
Technical Report Series

Center for Data and Simulation Science

Axel Klawonn, Martin Lanser, Oliver Rheinbach, Janine Weber

Preconditioning the coarse problem of BDDC methods - Three-
level, algebraic multigrid, and vertex-based preconditioners

Technical Report ID: CDS-2019-14
Available at https://kups.ub.uni-koeln.de/id/eprint/9713

Submitted on June 18, 2019

https://kups.ub.uni-koeln.de/id/eprint/9713


PRECONDITIONING THE COARSE PROBLEM OF BDDC
METHODS - THREE-LEVEL, ALGEBRAIC MULTIGRID, AND

VERTEX-BASED PRECONDITIONERS˚

AXEL KLAWONN: ; , MARTIN LANSER: ; , OLIVER RHEINBACH§ , AND JANINE WEBER:

June 17, 2019
Abstract. A fair comparison of three Balancing Domain Decomposition by Constraints (BDDC)
methods with an approximate coarse space solver is attempted for the first time. The comparison
is made for a BDDC method with an algebraic multigrid preconditioner for the coarse problem, a
three-level BDDC method, and a BDDC method with a vertex-based coarse preconditioner which
was recently introduced by Clark Dohrmann, Kendall Pierson, and Olof Widlund. For the first time,
all methods are presented and discussed in a common framework. Condition number bounds are
provided for all approaches. All methods are implemented in a common highly parallel scalable
BDDC software package based on PETSc, to allow for a fair comparison. Numerical results showing
the parallel scalability are presented for the equations of linear elasticity. For the first time, this
includes parallel scalability tests for the vertex-based approximate BDDC method.

Key words. approximate BDDC, three-level BDDC, multilevel BDDC, vertex-based BDDC
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1. Introduction. During the last decade, approximate variants of the BDDC
(Balancing Domain Decomposition by Constraints) and FETI-DP (Finite Element
Tearing and Interconnecting - Dual-Primal) methods became popular for the solution
of various linear and nonlinear partial di↵erential equations [19, 8, 24, 23, 1, 16, 18, 13,
15, 9]. These methods di↵er from their exact relatives by an approximate solution of
components of the preconditioner, most notably the coarse problem. An approximate
solution of the coarse problem can reduce the numerical robustness slightly, but can
increase the scalability of the method significantly. While multilevel BDDC, see [24,
23, 20, 21] and, recently, [1], is constructed by applying exact BDDC recursively to
the coarse problem, in other approximate BDDC variants cycles of AMG (algebraic
multigrid) are applied to the coarse problem; see, e.g., [19, 8, 14]. Recently, vertex-
based coarse spaces of reduced size have been suggested to approximate the original
coarse system [9].

In [14], we already considered, in a common framework, several linear and nonlin-
ear BDDC variants using AMG-based approximations, following the BDDC formula-
tion from [19] for linear problems. We also compared their performance using our ultra
scalable PETSc-based [4, 5, 6] BDDC implementation, applying BoomerAMG [11] for
all AMG solves. In the current paper, we continue these e↵orts and include the afore-
mentioned vertex-based BDDC as well as three-level and multilevel BDDC in our
framework as well as in our software package. In addition to a description of all
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methods and their condition number bounds, we also include a numerical and parallel
comparison. To the best of our knowledge, a comparison between three-level BDDC
and BDDC with AMG-based coarse approximations, using implementations based on
the same building blocks, to allow for a fair comparison, has not been considered
before. Also, for the first time, parallel scalability tests for the vertex-based BDDC
method [9] are presented.

As a common baseline in all our comparisons, we include the approximate AMG-
based preconditioner which performed best in [14]. This specific variant is also related,
but not identical to three preconditioners suggested in [8]. This was already discussed
in [14] in detail.

The remainder of this paper is organized as follows: In section 2, we introduce
the model problem, outline the domain decomposition approach, and present an ex-
act BDDC preconditioner for the globally assembled system. In sections 3 and 4,
we describe three di↵erent approximate BDDC preconditioners in a common frame-
work. Namely, we consider an approximate BDDC preconditioner using AMG, a
three-level BDDC method, and a vertex-based BDDC preconditioner using a Gauss-
Seidel method. Section 5 gives the theory and the condition number bounds for
all three aforementioned approximate BDDC preconditioners. In section 6, we pro-
vide some details of our parallel implementation. In particular, we implemented all
three approximate preconditioners with the same building blocks, which allows us to
directly compare the methods with each other regarding their computing time and
parallel scalability. Finally, in section 7, we present comparing results in three spatial
dimensions. For all our numerical tests, we consider linear elasticity problems.

2. Exact BDDC preconditioner and model problem.

2.1. Linear elasticity and finite elements. We consider an elastic domain
⌦ Ä R3. We denote with u : ⌦ Ñ R3 the displacement of the domain, with f a given
volume force, and with g a given surface force onto the domain, respectively. In par-
ticular, we assume that one part of the boundary of the domain, B⌦D, is clamped, i.e.,
has homogeneous Dirichlet boundary conditions, and that the rest, B⌦N :“ B⌦zB⌦D,
is subject to the surface force g, i.e., a natural boundary condition.

With H1p⌦q :“ pH1p⌦qq3, the appropriate space for a variational formulation is
the Sobolev space H1

0p⌦, B⌦Dq :“ tv P H1p⌦q : v “ 0 on B⌦Du. The problem of
linear elasticity then consists in finding the displacement u P H1

0p⌦, B⌦Dq, such that

(2.1)

ª

⌦
Gpxq "puq : "pvq dx `

ª

⌦
Gpxq�pxq divu divv dx “ xF,vy,

for all v P H1
0p⌦, B⌦Dq for given material parameters G and � and the right-hand side

xF,vy “
ª

⌦
fTv dx `

ª

B⌦N

gTv d�.

The material parameters G and � depend on the Young modulus E ° 0 and the
Poisson ratio ⌫ P p0, 1{2q by G “ E{p1 ` ⌫q and � “ ⌫{p1 ´ 2⌫q. Furthermore, the

linearized strain tensor " “ p"ijqij is defined by "ijpuq :“ 1
2 p Bui

Bxj

` Buj

Bxi

q, and we use

the notation

"puq : "pvq :“
3ÿ

i,j“1

"ijpuq"ijpvq and p"puq, "pvqqL2p⌦q :“
ª

⌦
"puq : "pvq dx.
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The corresponding bilinear form associated with linear elasticity can then be
written as

apu,vq “ pG "puq, "pvqqL2p⌦q ` pG� div u, div vqL2p⌦q.

We discretize our elliptic problem of linear elasticity by low order, conforming finite
elements and thus obtain the linear system of equations

(2.2) Kgu “ fg.

2.2. Exact BDDC preconditioner for the assembled system. The exact
BDDC preconditioner formulation from [19] is applied directly to the system (2.2).

Given is a nonoverlapping domain decomposition ⌦i, i “ 1, . . . , N, of ⌦ such that
⌦ “ î

N

i“1 ⌦i. Each subdomain ⌦i is a union of finite elements, Wi, i “ 1, . . . , N , are
the local finite element spaces, and the product space is defined byW “ W1ˆ¨ ¨ ¨ˆWN .
The global finite element space V

h corresponds to the discretization of ⌦ and we
assume to have an assembly operator R

T , where R
T : W Ñ V

h. By discretization
of the given partial di↵erential equation restricted to ⌦i, we obtain a set of local
problems

Kiui “ fi, i “ 1, ¨ ¨ ¨ , N.

Defining the block operators

K “

¨

˚̋
K1

. . .
KN

˛

‹‚ , f “

¨

˚̋
f1
...
fN

˛

‹‚,

we can write Kg :“ R
T
KR and fg :“ R

T
f . Finally, the interface between the

subdomains is defined as � :“ î
N

i“1 B⌦izB⌦.
We use the index � for degrees of freedom on � and for the remaining degrees of

freedom despite the Dirichlet boundary B⌦D, we use the index I. For the construction
of a BDDC preconditioner directly applicable to the assembled linear system Kgu “
fg, the interface � is split into primal (⇧) and the remaining dual (�) degrees of
freedom. Usually, vertices are chosen as primal variables and the coarse space is
augmented by averages over edges and/or faces.

Let us introduce the space ÄW Ä W of functions, which are continuous in all
primal variables, and the assembly operators qRT and rRT with qRT : W Ñ ÄW and
rRT : ÄW Ñ V

h. Using qR, we can form the partially assembled system

(2.3) rK :“ qRT
K qR

and can also obtain the globally assembled finite element matrix Kg from rK by

(2.4) Kg “ rRT rK rR.

We denote the interior and interface variables with the indices I and �, respectively.
Ordering the interior variables first and the interface variables last, we obtain

(2.5) rK “
˜

KII
rKT

�I
rK�I rK��

¸
.
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The matrix KII is block-diagonal and applications of K´1
II

only require local solves
on the interior parts of the subdomains and are thus easily parallelizable. We
further introduce the union of subdomain interior (I) and dual (�) interface degrees
of freedom as an extra set of degrees of freedom denoted by the index B. The index
B thus leads to an alternative representation of the partially assembled system rK as

(2.6) rK “
˜
KBB

rKT

⇧B
rK⇧B rK⇧⇧

¸
.

Like KII , the matrix KBB is a block-diagonal matrix and applications of K´1
BB

only
require local solves.

Adding usual scalings, e.g., ⇢-scaling [17] or deluxe-scaling [7], to the prolongation

operators and thus defining rRD : V h Ñ ÄW , we obtain the BDDC preconditioner for
Kg by

(2.7) M
´1
BDDC :“

´
rRT

D
´ HPD

¯
rK´1

´
rRD ´ P

T

D
H

T

¯
;

see [19]. Here, the operator H : ÄW Ñ V
h is the discrete harmonic extension to the

interior of the subdomains given by

(2.8) H :“
ˆ

0 ´ pKIIq´1 rKT

�I
0 0

˙
.

Finally, let PD : ÄW Ñ ÄW be a scaled jump operator defined by

(2.9) PD “ I ´ ED :“ I ´ rR rRT

D
.

The original definition often used in the literature is PD :“ B
T

D
B; see [22, Chapter 6]

and [19] for more details. There, B is the jump matrix used in FETI-type methods.
Please note that in the standard definition, the BDDC preconditioner is formulated
for the reduced interface problem, i.e., as

(2.10) M
´1
BDDC–�S�� :“ rRT

D,�
rS´1
��

rRD,�S��.

Here, the prolongation operator rRD,� is formed in the same way as rRD only

restricted to the interface variables �, and S�� and rS�� are the subdomain interface
Schur complements of the matrices Kg and rK, respectively. Let us remark that
the preconditioned system M

´1
BDDCKg has, except for some eigenvalues equal to 1,

the same spectrum as the standard BDDC preconditioner formulated on the Schur
complement; see [19, Theorem 1]. Here, we provide a related but slightly more direct
proof: We first explicitly write the BDDC preconditioner M´1

BDDC as

M
´1
BDDC :“

´
rRT

D
´ HPD

¯
rK´1

´
rRD ´ P

T

D
H

T

¯

“
˜
I K

´1
II

rKT

�IpI ´ rR� rRT

D,�q
0 rRT

D,�

¸
rK´1

ˆ
I 0

pI ´ rRD,�
rRT

� q rK�IK´1
II

rRD,�

˙

“
˜
I K

´1
II

rKT

�IpI ´ ED,�q
0 rRT

D,�

¸
rK´1

ˆ
I 0

pI ´ E
T

D,�q rK�IK´1
II

rRD,�

˙
.
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Using the block factorization

rK´1 “
ˆ
I ´K

´1
II

rKT

�I
0 I

˙ ˆ
K

´1
II

0

0 rS´1
��

˙ ˆ
I 0

´ rK�IK´1
II

I

˙
,

by a direct computation we obtain the alternative representation

M
´1
BDDC “

˜
K

´1
II

` K
´1
II

rKT

�IED,�
rS´1
��E

T

D,�
rK�IK´1

II
´K

´1
II

rKT

�IED,�
rS´1
��

rRD,�

´ rRT

D,�
rS´1
��E

T

D,�
rK�IK´1

II
rRT

D,�
rS´1
��

rRD,�

¸
.

The multiplication M
´1
BDDCKg finally yields

M
´1
BDDCKg “

ˆ
I U

0 M
´1
BDDC´�S��

˙

with U “ K
´1
II

KI� ´ K
´1
II

K
T

�I
rRT

D,�
rS´1
��

rRD,�S��, with ED,� “ rR� rRT

D,�, and using

K�I “ rRT

�
rK�I . Here, M´1

BDDC´� is the classical BDDC preconditioner for the Schur
complement; see (2.10). The result then follows from the fact, that the eigenvalues
of a block-triangular matrix equal the union of the set of eigenvalues of the diagonal
blocks.

3. Approximate BDDC Preconditioners. All approximate BDDC methods
considered in this paper are based on an approximate solution of the coarse problem
of BDDC. To ensure a simple and fair comparison, all approximate preconditioners
are implemented using the same software framework; see also [13, 14].

By block factorization, we obtain

(3.1) rK´1 “
ˆ

K
´1
BB

0
0 0

˙
`

ˆ
´K

´1
BB

rKT

⇧B
I

˙
rS´1
⇧⇧

´
´ rK⇧BK´1

BB
I

¯
,

where rS⇧⇧ is the Schur complement

rS⇧⇧ “ rK⇧⇧ ´ rK⇧B K
´1
BB

rKT

⇧B .

Note that rS⇧⇧ represents the BDDC coarse operator. Replacing rS´1
⇧⇧ by an approxi-

mation pS´1
⇧⇧ in (3.1), we obtain an approximation for rK´1 by

(3.2) pK´1 “
ˆ

K
´1
BB

0
0 0

˙
`

ˆ
´K

´1
BB

rKT

⇧B
I

˙
pS´1
⇧⇧

´
´ rK⇧BK´1

BB
I

¯
.

Replacing rK´1 in (2.7) by pK´1, we define an approximation to the BDDC precondi-
tioner, i.e.,

(3.3) xM´1 :“
´

rRT

D
´ HPD

¯
pK´1

´
rRD ´ P

T

D
H

T

¯
.

For the remainder of the article, all approximate BDDC preconditioners are
marked with a hat. In the following sections, we compare three di↵erent approaches
to form pS´1

⇧⇧, e.g., for the approximation of the coarse solve:

a) using AMG (algebraic multigrid) denoted by xM´1
BDDC,AMG;

b) using exact BDDC recursively denoted by xM´1
BDDC,3L

c) using an exact solution of a smaller vertex-based coarse space denoted by
xM´1

BDDC,VB.

Let us remark that xM´1
BDDC,AMG was denoted xM´1

3 in [14].
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4. Examples of approximate BDDC preconditioners. In this section, we
give three examples of approximate BDDC preconditioners presented in the notation
introduced in section 3. First, we consider an approximate BDDC preconditioner
using AMG to precondition rS⇧⇧, second, a three-level BDDC method using BDDC
itself to precondition rS⇧⇧, and third, a vertex-based BDDC preconditioner using
a Jacobi/Gauss-Seidel method in combination with a vertex-based coarse space to
precondition rS⇧⇧.

4.1. BDDC Preconditioner with AMG coarse preconditioner. Let us
denote the application of a fixed number of V-cycles of an AMG method to rS⇧⇧ by
M

´1
AMG. By choosing M

´1
AMG in (3.2) as an approximation of rS⇧⇧, i.e., by choosing

pS´1
⇧⇧ :“ M

´1
AMG, we obtain

(4.1) pK´1
AMG “

ˆ
K

´1
BB

0
0 0

˙
`

ˆ
´K

´1
BB

rKT

⇧B
I

˙
M

´1
AMG

´
´ rK⇧BK´1

BB
I

¯
.

Again, by using pK´1
AMG as an approximation for rK´1 in (3.3), we obtain the inexact

reduced preconditioner xM´1
BDDC,AMG.

4.2. A Three-level BDDC. Alternatively, if we construct an exact BDDC
preconditioner pS´1

⇧⇧ for the Schur complement matrix rS⇧⇧, (3.3) will become a three-

level BDDC preconditioner xM´1
BDDC,3L. This approach is equivalent to the three-level

preconditioner introduced in [23], but formulated for the original matrix Kg. In [23],
the BDDC formulation for the Schur complement system on the interface is used and
applied recursively. Since we use the BDDC formulation for the complete system
matrix Kg, we consequently apply this approach to form the third level. We thus
follow Section 2.2 and mark all operators and spaces defined for the third level with
bars, e.g., I are the interior variables on the third level, while I are those on the
second level. In Section 5, we derive the same condition number bound as in [24, 23].

Let us now describe the application of BDDC to rS⇧⇧ in some more details. The
basic idea of the three-level BDDC preconditioner is to recursively introduce a fur-
ther level of the decomposition of the domain ⌦ into N subregions ⌦1

, ...,⌦N . Each
subregion comprises a given number of subdomains. All primal variables ⇧ on the
subdomain level are then again partitioned into interior, primal, and dual variables,
i.e., I,⇧, and �, with respect to the subregions; see also Figure 1 for a possible se-
lection in 2D. Now, in principle, the subdomains take over the role of finite elements
on the third level and the subregions the role of the subdomains. The basis functions
of the third level are the coarse basis functions of the second level, localized to the
subregions.

We therefore first define the space V
h

, which is spanned by all coarse basis func-
tions of the second level and denote by W i, i “ 1, ..., N the spaces which are spanned
by the restrictions of the coarse basis functions to the subregions ⌦i

, i “ 1, ..., N .
The product space W is now defined as W “ W 1 ˆ ... ˆ W

N
.

Using local Schur complements S
piq
⇧⇧ “ K

piq
⇧⇧ ´ K

piq
⇧BK

piq´1
BB

K
piqT
⇧B on the subdo-

mains and the block matrix S⇧⇧ “ diagpSp1q
⇧⇧, ..., S

pNq
⇧⇧ q, we can redefine

rS⇧⇧ “
Nÿ

i“1

R
piqT
⇧ S

piq
⇧⇧R

piq
⇧ ,

where R
T “

`
R

p1qT
, ..., R

pNqT ˘
and R

piq “ diag
´
R

piq
B
, R

piq
⇧

¯
, i “ 1, ..., N . Now we



PRECONDITIONING THE COARSE PROBLEM OF BDDC 7

can perform this assembly process only on the subregions, i.e.,

(4.2) Sj “
Njÿ

i“1

R
piqT
⇧ S

piq
⇧⇧R

piq
⇧ , @j “ 1, ..., N,

where Nj is the number of subdomains belonging to subregion ⌦j . Obviously, rS⇧⇧
takes over the role of Kg on the third level, while Sj takes over the role of Ki.

Consequently, defining a prolongation R : V
h Ñ W , we can also write

rS⇧⇧ “ R
T

S R,

with S “ diagpS1, ..., SN
q.

Let us introduce the space Ä
W Ä W of functions, which are continuous in all

primal variables ⇧ on the third level, and the assembly operators q
R

T

: W Ñ Ä
W and

r
R

T

: Ä
W Ñ V

h

. Using q
R, we can form the partially assembled system

(4.3) r
S :“ q

R

T

S
q
R.

Adding scalings to the prolongations as before and thus defining r
RD : V

h Ñ Ä
W , we

obtain the BDDC preconditioner for the third level by

(4.4) M
´1
BDDC :“

ˆ
r
R

T

D
´ HPD

˙
r
S

´1 ´r
RD ´ P

T

D
H

T
¯
.

The operator H : Ä
W Ñ V

h

is the discrete harmonic extension to the interior of the
subregions and writes

(4.5) H :“
˜

0 ´
`
S
II

˘´1 r
S

T

�I

0 0

¸
,

with the blocks S
II

and r
S�I of the partially assembled matrix

(4.6) r
S “

˜
S
II

r
S

T

�I
r
S�I

r
S��

¸
,

and the jump operator defined as PD :“ I ´ r
R

r
R

T

D
.

Now, by choosing pS´1
⇧⇧ :“ M

´1
BDDC as approximation for rS´1

⇧⇧ in (3.2), i.e., by

(4.7) pK´1
3L “

ˆ
K

´1
BB

0
0 0

˙
`

ˆ
´K

´1
BB

rKT

⇧B
I

˙
M

´1
BDDC

´
´ rK⇧BK´1

BB
I

¯
,

we can define

(4.8) xM´1
BDDC,3L :“

´
rRT

D
´ HPD

¯
pK´1
3L

´
rRD ´ P

T

D
H

T

¯
.

Instead of inverting r
S directly, we again can use a block factorization

(4.9) r
S

´1
“

ˆ
S

´1
BB

0
0 0

˙
`

˜
´S

´1
BB

r
S

T

⇧B

I

¸
r
T

´1

⇧⇧

´
´r
S⇧BS

´1
BB

I

¯
,
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�

I

�

⌦, V h

⌦1 ⌦2 ⌦5 ⌦6

⌦3 ⌦4 ⌦7 ⌦8

⌦9 ⌦10 ⌦13 ⌦14

⌦11 ⌦12 ⌦15 ⌦16

⌦1 ⌦2

⌦3 ⌦4

Fig. 1. Example of a domain decomposition in 2D in 16 subdomains and 4 subregions recur-

sively. We mark in blue the interface � between subdomains and in red the interface � between

subregions. Primal nodes ⇧ w.r.t. the subregions are depicted as red circles, while primal nodes ⇧
w.r.t. the subdomains are depicted as blue circles. Inner or dual nodes w.r.t the subregions, i.e., I

or, respectively, �, are depicted as green triangles or, respectively, red squares.

where the primal Schur complement on subregion level is

r
T⇧⇧ “ r

S⇧⇧ ´ r
S⇧BS

´1
BB

r
S

T

⇧B .

Note that, following [19, Theorem 1], the preconditioned system M
´1
BDDC

rS⇧⇧ on

the subregion level has the same eigenvalues as r
R

T

D,�
r
T

´1

��
r
R

D,�
rT�� except for some

eigenvalues equal to 1. Here, we have the Schur complement rT�� of rS⇧⇧ on the

interface of the subregions, the primally assembled Schur complement r
T�� of r

S on

the interface of the subregions, and the splitting r
RD “ diagpI

I

r
R

D,�q. Therefore, we
can use the condition number estimations provided in [24, 23] analogously in Section 5.

4.3. Vertex-Based BDDC Preconditioner. We further describe the follow-
ing vertex-based preconditioner for the coarse problem, as introduced by Dohrmann,
Pierson, and Widlund [9], in our framework. We denote the respective vertex-based

preconditioner with xM´1
BDDC,VB. Here, the preconditioner for the coarse problem can

be interpreted as a standard two-level additive or multiplicative Schwarz approach.
In particular, the direct solution of the coarse problem rS´1

⇧⇧ is replaced by a precon-
ditioner M´1

VB based on a smaller vertex-based coarse space.
It was shown early in the history of FETI-DP and BDDC, that vertex nodes alone

as coarse nodes are often not su�cient to obtain robust algorithms [10, 17]. Thus,
coarse degrees of freedom for BDDC or FETI-DP are often associated with average
values over certain equivalence classes, i.e., edges and/or faces. The basic idea of
the coarse component of the preconditioner M´1

VB is to approximate the averages over
edges or faces using adjacent vertex values.
We denote the vertex-based coarse space by ÄW and the original coarse space by
ÄW⇧. Then, analogously to [9], we define  : ÄW Ñ ÄW⇧ as the coarse interpolant
between the coarse space based on vertices and the original coarse space based on
certain equivalence classes. It is important that the coarse basis functions of ÄW , i.e.,
the columns of  , build a partition of unity in the original coarse space ÄW⇧. This
is, e.g., fulfilled for the following definition of  suggested in [9]. Let us first assume
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ÄW⇧ consists of edge constraints only. Then, each row of  corresponds to a single
edge constraint and has, in the case of an inner edge, two entries of 0.5 in the two
columns corresponding to the two vertices located at the endpoints of the edge. All
other entries of the row are zero. In case of an edge touching the Dirichlet boundary
with one endpoint, the corresponding row has a single entry of 1 in the column
corresponding to the vertex located at the other end of the edge. Analogously, a
partition of unity can be formed for coarse spaces ÄW⇧ consisting of face constraints.

Again analogously to [9], we define rS⇧⇧,r :“  T rS⇧⇧ as the reduced coarse

matrix. Note that the number of rows and columns of rS⇧⇧,r equals the number of

vertices for scalar problems. The preconditioner M
´1
VB for the coarse matrix rS⇧⇧ is

then given as

(4.10) M
´1
VB “  rS´1

⇧⇧,r 
T ` GSp rS⇧⇧q,

where GS denotes the application of a Gauss-Seidel preconditioner. In particular,
M

´1
VB is simply a Gauss-Seidel preconditioner with an additive coarse correction.

In [9], solely edge averages or solely face averages are used which are each reduced
to vertex-based coarse spaces as described above. In general, also the combination of
vertices, edge, and face averages as coarse components can be considered and can be
reduced to a solely vertex-based coarse space.

Now we can define the vertex-based approximate BDDC preconditioner by choos-
ing pS´1

⇧⇧ :“ M
´1
VB as approximation for rS´1

⇧⇧ in (3.2). Then, we obtain the approxima-

tion pK´1
VB of rK´1 by

(4.11) pK´1
VB “

ˆ
K

´1
BB

0
0 0

˙
`

ˆ
´K

´1
BB

rKT

⇧B
I

˙
M

´1
VB

´
´ rK⇧BK´1

BB
I

¯
,

and finally

(4.12) xM´1
BDDC,VB “

´
rRT

D
´ HPD

¯
pK´1
VB

´
rRD ´ P

T

D
H

T

¯
;

using the notation from (3.3); see also [9].

5. Condition number bounds. First, we need to make two assumptions,
which are equivalent to Assumptions 1 and 2 in [19].

Assumption 1. For the averaging operator ED,2 :“ rRp rRT

D
´ HPDq we have

|ED,2|2ÄK § �pH,hq|w|2ÄK , @w P ÄW,

with �pH,hq being a function of the maximal mesh size h and the maximal subdomain
diameter H.

Under Assumption 1, the condition number of the exactly preconditioned system
is bounded by

(5.1) pM´1
BDDCKgq § �pH,hq;

see, e.g., Theorem 3 in [19]. For our homogeneous linear elasticity test case (see
section 6), if appropriate primal constraints, e.g., edge averages and vertex constraints,
are chosen, we obtain the condition number bound with �pH,hq “ Cp1` logpH{hqq2.
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Assumption 2. There are positive constants c̃ and rC, which might depend on h

and H, such that
c̃u

T rKu § u
T pKu § rCu

T rKu, @u P ÄW.

Now, we can prove the following Theorem 5.1 for the preconditioned operator
xM´1

Kg. In the proof, we basically follow the arguments in the proof of Theorem 4
in [19], but here we use exact discrete harmonic extension operators, i.e., an exact
ED,2.This is in contrast to Theorem 4 in [19], where inexact discrete harmonic exten-
sions are used, which is not necessary in our case. Although large parts of the proof
are identical, we include the complete line of arguments here for the convenience of
the reader.

Theorem 5.1. Let Assumptions 1 and 2 hold. Then, the preconditioned operator
xM´1

Kg is symmetric, positive definite with respect to the bilinear form h¨, ¨i
Kg

and
we have

1
rC

xu, uyKg
§ xxM´1

Kgu, uyKg
§ �pH,hq

c̃
xu, uyKg

, @u P V
h
.

Therefore, we obtain the condition number bound pxM´1
Kgq § rC

c̃
�pH,hq.

Proof. Let u P V
h be given. We define

(5.2) w “ pK´1p rRD ´ P
T

D
H

T qKgu P ÄW

and thus also have
pKw “ p rRD ´ P

T

D
H

T qKgu.

Using rRT rRD “ I, yields rRT
P

T

D
“ rRT pI ´ rRD

rRT q “ 0 and thus rangepPT

D
q Ä

nullp rRT q. Hence, we obtain

(5.3) xu, uyKg
“ u

T rRT p rRD ´ P
T

D
H

T qKgu “ u
T rRT pKw “ xw, rRuyxK .

Using the Cauchy-Schwarz inequality and Assumption 2, we can further estimate

xw, rRuyxK § xw,wy1{2
xK

x rRu, rRuy1{2
xK

Asm. 2§
a

rCxw,wy1{2
xK

x rRu, rRuy1{2
ÄK

p2.4q“
a

rCxw,wy1{2
xK

xu, uy1{2
Kg

.(5.4)

Combining equations (5.3) and (5.4), we have xu, uyKg
§ rCxw,wyxK . Using (5.2) and

(3.3), we can prove the lower bound.

1
rC

xu, uyKg
§ xw,wyxK

p5.2q“ u
T
Kgp rRT

D
´ HPDq pK´1 pK pK´1p rRD ´ P

T

D
H

T qKgqu
“ xu, p rRT

D
´ HPDq pK´1p rRD ´ P

T

D
H

T qKguyKg

p3.3q“ xu, xM´1
KguyKg

(5.5)

Let us now prove the upper bound using Assumption 1, (5.2), and (3.3).

xxM´1
Kgu,

xM´1
KguyKg

“ xp rRT

D
´ HPDqw, p rRT

D
´ HPDqwyKg

“ x rRp rRT

D
´ HPDqw, rRp rRT

D
´ HPDqwyÄK

“ xED,2w,ED,2wyÄK “ |ED,2w|2ÄK
Asm.1§ �pH,hq|w|2ÄK(5.6)
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Together with Assumption 2, we obtain

xxM´1
Kgu,

xM´1
KguyKg

p5.6q
§ �pH,hq|w|2ÄK

Asm.2§ 1

c̃
�pH,hq|w|2xK

p5.5q“ 1

c̃
�pH,hqxu, xM´1

KguyKg
.(5.7)

Using a Cauchy-Schwarz inequality in combination with (5.7), we finally obtain

xu, xM´1
KguyKg

§ �pH,hq
c̃

xu, uyKg
. ˝

For the preconditioners considered here, we replace the inverse operator of the
Schur complement in the primal variables rS´1

⇧⇧ by an approximation pS´1
⇧⇧. Therefore,

we have to show that Assumption 2 used in the proof of Theorem 5.1 is still relevant
and holds under certain assumptions.

Assumption 3. There are positive constants ĉ and pC, which might depend on h

and H, such that

ĉũ
T

⇧
rS⇧⇧ũ⇧ § ũ

T

⇧
pS⇧⇧ũ⇧ § pCũ

T

⇧
rS⇧⇧ũ⇧, @ũ⇧ P ÄW⇧.

We can now prove the following lemma.

Lemma 5.2. Let Assumption 3 hold and pK´1 be defined as in equation (3.2).
Then, Assumption 2 holds with c̃ :“ minpĉ, 1q and rC :“ maxp pC, 1q.
Proof. We first split pK´1 “ A1 ` A2 into its two additive parts

A1 :“
ˆ

K
´1
BB

0
0 0

˙

and

A2 :“
ˆ

´K
´1
BB

rKT

⇧B
I

˙
pS´1
⇧⇧

´
´ rK⇧BK´1

BB
I

¯
.

The multiplication A1
rK yields

(5.8) A1
rK “

ˆ
K

´1
BB

0
0 0

˙ ˜
KBB

rKT

⇧B
rK⇧B rK⇧⇧

¸
“

ˆ
I K

´1
BB

rKT

⇧B
0 0

˙
.

By a direct computation we obtain

A2
rK “

ˆ
´K

´1
BB

rKT

⇧B
I

˙
pS´1
⇧⇧

´
´ rK⇧BK´1

BB
I

¯ ˜
KBB

rKT

⇧B
rK⇧B rK⇧⇧

¸

“
ˆ

´K
´1
BB

rKT

⇧B
I

˙
pS´1
⇧⇧

´
0 rS⇧⇧

¯

“
ˆ

´K
´1
BB

rKT

⇧B
I

˙ ´
0 pS´1

⇧⇧
rS⇧⇧

¯

“
˜

0 ´K
´1
BB

rKT

⇧B
pS´1
⇧⇧

rS⇧⇧
0 pS´1

⇧⇧
rS⇧⇧

¸
(5.9)
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Adding (5.8) and (5.9), yields the final result

pK´1 rK “
ˆ

I G

0 pS´1
⇧⇧

rS⇧⇧

˙

with G “ K
´1
BB

rKT

⇧BpI ´ pS´1
⇧⇧

rS⇧⇧q. Therefore, besides of additional eigenvalues equal
to 1, pK´1 rK and pS´1

⇧⇧
rS⇧⇧ have the same spectrum, and we have �minp pK´1 rKq “

min
´
�minp pS´1

⇧⇧
rS⇧⇧q, 1

¯
and �maxp pK´1 rKq “ max

´
�maxp pS´1

⇧⇧
rS⇧⇧q, 1

¯
. Consequent-

ly, Assumption 2 holds with c̃ :“ minpĉ, 1q and rC :“ maxp pC, 1q. ˝
For the preconditioner xM´1

BDDC,AMG, we now get pC and ĉ depending on the prop-
erties of the AMG V-cycle used and therefore

(5.10) pxM´1
BDDC,AMGKgq §

rC
c̃
�pH,hq “ maxp pC, 1q

minpĉ, 1q �pH,hq.

For the three-level BDDC preconditioner xM´1
BDDC,3L we obtain, with Lemma 4.6

in [24] in two spatial dimensions and Lemma 4.7 in [23] in three spatial dimensions,
ĉ “ 1

C3L

´
1`logp Ĥ

H
q
¯2 and pC “ 1. Here, Ĥ is the maximal diameter of a subregion and of

course, depending on the problem and dimension, su�cient primal constraints on the
second level have to be chosen; see [24, 23]. Let us note that the results in [24, 23] are
only proven for scalar di↵usion problems. To the best of our knowledge an extension
to linear elasticity has not been published so far and is still an open problem. Using
Lemma 5.2 and Theorem 5.1, we obtain the condition number bound

(5.11) pxM´1
BDDC,3LKgq §

rC
c̃
�pH,hq “ C3L

˜
1 ` log

˜
Ĥ

H

¸¸2

�pH,hq;

see also [24, 23].

For the vertex-based BDDC preconditioner xM´1
BDDC,VB we obtain, with Theorem 3

in [9] for edge-based or face-based coarse spaces and quasi-monotone face-connected

paths, pc • 1
C1

,maxp pC, 1q § CC and �pH,hq “ C
`
1 ` logpH

h
q
˘2
; see [9, Theorem 3].

Here, CC is obtained by a coloring argument and therefore usually CC • 1. The
constant C1 depends on geometric constants, e.g., the maximum number of subdo-
mains connected by an edge (see [9, Lemma 2]), the maximum number of neighbors
of a subdomain (see [9, (4.3)]), or typical subdomain sizes (see [9, Assumption 3]).
Additionally, C1 depends on a tolerance for the lowest coe�cient along an acceptable
path; see [9, Assumption 1 and 2]; cf. also [12]. The results in [9] are proven for scalar
di↵usion and linear elasticity problems. All together, with another constant CV B , we
obtain

maxp pC, 1q
minpĉ, 1q § CV B ;

see also [9, Theorem 1 and 3] where pc “ �1 and pC “ �2 for the constants �1 and �2

used in [9]. Typically, we have C1 • 1, and we then can define CV B “ C1 ¨CC . Using
Theorem 1, we thus obtain the condition number bound

(5.12) pxM´1
BDDC,VBKgq §

rC
c̃
�pH,hq § CV B�pH,hq;

see also [9, Theorem 3].
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5.1. The GM (Global Matrix) Interpolation. Good constants c̃, rC in As-
sumption 2 or, respectively, ĉ, pC in Assumption 3, are important for a small condition
number and therefore a fast convergence of the approximate BDDC method. It is well
known that for scalability of multigrid methods the preconditioner should preserve
nullspace or near-nullspace vectors of the operator. Therefore, the AMG method
should preserve the nullspace of the operator on all levels and these nullspace vectors
have to be in the range of the AMG interpolation. While classical AMG guarantees
this property only for constant vectors, the global matrix approach (GM), introduced
in [3], allows the user to specify certain near-nullspace vectors, which are interpolated
exactly from the coarsest to the finest level; details on the method and its scalability
can be found in [3, 2]. Since we are interested in linear elasticity problems, we choose
the rotations of the body for the exact interpolation. All translations of the body are
already interpolated exactly in classical AMG approaches for systems of PDEs since
they use classical interpolation applied component-by-component. In xM´1

BDDC,AMG

AMG is applied to rS⇧⇧ and thus we need the three rotations in the space ÄW⇧, which
is the restriction of ÄW to the primal constraints. Therefore, we first assemble the
rotations of the subdomains ⌦i locally, extract the primal components, and finally
insert them into three global vectors in ÄW⇧. In our implementation, we always use
BoomerAMG from the hypre package [11], where a highly scalable implementation of
the GM2 approach is integrated; see [2]. Let us remark that GM2 is one of two vari-
ants to choose the interpolation implemented in BoomerAMG and is recommended
to use instead of GM1. In [2] it also showed a better scalability than GM1. We will
compare the use of the GM2 approach with a hybrid AMG approach for systems of
PDEs. By hybrid AMG approaches, we refer to methods, where the coarsening is
based on the physical nodes (nodal coarsening) but the interpolation is based on the
degrees of freedoms. In general, a nodal coarsening approach is beneficial for the so-
lution of systems of PDEs, and all degrees of freedom belonging to the same physical
node are either all coarse or fine on a certain level. The latter fact is also mandatory
for the GM2 approach. Therefore, GM2 is based on the same nodal coarsening and
can also be considered as a hybrid approach.

6. Implementation and Model Problems. Our parallel implementation uses
C/C++ and PETSc version 3.9.2 [6]. All matrices are completely local to the com-
putational cores. All assemblies and prolongations are performed using PETSc Vec-
Scatter and VecGather operations. A more detailed description of the parallel data
structures of our implementation of the linear BDDC preconditioner can be found
in [14], where di↵erent nonlinear BDDC methods are applied to hyperelasticity and
elasto-plasticity problems.

Since the preconditioners for the coarse problem are in the focus of this paper,
we include some details on the implementation of the di↵erent variants. In general,
the coarse problem rS⇧⇧ is assembled on a subset of the available cores. The num-
ber of cores can be chosen arbitrarily and should depend on the size of the coarse
problem to obtain a good performance. While BoomerAMG and BDDC itself can
be applied to rS⇧⇧ in parallel, for exact BDDC (M´1

BDDC) a sequential copy of rS⇧⇧
is sent to each computational core and a sparse direct solver is applied. This is, of
course, not scalable in parallel and one would prefer to avoid it. Using a sequential
Gauss-Seidel implementation in xM´1

BDDC,VB also requires a sequential copy of rS⇧⇧ and

additionally sequential copies of rS⇧⇧,r :“  T rS⇧⇧ , and eventually, depending on the
implementation, also of  . This can be avoided using a parallel implementation of
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the Gauss-Seidel preconditioner. Therefore, as an alternative to the sequential ap-
proach, we also use the parallel PETSc implementation of SOR/Gauss-Seidel, which
is in fact a block Jacobi preconditioner in between the local blocks associated with
the di↵erent MPI ranks and an SOR/Gauss-Seidel preconditioner on the local blocks
themselves. This can obviously deteriorate the convergence of the method, but we
only have to build a local copy of rS⇧⇧,r, which is much smaller compared to rS⇧⇧. All
other matrices can be stored in a distributed fashion. Let us finally remark that we
can apply the Gauss-Seidel preconditioner additively as described in (4.10) as well as
multiplicatively, which is of course more robust.

7. Numerical Results. In this paper, we restrict ourselves to homogeneous
linear elasticity problems. For heterogeneous examples or di↵erent model problems we
refer to [14] for xM´1

BDDC,AMG or [9] for xM´1
BDDC,VB. All computations are performed on

magnitUDE supercomputer (University of Duisburg-Essen) or JUWELS (FZ Juelich).

7.1. Three-Level BDDC and BDDC with AMG coarse preconditioner.
We first concentrate on a comparison between xM´1

BDDC,3L and xM´1
BDDC,AMG, which

clearly have the largest parallel potential, especially due to the larger coarsening ratio
from the second to the coarsest level. Also xM´1

BDDC,3L can be easily extended to a

multilevel preconditioner while xM´1
BDDC,AMG already consists of several levels. The

alternative xM´1
BDDC,VB is limited in scalability by construction, since the vertex-based

coarse space is always solved by a sparse direct solver in our implementation. We
therefore analyze and compare xM´1

BDDC,VB separately in subsection 7.2.
To have a theoretical baseline, we always include the exact BDDC preconditioner

M
´1
BDDC in all figures. To verify the quadratic dependence of the condition number

on the logarithm of H{h, which can be seen as a measure of the subdomain size, we
provide Figure 2. There, we consider a linear elastic cube decomposed into 512 sub-
domains with Young modulus E “ 210GPa and di↵erent Poisson ratios. As a coarse
space we enforce continuity in all vertices and in all edge averages. With a Poisson
ratio of 0.3 ( Figure 2 (top)), all methods show a similar behavior and the condition

numbers are comparable to the exact BDDC preconditioner. For xM´1
BDDC,AMG it is

useful to include the GM approach, while for xM´1
BDDC,3L both tested setups, i.e., 8

or 64 subdomains per subregion, show a similar behavior. Choosing a larger Pois-
son ratio of 0.49 ( Figure 2 (bottom)), xM´1

BDDC,AMG has higher condition numbers,
especially for small subdomain sizes. But for larger subdomain sizes and using GM,
xM´1

BDDC,AMG again shows a similar behavior. Let us remark that we always use a
highly scalable AMG setup, i.e., aggressive HMIS coarsening, ext ` i long range in-
terpolation, nodal coarsening, a threshold of 0.3, and a maximum of three entries per
row in the AMG interpolation matrices. Less aggressive strategies might show lower
condition numbers, but we explicitly optimized the parameters to obtain good parallel
scalability; see [2].

For the same setup with a Poisson ratio of 0.3 but fixed H{h “ 24, we perform a
weak scaling study in Figure 3 up to 4096 cores. Considering the number of cg itera-
tions until convergence (Figure 3 (top)), the GM approach is necessary in xM´1

BDDC,AMG

to obtain results of similar quality as xM´1
BDDC,3L. The same can be observed consid-

ering the time to solution; see Figure 3 (bottom). The time to solution is always the
complete runtime measured from the program start until it finishes. This especially
includes the assembly of the linear system, the setup of the preconditioner, and the
iteration/solution. Of course, the exact BDDC preconditioner does not scale due to
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Fig. 2. Homogeneous linear elastic cube decomposed into 512 subdomains with H{h “
4, 6, ..., 26. Top: E “ 210.0 and ⌫ “ 0.3; Bottom: E “ 210.0 and ⌫ “ 0.49. We vary the

number of subdomains per subregion in xM´1
BDDC,3L and we compare nodal AMG and AMG-GM in

xM´1
BDDC,AMG. Computed on the magnitUDE supercomputer.

the sequential coarse solve.

7.2. Vertex-Based BDDC. We provide a weak scaling test up to 5 832 cores
for xM´1

BDDC,VB for a similar model problem, i.e., linear elasticity with a Poisson ratio
of 0.3 and a Young modulus of 210GPa. In Figure 4 we provide a comparison with
exact BDDC and xM´1

BDDC,AMG using GM with respect to cg iterations as well as
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Fig. 3. Comparison of M
´1
BDDC,

xM´1
BDDC,3L with 8 or 64 subregions, and xM´1

BDDC,AMG with

and without GM. Using vertex and edge constraints. Homogeneous linear elastic cube decomposed

into 64,512, and 4 096 subdomains with H{h “ 24. Top: Number of CG iterations; Bottom: Total

time to solution including assembly of sti↵ness matrices, setup of the preconditioner and solution

phase. Computed on JUWELS.

time to solution. Considering xM´1
BDDC,VB, a multiplicative combination of Gauss-

Seidel applied to rS⇧⇧ and the direct solve of the vertex based coarse problem is
always the better choice compared to an additive variant. The parallel Gauss-Seidel
method, which - as implemented in PETSc - is in fact a block Jacobi preconditioner
in between the processors parts of the matrix, always results in more cg iterations but
faster runtimes. With respect to parallel scalability, the best variant of xM´1

BDDC,VB is

competitive with xM´1
BDDC,AMG, at least up to the moderate core count of 5 832. For

an increasing number of cores, we expect xM´1
BDDC,AMG to outperform xM´1

BDDC,VB due
to its inherent multilevel structure.

8. Conclusion. We have presented di↵erent approaches to approximate the
coarse solve in BDDC and compared them with respect to theory and parallel scala-
bility for the first time. If an appropriate AMG approach is available, e.g., the GM
approach in the case of linear elasticity problems, xM´1

BDDC,AMG and xM´1
BDDC,3L show

a very similar behavior and both variants can be recommended. Up to a moderate
number of compute cores also xM´1

BDDC,VB can be an adequate alternative. An advan-

tage of xM´1
BDDC,VB is the fact that neither a further decomposition into subregions is

necessary nor an appropriate AMG method has to be chosen. On the other hand,
the parallel potential of xM´1

BDDC,VB is limited, since it is not easily extendable to an
arbitrary number of levels.
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Fig. 4. Comparison of M
´1
BDDC,

xM´1
BDDC,VB using additive/multiplicative sequential/parallel

Gauss-Seidel, and xM´1
BDDC,AMG with GM. Using only edge constraints. Homogeneous linear elastic

cube with H{h “ 22. Top: Number of CG iterations; Bottom: Total time to solution including

assembly of sti↵ness matrices, setup of the preconditioner and solution phase. Computed on the

magnitUDE supercomputer.
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