors used or generated in this work are listed in table 7. 

Table 7 - Vectors 

Vector Notes 

pENTR-EDR1 Gateway® entry plasmid that contains CDS of EDR1 

with stop codon from Col-0 

pENTR-gEDS1 Gateway® entry plasmid that contains genomic EDS1 

without stop codon from Ler-0 

pENTR-gEDS1LLIF Gateway® entry plasmid that contains mutated genomic 

EDS1 without stop codon from Ler-0, described in 

(Wagner et al. 2013) 

pENTR-JAZ9 Gateway® entry plasmid that contains CDS of JAZ9 with 

stop codon from Col-0 
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pENTR-JAZ9 Gateway® entry plasmid that contains CDS of JAZ9 

without stop codon from Col-0 

pENTR-JAZ10 Gateway® entry plasmid that contains CDS of JAZ10 

with stop codon from Col-0 

pENTR-JAZ10 Gateway® entry plasmid that contains CDS of JAZ10 

without stop codon from Col-0 

pENTR-MYB33 Gateway® entry plasmid that contains CDS of MYB33 

with stop codon from Col-0 

pENTR-MYC2D105N 

named super-MYC2 (MYC2s) 

Gateway® entry plasmid that contains CDS of mutated 

MYC2 with stop codon from Col-0, described in 

(Goossens et al. 2015) 

pENTR-MYC2S123A Gateway® entry plasmid that contains CDS of mutated 

MYC2 with stop codon from Col-0 

pENTR-MYC2S123D Gateway® entry plasmid that contains CDS of mutated 

MYC2 with stop codon from Col-0 

pENTR-PAD4 Gateway® entry plasmid that contains CDS of PAD4 

with stop codon from Ler-0 

pENTR-PIF4 Gateway® entry plasmid that contains CDS of PIF4 

without stop codon from Col-0 

pENTR-SAG101 Gateway® entry plasmid that contains CDS of SAG101 

with stop codon from Ler-0 

pENTR-SOC1 Gateway® entry plasmid that contains CDS of SOC1 

without stop codon from Col-0 

pXCSG-mYFP-GW Binary Gateway® destination vector for expression of a 

fusion protein under control of 35S promoter with a C-

terminal mYFP tag 

pXCSG-gEDS1-mYFP  

 

Binary Gateway® destination vector for expression of 

genomic EDS under control of 35S promoter with a C-

terminal mYFP tag 

pXCSG-gEDS1LLIF-mYFP  

 

Binary Gateway® destination vector for expression of 

mutated genomic EDS under control of 35S promoter 

with a C-terminal mYFP tag 

pXCSG-JAZ9-mYFP  Binary Gateway® destination vector for expression of 
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JAZ9 under control of 35S promoter with a C-terminal 

mYFP tag 

pXCSG-JAZ10-mYFP  Binary Gateway® destination vector for expression of 

JAZ10 under control of 35S promoter with a C-terminal 

mYFP tag 

pXCSG-PAD4-mYFP  

 

Binary Gateway® destination vector for expression of 

PAD4 under control of 35S promoter with a C- terminal 

mYFP tag  

pXCSG-PAD41-300-mYFP  

 

Binary Gateway® destination vector for expression of 

truncated PAD4 under control of 35S promoter with a C- 

terminal mYFP tag  

pXCSG-SAG101-mYFP  

 

Binary Gateway® destination vector for expression of 

SAG101 under control of 35S promoter with a C- 

terminal mYFP tag 

pXCSG-YFP-mYFP  Binary Gateway® destination vector for expression of 

YFP (with stop codon) control of 35S promoter with a C-

terminal mYFP tag  

pENSG-mYFP-GW Binary Gateway® destination vector for expression of a 

fusion protein under control of 35S promoter with a N-

terminal mYFP tag 

pENSG-mYFP-EDR1  Binary Gateway® destination vector for expression of 

EDR1 under control of 35S promoter with a N-terminal 

mYFP tag 

pENSG-mYFP-JAZ9  Binary Gateway® destination vector for expression of 

JAZ9 under control of 35S promoter with a N-terminal 

mYFP tag 

pENSG-mYFP-JAZ10  Binary Gateway® destination vector for expression of 

JAZ10 under control of 35S promoter with a N-terminal 

mYFP tag 

pXCSG-3xflag-GW Binary Gateway® destination vector for expression of a 

fusion protein under control of 35S promoter with a C-

terminal 3xflag tag  
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pXCSG-gEDS1-flag  

 

Binary Gateway® destination vector for expression of 

genomic EDS1 under control of 35S promoter with a C-

terminal 3xflag tag 

pXCSG-gEDS1LLIF-flag 

 

Binary Gateway® destination vector for expression of 

mutated genomic EDS1 under control of 35S promoter 

with a C-terminal 3xflag tag 

pXCSG-JAZ9-flag  

 

Binary Gateway® destination vector for expression of 

JAZ9 under control of 35S promoter with a C-terminal 

3xflag tag 

pXCSG-JAZ10-flag  

 

Binary Gateway® destination vector for expression of 

JAZ10 under control of 35S promoter with a C-terminal 

3xflag tag 

pXCSG-PAD4-flag  

 

Binary Gateway® destination vector for expression of 

PAD4 under control of 35S promoter with a C-terminal 

3xflag tag 

pXCSG-MYC2-flag Binary Gateway® destination vector for expression of 

MYC2 under control of 35S promoter with a C-terminal 

3xflag tag 

pXCSG-GUS-flag Binary Gateway® destination vector for expression of 

GUS under control of 35S promoter with a C-terminal 

3xflag tag 

pENS-StrepII-3xHA (SH)-GW  Binary Gateway® destination vector for expression of a 

fusion protein under control of 35S promoter with an N-

terminal StrepII-3xHA tag 

pENS-SH-EDR1 

 

Binary Gateway® destination vector for expression of 

EDR1 under control of 35S promoter with an N-terminal 

StrepII-3xHA tag 

pENS-SH-MYB33 Binary Gateway® destination vector for expression of 

MYB33 under control of 35S promoter with an N-

terminal StrepII-3xHA tag 

pENS-SH-MYC2  

 

Binary Gateway® destination vector for expression of 

MYC2 under control of 35S promoter with an N-terminal 

StrepII-3xHA tag 
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pENS-SH-MYC2D105N 

named super-MYC2 (MYC2s) 

Binary Gateway® destination vector for expression of 

mutated MYC2 under control of 35S promoter with an N-

terminal StrepII-3xHA tag  

pENS-SH-MYC2S123A  

 

Binary Gateway® destination vector for expression of 

mutated MYC2 under control of 35S promoter with an N-

terminal StrepII-3xHA tag  

pENS-SH-MYC2S123D 

 

Binary Gateway® destination vector for expression of 

mutated MYC2 under control of 35S promoter with an N-

terminal StrepII-3xHA tag  

pENS-SH-PIF4 

 

Binary Gateway® destination vector for expression of 

PIF4 under control of 35S promoter with an N-terminal 

StrepII-3xHA tag 

pENS-SH-SOC1 

 

Binary Gateway® destination vector for expression of 

SOC1 under control of 35S promoter with an N-terminal 

StrepII-3xHA tag 

pENS-SH-YFP  

 

Binary Gateway® destination vector for expression of 

YFP under control of 35S promoter with an N-terminal 

StrepII-3xHA tag  

pXCSG-3xHA-GW  Binary Gateway® destination vector for expression of a 

fusion protein under control of 35S promoter with an C-

terminal 3xHA tag 

pXCSG-avrRPS4-3xHA Binary Gateway® destination vector for expression of 

avrRPS4 under control of 35S promoter with an C-

terminal 3xHA tag  
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4.1.10 Media 

All media were sterilised by autoclaving at 121 °C for 20 min. Heat sensitive additives like 

antibiotics were added once the media cooled to approximately 50 °C.  

 

Agrobacterium tumefaciens media  

YEB   

Beef extract 5.0 g/L 

Yeast extract 1.0 g/l 

Peptone 5.0 g/l 

Sucrose 5.0 g/l  

1M MgSO4 2.0 ml/l  

pH 7.2  

For YEB agar plates 1.5 % (w/v) agar was added.  

 

Escherichia coli media  

LB (Luria-Bertani) broth  

Tryptone 10.0 g/l  

Yeast extract 5.0 g/l  

NaCl 5.0 g/l   

pH 7.0  

For LB agar plates 1.5 % (w/v) agar was added.  

 

 

Pseudomonas syringae media  

NYG broth  

Peptone 5.0 g /l 

Yeast extract 3.0 g/l 

Glycerol  20 ml/l  

pH 7.0  

For NYG agar plates (NYGA) 1.5 % (w/v) agar was added.  
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4.1.11 Buffers and Solutions 

Buffers and their components used in this work are summarised in table 8. 

Table 8 - Buffers and Components 

Application Buffer Components 

DNA extraction (quick 

and dirty) 

DNA extraction buffer 200 mM Tris pH 7.5, 250 mM 
NaCl, 25 mM EDTA pH 7.5, 0.5 % 
SDS 

DNA extraction (sucrose 

prep) 

sucrose solution 50 mM Tris pH 7.5, 300 mM NaCl, 
300 mM sucrose 

DNA electrophoresis 10x TAE running buffer 0.4 M Tris, 0.2 M acetic acid, 10 
mM EDTA, pH 8.5  

 6x DNA loading buffer 40 % (w/v) sucrose, 0.5 M EDTA, 
0.2 %(w/v) bromophenol blue  

 DNA ladder 10 %(v/v) 6× loading buffer, 5 
%(v/v) 1 kb DNA ladder 
(ThermoFisher)  

SDS-PAGE 10x Tris-glycine running 
buffer   

250 mM Tris, 1.92 M glycine, 1 

%(w/v) SDS  

 2x SDS sample buffer 

(Lämmli buffer) 
60 mM Tris pH6.8, 4 %(w/v) SDS, 
200 mM DTT, 20 %(v/v) glycerol, 
0.2 %(w/v) bromophenol blue  

Immunoblotting TBST buffer 10 mM Tris, 150 mM NaCl, 0.05 
%(v/v) Tween 20, pH 7.5  

 10x transfer buffer 250 mM Tris, 1.92 M glycine, 1 
%(w/v) SDS, 20 %(v/v) 
Methanol  

 Ponceau-S Dilution of ATX Ponceau 
concentrate (Fluka) 1:5 in ddH2O  

Protein Extraction  Extraction- and wash 50 mM Tris (PH7.5), 150 mM 
NaCl, 10 % (v/v) Glycerol, 2 mM 
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buffer EDTA, 5 mM DTT, Protease 
inhibitor (Roche, 1 tablet per 50 
mL), 0.1 % Triton  

Arabidopsis protoplast 

preparation 

Digestion enzyme solution 1.5% cellulose R10, 0.4% 
macerozyme R10 (SERVA), 0.4 M 
mannitol, 20 mM KCl, 20 mM 
MES (PH5.7), 55 °C for 10 min 
followed by cooling to room 
temperature before adding 10 mM 
CaCl2, 0.1% BSA (Sigma A-6793)  

 PEG 40 % (w/v) 

transformation solution 
4 g PEG 4000 (Sigma-Aldrich, 
#81240), 0.2 M mannitol, 0.1 M 
CaCl2   

 W5 wash buffer 154 mM NaCl, 125 mM CaCl2, 5 
mM KCl, 2 mM MES (pH 5.7)  

 MMg resuspension 

solution 
0.4 M mannitol, 15 mM MgCl2, 4 
mM MES (pH 5.7)  

N. benthamiana transient 

expression 

infiltration solution 10 mM MES, 10 mM MgCl2, 
pH5.6, 0.15 mM acetosyringone  

Pst infection infiltration solution 10 mM MgCl2 
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4.2 Methods  

4.2.1 Plant methods 

4.2.1.1 Maintenance and cultivation of Arabidopsis thaliana plants 
Arabidopsis seeds were sown on moist soil supplemented with 10 mg/l Confidor® WG 70 

(Bayer, GER) and vernalised in the dark for 48 h at 4 °C. After this, seeds for experiments 

were covered with a propagator lid and placed in growth chambers with the following 

conditions: 10 h light, 14 h dark, ~ 150 μmol m−2 s−1, 22 °C, 65 % humidity. Seeds that were 

sown for plant propagation or crossings were grown in "fast breeding" settings: 22 h light, 2 

h dark, ~ 150 μmol m−2 s−1, 22 °C, 65 % humidity. Propagator lids were removed 5 - 7 days 

after germination. For seed collection mature plants were wrapped in a breathable plastic 

bag and harvested once plants had dried completely. 

4.2.1.2 Agrobacterium tumefaciens mediated transformation of Arabidopsis 
("floral dip") 

To obtain stably transformed Arabidopsis plants I used the well-established "floral dip" 

method (Clough et al. 1998). Stems of Arabidopsis plants grown under the aforementioned 

fast breeding conditions were cut once after inflorescences set to promote the number of 

shoots. Ca. 5-week-old plants were then dipped in 5 % sucrose, 0.01 % Silwet L-77 solution 

containing the Agrobacteria (OD600 = 1.5). Inflorescences were submerged for 45 sec with 

gentle agitation, then dapped on tissue to remove excessive solution and covered in plastic 

bags for 24 h without direct exposure to light. After this the plastic bags were removed and 

plants were grown in the greenhouse.  

4.2.1.3 Crossing of Arabidopsis plants 
To cross genetically defined backgrounds, Arabidopsis plants were grown until 

inflorescence emergence. Flowers with immature pollen, but fully developed stigma were 

emasculated and received donor pollen via dabbing donor stamen onto each stigma. Cross-

pollinated stigmata were sealed in paper bags and left to set seeds. Progeny was then 

analysed for segregation and desired gene combinations.  
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4.2.1.4 Isolation of Arabidopsis mesophyll protoplasts 
For preparation of Arabidopsis mesophyll protoplasts I used an adapted version of the 

protocol published by the Sheen group (Yoo et al. 2007). Arabidopsis plants of defined 

genetic backgrounds were grown and leaves were harvested 4.5 weeks after sowing. Ca. 20 

leaves were stacked and cut on tissue with a razor blade into 1 mm thin stripes. Cut leaves 

were placed in enzyme solution (see section 4.1.11) immediately and vacuum infiltrated 

twice for 5 min each. The digestion mix was then incubated at RT for 3 h with gentle 

shaking (30 rpm). To isolate the protoplasts, the solution was filtered through a nylon mesh 

(100 µm), collected in a flacon tube and washed with the same volume W5 buffer. Cells 

were centrifuged at 100 g, RT, 1 min. The wash was repeated twice followed by incubating 

the cells on ice for 30 min. After this, protoplasts were spun down and resuspended in MMg 

solution to the desired volume (5x105 protoplasts/ml). 200 µl protoplasts were added to the 

prepared plasmid combinations, mixed, and transformed by adding 220 µl PEG 4000 

solution. Tubes were inverted 3 times and incubated at RT for 12 min before the 

transformation was stopped by adding 800 µl W5 buffer. Cells were centrifuged (100 g, RT, 

2 min), washed with 1 ml W5 buffer, and finally resuspended in 1 ml fresh W5 buffer. 

Samples were taken 14 h after transformation by either adding RNA extraction buffer, 

Lämmli buffer, or IP extraction buffer and processed accordingly. For Immunoprecipitation 

assays all volumes were scaled up 10 times. 

 

4.2.2 Bacterial methods 

4.2.2.1 E. coli 
In general, E. coli laboratory strains were grown at 37 °C in LB medium supplemented with 

the respective antibiotic to ensure plasmid maintenance. 

Transformation of chemically competent E. coli cells was performed as follows: 50 µl 

competent cells were thawed on ice and incubated with 2 - 10 ng plasmid DNA for 10 min 

on ice. The mixture was heat shocked using a water bath at 42 °C for 30 sec and was 

immediately put to ice for 2 min. After adding 700 µl LB medium, cells were incubated at 

37 °C and 200 rpm for 1 h to allow expression of the resistance cassette. Cells were then 

centrifuged (6000 g, 1 min) and resuspended in 200 µl of which 100 µl were plated on 

selective LB media plates. 
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4.2.2.2 A. tumefaciens 
Agrobacteria were grown in liquid or solid YEB medium with respective antibiotic 

resistance at 28 °C for 1 - 2 days.  

Agrobacteria were transformed via electroporation. Electro competent cells were incubated 

with 20 ng plasmid DNA for 10 min on ice before being transferred to a precooled 

electroporation cuvette (1 mm, Eurogentec, BE). The BioRad Gene Pulser Xcell™ with the 

following settings was used for electroporation. 25 μF, 2.5 kV, 5 ms, and 400 Ω. After 

pulsing, cells were supplied with 700 µl YEB medium immediately and incubated at 28 °C, 

200 rpm for 2 h to allow resistance cassette expression. To obtain single colonies, 50 µl of 

cells were plated on selective LB media plates. 

For Nicotiana benthamiana infiltration Agrobacteria were grown on plate overnight and 

resuspended in infiltration medium with an adjusted OD600 = 0.2. A needleless syringae was 

used to infiltrate the abaxial side of mature leaves. 

4.2.2.3 P. syringae 
Pseudomonas syringae strains were grown on selective NYGA plates at 28 °C for 2 days. 

Stock plates were kept for 2 weeks at 4 °C before being re-streaked.  

For infection experiments, bacteria were streaked on fresh plates and grown overnight 

before being resuspended in infiltration medium and infiltrated in the abaxial leaf side using 

a needleless syringae. General infection assays were performed by infiltrating Pst with an 

OD600  = 0.002. Samples were taken either 6 hpi or 24 hpi.  

For infection of plants for nLC-MS/MS analysis bacterial OD600 was adjusted to 0.1 and 

samples were taken at 6 hpi.  

After infiltration, plants were covered with a propagator lid for 6 h to ensure high humidity. 

In general, plants were always infiltrated at 10 a.m. to avoid influence by the circadian 

rhythm.  
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4.2.3 Biochemical methods 

4.2.3.1 Total protein extraction for immunoblot analysis 
Plant tissue was collected from 4-week-old Arabidopsis plants and snap frozen in liquid 

nitrogen followed by homogenisation with the Qiagen TissueLyser II (Qiagen, Hilden, 

GER). 50 - 100 µl Lämmli Buffer were added to the powder, vortexed, boiled at 95 °C for 

10 min, and centrifuged at 14000 rpm, 4 °C, 5 min. Supernatant was transferred to a new 

tube and used for immunoblot analysis or stored at -20 °C. 

4.2.3.2 Immunoprecipitation of transiently expressed protein  
For immunoprecipitation of proteins expressed in Arabidopsis protoplasts, cells were 

harvested by centrifugation (100 g, 1 min) followed by adding 600 µl extraction buffer 

directly to the cells. Samples were incubated on ice for 5 min with interspersed vortexing 

before being centrifuged for 2 min, 4 °C, 14000 rpm. 50 µl supernatant were taken as input 

sample. For immunoprecipitation, 12 µl of GFP-Trap or myc-Trap (Chromotek, Martinsried, 

GER) or ANTI-FLAG® M1 Gel (Sigma-Aldrich) were added to the supernatant and 

incubated on a rotating mixer for 2.5 h at 4 °C. After incubation, beads were spun down at 

2500 g at 4 °C for 2 min and washed 4 times with 1 ml extraction buffer. To elute the 

protein, 100 µl of Lämmli buffer were added to the beads and heated to 95 °C, 10 min with 

3 vortex steps. Finally, the eluted beads were collected at the bottom by centrifugation 

(14000 rpm, 4 °C, 1 min) and supernatant was transferred to a fresh tube and used for 

immunoblot analysis or stored at -20 °C. 

 

4.2.3.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
To separate proteins based on their size, the Mini-PROTEAN 3 SDS-PAGE system 

(BioRad) was used. Samples were extracted in Lämmli buffer and boiled at 95 °C for 10 

min. Samples were loaded on discontinuous, self-cast polyacrylamide gels (8 - 10 % for 

running gel, see table 9, and 6 % for stacking gel, see table 10) with 1.5 mm width. 

Electrophoresis took place in 1x Running buffer at 80 V for 15 min, followed by 120 V for 

70 - 90 min. As protein size marker 3 µl of the PageRuler™ Prestained Protein Ladder 

(ThermoFisher) were loaded. 
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Table 9 - Composition SDS PAGE running gels (for 4 1.5 mm gels) 

Component 8 % running gel 10 % running gel 

ddH2O 18.5 ml 15.7 ml 

1.5 M Tris-HCl pH 8.8 10 ml 10 ml 

10 % SDS 400 µl 400 µl 

30 % Acrylamide/Bis solution 29:1 10.7 ml 13.3 ml 

10 % APS 400 µl 400 µl 

TEMED 25 µl 25 µl 

 

Table 10 - Composition SDS-PAGE stacking gel (for 4 1.5 mm gels) 

Component 6 % stacking gel  

ddH2O 9 ml 

0.5 M Tris-HCl pH 6.8 4 ml 

10 % SDS 160 µl 

30 % Acrylamide/Bis solution 29:1 2.6 ml 

10 % APS 160 µl 

TEMED 25 µl 

 

4.2.3.4 Immunoblot analysis 
After successful SDS-PAGE proteins were transferred to a Hybond™-ECL™ nitrocellulose 

membrane (GE Healthcare, Freiburg, GER). For this the BioRad Mini Trans-Blot® cell 

system was employed. Gels were submerged for 10 min in ice-cold 1x transfer buffer and 

transfer cassettes were assembled to the manufacturer's instructions. Transfer was performed 

at 100 V for 70 min at 4 °C. To avoid high background signal after immunoblotting, 

membranes were blocked with 5 % (w/v) low-fat milk TBST solution for 60 min at RT on a 

shaker (50 rpm). Primary antibodies were diluted in 2 % (w/v) milk TBST solution (see 

table 4) and blocked membranes were incubated with the primary antibody over night at 4 

°C on a shaker (50 rpm). In the morning, membranes were washed 3 times with TBST (5 

min each) and then incubated with secondary antibody diluted in 2 % (w/v) milk TBST at 

RT for 60 min at 50 rpm. Primary antibodies bound by protein of interest were detected with 

a horseradish peroxidase (HRP) conjugated secondary antibody. After 4 washes with TBST 

(5 min each) membranes were supplied with the BioRad Clarity™ or Clarity Max™ 
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Western ECL Substrate. For highly abundant proteins Clarity substrate was used. For low 

abundance proteins a 1:1 ratio of Clarity™:Clarity Max™ or pure Clarity Max™ was used. 

Chemiluminescence was detected with the BioRad ChemiDoc™ XRS+ system. 

4.2.3.5 Immunoprecipitation for nLC-MS/MS 
Immunoprecipitation for nLC-MS/MS analysis was performed with tissue from stable 

transgenic Arabidopsis plants. For infiltration process please see chapter 4.2.2.3. For each 

sample 1 g of leaf tissue was collected and snap frozen. Tissue was then homogenised by 

using a pestle and mortar and afterwards by using the Precellys® Evolution Homogeniser at 

7500 rpm, 10 sec, 3 repeats (VWR, Darmstadt, GER). The powder was then resuspended in 

8 ml immunoprecipitation extraction buffer supplemented with PhosSTOP phosphatase 

inhibitor to prevent protein dephosphorylation. After 4 centrifugation steps (14000 rpm, 4 

°C, 10 min) I took 50 µl as input control and added 30 µl ANTI-FLAG® M1 Gel to each 

sample. Immunoprecipitation was performed for 3 h at 4 °C on a rotating mixer. Beads were 

collected by centrifugation at 2500 rpm, 4 °C, 2 min and washed with extraction buffer 4 

times. Protein was eluted from beads by adding 100 µl 0.1 % TFA (Trifluoroacetic acid), 

incubated 10 min at RT and neutralised by adding 100 µl 8 M urea. Samples were stored at  

-20 °C until further processing. 

 

4.2.3.6 nLC-MS/MS analysis 
Immunoprecipitated proteins in 4 M urea 50 mM Tris-HCl pH 8.5 were reduced with 

dithiothreitol, alkylated with chloroacetamide, and digested with trypsin (1:100) over night. 

Samples were desalted using stage tips with C18 Empore disk membranes (3 M, Neuss, 

GER) (Rappsilber et al. 2003). For data acquisition, dried peptides were re-dissolved in 10 

µL 2 % acetonitrile (ACN), 0.1% Trifluoroacetic acid (TFA). Samples were analysed using 

an EASY-nLC™ 1200 coupled to a Q Exactive™ Plus mass spectrometer (both 

ThermoFisher). Peptides were separated on 16 cm frit-less silica emitters (New Objective, 

0.75 µm inner diameter), packed in-house with reversed-phase ReproSil-Pur C18 AQ 1.9 

µm resin (Dr. Maisch). 5 µl of peptides were loaded on the column and eluted for 115 min 

using a segmented linear gradient of 5% to 95% solvent B (0 min: 5 % B; 0-5 min -> 5 % B; 

5-65 min -> 20 % B; 65-90 min -> 35 % B; 90-100 min -> 55 %; 100-105 min -> 95 %, 

105-115 min -> 95 %) (solvent A: 0 % ACN, 0.1 % formic acid (FA); solvent B: 80 % 

ACN, 0.1 % FA) at a flow rate of 300 nl/min. Mass spectra were acquired in data-dependent 
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acquisition mode with a TOP15 method by using an Orbitrap analyser with a mass range of 

300–1750 m/z at a resolution of 70,000 FWHM (Full Width at Half Maximum) and a target 

value of 3×106 ions. Precursors were selected with an isolation window of 1.3 m/z. HCD 

(High-energy collisional dissociation) fragmentation was performed at a normalised 

collision energy of 25. MS/MS spectra were acquired with a target value of 105 ions at a 

resolution of 17,500 FWHM, a maximum injection time (max.) of 120 ms and a fixed first 

mass of m/z 100. Peptides with a charge of +1, greater than 6, or with unassigned charge 

state were excluded from fragmentation for MS/MS, dynamic exclusion for 30 s prevented 

repeated selection of precursors. 

For data analysis obtained data was processed using MaxQuant software (version 1.5.7.4, 

http://www.maxquant.org/) (Cox et al. 2008) with label-free quantification (LFQ) and iBAQ 

enabled (Tyanova et al. 2016). MS/MS spectra were searched by the Andromeda search 

engine against a combined database containing the sequences from Arabidopsis 

(TAIR10_pep_20101214), the sequence of MYC2-flag and sequences of 248 common 

contaminant proteins and decoy sequences. Further, trypsin specificity was required and a 

maximum of two missed cleavages allowed. Minimal peptide length was set to seven amino 

acids. Carbamidomethylation of cysteine residues was set as fixed, phosphorylation of 

serine, threonine and tyrosine, oxidation of methionine and protein N-terminal acetylation 

were set as variable modifications. Peptide-spectrum-matches and proteins had to pass a 

false discovery rate of 1 %.  

Alternatively, raw data was processed with Proteome Discoverer software (version 

2.2.0.388, ThermoFisher). MS/MS spectra were searched using the Sequest HT function 

implemented in Proteome Discoverer software; using a database containing the sequences 

from Arabidopsis (TAIR10_pep_20101214), the sequence of MYC2-flag and sequences of 

248 common contaminant proteins and decoy sequences. Mass tolerances were set to 10 

ppm for precursor and 0.02 Da for fragment ion masses, respectively. Trypsin was set as 

protease with two allowed missed cleavages and the minimum peptide length was set to 6 

amino acids. Carbamidomethylation of cysteine residues was set as fixed, phosphorylation 

of serine, threonine and tyrosine, oxidation of methionine and protein N-terminal acetylation 

were set as variable modifications. Peptide spectrum match validation was carried out using 

the Percolator function implemented in Proteome Discoverer software. Only high confident 

peptide identifications with false discovery rates ≤ 1 % were considered in the analysis. 

 

http://www.maxquant.org/
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4.2.4 Molecular biological methods 

4.2.4.1 Isolation of genomic DNA (quick and dirty prep) 
Fresh leaf material (ca. 0.5 cm2) was collected in a test tube and crushed with a pestle. 400 

µl DNA extraction buffer were added to the tube and vortexed. The mixture was cleared by 

centrifugation at 13000 rpm, RT, 3 min. 300 µl supernatant were transferred to a new tube 

and DNA was precipitated by adding 300 µl isopropanol. Tubes were centrifuged at 13000 

rpm, RT, 5 min, washed in 600 µl 70 % EtOH and dried at 40 °C for 5 - 10 min. Dried DNA 

was resuspended in 50 µl ddH2O and samples were kept at 4 °C. 

4.2.4.2 Isolation of genomic DNA (sucrose prep) 
For large numbers of DNA extraction (e.g. for genotyping) I used a method based on 

sucrose that allows DNA extraction in a 96 well plate format (Berendzen et al. 2005). Few 

mg of leaf material were collected in collection tubes (Qiagen) containing one metal bead. 

200 µl sucrose solution were added to each tube and samples were homogenised with 

TissueLyser II (Qiagen). Tubes were then centrifuged at 1000 g, RT for 1 min and then 

placed in a water bath for 15 min at 97 °C. After this, samples were placed on ice for 30 

min, before 1 µl of solution was used for PCR analysis. DNA extracted by this method 

should not be frozen and can be used for up to 7 days. 

4.2.4.3 Isolation of total RNA 
Total RNA was extracted from 4-week-old Arabidopsis plants or Arabidopsis protoplasts by 

using the Plant RNA Kit (Bio-Budget, Krefeld, GER) according to the provided instructions. 

Briefly, samples were homogenised in extraction buffer, loaded on DNA binding columns to 

remove gDNA, precipitated, loaded on RNA binding columns, washed, dried and eluted into 

collection tubes. RNA was processed immediately or stored at -80 °C. 

4.2.4.4 Polymerase Chain Reaction (PCR) 
For standard PCRs I used non-proofreading Phire II DNA polymerase (ThermoFisher), 

while for cloning purposes I used proofreading Phusion HF polymerase (ThermoFisher) or 

Takara PrimeStar (CloneTech). An overview of used polymerases can be found in table 5. 

PCR mix was identical for all polymerases and is shown in table 11. The thermal cycling 

program was adjusted to each polymerase and is shown in table 12. 
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Table 11 - PCR reaction mix  

Component Volume 

10x PCR buffer 2 µl 

dNTP mix (2.5 mM) 1.6 µl 

forward primer (10 µM) 1 µl 

reverse primer (10 µM) 1 µl 

template DNA 0.2 - 10 ng 

polymerase 0.2 - 0.5 µl 

ddH2O to 20 µl 

 

Table 12 - Thermo-cycling programs 

Stage Temperature (°C) Time (Phire II) Time (Phusion, 

Takara) 

Cycles 

Initiation 95 30 sec 5 min 1x 

Denaturation 95  10 sec 10 sec 

30 - 35x Annealing 55 - 60 15 sec 30 sec 

Elongation 72 15 sec/kb 30 sec/kb 

Final extension 72 5 5 1x 

 

 

4.2.4.5 Site-directed Mutagenesis 
To mutate specific nucleotides in a sequence of interest site-directed mutagenesis was 

performed with minor alterations according to the instructions of the QuickChange Site-

Directed Mutagenesis Kit (Agilent, Waldbronn, GER). PCR mix can be seen in table 11. 

Thermo-cycling program differed to the one shown in table 12 in the sense that the PCR was 

stopped after 18 cycles in order to avoid PCR induced sequence mistakes. 

To remove template plasmid from the reaction the methylation sensitive restriction enzyme 

DpnI (NEB) was used. 1 µl DpnI was added to 20 µl PCR mix and incubated for 1 h at 37 

°C. As template DNA is methylated it will be digested, while the mutagenesis carrying non-

methylated DNA will not be affected. 5 µl of digested PCR mix were transformed into 

DH10b and plated on selective LB plates for colony isolation and further cloning. 
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4.2.4.6 cDNA Synthesis 
Total RNA was isolated as described in section 4.2.4.3 and 250 - 1000 ng were used for 

cDNA synthesis. I used cDNA Synthesis SuperMix (Bimake) following manufacturer's 

instructions and diluted cDNA 1:1 when using 250 ng total RNA and 1:5 when using 1000 

ng total RNA. cDNA was stored at -20 °C. 

4.2.4.7 quantitative reverse-transcription PCR (qRT-PCR) 
qRT-PCR was performed with a BioRad CFX96 Touch™ Real-Time PCR Detection 

System. For details see table 13 and table 14. Primer sequences can be found in table 6. For 

data analysis CFX Maestro™ Software (BioRad) was used. 

 

Table 13 - qRT-PCR reaction mix 

Component Volume 

SYBR® Green Supermix 5 µl 

forward primer (10 µM) 0.5 µl 

reverse primer (10 µM) 0.5 µl 

template cDNA 1 µl 

ddH2O to 10 µl 

 

Table 14 - qRT-PCR thermo-cycling program  

Stage Temperature (°C) Time  Cycles 

Initiation 95 30 sec 1x 

Denaturation 95  10 sec 

40x Annealing 55  15 sec 

Elongation 72 10 sec  

Melt Curve 60 - 95   5 sec per 0.5 °C 1x 

 

4.2.4.8 Plasmid DNA isolation from bacteria 
For standard plasmid prep the NucleoSpin® Plasmid Kit (Macherey-Nagel, Düren, GER) 

was used to the manufacturer's instructions. For prepping Agrobacteria the low copy 

protocol was used. 

Protoplast transformation requires large amounts of high quality DNA. For this purpose, the 

NucleoBond® Xtra Maxi Kit (Macherey-Nagel) was used. Typically, 250 ml of bacterial 
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culture were grown and DNA was purified using NucleoBond® Finalizers yielding ~1 mg 

DNA. 

4.2.4.9 Restriction endonuclease digestion of DNA 
DNA digestion was performed to the respective enzyme manufacturer's instructions. 

Typically, 5 - 15 µl DNA were mixed with reaction buffer, 0.3 µl enzyme and brought to a 

final volume of 20 µl. The reaction was incubated at the correct temperature for 1 - 2 h and 

stored at 4 °C. 

4.2.4.10 Agarose gel electrophoresis of DNA 
If not pre-mixed, DNA was mixed with DNA loading dye and loaded on a 0.8 - 2 % (w/v) 

agarose gel in TAE buffer. Typically, gels were run at 120 V for 30 - 45 min. Agarose gels 

were supplemented with 0.2 mg/l ethidium bromide and visualised on a 312 nm UV trans-

illuminator.  

4.2.4.11 DNA purification from agarose gels 
Separated DNA fragments were illuminated on an UV trans-illuminator and cut out with a 

clean razor blade. For further processing the PCR clean-up and gel extraction kit (Macherey-

Nagel) was used to the manufacturer's instructions.  

4.2.4.12 Gateway® DNA cloning 
In this work I mainly used the Gateway® system for DNA cloning (ThermoFisher). To 

create entry clones the sequence of a gene of interest was amplified by PCR adding a 5' 

“CACC” 3' overhang upstream of the start codon. Purified PCR product was then ligated 

into the pENTR™/TOPO-D™ vector (ThermoFisher) following the manufacturer's 

instructions and 2 µl were transformed into E. coli. To create expression clones a LR 

reaction was performed using Gateway LR Clonase II mix (ThermoFisher). Typically, 

reactions were incubated for 1 h at RT and 2 µl were transformed into E. coli (DH10b).  For 

reaction mix see table 15.  

 

Table 15 - LR reaction mix 

Component Volume / Amount 

ENTR clone 25 - 75 ng 
destination clone 75 ng 
ddH2O to 4 µl 
LR Clonase II mix  1 µl 
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4.2.4.13 Golden Gate DNA cloning 
Golden Gate cloning was performed as published (Engler et al. 2008, Weber et al. 2011, 

Engler et al. 2014, Patron et al. 2015). Concretely, for level 0 constructs, DNA was 

amplified using primers with overhangs containing BpiI restriction sites, and a 4 nucleotide 

attachment overhang (5' “TACA” 3'). A typical Golden Gate reaction and the thermo-

cycling conditions are shown in table 16 and table 17, respectively. 2 µl of reaction mix 

were transformed into chemically competent E. coli (DH10b) and plated on selective LB 

plates. 

 

Table 16 - Golden Gate reaction mix 

Component Volume 

10x FastDigest buffer 2 µl 

10 mM ATP 2 µl 

plasmid (insert) 50 ng 

plasmid (backbone 15 ng 

ddH2O to 20 µl 

HF restriction enzyme (BpiI or BsaI) 0.5 µl 

T4 DNA ligase* 0.5 µl 

* For level 0 construction T4 DNA ligase, 1 U/µl was used. More complex assemblies like 

level 1 construction were performed with T4 DNA ligase, HC 30 U/µl. 

 

Table 17 - Thermo-cycling Golden Gate reaction  

Stage Temperature (°C) Time  Cycles* 

digestion 37 5 min 
8 - 50x 

ligation 16  5 min 

inactivation 1 55  5 min 1x 

inactivation 2 85 5 min 1x 

* For level 0 construction 8 cycles were sufficient. More complex assemblies like level 1 

construction were performed with 30 - 50 cycles overnight. 
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4.2.4.14 DNA sequencing 
DNA sequencing was carried out by Eurofins Genomics (Ebersberg, GER) using their 

Mix2Seq kit. Instructions were followed precisely.  

4.2.4.15 In silico sequence analysis 
All sequence data was modified and analysed using CLC Main Workbench software 

(Qiagen).  

For phylogenetic protein alignment, protein sequences were obtained via the Phytozome 

database (http://phytozome.jgi.doe.gov), aligned via MUSCLE 

(https://www.ebi.ac.uk/Tools/msa/muscle), and coloured via BoxShade 

(https://embnet.vital-it.ch/software/BOX_form). 
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