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Abstract 

In nature, healthy and asymptomatic plants cohabit with a variety of microbes, such as 

bacteria, fungi, and oomycetes, forming complex microbial consortia that interact with 

each other and likely provide fitness benefits to the host plant. Advances in culture-

independent methods have deepened our understanding on microbial communities’ 

distribution in nature and the environmental factors shaping these communities. However, 

there is still a lack of consensus between studies and a more holistic approach is needed, 

by studying several microbial groups under a variety of environmental conditions. 

Importantly, there is a significant part of the microbial variance that remains unexplained 

in host-associated microbiota studies. Decades of research have shown that microbes 

interact with each other, indicating that microbe-microbe interactions might represent a 

major, yet poorly described, force driving microbial community establishment in and 

outside plant roots. In order to assess microbial communities´ functions and assembly 

rules, microbiota reconstitution experiments in gnotobiotic plant systems are needed. By 

linking microbial community profiling data from natural Arabidopsis thaliana populations 

(chapter I) with reconstruction experiments with synthetic microbial communities and 

germ-free plants (chapter II), I provide novel insight into how environment, host-microbe 

and microbe-microbe interactions affect microbial community structure and plant health 

in nature. 

In the first chapter, I analyzed bacterial, fungal and oomycetal communities associated 

with Arabidopsis thaliana roots from seventeen natural populations across a European 

transect, for three consecutive years. By developing a fractionation protocol that 

distinguishes four microbial niches (Soil, Rhizosphere, Rhizoplane and Root), I dissected 

the relevance of host compartment, host species, biogeography, harvesting year, and soil 

characteristics on microbial communities’ distribution at a continental scale. I showed that 

bacterial, fungal and oomycetal communities are primarily shaped by different factors, 

including the host niche for bacteria, the site for fungi, and the year for oomycetes. Also, 

I identified an A.thaliana root-associated core microbiota, resilient across harvesting years 

and locations. Furthermore, reciprocal transplant experiments conducted in natural and 

controlled conditions uncovered the important role of climate as well as the climate-

dependent host genotype effect on microbial communities’ distribution.  

In the second chapter, I utilized a gnotobiotic plant system for reconstituting multispecies 

synthetic microbial communities, which revealed the relevance of multi-kingdom microbe-

microbe interactions for plant health and microbial communities’ assembly. In these 

experiments the bacterial microbiota is essential for plant survival and protection against 
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detrimental activities of root-derived filamentous eukaryotes. Moreover, I revealed that 

microbial load only partially drives plant health and that disease protection of bacterial 

root commensals is a redundant trait needed to maintain microbial interkingdom balance 

for plant health. Finally, I investigated the dynamics of microbiota establishment and 

explored the importance of the host for microbiota establishment.  
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Zusammenfassung 

 

In der Natur leben gesunde Pflanzen mit einer Vielzahl verschiedener Mikroorganismen 

wie Bakterien, Pilzen und Oomyzeten zusammen, welche komplexe mikrobielle 

Gemeinschaften bilden, und deren Mitglieder miteinander interagieren. Das 

Zusammenleben mit diesen Mikroorganismen verleiht der Wirtspflanze wahrscheinlich 

einen Fitnessvorteil. Fortschritte bei Forschungsmethoden, welche nicht auf die 

Kultivierung von Mikroorganismen angewiesen sind, haben unser Wissen über die 

Verteilung von Mikroorganismen in der Natur und die Faktoren, welche ihre 

Gemeinschaften beeinflussen, vergrößert. Allerdings weisen entsprechende Studien 

einen Mangel an Übereinstimmung auf. Daher ist ein holistischer Ansatz nötig, der 

Gruppen verschiedener Mikroorganismen in unterschiedlichen Umweltbedingungen 

untersucht. Es ist wichtig zu beachten, dass ein signifikanter Anteil der mikrobiellen 

Vielfalt in Studien über wirtsassoziierte Mikroorganismen unerklärt bleibt. Jahrzehnte an 

Forschung haben gezeigt, dass Mikroorganismen miteinander interagieren, was darauf 

hinweist, dass diese Interaktionen eine bedeutende, aber bis jetzt wenig beschriebene 

Antriebskraft sind, die auch für die Entstehung von mikrobiellen Gemeinschaften in und 

an Pflanzenwurzeln verantwortlich sein könnte. Um die Entstehung und Funktionen 

dieser Gemeinschaften von Mikroorganismen beschrieben zu können, sind Experimente 

mit gnotobiotischen Pflanzensystemen notwendig. Durch die Verknüpfung von Daten zu 

mikrobiellen Gemeinschaften innerhalb natürlich vorkommender Arabidopsis thaliana 

Populationen (Kapitel I) mit Experimenten, welche mit synthetischen mikrobiellen 

Gemeinschaften und keimfreien Pflanzen durchgeführt wurden (Kapitel II), liefere ich 

neue Erkenntnisse darüber, wie Umwelteinflüsse, Wirt-Mikrobiom und Mikrobiom-

Mikrobiom Interaktionen den Aufbau mikrobieller Gemeinschaften und die Gesundheit der 

Wirtspflanze beeinflussen. 

In Kapitel 1 habe ich Bakterien-, Pilz- und Oomyzetengemeinschaften, welche mit den 

Wurzeln von 17 natürlich vorkommenden, über Europa verteilten Arabidopsis thaliana 

Populationen assoziiert sind, über einen Zeitraum von drei Jahren hinweg analysiert. Mit 

der Entwicklung eines Fraktionierungsprotokolls, dass vier mikrobielle Nischen (Erde, 

Rhizosphäre, Rhizoplane und Wurzeln) separiert, habe ich den Einfluss von 

Wirtsnischen, Wirtsspezies, Biogeographie, Erntejahr und Erdcharakteristika auf die 

Verteilung von Mikroorganismengemeinschaften auf kontinentaler Ebene untersucht. Ich 

habe gezeigt, dass die Gemeinschaften von Bakterien, Pilzen und Oomyceten 

hauptsächlich von unterschiedlichen Faktoren beeinflusst werden, wie die Wirtsnische für 
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Bakterien, der Standort für Pilze und das Jahr für Oomyzeten. Des Weiteren habe ich 

einen Kern an A. thaliana wurzelassoziierten Mikroorganismen identifiziert, welcher 

robust gegenüber den Einflüssen von Erntejahr und Standort ist. Reziproke 

Transplantationsexperimente, welche in natürlichen sowie kontrollierten Bedingungen 

durchgeführt wurden, haben die wichtige Rolle des Klimas als auch des klima-abhängigen 

Wirtsgenotypen auf die Verteilung der mikrobiellen Gemeinschaften aufgedeckt. 

In Kapitel 2 habe ich ein gnotobiotisches Pflanzensystem für die Analyse synthetischer 

mikrobieller Gemeinschaften genutzt, welches die Relevanz mikrobieller Interaktionen 

über höhere taxonomische Gruppen hinweg für die Gesundheit der Wirtspflanze und den 

Aufbau der mikrobiellen Gemeinschaften aufgezeigt hat. Bei diesen Experimenten hat 

sich herausgestellt, dass das bakterielle Mikrobiom essentiell für das Überleben der 

Pflanze und die Verteidigung gegen schädliche Einflüsse von wurzelassoziierten, 

filamentösen Eukaryoten ist. Zudem habe ich herausgefunden, dass die Anzahl der 

Mikroorganismen nur zu einem Teil die Gesundheit der Pflanze beeinflusst, und dass der 

Schutz vor Krankheiten durch bakterielle Wurzelkommensale, eine redundante 

Eigenschaft ist. Zuletzt habe ich die Dynamiken der Etablierung des Mikrobioms 

untersucht, und die Wichtigkeit des Wirtes dabei untersucht. 
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CHAPTER I 

Characterization of A. thaliana root-associated microbial 

communities in natural populations across a continental 

transect 

1. INTRODUCTION 

1.1 The holobiont concept 

Microbes, including bacteria, archaea, fungi, and protists, have colonized most surfaces 

on the planet. These microbes can inhabit most environments on Earth, including soil, air 

and oceans, as well as other living organisms, from human skin to plant tissues. 

Microorganisms have been traditionally considered as individual entities that engage in 

interactions with other micro- or macro-organisms found in the surrounding environment. 

Cell number of these microbes, however, usually compares to the cell number of the 

macrobe they are associated with (1:1 compared to human cells, Sender et al., 2016), 

and each of these microbes brings along their own genetic repertoire. In many occasions, 

the genetic load of these microbes will provide their host with functions otherwise 

inaccessible for them. For example, termites host a gut microbiota that allows them 

degrade cellulose very efficiently (Brune, 2014); bacterial communities in the soil drive 

fungal biocontrol together with their host plants (Chapelle et al., 2016); others, facilitate 

acquisition of otherwise unavailable nutrients for their host, for example, through the 

formation of plant root-mycorrhiza symbiosis (Bonfante and Genre, 2010). Furthermore, 

such interactions can also happen between microbes; for example, between the fungus 

Rhizopus sp. and its bacterial endosymbiont, which produces an endotoxin necessary for 

the fungus to infect its host plant (Partida-Martinez and Hertweck, 2005). These and many 

other examples in nature highlight that these microbes can no longer be considered as 

organisms interacting with macrobes in an isolated manner, but rather as an extension of 

them. This relationship has been referred as the holobiont concept (Bordenstein and 

Theis, 2015), i.e.: “biomolecular networks composed of the host plus its associated 

microbes”. As such, it is very likely that the holobiont components share a very close 

evolutionary history and have developed and adapted responses to their surrounding 

environment in parallel. This joint adaptation has presumably been especially favorable 

to plants, which are not capable of actively migrating from a stressful environment, as 

animals could, and therefore have been able to expand their resources to face 



Introduction Chapter I  

2 
 

environmental stresses. It is relevant to note, however, that not all microorganisms within 

a plant holobiont have an impact on plant evolution and, more importantly, that not all 

partners in a holobiont impact positively each other (Moran and Sloan, 2015). 

1.2 Soil microbiota 

Although plant microbiota members can derive from various sources (air, animals, 

rainwater, etc.), the major pool for plant-associated microbiota is soil-borne microbes. 

Microbial load in soil has been estimated to be as numerous as 108 cells per gram of soil 

(Raynaud and Nunan 2014). The major bacterial inhabitants of soil are members of the 

Acidobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria phyla; from 

the fungal side, Basidiomycota, Ascomycota, Mortierellomycotina, and Mucoromycotina 

are the major soil-inhabiting groups (Fierer et al., 2007; Tedersoo et al., 2014). Despite 

the staggering bacterial diversity found across soils around the world, 2% of the bacterial 

phylotypes actually account for half of soil communities worldwide (Delgado-Baquerizo et 

al., 2018), suggesting that soil microbiota holds stable roles within the soil ecosystem. 

Indeed, microbes are essential in certain soil processes, such nitrogen, carbon and 

phosphorus cycling, organic matter decomposition, regulation of plant diversity, or soil 

aggregation processes (Van der Heijden, 2008). On the other hand, the microbial 

composition is strongly related to the physical, chemical and biological characteristics of 

the ecosystem. Specifically, bacterial and fungal communities are correlated to soil pH 

composition (Fierer and Jackson 2006; Lauber et al., 2009; Rousk et al., 2010; Tedersoo 

et al., 2014). By profiling the bacterial communities present in 88 soil across the American 

continent, it was possible to observe that pH-dependency in bacterial communities is 

mainly driven by changes on specific bacterial groups (Actinobacteria, Bacteroidetes and 

Acidobacteria) (Lauber et al., 2009). Similarly, fungal communities are also impacted by 

soil pH, although it is more notable at lower taxonomic levels. For example, the 

abundance of members of the Ascomycota phylum, Hypocreales and Helotiales in 

particular, is strongly correlated to pH variation across soils (Rousk et al., 2010). 

Metagenomic comparative analysis of desert soil with non-desert soil suggests that there 

are other soil factors driving microbial community composition and functions, such as 

lower soil moisture and plant biomass. Furthermore, soil composition will determine the 

microbial diversity and, therefore, the competition between microbial members (Fierer et 

al., 2012). Another important soil characteristic is net carbon mineralization rate, which 

allowed to correlate bacterial taxa abundances across 71 soils in North America (Fierer 

et al., 2007). Specific soil nutritional content also shapes which microbial communities will 
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inhabit certain soil, as shown for fungal communities across the globe, where soil calcium 

content explained 8.9% of fungal variation (Tedersoo et al., 2014).  

The very ancient origin of microbes on Earth, tracing back to the beginning of life more 

than 3.5 billion years ago, indicates that microbe-microbe interactions have continuously 

evolved and diversified over time, far before plants colonized land 450 Mya (Hassani et 

al., 2018). Therefore, it is likely that both intra- and inter-kingdom microbial interactions 

represent strong drivers of the establishment of microbial consortia in soil. However, the 

contribution of competitive and cooperative microbe-microbe interactions to the overall 

microbial community structure remains difficult to evaluate in nature due to the strong 

environmental noise. As a first approach, co-occurrence network analysis of prokaryotic 

microbes within 151 soils across the world shows that indeed there is a non-random 

microbial community assembly, suggesting that soil microorganisms tend to co-occur, and 

presumably interact, more than expected by chance (Barberán et al., 2012). In 

conclusion, the combination of abiotic factors (environment) and biotic factors (microbe-

microbe interactions) model microbial communities present in a given soil, which will then 

be the microbial input that a new plant seed will encounter and will interact with, in order 

to shape its own microbiota. 

1.3 Plant-associated microbiota 

In nature, healthy plants interact and cohabit with diverse microorganisms such as 

bacteria, archaea, fungi, and protists, collectively referred to as the plant microbiota. 

Microbiota members distribute on and within all plant tissues and compartment-specific 

microbial communities signatures have been reported for rhizosphere (Bulgarelli et al., 

2013), phyllosphere (Rastogi et al., 2013) and endosphere plant niches (Lundberg et al., 

2012; Bulgarelli et al., 2012). As discussed above, microbiota members colonizing plant 

tissues mainly come from the surrounding bulk soil, but it is important to note that plant 

seeds are not sterile when they fall to the ground. Vertical transmission of microbiota is a 

very important driver of the initial seed microbiota, as well as the quick microbial shifts 

upon emergence (Barret et al., 2015; Barret et al., 2016). Microbial communities 

interacting with plants can be beneficial and promote plant growth and adaptation to the 

environment, but specific members can also cause plant diseases in a context-dependent 

manner (Buée et al., 2009). A great body of studies in the literature have focused on the 

beneficial effects that microbes have on plants. For example, it has been postulated that 

pathogen interaction with the plant host induces changes on its associated microbial 

communities that will, in turn, restrict pathogen infection (Mendes et al., 2011; Chapelle 

et al., 2015; Santhanam et al., 2015; Ritpitakphong et al., 2016a). Plant-associated 
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microbiota members, such Pseudomonas fluorescens WCS417r, can prime the plant 

immune system by targeting specific transcription factors and preventing infections by 

various pathogens (Van der Ent et al., 2009; Stringlis et al., 2018).  Importantly, plant 

microbiota members are capable of promoting increased nutrient acquisition in plants. For 

example, Zamioudis et al., 2015 showed that, upon co-inoculation with P. fluorescens 

WCS417r, Arabidopsis thaliana roots trigger an iron-deficiency-like responses, correlated 

with its capacity to induce systemic resistance. Also, well-known plant symbiotic microbial 

members are mycorrhiza and nitrogen-fixing bacteria that help the plant with phosphorus 

and nitrogen uptake, respectively (Berendsen et al., 2012; van der Heijden et al., 2016). 

In this respect, third microbial partners might play an important role in promoting such 

interactions. For example, helper bacteria are capable of assisting mycorrhizal formation 

and improve the functioning of the symbiosis (Frey-Klett et al., 2007). In order to face 

environmental stresses, plants engage in tight interactions with microbial partners. For 

example, a subset of microbial strains isolated from rootstocks of grapevine were able to 

secrete mucilaginous material, which improved the water-holding capacity of the soil and 

decreased water loss during desiccation, both under greenhouse and outdoors conditions 

(Rolli et al., 2015). Interestingly, microbial beneficial effects can be dependent of 

environmental conditions. Specifically, it has been shown that, different A. thaliana 

accessions accommodate differently Pseudomonadaceae species, which correlates with 

the Pseudomonas-driven plant growth promotion. This effect, however, is reversed under 

stress conditions, suggesting that the plant host has adapted its interaction capacity with 

certain members, which might be beneficial in stressful environments, such in nutrient-

depleted environments, but not in normal conditions (Haney et al., 2015).  

Most of this host-microbe interactions knowledge, however, has been traditionally studied 

as one-to-one interactions, obviating other microbial members playing a role, or 

environmental conditions that shape these interactions. In order to address this limitation, 

research has been moving towards an understanding of plant-microbe interactions as 

holobiont interactions (concept introduced above), where both host-microbe and microbe-

microbe interactions likely affect microbial community establishment and plant health. 

Such advance has been possible due to the rapid development of high-throughput 

sequencing technologies, by which microbial communities can be easily profiled from a 

wide variety of environments. In the next paragraphs I will outline the current knowledge 

about plant microbiota composition, regarding the major microbial groups (bacteria, fungi 

and protists). 
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1.3.1 The bacterial microbiota of plants 

It is now widely accepted that bacterial community establishment on plants is not random 

but rather controlled by specific assembly rules, as reviewed by Bulgarelli et al., 2013 and 

Reinhold-Hurek et al., 2015. As discussed before, soil composition is an important factor 

driving bacterial communities’ structure. Indeed, growing sterile A. thaliana plants in 

natural soils, showed that one of the major drivers of root-associated microbial 

communities was the soil characteristics (Bulgarelli et al., 2012; Lundberg et al., 2012). 

Secondly, plant compartment plays an important role shaping bacterial communities, 

where bacterial members are taxonomically very similar between plant tissues (i.e. roots 

and leaves), but differ in structure and functions (Bodenhausen et al., 2013; Bai et al., 

2015; Wagner et al., 2016). Thus, reconstitution experiments using leaf- and root-derived 

bacteria showed that these microbes are specialized to their respective niche (Bai et al., 

2015). Such compartment specialization is not only valid for A. thaliana plants, but also 

for other plant species, for example Ginkgo biloba trees (Leff et al., 2015), grapevine 

(Zarraonaindia et al., 2015) or rice (Edwards et al., 2015). In the latter, it was also possible 

to describe another bacterial niche between the rhizosphere and the root endosphere: the 

rhizoplane, which accounts for the microbes inhabiting the root surface. Plant-associated 

bacterial communities also differ depending on their host species and, in a lesser extent, 

on the host genotype, based on multiple comparisons of species and accessions in the 

literature: 56 tree species (Redford et al., 2010), 600 A. thaliana accessions (Lundberg et 

al., 2012), 27 maize accessions (Peiffer et al., 2013), A. thaliana and relatives (Schlaeppi 

et al., 2014; Dombrowski et al., 2017), wild and domesticated barley (Bulgarelli et al., 

2015) and several lettuce accessions (Cardinale et al., 2015), among other studies. 

Nevertheless, despite host-genotype-dependent variation, by using a tropical soil 

chronosequence it was possible to identify a root core microbiota of phylogenetically very 

distant plants, accounting for up to 33% of the bacterial abundance. This suggests that, 

even though each host plant has its own microbial-recruitment signature, especially 

notable between different plant species, root microbiomes could have evolved with plants 

at least since the divergence of lycopods ~400 million years ago (Yeoh et al., 2017). By 

screening 196 A. thaliana accessions in the field, it was possible to highlight which host 

genomic characteristics are important for abundant microbes’ assembly on plant leaves. 

Thus, cell-wall-integrity related genes and ABC transporters (that could be related to 

pathogen resistance) are part of the most significantly correlated plant genes with 

microbial communities’ composition (Horton et al., 2014). Using a reductionist approach, 

a similar conclusion was reached, where cuticle-related genes and ethylene signaling are 
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important for bacterial community establishment (Bodenhausen et al., 2014). 

Furthermore, plant immune system seems to be an important modulator of root-

associated bacterial communities, as A. thaliana mutants impaired in salicylic acid 

signaling cannot assemble a normal root microbiota (i.e. same as wild type) (Lebeis et al., 

2015). Other plant traits can also change bacterial communities, as wood density, leaf 

mass or leaf nutrient content (Kembel et al., 2014). Importantly, plant undergo several 

developmental stages during their life cycle, during which they might have different 

secretion signatures that impact the composition of bacterial communities or their 

colonization capacity. Indeed, inspection of rhizosphere-associated bacterial 

communities of A. thaliana plants at four developmental stages showed that specific 

microbial members, such Acidobacteria, Actinobacteria, Bacteroidetes and 

Cyanobacteria, structure differently throughout plant growth (Chaparro et al., 2014). 

These changes, however, seem to be notable only at early developmental points (from 

seedling to vegetative), and not later in the life cycle. Such observation was done by 

comparative analysis of an Arabis alpina non-flowering mutant (pep1) to its wild type, 

showing non-significant differences in bacterial communities’ composition upon flowering 

(Dombrowski et al., 2017). On the other hand, from year to year it is possible to observe 

bacterial shifts associated with leaves and roots of perennial plants (Wagner et al., 2016). 

Furthermore, seasonality can also be a trigger of bacterial communities’ shifts, as shown 

for leaves of Populus deltoides (Redford and Fierer 2009), 106 field-grown lettuce plants 

(Rastogi et al., 2012), greenhouse-grown A. thaliana plants (Maignien et al., 2014), leaves 

of common bean, soybean and canola planted in field locations (Copeland et al., 2015) 

and in roots of Avena fatua grown in greenhouse (Shi et al., 2015). Also, in response to 

environmental changes, such drought, plants are capable of specifically changing its 

associated microbiota; for example, sorghum roots drive enrichment of monoderm 

bacterial strains (Xu et al., 2018). Despite the large number of bacterial phyla described 

in nature and the multiple factors that affect these communities, the bacterial microbiota 

of plants is dominated by three major phyla (Proteobacteria, Actinobacteria, and 

Bacteroidetes) in both above- and belowground plant tissues (Bulgarelli et al., 2013; 

Hacquard et al., 2015), suggesting that there are either very conserved taxonomic-

dependent plant-bacteria interactions over evolutionary history, or a lack of host ability to 

engage into tight interactions with more diverse bacterial taxa.  

1.3.2 The fungal microbiota of plants 

Even though less attention has been paid to the fungal microbiota of plants, culture-

independent community profiling has revealed a staggering diversity of fungi colonizing 
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both above- and belowground plant tissues, mainly belonging to two major phyla: 

Ascomycota and Basidiomycota (Jumpponen and Jones, 2009; Toju et al., 2013; Hardoim 

et al., 2015). In roots, although arbuscular- (Glomeromycota phylum) and ectomycorrhizal 

fungi have been mostly studied, recent community profiling data indicate that other 

endophytic fungi also represent an important fraction of the fungal root microbiota (Toju 

et al., 2013; Bonito et al., 2014). In non-mycorrhizal plant species such as A. thaliana, A. 

alpina, or Microthlaspi, it has been proposed that they might compensate for the lack of 

mycorrhizal partners (Glynou et al., 2016; Hiruma et al., 2016; Almario et al., 2017). 

Similarly to bacteria, the structure of plant-associated fungal communities is not random 

and varies depending on soil type, plant compartment, plant species, or seasons, 

although local environment appears to be a more impacting factor for fungal communities 

than for bacterial (Hacquard, 2016). Whether this pattern is accentuated by the different 

taxonomic resolutions resulting from 16S rRNA and ITS marker loci utilized for culture-

independent surveys, remains to be clarified (Peay et al., 2016). Study of phyllospheric 

fungal composition in European beeches (Fagus sylvatica) across an elevation gradient 

(up to 1000 meters), shows that only 7% of the fungal OTUs (Operational Taxonomic 

Units) are shared across all sites surveyed and, furthermore, one of the major factors 

separating samples clusters was the sampling date (from one year to another) (Cordier 

et al., 2012). Profiling of rhizosphere and phyllosphere of three Agave species showed 

that biogeography accounts for up to 71% of the fungal community variation, whereas 

plant compartment explains 8% of the community variance (Coleman-Derr et al., 2016). 

Similarly, profiling of root fungal communities associated with 23 Populus deltoides 

showed 14% of variance explained by geography, and 9.8% of variance explained by soil 

type. Furthermore, soil components such as calcium, manganese and moisture content 

significantly correlated with fungal communities’ distribution, whereas host genotype had 

no effect (Shakya et al., 2013). Compared to the bacterial microbiota, fungal communities 

established in soil and on plant roots seem to be more subjected to stochastic variations. 

In a disturbance experiment in the field, where grasses were removed and grinded, fungal 

communities proved to be resilient to disturbance, so that similar OTUs re-colonized the 

disturbed area, although distribution of these OTUs across the experimental site was 

unpredictable (Lekberg et al., 2012). On the contrary, bacterial communities have been 

proven to significantly deviate from stochastic expectation curve (Wang et al., 2013). Also, 

as described above, fungal and bacterial communities respond differently to 

environmental factors (Rousk et al., 2010; Shakya et al., 2013; Hacquard, 2016). 

Consequently, mainly dispersal limitation and climate explain the global biogeographic 

distribution of fungi and have been suggested to constrain fungal dispersal, favoring high 

endemism in fungal populations. For example, by studying the fungal microbiota in 600 
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soil samples, in forest areas of Pinaceae trees, 50% of the variance could be explained 

due geographical distribution of the samples, but also within relatively close areas, which 

the authors discuss as a possible correlation with the dispersal barriers (Talbot et al., 

2014).  

1.3.3 Protists associated with plants 

A recent study, targeting all major groups of small soil eukaryotes (fungi, green algae, 

protists) and mesofauna (Nematoda, Annelida and Collembola) suggested that their 

spatial structure in soil is mostly stochastic due to high dispersal and drift in their local 

environment (Bahram et al., 2016). More particularly, protists have been shown to be 

abundant plant microbiota members in both the rhizosphere and the phyllosphere 

(Bonkowski, 2004; Ploch et al., 2016). Network analysis of A. thaliana leaves-associated 

microbiota showed that certain microbes occupy a more central position within the 

interaction network, suggesting their importance for microbiota stability. This was further 

tested under a controlled environment, where an oomycetal and fungal members, Albugo 

laibachii and Dioszegia sp. respectively, strongly affected phyllosphere communities 

(Agler et al., 2016a). In contrast with the rich diversity of fungi and bacteria detected in or 

outside plant tissues, oomycetes (protists of the Oomycota lineage) seem to be less 

diverse and few host-adapted members belonging to the genera Pythium, Phytophthora, 

Peronospora or Albugo are found living in association with plant roots or leaves (Coince 

et al., 2013; Kamoun et al., 2015; Agler et al., 2016a). Notably, the vast majority of 

oomycete species described so far are destructive plant pathogens that have major 

impact on plant productivity worldwide (Kamoun et al., 2015). Nonetheless, comparative 

analysis of root infection by closely related Pythium spp. or leaf infection by Phytophthora 

infestans isolates suggests very different levels of pathogenicity on plants (Day et al., 

2004; Van Buyten and Hofte, 2013). Importantly, oomycetes can be also detected or 

isolated from the roots of healthy and asymptomatic plants (Benhamou et al., 2012; 

Coince et al., 2013), suggesting that some members can establish non-pathogenic 

interactions within plant tissues (Sapp et al., 2018) or that their pathogenicity observed in 

laboratory conditions with germ-free plants is reduced in a community context. Given the 

fact that protists can impact plant growth (Bonkowski, 2004; Krome et al., 2009) and are 

active drivers of soil- and root-associated bacterial communities structure (Murase et al., 

2006; Rosenberg et al., 2009; Flues et al., 2017), further investigations are needed to 

better understand 1) the diversity of protists that associate with plants, 2) the factors 

shaping protist assemblages and 3) their ecological/functional roles in the rhizosphere 

and the phyllosphere. 
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1.4 Amplicon sequencing for an integrated view of plant 

microbiota structure 

While soil characteristics, host species and biogeography represent important drivers 

structuring root-associated bacterial and fungal communities, most of the variance 

observed in microbiome studies remains to be explained (Shakya et al., 2013; Hacquard, 

2016). Part of these unexplained factors may relate to complex interactions existing 

between microbial communities, where the distribution and functioning of taxa co-regulate 

each other. The importance of microbe-microbe interactions for structuring and stabilizing 

plant-associated microbial communities has been so far neglected but recently emerged 

as a an important trait of the phyllosphere microbiota. In this work, Agler et al., (2016a) 

surveyed bacterial, fungal and oomycete communities associated with A. thaliana leaves 

and found that microbe-microbe interactions can play a major role in shaping the structure 

of the phyllosphere microbiota and that few “hub” (or keystone) microbes can severely 

affect community structure (Agler et al., 2016a). These hub species are active drivers of 

community structure mediating microbial community shifts either directly via microbe-

microbe interactions and/or indirectly through 1) cascade modifications in the 

interconnected microbial network or 2) alteration of the host immune system. Particularly, 

authors showed that the oomycete Albugo sp. represents a hub microbe on A. thaliana 

leaves, and its presence negatively impacts phyllosphere bacterial diversity (Agler et al., 

2016a). This comprehensive survey shed new light on the complexity of microbial 

interactions in the phyllosphere and revealed how microbe-microbe interactions can 

sculpt microbial assemblages on plant leaves. Agler et al., recently developed a 

comprehensive and effective amplicon-based pipeline for multiple microbial loci profiling, 

using MiSeq-based technology (Agler et al., 2016b; Caporaso et al., 2010). This pipeline 

was further validated by using a complex mock community, including bacterial, fungal and 

oomycetal strains. Thus, this pipeline will be very useful in order to study in depth structure 

of different groups of microbial communities interacting together with a host plant in 

nature, and therefore disentangle the effect of microbe-microbe interactions in microbial 

communities’ structure.  
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1.5 Thesis aims (Chapter I) 

Recent studies have advanced our knowledge about microbial communities associated 

with plants and environmental factors shaping these communities, but it is difficult to 

cross-compare between different techniques and experimental set-ups, in order to 

describe a microbial communities’ composition working model (Thompson et al., 2017). 

Although the structure of the bacterial root microbiota has been extensively described in 

A. thaliana and Brassicaceae relatives at a local scale (Schlaeppi et al., 2014), fungal 

community profiling has never been used to characterize root-associated fungi in this 

model plant species, for which the signaling pathways required for establishing mutualistic 

interactions with mycorrhizal fungi have been lost. Therefore, as first thesis aim, I will 

survey A. thaliana bacterial, fungal, and oomycetal communities associated with distinct 

root compartments, across a wide geographical area, that comprises very distant 

latitudinal locations. This survey will contain very different climatic and soil properties, so 

that it will be possible to correlate these with microbial communities’ composition and 

distribution. Also, plants will be harvested in three consecutive years, to test for resilient 

microbes associated with A. thaliana roots, as well as neighboring plants, in order to 

assess the microbial plant species specificity. Finally, in order to fully disentangle the 

geographical effect into 1) host/accession genotype, 2) climate and 3) soil properties 

effects, soil and climate transplantation experiments will be performed. Thus, the following 

questions will be addressed through this thesis chapter: 

1) What is the composition of the A. thaliana root-associated bacterial, fungal and 

oomycetal communities at a continental scale? 

2) Is there resilient or “core” bacterial, fungal and oomycetal communities associated 

with A. thaliana roots? 

3) How do stable environmental factors shape microbial communities at a continental 

scale? 

4) How do climatic conditions and host genotype structure microbial communities at 

a continental scale? 

5) Are microbial profiles impacted by the amplification primers utilized? 
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2. RESULTS 

2.1 Structure of root-associated microbial communities at a 

continental scale 

2.1.1 Experimental set-up 

The aim of this project was to explore the robustness of A. thaliana root-associated 

microbial communities across various environmental conditions and different soil types, 

including geographically very distant locations. Thus, seventeen sites were selected 

across a gradient of climates within Europe, from Sweden to Spain, which included five 

distinct soil textures, as well as anthropized and non-anthropized areas. Most of these A. 

thaliana populations had been previously surveyed for plant population genetic studies by 

our collaborators (Jon Ågren from University of Uppsala, in Sweden; Eric Kemen, 

University of Tuebingen in Germany; Fabrice Roux from INRA Toulouse, in France; and 

Carlos Alonso Blanco, from CSIC-CNB Madrid, in Spain, Figure 1, Annex: Table 1).  

A. thaliana plants were harvested in a period from February to May, in order to match the 

bolting and flowering time of each geographic region (Boyes et al., 2001). Albeit no 

differences between late developmental stages have been previously observed in root 

microbial communities of A. thaliana relatives (Dombrowski et al., 2017), it was intended 

to harvest every plant at the same developmental stage to avoid possible variability. In 

order to learn more about microbial resilience over time, plant and soil samples were 

harvested three consecutive years during the same period each time. Further, in order to 

ensure high quality and quantity of DNA after sample processing, at least four individual 

plants were pooled to form one technical replicate and four technical replicates were taken 

in total. Since this pooling could mask the plant-to-plant microbial community variation, 

four plants were also harvested individually per site. Because we observed very low 

differences between pooled and single plants during the first harvesting year (see below), 

we therefore reduced the number of technical replicates from four to one individual plant 

in subsequent years. Finally, to assess species-specific effect on microbial communities, 

neighboring grass plants were also harvested. In total, 285 plants were harvested across 

sites and years. 
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Figure 1:  European transect of 17 natural A. thaliana populations. A) European map, depicting each of 

the studied sites and accessions: SP1, SP2, SP3 (IP-Mar-1, Ip-Cdc-3, Leo-1, respectively, Alonso-Blanco et 

al., 2016), FR1 and FR2 (Bartoli et al., 2018), FR3 (Saint-Die, Duran et al., in preparation), GE1, GE2 (Pulheim 

and Geyen, respectively, Duran et al., in preparation), GE3 (K6910, Agler et al., unpublished), GE4, GE5 

(PFN and JUG, respectively, Agler et al., 2016), GE6 (This study), SW1 (Tos-82-393, Alonso-Blanco et al., 

2016), SW2, SW3, (Ellis and Agren, unpublished), SW4 (Rödåsen, Agren & Schemske 2012), IT1 

(Castelnuovo, Agren & Schemske 2012). Color-code matches colors in next figures. Dots with black stroke 

were harvested over three consecutive years. B) Representative images of natural A. thaliana accessions. 

 

2.1.2 Fractionation protocol 

It has been previously reported that bacterial communities associated with plant roots 

have a strong compartmentalization along the soil-root continuum, and it has been shown 

that specific microbes are enriched in certain root niches (Bulgarelli et al., 2012; Edwards 

et al., 2015). Also, it has been proposed that bacteria are selected by plant roots following 

a two-step selection process (Bulgarelli et al., 2013), where microbes are “filtered” from 

the rhizosphere to the root endophytic compartment through the rhizoplane. However, not 

many reports consider each soil-to-root compartment as a unique microbial niche nor they 

include fungal and oomycetes compartment-dependent analysis, where important 

information regarding plant microbiota establishment might be missing. Thus, I developed 

and validated a fractionation protocol, where four compartments are separated (Bulk Soil; 
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Rhizosphere, “RS”; Rhizoplane, “RP”, and Roots or Endophytic fraction) (Figure 2A) and 

later used this protocol to process all harvested plant roots from natural sites.  

Bulk soil and rhizosphere fractions were obtained from harvested samples as already 

described in previous studies (Bulgarelli et al., 2012). Briefly, a sample from the bulk soil 

was taken, making sure that no root debris was included, snap-frozen in liquid nitrogen 

and stored for further processing. Individual plants were manually separated from the 

main soil body and non-tightly adhered soil particles were removed by gently shaking the 

roots; these roots were then separated from the shoot using a sterile blade and placed in 

a 15-mL falcon with 10 mL of deionized autoclaved water, which was then inverted 10 

times. Roots were transferred to another falcon and further processed, while leftover 

wash-off was centrifuged at 4000 xg for 10 min. Supernatant was discarded except for 

approximately 2 mL, which were then used to re-suspend the pellet and transfer it to a 

new 2-mL screw-lid tube. This tube was centrifuged at 20000 rpm for 10 minutes; the 

supernatant was discarded and the pellet (RS compartment) was snap-frozen in liquid 

nitrogen and stored for further processing. 

In order to specifically separate the rhizoplane from the endophytic root compartment, I 

tested three methods: 1) sonication (as in Bulgarelli et al., 2012 and Edwards et al., 2015), 

2) surface sterilization and 3) consecutive detergent washes (similarly to Agler et al., 

2016a). To validate that root surfaces were depleted from microbes and that a RP fraction 

was obtained, I printed each treated root and plated remaining washes on TSA 50%, 

followed by counting colony-forming units (CFUs) after three days of incubation at 37 °C. 

Furthermore, I took scanning-electron microscopy images (SEM) with the help of Rainer 

Franzen (Central Microscopy, CeMic, MPIPZ). Due to high variation between SEM 

images, no quantification of colonies was done and images are used to illustrate results 

from CFU counting (Figure 2B). 

1. Sonication. This method was tested as described in Bulgarelli et al., 2012. 

Although there was a trend of CFUs decrease compared to non-treated samples 

(Kruskal-Wallis, Dunn test post-hoc, non-significant, Figure 2B), roots looked 

heavily shattered and there was a strong possibility that part of the endophytic 

fraction could leak out, or that microbial cells would rupture as plant cells did. 

Furthermore, very low load of microbes was recovered in the washes post-

sonication and, therefore, making this method not suitable to recover a RP fraction 

(Figure 2B). 

2. Root surface sterilization. I further followed the protocol from Bulgarelli et al., 2012, 

which includes a final step of root surface sterilization, using sodium hypochlorite 
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(NaClO, 3%) and ethanol (80%). Roots were sterilized with 1-minute ethanol 

wash, washed with NaClO for one minute and rinsed five times with deionized 

water. Printed roots showed the lowest CFU count compared to all other 

treatments (Kruskal-Wallis, Dunn test post-hoc, p-value<0.05); however, 

inspection of SEM images revealed that microbes were still present on the root 

surface, confirming that the sterilization process reduced the viability of microbial 

cells (less CFUs on plates) but did not remove the actual cells and hence their 

DNA from the root’s surface, which would interfere with the microbial community 

profiling (Figure 2B). 

3. Detergent washes. This method was tested in order to remove microbes from the 

root surface in a less invasive manner compared to sonication, as well as to 

recover as much RP-associated microbiota (modification of the protocol from 

Agler et al., 2016a). After RS removal, roots were placed in a 15-mL falcon with 6 

mL of detergent (1x TE + 0.1 % Triton® X-100) and manually shaken for 2 minutes. 

If further detergent washes were applied, roots were transferred to a new 15-mL 

falcon. As it can be observed in Figure 2B, printing of these roots shows that there 

is a trend of decreasing CFUs on root surface after three rounds of detergent 

washes, however no significant differences could be found due to low replication 

(3 data points per treatment). More importantly, the microbial recovery in the 

washes is the highest using this method. Therefore, this was the approach 

selected to capture RP-associated microbes in this fractionation protocol.  

After using detergent washes to obtain the RP fraction, the remaining washes 

(approximately 18 mL) were filtered through a 0.22 µM-pore membrane, to capture the 

microbes specifically colonizing the RP fraction, and also snap-frozen in liquid nitrogen 

until further processing. Lastly, three-times washed roots were subjected to a further 

surface sterilization step to fully remove any leftover microbe from the root surface, as 

indicated in step 2. These roots were dried using sterile Whatman paper and snap-frozen 

in liquid nitrogen until further processing (Root or Endophytic fraction). 

DNA from all harvested and fractionated samples (in total, 1139 samples) was isolated 

and subjected to microbial profiling, using specific genomic regions for each microbial 

group of study: 16s rRNA gene for bacterial profiling (V2-V4 region and V4-V7 region), 

ITS1 and ITS2 (internal transcribed spacer 1 and 2) for fungal profiling and ITS1 for 

oomycetal profiling (see Methods, Annex: Table 2, Agler et al., 2016b). Although 16s 

V4-V7 and ITS1 have been widely used (Bulgarelli et al., 2012; Lundberg et al., 2012; 

Dombrowski et al., 2017; Agler et al., 2016b), which makes them suitable regions to cross-

compare these data with previously published reports, it is of interest to profile microbial 
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communities with another region within marker genes (16s and ITS), in order to know 

whether there is a profile bias depending on which DNA region is used (Birtel et al., 2015; 

Peay et al., 2016).  

 

Figure 2: Fractionation protocol to separate four microbial niches (Soil, Rhizosphere, Rhizoplane and 

Root). A) Fractionation protocol to separate Rhizosphere compartment (1), from Rhizoplane compartment 

(2) by using sequential detergent washes, enriching the root fraction (4) with only root-endophytic microbes. 

B) CFU counts after three days of incubation at 37 °C of leftover washes after each treatment on TSA 50 % 

media (line plot); and CFU counts after three days of incubation at 37 °C from roots after treating them with 

each of the fractionation steps, and printed on TSA 50 % media (bar plot). Significantly different values are 

indicated with different letters (Kruskal-Wallis, Dunn test post-hoc, p<0.05). The rightmost panel shows 

scanning electron microscopy (SEM) images of the same roots, to illustrate the root surface after each 

treatment. 
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2.1.3 Bacterial communities profile 

Microbial alpha-diversity indicates how diverse a given microbial community is related to 

the number of species present within a sample. Depending on which community 

characteristics are taken into account, there are different indices used in the literature, 

including: “Observed OTUs”, which indicates the number of unique OTUs within the 

sample; “Chao Index” accounts for the possibility that rare OTUs could be lost due to 

under sampling, and the Shannon Index accounts for microbial abundance and microbial 

evenness (Morris et al., 2014). Analysis of the bacterial alpha-diversity shows that there 

is a significant decrease of bacterial diversity from bulk soil samples to endophytic root 

samples (from an average of 430 observed OTUs in bulk soil to an average of 105 

observed OTUs in root samples, Kruskal Wallis, Dunn test post-hoc, p<0.05). 

Furthermore, these results indicate that the fractionation protocol utilized to process the 

samples is successful at separating a significantly distinct bacterial niche (RP) containing 

an intermediate diversity between RS and the Root (Figure 3A, Supplementary figure 

1A, Kruskal Wallis, Dunn test post-hoc, p<0.05). 

 

Figure 3: Structure of A. thaliana root-associated microbial communities at a continental scale. A) 

Observed OTUs in the whole dataset, for bacterial (16s rRNA region, V5/V7), fungal (ITS1) and oomycetal 

(ITS1) profiles, colored by fraction (Soil, RS, RP or Root fractions), matching the cartoon on the right, and 

shaped by site. Significant differences are depicted with letters (Kruskal Wallis, Dunn post-hoc, p-value< 

0.05). B) Principal coordinates analysis (PCoA) based on Bray-Curtis dissimilarities between all samples, 

colored by fraction (Soil, RS, RP or Root fractions) and shaped by site. In these plots, the further away two 

samples cluster from each other, the more different their microbial community is. 

Further analysis of the beta-diversity (microbial composition differences between 

samples) was performed using Bray-Curtis dissimilarity (that quantifies the composition 
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dissimilarity between two samples, based on read counts on each sample), weighted 

Unifrac (which also takes into account the microbial taxonomy) and unweighted Unifrac 

distances (that accounts for taxonomy and absence/presence of certain OTUs) 

(Lozupone et al., 2005) (Figure 3B, Supplementary figure 1B). Although each index has 

its benefits and added information, only the Bray-Curtis distances can be cross-compared 

with ITS-based profiling data due to the high variability of ITS1 and ITS2 regions for 

accurate phylogenetic analysis (Lindahl et al., 2013). 

Principal Coordinates Analysis (PCoA) showed that the factor that explains most of the 

bacterial community structure is fraction (first axis, 17%). Secondly, the y axis clusters 

apart samples from different geographical sites, specifically Swedish Soil and RS samples 

(second axis, 9%) (Figure 3B). Remarkably, despite these different bacterial soil inputs, 

the communities converge towards the root endophytic compartment. This evidence, 

together with the decrease in alpha-diversity towards the root compartment, suggests that 

A. thaliana roots play an important role in filtering specific microbial members, consistent 

with the two-step selection model previously proposed (Bulgarelli et al., 2013), and that 

the structure of bacterial root microbiota is highly conserved at a continental scale, despite 

large geographical distances and different environmental conditions. Compartment-

dependent separation is also visible with Weighted and Unweighted Unifrac 

measurements, although the site-dependent signature of the bacterial microbiota in soil 

and rhizosphere samples is lost (Supplementary Figure 1B). It is plausible then, that the 

bacterial OTUs that differentiate Swedish soil samples from the rest have very different 

relative abundances, but are taxonomically very similar to other sites. Another observation 

is that RP samples are more scattered in the plot, whereas soil, RS or root samples are 

tightly clustering together, which could be due to individual root-associated microbial 

variation, although technical variation cannot be excluded (Figure 3B). Separating the 

samples by compartment, shows that bacterial communities differentiate by site in soil 

and RS samples (separation of Swedish samples from the rest), whereas it is not the case 

in RP and Root fractions (Figure 4A). Indeed, permutational multivariate analysis of 

variance (PERMANOVA, p-value<0.001) indicates that “Site” variance decreases from 

soil to root compartment (37.2% to 15.3%, respectively) (Figure 4E, Table 3). 

The relative abundance of each OTU within each sample was calculated by removing 

OTUs with less than 1% representation in the whole dataset, to account for sequencing 

biases towards rare taxa (Bulgarelli et al., 2012). Reflecting the previous observation that 

bacterial communities distribute in a compartment-dependent manner, high-taxonomic-

level representation of the OTUs (phylum and class-level) shows a clear 

compartmentalization pattern (Figure 5A).  
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Figure 4: Different factors shape bacterial communities composition. A) PCoA plots showing Bray-Curtis 

dissimilarities between Soil, Rhizosphere, Rhizoplane and Root samples separately, colored by “Site” and 

shaped by “Year” of harvest. B) PCoA plot containing a subset of the samples (all individually harvested roots 

and all neighboring plants, which were plants growing in the surrounding area to A. thaliana plants, belonging 

to the Poaceae family), to show the species-dependent sample clustering. C) PCoA containing the full 

dataset, to show clustering differences between harvesting type (Pooling four plants together or Single plant 

individuals). D) PCoA containing samples harvested in all three years (12 sites, out of 17), to show the year-

dependent sample clustering. E) Variance explained by each of the plotted variables in A, B, C and D, 

calculated using permutation analysis (999 permutation, p<0.001), in the full or subsetted dataset (upper plot) 

and in each root-associated compartment (lower plot). 

The most abundant bacterial members are part of the Proteobacteria, Actinobacteria, 

Bacteroidetes and Firmicutes phyla, as well as some less abundant groups such as 

Acidobacteria, Gemmatimonadetes, Chloroflexi and Verrucomicrobia. Furthermore, 

consistent with previous observations, members of the Proteobacteria family are more 

abundant towards root samples, whereas Actinobacteria and Acidobacteria increase 

towards RS and soil samples. It is interesting to observe that, despite the remarkable 

consistency of bacterial profiles across seventeen European sites, it is possible to 

highlight site-dependent signatures. For example, many sites (such as SP1, SP2 or GE3) 

have very low representation of Firmicutes members, in comparison with other sites; also, 

Swedish sites have higher representation of Acidobacterial members, in comparison with 

any other harvested sites. Regarding the latter observation, it is likely that the separate 

clustering of Swedish samples in the PCoA plot is due an increase of the relative 

abundance of Acidobacteria (Figure 3B). Remarkably, 90% of the relative abundances 
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across samples are composed of known and abundant bacterial members, whereas only 

10% of the reads belong to rare or very low abundant taxa (Figure 5A). 

Factor Fraction 
Bacteria 
(V5/V7) 

Fungi 
(ITS1) 

Oomycetes 
(ITS1) 

Site 

All 13.62 18.04 11.34 

Soil 37.22 40.22 15.12 

Rhizosphere 21.85 39 18.5 

Rhizoplane 16.56 17.76 15.94 

Root 15.38 13.98 13.49 

Fraction   15.95 8.16 2.97 

Single/Pooled 

All 0.75 0.54 0.44 

Soil 0.21 0.28 0.16 

Rhizosphere 0.07 0.46 0.67 

Rhizoplane 0.38 0.82 0.88 

Root 1.03 0.4 0.16 

Year 

All 0.64 5.05 12.77 

Soil 0.55 1.13 5.88 

Rhizosphere 1.24 1.19 6 

Rhizoplane 1.13 2.08 2.4 

Root 3.12 9.14 6.46 

Species 
(Arabidopsis/ 
Neighbors) 

Soil 1.52 0.52 0.88 

Rhizosphere 0.44 0.52 0.89 

Rhizoplane 14.7 4.47 3.66 

Root 4.63 1.17 3.14 

 
Table 3: Factors driving microbial composition at a continental scale. PERMANOVA analysis (999 

permutations, p-value<0.001). Full dataset was used to calculate "Site", "Fraction" and "Single/Pooled" 

effects; only samples harvested all three years were used to calculate "Year" effect; a subset containing single 

and neighboring plants was used to calculate "Species" effect. Green-colored cells have a significant p-

value<0.001; grey-colored boxes have a non-significant p-value>0.001. 

 

With such an strong root compartment signal, it was interesting to explore the possibility 

that A. thaliana plants in nature select a species-specific set of microbes, regardless of 

the environment, compared to phylogenetically unrelated neighboring plants. For this 

purpose, together with A. thaliana plants, I harvested grasses growing in close vicinity 

(grasses were selected due their high presence in every site and their phylogenetic 

distance with A. thaliana; Du et al., 2016) (three individuals in the first year and one in the 

following harvesting rounds), and subjected them to the same fractionation protocol 

described above. In order to make a fair comparison, neighboring plants data was 

compared only to the A.thaliana samples with one single individual, since neighboring 

plants were not pooled together. PCoA analysis of all compartments did not show a 

different clustering pattern from the one observed for the A. thaliana-only dataset (Figure 



Results Chapter I  

20 
 

4B), and fraction is also the main driver explaining the structure of grass-root-associated 

bacteria (first axis, 16%), followed by site (second axis, 9%). These data were separated 

by fraction, in order to disentangle at which root-associated compartment soil microbiota 

might be impacted by different plant species. Thereby, PERMANOVA analysis on each 

fraction, comparing neighboring and A.thaliana plants, showed that in soil and RS 

compartments, the species effect was non-significant, whereas in RP and root fractions, 

neighboring plants recruited significantly different bacterial communities compared to A. 

thaliana plants (14% and 4%, p<0.001, respectively) (Figure 4E, Table 3). It is likely that 

exudates released by different plant species at the root vicinity, or other species-specific 

features, contribute to the recruitment of distinct RP- and root-associated bacteria 

between A. thaliana and grasses. 

 

Figure 5: Microbial abundances profiles at a continental scale. Phylum and class-level OTU relative 

abundances of bacterial (A) and fungal profiles (B), and at order level for oomycetal (C) profiles, of the whole 

dataset. Relative abundance is shown for OTUs with >1% relative abundance within each sample. Samples 

are organized by site (x axis labels) and, within each site, by Fraction (Soil, RS, RP, Root; lines on top of the 

plot depict which fraction each group of samples belongs to). 

As mentioned in the Experimental set-up section, most of the harvested plants were 

pooled in order to obtain enough DNA material. However, this could lead to a masking of 

individual-to-individual root-associated microbial composition differences. In order to 

assess this issue, single plants were also harvested in the first two years. Processing of 

these samples showed that 0.75% (p-value<0.001, PERMANOVA test) of the variation in 

the full dataset was due to the differences between pooled- or individually-harvested 

plants (Figure 4E). Consistent with that, PCoA of Bray-Curtis dissimilarities shows no 

species-dependent clustering (Figure 4C, Table 3). Detailed evaluation of this effect in 

each root-associated fraction shows that bacterial communities are slightly, but 
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significantly, impacted by the pooling strategy in the root endophytic samples (1.03%, p-

value<0.001), but not in other fractions. Therefore, taking into account this very small 

variation, pooled samples were preferred for further analysis, due to the low DNA read 

counts produced by single root samples (Annex: split_libraries). 

An important output of this dataset was to study the variability of root-associated microbial 

communities across different years. Therefore, most samples were harvested in three 

consecutive harvesting rounds, from February to May of 2015, 2016 and 2017. No 

harvesting was made between June and January, and therefore no seasonal variation 

could be addressed. A subset of the samples that included samples harvested in all three 

years (12 out of the 17 sites) was selected to monitor the resilience of microbial 

communities over time. Although Bray-Curtis dissimilarities show a higher variability for 

second and third year samples, the overall year variance is only 0.64%. Furthermore, only 

root samples display a significant variance due to harvesting time (3.12%, p<0.001), 

whereas bacterial communities in Soil, RS and RP samples remain remarkably stable 

throughout sampling years (Figure 4D and E, Table 3). Thus, it could be concluded that 

bacterial communities in the studied sites display very robust and stable patterns across 

successive years. 

2.1.4 Fungal communities profile 

Fungal communities’ data analysis included the same steps as for bacteria. Thus, profiling 

of the ITS1 of fungal communities shows a similar range of observed OTUs compared to 

bacterial profiles (between 20 and 500 for a given sample), but, unlike bacteria, fungal 

communities do not show a significantly different number of OTUs in RP samples 

compared to root samples (Figure 3A, Kruskal Wallis, Dunn test post-hoc, p<0.05). 

Further, the sample variability is much higher between fungal samples than for bacterial 

samples. Interestingly, if another alpha-diversity index is used, such the Shannon Index, 

a statistically significant difference can be observed (Supplementary Figure 2A). 

Because the Shannon index takes into account abundance and evenness of species, this 

suggests that the number of OTUs is overall similar between these two compartments, 

but that their relative abundance is markedly different. Due to their eukaryotic nature and 

the fact that fungi form hyphae, it is plausible that fully separating such filamentous 

organisms growing in a continuum from the soil towards the root is not possible. 

Therefore, and unlike bacterial community profiles, it is not possible to differentiate the 

RP fraction from the root in the majority of alpha-diversity indices.  

PCoA analysis of the fungal profiles also showed a compartment-dependent distribution, 

with two main clusters separating the soil and RS samples from the RP and root samples 
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(x axis, 7.8%). In this case, fungal samples appear to have a stronger geographical 

signature, as clear site-dependent clusters can be observed (for example, clusters of 

Swedish or Spanish sites) (Figure 3B). Indeed, PERMANOVA analysis of the dataset 

shows that “Site” has the strongest impact on fungal communities, while “Fraction” is the 

second factor driving fungal communities’ distribution (18.04% and 8.16%, respectively, 

p-value<0.001; Table 3). This site-dependency for fungal samples is even more notable 

if the dataset is subsetted according to the fraction (Figure 6A). In this case, site-specific 

fungal community clusters can be observed for soil and RS samples. Although still visible 

in RP and to a lesser extent in root samples, this signature is largely absent in the latter 

fractions, similarly to bacterial community profiles. PERMANOVA analysis of the “Site” 

effect on each fraction shows a significant effect for all four fractions, with a gradual 

decrease from soil to root compartments (from 40.2% in soil to 13.9% in roots, p<0.001, 

Figure 6E and Table 3). This suggests that fungal distribution in soils is strongly impacted 

by the environment, but, similarly to bacterial communities, host plant roots are also 

capable of determining fungal communities in root-associated tissues.   

The main fungal taxa found in root-associated compartments are Ascomycota, 

Basidiomycota and Zygomycota members, but also, although less abundant, 

Chytridiomycota and Glomeromycota, as already shown for other plant species (Figure 

5B, Coleman-Derr et al., 2016). Unlike bacterial profiles, no clear fraction-dependent 

patterns were observed at the phylum or class level for fungi. Thus, OTUs’ relative 

abundances shows a high variability across all sites, with certain taxonomic signatures in 

each location. For example, in GE2 and GE3, Basidiomycota are more abundant than in 

other sites; or Pezizomycetes, that are abundant in SW4 but less represented in other 

sites. Also, fungal profiles contain up to 20% of reads assigned to rare or low abundant 

taxa (Figure 5B). 

In order to know whether the roots of phylogenetically-unrelated neighboring plants recruit 

different fungal taxa, fungal community profiles of a subset of individually harvested A. 

thaliana roots were compared to those of neighboring grasses. PCoA analysis of the Bray-

Curtis dissimilarities does not show species-specific clusters (Figure 6C). Furthermore, 

PERMANOVA analysis indicates no statistically significant variance across most root-

associated fractions, with the exception of the RP (4.47%, p<0.001, Figure 6E and Table 

3). This lack of host species-dependent variance in fungal community profiles for 

endosphere root samples suggests that while bacterial communities have evolved closer 

host-specific interactions, fungal communities are mainly impacted by environmental 

factors, although are still driven by root secretions (significant variance in RP samples).  
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Figure 6: Different factors shape fungal communities composition. A) PCoA plots showing Bray-Curtis 

dissimilarities between Soil, Rhizosphere, Rhizoplane and Root samples separately, colored by Site and 

shaped by Year of harvest. B) PCoA plot containing a subset of the samples (all individually harvested roots 

and all neighboring plants, which were plants growing in the surrounding area to A. thaliana plants, belonging 

to the Poaceae family), to show the species-dependent sample clustering. C) PCoA containing the full 

dataset, to show clustering differences between harvesting type (Pooling four plants together or Single plant 

individuals). D) PCoA containing samples harvested in all three years (12 sites, out of 17), to show the year-

dependent sample clustering. E) Variance explained by each of the plotted variables in A, B, C and D, 

calculated using permutation analysis (999 permutation, p<0.001), in the full or subsetted dataset (upper plot) 

and in each root-associated compartment (lower plot). 

Comparison of pooled versus individually harvested roots shows no specific cluster due 

to the sampling method in the PCoA visualization; furthermore, PERMANOVA analysis 

indicates that fungal communities are not significantly different between roots of single 

and pooled individuals, suggesting low individual-to-individual variation in fungal 

communities associated with A. thaliana roots. (Figure 6C and E, Table 3). 

Fungal community stability across successive years has not been thoroughly explored in 

natural plant populations (Cordier et al., 2012). Thus, as for bacterial profiles, fungal 

profiles were compared between sites harvested every year. Such analysis shows a 

differential cluster of samples in the PCoA analysis, with a similar profile across year but 

with a slight shift from one year to the next (Figure 6D). Analysis of the variance shows 

that fungal communities in all fractions are significantly impacted by the year of harvest, 

although with an increasing gradient from soil to root samples (from 1.13% in soil to 9.14% 

in roots, p<0.001, Figure 6E, Table 3). Such gradient could be indicative of the local 
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adaptation of fungi, where they respond robustly to environmental changes in soil over 

time and colonize differently plant hosts over successive years.  

2.1.5 Oomycetal communities profile 

Although most oomycetes described to date are highly destructive plant pathogens, it 

remains unclear whether healthy plants engage in intimate association with oomycetal 

species in their natural habitats (Kamoun et al., 2015). Examination of the alpha-diversity 

showed that oomycetal communities contain only up to 76 OTUs per sample, with root 

samples containing very low number of observed OTUs (6 to 65), which contrasts with 

root-associated bacterial (12-425) and fungal (11-331) communities’ profiles (Figure 3A). 

Similarly to fungi, the number of observed OTUs are overall similar in RP and Root 

samples, but significantly lower than in RS and soil samples (Kruskal Wallis, Dunn test 

post-hoc, p<0.05). However, because Shannon and Chao indices are significantly higher 

and lower, respectively, for RP samples than for root samples (Supplementary Figure 

2B), it is likely that both OTU relative abundances and rare OTU taxa influence alpha-

diversity indices in RP samples. This suggests that, very low number of oomycetes can 

actually colonize root-associated compartments, but that this low amount of oomycetes 

members are very abundant at the root vicinity, prior colonization (in RP compared to root 

fraction).  

Inspection of oomycetal beta-diversity using PCoA of a Bray-Curtis dissimilarity matrix did 

not show a clear compartment-specific distribution. Although a slight separation in the 

second axis can be observed from soil and RS samples to RP and root samples, the 

oomycetal dataset appears to be very variable overall, especially in RP and root samples 

(Figure 3B). In fact, both “Site” and “Fraction” have lower impact on oomycetal 

communities compared to either fungal or bacterial communities (11.34% and 2.97% 

respectively in oomycetal communities, compared to 18.04% and 8.16% respectively in 

fungal communities, or 13.62% and 15.95% respectively in bacterial communities, 

PERMANOVA analysis, p-value<0.001, Table 3). Different visualization of the dataset 

and subsetting of the samples according to the fraction, shows a site-dependent 

clustering in soil and RS samples, slightly decreasing towards the root samples 

(PERMANOVA analysis, from 15.12% in soil to 13.49% in roots, p-value<0.001, Figure 

7A and E, Table 3). In contrast to bacterial and fungal community profiles, a strong year-

dependent clustering can be observed, which explains most of the variance observed in 

oomycetal communities distribution (12.77%, p-value<0.001) (Figure 7A, D and E, Table 

3). Altogether, oomycetal communities are impacted strongly by environmental and year-
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dependent variation, which is not reduced in root-associated tissues, suggesting a less 

tight association with the host plant, compared to other microbial groups.  

 

Figure 7: Different factors shape oomycetal communities composition. A) PCoA plots showing Bray-

Curtis dissimilarities between Soil, Rhizosphere, Rhizoplane and Root samples separately, colored by Site 

and shaped by Year of harvest. B) PCoA plot containing a subset of the samples (all individually harvested 

roots and all neighboring plants, which were plants growing in the surrounding area to A. thaliana plants, 

belonging to the Poaceae family), to show the species-dependent sample clustering. C) PCoA containing the 

full dataset, to show clustering differences between harvesting type (Pooling four plants together or Single 

plant individuals). D) PCoA containing samples harvested in all three years (12 sites, out of 17), to show the 

year-dependent sample clustering. E) Variance explained by each of the plotted variables in A, B, C and D, 

calculated using permutation analysis (999 permutation, p<0.001), in the full or subsetted dataset (upper plot) 

and in each root-associated compartment (lower plot). 

Relative abundances of oomycetal OTUs at the order level is dominated by taxa belonging 

to the Pythiales group. As it was the case for fungal members, there is no clear 

compartment-dependent signature; however, it is possible to distinguish specific 

oomycetal profiles for each site (Figure 5C). For example, Albuginales members are 

abundant in soils of SP2 and FR1, but very low abundant in most of the other sites; also, 

the Lagenidiales group is very abundant in FR1, FR3 and GE3 samples, but very seldom 

present in other sites. Notably, although most of the OTUs present in the oomycetes 

profiles come from the Pythiales group, almost 100% of the reads are assigned to an 

abundant taxonomic order, in contrast to fungal profiles (Figure 5B and C).  

Comparative analysis of A. thaliana and neighboring plants’ oomycetal profiles shows no 

species-specific clustering in the full dataset. However, RP and root samples are 
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significantly impacted by the different plant species (3.66% and 3.14%, respectively, 

PERMANOVA analysis, p-value<0.001, Figure 7B, Table 3). These differential 

oomycetes profiles, as for bacterial and fungal communities, could be explained by 

species-specific secretion or certain root features. 

Comparison between pooled roots and individually harvested roots showed similar results 

in oomycetal profiles, comparable to either bacterial or fungal profiles. Thereby, no 

specific clustering could be observed in the full dataset, although it was noticeable that 

single samples appear more scattered in the PCoA representation, indicating a possible 

higher variability between single roots or a lower sequencing depth due to lower sample 

quality (Figure 7C, Annex: split_libraries). Still, this suggests a very low individual-to-

individual variation in root-associated oomycetal communities.  

2.1.6 Microbial site-dependent signatures 

As shown above, microbial communities are heavily impacted by their local environment 

and the distance to the root, although at different extents, depending of the microbial 

group of study. Therefore, it is plausible to hypothesize that root-associated microbial 

communities will have members that are specifically more abundant in certain locations, 

in comparison to any other site. In order to test whether root-associated bacterial, fungal, 

and oomycetal OTUs show contrasting enrichment patterns across sites, I performed site-

dependent enrichment tests in root samples using a Generalized Linear Model. This 

shows a subset of root-associated OTUs significantly more abundant in one of the sites, 

compared to the other 16 (Generalized Linear Model, p.adj.method=FDR, p-value<0.05, 

Figure 8). These OTUs are taxonomically very diverse and, in some cases, very abundant 

within one site. This is the case, for example, of the OTU belonging to the 

Alphaproteobacteria class in the site GE6, which accounts for more than the 60% of the 

total read count in plant root samples from that site. This is also the case for certain root-

associated fungal or oomycetal OTUs, belonging to the Ascomycota and Lagenidales 

groups, respectively, that account for 10-15% of the total abundances profiles in their 

respective sites (Figure 8B and C). Notably, there is a reduced number of root-associated 

bacterial OTUs specifically enriched in each site (average of 10 enriched bacterial root 

OTUs), compared to either fungal or oomycetal OTUs (average of 22 and 34 enriched 

fungal and oomycetal OTUs, respectively). These results corroborate the finding that a 

substantial proportion of fungal and oomycetal OTUs detected in plant roots are site-

specific, whereas root-associated bacterial OTUs are more conserved across sites 

(Figure 8).  
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Figure 8: European site-specific microbial signatures. Site enriched OTUs in root endophytic 

compartments (Generalized linear model, GLM, p.adj.method=FDR<0.05), shown as aggregate average 

relative abundance, for bacterial (A), fungal (B) and oomycetal (C) profiles. Each block within each bar 

corresponds to one single OTU (numbers on top of group of bars indicates the number of OTUs enriched in 

a given site). Color-code of the bar is based on OTU taxonomic assignment (phylum- and class- level for 

bacterial samples, class level for fungal samples, and order level for oomycetal samples). 

2.1.7 The Arabidopsis root core microbiota at the European scale 

The high distance between sites, the successive sampling over years, and the large 

number of replicates in the current dataset, provide a unique opportunity to determine 

whether root-associated microbiota members are consistently and robustly found within 

A. thaliana root tissues across Europe. In order to address this question, I subsetted the 

data to pooled root samples that were harvested across all three years (namely, FR1, 

SP1, SP2, SP3, GE1, GE3, GE4, GE5, SW1, SW2, SW3 and SW4). Then, I calculated 
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which OTUs were present in at least half of the samples of each site. Based on these 

calculations, only 13 bacterial OTUs, 5 fungal OTUs, and 3 oomycetal OTUs that were 

present in all sites across three successive years could be identified (Figure 9). 

Remarkably, the relative abundance of resilient root-associated bacterial OTUs range 

between 25 and 55%, indicating that these few core OTUs represent a large fraction of 

the endosphere bacterial root microbiota. These belong to the four most representative 

phyla found in plant roots: Proteobacteria (members of the Bradyrhizobiaceae, 

Rickettsiales, Comamonadaceae, Oxalobacteraceae, Bulkholderiaceae, and 

Pseudomonadaceae groups), Actinobacteria (Mycobacteriaceae family), Bacteroidetes 

(Flavobacteriaceae family) and Firmicutes (Bacillaceae family), suggesting that the “core” 

root microbiota requires a minimal bacterial diversity for stability. Regarding the fungal 

and oomycetal OTUs, these belong to the Ascomycota (Ilyonectria, Fusarium, 

Tetracladium and Plectosphaerella genera) and the Zygomycota (Mortierella genus), and 

to the Pythiales (Pythium genus) and Albuginales (Albugo genus) which are also part of 

the most abundant taxa in root-associated microbiota. By looking at the OTUs that are 

conserved in at least 75% of the sites, many more OTUs were identified compared to 

those present in 100% of the sites (333 bacterial, 15 fungal and 8 OTUs, Supplementary 

Figure 3). Since the initial method was very stringent, the OTUs present in 100% of the 

sites should be also found in every other studied site. Indeed, all “core” OTUs can also 

be found in root samples of the sites that were not included for the initial calculation 

(namely, IT1, FR2, FR3, GE1 and GE6), suggesting that these microbial groups are in 

fact part of the A. thaliana root microbiota across Europe (Supplementary Figure 4). 

2.2 Influence of stable environmental factors on microbial 

communities’ composition 

Microbial communities are impacted by their local environment, at different extents 

depending on which microbial group is analyzed, as shown above. It is has been 

previously reported that soil composition is a major driver of soil microbiota composition 

and, therefore, a major driver of the microbial input that will finally colonize plant roots 

(Lauber et al., 2009; Rousk et al., 2010). Since the current dataset includes several soil 

textures and very different concentrations of nutritional elements (Annex: Table 1), I used 

this information to correlate how different soil characteristics and the interactions between 

these components impact microbial communities’ composition across European sites. 

Due to the lack of certain soil nutritional values for the IT1 samples, these were removed 

for the current analysis. Samples belonging to different root-associated compartments 

were analyzed together, since even though soil composition will have more impact on soil 
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communities, this impact should also be visible in other fractions. Permutational 

Multivariate Analysis Of Variance Using Distance Matrices (adonis formula in R, see 

Methods) was used to calculate the effect of individual soil nutritional elements on 

bacterial, fungal and oomycetal communities, but also the effect of the interaction of each 

nutrient combination (Figure 10). Based on this analysis, the overall major driver of 

microbial communities is pH (5.95%, 3.57%, and 1.43%, p-value<0.001, in bacterial, 

fungal and oomycetal community profiles, respectively) (Lauber et al., 2009; Rousk et al., 

2010), but also iron for bacterial (4.8%, p-value<0.001) and fungal communities (2.83%, 

p-value<0.001), and manganese for oomycetes (1.95%, p-value<0.001). Interestingly, 

Swedish soils are very rich in iron, compared to any other site (Annex: Table 1). Thus, it 

is very likely that this is one of the main reasons driving the separation of Swedish sites 

observed above (Figure 3A). Also, while bacterial communities appear to be impacted by 

only a subset of soil nutrients, such Boron (3.31%, p-value<0.001) or Reserve Calcium 

(2.98%, p-value<0.001), fungal and oomycetal communities have more soil-nutrients-

dependent profiles, indicating that local soil nutritional characteristics influence fungal and 

oomycetal biogeography and contribute to the strong site-specific microbial signatures 

observed in natural A. thaliana populations. Interestingly, some soil nutrients display 

higher impact on microbial communities only in combination with others. For example, 

Available Calcium together with Reserve Magnesium have a higher impact on both 

bacterial and fungal communities than each separately (interaction: 3.64% and 2.31%, in 

bacterial and fungal communities, compared to 2.48% and 1.08% respectively for 

bacterial communities, and 2% and 1.61% respectively for fungal communities, Figure 

10), suggesting that interactions between soil geochemical characteristics are key factors 

to account for when studying microbial communities composition in nature. 
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Figure 9: The Arabidopsis root core microbiota across Europe. Aggregate average relative abundances 

of the bacterial (A), fungal (B) and oomycetal (C) OTUs present all harvested years and in at least 50% of 

the samples of each site* (*oomycetal OTUs are present at least in 50% of the samples of 92% of the sites). 

(”n” represents the number of OTUs that are present in all sites per microbial group). Each OTU has the 

lowest taxonomic assignment possible for each microbial group (family for bacterial profile, and genus for 

fungal and oomycetal profiles). 
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Figure 10:  Soil properties driving microbial communities’ composition. Heatmaps illustrating variance 

explained by soil properties in bacterial (A), fungal (B) and oomycetal (C) communities, and the variance 

explained by the interaction of each of these soil properties (adonis test, p-value<0.001). Color code reflects 

the variance level (purple color shows higher variance, green color shows lower variance). Note that for each 

microbial group, there is a legend with different variance limits.   

2.3 Influence of climate and host genotype on microbial 

communities’ composition 

Microbial communities are highly impacted by the factor “Site”, which includes numerous 

environmental parameters, including soil characteristics but also climatic conditions. Soil 

properties, however, appear to have a reduced impact on microbial distribution, compared 

to the overall geographical effect. The impact of climatic conditions could not be 

addressed in the previous experimental set-up since samples were harvested at a given 

day and time, which is not representative of the overall climate in every site. Therefore, in 

collaboration with Prof. Dr. Jon Ågren and Dr. Thomas Ellis, we set up several 

experiments to address the following questions: 1) how does the climate shape microbial 

communities? 2) how do specific A. thaliana accessions shape their own root microbiota? 

and 3) is the soil microbiota relevant for local plant adaptation? In order to answer these 

questions, a common-garden experiment in the field and, in parallel, another common-

garden experiment under controlled laboratory conditions were performed (see Methods 

for details).  

First, two sites with contrasting climatic conditions were selected out of the 17, namely 

IT1 (Castelnuovo di Porto, Italy, Annex: Table 1) and SW4 (Rödåsen, Sweden, Annex: 

Table 1). At these sites, a transplantation experiment was set up where Swedish and 

Italian soils were transferred in trays and placed at each site. Then, seedlings of Italian 

accessions (It15, It24, It32, It41) and Swedish accessions (Sw7, Sw11, Sw43, Sw47) pre-

germinated in agar plates were transferred to the trays in Italy and Sweden. In this way, 

we could assess climate and genotype effect on soil and root-associated microbial 
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communities, as well as the impact of climate and soil on plant fitness (Supplementary 

Figure 5). The experiment started during October 2016 and plants were harvested in 

March 2017 (IT1) and May 2017 (SW4), so that plants would go through a full life cycle 

and that they would be at similar developmental stage (i.e. flowering). Harvesting 

consisted of taking each plant and their surrounding soil, removing as much soil attached 

to the root as possible and keeping this root as a technical replicate (this made between 

6 and 12 technical replicates per condition, depending on plant survival). Then, a soil 

sample was taken from the remaining in the well. Due to the size of the well (20x20mm), 

the roots would occupy the majority of the space and, therefore, these soil samples would 

be mostly rhizospheric samples (Supplementary Figure 5). Also, root samples would still 

contain the RP fraction as no fractionation protocol was performed. These root and soil 

samples were snap-frozen in dry ice and transported to the laboratory, where DNA 

extraction and library preparation was performed (see Methods). Due to high plant 

mortality, especially at the Swedish site, where no Italian accession survived 

(Supplementary Figure 6), unplanted soil samples were taken, as well as planted soil 

samples where the A. thaliana plant had died. In total, 144 root and soil samples were 

processed. 

The first output of this experimental set-up was the plant survival rate before the winter 

period (to score plant establishment at each site), and plant fitness as number of fruits 

per reproductive adult (i.e.: that had flowers at the counting time) shortly before root and 

soil harvesting. Survival of plants before winter already showed a local adaptation 

dependency for both Italian and Swedish lines. Swedish plants grown in Swedish soil in 

Sweden had significantly higher survival rate than Italian plants in the same conditions 

and vice versa (Italian plants in Italian soil in Italy had significantly higher survival rate 

than Swedish plants under the same conditions) (Supplementary Figure 6A and B). 

After winter time, overall plant survival in SW4 was very low and, furthermore, almost no 

Italian plants were alive at scoring time. Therefore, no fitness data is available for this site. 

Nevertheless, in the Italian site, we observed that Italian plant genotype produced 

significantly more fruits in the Italian soil than Swedish plants, but also that Swedish plants 

produced significantly more fruits in the Swedish soil than in the Italian soil 

(Supplementary Figure 6D). These results suggest that there is a climate dependency 

for plant fitness, but also a soil dependency.  

Microbial profiling of the field common-garden experiment (including V5/V7 for bacterial 

profiling and ITS1 for fungal and oomycetal profiling) showed that alpha-diversity of 

microbial communities does not consistently vary across conditions. Only bacterial 

communities in root samples show a significant decrease in diversity upon Climate x 
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Genotype change in Italian soil. In contrast, these bacterial root communities show a 

significant diversity increase in Swedish soil. Fungal and oomycetal communities show 

no significant changes, probably due to the high variability across samples 

(Supplementary Figure 7).  

Bray-Curtis dissimilarities analysis, by calculating the distance between clusters 

(considering soil as the stable parameter and “changed conditions” each of the clusters, 

namely “Control”, “Climate”, “Genotype” and “Climate x Genotype” or “CxG”) it was 

notable how, from the Control cluster (for example, Italian soil with an Italian genotype in 

Italy), Climate and CxG clusters significantly separated, whereas the Genotype cluster 

does not significantly shift apart from the Control cluster (Kruskal Wallis, Dunn test post-

hoc, p-value<0.05, Figure 11A). This is the case for all microbial groups, for both soil 

types (Italian and Swedish) and for both fractions (root and soil). This result indicates that 

climatic changes strongly impact root- and soil-associated microbial communities but that 

host genotype does not drive significant changes on its surrounding microbes. It would 

be evident to hypothesize that the change observed in CxG conditions is a reflection of 

the Climate effect alone; however, deeper inspection and comparison of microbial 

communities related to Climate only and CxG conditions showed that this was not the 

case. Representation of microbial relative abundances indicated slight changes in 

microbial community composition upon Climate and CxG changes (Supplementary 

Figure 8). To further account for microbial differences between the Climate and CxG 

conditions only, samples were splitted by fraction (root and soil samples separately) and 

also by soil type, because, consistently with the European transect data, these are the 

strongest drivers of bacterial and fungal communities (Table 4). PERMANOVA tests of 

the subsetted data shows a high variance explained by changing the climate, for all 

microbial communities, but especially for fungi (between 16-35% for bacterial 

communities, between 20-40% for fungi and between 14-15% for oomycetes, Table 4). 

Notably, combination of Climate x Genotype, however, drives the highest variance for all 

microbial groups (up to 53% for bacteria, up to 41% for fungi and up to 29% for 

oomycetes). Furthermore, Generalized Linear Model analysis (p.adj.method=FRD, p-

value<0.05) of each microbial group and each soil type separately, shows significantly 

enriched microbial members when comparing the two conditions, especially in bacterial 

community profiles (Figure 11B). This result indicates that there is a host genotype effect 

on root-associated microbial communities that is climate-dependent. There are 54 

bacterial OTUs (in Swedish soil) and 15 bacterial OTUs (in Italian soil) significantly 

changed. These bacteria are taxonomically diverse (Proteobacteria, Actinobacteria, 

Bacteroidetes and other phyla, Annex: Supplementary Table 1), whereas the 22 fungal 
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OTUs (in Swedish soil) that significantly changed mostly belong to the Ascomycota 

phylum (Annex: Supplementary Table 1). Due to high variation in oomycetes profiles, 

no significantly different OTUs could be captured.  

 
Factor Fraction 

Bacteria 
(V5/V7) 

Fungi 
(ITS1) 

Oomycetes 
(ITS1) 

 Soil   48.15 31.47 4.41 

 Fraction   20.15 9.56 4.03 

Italian soil 

Climate 
Matrix 30.11 39.14 15.36 

Root       

Genotype 
Matrix 1.11 1.27 1.73 

Root 3.18 2.82 3.83 

ClimatexGenotype 
Matrix 38.98 41.4 19.27 

Root 53.13 27.28 22.38 

Swedish 
soil 

Climate 
Matrix 35.93 40.31 19.32 

Root 16.63 20.16 14.38 

Genotype 
Matrix 1.03 1.48 1.25 

Root       

ClimatexGenotype 
Matrix 45.96 37.77 29.64 

Root 26.05 20.2 16.84 
 

Table 4: Factors driving microbial composition in transplantation experiment. PERMANOVA analysis 

(999 permutations, p-value<0.001). Full dataset was used to calculate “Soil” and Fraction” effects. Then, 

samples were separated by these factors to calculate “Climate”, “Genotype” and “Climate x Genotype” effects. 

Green-colored cells have a significant p-value<0.001; grey-colored cells have a non-significant p-

value>0.001. 

In order to reduce the environmental background inherent to the previous experiment, the 

same experimental set-up was reconstituted in climatic chambers, located at Uppsala 

University (Sweden). These growth chambers mimicked very closely SW4 and IT1 

climatic conditions for a period of 6 months (i.e.: day-to-day variation in light quantity, 

humidity, temperature, etc. See Methods), where the Swedish winter was shortened in 

order to match the Italian chamber timeline (see Methods). After six months of incubation 

in each climatic chamber, roots and surrounding soil were harvested similarly to the field 

experiment. Then, DNA extraction and library preparation for bacterial, fungal and 

oomycetal profiles were also performed. Analysis of the sequencing data showed that the 

overall conclusion from the field experiment remained true (Climate has a strong impact 

on microbial communities, CxG has the strongest, but Genotype effect remains non-

significant, Supplementary Figure 9). Sample variability, surprisingly, was much higher 

in this experimental set-up than it was in the field experiment, probably due to technical 

reasons, such desiccation or chamber edge effect (Supplementary Figure 9A, see 

Methods). 
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Figure 11: Microbial communities’ composition in the common-garden field experiment. A) Plots 

depicting average Bray-Curtis distances between clusters of conditions (x axis) in root and soil samples, for 

bacterial, fungal and oomycetes profiles. Cartoons show which conditions are changed, while soil (either 

Italian -red- or Swedish -green-) remains as the constant factor. Asterisks indicate in which conditions 

microbial communities are significantly apart from the control cluster (Kruskal-Wallis, Dunn test post-hoc, 

p<0.05). B) Regression plots comparing the log-transformed relative abundances of bacterial, fungal and 

oomycetal OTUs in the conditions Climate (x axis) and CxG (y axis), for Italian soil (left panels) and Swedish 

soil (right panels). Red- and green-colored are OTUs significantly enriched in the Climate and CxG conditions, 

respectively (Generalized Linear Model, p.adj.method=FDR, p-value<0.05). 

Taking these and the European transect results into account, it is plausible that most of 

the “Site” effect observed for microbial communities across Europe, actually arises from 
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the climate effect on this microbiota, and that host genotype drives subtle microbial 

community shifts in a climate-dependent  manner (i.e., climate x genotype interaction). 

2.4 Comparison of bacterial and fungal profiles using different 

amplification regions 

An important output of this project was to rule out the possibility that there are sequencing 

and results biases due to the amplified DNA regions used for both bacterial and fungal 

community profiles. Currently, a large body of literature report the structure of plant-

associated microbiota (Bulgarelli et al., 2013; Rastogi et al., 2013) but it remains difficult 

to cross-reference results due to the lack of standardization and the use of different 

marker loci (Thompson et al., 2017). Therefore, it was important to address this question 

with the current dataset, as it contains a large amount of samples and it compares more 

than one microbial group. In order to validate the sequencing results obtained for bacteria 

using the 16s V5/V7 and for fungi using the ITS1 region (see above), I also produced 

sequencing libraries using the same DNA samples but using PCR primers that target a 

different region of the bacterial 16s rRNA gene (region V2/V4) and of the fungal ITS-

related region (ITS2).   

First, I grouped OTUs by their taxonomic assignment at phylum level and compared which 

groups were represented by both primer pairs. Overall, V2/V4- and ITS1-derived regions 

capture more phylogenetic diversity compared to either V5/V7 or ITS2, (8 and 2 additional 

phyla detected, respectively). However, all these phyla are largely underrepresented 

across the dataset and contain low abundant OTUs. Therefore all taxonomic groups not 

shared between the two pairs of libraries (targeting V2/V4 and V5/V7 for bacteria, and 

ITS1 and ITS2 for fungi) were not considered for this comparative analysis. Relative 

abundance estimates were used at different taxonomic levels per amplifying pair. 

Thereby, comparison at the phylum level between the V2/V4 and V5/V7 regions of the 

bacterial 16s rRNA showed a very significant correlation (Pearson’s correlation 0.70, p-

value=9.87e-07; Mantel statistical r=0.50, p-value<0.001, Figure 12). However, at lower 

taxonomic resolution, such class or order levels, these correlations, although significant, 

are lower (0.41, p-value=1.15e-5 and 0.315, p-value=5.1e-5, respectively). It is important 

to note that at lower levels, such family or genus, the taxonomic assignment to the public 

database is very poor for both libraries and many OTUs are grouped as “non-assigned”. 

This is the case for both libraries and, therefore, the high correlation values are actually 

reflecting the high overlap between “non-assigned” OTUs (for example, it can be observed 

that almost half of the phyla compared in Figure 12A are no longer present in the 
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comparison of Figure 12D). In the case of fungal profiles, correlation at phylum levels is 

very high (Pearson’s correlation 0.992, p-value=1.06e-5; Mantel statistical r= 0.55, p-

value<0.001, Figure 13), but also at lower taxonomic levels (order: 0.94, p-value=2.2e-

16; family: 0.97, p-value=2.2e-16; genus: 0.98, p-value=2.2e-16, Figure 13). In this case, 

ITS1- and ITS2-based libraries appear to give very consistent taxonomic and relative 

abundance results. 

Deeper analysis of the profiles shows first that, similarly to the V5/V7 data, root 

compartmentalization drives most of the bacterial variation in the V2/V4 profile, followed 

by biogeography and year variations (55%, 6.73% and 0.99%, respectively, p-

value<0.001, PERMANOVA analysis, Supplementary Table 2). Interestingly, fraction- 

dependent variance is greatly magnified in V2/V4 (from 15.95% in V5/V7 to 38.24% in 

V2/V4 profile, Table 3, Supplementary Table 2, Supplementary Figure 10A). 

Distribution of the samples in the plot is very similar between the two datasets, where 

Swedish soil and RS samples cluster separately from other sites, and there is a 

convergence at the root fraction (Supplementary Figure 10A). Maybe due to the higher 

number of rare taxa found in V2/V4, soil samples amplified with this region display higher 

variance explained by the different years of harvesting (non-significant, 0.55 in V5/V7 and 

3.69%, p-value<0.001 in V2/V4). Similar species-dependent variance can be observed 

between the two datasets (14.7% and 4.63% in Rhizoplane and Root samples, 

respectively, in V5/V7, compared to 9.12% and 2.94% in Rhizoplane and Root samples, 

respectively, in V2/V4, p-value<0.001, PERMANOVA analysis, Table 3, Supplementary 

Table 2). Although both V2/V4 and V5/V7 regions provide overall similar information 

regarding community diversity and structure, as well as regarding the factors that shape 

these communities, the V2/V4 region appears to provide a better resolution for low 

abundant OTUs (Figure 12). 

In the case of ITS1 and ITS2, the main variables impacting ITS1 profiles remain correct 

for ITS2 profiles. Thus, “Site” is the most important factor driving fungal communities 

distribution, followed by fraction and year of harvesting (18.04%, 8.16% and 5.05, 

respectively, in ITS1 and 14.82%, 5.33% and 9.9% in ITS2, PERMANOVA analysis, p-

value<0.001, Table 3, Supplementary Table 2). By looking at the PCoAs of the ITS1 

and ITS2 profiles, a very similar distribution pattern can be observed, although the ITS2 

clusters are tighter together, compared to the ITS1 clusters (Supplementary Figure 

10B). Further, ITS2 profiles only appear to be slightly more impacted by the species-

specific effect in RP samples compared to ITS1 (9.94% in ITS2 and 4.47% in ITS1 

profiles, p-value<0.001). In conclusion, fungal community profiles are highly consistent 
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between both ITS regions, and, therefore, either of them will be suitable for further 

analysis. 

 

 

Figure 12: Bacterial profiles amplified with two different loci in the 16s region (V5-V7 and V2-V4). Plots 

showing the taxonomic overlap between log-transformed relative abundances of bacterial OTUs obtained 

using V2V4 and V5V7 from the bacterial 16s rRNA region amplification, at phylum (A), order (B), family (C) 

and genus (D) levels. (Pearson’s correlation test, p-value<0.001). Grey area along the regression line denotes 

the smoothed conditional means. Note that due to the low taxonomic assignment at the species level, 

correlation levels are inflated. 
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Figure 13: Fungal profiles amplified with two ITS regions (ITS1 and ITS2). Plots showing taxonomic 

overlap between log-transformed relative abundances of fungal OTUs obtained amplifying ITS1 and ITS2 

fungal regions, at phylum (A), order (B), family (C) and genus (D) levels. (Pearson’s correlation test, p-

value<0.001). Grey area along the regression line denotes the smoothed conditional means. 
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3. DISCUSSION 

3.1 Distinct root-associated compartments are potential 

microbial niches 

Previous studies already determined that bacterial and fungal communities are strongly 

impacted by the root compartment (Bulgarelli et al., 2013; Edwards et al., 2015). 

Therefore, it was important for the aim of this project to establish a fractionation protocol 

that selectively separates distinct root niches colonized by epiphytic and endophytic 

microbes. More importantly, this protocol had to be adapted for distinct microbial groups 

to allow comparative analysis between microbial profiles. Bulk soil and RS fractions were 

obtained as described previously (Bulgarelli et al., 2012); further, it was noted that, in rice 

roots, RP is an important fraction where microbes that will colonize the root interior are 

filtered (Edwards et al., 2015). The protocol initially utilized in this study included a 

sonication step in order to harvest RP-associated microbes. However, this sonication 

treatment heavily shattered A. thaliana roots (Figure 2B) and these sonicated roots, 

printed on TSA 50% did not show significantly lower number of CFUs compared to 

untreated roots (Kruskal-Wallis, Dunn test post-hoc, p-value<0.05, Figure 2B). 

Furthermore, I hypothesized that the same damage observed on root surface upon 

sonication, could affect fungal and oomycetal hyphae which, therefore, makes this step 

not suitable for the purpose of this project. Using an adapted protocol from Agler et al., 

2016a, where they could recover specific microbes inhabiting the leaf surface, I tested 

whether sequential detergent washes would efficiently recover microbiota from the RP 

and enrich for root endophytes. Subsequent detergent washes showed a trend of 

increasing removal of microbes from the root surface, but not significantly. However, this 

method showed the highest recovery of RP microbes (Figure 2B). Therefore, this final 

fractionation protocol was the one incorporated for the next steps in this project (Figure 

2A). 

3.2 Only a specific fraction of the soil microbiota can colonize 

root endosphere 

Bacterial communities have been described to decrease gradually their species diversity 

from bulk soil to endosphere root compartments (Bulgarelli et al., 2012; Lundberg et al., 

2012; Edwards et al., 2015). Such observation is also true for fungal communities, 

although compartment-driven variance is much lower than for bacterial communities 

(Coleman-Derr et al., 2016; Hacquard, 2016). Alpha-diversity analysis of the full dataset 
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showed significant decrease of bacterial communities from soil samples to root 

endophytic fraction, with a significantly different fraction between RS and root 

compartments: the rhizoplane (RP) (Figure 3A, Edwards et al., 2015). Although the 

species diversity also decreased for fungal and oomycetal communities, the RP fraction 

did not harbor a significantly different number of fungal and oomycetal OTUs compared 

to the endophytic fraction. In the case of fungal communities, the Shannon Index 

highlights a significant difference between RP and roots samples, suggesting that, even 

though OTU number and assignment are very similar, their relative abundances change 

from the root surface towards the root interior (Supplementary Figure 2A). Nevertheless, 

and as already mentioned in the Results section, it is very likely that the fractionation 

protocol, although successful separating compartments, it captures the same eukaryotic 

microbes that grow in a continuum from the soil to the plant root. Still, it can be concluded 

that the microbial communities studied here are filtered towards the root compartment, 

with more or less specificity depending on the microbial group of study. On the other hand, 

it would also be plausible to consider that only a small fraction (<25%) of the soil bacterial 

microbiota is adapted to colonize the root endophytic environment, whereas a larger 

fraction (50%) of soil-borne filamentous eukaryotes colonize the plant endosphere, as 

well as the rhizoplane fraction.  

3.3 Microbial beta-diversity is driven by environmental factors 

and the host plant´s effect 

Using the Bray-Curtis dissimilarities, it was possible to observe how bacterial, fungal and 

oomycetal samples cluster apart from each other. Thereby, analysis of the current dataset 

highlighted that, while bacterial communities’ distribution is mainly determined by the root 

compartment, fungal and oomycetal communities have a more complex distribution 

patterns (Figure 3B, Figure 4A, Figure 6A, Figure 7A). PERMANOVA analysis indeed 

showed that bacterial communities are impacted by compartment, site and year of 

harvesting, in this order (15%, 13% and 0.6%, respectively, p-value<0.001, Table 3, 

Figure 4). Fungal communities, on the other hand, are primarily impacted by site, fraction 

and year of harvesting (18%, 8% and 5%, respectively, p-value<0.001, Table 3, Figure 

6). And, finally, oomycetal communities are mainly impacted by the year of harvesting, 

followed by site and fraction (12%, 11% and 3%, respectively, p-value<0.001, Table 3, 

Figure 7). These results highlighted the necessity to analyze each of these microbial 

groups under the same environmental conditions, the same fractionation protocol and 

within the same survey, as stated by Thompson et al., 2017. Otherwise, it would not have 

been possible to assess how the microbiota localized in the exact same habitat responds 
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very differently to environmental inputs and to the host plant. Furthermore, these data are 

consistent with previous reports. Thus, bacterial compartment-driven distribution 

resembles the one described by Bulgarelli et al., 2012 or Edwards et al., 2015 (Figure 9), 

as well as fungal site-distribution (Figure 8B), as pointed out by Shakya et al., 2013 and 

Coleman-Derr et al., 2016. The results from my dataset, however, are remarkable due to 

the higher number of root-associated samples and sites used for these comparisons (17 

sites/soils, only comparable to the Earth Microbiome Project, Thompson et al., 2017). I 

concluded that despite the large geographical distances and the different bacterial soil 

inputs, A. thaliana roots are colonized by remarkably similar bacterial communities at a 

European scale, underlining the strong root filtering effect. In contrast, root-associated 

fungal and oomycetal communities resemble more those of the surrounding soil, 

suggesting they do not form taxonomically structured communities in plant roots at the 

European scale (Talbot et al., 2014). The observation that root-associated oomycetal 

communities resemble more fungal communities’ behavior and display a stronger 

seasonality effect suggests that distinct factors shape fungal and oomycetal communities 

at the continental scale (Bahram et al., 2016). Although different marker loci were used 

between bacteria and filamentous eukaryotes, potentially inflating these observations 

(Peay et al., 2016), the use of the same locus to target fungal and oomycetal community 

structure (e.g. ITS1) indicates that at least fungi and oomycetes clearly respond differently 

to the tested variables. 

3.4 Microbial communities´ composition is host species 

dependent 

As in previous reports, bacterial A. thaliana root-associated communities were mainly 

composed of Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes (Bulgarelli et 

al., 2013; Hacquard et al., 2015; Figure 5A). Also, the fungal taxa colonizing plant roots 

mainly belong to the phyla Ascomycota and Basidiomycota (Jumpponen and Jones, 

2009; Toju et al., 2013; Hardoim et al., 2015; Figure 5B), as well as Zygomycota phylum. 

Members of the Brassicaceae family do not engage in symbiotic associations with 

mycorrhizal fungi (mostly belonging to the Glomeromycota phylum) and, consistent with 

that, relative abundance of this group is highly reduced across this dataset (Figure 5B). 

Thus, is very likely that other fungal members provide other beneficial traits in A. thaliana 

plants, as previously shown (Hiruma et al., 2016; Hacquard et al., 2016; Almario et al., 

2017). Regarding oomycetal communities, these were mainly composed by members of 

the Pythiales order, although, depending of the site of study, Albuginales, Lagenidiales 

and Saprolegniales were also represented (Figure 5C, Figure 8C). Interestingly, almost 
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all oomycetes described to date are pathogens (Kamoun et al., 2015), raising the 

possibility that the roots of healthy A.thaliana are colonized by pathogenic oomycetes that 

remain non-pathogenic in a community context.  

In order to decipher whether these microbial communities are similar between A. thaliana 

plants and other plant species growing in close vicinity, I also harvested grasses, 

belonging to the Poaceae family, from all sites, for three consecutive years. PERMANOVA 

analysis of the comparison between A. thaliana root-associated samples from single 

roots, with grasses-associated samples showed that bacterial and fungal soil and RS 

communities are not significantly different between the species. However, the strongest 

host-dependent effect can be observed in RP samples (14% of the variation explained in 

bacterial communities, 4% in fungal communities and 3% in oomycetal communities, p-

value<0.001, Table 3). Further, bacterial and oomycetal communities are still impacted 

at the root fraction (4% and 3%, respectively, p-value<0.001), whereas that is not the case 

for fungal communities. Such host-dependent changes have been previously observed 

for different plant species (Redford et al., 2010; Schlaeppi et al., 2014; Coleman-Derr et 

al., 2016; Fitzpatrick et al., 2018, among others) and it is tempting to speculate that 

different root exudate chemistry or root architectural features (Chaparro et al., 2014; 

Kembel et al., 2014; Zhalnina et al., 2018) contribute to the striking differences observed 

between plant species in the RP fraction.  

3.5 Bacterial communities are stable across years 

The current dataset includes samples harvested at the same plant developmental stage, 

across three consecutive years. Therefore, it was possible to assess whether A. thaliana 

root-associated microbiota members establish stable associations throughout time. 

Bacterial and fungal communities were more stable in soil-related compartments, than in 

the root (0.55% in soil, non-significant, compared to 3.12% in roots, for bacterial 

communities; and 1.13% in soil, compared to 9.14% in root-associated fungal 

communities, PERMANOVA, p-value<0.01, Table 3, Figure 4D and E, Figure 6D and 

E). This suggests that the observed change in root-associated communities may be driven 

by plant responses to other environmental factors such as precipitation or temperature 

(Wagner et al., 2016). Soil microbiota strongly depends on soil composition (van der 

Heijden, 2008), which is not expected to change significantly over time. However, 

although soil bacterial communities do not vary significantly across years (PERMANOVA, 

0.55%, non-significant), fungal and oomycetal soil-associated communities are 

significantly different from one year to the next (1.13% and 5.88% variance, respectively, 

p-value<0.001, Table 3, Figure 6D and E, Figure 7D and E), suggesting that soil 
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composition might be variable across years, impacting fungal and oomycetal 

communities, which might be more responsive to environmental variations in soils or 

persist poorly in soils (Lekberg et al., 2012). On the other hand, the host plant, in this case 

A. thaliana, is an annual plant, with a new generation each year. Assuming the host 

genotype is on driver of bacterial communities (Horton et al., 2014; Bodenhausen et al., 

2014), then a new individual plant each year should recruit a slightly different microbiota 

to its parental lines, but more similar than compared to another species (3% year-to-year 

variation, compared to 4% species variation, respectively, Table 3).  

3.6 Reduced but stable A. thaliana root-associated core 

microbiota 

As reported previously (Lundberg et al., 2012; Yeoh et al., 2017; Hamonts et al., 2018; 

Fitzpatrick et al., 2018), it is important to determine whether root samples harbor a core 

group of microbes across host genotypes or species that could be relevant for plant fitness 

in their natural habitats. The difference with these studies is that I harvested the same 

plant species, A. thaliana, in very contrasted environments and soil types across years. 

Further, this screen includes several microbial groups that, if are part of the A. thaliana 

root microbiota, it can be assumed they robustly interact across environments and years. 

Bacterial resilient OTUs, robustly colonizing plant roots across all sites and years, belong 

to the four most representative phyla found in plant roots: Proteobacteria (members of the 

Bradyrhizobiaceae, Rickettsiales, Comamonadaceae, Oxalobacteraceae, 

Bulkholderiaceae, and Pseudomonadaceae groups), Actinobacteria (Mycobacteriaceae 

family), Bacteroidetes (Flavobacteriaceae family) and Firmicutes (Bacillaceae family), 

suggesting that the “core” root microbiota requires certain bacterial diversity for stability 

(Figure 9A). Comparison of these core members with other publications showed that 

most of these groups can be also found in other wild species and crops (Yeoh et al., 2017; 

Hamonts et al., 2018; Fitzpatrick et al., 2018). This suggests that an evolutionary 

conserved core microbiota has evolved with terrestrial plants (Yeoh et al., 2017). Notably, 

this A. thaliana bacterial core microbiota is dominated by four proteobacterial OTUs 

(OTU_5, OTU_11, OTU_13 and OTU_14). This is remarkable because this extremely 

reduced number of OTUs accounts for 14-47% of the root endosphere 16s rRNA reads 

at each site, suggesting that they have evolved strategies to efficiently colonize and 

persist within root tissues, despite large geographical distances (Figure 9A). Regarding 

the fungal and oomycetal OTUs, these belong to the Ascomycota (Ilyonectria, Fusarium, 

Tetracladium and Plectosphaerella genera) and the Zygomycota (Mortierella genus) 

phyla, and to the Pythiales (Pythium genus) and Albuginales (Albugo genus) orders which 



Discussion Chapter I  

46 
 

are also part of the most abundant taxa in root-associated microbiota, as also observed 

for bacterial and fungal core OTUs of sugarcane (Figure 9B and C, Hamonts et al., 2018). 

It is tempting to speculate that these microbes have been engaging in robust and 

consistent interactions within A. thaliana root tissues, and that they provide certain 

beneficial function to its host, or to their microbial partners. Interestingly, most of these 

microbial core members are actually culturable (Bai et al., 2015; Duran el al., in 

preparation), so that it would be very interesting to test the previous hypothesis using 

these strains and co-inoculating them under controlled conditions with germ-free plants. 

3.7 Specific soil characteristics have a small but significant 

impact on root microbiota establishment 

As introduced before, soil microbiota plays a very important role for nutrient cycling and 

soil stability (van der Heijden, 2008), but these microbes are also strongly affected by the 

soil nutritional composition itself. The current dataset, due to the great variety of soil 

compositions and soil textures that it comprises, gave the opportunity to analyze the effect 

of soil properties on bacterial, fungal and oomycetal communities. As previously reported, 

pH is the major soil property that impacts both bacterial and fungal communities (5.95% 

and 3.57%, respectively, p-value <0.001, Figure 13, Lauber et al., 2009; Rousk et al., 

2010). The strongest soil property driver for oomycetal communities, however, is 

manganese (Mn) (1.95%, p-value<0.001, Figure 13). Although not much is known about 

oomycetal distribution drivers, it has been shown that utilization of Mn, together with 

potassium (K) in phosphite-based treatments, alleviates the damping-off of Pythium 

species on soybean seeds (Carmona et al., 2018), which could suggest that these 

nutrients will have a negative effect on oomycetes distribution. In fact, Mn levels 

negatively correlates with oomycetal diversity in the current dataset (Pearson’s 

correlation= -0.15, p-value= 2.523e-05). Iron is another important soil nutrient for 

microbial communities (4.8% for bacteria, 2.83% for fungi, 1.2% for oomycetes, p-value< 

0.001, Figure 13). This could be due to the link between microbial-driven iron reduction 

and carbon cycles in soils (competition for electron acceptors), which then indirectly 

impacts the rest of the microbial community (Dubinsky et al., 2010). Notably, 

Acidobacteria are more represented in Swedish soils, where iron levels are very high 

(337-1647 mg/kg versus 8.1-343 mg/kg in other sites, Annex: Table 1). Since 

Acidobacteria are well known to grow in iron rich mine environments, they likely play an 

important role in iron redox reactions in soils (Ward et al., 2009). Other soil nutrients also 

have an impact on bacterial communities’ distribution, such as Boron (3.31%). Boron at 

high concentrations is a toxic element for most bacterial members, although some isolates 
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have been described to display high tolerance (Ahmed et al., 2007). Further, inspection 

of the pH-boron-salinity effect on cucumber growth and rhizospheric bacterial 

communities showed that, although pH and salinity are the major determinants, boron has 

a key role at early plant growth stages on bacterial communities’ richness (Ibekwe et al., 

2010). Related to this, some soil nutrients display higher impact on microbial communities 

only in combination with others. For example, Available Calcium together with Reserve 

Magnesium have a higher impact on both bacterial and fungal communities than each 

separately (Available Calcium x Reserve Magnesium: 3.64% and 2.31%, for bacterial and 

fungal communities, respectively, Figure 13). Overall, microbial communities’ distribution 

have significant but small effects driven by soil composition. These effects are probably 

nested within each other and it is difficult to fully disentangle each soil properties’ effect 

on each microbial group. Therefore, it will be interesting to build a model based on single 

taxa correlations with each soil property, in order to find which combination of soil 

characteristics actually drives most of microbial communities’ composition.  

3.8 Climate is a major driver of root-associated microbial 

composition 

Biogeography and soil are major drivers of microbial communities in nature, as shown in 

previous studies (Bulgarelli et al., 2012; Talbot et al., 2014). Because soil properties are 

predicted to have significant but small impacts on microbial communities, other 

biogeography-related variables must have more pronounced effect on microbial 

composition across Europe. In each of the harvested sites, locally adapted A. thaliana 

accessions could be found, which were different in each site. Therefore, no A. thaliana-

related genotype effect could be separated from biogeography, although it has been 

shown to be a significant driver of bacterial communities’ composition (Lundberg et al., 

2012). Further, climatic conditions in each site are probably major determinants of host 

responses, soil composition and overall microbial communities (Xu et al., 2018). In order 

to disentangle the effect of each of these factors on microbial community structure, I 

selected the two contrasted IT1 and SW4 populations for reciprocal transplantation 

experiments in the field but also under controlled laboratory conditions. In the field 

experiment, plant survival and fruit production was already a proxy of how important 

climatic and soil adaptation is for host performance. Thereby, plants growing in their 

adapted climate and soil, had a significantly higher survival rate than non-adapted host 

(Supplementary Figure 8). This suggests local adaptation of the local genotype to its 

own soil and climate. Further, microbial communities profiling showed a strong climate 

effect on all microbial groups in all soils (15-40%), but no genotype effect (Figure 14A, 
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Table 4, Supplementary Figure 10). Interestingly, the strongest effect came from the 

interaction between climate and genotype effects (Table 4, Supplementary Figure 10). 

Enrichment tests showed that taxonomically distinct bacterial members and specific 

fungal members are responsible for the climate-driven genotype effect, suggesting that, 

indeed, under specific climatic conditions, the host plant can recruit genotype-specific 

microbiota members (Figure 14B; Xu et al., 2018; Fitzpatrick et al., 2018).  

3.9 Bacterial and fungal communities profiling is essentially 

comparable between amplification methods 

Using different DNA regions for microbial profiling can lead to slightly different results 

depending on the region of choice, and also to inflations of certain results, as well as new 

information (Peay et al., 2016; Wang et al., 2016). Thus, I profiled bacterial and fungal 

communities using a second genomic region (V2/V4 within the 16s rRNA region for 

bacterial communities, and ITS2 for fungal communities), similarly to Agler et al., 2016b. 

Comparison of the bacterial profiles (V5/V7 vs V2/V4) shows a very significant overlap 

between OTU relative abundances at high taxonomic levels, which decreased at lower 

taxonomic levels. Overall distribution patterns remain very similar, although slightly 

inflated in V2/V4 (Table 3, Annex: Supplementary Table 1, Supplementary Figure 3A). 

This is probably due to the higher taxonomic assignment to rare taxa in V2/V4 compared 

to V5/V7. Thereby, relative abundances are decompensated between the two datasets. 

The presence of rare taxa, however, is likely not due to sequencing bias, as OTUs with 

less than 1% representation in the dataset were removed for the comparison (see 

Methods). Also, it is important to note that both profiles lack good taxonomic assignment 

at lower levels than family. Thus, V2/V4 can bring an additional information about taxa 

not usually captured by V5/V7, but a parallel profiling using a second region within the 

conserved gene can complement a bacterial communities profiling (Wang et al., 2016; 

Agler et al., 2016b). Fungal profiles, on the other hand, are very significantly correlated at 

all taxonomic levels (Pearson’s correlation at phylum: 0.992, p-value=1.06e-5, order: 

0.94, p-value=2.2e-16; family: 0.97, p-value=2.2e-16; genus:0.98, p-value=2.2e-16, 

Figure 11), as well as overall fungal communities’ distribution patterns (Table 3, Annex: 

Supplementary Table 1, Supplementary Figure 3B). Therefore, either fungal ITS 

region will be suitable for further analysis. 
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3.10 Conclusions and future perspectives 

Recent studies have advanced our knowledge about microbial communities associated 

with plants and environmental factors shaping these communities, but it is difficult to 

cross-compare between different techniques and experimental set-ups, in order to 

describe a microbial communities’ composition working model. Although the structure of 

the bacterial root microbiota has been extensively described in A. thaliana and 

Brassicaceae relatives at a local scale, fungal community profiling has never been used 

to characterize root-associated fungi in this model plant species, in which the signaling 

pathways required for establishing mutualistic interactions with mycorrhizal fungi have 

been lost. Therefore, first, I surveyed A. thaliana bacterial, fungal, and oomycetal 

communities associated with distinct root compartments, across a wide geographical 

area. Also, I could reveal that microbial communities are very differently impacted by 

environmental cues depending on the microbial group of study. Thus, bacterial 

communities’ distribution is impacted by plant compartment, geographic location and 

year, in that order; fungal communities are impacted by location, compartment and year 

and, oomycetes communities, by year, location and compartment (Figure 14). I showed 

that a very reduced but robust group of core microbes can be consistently found within 

A.thaliana root tissues across Europe, but also that A.thaliana in each location has a very 

specific microbial footprint. Secondly, in order to fully disentangle the geographical effect 

into 1) host/accession genotype, 2) climate and 3) soil properties effects, soil and climate 

transplantation experiments were performed, showing that soil is the major driver of 

microbial composition, but that climate is a very important fraction of the geographic 

location effect, by directly impacting microbial communities composition, but also 

indirectly through the host genotype (Figure 14). Importantly, individual soil 

characteristics have small but significant impacts on microbial communities, which cannot 

be separated from the overall soil and climate effect. Therefore, separation of soil biotic 

from abiotic components will be key to learn the specific effect of soil composition on 

microbial communities. Thus, transplantation experiments of soil slurries under different 

climatic conditions will allow to understand these soil-microbes interactions and their 

effect on plant performance. 
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Figure 14: Schematic representation of environmental drivers of A. thaliana root-associated microbial 

communities’ composition in nature. The major drivers of microbial communities’ composition and 

distribution in nature are root fraction or root vicinity, site or geographic location and year or seasonality. 

These environmental factors, however, have different impact grades on bacterial, fungal and oomycetal 

communities. Further, geographic location comprises several factors: soil composition, climate and host 

genotype. Soil composition also has a variable effect on microbial communities depending on the microbial 

group of study. Climatic conditions are a key driver of microbial composition, which directly impacts 

communities’ distribution or indirectly, through the host genotype.  
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3. MATERIALS AND METHODS 

4.1 Materials  

4.1.1 Plant material 

A. thaliana accessions were harvested from natural populations described in the following 

studies: SP1, SP2, SP3 (IP-Mar-1, Ip-Cdc-3, Leo-1 respectively, Alonso-Blanco et al., 

2016), FR1 and FR2 (Bartoli et al., 2018), FR3 (Saint-Die, Duran et al., in preparation), 

GE1, GE2 (Pulheim and Geyen, respectively, Duran et al., in preparation), GE3 (K6910, 

Agler et al., unpublished), GE4, GE5 (PFN and JUG, respectively, Agler et al., 2016a), 

GE6 (This study), SW1 (Tos-82-393, Alonso-Blanco et al., 2016), SW2, SW3, (Ellis and 

Ågren, unpublished), SW4 (Rödåsen, Ågren & Schemske 2012), IT1 (Castelnuovo, Ågren 

& Schemske 2012). 

Italian and Swedish A. thaliana accessions utilized in transplantation experiments were 

provided by Prof. Dr. Jon Ågren and Dr. Thomas Ellis, University of Uppsala. The 

accessions utilized were It15, It24, It32, It41 (from Italian parental lines) and Sw7, Sw11, 

Sw43, Sw47 (from Swedish parental lines) (Agren & Schemske 2012). 

4.1.2 Oligonucleotides 

Oligonucleotides used for PCR amplification are listed in Annex: Table 2 and were 

purchased from Metabion (Steinkirchen, Germany) or Sigma-Aldrich (Hamburg, 

Germany). 

4.1.3 Enzymes 

DNA-free DFS Taq polymerase was purchased from Bioron (Ludwigshafen, Germany). 

Antarctic phosphatase and Exonuclease I were acquired from New England Biolabs 

(Frankfurt, Germany). 

4.1.4 Chemicals  

Laboratory grade chemicals and reagents are described within each method. 
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4.1.5 Buffers and solutions 

Buffers and solutions used in this study are described within each method. If not stated 

otherwise, buffers were prepared in deionized H2O and aqueous solutions were sterilized 

by autoclaving at 121 °C for 20 min. 

4.2 Methods 

Brands and manufacturer’s information of each material will be indicated only the first time 

they are mentioned. 

4.2.1 Experimental set-up and sample collection in natural sites 

Seventeen sites were selected across a gradient of climates within Europe, from Sweden 

to Spain, which included five distinct soil textures (Figure 1, Annex: Table 1), where A. 

thaliana populations naturally occur. This project was done in collaboration with Jon Ågren 

from Uppsala Universitet, in Sweden; Eric Kemen, University of Tuebingen in Germany; 

Fabrice Roux from INRA Toulouse, in France; and Carlos Alonso Blanco, from CSIC-CNB 

Madrid, in Spain, Annex: Table 1). A.thaliana plants were harvested from February to 

May, intending to harvest every plant at the same developmental stage (mainly flowering 

stage, for an easier plant identification), for three consecutive years. Plants were identified 

in the field with the help of collaborators.  

Plants were harvested with their surrounding soil with a hand shovel, trying not to disturb 

the plant root system, transferred to 7x7 greenhouse pots and transported to a laboratory 

(either Max Planck Institute for Plant Breeding Research or collaborator’s laboratory) for 

further processing. Single plant individuals were harvested. Four plant individuals pooled 

together were considered as one pooled-plant technical replicate (4 technical replicates). 

In addition, four plants were not pooled and kept individually as single-plant replicates. 

Three neighboring plants growing in the surrounding area from A. thaliana and belonging 

to the Poaceae family were harvested in a similar manner as A.thaliana plants. In total, 

285 plants were harvested. 

4.2.2 Root compartments fractionation protocol 

In order to separate four potential microbial niches, plants and respective roots were taken 

out from the pot. Samples from the leftover bulk soil were taken, making sure that no root 

debris was included, snap-frozen in liquid nitrogen and stored for further processing. 

Individual plants were manually separated from the main soil body and non-tightly 
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adhered soil particles were removed by gently shaking the roots; these roots were then 

separated from the shoot using a sterile blade and placed in a 15-mL falcon (Corning, 

USA) with 10 mL of deionized water, which was then inverted 10 times. Roots were 

transferred to another falcon and further processed, while leftover wash-off (containing 

more tightly adhered soil particles) was centrifuged at 4000 xg for 10 min (5810R, 

Eppendorf, Hamburg, Germany). Supernatant was discarded except for approximately 2 

mL, which were then used to resuspend the pellet and transfer it to a new 2-mL screw-

cap tube. This tube was centrifuged at 20000 rpm for 10 minutes (5424, Eppendorf, 

Hamburg, Germany); the supernatant was discarded and the pellet (Rhizosphere 

compartment) was snap-frozen in liquid nitrogen and stored for further processing. As 

described in the Results section, sequential detergent washes were utilized to obtain the 

Rhizoplane fraction and enrich the root tissue with root endophytes. After RS removal, 

roots were placed in a 15-mL falcon with 6 mL of detergent (1xTE + 0.1% Triton® X-100; 

Tris-EDTA buffer solution 100x, T9285-100mL, Sigma, Hamburg, Germany; Serva, 

Heidelberg, Germany, respectively) and manually shaken for 2 minutes. This step was 

repeated to a total of three detergent washes, in between which, roots were transferred 

to a new 15-mL falcon with new detergent. After these washes, roots were transferred to 

a new 15-mL falcon. The remaining washes (approximately 18 mL) were transferred to a 

20 mL syringe (Mediware, berlin, Germany) and filtered through a 0.22 µM-pore 

membrane (47 mm, MCE, Millipore, USA), utilizing a membrane holder with an luer 

adaptor for the syringe (Swinnex-25, Millipore, USA). The membrane was then snap-

frozen in liquid nitrogen until further processing. Lastly, three-times washed roots were 

subjected to a further surface sterilization step to fully remove any leftover microbe from 

the root surface. Roots were sterilized with 1-minute ethanol wash (Ethanol absolute, 

VWR Chemicals, USA), washed with NaClO (Sodium hypochlorite solution 6-14%, 

Honeywell Fluka, USA) for one minute and rinsed five times with deionized water. These 

roots were dried using sterile Whatman paper (Whatman® glass microfiber filters, Grade 

GF/B, Sigma-Aldrich, Hamburg, Germany) and snap-frozen in liquid nitrogen until further 

processing (Root or Endophytic fraction) (Figure 2A). In total, 1139 samples were 

produced after fractionation. 

4.2.3 Fractionation protocol validation 

4.2.3.1 Sonication 

Sonication was done as described in Bulgarelli et al., 2012. Briefly, after Rhizosphere 

removal, A. thaliana roots were transferred to a new 15-mL falcon tube and sonicated 10 
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times at 160 W with 30-second brakes (Bioruptor Next Gen UCD-300, Diagenode, Liège, 

Belgium). 

4.2.3.2 Root printing 

In order to validate removal of microbes from the root surface, roots were printed on TSA 

50 % (Tryptic Soy Broth, Sigma-Aldrich, Hamburg, Germany) containing 10 % agar (Difco 

Agar, Granulated, VWR, USA) after each step of the fractionation protocol. After 

Rhizosphere removal (1), after each detergent wash (2), after sonication (3) and after 

surface sterilization (4) (Figure 2B), roots were dried with a sterile Whatman paper and 

shortly placed on TSA 50 % (10-30 seconds approximately) and then removed. Plates 

were incubated for 3 days at 25 ºC and CFU counts were done after this time. CFU counts 

were plotted using ggplot2 in R, and significant differences were calculated with Kruskal 

Wallis, Dunn test post-hoc, p<0.05 (Figure 2B).  

4.2.3.3 Washes printing 

In order to test the microbial recovery after each step of the fractionation protocol, leftover 

washes were collected and plated on TSA 50 %, containing 10 % agar. After Rhizosphere 

removal (1), after each detergent wash (2), after sonication (3) and after surface 

sterilization (4) (Figure 2B), washes were serially diluted (1:1, 1:10, 1:100) and 20 µL of 

each dilution was placed on a TSA 50 % plate. Plates were incubated for 3 days at 25 ºC 

and CFU counts were done after this time. CFU counts were plotted using ggplot2 in R, 

and significant differences were calculated with Kruskal Wallis, Dunn test post-hoc, 

p<0.05 (Figure 2B). 

4.2.3.4 SEM imaging 

To evaluate the efficiency of each fractionation step, roots of A. thaliana were collected 

after Rhizosphere removal (1), after each detergent wash (2), after sonication (3) and 

after surface sterilization (4) (Figure 2B), and stored in 1x PBS (8 g/L NaCl, 0.2 g/L KCl, 

1.44 g/L Na2HPO4, 0.24 g/L KH2PO4) until further usage. Root material was further 

processed for SEM by Rainer Franzen at the Central Microscopy group at the Max Planck 

Institute for Plant Breeding Research, Cologne. Briefly, samples were fixed in 4% 

glutaraldehyde (Roth, Karlsruhe, Germany) in 1x PBS at 4 °C overnight. Afterwards, roots 

were washed twice with 1x PBS for 30 minutes and washed with increasing ethanol 

concentrations (30 % ethanol for 30 minutes, 50 % ethanol for 30 minutes, 70 % ethanol 

for 30 minutes, 90 % ethanol for 30 minutes, 96 % ethanol for 60 minutes, 96 % ethanol 

for 60 minutes). To remove remaining water, root material was incubated in dried ethanol 

at 4 °C overnight. Afterwards, samples were dried using a critical point dryer (CPD30; 
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BALTEC, Wetzlar, Germany). During this procedure ethanol was exchanged 10 times 

against liquid CO2. Then, samples were spattered using the Polaron Sputter Coater 7600 

using a platinum target. Microscopy pictures were taken with a Supra 40VP (Zeiss, 

Munich, Germany). 

4.2.4 Transplantation experiment set-up 

4.2.4.1 Field transplantation experiment 

Swedish (from SW4) and Italian (from IT1) soils were planted in four 299-well trays 

(Pluggbrätten, DAN QPD299W, 310x530 mm, Trädgårdsteknik AB, Sweden) with their 

adapted genotype (It15, It24, It32, It41, for Italian soil, and Sw7, Sw11, Sw43, Sw47 for 

Swedish soil, randomly distributed) and the reciprocal genotypes, in IT1 (Castelnuovo di 

Porto, Italy) and in SW4 (Rödåsen, Sweden). A. thaliana plants underwent a full life cycle 

(from October 2016 to March 2017 in Italy, and to May 2017 in Sweden). After this period, 

plants and their surrounding soil were harvested on site by taking the whole soil plug. Soil 

was separated from the roots manually and a soil sample was taken. Loosely adhered 

soil particles were removed by gently shaking the roots. Then, roots were placed in a 15-

mL falcon and washed by inverting with 10 mL of deionized water and surface-sterilized 

as indicated in 4.2.2. Twelve samples were harvested per soil, genotype and site. 

Samples were stored in dry ice and shipped to the Max Planck Institute for Plant Breeding 

Research, were they were stored at -80°C until further processing. Plant fitness was 

assessed by scoring mature fruit production at the end of the experiment by Dr. Thomas 

Ellis and Prof. Dr. Jon Ågren, from University of Uppsala (Supplementary Figure 6). In 

total, 144 soil and root samples were harvested, from which microbial communities 

profiling was performed, including V5/V7 16s rRNA for bacterial communities profiling, 

and ITS1 for fungal and oomycetal communities profiling. 

4.2.4.2 Chamber transplantation experiment 

Swedish (from SW4) and Italian (from IT1) soils were planted in 299-well trays cut up into 

42-well trays which were then placed into 17x21x6 cm plastic tupperware tubs 

(Förvaringslådor SmartStore, 2362001, Office Depot, Sweden). Seeds of each line were 

sown on sterilized petri dishes with media consisting of Gambog’s B-5© nutrient mix, 

Bacto© Agar and ultrapure water. Dishes were wrapped in parafilm and cold-stratified in 

the dark at 4 °C for 5 days to break seed dormancy. Native populations in both Italy and 

Sweden experience cold periods at or below this temperature in the field during 

germination. Afterwards, the dishes were moved into a growth chamber with a constant 

temperature of 22 °C, 16 h days, and a photosynthetically active radiation (PAR) level of 
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125 lmol m2s-1 using a combination of fluorescent and incandescent lights. The dishes 

were randomized throughout the chamber every day. After 8–10 days in the chambers, 

seedlings were transplanted into Italian and Swedish soils. Half of the boxes were 

incubated for six months in a chamber resembling climatic conditions in IT1 (Castelnuovo 

di Porto, Italy), and the other half in a chamber resembling climatic conditions of SW4 

(Rödåsen, Sweden) (BioChambers Inc. Model# GC-20), similarly to Dittmar et al., 2014. 

The temperatures used are based on data recorded by two data loggers (HOBO Pro Data 

Logger Series H08-031-08) at each site for the winter 2005/2006. For each calendar day, 

the daily maxima and minima recorded for air and soil temperature was taken and the 

average was utilized. To determine photoperiod data on times for sunrise and sunset in 

2005/6 for Sundsvall and Rome were taken from timeanddate.com. Data on 

photosynthetically active radiation (PAR, measured in μEinsteins) are taken from data 

logger recordings for 2014/2015. Two loggers at each site record PAR every minute. For 

each calendar day every record for the times between sunrise and sunset for that day 

was taken and averaged across these values. Each day has six time points. 

Temperatures began to rise from the daily minimum two hours before dawn, reaching 

their daily maximum two hours after dawn. Likewise, temperatures began to fall two hours 

before sunset and reached the next daily minimum two hours after sunset. The growth 

chambers at Uppsala University can be programmed to ramp the temperature smoothly 

throughout this time period. In order to shorten the schedule in the Swedish chamber to 

under six months the 121 days from December to March were contracted into 31 days by 

sampling for every fourth day.  

After six months, plants and their surrounding soil were harvested by taking the whole soil 

plug. Soil was separated from the roots manually and a soil sample was taken. Loosely 

adhered soil particles were removed by gently shaking the roots. Then, roots were placed 

in a 15-mL falcon and washed by inverting with 10 mL of deionized water and surface-

sterilized as indicated in 4.2.2. Four samples were harvested per soil, genotype and site, 

by pooling roots of four separate plugs, due to the small size of the plants in this 

experiment. In total, 132 root and soil samples were harvested. Samples were stored in 

dry ice and shipped to the Max Planck Institute for Plant Breeding Research, where they 

were stored at -80°C until further processing. Microbial communities profiling was 

performed, including V5/V7 16s rRNA for bacterial communities profiling, and ITS1 for 

fungal and oomycetal communities profiling. 
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4.2.5 Microbial community profiling 

4.2.5.1 Library preparation and sequencing 

DNA isolation was performed from Bulk Soil, Rhizosphere, Rhizoplane and Root samples 

harvested as described above, using the FastDNA ® SPIN for soil kit (MP Biomedicals, 

Solon, USA). Before DNA isolation, frozen Rhizoplane samples were manually crushed 

with a sterile forceps and snap-frozen again in liquid nitrogen. Buffers were added to Bulk 

soil, Rhizosphere and Rhizoplane samples and were homogenized once using the 

Precellys®24 tissue lyzer (Bertin Technologies, Montigny-le-Bretonneux, France) at 

6,500 rpm for 30 seconds. Root samples were homogenized twice without buffers at 6,500 

rpm for 30 seconds each time, then buffers were added and samples were homogenized 

a third time at 6,500 rpm for 30 seconds each time. Afterwards, DNA was extracted using 

the FastDNA ® SPIN for soil kit according to the manufacturer’s instructions. DNA 

concentration was calculated using the Quant-iT™ PicoGreen dsDNA assay kit (Life 

Technologies, Darmstadt, Germany). 40 μL of a 1:200 dilution of PicoGreen was added 

to 4 μL of DNA in a 96 well plate. To calculate the DNA concentration a dilution series of 

standard lambda DNA, ranging from 0.5 to 20 ng/μL, was included on the same plate. 

Fluorescence was measured using the IQ5 real-time PCR Thermocycler (Biorad, Munich, 

Germany; 30 sec at 25°C, 3x30 seconds at 25°C for measuring fluorescence, 30 seconds 

at 15°C). DNA concentration was adjusted to 3.5 ng/ μL.  

PCR amplicon libraries were generated using primers 799F-1192R (V5/V7 region of 16s 

rRNA) and 341F-806R (V2/V4 region of 16s rRNA) for bacterial communities profiling, 

ITS1F-ITS2 (ITS1) and fITS7-ITS4 (ITS2) for fungal community profiling, and ITS1o-5.8s-

o-Rev for oomycetal community profiling (Annex: Table 2, Agler et al., 2016b). Libraries 

were prepared in parallel for each amplicon. PCRs were performed by using 3 μL of the 

adjusted DNA in a total volume of 25 μL, including 1.25 U DFS-Taq DNA Polymerase 

(Bioron, Ludwigshafen, Germany), 1x incomplete reaction buffer, 0.3 % BSA, 2 mM of 

MgCl2, 200 μM of dNTPs and 400 nM of each primer. To minimize PCR bias three 

independent PCR reactions using one master mix were prepared. The PCR reaction was 

pipetted in a laminar flow and PCR amplified (94 °C/2 minutes, 94 °C/30 seconds, 55 

°C/30 seconds, 72° C/30 seconds, 72 °C/10 minutes for 25 cycles), using the same PCR 

parameters for all primer pairs. Afterwards, single stranded DNA and proteins were 

digested by adding 1 μl of Antarctic phosphatase, 1 μl Exonuclease I and 2.44 μl Antarctic 

phosphatase buffer to 20 μl of the pooled PCR product. Samples were incubated at 37 

°C for 30 minutes and enzymatic activity was deactivated at 85 °C for 15 minutes. 

Samples were centrifuged for 10 minutes at 4,000 rpm and the supernatant was 

transferred to a new plate. 3 μl of this reaction was used for a second PCR with primers 
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that included barcodes and Illumina adaptors (B5-barcodes and B3-barcodes for bacteria, 

Ft-barcodes and OF2-barcodes for fungi, Ot-barcodes for oomycetes, Annex: Table 2). 

PCR reactions were prepared using the same protocol described above, and the number 

of PCR-cycles were reduced to 10. PCR performance was assessed by loading 5 μL of 

PCR products of the three-replicates pool with 5 μL of Gel Loading Dye, Orange G (6X, 

Sigma, Hamburg, Germany) run on a 1 % agarose gel for 30 minutes, and by checking 

that no band could be observed in the microbe-free controls. Each bacterial reaction (70 

μL approximately) were mixed with 20 μL Gel Loading Dye, Orange G and loaded in a 

1.5 % agarose gel and ran for approximately 2 hours at 80 V. Bands with the correct size 

of ~500 bp were cut and purified using the QIAquick gel extraction kit (Qiagen, Hilden, 

Germany) and eluted in 60 μL of nuclease-free water (Qiagen, Hilden, Germany). DNA 

concentration was determined using the PicoGreen assay as described before. Fungal 

and oomycetal reactions were purified using Agencourt® AMPure® XP (Beckman 

Coulter, Krefeld, Germany) following manufacturer’ instructions and eluting the PCR 

product in 70 μL of nuclease-free water. Equal amounts (ng) of purified PCR products 

were pooled, each microbial library separately. Pooled libraries were purified twice using 

Agencourt AMPure XP PCR Purification kit (brand) following manufacturer’ instructions 

and eluting the PCR product in decreasing amounts of nuclease-free water (that is, 120 

μL in the first round and 90 μL in the second round). Purified libraries’ concentration was 

assessed using QuantusTM Fluorometer (Promega, Manheim, Germany), by mixing 100 

μL of a 1:200 dilution of Quantifluor® dsDNA dye (in 1xTE) with 2 μL and 98 μL of 1xTE 

in a 0.5-mL tube (Promega, Manheim, Germany), thoroughly mixing by pipetting and 

incubating for 5 minutes under the dark. Then, equal amounts of each library were pooled 

together. Final library concentration was assessed using QuantusTM Fluorometer. Paired-

end Illumina sequencing was performed with the MiSeq sequencer at the Department of 

Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, following 

manufacturer’ instructions. 

4.2.5.2 Sequencing data analysis 

Sequencing data analysis was performed using bioinformatic pipelines developed by Dr. 

Rubén Garrido-Oter and Dr. Thorsten Thiergart. Fourteen MiSeq libraries were 

processed, including five amplicon libraries each (V5/V7 and V2/V4 for bacterial libraries, 

ITS1 and ITS2 for fungal libraries, and ITS1 for oomycetal libraries), which contained 

73851097 reads. 

The paired 16s rRNA amplicon sequencing reads were joined (join_paired_ends.py, 

QIIME, default parameters) and the joined reads were then quality filtered and 

demultiplexed (split_libraries_fastq.py, QIIME, with maximum barcode errors 1 and phred 
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score of 30) (Caporaso et al., 2010). The filtered reads were dereplicated (usearch, –

derep_fulllength) and sorted according to their copy number (only reads >2 copies were 

retained) (Edgar, 2010). These reads were clustered using the usearch algorithm (Edgar, 

2010) at 97% sequence identity to form OTUs. Clustered reads were checked for 

chimeras using usearch (usearch –uchime_ref, Gold Database). All retained OTUs were 

aligned to the Greengenes Database (DeSantis 2006) using PyNAST (Caporaso et al., 

2010). Those that did not align to the database were removed. To each OTU a taxonomic 

classification was assigned using QIIME (assign_taxonomy.py, uclust algorithm with 

default parameters, Greengenes Database). OTUs were checked for those assigned as 

mitochondria. Out of the remaining sequences, an OTU table was build (usearch_global 

97%, and uc2otutab.py) (Annex: otu_tables).  

ITS reads were joined and demultiplexed as for 16s rRNA reads. In addition, also the 

forward reads were demultiplexed and filtered. For those reads where no joined pair of 

reads exist, the forward reads were kept. The combined reads were trimmed to an equal 

length of 220 bp. Reads were de-replicated and sorted (keeping only those with >2 

copies). All reads were checked with ITSx (Bengtsson-Palme et al., 2013) if ITS 

sequences are present. Those reads that contain ITS sequences were then clustered at 

97% using usearch. Fungal OTUs were checked for chimeric sequences using 

(uchime_ref) against a dedicated chimera detection database (Nilsson et al., 2015, 

UNITE). Oomycetal OTUs were checked using the -chime_denovo function from usearch. 

To check for non-fungal / non-oomycetal sequences the remaining OTU sequences were 

blasted against an ITS-sequence database. For this purpose, all available ITS sequences 

(search term “internal+transcribed”, for plants, animals, fungi, oomycetes and protists) 

were received from NCBI nucleotide database (January/February 2016). All OTU 

sequences whose best blast hit (bbh) was not annotated as a fungal / oomycetal 

sequence were removed. In addition, all sequences that show more hits in non-fungal / 

non-oomycetal sequences (out of max. 10 hits) were also removed. Taxonomic 

classification was done via RDP classifier (Wang et al., 2007) using the Warcup database 

for fungal OTUs (Deshpande et al., 2016) and a self-established database for oomycetal 

OTUs. The latter one was constructed out of NCBI derived ITS sequences. These ITS 

sequences were checked with ITSx for containing ITS sequences, and then used to train 

the RDP classifier. 

4.2.5.3 Microbial ecology analysis 

4.2.5.3.1 Alpha- and beta-diversities 

To assess the alpha-diversity within natural samples, OTU-tables were rarefied to 1000 

reads. Alpha-diversity indices (Shannon index, Chao index and number of observed 
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species) were calculated using QIIME (alpha_diversity.py, Figure 3, Supplementary 

Figure 1, Supplementary Figure 2, Supplementary Figure 7). Alpha-diversities were 

plotted using ggplot2 in R and Kruskal-Wallis test and Dunn test post-hoc were used to 

calculate significant differences between medians. 

To estimate the beta-diversity, OTU-tables were normalized using the cumulative –sum 

scaling (CSS) method (Paulson et al., 2013). Bray-Curtis distances between samples 

were used as an input for principal coordinate analysis (PCoA, done via cmdscale function 

in R) (Figure 3, Figure 4, Figure 6, Figure 7, Supplementary Figure 1, Supplementary 

Figure 10). Full A.thaliana-associated samples were utilized to produce Figure 3, Figure 

4C and D, Figure 6C and D and Figure 7C and D. Samples from each compartment 

were separately represented in Figure 4A, Figure 6A and Figure 7A. Single A. thaliana-

associated and neighboring plants-associated samples were used to produce Figure 4B, 

Figure 6B and Figure 7B. 

To visualize the distance between clusters in the transplantation experiment, average 

Bray-Curtis distances were calculated, normalized to control cluster (e.g.: (Control-

Climate/Control-Control)) and plotted with ggplot in R (Figure 11A, Supplementary 

Figure 9).  

4.2.5.3.2 Analysis of the variance 

To test the effect of different factors on the microbial communities’ variance, 

PERMANOVA analysis was performed (using adonis or capscale functions from vegan R 

package, with 999 permutations Table 3, Table 4, Figure 4E, Figure 6E, Figure 7E, 

Figure 10, Supplementary Figure 9). Samples were subsetted as indicated in section 

4.3.3.1. Results were represented in tables or using ggplot2 in R. 

4.2.5.3.3 Microbial relative abundances 

Relative abundances plots were produced from relative OTU counts (relative 

abundances(%)) per sample and plotted using ggplot2 in R (Figure 5, Figure 8, Figure 

9, Supplementary Figure 3, Supplementary Figure 4, Supplementary Figure 8) 

4.2.5.3.4 Root site-specific microbiota 

Only A.thaliana roots samples were used. For each OTU, the enrichment in one site 

compared to the other 16 was tested using a linear model (log2, > 5 ‰ threshold) using 

the script described in Bulgarelli et al., 2015 (developed from the R package limma). Using 

this method, it was tested if the relative abundance of one OTU within a given site was 

significantly higher compared to all other 16 sites (Figure 8). Then, the average relative 

abundance of each enriched OTU was calculated and represented using ggplot2 in R. 
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4.2.5.3.5 A. thaliana root core microbiota 

Only root samples from sites harvested across three years were used (SP1, SP2, SP3, 

FR1, GE1, GE3, GE4, GE5, SW1, SW2, SW3. SW4). Then, OTUs present in 100% 

(Figure 9, Supplementary Figure 4) or 75% (Supplementary Figure 3) of the sites in 

at least half of the samples of each site was considered as a core OTU. 

4.2.5.3.6 OTUs enrichment test 

To analyze differentially enriched OTUs between conditions, a linear model was used 

(log2, > 5 ‰ threshold) using the script described in Bulgarelli et al., 2015 (developed 

from the R package limma). Using this method for each OTU it was tested if the relative 

abundance within conditions was significantly higher than compared to another condition 

(Figure 11B).  

4.2.5.3.7 Comparison of bacterial and fungal libraries 

OTUs produced by each library (V5/V7 and V2/V4 for bacteria, and ITS1 and ITS2 for 

fungi) were grouped by their taxonomic assignment at phylum level. Groups represented 

by both primers pairs were kept for the next step. Relative abundance estimates (log-

transformed) were used at different taxonomic levels per region pair. Mean and standard 

deviation of each taxonomic group were plotted using ggplot2 in R. Pearson’s correlation 

between relative abundances and Mantel test between Bray-Curtis distances were 

calculated using vegan in R, and plotted using ggplot2 in R (Figure 12, Figure 13). 
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CHAPTER II 

Microbiota reconstitution in A. thaliana plants to 

understand the role of interkingdom microbe-microbe 

interactions for the establishment of microbial 

communities and host fitness 

1. INTRODUCTION 

1.1 Microbial interactions in nature 

The very ancient origin of microbes on Earth, tracing back to the beginning of life more 

than 3.5 billion years ago, suggests that microbe-microbe interactions have continuously 

evolved and diversified over time, long before plants started to colonize land 450 million 

years ago (Hassani et al., 2018). Therefore, it is likely that both intra- and inter-kingdom 

microbial interactions represent strong drivers of the establishment of plant-associated 

microbial consortia at the soil-root interface. Consistent with this, many reports have 

shown how much of the microbiota variation in natural samples is explained by 

environmental factors. However, still a great fraction of the variance remains 

undetermined, which could potentially be due to microbe-microbe interactions (Shakya et 

al., 2013; Hacquard, 2016). Nonetheless, it remains unclear to what extent these 

interactions in the rhizosphere/phyllosphere and in endophytic plant compartments (i.e., 

within the host) shape microbial assemblages in nature and whether microbial adaptation 

to plant habitats drive habitat-specific microbe-microbe interaction strategies that impact 

plant fitness. Furthermore, the contribution of competitive and cooperative microbe-

microbe interactions to the overall community structure remains difficult to evaluate in 

nature due to the strong environmental noise. To mitigate these technical hurdles, 

reductionist approaches have been primarily used to identify several of the diverse and 

sophisticated molecular mechanisms used by microbes to cooperate and compete on 

plant tissues and persist as complex microbial consortia, as reviewed by Whipps 2001, 

Frey-Klett et al., 2011 or Kemen, 2014. 

1.1.1 Cooperative interactions 

Cooperative interactions are those in which microbial partners improve each other’s 

survival chances in nature, for example by enhancing nutritional potential (Morris et al., 
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2012; Ponomarova and Patil 2015). In this sense, it has been traditionally hypothesized 

that very similar microbes will not occupy the same niche, due to exclusion competition. 

However, by analyzing microbial communities of 261 species from various environments, 

Zelezniak et al., (2015) could show that, not only microbes with similar metabolic 

capabilities share niche very often, presumably to better use environmental resources, 

but that these metabolic dependencies drive microbial co-occurrence in many habitats. 

Deeper understanding of these metabolic interactions is however still needed. 

Combination of -omics technologies has proven to be very helpful at deciphering how 

microbial interactions affect microbial partners; for example, how the electron workflow 

affects two different microbes in a syntrophic association (Nagarajan et al., 2013). 

Microbes can also promote other members’ nutrition by expanding their fundamental 

niches, where certain nutrients are lacking or by removing compounds that might be 

harmful (Harcombe, 2010). For example, the rhizobacterium Bacillus cereus UW85 tightly 

associates with and stimulates the growth of bacteria from the Cytophaga-Flavobacterium 

group (CF, Bacteroidetes) in the soybean rhizosphere. The growth-promoting mechanism 

likely involves bacterial cell wall components, since peptidoglycan isolated from B. cereus 

cultures stimulated the growth of the CF rhizosphere bacterium Flavobacterium 

johnsoniae in vitro (Peterson et al., 2006). Further, physical expansion of microbial 

partners is another form of cooperation. It has been well demonstrated that specific 

bacteria can use hyphae of filamentous eukaryotes as a vector, the so-called “fungal 

highway,” giving them a selective advantage to spread in their environments (Worrich et 

al., 2016). Particularly, motile bacteria use fungal mycelium hydrophobicity to solubilize 

and reach faster pollutants, which opens a promising branch of research for 

bioremediation purposes (Kohlmeier et al., 2005, Wick et al., 2007). According to Zhang 

et al., (2018), it is also likely that fungal networks established along the soil-root continuum 

may also favor the growth of motile over non-motile bacteria at the root vicinity. Another 

mode of microbial cooperation is through formation of biofilms, which provide selective 

advantage for microbes, such as protection from competitors and antimicrobial molecules 

(Van Acker et al., 2014), activation of enzymatic processes that require high cellular 

density (Nadell et al., 2009) or acquisition of new genes via horizontal gene transfer 

(Zhang et al., 2014). As an example of this, it has been shown that biofilm-mediated 

microcolonies formed on root hairs of finger millet by a root-inhabiting bacterial endophyte 

(Enterobacter sp.) confer a physical and chemical barrier that prevents root colonization 

by the pathogen Fusarium graminearum (Mousa et al., 2016). Importantly, bacterial traits 

related to motility, attachment, and biofilm formation are needed for the anti-Fusarium 

activity in planta. These results suggest that a complex interplay takes place between the 

bacterium and root-hair cells, leading to the formation of this specialized killing 
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microhabitat (Mousa et al., 2016). Other ways microbes have to cooperate is by secreting 

molecules to communicate. One of the most described mechanisms is known as quorum 

sensing, which is used by several Gram-negative bacteria to monitor their own population 

densities through the production of the signaling molecule N-acyl-l-homoserine lactone 

(AHL) (Eberl, 1999). Different bacterial taxa can produce the same signal molecule type 

and cooperate or interfere (quorum quenching) with other unrelated taxa. This crosstalk 

phenomenon is supported by the fact that 8 to 12% of isolates from rhizobacterial libraries 

can activate AHL-specific reporter strains (biosensor) in vitro (Steidle et al., 2001). In their 

study, Steidle et al., (2001) suggest that AHLs serve as a universal language for bacteria-

bacteria communication in the rhizosphere. Importantly, quorum sensing is likely also 

important for inter-kingdom communication between bacteria and plant-associated fungi, 

as reviewed in the animal field (Jarosz et al., 2011). One of the most specialized microbial 

cooperative interactions is endosymbiosis, specifically the interaction that occurs between 

plant-associated fungi and their bacterial endosymbionts (Kobayashi et al., 2009). The 

bacteria, which are detected in the fungal cytoplasm, can be actively acquired from the 

environment (Moebius et al., 2014) and, in most cases, vertically inherited via fungal 

spores (Bianciotto et al., 2000; Partida-Martinez et al., 2007). Several examples of 

bacterial endosymbionts that live in intimate association with plant-associated fungi (e.g., 

Rhizophagus, Gigaspora, Laccaria, Mortierella, Ustilago and Rhizopus sp.) have been 

reported and mostly belong to the families Burkholderiaceae or related (Bianciotto et al., 

2000; Partida-Martinez et al., 2005; Sato et al., 2010), Bacillaceae (Bertaux et al., 2003; 

Ruiz-Herrera et al., 2015), or are Mollicutes-related endobacteria (Naumann et al., 2010). 

Such interactions can impact the reproductive fitness of both members. For example, the 

bacterial endosymbiont (Burkholderia sp.) of a pathogenic Rhizopus fungus produces a 

toxin that provides fitness benefit to the fungus and is required for successful fungal 

colonization of rice plants (Partida-Martinez et al., 2005). This bacterium is also required 

for fungal reproduction, and its absence impairs fungal spore formation (Partida-Martinez 

et al., 2007). Interestingly, spores of the arbuscular mycorrhizal fungus Gigaspora 

margarita can host both Burkholderia- and Mollicutes-related endobacteria, supporting 

the idea that some root-associated fungi have their own intracellular bacterial low-diversity 

microbiome (Desiro et al., 2014).  

1.1.2 Competitive interactions 

Microbes can use indirect mechanisms to compete with other microbes, such as rapid 

and efficient utilization of limiting resources. For instance, bacteria have evolved 

sophisticated strategies to sequestrate iron via secretion of siderophores, subsequently 
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altering the growth of opponent microbes in their immediate vicinity (Wandersman et al., 

2004; Joshi et al., 2006). Nutrient sequestration is also recognized as an important trait 

of biocontrol agents to out-compete pathogens (Whipps et al., 2001). For example, the 

secretion of iron-chelating molecules by beneficial Pseudomonas spp. has been linked to 

the suppression of diseases caused by fungal pathogens (Mercado-Blanco and Bakker, 

2007). Furthermore, it has been shown that resource competition is an important factor 

linking bacterial community composition and pathogen invasion in the rhizosphere of 

tomato plants (Wei et al., 2015), which indicates that this type of microbial competition is 

also relevant for plant health. Plant-associated bacteria can engage in direct antagonistic 

interactions mediated by contact-dependent killing mechanisms. These are largely 

mediated by the bacterial type VI secretion system, a molecular weapon deployed by 

some bacteria (mostly Proteobacteria) to deliver effectors/toxins into both eukaryotic and 

prokaryotic cells (Records, 2011). For example, the plant pathogen Agrobacterium 

tumefaciens uses a puncturing type VI secretion system to deliver DNase effectors upon 

contact with a bacterial competitor in vitro and in the leaves of Nicotiana benthamiana. 

Remarkably, this contact-dependent antagonism provides a fitness advantage for the 

bacterium only in planta, underlining its specific importance for niche colonization (Ma et 

al., 2014). In addition, the essential role of the bacterial type III secretion system for 

bacterial-fungal and bacterial-oomycetal interactions has been illustrated several times in 

the literature, suggesting that bacteria use this strategy to successfully colonize a broad 

range of eukaryotic hosts (plants, animals, small eukaryotes) (Rezzonico et al., 2005; 

Lackner et al., 2011; Cusano et al., 2011; Yang et al., 2016). For instance, it has been 

reported that Burkholderia rhizoxinica utilizes this secretion system apparatus to control 

the efficiency of its symbiosis with the fungal host, Rhizopus microsporus, and that 

mutants defective in such secretion system display a lower intracellular survival and fail 

to provoke fungal sporulation (Lackner et al., 2011). Other mode of microbial competition 

is by secretion of antimicrobials. Filamentous eukaryotes are well known to produce a 

multitude of low-molecular-weight secondary metabolites that have antifungal activities 

against phylogenetically unrelated microbes (such as acetylgliotoxin and hyalodendrin) 

(Coleman et al., 2011). These secondary metabolites are often silent in pure culture and 

only activated in co-culture or in a community context (Schroeckh et al., 2009; Nutzmann 

et al., 2011; Netzker et al., 2015). Bacteria also produce different metabolites, including 

antibiotics and enzymes that exhibit broad-spectrum activity against phylogenetically 

unrelated fungal plant pathogens (Hass and Défago, 2005; Raaijmakers et al., 2002). 

Antagonistic interactions among bacteria have been reported to be important in the 

structuring of soil-, coral-, or plant-associated bacterial communities (Rypien et al., 2010; 

Tyc et al., 2014; Maida et al., 2016). Further, the study of antagonistic interactions among 
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bacterial isolates from the rhizosphere, the roots, and the phyllosphere of the medicinal 

plant Echinacea purpurea suggests that plant-associated bacteria compete against each 

other through the secretion of antimicrobials (Maida et al., 2016). Interestingly, bacteria 

from different plant compartments showed different levels of sensitivity to antagonistic 

activity, thereby indicating that antagonistic interactions might play an important role in 

shaping the structure of the plant microbiota (Maida et al., 2016). In addition to antibiotic 

production, different bacteria (Pseudomonas, Serratia, Stenotrophomonas, 

Streptomyces) can also produce Volatile Organic Compounds (VOCs) that act as 

infochemicals within and between microbial groups and have been shown to inhibit the 

growth of a broad diversity of plant-associated fungi and oomycetes (Tyc et al., 2017; 

Song et al., 2015). It has been shown that bacterial VOCs also drive species-specific 

bacteria-protist interactions and likely serve as signals for protists to sense suitable prey. 

Notably, a Collimonas pratensis mutant, defective in terpene production, lost the ability to 

affect protists activity, indicating that terpenes represent key components of VOC-

mediated communication between bacteria and protists (Schutz-Bohm et al., 2017). 

Although the VOC activity of fungi/oomycetes towards bacteria has been less 

investigated, recent data indicate that soil filamentous microbes can also produce volatile 

blends that are perceived by bacteria. Schmidt et al., (2016) identified over 300 VOCs 

from soil and rhizospheric fungi/oomycetes and demonstrated that some can be sensed 

by bacteria, thereby influencing their motility. Soil bacteria have also been shown to 

produce VOCs (Tyc et al., 2017). The best illustrated example is the genus Streptomyces, 

which is known to produce sesquiterpenes exhibiting antimicrobial activity (Gürtler et al., 

1994). More recently, the comparative genomic analysis of the six strains of Collimonas 

have revealed that C. pratensis harbors functional terpene synthase genes responsible 

for the biosynthesis of a blend of sesquiterpenes with antimicrobial properties (Song et 

al., 2015). All these examples suggest that VOCs from different microbial members could 

play a role as an additional defense line against other microbes and are also likely 

important for long distance structuring of the microbial communities (Tyc et al., 2017). 

Microbes can also interfere with other microbes’ survival by direct feeding. For instance, 

bacterial mycophagy consists on bacteria’s ability to actively grow at the expense of living 

fungal hyphae (de Boer et al., 2004; Leveau and Preston, 2008). Recently, it has been 

suggested that diverse mycophagous bacteria colonize saprotrophic rhizosphere fungi 

and feed as secondary consumers on root-derived carbon (Rudnik et al., 2015). Some 

fungal or oomycetal species belonging to the genus Trichoderma or Pythium, 

respectively, can parasite or antagonize other fungi or oomycetes and can be used as 

biocontrol agents for plant protection, since they can also intimately interact with plant 

roots without causing disease symptoms (Benhamou et al., 2012; Howell, 2003; Benitez 
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et al., 2004). Root-associated bacteria can also prey on other bacteria as described for 

Bdellovibrio spp. Phylogenetic and prey range analyses suggested that root-associated 

Bdellovibrio spp. differ from those in the soil, likely because these bacteria are best 

adapted to prey on root-associated bacteria (Jurkevitch et al., 2000). Protist predation on 

bacteria has been also well documented, and recent microbiota reconstitution 

experiments in microcosm indicate a clear effect of Cercomonads (Rhizaria: Cercozoa) 

grazing on the structure and function of the leaf microbiota (Flues et al., 2017). Their 

results indicate that Alpha- and Betaproteobacteria are less resistant to grazing and that 

predation restructures the bacterial network in leaves, influencing bacterial metabolic core 

functions (Flues et al., 2017). 

 

As exemplified in this section, microbes have evolved a great variety of mechanisms to 

interact with other microbial members in their environment. These interaction can be 

either beneficial or deleterious for the microbial partners, but it remains to be solved 

whether all these interactions happen in the same manner in a community context. 

Further, it will be key to understand whether the final community output is actually the 

result of multiple cascading interactions within the microbiota, or rather the result of a 

dominant interaction that will drive the establishment of the microbial communities (for 

example, the specific interaction between plant host and certain microbial members, that 

will determine other interactions in the system). 

1.2 Microbial interactions shaping plant-associated microbial 

communities 

The various mechanisms employed by microbes to cooperate and compete on plant 

tissues suggest that microbe-microbe interactions play fundamental roles in shaping and 

structuring microbial networks in nature. Therefore, the combination of host-microbe and 

microbe-microbe interactions is likely critical for the establishment of complex and diverse 

multi-kingdom plant-associated microbiota (Hunter et al., 2010; Bakker et al., 2014). 

However, the mechanistic understanding of the intermicrobial interactions in a community 

context as well as their functional impacts on plant-associated microbial communities 

remains sparse.  

1.2.1 The mycosphere 

As part of the mycosphere, fungal hyphae or fruiting bodies have been recognized for a 

long time as important niches that can be colonized, both externally and internally, by 



 Chapter II Introduction 

69 
 

specific bacterial taxa, including Pseudomonas strains and bacteria from the 

Oxalobacteraceae, Bacillaceae, and Burkholderiaceae families, among others. (Andrade 

et al., 1997; Warmink and Van Elsas, 2009; Hoffman and Arnold, 2010; Arendt et al., 

2016). For example, in vitro cultures of the AMF Glomus intraradices and Glomus 

proliferum, co-inoculated with a soil bacterial “tea”, showed that bacterial communities 

that attach to growing hyphae are significantly different to the bacterial inoculum 

(specifically, members of the Streptomyces genus and the Oxalobacteraceae family) and 

also different to the bacterial communities attaching to glass wool, suggesting a fungal-

mycelia-specific bacterial community (Scheublin et al., 2010). Fungal exudates seem to 

play a specific role for mycosphere colonization by stimulating the growth of specific 

bacteria or inducing changes in bacterial community structure (Filion et al., 1999; 

Toljander et al., 2007; Warmink et al., 2009). Specifically, exudates produced by the 

arbuscular mycorrhizal fungus Rhizophagus irregularis have been shown to stimulate 

bacterial growth and modify bacterial community structure, which is marked by an 

increased abundance of several Gammaproteobacteria (Toljander et al., 2007). Notably, 

bacterial ability to colonize the mycosphere correlates with their ability to use particular 

carbonaceous compounds abundantly found in mycosphere exudates such as l-

arabinose, l-leucine, m-inositol, m-arabitol, d-mannitol, and d-trehalose (Warmink et al., 

2009). Analysis of the soil bacterial community in the presence and absence of the 

arbuscular mycorrhizal fungus Glomus hoi using a microcosm experiment also revealed 

the significant effect of the fungus on bacterial community structure, suggesting that 

nitrogen export by the fungus is an important driving force explaining bacterial community 

shift (Nuccio et al., 2013). 

Recent studies have analyzed the bacterial diversity associated with mycorrhizal root tips, 

revealing the complexity of the interactions between mycorrhizal fungi and their 

associated bacterial microbiota in the mycorrhizosphere (Vik et al., 2013; Nguyen et al., 

2015; Uroz et al., 2012; Marupakula et al., 2016). Specifically, some bacterial orders 

(Burkholderiales and Rhizobiales) were reproducibly found within ectomycorrhizal root 

tips, indicative of a tight fungal-bacterial association (Nguyen et al., 2015). Using 

microcosm experiments and germ-free Pinus sylvestris, Marupakula et al., (2016) recently 

found that root tips colonized by three different ectomycorrhizal fungi host statistically 

distinct bacterial communities. Although all three mycorrhizal types tightly associate with 

high abundance of Burkholderia, specific bacterial signatures could be detected for each 

fungus (Marupakula et al., 2016). Similar to the mechanisms described for the 

mycorrhizosphere (Johansson et al., 2004), it is therefore likely that numerous plant-

associated fungi could indirectly impact bacterial communities by different means such as 
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changes in nutrient availability, modulation of environmental pH, production of fungal 

exudates, or nutrient competition. 

1.2.2 Influence of pathogen invasion on the plant microbiota 

Plant infection by pathogenic microbes often correlates with microbial community shifts in 

different plant compartments, including seeds (Rezki et al., 2016), roots (Xue et al., 2015), 

wood (Bruez et al., 2015), and leaves (Agler et al., 2016a). Analysis of the impact of two 

microbial invaders, the bacterial strain Xanthomonas campestris pv. campestris (Xcc) 

8004 and the fungal isolate Alternaria brassicicola (Ab) Abra43 on the structure of seed-

associated microbial assemblages in Raphanus sativus, indicates the different effects on 

the endogenous seed microbiota. The bacterial strain Xcc 8004 has no effect on microbial 

assemblages, whereas seed invasion by the fungal pathogen massively perturbs the 

resident fungal seed microbiota. Seed invasion by the pathogenic fungus explains ~ 60% 

of the variation of fungal communities observed between infected and non-infected seeds, 

likely due to fungal-fungal competition for resources and space (Rezki et al., 2016). 

Infection of oak leaves by the obligate filamentous pathogens Erysiphe alphitoides 

(powdery mildew fungus) or A. thaliana leaves by Albugo sp. (oomycete) is accompanied 

by significant changes in the composition of the phyllosphere microbiota (Jakuschkin et 

al., 2016; Agler et al., 2016a, respectively). Notably, the pathogen Albugo has strong 

effects on epiphytic and endophytic bacterial colonization by decreasing species richness 

and stabilizing the community structure, which has been validated by manipulation 

experiments under controlled laboratory conditions (Agler et al., 2016a). Based on 

microbial correlation networks, Jakuschkin et al., (2016) identified 13 bacterial and fungal 

Operational Taxonomic Units (OTUs) that significantly associate, either negatively or 

positively, with powdery mildew disease. Although the protective activities conferred by 

the corresponding microbes have not been validated yet, a direct antagonistic effect of 

Mycosphaerella punctiformis on E. alphitoides has been suggested (Jakuschkin et al., 

2016). Significant associations were also found between the composition of the 

endogenous fungal microbiota in poplar leaves and rust symptom severity, suggesting 

that resident foliar fungal endophytes can enhance or attenuate disease severity in wild 

trees (Busby et al., 2016). Taken together, these data indicate a tight link between 

pathogen invasion and the microbial community structure in planta that likely results from 

the combined effect of microbe-microbe and microbe-host interactions. 
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1.2.3 Microbial hubs as modulators of plant-associated microbial 

communities 

Microbial network analysis represents an elegant way to identify specific microbes that 

have a more central position in a microbial network, often defined as “keystone” species 

or “hubs.” These microbes frequently co-occur with other taxa (highly connected to other 

microbes within the network) and likely exert a strong influence on the structure of 

microbial communities (Agler et al., 2016a; Layeghifard et al., 2016). A comprehensive 

survey of bacterial, fungal, and oomycetal communities associated with the leaves of A. 

thaliana revealed the presence of few microbial hubs, such as the obligate biotrophic 

oomycete pathogen Albugo sp. and the basidiomycete yeast fungus Dioszegia sp., that 

act by suppressing the growth and diversity of other microbes. Other candidate bacterial 

hubs (members of the family Comamonadaceae) were also found to positively control the 

abundance of numerous phyllosphere bacteria (Agler et al., 2016a). Specific leaf-

associated Cercomonads (Protists: Rhizaria: Cercozoa) were also recently shown to exert 

a significant effect on bacterial community composition. A less complex bacterial 

correlation network with a higher proportion of positive correlations was observed in the 

presence of protists, underlining the importance of predator-prey interactions for bacterial 

community structure (Flues et al., 2017). In plant roots, Niu et al., (2017) have recently 

employed a simplified seven-species synthetic community that is representative of the 

maize root microbiota to study the role of in planta interspecies interactions in altering the 

host health and the establishment of root-associated bacterial communities. Notably, the 

removal of one community member, Enterobacter cloaceae, caused a significant 

reduction in species richness indicating that E. cloaceae plays the role of “keystone” 

species within the seven-species community. In perennial plants, network analysis of 

mycorrhizal and endophytic fungi from beech trees (Fagus sp.) revealed the presence of 

two distinct microbial networks, consisting of diverse functional groups of mycorrhizal and 

endophytic fungi. Importantly, a different fungal hub dominates in each module (either 

Oidiodendron sp. or Cenococcum sp.), suggesting that diverse fungal hubs can 

differentially sculpt microbial assemblages within a single plant population (Toju et al., 

2016). However, microbial hub species identified through co-occurrence network analysis 

could simply represent generalist microbes that are reproducibly and abundantly found in 

plant tissues. Validating the functional role of microbial hubs and determining the 

molecular mechanisms used by these microbes to modulate microbial community 

structure will be key to fully understand microbial communities’ establishment. 
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1.3 Consequences of intermicrobial interactions on plant 

growth and health 

Although competitive and cooperative interactions significantly impact plant-associated 

microbial assemblages, these microbial interactions might also alter plant growth and 

fitness in beneficial or deleterious ways. Although some correlations were observed 

between microbial community composition and plant host phylogeny (Bouffaud et al., 

2014; Schlaeppi et al., 2014; Yeoh et al., 2017), it is likely that a core plant microbiota has 

evolved with terrestrial plants (lycopods, ferns, gymnosperms, and angiosperms) over 

450 million years (Yeoh et al., 2017). Therefore, it is plausible that these co-occurring core 

microbiota members have evolved, in parallel, niche-specific inter-microbial interactions 

strategies that impact plant growth and health. 

1.3.1 Intermicrobial interactions and plant growth promotion 

Bacterial-mycorrhizal-plant relationships have been intensively studied due to the 

capacity of this microbial interplay to provide a direct benefit for the host plant (Bonfante 

and Anca, 2009). The interaction between mycorrhizal fungi and specific rhizobacteria 

promotes the establishment and functioning of mycorrhizal symbioses with the plant host, 

including both endo- and ectomycorrhizal interactions (Frey-Klett et al., 2007, Labbé et 

al., 2014). These so-called “helper” bacteria are able to act at several levels: (1) they 

increase the receptivity of the root to mycorrhizal fungi, (2) enhance soil conduciveness 

to the fungus, (3) promote germination of fungal spores, and (4) enhance mycelium 

survival (Frey-Klett et al., 2007). Furthermore, this relationship appears to be specific, 

since some bacteria isolated from specific mycorrhizal fungi have antagonistic activities 

towards other phylogenetically unrelated fungi (Frey-Klett et al., 2007). Beyond 

mycorrhiza helper bacteria, some bacterial endosymbionts of root-associated fungi also 

directly affect the plant host, as demonstrated for Rhizobium radiobacter F4. This 

Serendipita indica’s (formerly Piriformospora indica) endosymbiont is able to grow in the 

absence of its fungal host and can promote plant growth and resistance to plant leaf 

pathogens independently from S. indica, suggesting that S. indica-mediated plant growth 

promotion is partly mediated by its bacterial endosymbiont (Sharma et al., 2008; Glaeser 

et al., 2016) or by other bacterial members influencing fungal growth (Bhuyan et al., 2015). 

In nature, most land plants are co-colonized by fungal and bacterial symbionts, as well as 

a staggering diversity of endophytic and pathogenic microbes (Toju et al., 2013; Bonito et 

al., 2014). However, it remains unclear how the competing demand of multiple partners 
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is balanced in plant roots to maintain a beneficial output. A focus of interest is the 

cooperation between mycorrhizal fungi and nitrogen-fixing bacteria. These important 

members of the root microbiota are widespread and co-occur in the roots of many plant 

species (Artursson et al., 2006). Interestingly, it has been recently shown that these 

microbes can complement each other to maximize nutrient acquisition in the host and act 

synergistically to promote plant diversity and productivity (van der Heijden et al., 2016). 

Although the direct role of microbe-microbe interaction in this process is likely minor, 

mixed microbial consortia could, nonetheless, indirectly stimulate ecosystem functioning 

and plant productivity through different resource use strategies. 

1.3.2 Disease suppression 

Soil bacterial communities from different taxonomic groups have an important biocontrol 

potential in the so-called “disease-suppressive” soils. In these soils, plants are less 

affected by pathogenic microbes due to the effect of their surrounding microbiota. 

Specifically, it has been proposed that oxalic acid produced by the fungal root pathogen 

Rhizoctonia solani, or compounds released from plant roots under attack, promote the 

growth of particular bacterial families (Oxalobacteraceae and Burkholderiaceae), leading 

to a bacterial community shift and the activation of bacterial stress and antagonistic 

responses that restrict the growth of the fungal pathogen (Mendes et al., 2011; Chapelle 

et al., 2016). Furthermore, it has been shown that Streptomyces strains isolated from 

disease-suppressive soils can produce different VOCs with antifungal activity (Cordovez 

et al., 2015). Other Streptomyces species have also been isolated from disease-

suppressive soils from a strawberry field (Cha et al., 2016). These bacteria have been 

found to produce an antifungal thiopeptide targeting fungal cell wall biosynthesis in 

Fusarium oxysporum, suggesting that different bacterial species use different competitive 

mechanisms (Cha et al., 2016). Similarly, Santhanam et al., (2015) have demonstrated 

how root-associated bacteria provide an effective rescue to Nicotiana attenuata from the 

sudden-wilt disease. Seed inoculation with a core consortium of five bacterial isolates 

naturally adapted to the environment provides an efficient plant protection under field 

conditions, underlining the importance of using locally adapted microbiota members to 

control plant disease. In the phyllosphere, it has been shown that the leaf surface 

microbiota, together with endogenous leaf cuticle mechanisms, leads to A. thaliana 

resistance against the broad host range necrotrophic fungal pathogen Botrytis cinerea 

(Ritpitakphong et al., 2016). Although it is not clear whether these bacterial communities 

were already stable or restructured after pathogen attack, it is likely that the plant actively 

recruits disease-suppressive bacteria during seed production or germination (Links et al., 



Introduction Chapter II  

74 
 

2014; Barrett et al., 2016). Interestingly, it has been also shown that soil microbiota can 

suppress not only plant pathogens, but also beneficial microbes, such Arbuscular 

Mycorrhizal Fungi (AMF) (Svenningsen et al., 2018). By measuring phosphorus uptake 

from radioisotope-labelled soil as a proxy for extraradical mycelium activity, it was 

possible to observe a significant decrease of fungal activity when inoculated in 4 out of 

the 21 soils tested, most likely due to the higher abundances of Weisella and 

Acidobacteriaceae Gp1 members (Svenningsen et al., 2018). Although many examples 

illustrate the biocontrol activity of plant-associated microbiota members, the molecular 

mechanisms leading to pathogen growth suppression on plant tissues remain unclear. It 

has been shown that the millet bacterial endophyte Enterobacter sp. can promote both 

growth and bending of millet root hairs, resulting in a multilayer root-hair endophyte stack 

that efficiently prevents entry by the fungal pathogen Fusarium. Tn5-mutagenesis further 

demonstrated that bacterial biocontrol activity requires c-di-GMP-dependent signaling, 

secretion of diverse fungicides, and resistance to a Fusarium-derived antibiotic (Mousa et 

al., 2016). 

Although it is known that the plant-associated microbiota can prevent disease, it remains 

difficult to engineer functionally reliable synthetic microbial consortia that promote plant 

growth and suppress disease. Reductionist approaches with synthetic microbial 

communities suggest that pathogen suppression increases when the diversity of the 

bacterial consortium increases. It has been shown that complex Pseudomonas species 

consortia better protect tomato plants against the root pathogen Ralstonia solanacearum 

than low-complexity Pseudomonas spp. consortia, due to the combined action of 

antagonistic activities and resource competition (Hu et al., 2016). Similarly, Wei et al., 

(2015) showed that disease incidence is reduced when the trophic network favors 

resource competition between non-pathogenic R. solanacearum and a pathogenic strain, 

due to overlap in resources acquisition (Wei et al., 2015). These examples provide 

evidence that microbial diversity, resource competition, and inter-microbial antagonism 

are important factors to consider for engineering functionally relevant microbial consortia 

that efficiently suppress plant diseases. 

1.3.3 Disease facilitation 

Intermicrobial interactions do not necessarily impact plant fitness in a positive way, but 

can also be deleterious for the plant by enhancing disease. For instance, the bacterial 

plant pathogen Clostridium puniceum secretes clostrubins (antimicrobial polyketides) to 

compete against other microbial pathogens and survive in aerobic environments 

(Shauber et al., 2015). It has been also shown that toxin production by the bacterial 
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endosymbiont of the plant-pathogenic fungus Rhizopus is required for successful fungal 

colonization of rice plants, indicating that fungal-bacterial symbioses can also promote 

disease (Partida-Martinez et al., 2005). Recently, high-throughput fungal profiling 

methods, combined with manipulative experiments, have shed new light on the ecological 

importance of fungal endophytes for rust disease modification in wild trees. Specifically, 

it has been shown that certain fungal endophytes in the poplar phyllosphere could reduce 

rust disease symptoms, whereas others promote susceptibility (Busby et al., 2016). Taken 

together, these studies clearly show that intermicrobial interactions are complex and can 

also mediate disease facilitation. 
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1.4 Thesis aims (Chapter II) 

Plants live in intimate association with complex and diverse microbial communities. Next-

generation sequencing has already enabled us to explore different microbial groups 

through the targeting of specific microbial loci or using environmental metagenomes. 

Nonetheless, a more holistic approach is still needed to better understand the 

intermicrobial interactions within the microbiota of plants and to better define the 

functional relevance of the microbial networks for holobiont fitness (Vandenkoornhuyse 

et al., 2015; Hacquard and Schadt, 2015). Prokaryotic and eukaryotic microbes have 

evolved a myriad of cooperative and competitive interaction mechanisms that shape and 

likely stabilize microbial assemblages on plant tissues. However, most of the data are 

derived from one-to-one interaction studies, and only few incorporate complex microbial 

communities in controlled laboratory conditions to reconstitute the plant microbiota and to 

understand the role of intermicrobial interactions (Vorholt et al., 2017). Thus, the second 

aim of my thesis will be to reconstitute plant-associated microbial communities isolated 

from roots of healthy Arabidopsis thaliana plants growing in the same soil, including 

several microbial kingdoms and under controlled laboratory conditions, to understand the 

principles that govern the assembly of complex synthetic microbial communities and the 

maintenance of host-microbial homeostasis. In this way, I will be able to understand how 

different microbial kingdoms establish in the root vicinity by themselves or in combination 

with other microbial groups. Further, I will investigate the effect of these microbial 

interactions on plant growth and performance. Hence, the following questions will be 

addressed: 

1) How do different microbial groups impact each other’s establishment at A. thaliana 

roots vicinity? 

2) Do these synthetic microbial communities impact A. thaliana’s health? 

3) Do microbial communities lacking one or several microbial groups perform 

differently? 

4) Can microbial binary assays predict microbial biocontrol activity in a community 

context? 

5) How do microbial communities establish over time? 
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2. RESULTS 

2.1 Synthetic microbial communities reconstitution as a tool 

to understand microbial interactions and their role for plant 

health 

2.1.1 Multi-kingdom microbial synthetic communities 

Studies of microbe-microbe interactions in binary systems have advanced the field in 

understanding how microbes might interact with each other. However, how these 

microbial interactions are actually happening in a community context is less understood. 

As reviewed by Vorholt et al., (2017), a relevant approach to dissect assembly rules and 

functions of the plant microbiota is to deconstruct and reconstruct microbial communities 

under controlled laboratory conditions. It has been shown that 65% of A. thaliana-

associated bacterial root-enriched OTUs have one or several isolates in pure culture, 

allowing to follow the aforementioned approach (Bai et al., 2015). Thus, isolation of 

microbes from plant roots, followed by re-inoculation into a gnotobiotic plant system has 

proved to be very efficient to assess the role of plant immune system components in 

shaping root-associated bacterial communities, to reveal microbiota specialization in root 

and leaf habitats, and to dissect functional links between plant immunity, nutrition and 

bacterial microbiota establishment in plant roots (Lebeis et al., 2015; Bai et al., 2015; 

Castrillo et al., 2017). Microbial interactions between members of different kingdoms (for 

example, between bacterial and fungal communities), however, remain poorly 

understood. In order to assess this question, Dr. Stéphane Hacquard (Department of 

Plant-Microbe interactions, MPIPZ) established a fungal and oomycetal culture collections 

from the roots of healthy Arabidopsis thaliana and relatives grown in GE1, GE2, and FR3 

soils (from Chapter 1), as well as from the Cologne Agricultural Soil (CAS), the same soil 

that was used to establish the root-derived bacterial culture collection (Bai. et al., 2015). 

To reconstruct a biologically significant microbiota, I selected only bacterial, fungal and 

oomycetal strains derived from CAS soil, and microbes that had enough sequence 

differences to be identified by MiSeq sequencing methods (see Methods). Thus, I 

selected 148 bacterial strains (94 Proteobacteria, 45 Actinobacteria, 1 Bacteroidetes and 

8 Firmicutes), 34 fungal strains (all belonging to the Ascomycota phylum) and 8 

oomycetes strains (all belonging to the Pythiaceae family) (Figure 15, Annex: 

Supplementary Table 3). Importantly, these strains largely resemble the natural 
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taxonomic composition of the root microbiota, representing >50% of the taxa detected by 

culture independent community profiling. Then, a gnotobiotic plant system, the so-called 

FlowPots system, was used (Kremer et al., 2018). FlowPots have a soil matrix 

(greenhouse peat) that closely resembles natural soil texture and contains complex 

carbon sources (Figure 16, based on Kremer et al., 2018). Other systems were tested, 

such calcined clay in Magenta Boxes (Bai et al., 2015), and also a liquid system, but 

eukaryotic microbes viability was very low or growth rate very slow, respectively, and 

therefore not used for the purposes of this project (data not shown).  

 

Figure 15: Microbial culture collections for gnobotiotic experiments. Microbial members used in this 

study: 148 bacterial strains (A) (from culture collection of Bai et al., (2015), 34 fungal strains (B); and 8 

oomycetes strains (C) (from culture collections in Duran et al., in preparation). Phylogenetic trees were 

constructed in the iTOL platform, by using the bacterial full 16s rRNA gene and fungal and oomycetal full ITS 

Sanger sequences. Each of the colored layer represents (from inner to outer layer) the genus/species levels, 

phylum level and plant host from which these microbes were initially isolated. 
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Figure 16: Gnotobiotic experiments pipeline scheme. This scheme shows the steps followed in order to 

perform FlowPots-based gnotobiotic experiments. First, fungal and oomycetal strains are grown on PGA 

plates (Week 1) and incubated for two weeks before the inoculation day. One week after, the peat is sterilized 

and the FlowPots assembled. Also, bacterial strains are grown in liquid media (TSB 50 %) for one week, and 

the A. thaliana Col-0 seeds sterilized and entrained for four days at 4 °C (Week 2). On the inoculation day, 

200 µL of each bacterial strain is pooled together, and re-suspended in buffer after washing off the medium. 

Optical density (OD) of the full mixture is measured in order to dilute it to the working stock. 50 mg of mycelium 

from the fungal and oomycetal strains are harvested and grinded in 1 mL of a 10 mM MgCl2 buffer. Then, 900 

µL of each fungal/oomycetal homogenate is pooled. Before inoculating the microbes, each FlowPot needs to 

be flushed with sterile water to remove toxic compounds produced by the peat from autoclaving. After 

microbial inoculation, seeds are sown on the surface of the FlowPots and the Microboxes incubated. After 

four weeks, shoot fresh weight is measured and root and matrix samples harvested for microbial community 

profiling. Each color matches the time point where each step is taking place. Within the inoculation day, 

numbers indicate the order in which step is made. FlowPots images are taken from Kremer et al., (2018). 

 

First, it was important to select a similar inoculation protocol for all microbial members. As 

explained in Methods (Figure 16), bacterial strains were inoculated in the system by 

pipetting a selected volume from liquid cultures. Fungal and oomycetal strains, on the 

other hand, have a very variable growth rate in liquid media, and therefore an alternative 

method was necessary. An option was to inoculate them as a spore suspension, but this 

was not viable as most of these fungi do not form spores. Instead, considering that fungi 

and oomycetes all grow forming mycelium, these mycelia could be harvested in similar 

amounts per strain and homogenized, so that they could be inoculated similarly to 

bacterial strains. Thereby, I tested different homogenization protocols with which fungi 

and oomycetes’ hyphae would disrupt and could be treated similarly to bacterial inoculum 

(Supplementary Figure 11A). Thus, bead-beating of 50 mg of fungal/oomycetal 

mycelium for 10 minutes with 1 mL of 10 mM MgCl2 and one stainless steel bead (3.2 mm 
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of diameter) was the most effective method to disrupt the mycelium in a way that it would 

be possible to inoculate it in a liquid format. More importantly, this method was suitable 

for fungal and oomycetal survival (Supplementary Figure 11B).

 

2.1.2 Effect of multi-kingdom microbe-microbe interactions on 

microbial community structure and plant growth 

The research questions addressed in the first experimental set-up were the following: 1) 

what is the individual effect of microbial groups on plant performance and 2) what is the 

relevance of inter-kingdom microbe-microbe interactions on microbial community 

establishment and plant growth. Therefore, after following the gnotobiotic experiments 

pipeline scheme in Figure 16, sterile A. thaliana Col-0 plants were co-incubated with 

different microbial combinations: bacteria only (B, 148 strains), fungi only (F, 34 strains), 

oomycetes only (O, 8 strains), bacteria and oomycetes (BO), bacteria and fungi (BF), 

fungi and oomycetes (FO) and all three groups together (BFO). Also, an un-inoculated 

control was included (microbe-free, MF), as well as an unplanted BFO condition, to 

inspect the role of the host plant presence on microbial communities. This experiment will 

be referred as “EXP1” in later sections of this chapter. This experiment was replicated 

three times, with at least three technical replicates each (two pots pooled together 

accounted for one technical replicate). I measured the microbial biomass inoculated in 

the system at the beginning of the experiment (weight of bacterial cells pellet and weight 

of fungal/oomycetal mycelium, respectively), and adjusted the microbial load to a final 

ratio that resembled previous estimations of microbial biomass in nature (Joergensen and 

Emerling, 2006). Thus, 6% of the inoculated biomass was bacterial and 94% shared 

between fungi and oomycetes. 

After four weeks of microbial co-incubation with A. thaliana Col-0, shoot fresh weight was 

measured and root and matrix samples were harvested for microbial community profiling 

(Figure 16). The first output of this experiment, however, was the host survival rate, 

referred to as the percentage of plants that were alive at the end of the experiment, 

compared to the number of seeds initially sown: 10 seeds were sown per pot at the 

beginning of the experiment and, after one week, seedlings were thinned out to 4-5 plants 

per pot; from these plants, survival rate was calculated at the end of the experiment, and 

was strongly dependent of the community inoculated in the system. Thus, microbe-free 

pots had an average of 81 % survival rate, whereas, in bacterial-inoculated pots, this rate 

was slightly higher (B: 98 %; BO: 87 %; BF: 94 %: BFO: 100 %). Remarkably, survival 

rate in F-, O- or FO-inoculated pots was very low (0 %, 24 % and 0 %, respectively) 
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(Figure 17). Furthermore, shoot fresh weight assessment showed that bacterial-only 

inoculum (B) did not significantly improve plant growth compared to microbe-free control 

plants, but inoculation of either fungi-only (F) or oomycetes-only (O) decreased 

significantly plant growth (Kruskal Wallis, Dunn test post-hoc, p-value<0.05, Figure 17). 

Further, co-inoculation with fungi and oomycetes (FO) did not show different plant growth 

compared to the single inoculations (F, O). Fungal or oomycetal co-inoculations with 

bacterial communities (BF, BO), on the other hand, significantly rescued the detrimental 

effect that either eukaryotic microbial group had on plant growth. Remarkably, only with 

the full microbial inoculum (BFO) plant growth was significantly increased compared to 

microbe-free conditions (125% plant shoot fresh weight increase, Kruskal-Wallis, Dunn 

test post-hoc, p-value<0.05, Figure 17). In order to investigate whether there was a 

microbiota signature related to these phenotypes, I analyzed root- and matrix-associated 

bacterial, fungal and oomycetal community profiles. One of the first observations was that 

variance between biological replicates was very high, especially for bacterial and fungal 

communities (4.84% and 2.93%, respectively, PERMANOVA, p-value<0.001, Table 5, 

Figure 18A). Normalization of the Bray-Curtis dissimilarities by comparing the distance 

of clusters to the distance of the control cluster to itself, allowed cross-comparison 

between microbial conditions despite variation across biological replicates (Figure 18B, 

see Methods). Therefore, if samples within the control cluster (i.e., bacteria-only to 

bacteria-only samples (B-B), fungi-only to fungi-only samples (F-F) and oomycetes-only 

to oomycetes-only samples (O-O)) are significantly closer together than to cluster “X”, the 

microbial assemblage in cluster “X” is significantly different. Thereby, bacterial 

communities remained stable, compared to the control cluster, regardless of the presence 

of other microbial groups in the system (BF, BO, BFO), both in roots and matrix samples 

(Figure 18B). Fungal and oomycetal communities, on the other hand, were significantly 

different when bacterial communities were present (BF, BO, BFO), but not when 

oomycetes or fungi were present (FO) (Kruskal-Wallis, Dunn test post-hoc, p<0.05, 

Figure 18B). This was also notable by variance analysis, where fungal and oomycetal 

communities presence explained a small fraction of bacterial communities’ variance 

(3.65%, p-value=0.002, and 2.2%, p-value=0.047, PERMANOVA, Table 5), whereas 

fungal and oomycetes communities are very significantly impacted by bacterial 

communities (11.6% and 7.8%, respectively, PERMANOVA, p-value<0.001, Table 5). 

Remarkably, unplanted communities display very similar microbial communities 

compared to their planted counterpart (B-BFO UNPL., Figure 18B). 
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Figure 17: Multi-kingdom reconstitution experiment. Relative fresh shoot weight to microbe-free control 

of A.thaliana Col-0 plants grown with different microbial combinations (MF: Microbe Free, B: Bacteria only, F: 

Fungi only, O: Oomycetes only, BO: Bacteria and oomycetes, BF: Bacteria and fungi, FO: Fungi and 

oomycetes, BFO: full microbial community). Shoot fresh weight values are relative to the microbe-free plants 

in order to remove variation between biological replicates. Shapes within box plots represent each of the three 

biological replicates (with three technical replicates each) and statistically significant differences are depicted 

with letters (Kruskal-Wallis, Dunn test post-hoc, p<0.05). Survival rate values represent the number of plants 

that survived at end point (4 weeks), from the germinated seeds in the first week. Pictures below each label 

are representative of the plant phenotype at the end of the experiment. 

  

One of the advantages of using synthetic communities for microbial reconstitution is the 

possibility to trace most strains after an experiment. As a comparison of microbial relative 

abundances across conditions, input communities (initial microbial inoculum) were also 

profiled. In these input samples, it was possible to observe that most of the strains 

inoculated can be traced back by their 16s and ITS sequences. However, by using the 

reference-based approach (see Methods), several strains may be grouped as one due 

to sequence similarity. Therefore, these groups of strains will be considered as Taxonomic 

Community Units (TCUs). Thus, 65 bacterial TCUs, 26 fungal TCUs and 6 oomycetal 

TCUs were identified (Supplementary Figure 12, “Input” samples). After four weeks of 

co-inoculation with A. thaliana plants and other microbial groups, bacterial profiles 

remained stable and similar across conditions. Further, as in natural communities, 

Proteobacteria members appear to be more abundant in root samples than in matrix/soil 

samples (Figure 19A, Bulgarelli et al., 2012). Fungal and oomycetal inputs have an 
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overrepresentation of Fusarium strains (102 and 216) and Pythium strains (210 and 227) 

relative abundances, respectively, which is also visible in all conditions. Nevertheless, the 

fungal and oomycetal community shifts observed upon bacterial co-inoculation are 

remarkable, where several strains show reduced relative abundance, compared to F, O 

or FO conditions (Figure 19B and C). These results indicate a clear correlation between 

the plant survival rate and the fungal and oomycetal community structure in the matrix. 

Interestingly, bacterial species diversity was maintained across all combinations, whereas 

fungal and oomycetal species diversity decreases upon bacterial co-inoculation, already 

in matrix samples (Supplementary Figure 12). This observation suggests that 

interactions between bacteria and filamentous eukaryotes take place at the soil-root 

interface during microbiota establishment and are maintained inside plant roots. 

 

Figure 18: Microbe-microbe interactions driving microbiota establishment. A) PCoA plots of bacterial, 

fungal and oomycetal (from left to right) Bray-Curtis dissimilarities; shapes represent each of the three 

biological replicates and colors depict different microbial combinations. B) Relative Bray-Curtis distances 

between sample clusters of bacterial, fungal and oomycetes profiles (from left to right) of matrix (brown) and 

root (green) to the control clusters (B-B, F-F and O-O) (i.e., the closer to 1, the more similar to control cluster). 

Significant differences are depicted with different letter (Kruskal-Wallis, Dunn test post-hoc, <0.05). Shapes 

represent each of the three biological replicates. 
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Bacteria Fungi Oomycetes 

Factor Var. (%) p-val. Factor Var.(%) p-val. Factor Var.(%) p-val. 

Fraction 8.00 0.002 Fraction 6.94 0.001 Fraction 15.12 0.001 

Has_fungi 3.65 0.002 Has_bacteria 11.60 0.001 Has_bacteria 7.8 0.001 

Has_oom. 2.20 0.047 Has_oom. 0.62 0.216 Has_fungi 3.02 0.029 

Replicate 0.18 0.851 Replicate 0.50 0.307 Replicate 0.45 0.678 

Exp. 4.84 0.002 Exp. 2.93 0.004 Exp. 1.73 0.115 

 

Table 5: Microbial profiles variance. PERMANOVA tests were performed to study the variance explained 

(Var. %) by different factors on each microbial group (fraction, technical replication and biological replication 

(Exp.), and the presence of other microbial members).  

 

In order to highlight the strains that significantly change upon co-inoculation with other 

microbes, microbial relative abundances were subjected to pairwise-comparisons 

between inoculated conditions using a Generalized Linear Model (p.adj.method=FDR, p-

value<0.05) (see Methods, Figure 20A). Also, conditions where microbial communities 

and plant growth seemed similar, were compared to a third condition where these 

changed (for example, BF and BFO versus F, Figure 20B). Thereby, it was possible to 

observe that, only one bacterial member changed consistently across treatments 

(Phenylobacterium, Root1277), which was significantly more abundant in B than in any 

other conditions (Figure 20A). In the three-way comparison (B versus BF versus BFO), 

the same strain was significantly more abundant in B than in any of the other two 

conditions, suggesting that this strain is inhibited by the presence of other microbial 

groups. It is important to note that the high variation observed between the three biological 

replicates for bacteria likely led to an underestimation of the number of enriched or 

depleted taxa. Regarding fungal members, 18 strains have significantly different 

abundances across conditions, in pairwise comparisons. Specifically, the relative 

abundance of Fusarium strains (102, 112, 115, 238) is significantly higher in the presence 

of the bacterial root microbiota. On the other hand, the relative abundances of 

Plectosphaerella cucumerina (10 and 143), Ilyonectria strains (147, 18, 26, 134, 136, 22, 

21), Cylindrocarpon sp. (241), Dendryphion nanum, Microdochium bolleyi (230), 

Fusarium oxysporum (214) and Verticillium dahliae (3) are significantly depleted in 

pairwise comparison in the presence of bacteria (Figure 20A). In order to highlight the 

fungal strains that could be correlated to the negative phenotype on plant growth, I used 

a more stringent test (by comparing F versus BF versus BFO), which shows that 11 of the 
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previous 17 strains are significantly enriched in fungi-only condition (namely, 

Plectosphaerella cucumerina 10 and 143, Microdochium bolleyi 230, Verticillium dahliae 

3, Ilyonectria strains 147, 18, 134, 136, 22 and 21, and Fusarium oxysporum 214 (Figure 

20B). These fungal strains, therefore, could be the potential drivers of plant death in 

EXP1. Oomycetal strains also display condition-specific enrichments; however, these 

enrichments are not fully consistent across conditions in the pairwise comparisons and 

also not consistent with plant phenotype. For example, Pythium sp. (4) is enriched in O 

versus BO, but also in BO versus FO. In the three-way comparison, four oomycetal strains 

showed significantly higher relative abundance in O versus BO versus BFO: Pythium 

ultimum (210 and 7), Pythium sp 227 and Pythium sylvaticum 132. Therefore, a similar 

trend was observed for oomycetes and fungi, but the higher variability observed in 

oomycetal community profiles prevent to draw a general conclusion. Importantly, the 

effect of bacteria on oomycetal and fungal community can also arise from a decreased 

fungal and oomycetal load in the matrix, which cannot be quantified by community 

profiling. This is consistent with alpha-diversity indices (Supplementary Figure 12), 

suggesting that the combined effect of bacteria on both eukaryotic community structure 

and total eukaryotic biomass is needed for the rescue activity.  

 

Figure 19: Microbial relative abundances in a reconstitution experiment. Relative abundances of 

microbial isolates in matrix and root samples after four weeks of incubation with their plant host, alone or in 

combination with other microbial members. (INPUT: initial microbial inoculum, mixed in a 1:1 volume ratio; B: 

Bacteria only, F: Fungi only, O: Oomycetes only, BO: Bacteria and oomycetes, BF: Bacteria and fungi, FO: 

Fungi and oomycetes, BFO: full microbial community; BFO UNPL.: full microbial community without plant), 

for bacterial (A), fungal (B) and oomycetal (C) communities. Each fungal and oomycetal strain has a different 

color (legend on the right side), whereas bacterial strains are grouped by the phyla they belong to, for 

simplicity. The abundance of strains in the legend marked with a number is significantly different between 

conditions (see Figure 20). 
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Figure 20: Microbial strains’ changes upon co-inoculation with other microbial members. A) Illustration 

of the results from pairwise-enrichment tests for bacterial, fungal and oomycetal strains in gnotobiotic 

experiments (Generalized Linear Model, p.adj.method=FDR, p-value<0.05) co-inoculated in different 

combinations (B: Bacteria only, F: Fungi only, O: Oomycetes only, BO: Bacteria and oomycetes, BF: Bacteria 

and fungi, FO: Fungi and oomycetes, BFO: full microbial community). Significantly enriched strains in one 

combination compared to another one are depicted with a red block (e.g.: Root762 is enriched in B compared 

to BF). B) Ternary plots representing the enriched strains (colored circles) (Generalized linear model, 

p.adj.method=FDR <0.05) in each combination versus the other two combined (see Annex: Supplementary 

Table 4). Size of the circles depicts the relative abundance of each strain and the closeness to each edge 

represents the higher presence in that given condition. 
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2.1.3 Microbiota perturbation experiments 

In EXP1 analysis it was possible to identify specific fungal strains that could be related to 

the detrimental effect on plant growth. This result was per se remarkable as all fungal 

strains were isolated from healthy A. thaliana plants, suggesting that root colonization by 

these strains in nature is not sufficient to provoke disease. Therefore, I hypothesized that 

the strains enriched in F/FO might be highly pathogenic when individually grown with the 

plant host. Thus, each fungal strain was separately inoculated with sterile A. thaliana Col-

0 seeds and incubated for three weeks in the FlowPots system. This experiment will be 

referred as “PERT1” in later sections in this Chapter. Compared to the microbe-free 

control (MF), fungal strains displayed various effects on plant growth. First, it was 

remarkable to observe that 18 out of the 34 strains tested lead to a significant decrease 

on plant growth compared to microbe-free conditions (Kruskal-Wallis, Dunn test post-hoc, 

p<0.05, Figure 21). Further, these 18 strains included most of the enriched fungi in EXP1 

(6 out of 18, conditions F and FO), but also other fungal strains, as Stachybotrys bisbyi 

(235) or Fusarium redolens (224) that were not identified as significantly enriched in the 

absence of the bacterial community. Moreover, some of the isolates identified as 

pathogenic in EXP1 F/FO, had a neutral impact on plant growth (shoot fresh weight not 

significantly decreased compared to microbe-free control, Kruskal-Wallis, Dunn test post-

hoc, Figure 21). These observations suggest that results of enrichment tests cannot be 

linked with fungal pathogenic lifestyle and that bacteria do not specifically affect the 

growth of pathogenic fungi. Consistent with that, a 23-members fungal community lacking 

the 11 fungal isolates enriched in the absence of bacteria (see Figure 20) remains fully 

detrimental for plant growth.  

From these results, I hypothesized that fungal communities without other microbial groups 

present in the system increment their biomass, which then impacts plant growth. In order 

to test this, I selected a subset of the tested fungal strains in PERT1 to correlate their 

biomass in the matrix with the plant growth phenotype. For this, with the help of Nick 

Dunken (Bachelor student, University of Cologne), we developed standard curves for this 

subset of strains, by comparing the DNA extracted from a known amount of mycelium, to 

the Cq reads using qPCR. In this way, we could estimate the amount of mycelium present 

in the system, related to the amount of DNA extracted (see Methods, Supplementary 

Figure 13A). This follow-up experiment will be referred as “PERT1.2” in later sections in 

this Chapter. Using the harvested matrix samples from PERT1, we estimated the fungal 

load in each sample, utilizing the standard curves produced in PERT1.2 (Supplementary 

Figure 13A). Pearson’s correlation test between estimated fungal load and plant shoot 

fresh weight showed no significant correlation between these two variables, suggesting 
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that mycelial load in the matrix does not predict fungal pathogenicity on A. thaliana 

(Pearson’s correlation=0.04, p-value=0.835, Supplementary Figure 13B). 

 

Figure 21: Individual effect of fungal strains on plant growth. Plot depicting shoot fresh weight of A. 

thaliana Col-0 plant shoots, after three weeks of incubation with individual fungal strains (same as in Figure 

18), of three biological replicates (depicted with different shapes) with at least three technical replicates each, 

relative to un-inoculated control (microbe-free, MF, red dashed line). Significant differences are indicated with 

a red asterisk (Kruskal-Wallis, Dunn test post-hoc, p-value<0.05). Depletion of enriched fungal strains in 

Figure 20 (strains in red) from the full fungal community did not recover plant growth (right side of the plot). 

 

Inoculation of individual fungal isolates suggests that the detrimental activity on plant 

growth is mediated by multiple strains in the fungal community and that many fungal 

isolates retrieved from healthy plant cannot be kept at bay by the plant immune system. 

The next important question was to determine whether the bacterial biocontrol activity is 

a redundant trait in the community or a specialized mechanism that evolved in very few 

bacterial community members. I utilized the information from an experiment previously 

performed by Dr. Stéphane Hacquard (Department of Plant-Microbe interactions, MPIPZ), 

where the potential antagonistic effect of bacterial members on fungal growth was tested 

(Supplementary Figure 14A). In this experiment, 24 sporulating fungal members were 

used, including 7 used in EXP1. Thus, fungal spores were distributed in 96-well plates 

and incubated with or without individual bacteria members for 48 hours. Fungal growth 

was determined by fluorescence using a chitin binding assay (Supplementary Figure 

14A). Using this assay, it was possible to establish a gradient of bacterial antagonistic 

scores (Supplementary Figure 14B), from which I subsetted bacterial groups to create 

distinct synthetic communities (SynComs, SC) that followed an antagonistic gradient 

(from the most antagonistic members, SC1, to the least antagonistic, SC6, 
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Supplementary Figure 14B). Since it has been suggested that diversity is important for 

plant health (Hu et al., 2016), I grouped every two SynComs into a higher diversity groups 

(SC7, SC8 and SC9, Supplementary Figure 14B). Finally, to compare with EXP1, I 

included a SynCom containing all bacterial members (SC10). Each of these bacterial 

SynComs was inoculated with sterile A. thaliana Col-0 seeds, with or without the 34-

members fungal community used in EXP1, and incubated for three weeks. After this 

period, shoot fresh weight was assessed (Figure 22). This experiment will be referred as 

“PERT2” in later sections of this chapter. Host shoot phenotypic results were calculated 

as relative plant rescue, where shoot fresh weight values were calculated relative to those 

of microbe-free control plants (in order to remove as much variation as possible from each 

biological replicate). Samples inoculated with both bacterial and fungal members were 

compared to bacteria-only conditions, in order to investigate the capacity of each bacterial 

SynCom to rescue fungal effect, compared to bacteria-only conditions (Figure 22A). 

Using this method, it was possible to observe that the SynComs SC2, SC4, SC5, SC7, 

CS8, SC9 and SC10 were able to rescue fungal deleterious effect on plant growth. 

Interestingly, the bacterial SynCom predicted to have the highest antagonistic effect (SC1, 

Supplementary Figure 14), also has a detrimental effect on plant growth per se (data 

not shown), which could suggest that these bacteria secrete toxic molecules that also 

affect plant development. Assessment of microbial load in matrix samples of each of the 

inoculated conditions shows that fungal load is high in fungi-only condition, but drastically 

drops in the presence of any bacterial SynCom, and especially in the presence of the full 

bacterial community (SC10, Figure 22B). Further, bacterial load is very variable, although 

it appears to increase together with SynCom diversity (SC7, SC8, SC9 and SC10, Figure 

22B). Correlation analysis between microbial loads and plant growth shows that fungal 

load is not significantly correlated to bacterial load (Pearson’s correlation, p-value=0.39, 

Supplementary Figure 15A). Also, bacterial and fungal loads independently have no 

correlation with plant shoot fresh weight (p-value= 0.30 and 0.11, respectively, 

Supplementary Figure 15B and C). Interestingly, fungal/bacterial ratio is correlated with 

plant shoot fresh weight (Pearson’s correlation= - 0.28, p-value=0.04, Supplementary 

Figure 15D), which suggests that low fungal to bacterial ratio is beneficial for plant growth. 

Overall, bacterial rescue does not obviously correlate with the antagonistic effect 

observed in the binary assay, but it is notable that highly diverse bacterial consortia tend 

to have a more stable rescuing effect (SC7, SC8, SC9 and SC10, Figure 22A).  
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Figure 22: Bacterial antagonistic gradient against fungal overgrowth. A) Shoot fresh weight represented 

as the relative plant rescue (relative bacteria-only-inoculated shoot fresh weight divided by the relative 

bacteria-and-fungi-inoculated shoot fresh weight, [(SynCom+F/Microbe-Free)/(Syncom/Microbe-Free)]). 

Significant differences are depicted with different letters (Kruskal-Wallis, Dunn test post-hoc, p<0.05). B and 

C) Microbial load was estimated in matrix samples from the bacterial antagonism gradient experiment by 

amplifying the 16s rRNA V5/V7 and ITS1 for bacterial and fungal communities, respectively. Cq values were 

then normalized to the microbe-free values (MF=1, dashed line). Significantly different values are depicted 

with letters (Kruskal-Wallis, Dunn test post-hoc, p-value<0.05) 

 

Based on the antagonistic binary assay (Supplementary Figure 14A), it is possible to 

observe that there are certain taxonomic groups with a higher fungal growth inhibition 

than others, namely the Comamonadaceae and Pseudomonadaceae families. Further, 

network analysis of culture-independent data from natural sites, highlighted 

Comamonadaceae as one of the major bacterial groups showing negative correlation with 

fungal communities (analysis by Dr. Thorsten Thiergart, Duran et al., in preparation). 

Furthermore, Comamonadaceae family was also highlighted as a major microbial hub in 

phyllosphere communities of A. thaliana (Agler et al., 2016a). Therefore, in the next 

approach, I hypothesized that removal of either Comamonadaceae or 

Pseudomonadaceae members, or removal of members from both families, might result in 

a complete or partial loss of bacteria-mediated plant protective activity against fungi. 

Therefore, four Syncoms were utilized: full bacterial community as in EXP1 and PERT2 
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(B), bacterial community lacking Comamonadaceae family members (B-C), bacterial 

community lacking Pseudomonadaceae family members (B-P), as well as bacterial 

community lacking members from both families (B-C-P). These Syncoms were inoculated 

with sterile A.thaliana Col-0 seeds, alone or together with the 34-members fungal 

community used in EXP1 (two biological replicates). After four weeks of incubation, plant 

shoot fresh weight was measured and root and matrix samples were harvested for 

bacterial and fungal communities profiling (Figure 23). This experiment will be referred 

as “PERT3” in later sections of this chapter. Remarkably, removal of either 

Comamonadaceae or Pseudomonadaceae families did not have a significant impact on 

bacterial rescue capacity against fungal members. On the contrary, removal of both 

groups significantly decreased plant growth in the presence of the fungal community 

(Kruskal-Wallis, Dunn test post-hoc, p<0.05, Figure 23A), indicating that members from 

these two families at least partly contribute to the plant growth rescue. However, this 

growth decrease did not translate into a bacterial (Supplementary Figure 16) nor fungal 

community change (PERMANOVA, 12.7% of variance, p-value=0.31, Figure 23B). 

These observations suggest that other members belonging to other families can still 

confer efficient plant protection against fungi. Thus, I propose that the biocontrol activity 

is a redundant trait and key function of the bacterial root microbiota for A. thaliana survival. 

 

Figure 23: Taxonomy perturbation of bacterial communities. A) Shoot fresh weight of fungi-and-bacteria-

inoculated plants relative to the bacteria-only-inoculated plants in depletion experiments (two biological 

replicates with three technical replicates each), where specific bacterial families (C: Comamonadaceae; P: 

Pseudomonadaceae) were removed from the full bacterial community (B/SC10) in EXP1/PERT2 to test their 

fungal control capacity. Shoot fresh weight of fungi-only-inoculated is shown for comparison. Significant 

differences are depicted with different letters (Kruskal-Wallis, Dunn test post-hoc, p<0.05). B) Constrained 

principal components analysis of Bray-Curtis dissimilarities of fungal communities in matrix samples. 

PERMANOVA analysis shows no significant differences between the distribution of sample clusters (12.7% 

of variance, p=0.31). 
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2.1.4 Root microbiota dynamics 

Although the experiments described above shed new light about interkingdom microbial 

interactions and their effect on plant growth, relatively little is known about the dynamics 

of microbiota establishment in plant roots (Edwards et al., 2015; van der Heijden and 

Schlaeppi, 2015; Zhang et al., 2018). In order to investigate when microbial communities 

reach a stable assembly, within individual kingdoms and in the presence of other microbial 

groups, I performed a time-series experiment. The previously used bacterial, fungal and 

oomycetal communities were used (B, F, and O), as well as the full community (BFO). 

Using the Flowpots system, peat matrix was inoculated with each of these microbial 

communities and incubated for four weeks without plant host. At different time points, 

matrix samples were harvested in order to visualize how microbial communities change 

over time (0 hours/Input, 4 hours, 12 hours, 24 hours, 48 hours, 1 week and 4 weeks). 

This experiment will be referred as “TIME1” in later sections of this chapter. In EXP1, it 

was observed that unplanted BFO displayed a very similar profile to the planted 

counterpart (Figure 18B). However, it is still unclear what the host plant effect is on 

microbiota establishment. Thus, after each of the harvesting time points, sterile A.thaliana 

Col-0 seeds were sown and, at the end of the experiment (4 weeks after each seed 

sowing), shoot fresh weight was measured, and root- and matrix-associated microbial 

profiles were analyzed (Figure 24). Although this experiment is a continuation of TIME1, 

it will be referred as “TIME2” for clarity in later sections of this chapter. Lastly, I 

hypothesized that microbial impact on plant performance could also have an impact on 

its nutritional status. Therefore, harvested four-weeks-old shoots were subjected to ICP-

MS analysis (together with Dr. Izabela Fabianska, Bucher Lab, University of Cologne). 

2.1.4.1 TIME1 

In TIME1, community profiling of matrix samples, harvested at different time points in the 

absence of the host, showed that matrix-associated microbiota has a very strong time-

dependent signature. Thus, microbial communities shifted from their input community and 

slowly changed over time (Supplementary Figure 17). This dynamic assembly pattern 

is very clear for the bacterial community inoculated alone (B) or together with filamentous 

eukaryotes (BFO), both showing time-dependent community shifts (63.84% variance due 

to time, PERMANOVA, p-value<0.001, Supplementary Table 5A). Interestingly, these 

shifts appear to decrease towards later time points (1 week and 4 weeks), where both 

clusters are closer together compared to any other cluster. This suggests that bacterial 

community stabilization was occurring towards the end of the experiment 

(Supplementary Figure 17A). Fungal communities also show a  
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Figure 24: Experimental set-up to study microbiota dynamics. Using the Flowpots system, peat matrix 

was inoculated with microbial community used in EXP1 (bacteria-only (B), fungal-only (F), oomycetes-only 

(O) and full community (BFO)) and incubated for four weeks without plant host. At different time points, matrix 

samples (one technical replicate, from three biological replicates) were harvested in order to visualize how 

microbial communities change over time (0 hours/Input, 4 hours, 12 hours, 24 hours, 48 hours, 1 week and 4 

weeks) (blue arrows). After each of the harvesting time points, sterile A.thaliana Col-0 seeds were sown and, 

at the end of the experiment (4 weeks after each seed sowing), shoot fresh weight was measured, and root- 

and matrix-associated microbial profiles were analyzed (green arrows) (one technical replicate from three 

biological replicates). Shoots were also utilized for ICP-MS analysis, to investigate microbial-driven nutritional 

changes over time. 

 

time-dependent distribution in non-planted matrix samples (31.81%, p-value<0.001, 

Supplementary Table 5A), although variability across samples is higher than for 

bacterial communities (Supplementary Figure 17B). Time-dependent variability is lower 

for fungal communities than for bacterial communities, probably due to the microbial 

overlap between time points, suggesting fungal changes are slower than bacterial 

(Coleman, 1994). Overall, fungal communities are not significantly impacted by the 

presence of bacterial members in an unplanted system, except after 4 weeks, when 

Plectosphaerella cucumerina strains (143 and 010) are depleted in BFO and Fusarium 

culmorum (201) and Zalerion varium (135) are enriched, similarly to EXP1. These results 

suggest that bacterial-driven fungal community shifts occur between 1 week and 4 weeks 

of co-incubation. Similarly to fungal communities, oomycetes communities establishment 

is also time-dependent, but in a lesser manner as for bacterial communities (39.27% time-

dependent variance, PERMANOVA, p-value<0.001, Supplementary Table 5A). 

Consistent with EXP1, oomycetal communities are significantly impacted by the presence 

of other microbial members in the absence of the plant (7.94%, p-value=0.014, 

Supplementary Table 5A).  
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2.1.4.2 TIME2 

In TIME2, matrix samples and roots of four-weeks old plants inoculated directly with the 

microbiota (0h) or after microbiota establishment in the matrix (4 hours to 1 week) were 

harvested (Figure 24). Shoot fresh weight of these four weeks-old plant was utilized as a 

proxy of plant health. Thereby, very striking plant growth patterns could be observed 

depending on whether synthetic microbial communities were co-inoculated with the plant 

or pre-established before plant sowing. Plant growth was promoted if seeds were sown 

right after bacterial communities inoculations (0h), whereas sowing seeds on pre-

established bacterial consortia (4h-4 weeks) resulted in similar growth patterns as 

microbe-free control, as observed in EXP1 (Kruskal-Wallis, Dunn test post-hoc, p-

value<0.05, Figure 17, Figure 25A). The same pattern is observed upon seed sowing 

with fungal communities: plant growth is promoted when seeds were sown directly after 

fungal community inoculation (0h), but this growth is significantly decreased in plants 

sown 4 hours after inoculation; furthermore, the 34-member fungal community became 

detrimental for plant health if the fungal community was pre-established for more than 4 

hours in the system (Figure 17, Figure 25B). This is an interesting observation, as seed 

sowing in the EXP1 was done between 4-5 hours after inoculation, suggesting that fungal 

deleterious activity on plant growth only happens after this period of time. Oomycetal 

communities, on the other hand, seem to have a negative effect on plant growth 

regardless the time of seed sowing, but are especially deleterious at 12-hours and 1-week 

time points (Figure 25C). Plants with full microbial communities (BFO) inoculation have 

a strong growth promotion at 0- and 4-hours time points, as in EXP1, whereas later time 

points show no differences to microbe-free control. Furthermore, plants sown one week 

after microbiota self-establishment show a reduced plant growth (Figure 25D).  

Deeper inspection of microbial communities shows that, whereas unplanted matrices in 

TIME1 display clear time-dependent bacterial community shifts, the bacterial community 

established in the roots of the corresponding four weeks old plants is remarkably similar, 

suggesting a structural convergence of the bacterial root microbiota in plant roots (18.47% 

variance), despite different start communities in the matrix (63.84% variance) (Figure 

25A, PERMANOVA, p-value<0.001, Supplementary Table 5B). Similarly to EXP1, 

presence of other microbial members drives a small part of the bacterial communities 

variance (2.38%, p-value<0.001) and, as shown several times across this thesis and in 

previous reports, plant compartment is one of the major drivers of bacterial communities 

composition (16.2%, p-value<0.001). Notably, a different pattern was observed for fungi 

and oomycetes, where no convergence in plant roots can be observed and communities 

in roots resemble more the corresponding start community in the matrix. Similarly to 
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EXP1, fungal communities are significantly impacted by the presence of bacteria and 

oomycetes (4.17%, p-value=0.006, Supplementary Table 5B), as well as oomycetal 

communities (7.37%, p-value<0.002, Supplementary Table 5B).  

 

Figure 25: Microbial dynamics over time. In order to study microbial communities dynamics and the impact 

of a growing plant host on microbiota establishment, microbial communities without a plant host were 

harvested at several time points after inoculation of bacteria-only (A), fungi-only (B), oomycetes-only (C) and 

full microbial community (D) at 0 hours (Input community), 4 hours, 12 hours, 24 hours, 48 hours, 1 week and 

4 weeks. Afterwards, A.thaliana Col-0 seeds were sown at the same time points; then matrix and root samples 

were harvested for community profiling after four weeks of incubation. Plant shoot fresh weight was used as 

an estimate of plant health. Here, relative strains’ abundances are shown, for bacteria, fungal and oomycetal 

communities, in individual inoculations (A, B and C, respectively) and in full community inoculation. (D). 

Strains relative abundances color code is based on the legend on the right side. Relative shoot fresh weight 

to microbe-free control (MF=1, not shown in plot) is depicted here as box plots. Significantly different growth 

patterns are depicted with different letters (Kruskal-Wallis, Dunn test post-hoc, p-value<0.05). 
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2.1.4.3 Ionome analysis 

In order to know whether these microbial changes impact plant health by changing their 

nutritional status, harvested shoots were subjected to ICP-MS analysis. Therefore, all 

plants shoots harvested from TIME2 were processed and analyzed. Ion concentrations 

were compared to microbe-free control shoots, in order to know microbiota-specific effect 

on the host plant ionome. Nutritional profile in bacteria-only and full community (BFO) 

looks very similar (increase of certain elements, such Molibden, Copper, Cadmium and 

Calcium in early time points, and decrease of others, such Beryllium in later time points). 

On the other hand, fungal communities appear to increase certain nutrients in later time 

points, such Cesium, Chromium, Aluminium, Aspartame or Nickel. On the contrary, 

oomycetes communities seem to decrease the concentration of shoot nutrients, such 

Vanadium, Iron, Cobalt, Cadmium and Aluminium (Figure 26). However, there does not 

seem to be a consistent time-dependent pattern of nutritional status overall, but rather a 

stable composition. This suggests that microbial impact on host plant in this system is 

through other pathways and not directly through the acquisition of specific ions. 

 

Figure 26: Microbiota and time-dependent host plant ionome. Plant nutrition slightly changes over time 

and in co-incubation with different microbial communities. Heat map depicting the log transformed nutritional 

content (mg/kg of dry tissue relative to microbe-free conditions) in shoots of plants grown with either bacteria, 

fungi, oomycetes or the combination of the three, at different time points, from TIME2.
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3. DISCUSSION 

3.1 Microbial communities composition correlates with host 

plant health 

As introduced before, reconstitution experiments are key to fully understand how 

microbial communities establish and how this establishment, in turn, impacts host 

performance (Vorholt, 2017). Therefore, a gnotobiotic system, the FlowPots system 

(Kremer et al., 2018), was utilized to re-populate roots of germ-free A.thaliana plants with 

mono and multi-kingdom microbial consortia (EXP1). Using this strategy, it was possible 

to observe that fungal and oomycetal communities without a bacterial competitors, are 

detrimental for plant growth (survival rate in F-, O- or FO-inoculated pots was 0 %, 24 % 

and 0 %, respectively), even considering that all microbes were isolated from healthy A. 

thaliana roots (Figure 15, Figure 17). Notably, only co-inoculation with bacterial members 

produced similar plant growth levels to microbe-free plants (Figure 17). Inspection of 

microbial profiles indicated that fungal and oomycetal communities are heavily impacted 

by bacterial communities (11.6 % and 7.8 %, respectively, PERMANOVA, p-value<0.001, 

Table 5, Figure 18, Figure 19) and that certain fungal and oomycetal strains are 

significantly more abundant when the plant survival is the lowest (F, O and FO, Figure 

19, Figure 20). Previous reports indicate that the fungal and oomycetal strains identified 

as significantly enriched in our study in the absence of bacteria in the matrix, have a 

deleterious effect on diverse plant species. For example, Plectosphaerella cucumerina is 

a destructive necrotrophic fungal pathogen that causes devastating diseases in crops 

worldwide. This pathogen also colonizes the model plant A. thaliana in its natural habitat, 

therefore establishing the A. thaliana - Plectosphaerella cucumerina as a model 

pathosystem for studying fungal necrotrophic lifestyle and plant disease resistance 

(Sanchez-Vallet et al., 2010). Ilyonectria and Cylindrocarpon strains are related to 

diseases in a wide range of plant species, such as the black foot disease of grapevine 

(Reis et al., 2016). Also, Dendryphion nanum presence has been correlated with rape 

(Brassica napus) root rot (Chinn, 1973), as well as Microdochium bolleyi to wheat roots 

infection (Lascaris and Deacon, 1991), Fusarium oxysporum to vascular wilt in tomato 

(Takken and Rep, 2010), and Verticillium dahliae to vascular wilt diseases in a broad 

range of plant species (Bhat and Subbarao, 1999). Furthermore, many Pythium species 

have been described to provoke disease in many plant species (Kamoun et al., 1999). 

Therefore, a fundamental physiological function of the bacterial root microbiota is to 

protect plants from the extensive colonization by root-associated filamentous eukaryotes 
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and to promote interkingdom microbe-microbe balance for plant health. Importantly, this 

phenomenon is reminiscent of what has been observed for disease suppressive soils 

(Mendes et al., 2011; Chapelle et al., 2016).  

The pronounced impact of root-associated bacteria on fungal and oomycetal community 

structure in this gnotobiotic plant system (explaining >7 and >10 % of microbial 

interkingdom variance, respectively) likely recapitulates microbial interactions in the 

natural environment that are necessary for plant survival. However, the unavailability of 

comprehensive microbial culture collections from unplanted CAS soil did not allow us to 

directly test whether the bacterial root microbiota, which is horizontally acquired from a 

small fraction of the bacterial soil biome (Lundberg et al., 2012; Edwards et al., 2015), is 

enriched for members that restrict root colonization by filamentous eukaryotes. I conclude 

that the detected microbial interkingdom interactions take place at the soil-root interface 

during microbiota establishment and are maintained inside plant roots. Re-colonization of 

A. thaliana with the most complex multi-kingdom microbial consortium (BFO) resulted in 

maximal plant growth and survival in this gnotobiotic plant system. Thus, I propose that 

mutual selective pressures, acting on the plant host and its associated microbial 

assemblage, have favored over evolutionary time scales interkingdom microbe-microbe 

interactions rather than associations with a single microbial class.  

3.2 Most root-associated fungi isolated from healthy plants 

are pathogenic 

Given that all bacterial, fungal, and oomycetal strains used in our study were isolated from 

roots of healthy A. thaliana plants, the contrasting effects of synthetic communities 

representing individual microbial kingdoms on plant health were unexpected. Loss of 

mycorrhiza symbiosis in A. thaliana or relatives appears to have been partly compensated 

by associations with other beneficial fungal root endophytes (Hiruma et al., 2016; 

Hacquard et al., 2016; Almario et al., 2017). However, these results also show that in the 

absence of bacterial competitors, consortia of filamentous root-derived eukaryotes (F, O, 

FO) have overall detrimental activities on plant health and survival, and that >50% of the 

isolates restrict plant growth in mono-associations with the plant host (Figure 21). Similar 

observations were made by Kia et al., (2017a), by isolating and re-inoculating root 

endophytic fungal strains from three different plant species (A. thaliana, Microthlaspi 

erraticum and Hordeum vulgare), where the net effect of fungal isolates was negative for 

plant performance. Further, they could pinpoint certain physiological fungal properties to 

be responsible for this effect, such hyphal growth, laccase and pectinase activities and 

formation of conidia (Kia et al., 2017). These results suggest that the host immune system 
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is not sufficient to control the growth of most root-associated fungi. In addition, removal of 

all detrimental fungi from the full fungal community, does not recover plant health (“Full 

fungal community-enriched”, Figure 21). It is possible that certain fungal members 

promote the negative impact of other fungal partners only in the community context, as 

observed by Busby et al., 2016, whereas in the absence of these promoters, fungal 

partners might not be detrimental (as it is the case for Ilyonectria estremocensis strains 

22, 18 and 136, or Microdochium bolleyi 230 in single inoculations, Figure 21).  

3.3 Microbial load is partially responsible for plant health  

Although many other competitive mechanisms have been introduced in this chapter 

(resource competition, nutrient sequestration, secretion of antimicrobials, among others), 

the complexity of the system, including a soil matrix and many microbial strains, made it 

difficult to assess bacterial metabolic signatures driving fungal control. Nevertheless, it is 

possible that bacterial control over fungal communities is due to niche competition and/or 

secretion of antimicrobials, thereby constraining fungal growth (Coleman, 1994). Microbial 

load was assessed in a subset of samples of PERT1, where fungal strains were 

inoculated individually, and in matrix samples of PERT2, where fungal strains were co-

inoculated with bacterial SynComs with and antagonistic activity gradient. In PERT1, 

fungal load in matrix samples did not correlate with plant health, suggesting that fungal 

negative effect when inoculated individually is not dependent on the total fungal biomass 

in the FlowPot system, but rather on the fungal metabolic processes and virulence 

arsenals, as also suggested by Kia et al., (2017) (Supplementary Figure 13). 

Furthermore, fungal load nor bacterial load was directly correlated with plant growth in 

PERT2. Remarkably, fungal/bacterial ratio was significantly correlated with plant growth 

(Supplementary Figure 17), suggesting that upon certain fungal load, bacterial 

communities can no longer rescue plant growth. On the other hand, fungal and bacterial 

loads were not correlated to each other in PERT2 (Supplementary Figure 15A). 

Irrespective of that, fungal load dramatically decreases in the presence of any bacterial 

SynCom (Figure 22B). Altogether, it is possible to conclude that the detrimental effect of 

fungi in this gnotobiotic plant system is likely controlled by bacteria-mediated mycelium 

load decrease. Whether host plant interplay with specific bacterial members is important 

for the final health output, as indicated in Jurkevitch et al., 2000 or Chapelle et al., 2015, 

was not assessed in this experiments and could give another layer of complexity 

explaining microbiota interactions and their effect on plant performance. 
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3.4 Bacterial-driven disease suppression is a redundant trait 

within bacterial communities  

Bacterial community members have been recognized as drivers of plant health in a 

community context, by promoting mycorrhizal development (Frey-Klett et al., 2007), by 

complementing with their fungal partners (van der Heijden et al., 2016), but also by 

preventing microbial pathogens to affect host plant health (Chapelle et al., 2016; Cha et 

al., 2016; Santhanam et al., 2015). In EXP1, it was not possible to find a group of bacteria 

that significantly changed their abundance in the presence of fungal or oomycetal 

communities (Figure 19, Figure 20) suggesting a stable bacterial community 

assemblage. Due to the high complexity of the microbial communities in this system and 

the lack of molecular tools, direct functional characterization was beyond the scope of the 

thesis. However, genome-resolved metatranscriptomic profiling of synthetic microbial 

communities are currently developed in our laboratory and will represent in the near future 

an important tool to dissect transcriptional reprogramming of multi-kingdom microbial 

consortia during colonization of plant tissues (Nobori et al., 2018). To identify bacteria with 

high biocontrol potential, I took advantage of a previous experiment realized by Dr. 

Stéphane Hacquard, where bacterial antagonism (i.e. fungal growth inhibition capacity) 

was tested against a subset of fungal strains used in EXP1 and PERT1, from which a 

bacterial antagonism gradient was obtained (Supplementary Figure 14). Subsets of 

bacterial SynComs following this high-to-low antagonism gradient co-inoculated with 

fungal community (PERT2) did not follow the expected high-to-low plant growth rescue 

effect (Figure 22A). Instead, only certain bacterial combinations rescued fungal effect on 

plant growth (namely SC2, SC4 and SC5), suggesting that not only individual bacterial 

activity is needed to control fungal detrimental effect, but also certain bacterial community 

diversity. In fact, higher-diversity bacterial SynComs (SC7, SC8, SC9 and SC10), 

displayed higher stability at plant growth rescue, although rescue was not significantly 

higher compared to other bacterial combinations (Figure 22A). Interestingly, bacterial 

SynCom SC1 (predicted to have the highest fungal antagonism) also had a negative 

impact on plant growth when inoculated without the fungal community (data not shown). 

This SynCom is mostly composed by Pseudomonas and Acidovorax strains, which have 

been previously described as possible pathogens of plants (Xin and He. 2013; Schaad et 

al., 2003, respectively). Although SC1 also includes few other bacterial members, it is 

possible that the negative impact of Pseudomonas and Acidovorax strains could not be 

controlled with such a low-diversity community (Hu et al., 2016; Maida et al., 2016). 

Furthermore, it is also possible that certain bacterial responses are silent in binary 
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interaction, but are activated upon co-inoculation in a community context (Schroeckh et 

al., 2009; Nutzmann et al., 2011; Netzker et al., 2015). Nonetheless, the data indicates 

that three out of six low diversity SynComs (< 15 members each) can rescue plant growth 

to control levels in the presence of the fungal community (Figure 22A). It remains unclear 

whether the observed growth rescue is mediated by one single strain or multiple strains. 

However, these results suggest that the observed activity is mediated by bacteria from 

distinct taxonomic lineages. 

To test whether the presence of the most competitive bacteria belonging to the families  

Comamonadaceae and Pseudomonadaceae are at least partly responsible for the rescue 

activity, I performed depletion experiments (PERT3) in which I removed from the system 

all members belonging to these two families (accounting for 34% of the total relative 

abundance in A. thaliana roots, data not shown). Removal of members of both 

Comamonadaceae and Pseudomonadaceae families from the full bacteria consortium 

was sufficient to partially alter bacteria-mediated plant growth rescue in the presence of 

the fungal community (Figure 23A). However, either depletion alone (Comamonadaceae 

or Pseudomonadaceae) did not affect plant health nor fungal community profile, although 

depletion of both did lead to a decrease of plant growth. This suggests that members of 

the Comamonadaceae and Pseudomonadaceae families are at least partly responsible 

for plant health, along with other microbiota members, Figure 23). A final experimental 

approach to investigate this hypothesis will be to test whether individual strains belonging 

to taxonomically diverse bacterial families can provide efficient protective activity. Based 

on these results, it is likely that the protective activity is a redundant trait that evolved 

independently in distinct taxonomic lineages of the bacterial root microbiota. Consistent 

with that, functional and metabolic redundancy has been previously predicted (Zelezniak 

et al., 2015) and reported for different microbial processes, such organic matter 

decomposition (Banerjee et al., 2016) or resource utilization (Zhang et al., 2016). This 

high redundancy in microbiota function is likely essential to provide robust host protection 

and to maintain host-microbiota balance in plant roots.

3.5 Microbial communities are established over time and host 

plant health is impacted by different microbiota age 

In order to understand how microbiota interactions are shaped over time and whether 

they reach a stable assemblage, TIME1 experiment was performed, where different 

microbial groups were inoculated individually or in combination with other microbial 

members, in the absence of a plant host, and samples were harvested at different time 
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points. Additionally, to understand the role of host plant in community assemblage, TIME2 

experiment was used (Figure 24). Although the dynamics of microbial communities 

during plant colonization has been reported in soils under greenhouse or natural 

environment (Edwards et al., 2015; van der Heijden and Schlaeppi, 2015; Zhang et al., 

2018; Edwards et al., 2018), little is known regarding the assembly rules of synthetic 

microbial consortia in the presence and absence of a host. Previous studies have also 

investigated microbiota establishment after permafrost (Mackelprang et al., 2011) and 

after perturbation with different pollutants (Kato et al., 2015), which could be both 

considered as a resetting of the microbiota. In TIME1, bacterial, fungal and oomycetal 

communities drastically change from input communities in early time points (Figure 25). 

These changes are less dramatic over later time points (1 and 4 weeks), where they 

appear to stabilize (time-dependent variation is 63.84% for bacteria, 31.81% for fungi and 

39.27% for oomycetal communities, Supplementary Table 5A). Interestingly, more 

subtle effects were observed in microbial communities due to the presence of other 

microbial members in the system, as observed in EXP1 (Table 5, Figure 18B), 

suggesting that 1) interkingdom microbial interactions might impact each other at later 

time points (4 weeks), and 2) a plant host could be important for the final microbial output 

by, for example, recruiting specific microbial members during seed germination (2-3 days 

after seed sowing) or later in the developmental process (Links et al., 2014; Barrett et al., 

2016), that will then impact microbe-microbe interactions. Similarly, soil communities in 

untreated soils quickly shift in early time points but stabilizes after 3-6 weeks (Kato et al., 

2015), suggesting that soil microbiota interactions could reach stability after this period in 

different systems. Furthermore, it has been shown that certain bacterial members are 

mostly responsible for microbial shifts over time, including Actinobacteria and 

Proteobacteria, as also observed in the current dataset (Mackelprang et al., 2011; Zhang 

et al., 2018). Interestingly, these changes are even more notable in TIME1 compared to 

other studies, probably due to the fact that they are colonizing a sterile matrix and 

dynamics might be much higher.  

As explained in Figure 24, after each matrix sample harvest in TIME1, sterile A.thaliana 

seeds were sown on the pot surface, for community profiling assessment in matrix and 

root samples after 4 weeks of co-incubation. Interestingly, plant growth depended on the 

time of seed sowing, with a significant plant growth promotion in early time points relative 

to bacteria- and fungi-inoculated communities, and a non-significant effect in later time 

points with bacterial communities. Further, either a non-significant or even a significant 

decrease of plant growth upon fungal, oomycetal and full microbial communities (BFO) 

co-incubation could be observed (Figure 25). Interestingly, plant phenotype in EXP1 

matches 4- and 12-hour time points phenotypes in TIME2, coinciding with the time when 
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seeds were actually sown in previous experiments, suggesting that unestablished matrix 

microbial communities can have very variable effect on plant growth depending on their 

stability stage. Such time-dependent health phenotype could be correlated to the host 

capacity to respond to commensal microbes at different stages of its development, as 

already demonstrated for A.thaliana interaction with Pseudomonas simiae WCS417 

(Stringlis et al., 2017). In addition, this phenotype could also be due to a time-dependent 

susceptibility of the host towards certain microbes (Ingle et al., 2015). It is difficult, 

however, to directly assess such susceptibility as seeds were used in this experimental 

set-up instead of grown leaves or seedlings, and germination time might be slightly 

different from one individual plant to another. Independently of microbiota age in the 

matrix, microbial communities appear to converge in the presence of a plant host (Figure 

25). This is comparable to time-dependent rice-associated microbes in vegetative state, 

where bacterial communities also stabilize at relatively early time-points in root 

compartments (Edwards et al., 2018; Zhang et al., 2018). Interestingly, previously 

identified potentially detrimental fungal members for plant growth (in EXP1, Ilyonectria 

and Plectosphaerella fungal strains), appear to only bloom upon plant presence, 

suggesting a plant-driven cue for certain microbes to thrive, which are not necessarily 

beneficial for plant growth (Links et al., 2014; Barrett et al., 2016; Zhalnina et al., 2018). 

It is however surprising that the increase of these strains is also present in samples with 

healthy plants, which was not the case in EXP1 (Figure 25, Figure 18B). There are 

several explanations for this issue: 1) as mentioned in the Methods, certain bacterial 

members could not be inoculated in this experiment, which could be members responsible 

to keep these fungi’s relative abundances low; still, the bacterial community in TIME2 is 

capable of controlling fungal detrimental effect (functional redundancy observed in 

PERT3); 2) in PERT1, it was possible to observe that fungal strains predicted to have a 

negative effect on plant growth in a community context, do not show the same effect in a 

binary assay, which could also indicate that, at different time points, these microbes also 

display differential effect on plant growth; 3) in the same way that fungal communities are 

strongly impacted by plant presence, bacterial communities could also perceive plant 

cues to differentially control fungal communities (4.17% of fungal community variance 

explained by the presence of other microbial members in the system, upon plant 

presence, p-value=0.006, Supplementary Table 5B). Oomycetal members, unlike 

bacterial or fungal members, display a more stochastic effect on plant growth, suggesting 

that these microbial members randomly colonize the plant host and, in turn, affect its 

growth one way or another (Figure 25C, Kemen, 2014). TIME2 dataset illustrates 

microbiota profiles after 4 weeks post seed sowing. It would be however interesting to 



Discussion Chapter II  

104 
 

investigate the microbiota dynamics at different time points after seed inoculation, to 

further learn which microbes rapidly respond to host presence.

3.6 Concluding remarks and future perspectives 

Plants live in intimate association with complex and diverse microbial communities. 

Although, next-generation sequencing has already enabled us to explore the composition 

and distribution of different microbial groups, a more holistic approach is still needed to 

better understand the intermicrobial interactions within the microbiota of plants and to 

better define the functional relevance of the microbial networks for holobiont fitness. 

Prokaryotic and eukaryotic microbes have evolved a myriad of cooperative and 

competitive interaction mechanisms that shape and likely stabilize microbial assemblages 

on plant tissues. However, most of the data are derived from one-to-one interaction 

studies, and only few incorporate complex microbial communities in controlled laboratory 

conditions to reconstitute the plant microbiota and to understand the role of intermicrobial 

interactions. Thus, the second aim of my thesis was to reconstitute plant-associated 

microbial communities isolated from roots of healthy A. thaliana plants growing in the 

same soil, including several microbial kingdoms and under controlled laboratory 

conditions.  

Re-inoculation of representative root-associated bacteria, fungi and oomycetal strains 

allowed me to reveal that microbe-microbe interactions are crucial for microbiota 

assembly. Specifically, bacterial communities drive fungal and oomycetal communities’ 

shifts that correlate with plant health and survival. Reduction of specific fungal and 

oomycetal strains’ relative abundances in the presence of bacterial communities indicates 

a bacterial-driven control of host detrimental microbes. Individually inoculated fungal 

strains with A. thaliana suggested that bacterial communities might not only target 

potentially pathogenic fungal strains in a community context, but it is rather an overall 

community control. Here, I showed that A.thaliana immune system might not be fully 

capable of controlling detrimental microbiota members and that fungal/bacterial load ratio 

surrounding host roots could be an important driver of plant health. Further, I showed that 

bacterial antagonism against fungal members depends on multiple taxonomically diverse 

bacteria, rather than a subset of highly antagonistic members. Nevertheless, members of 

the Comamonadaceae or Pseudomonadaceae families were revealed as important 

bacterial members for plant health. In addition, I showed that soil microbiota age is an 

important trait for plant performance and that inter-kingdom microbe-microbe interactions 

effects are only visible on communities’ profiles after several weeks of co-incubation.  
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Several questions remain open which would deepen our understanding of microbe-

microbe interactions and their impact on plant health. First, bacterial-driven fungal control 

is a conserved trait across bacterial members, although members of the families 

Comamonadaceae or Pseudomonadaceae appear to have a crucial role in controlling 

fungal communities. Individual inoculation of each strain of these two families will shed 

light onto whether this feature is conserved across all members of these two families. 

Secondly, it remains unclear what the role of the host plant is in the control of detrimental 

microbiota and when this host plant is capable of restraining pathogenic members. Thus, 

and interesting experiment would consist of re-inoculation of microbiota members 

together with sterile A.thaliana members and study microbial community shifts after 

different time points. Also, utilization of immunocompromised A.thaliana mutants would 

be very useful at learning which molecular pathways are important for microbiota early 

establishment. Finally, it is largely unknown how these microbial members actually 

interact with each other in a community context. Therefore, development of genome-

resolved meta-transcriptomic profiling of synthetic microbial communities will represent 

an important tool to dissect transcriptional reprogramming of multi-kingdom microbial 

consortia upon microbiota establishment and colonization of plant tissues (Figure 27) 
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Figure 27: Scheme of microbe-microbe interactions driving plant health. Environmental factors that drive 

microbial communities’ composition in nature (grey arrows and labels), investigated in Chapter 1, can be 

removed by utilizing gnotobiotic plant systems. Thereby, microbe-microbe interactions and their impact on 

plant health can be studied in depth. Throughout this chapter I could show that certain fungal members of the 

plant root-associated microbiota can have detrimental effects on plant growth (red arrows), which can be 

counteracted by bacterial communities as a whole (bacterial members surrounded with a black dashed circle), 

which might include all or a subset of Comamonadaceae or Pseudomonadaceae families members. These 

bacterial communities driving biocontrol, might also target other non-pathogenic fungi, by still unknown 

processes (red dashed arrows). Furthermore, bacterial members of the microbiota can also impact negatively 

plant growth, which might also be controlled by other bacterial members. Finally, the plant immune system 

might play an important role at controlling pathogenic microbiota, but it is not sufficient to control pathogenic 

fungi in the absence of bacterial members (black dashed line). 
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4. MATERIALS AND METHODS 

4.1 Materials 

4.1.1 Microbial culture collections  

Microbial strains utilized in this chapter are listed in Annex: Supplementary Table 3. 148 

bacterial strains were selected from the bacterial culture collection of Bai et al., 2015. All 

these 148 strains were isolated from healthy A. thaliana roots growing in the Cologne 

Agricultural Soil (CAS) and selected depending on their full 16s rRNA gene sequence 

similarity. The aim was to, after sequencing, be able to separate each strain as one OTU. 

Similarly, 34 fungal and 8 oomycetal strains were selected from the fungal and oomycetal 

culture collections of Duran et al., in preparation. These fungi and oomycetes were 

isolated from A. thaliana, Cardamine hirsuta and Arabis alpina roots also growing in CAS 

soil, and also selected based on their full ITS sequence similarity. 

4.1.2 Plant material 

A. thaliana plants (ecotype Columbia, Col-0) were used for this study. Seed material was 

provided by Dr. Stéphane Hacquard, Department of Plant-Microbe Interactions, Max 

Planck Institute for Plant Breeding Research. 

4.1.3 Oligonucleotides 

Oligonucleotides used for PCR amplification are listed in Annex: Table 2 and were 

purchased from Metabion (Steinkirchen, Germany) or Sigma-Aldrich (Hamburg, 

Germany). 

4.1.4. Enzymes 

DNA-free DFS Taq polymerase was purchased from Bioron (Ludwigshafen, Germany). 

Antarctic phosphatase and Exonuclease I were acquired from New England Biolabs 

(Frankfurt, Germany). 

4.1.5. Chemicals and antibiotics 

Laboratory grade chemicals and reagents are described within each method. Antibiotics 

were purchased either from Sigma-Aldrich (Hamburg, Germany), Carl Roth (Karlsruhe, 

Germany) or Duchefa (Haarlem, Netherlands). 
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4.1.6. Buffers and solutions 

Buffers and solutions used in this study are described within each method. If not stated 

otherwise, buffers were prepared in deionized H2O and aqueous solutions were sterilized 

by autoclaving at 121 °C for 20 min. 

4.2 Methods 

Brands and manufacturer’s information of each material will be indicated only the first time 

they are mentioned. 

4.2.1 Microbial strains storage   

Bacterial strains were stored in a glycerol stock at -80 ºC. In order to prepare this stock, 

under a sterile hood, one colony of each separate strain previously grown on a TSB 50% 

plate (Tryptic Soy Broth, Sigma-Aldrich, USA) containing 10 % agar (Difco Agar, 

Granulated, VWR, USA), was transferred to a well of a 96-deep-well plate (Eppendorf, 

Hamburg, Germany), each well containing 400 µL of TSB 50 %. This step was done in 

duplicate to obtain two replicates per bacterial strain. Then, each 96-deep-well plate was 

covered with a PCR film (Bio-Budget Technologies GmbH, Krefeld, Germany) and an 

sterile lid (CS/80, Eppendorf, Hamburg, Germany), and incubated for 6 days at 22 ºC, 

shaking at 180 rpm. After the incubation time, each 96-deep-well plate was centrifuged 

for 10 min at 4000 xg (5810R, Eppendorf, Hamburg, Germany). 300 µL of the supernatant 

were removed and the 100 µL left were utilized to resuspend the bacterial pellet. Bacterial 

pellets from the duplicates were mixed together. Then, 200 µL of sterile 50 % glycerol 

(Glycerin, 98 %, Carl Roth, Karlsruhe, Germany) were added to each bacterial pool. 100 

µL of the bacterial/glycerol mixture were transferred to a new 96-well plate (96 Microwell 

Plates, Thermo Scientific Nunc, USA) (three replicates in three separate plates), which 

was covered with aluminum film (Platesealer, SilverSeal, Aluminium, 80x140mm, Greiner 

Bio-One, Kremsmünster, Austria) and a sterile lid and stored at -80 ºC.  

Fungal strains were also stored in a glycerol stock at -80 ºC. Fungal mycelium growing 

on PGA plates (Potato Glucose Agar, Sigma-Aldrich, USA) was cut using sterile pipet tips 

into plugs of approximately 3x3 mm, and introduced in a 2 mL screw-lid tube with 1 mL 

30 % glycerol. Each tube contained between 6-7 mycelium plugs, and each of these plugs 

was attached to the corresponding agar plug, for an easier recovery. These tubes were 

snap-frozen in liquid nitrogen and stored at -80 ºC.  
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Oomycetal strains were stored in PGA plates at 4 ºC and transferred to a new plate after 

1-2 months, by cutting a 7x7 mm mycelium plug and placing it upside down (mycelia side 

facing the medium) in a new PGA plate. 

4.2.3 Gnotobiotic experiments 

4.2.3.1 FlowPots system 

This system was adapted for the current project from Kremer et al., 2018. Briefly, each 

FlowPot is prepared by adding glass beads (2.85-3.45 mm, Carl Roth, Karlsruhe, 

Germany) to the Luer end of a truncated syringe (Omnifix, 50 mL, Braun, USA), followed 

by the addition of twice-autoclaved peat (Einheits Erde Special, Sinntal-Altengronau, 

Germany) and vermiculite (Agra-vermiculite M3, RHP, Netherlands) mixture (2:1) (121 °C 

for 20 min), covered with a mesh retainer (Mesh fiberglass “Phiferglass”, 18 X 14 standard 

charcoal mesh, Phifer Incorporated, USA) and then secured with a cable tie. Assembled 

FlowPots are then autoclaved a third time (121 °C for 45 min), aseptically irrigated with 

sterile water, and inoculated with nutrients and any desired input microbiota by attaching 

a female luer adapter (Tubing silicone rubber lab tubing, T2289-25FT, Sigma, USA) and 

injecting the water/nutrients/microbiota with a syringe (Omnifix, 50 mL, Braun, USA). 

Decontaminated A. thaliana Col-0 seeds, stratified and imbibed with water, are sown onto 

each FlowPot. FlowPots are then placed into a Microbox (model TP1600+TPD1600 or 

OV80+OVD80, with L filter, Combiness, Nevele, Belgium) on stands. The Microboxes 

containing FlowPots are placed in a growth chamber or greenhouse with desired lighting 

and temperature conditions for plant growth (Figure 17).

4.2.3.2 Bacterial strains growth and inoculation 

Bacterial glycerol stocks were taken from -80 ºC and placed in a polystyrene box with dry 

ice, to maintain the temperature of the glycerol stock. With a 96-well stamper (EnzyScreen 

Bv, Leiden, Netherlands), each bacterial strain was transferred simultaneously to a 

previously prepared 96-deep-well plate containing 400 µL of TSB 50 % in each well, by 

placing the stamper on each glycerol stock well and, then, stir it in the liquid media. The 

stamper utilized was previously sterilized by placing it in a 96-deep-well plate with 1 mL 

of 100 % ethanol (Ethanol absolute, VWR Chemicals, USA) and flaming it twice. Prior to 

storage, the stamper was sterilized twice again and flushed with bacillol (Bacillol® AF, 

Hartmann, Heidenheim an der Brenz, Germany). Each 96-deep-well containing bacterial 

strains was incubated for 6 days in a shaker, at 25 ºC. 



Materials and methods Chapter II  

110 
 

On the inoculation day, 200 µL of each bacterial strain were pooled together in a 50-mL 

falcon (Corning, USA). This bacterial mixture was centrifuged for 10 min at 4000 xg and 

supernatant was discarded. Bacterial pellet was resuspended in 10 mM MgCl2 buffer 

(Magnesium Chloride Hexahydrate, Merck, Darmstadt, Germany), using a final volume 

equal to the initial one (200 µL x number of strains pooled). A 1:4 dilution of the washed 

bacterial pool was used to assess bacterial OD (absorbance at 600nm, BioPhotometer 

Plus, Eppendorf, Hamburg, Germany) and to calculate the final dilution in order to have a 

107 cells/mL final stock (considering that OD=1 contains 5x108 bacterial cells). 1 mL of 

this final stock was pipetted into 50 mL of sterile ½ MS medium (Murashige and Skoog 

medium including vitamins, Duchefa Biochemie, Haarlem, Netherlands) + MES (MES 

anhydrous, BioChemica, UK) and injected as described above in one FlowPot.  

Before bacterial pooling, a sterile stamper was utilized to plate bacterial strains on a plate 

with TSA 50%, which was then incubated for a week at 25 ºC to control for bacterial 

survival. By using this method, it was possible to observe that in EXP1, TIME1 and TIME2 

most bacterial strains inoculated were recovered on the TSA 50% plate. However, in 

PERT2 and PERT3, only 89 bacterial strains out of the initial 148 were alive in the glycerol 

stock and therefore inoculated, which possibly impacted part of the results in these 

experiments. 

4.2.3.3 Fungal and oomycetal strains growth and inoculation 

Fungal strains were grown by taking a mycelium plug from the glycerol stock and placing 

it upside down on a PGA plate containing antibiotics (Strep100Kn50Amp50Tc20Rimf100), and 

incubating them for 1 week at 25 ºC. Then, a piece of mycelium cut with a sterile pipet tip, 

was transferred to a new PGA plate and incubated for two weeks at 25 ºC. Similarly, 

oomycetal strains were grown by transferring a mycelium plug from the 4 ºC-stored plate 

to a new PGA plate, and incubated also at 25 ºC for 2 weeks. 

On the inoculation day, fungal and oomycetal mycelium was harvested by utilizing a sterile 

pipet tip. 50 mg of mycelium per strain were separated from the agar and placed in a 2-

mL screw-lid tube with 1 mL of sterile 10 mM MgCl2 and one stainless steel bead (3.2 mm 

of diameter, Next Advance, USA). Then, each tube containing one fungal and oomycetal 

strain was placed in a paint shaker (SK450, Fast & Fluid Management, Sassenheim, 

Netherlands) and grinded for 10 min. 900 µL of fungal and oomycetal homogenates were 

pooled together in two final fungal and oomycetal stocks, of 50 mg/mL concentration. 50 

µL of these stocks were utilized to inoculate 50 mL of ½ MS + MES, which were then 

injected as described above in one FlowPot. The remaining 100 µL of fungal and 

oomycetal homogenates were used to control for fungal and oomycetal survival, by 

pipetting part of this on PGA plates and incubated for a week at 25 ºC. 



 Chapter II Materials and methods 

111 
 

4.2.3.3.1 Fungal and oomycetal mycelia grinding protocol 

Fungal and oomycetal homogenization was tested prior gnotobiotic experiments, by using 

different homogenization protocols with which fungi and oomycetes’ hyphae would disrupt 

and could be treated similarly to bacterial inoculum. I tested two bead sizes and two 

beating times (Supplementary Figure 13A). Thereby, bead-beating of 50 mg of 

fungal/oomycetes for 10 minutes with 1 mL of 10 mM MgCl2 and one stainless steel bead 

(3.2 mm of diameter) proved to be the most effective technique to disrupt the mycelium 

in a way that it would be possible to inoculate it in a liquid format. More importantly, this 

method was suitable for fungal and oomycetal survival afterwards (Supplementary 

Figure 13B). Hyphae disruption was observed by pipetting 20 µL of homogenate in a 

microscope slide and visualizing it at 5x augmentation (Axio Imager 2, Zeiss, Jena, 

Germany).  

4.2.3.4 Seeds sterilization, sowing and growth 

A. thaliana Col-0 seeds were sterilized and entrained prior utilization in experiments. Seed 

sterilization was performed by adding 600 µL of 70% ethanol (Ethanol absolute, VWR 

Chemicals, USA) in a 1.5-mL Eppendorf tube containing the seeds to be sterilized, and 

shaken in a rotator (Rotator SB3, Stuart, UK) for 10 min. Under a sterile hood, ethanol 

supernatant was removed by pipetting, and 600 µL of 100 % ethanol added. Tube was 

manually rotated for 2 min. Supernatant was again removed and 600 µL of 3 % NaClO 

(Sodium hypochlorite solution 6-14 %, Honeywell Fluka, USA) added and mixed for 1 min 

by manually rotating the tube. Supernatant was removed and 600 µL of sterile deionized 

water were added and mixed for 1 min 5 times to remove any NaClO traces. After the last 

wash, another 600 µL of sterile water were added. The Eppendorf tube was wrapped in 

aluminum foil and placed in the fridge (4 ºC) for at least 4 days. 

After microbial inoculation (described above), seeds were taken out of the fridge and a 

subset of them were pipetted into a sterile petri dish with sterile deionized water, so that 

seeds were diluted enough to be taken one by one by pipetting. Without touching the pot 

surface, 10 seeds were sown per pot. Microboxes containing inoculated FlowPots with 

sown seeds were grown for 3-4 weeks in chamber (Panasonic; Day conditions: light 

intensity 4, 21ºC, 10 hours light; Night conditions: light intensity 0, 19ºC, 14 hours dark). 

For germination control, 20 seeds were sown on a ½ MS + MES with 1% agar and grown 

in the same chamber as the Microboxes. 

After one week of incubation, seedlings were thinned out. Microboxes were opened under 

a sterile hood and, with flame-sterilized forceps, seedlings were removed from the pots to 

leave a minimum of 4 seedlings per pot.  
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4.2.3.5 Sample harvesting 

After 3 or 4 weeks of incubation (depending of the experiment), plant shoots were 

harvested, along with root and matrix samples. First, pictures were taken to compare 

shoot phenotypes between conditions. Then, Microboxes were opened and harvested 

one by one in non-sterile conditions. First, plant shoots were cut using a sterile blade 

(Einmalskalpelle Cutfix Fig. 22 sterile, VWR, USA) and kept in a petri dish for later fresh 

shoot weight in a precision balance (ABS-N/ABJ-NM, Kern & Sohn, Balingen, Germany). 

Shoots were cleaned from any soil trace and quickly dried with kitchen paper to remove 

excess of water. Then, the content of one FlowPot was poured in a petri dish and plant 

roots were separated from the matrix body using flame-sterile forceps, either by manually 

separating the roots from the soil particles or by adding sterile water and “fishing” them 

out from the plate. Then, roots were thoroughly cleaned from soil and vermiculite traces 

in a second petri dish with clean sterile water, dried with a sterile Whatman paper 

(Whatman® glass microfiber filters, Grade GF/B, Sigma-Aldrich, Hamburg, Germany), 

placed in a 2-mL screw-lid tube and snap-frozen in liquid nitrogen for storage at -80 ºC 

until further processing. Matrix samples were taken from the remaining soil particles in 

the FlowPot, carefully making sure no root traces were taken with them. These samples 

were also placed in a 2-mL screw-lid tube and snap-frozen in liquid nitrogen for storage 

at -80 ºC until further processing. 

4.2.3.6 Shoot fresh weight assessment 

As mentioned in the section above, shoots were separated from roots by using a sterile 

blade and the shoot fresh weight was assessed by drying and cleaning plant shoots prior 

weighting them in a precision balance. In order to remove experiment-to-experiment 

variation, all shoot fresh weight values were relative to the control within one biological 

replicate (un-inoculated control, microbe-free, MF).  

Relative shoot fresh weight = shoot fresh weight / microbe-free average shoot fresh 

weight 

Depending of the experiment, however, additional normalization methods were utilized. 

Box plots were represented using ggplot2 in R (Figure 18, Figure 22, Figure 23, Figure 

24, Figure 25, Supplementary Figure 17). 

4.2.3.6.1 EXP1, PERT1, TIME2 

No additional calculations were done (Figure 18, Figure 22, Figure 25) 
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4.2.3.6.2 PERT2, PERT3 

After calculating the relative shoot fresh weight to microbe-free control, shoot fresh 

weights were calculated as relative plant rescue. That is, relative to the bacteria-only 

conditions (Figure 23, Figure 24). 

Relative plant rescue = [shoot fresh weight bacteria+fungi/ MF average shoot fresh 

weight] / [shoot fresh weight bacteria-only/ MF average shoot fresh weight] 

4.2.3.6 Microbial load assessment 

4.2.3.6.1 PERT1.2 

Before assessing fungal load in matrix samples of PERT1.2, standard curves reflecting 

mycelium load correlated to Cq values were produced. This was done by harvesting 50 

mg of fungal mycelium of the strains 243, 230, 143, 010, 026, 236, 147, 021, 022, 018, 

136, as described above (4.1.2.3). DNA was isolated by using the Plant DNAeasy kit 

(Qiagen, Hilden, Germany), following manufacturer’s instructions. DNA concentration was 

calculated using the Quant-iT™ PicoGreen dsDNA assay kit (Life Technologies, 

Darmstadt, Germany). 40 μl of a 1:200 dilution of PicoGreen was added to 4 μl of DNA in 

a 96 well plate. To calculate the DNA concentration a dilution series of standard lambda 

DNA, ranging from 0.5 to 20 ng/μL, was included on the same plate. Fluorescence was 

measured using the IQ5 real-time PCR Thermocycler (Biorad, Munich, Germany; 30 sec 

at 25 °C, 3x30 seconds at 25 °C for measuring fluorescence, 30 seconds at 15 °C). 

Utilizing this DNA concentration, a dilution series was performed to a final DNA 

concentration of 15, 10, 5, 1, and 0.5 ng/μl.  

DNA isolation was performed from matrix samples of FlowPots inoculated with the 

previously mentioned fungal strains, from one technical replicate per biological replicate, 

using the FastDNA ® SPIN for soil kit (MP Biomedicals, Solon, USA). Before DNA 

isolation, samples were homogenized once using the Precellys®24 tissue lyzer (Bertin 

Technologies, Montigny-le-Bretonneux, France) at 6,500 rpm for 30 seconds. Afterwards, 

DNA was extracted using the FastDNA ® SPIN for soil kit according to the manufacturer’s 

instructions. DNA concentration was calculated using the Quant-iT™ PicoGreen dsDNA 

assay kit (Life Technologies, Darmstadt, Germany). 40 μl of a 1:200 dilution of PicoGreen 

were added to 4 μl of DNA in a 96 well plate. To calculate the DNA concentration a dilution 

series of standard lambda DNA, ranging from 0.5 to 20 ng/μL, was included on the same 

plate. Fluorescence was measured using the IQ5 real-time PCR Thermocycler (Biorad, 

Munich, Germany; 30 sec at 25 °C, 3x30 seconds at 25 °C for measuring fluorescence, 

30 seconds at 15 °C). DNA concentration was adjusted to 3.5 ng/μl. Fungal-load Cq 

values were measured by using the IQ5 real-time PCR Thermocycler and the ITS1 fungal 
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primers (ITS1F-ITS2, Annex: Table 2). 4 μl of DNA template were mixed under sterile 

conditions with 7.5 μl of 1X iQ SYBR Green (Bio-Rad, Munich, Germany), 1.2 μl of forward 

and reverse primers and up to 15 μl final volume with sterile water (95 °C: 3 min, 95 °C: 

10 sec, 60 °C: 30 sec, 72°C: 30 sec, for 40 cycles). To calculate the fungal DNA 

concentration, a dilution series of the standard fungal curves produced above, ranging 

from 15, 10, 5, 1, and 0.5 ng/μl, were included on the same plate. Fungal load was 

calculated utilizing the 2(-Delta Delta C(T)) method (Livak and Schmittgen, 2001), 

subtracting the microbe-free values. 

Regression plots were performed by using ggplot2 in R, and Pearson’s correlation test 

was done using cor.test function in R (Supplementary Figure 15).

 

4.2.3.6.2 PERT2 

DNA isolation was performed from matrix samples of FlowPots, from one technical 

replicate per biological replicate, using the FastDNA® SPIN for soil kit (MP Biomedicals, 

Solon, USA). Before DNA isolation, samples were homogenized once using the 

Precellys®24 tissue lyzer (Bertin Technologies, Montigny-le-Bretonneux, France) at 

6,500 rpm for 30 seconds. Afterwards, DNA was extracted using the FastDNA ® SPIN for 

soil kit according to the manufacturer’s instructions. DNA concentration was calculated 

using the Quant-iT™ PicoGreen dsDNA assay kit (Life Technologies, Darmstadt, 

Germany). 40 μl of a 1:200 dilution of PicoGreen were added to 4 μl of DNA in a 96 well 

plate. To calculate the DNA concentration a dilution series of standard lambda DNA, 

ranging from 0.5 to 20 ng/μL, was included on the same plate. Fluorescence was 

measured using the IQ5 real-time PCR Thermocycler (Biorad, Munich, Germany; 30 sec 

at 25 °C, 3x30 seconds at 25 °C for measuring fluorescence, 30 seconds at 15 °C). DNA 

concentration was adjusted to 3.5 ng/μL. Fungal- and bacterial-load Cq values were 

measured by using the IQ5 real-time PCR Thermocycler, together with the ITS1 fungal 

primers (ITS1F-ITS2, Annex: Table 2) and bacterial 16s rRNA primers, targeting the V5-

V7 region (799F-1192R, Annex: Table 2), using as a comparison the targeting the 16s 

rRNA gene for A. thaliana (SH11-At16S-F :CAGGCGGTGGAAACTACCAAG; SH12-

At16S-R: TACAGCACTGCACGGGTCGAT). 4 μL of DNA template were mixed under 

sterile conditions with 7.5 μL of 1X iQ SYBR Green (Bio-Rad, Munich, Germany), 1.2 μL 

of forward and reverse primers and up to 15 μL final volume with sterile water (95 °C: 3 

min, 95 °C: 10 sec, 60 °C: 30 sec, 72 °C: 30 sec, for 40 cycles). Fungal and bacterial load 

estimation was calculated utilizing the 2(-Delta Delta C(T)) method (Livak and Schmittgen, 

2001), subtracting the microbe-free values and plant 16s reads. 
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Regression plots and bar plots were performed by using ggplot2 in R, and Pearson’s 

correlation test was done using cor.test function in R (Figure 23, Supplementary Figure 

18). 

4.2.3.7 ICP-MS analysis 

Shoots harvested from TIME2 were dried at 60 °C for two days. Then, the dry material 

was digested in 0.5 ml 67% nitric acid (Nitric acid 68 - 70%, ARISTAR® ACS, VWR, USA) 

and diluted with 4.5 ml of deionized water. Dilution factor was calculated to estimate ion 

concentration in each sample (Dilution factor: DF= final weight of the solution/ weight of 

the sample). Ionome analysis was performed at the Biocenter Mass Spectrometry 

Platform, University of Cologne. Heatmap was performed using ggplot2 in R (Figure 25). 

4.2.4 Microbial community profiling 

4.2.4.1 Library preparation and sequencing 

DNA isolation was performed from matrix and root samples harvested as described 

above, using the FastDNA ® SPIN for soil kit (MP Biomedicals, Solon, USA). Before DNA 

isolation, samples were homogenized once using the Precellys®24 tissue lyzer (Bertin 

Technologies, Montigny-le-Bretonneux, France) at 6,500 rpm for 30 seconds. Afterwards, 

DNA was extracted using the FastDNA ® SPIN for soil kit according to the manufacturer’s 

instructions. DNA concentration was calculated using the Quant-iT™ PicoGreen dsDNA 

assay kit (Life Technologies, Darmstadt, Germany). 40 μl of a 1:200 dilution of PicoGreen 

was added to 4 μl of DNA in a 96 well plate. To calculate the DNA concentration a dilution 

series of standard lambda DNA, ranging from 0.5 to 20 ng/μL, was included on the same 

plate. Fluorescence was measured using the IQ5 real-time PCR Thermocycler (Biorad, 

Munich, Germany; 30 sec at 25 °C, 3x30 seconds at 25 °C for measuring fluorescence, 

30 seconds at 15 °C). DNA concentration was adjusted to 3.5 ng/μL.  

PCR amplicon libraries were generated using primers 799F-1192R for bacteria-containing 

samples, ITS1F-ITS2 for fungi-containing samples, and ITS1o-5.8s-Rev-o for oomycetes-

containing samples (Annex: Table 2). Control samples (microbe-free, MF) were amplified 

with the three primer pairs to control for contaminations and possible remaining DNA in 

the peat. PCRs were performed by using 3 μL of the adjusted DNA in a total volume of 

25 μL, including 1.25 U DFS-Taq DNA Polymerase, 1x incomplete reaction buffer, 0.3 % 

BSA, 2 mM of MgCl2, 200 μM of dNTPs and 400 nM of each primer. To minimize PCR 

bias three independent PCR reactions using one master mix were prepared. The PCR 

reaction was pipetted in a laminar flow and PCR amplified (94 °C/2 minutes, 94 °C/30 

seconds, 55 °C/30 seconds, 72 °C/30 seconds, 72 °C/10 minutes for 25 cycles), using 
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the same PCR parameters for all primer pairs. Afterwards, single stranded DNA and 

proteins were digested by adding 1 μl of Antarctic phosphatase, 1 μl Exonuclease I and 

2.44 μl Antarctic phosphatase buffer to 20 μl of the pooled PCR product. Samples were 

incubated at 37 °C for 30 minutes and enzymatic activity was deactivated at 85 °C for 15 

minutes. Samples were centrifuged for 10 minutes at 4,000 xg and the supernatant was 

transferred to a new plate. 3 μl of this reaction were used for a second PCR with primers 

that included barcodes and Illumina adaptors (B5-barcodes for bacteria, Ft-barcodes for 

fungi, Ot-barcodes for oomycetes, Annex: Table 2). PCR reactions were prepared using 

the same protocol described above, and the number of PCR-cycles were reduced to 10. 

PCR performance was assessed by loading 5 μL of PCR products of the three-replicate’ 

pool with 5 μL of Gel Loading Dye, Orange G (6X, Sigma, Hamburg, Germany) run on a 

1 % agarose gel for 30 minutes, and by checking that no band could be observed in the 

microbe-free controls. Each bacterial reaction (70 μL approximately) were mixed with 20 

μL Gel Loading Dye, Orange G and loaded on a 1.5 % agarose gel and ran for 

approximately 2 hours at 80 V. Bands with the correct size of ~500 bp were cut and 

purified using the QIAquick gel extraction kit (Qiagen, Hilden, Germany) and eluted in 60 

μL of nucleases-free water (Qiagen, Hilden, Germany) DNA concentration was 

determined using the PicoGreen assay as described before. Fungal and oomycetal 

reactions were purified using Agencourt AMPure XP PCR Purification kit (brand) following 

manufacturer’ instructions and eluting the PCR product in 70 μL of nucleases-free water. 

Equal amounts (ng) of purified PCR products were pooled, each microbial library 

separately. Pooled libraries were purified twice using Agencourt AMPure XP PCR 

Purification kit (Beckman Coulter, Krefeld, Germany) following manufacturer’ instructions 

and eluting the PCR product in decreasing amounts of nucleases-free water (that is, 120 

μL in the first round and 90 μL in the second round). Purified libraries’ concentration was 

assessed using QuantusTM Fluorometer (Promega, Manheim, Germany), by mixing 100 

μL of a 1:200 dilution of Quantifluor® dsDNA dye (in 1xTE) with 2 μL and 98 μL of 1xTE 

in a 0.5-mL tube (Promega, Manheim, Germany), thoroughly mixing by pipetting and 

incubating for 5 minutes under dark. Then, equal amounts of each library were pooled 

together. Final library concentration was assessed using QuantusTM Fluorometer, as 

described above. Paired-end Illumina sequencing was performed with the MiSeq 

sequencer at the Department of Plant-Microbe Interactions, Max Planck Institute for Plant 

Breeding Research, following manufacturer’ instructions. 

4.2.4.2 Reference-based sequencing data analysis 

Sequencing data analysis was performed using bioinformatic pipelines developed by Dr. 

Rubén Garrido-Oter and Dr. Thorsten Thiergart. 
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The paired 16s rRNA amplicon sequencing reads were joined (join_paired_ends.py, 

QIIME, default parameters) and the joined reads were then quality filtered and 

demultiplexed (split_libraries_fastq.py, QIIME, with maximum barcode errors 1 and phred 

score of 30) (Caporaso et al., 2010). The filtered reads were dereplicated (usearch, –

derep_fulllength) and sorted according to their copy number (only reads >2 copies were 

retained) (Edgar, 2010). ITS reads were joined and demultiplexed as for 16s rRNA reads. 

In addition, also the forward reads were demultiplexed and filtered. For those reads where 

no joined pair of reads exist, the forward reads were kept. Demultiplexed reads were 

directly mapped to the reference sequences for the respective communities (using the 

usearch-global command from usearch, with a sequence identity threshold of 97%). From 

these mapped reads, OTU-tables were inferred (Annex: otu_tables).  

To assess the alpha-diversity within samples, OTU-tables were rarefied to 1000 reads. 

Observed OTUs were calculated using QIIME (alpha_diversity.py, Supplementary 

Figure 14). To estimate the beta-diversity, OTU-tables were normalized using the 

cumulative –sum scaling (CSS) method (Paulson et al., 2013). Bray-Curtis distances 

between samples were used as an input for principal coordinate analysis (PCoA, done 

via cmdscale function in R).  

To visualize the distance between clusters of the same microbial inoculation condition 

(Figure 19B) despite experiment-to-experiment variation, average Bray-Curtis distances 

were calculated per biological replicate, normalized to control cluster (e.g.: (B-BF/B-B)) 

and plotted with ggplot in R.  

To test the effect of different factors on the estimated explained variance PERMANOVA 

analysis was performed (adonis or capscale functions from vegan R package, with 999 

permutations Figure 19, Figure 24, Figure 26, Supplementary Figure 21, Table 5).  

For each OTU, the possible enrichment in certain condition was tested using a linear 

model (log2, > 5 ‰ threshold) using the script described in Bulgarelli et al., 2015 

(developed from the R package limma). Using this method for each OTU it was tested if 

the RA within conditions was significantly higher than compared to another condition 

(Figure 21). Ternary plots were constructed as previously described (Bulgarelli et al., 

2012, Figure 21).  

Relative abundances plots were produced from relative OTU counts (relative abundances 

(%)) per sample and plotted using ggplot2 in R (Figure 20, Figure 25, Supplementary 

Figure 9).  

Due to the non-normal distribution of the data, Kruskal Wallis and Dunn test post-hoc 

were used to look for significant differences between medians.  
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Abbreviations 

 

% percent 

: to 

~ approximately 

< less than 

> more than 

® registered trademark 

°C degrees Celsius 

µM micrometers 

‰ permille 

A. alpina Arabis alpina 

ABC ATP-binding cassette transporter 

AHL N-acyl-l-homoserine lactone  

Al Aluminum 

AMP Arbuscular Mycorrhizal Fungi  

Amp ampicillin 

As Arsenic 

B Boron (mg/kg) 

B bacteria 

B Boron 

bbh best blast hit 

Be Beryllium 

bp base pairs 

BSA bovine serum albumin 

C Comamonadaceae 

Ca Calcium (mg/kg) 

Ca Calcium 

CAS Cologne agricultural soil 

Cd Cadmium 

c-di-GMP cyclic diguanylate 

CFUs colony forming units 

CFUs Cytophaga-Flavobacterium  

cm centimeters 

Co Cobalt 

CO2 carbon dioxide 

Col Arabidopsis thaliana ecotype Columbia 

Cq quantification cycle 

Cr Chromium 

Cs Cesium 

CSIC-CNB 
Consejo Superior de Investigaciones Científicas 
Centro Nacional de Biotecnología 

CSS cumulative –sum scaling  

Cu Copper (mg/kg) 

Cu Copper 
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CxG ClimatexGenotype 

DF dilution factor 

DNA Deoxyribonucleic acid  

dNTP desoxynucleotide 

Dr. doctor 

e.g. for example 

EDTA ethylendiaminetetraacetic acid 

et al.  and colleagues 

etc. etcetera 

EXP1 experiment 1 

F forward 

F fungi 

FDR false discovery rate 

Fe Iron (mg/kg) 

Fe Iron 

g grams 

h hour 

H2O water/Dihydrogen oxide 

i.e. that is 

INRA Institut national de la recherche agronomique 

iTOL interactive tree of life 

ITS internal transcribed spacer 

K Potassium (mg/kg) 

K Potassium 

KCl Potassium chloride 

kg kilogram 

kg kilograms 

KH2PO4 Monopotassium phosphate 

Kn kanamycin 

L liter 

Li Lithium 

lmol m2s-1  light intensity measurement 

max. maximum 

MES 2-(N-morpholino)ethanesulfonic acid 

MF microbe-free 

Mg Magnesium (mg/kg) 

Mg Magnesium (mg/kg) 

mg miligrams 

Mg Magnesium 

MgCl2 magnesium chloride 

min minutes 

mL milliliters 

mm millimeters 

Mn Manganesium (mg/kg) 

Mn Manganese 



  Abbreviations 

121 
 

Mo Molybdenum 

MPIPZ Max Planck Institut fuer Pflanzenzuechtung Forschung 

MS Murashige and Skoog 

Mya million years ago 

N.A not available 

Na Sodium 

Na2HPO4 Sodium phosphate dibasic 

NaCl Sodium chloride 

NaClO sodium hypochlorite  

NCBI National Center for Biotechnology Information 

ng nanograms 

NGS next-generation sequencing 

Ni Nickel 

nM nanomol 

NO3 Nitrate (mg/kg) 

O oomycetes 

OD optical density 

OTUs operational taxonomic units 

P Phosphorous (mg/kg) 

P Pseudomonadaceae 

P Phosphorus 

p.adj.method p-value adjustment 

PAR photosynthetically active radiation  

Pb Lead 

PBS phosphate buffered saline 

PCoA Principal Coordinates Analysis  

PCR polymerase chain reaction 

pep1 perpetual flowering 1 

PERMANOVA Permutational analysis of variance 

PERT1 perturbation experiment 1 

PERT1.2 perturbation experiment 1.2 

PERT2 perturbation experiment 2 

PERT3 perturbation experiment 3 

PGA Potato glucose agar 

pH negative decimal logarithm of H+ concentration 

Prof. Professor 

pv. pathovar 

PyNAST Python Nearest Alignment Space Termination 

QIIME quantitative insights into microbial ecology 

qPCR quantitative PCR 

R Coefficient of determination 

R reverse 

RA relative abundance 

Rb Rubidium 

RDP Ribosomal Database Project 

Rimf rifampicine 
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RP Rhizoplane 

rpm Revolutions per minute 

rRNA ribosomal ribonucleic acid 

RS Rhizosphere 

S Sulfur 

Se Selenium 

sec seconds 

SEM scanning-electron microscopy  

sp. species (singular) 

spp. species (plural) 

Sr Strontium 

Strep stretomycin 

SynCom/SC synthetic community 

Taq Thermophilus aquaticus 

Tc tetracycline 

TCUs Taxonomic Community Units 

TE Tris-EDTA 

TIME1 time-series experiment 1 

TIME2 time-series experiment 2 

TM trademark 

Tris tris-(hydroxymethyl)-aminomethan 

TSA tryptic soy broth 

U units 

UNITE User-friendly Nordic ITS Ectomycorrhiza Database 

V volt 

V Vanadium 

VOCs Volatile Organic Compounds  

w watts 

WGA  Wheat Germ Agglutinin 

xg times gravity 

Zn Zinc 
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Supplementary Figure 1 

 

 
 

Supplementary Figure 1: Alternative methods to describe alpha- and beta-diversities in bacterial 

communities. A) Two additional alpha-diversity indices are shown here for all samples: Chao Index 

(indicates the predicted number of taxa by accounting for the rare taxa potentially missing due to under-

sampling) and the Shannon Index (accounts for microbial abundance and evenness of the species). 

Significantly different values are depicted with different letters (Kruskal Wallis, Dunn test post-hoc, p<0.05). 

B) Two additional beta-diversity indices are shown here for all samples: Weighted Unifrac (quantifies the 

composition dissimilarity between two samples, based on counts on each sample and microbial taxonomy) 

and Unweighted Unifrac (accounts for taxonomy and absence/presence of certain OTUs). Samples are 

colored by fraction (Soil, RS, RP and Root), matching the cartoon in the right, and shaped by site. 
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Supplementary Figure 2 

 

 
Supplementary Figure 2: Alternative methods to describe alpha-diversities in fungal and oomycetal 

communities. Two additional alpha-diversity indices are shown here for all samples: Chao Index (indicates 

the predicted number of taxa by accounting for the rare taxa potentially missing due to under-sampling) and 

the Shannon Index (accounts for microbial abundance and evenness of the species), for fungal (A) and 

oomycetal (B) communities. Significantly different values are depicted with different letters (Kruskal Wallis, 

Dunn test post-hoc, p<0.05). Samples are colored by the fraction they belong to, matching the cartoon on the 

right side, and shaped by the site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Supplementary figures and tables 

145 
 

Supplementary Figure 3 

 

 
Supplementary Figure 3: The Arabidopsis root core microbiota across Europe (2). Aggregate average 

relative abundance of the bacterial (A), fungal (B) and oomycetal (C) OTUs present all harvested years and 

in at least 50% of the samples in 75% of the sites (i.e.: at least in 9 sites out of 12). (”n” represents the number 

of OTUs that are present in all sites per microbial group). Each OTU (blocks within each bar) is colored by 

their taxonomic assignment, at phylum and class level for bacterial and fungal OTUs, and order level for 

oomycetal OTUs. 
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Supplementary Figure 4 

 
Supplementary Figure 4: The Arabidopsis root core microbiota across Europe (3). Aggregate average 

relative abundance of the bacterial (A), fungal (B) and oomycetal (C) OTUs consistently found across root 

samples harvested all years and in at least half of the samples in each site (Figure 8). Here, these OTUs are 

also represented in the sites that were not harvested across three years (IT1, FR2, FR3, GE1 and GE6) 
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Supplementary Figure 5 

 

 
 

Supplementary Figure 5: In-situ common-garden experiment. In order to understand the role of climatic 

conditions and genotype-driven changes on soil and root-associated microbial communities, soils were 

planted with their adapted genotype (It15, It24, It32, It41, for Italian soil, and Sw7, Sw11, Sw43, Sw47 for 

Swedish soil) and the reciprocal genotypes, in IT1 (Castelnuovo di Porto, Italy) and in SW4 (Rödåsen, 

Sweden), as shown in the cartoon in (A). (B) shows how the trays looked like on site. A.thaliana plants 

underwent a full life cycle (from October 2016 to March 2017 in Italy, and to May 2017 in Sweden). After this 

period, plants and their surrounding soil were harvested for community profiling of bacterial, fungal and 

oomycetal communities. Also, plant fitness was assessed by scoring mature fruit production at the end of the 

experiment. 
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Supplementary Figure 6 

 

 
 

Supplementary Figure 6: Plant survival and fitness in common-garden experiment. Survival rate was 

calculated at the two sites (SW4, A; and IT1, B), as the percentage of plants that survived after winter 

compared to the number of plants established before winter time, pooling all parental lines (upper plot) and 

each parental lines separately (lower plot). In both sites, local A. thaliana accession had a higher survival than 

the foreign accession, but with no soil-driven effect (Generalized Linear Model, p-value<0.001). C) No Italian-

genotype plants survived to fruit production stage and very few Swedish-genotype did. Therefore, no data 

was recorded for this site. D) Fruit number score at end-time of the experiment (only in IT1 April 2017) showed 

a significant advance for Italian parental lines compared to Swedish parental lines, especially in their own soil 

(Generalized Linear Model, p-value<0.001). Number on top of the bars indicate the number of plants 

evaluated. Analysis and figures by Dr. Thomas Ellis, University of Uppsala. 
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Supplementary Figure 7 

 
 

Supplementary Figure 7: Microbial alpha-diversity in the common-garden experiment. Plots depicting 

the Observed OTUs for bacterial (A), fungal (B) and oomycetal (C) profiles, separated by fraction (soil 

samples, left panels; root samples, right panels) and by soil type (red background, Italian soil; green 

background, Swedish soil). Cartoons at the bottom show which conditions are changed, while soil (either 

Italian -red- or Swedish -green-) remains as the constant factor. Significantly different values are represented 

with different letters (note that statistical comparison are done within soil type, not across soil types. ANOVA, 

Tukey post-hoc test, p-value-<0.05). 
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Supplementary Figure 8 
 

 
 

Supplementary Figure 8: Microbial relative abundances in common-garden experiment. Relative 

abundances plots are shown here of OTUs with an abundance of >0.01%, for bacterial (A), fungal (B) and 

oomycetal (C) communities, colored by their taxonomic assignment (phylum level for bacterial and fungal 

profiles, and order level for oomycetal profiles). Colored boxes at the x axis’ labels represent the soil which is 

being compared (red, Italian; green, Swedish) and the cartoons at the bottom represent the conditions that 

are represented in the plot. 
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Supplementary Figure 9 
 

 
 

Supplementary Figure 9: Transplantation experiment under controlled conditions (climatic 

chambers). A) Plots depicting average Bray-Curtis distances between clusters of conditions (x axis) 

compared to the distance of the control cluster within itself, in bacterial, fungal and oomycetal profiles. 

Cartoons show which conditions are changed, while soil (either Italian -red- or Swedish -green-) remains as 

the constant factor. Asterisks indicate in which conditions microbial communities are significantly apart from 

the control cluster (Kruskal-Wallis, Dunn test post-hoc, p<0.05). B) Variance explained in microbial 

communities due to changing the Climate, Genotype or CxG. Due to the high variability in the samples and 

the very high impact of “Soil” and “Fraction” factors (not shown), data was subsetted and the variance was 

calculated as the average variance per factor (PERMANOVA, 95% interval of confidence, p-value<0.05). 
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Supplementary Figure 10 

 

 
Supplementary Figure 10: Structure of bacterial and fungal communities using other DNA 

amplification regions. PCoA plots depicting Bray-Curtis dissimilarities between samples of the full dataset, 

comparing sample distribution using another DNA amplification region for bacteria (V5/V7 versus V2/V4, A) 

and for fungi (ITS1 versus ITS2). B). Samples are colored by the fraction they belong to, matching the cartoon 

on the right side, and shaped by site. 
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Supplementary Figure 11 

 
 

Supplementary Figure 11: Grinding protocol development for filamentous microbe’s inoculation. A) 

Three morphologically diverse fungal and oomycetes were tested (Chaetomium megalocarpum, 9; Ilyonectria 

macrodidyma, 147; Pythium sylvaticum, 132) with four grinding techniques (two beads sizes and two 

durations, with 1 mL of 10 mM MgCl2). Each condition is depicted by the homogenate appearance in the tube 

and later observation of hyphae disaggregation under bright field microscope (5x). B) After selection of the 

last method (one big bead beating for 10 minutes), each of the microbes utilized for later experiments was 

tested for survival 7 days after the  bead-beating and plated on PGA (white-labelled plates are fungal strains; 

black-labelled plates are oomycetal strains). 
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Supplementary Figure 12 

 

Supplementary Figure 12: Observed species in each microbial combination co-inoculated with 

A.thaliana Col-0 and unplanted control, compared to Input community. Plots depicting the observed 

OTUs in root and matrix samples, compared to initial OTUs in “Input” samples (in grey), for bacterial (A), 

fungal (B) and oomycetal (C) communities, in each microbial combination (B: Bacteria only, F: Fungi only, O: 

Oomycetes only, BO: Bacteria and oomycetes, BF: Bacteria and fungi, FO: Fungi and oomycetes, BFO: full 

microbial community, BFO UNPL.: full microbial community without host plant), in matrix (brown) and root 

(green samples). Significant differences are depicted with different letters (Kruskal-Wallis, Dunn test post-

hoc, p<0.05) 
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Supplementary Figure 13 

 

Supplementary Figure 13: Correlation between plant growth and fungal load. A) 50 mg of mycelium of 

each fungal strain was weighted and DNA was isolated. DNA concentration was correlated with Cq reads 

(using ITS1 as amplification region), in order to estimate mycelium load in gnotobiotic experiments (see 

Methods). B) Regression plot correlating plant shoot fresh weight with the estimated mycelium load in matrix 

samples, using standard curves in (A) (Pearson’s correlation, non-significant, p-value= 0.835). Work 

performed together with Nick Dunken (Bachelor student, University of Cologne). 
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Supplementary Figure 14 

 

Supplementary Figure 14:  Prediction of bacterial communities’ antagonism to fungi based on binary 

interactions. A) (Results and figure by Dr. Stéphane Hacquard). Alteration of fungal growth upon interaction 

with phylogenetically diverse members of the bacterial root microbiota. The heat map depicts the log2 fungal 

relative growth index (presence versus absence of bacterial competitors) measured by fluorescence using a 

chitin binding assay against WGA (Wheat Germ Agglutinin), Alexa Fluor 488 conjugate. The phylogenetic 
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tree was constructed based on the full bacterial 16S rRNA gene sequences and bootstrap values are depicted 

with black circles. Vertical- and horizontal-bar plots indicate the cumulative antagonistic activity for each 

bacterial strain and the cumulative sensitivity score for each fungal isolate, respectively. Alternation of white 

and black colors are used to distinguish the bacterial families. All bacteria presented and 7/34 fungi 

(highlighted in bold) were used for EXP1. B) Experimental set-up scheme in order to assess bacterial 

antagonism against fungi in a community context. Low-diversity subsets of the full bacterial community (SC10) 

are separated following a fungal antagonism gradient, based on (A) (SC1 to SC6, from more to less 

antagonistic). In order to exclude the possibility that bacterial diversity/load is important for fungal control, 

higher diversity groups were also selected, following the same gradient (SC7, SC8 and SC9). Bacterial 

SynComs were inoculated individually or together with the full fungal community, and with sterile A.thaliana 

Col-0 seeds in the FlowPots system, and incubated for three weeks. After this period, shoot fresh weight was 

assessed as indirect proxy of bacterial antagonism, and root and matrix samples harvested to estimate 

microbial load in each condition. 
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Supplementary Figure 15 

 

Supplementary Figure 15: Correlations between fungal load, bacterial load and shoot fresh weight. 

Microbial load was estimated in matrix samples from PERT2 by amplifying by qPCR the 16s rRNA V5/V7 

region and ITS1 for bacterial and fungal communities, respectively. Cq values were then normalized to the 

microbe-free values (MF=1). Here, plots depict the correlation between bacterial and fungal load (A), between 

bacterial load (log(Cq)) and shoot fresh weight (B), between fungal load (log(Cq)) and shoot fresh weight (C), 

and between the ratio fungal/bacterial loads (log(Fungal Cq/Bacterial Cq)) and shoot fresh weight (D) 

(Pearson’s correlation, non-significant in A, B and C, p-value=0.04 in D). Colored dots represent matrix 

samples from different SynComs (MF=Microbe-free). 
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Supplementary Figure 16 

 

Supplementary Figure 16: Perturbed bacterial communities in PERT3. Relative abundances of bacterial 

(A) and fungal (B) strains in each microbial combination of the depletion experiment in input and output matrix 

and root samples four weeks after inoculation in the Flowpots system. In-silico depletion of removed members 

shows no significant differences from the full bacterial community to different perturbed conditions 

(Generalized Linear Model, p.adj.method=FDR). 
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Supplementary Figure 17 

 

Supplementary Figure 17: Microbial communities’ time-dependency. Bray-Curtis distances of matrix 

samples, plotted in a PCoA plot and constrained by the time-point in which they were harvested 

(PERMANOVA, percentage of the variance explained by the constrained factor is shown on top of the plot, 

p-value<0.001). Here, unplanted samples are plotted (TIME1), for bacterial (A), fungal (B) and oomycetes 

(C) profiles, including single community inoculations (circles) and full community inoculations (triangles), as 

well as input communities (squares). Different colors represent each time point at which samples were 

harvested. Here, one technical replicate is shown per each of the three biological replicates. 
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Supplementary Table 2 

Factor Fraction Bacteria (V2/V4) Fungi (ITS2) 

Site 

All 12.51 14.82 

Soil 43.5 30.82 

Rhizosphere 41.26 33.13 

Rhizoplane 19.96 18.59 

Root 16.64 33.36 

Fraction   38.24 5.33 

Single/Pooled 

All 0.39 0.81 

Soil 0.11 0.17 

Rhizosphere 0.1 0.29 

Rhizoplane 10.27 1.12 

Root 0.67 1.17 

Year 

All 1.35 9.9 

Soil 3.69 3.2 

Rhizosphere 1.4 2.86 

Rhizoplane 1.45 3.4 

Root 8.2 9.68 

Species (Arabidopsis/ 
Neighbors) 

Soil 0.68 1.98 

Rhizosphere 0.58 1.77 

Rhizoplane 9.12 9.94 

Root 2.94 1.19 
 

Supplementary Table 5: PERMANOVA analysis of bacterial V2/V4 and fungal ITS2. Permutation analysis 

of different microbial genomic regions (bacterial 16s rRNA V2/V4 and fungal ITS2). PERMANOVA analysis 

(999 permutations, p-value< 0.001). Full dataset was used to calculate "Site", "Fraction" and "Single/Pooled" 

effects; only samples harvested three consecutive years were used to calculate "Year" effect; a subset of 

single and neighboring plants was used to calculate "Species" effect. 
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Supplementary Table 5 

A) Unplanted matrix samples 

Bacteria Fungi Oomycetes 

Factor Var. (%) p-val Factor Var (%) p-val Factor Var (%) p-va 

Community 1.30 0.227 Community 1.24 0.491 Community 7.94 0.014 

TimePoint 63.84 0.001 TimePoint 31.81 0.001 TimePoint 39.27 0.001 

Experiment 1.35 0.674 Experiment 3.74 0.253 Experiment 1.2 0.905 

B) Planted variance 

Bacteria Fungi Oomycetes 

Factor Var. (%) p-val Factor Var (%) p-val Factor Var (%) p-va 

Community 2.38 0.026 Community 4.17 0.006 Community 7.37 0.002 

TimePoint 18.47 0.001 TimePoint 12.77 0.001 TimePoint 4.97 0.189 

Experiment 1.98 0.187 Experiment 5.15 0.02 Experiment 0.7 0.668 

Fraction 16.20 0.001 Fraction 5.43 0.001 Fraction 25.49 0.001 

 

Supplementary Table 5: PERMANOVA analysis of TIME1 and TIME2. Factors driving microbial 

communities' variance in a time-series experiment, in unplanted matrix samples (A) and planted samples (B). 

Factors tested are the effect of other microbial members present, time-dependency, technical variation and 

fraction (TIME2). PERMANOVA analysis (999 permutations).
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