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1 In search of a comparative biological approach to cognitive systems 

In his influential book Biological Foundations of Language, Eric Lenneberg (1967, p. 

394) suggested the existence of “a biological matrix with specifiable characteristics” for each 

cognitive capacity. This book inspired a line of research programs investigating biological 

specifications of the language capacity. It made the term “biolinguistics”, which was already 

introduced in 1950, resurface in an interdisciplinary meeting organized by Massimo Piattelli-

Palmarini in 1974 (for historical reviews, see also Boeckx & Grohmann, 2007; Boeckx & 

Martins, 2016; Chomsky, 2005; P. T. Martins & Boeckx, 2016). Boeckx and Grohmann (2007, 

p. 2) regarded Lenneberg’s research program as “biolinguistics in a strong sense” combing 

“linguistic insights and insights from related disciplines (evolutionary biology, genetics, 

neurology, psychology, etc.)”, in contrast to “biolinguistics in a weak sense” referring to 

Chomsky’s program to discover properties of grammar initiated in his book Syntactic 

Structures (Chomsky, 1957).  

The term “biolinguistics” is often associated with the weak sense, especially with the 

Minimalist Program (Chomsky, 1995), and earned critics (e.g., Jackendoff, 2011, pp. 589–591 

and footnote 1). However, in the last ten years, biolinguistics has been experiencing a turn for 

more emphasis on biology, which is well visible in articles such as Prolegomena to a Future 

Science of Biolinguistics and Toward a computational framework for cognitive biology by 

Tecumseh Fitch (2009, 2014) as well as Biolinguistics: forays into human cognitive biology by 

Cedric Boeckx (2013). Following those authors’ designation, I call this ‘new edition’ of 

research on the biological foundations of language “cognitive biology of language” which is 

now (March 2019) also used as a name of the research laboratory led by Cedric Boeckx at the 

University of Barcelona, Spain. 

In music research, the term “biomusicology” was introduced by Nils L. Wallin (1991) 

in his book Biomusicology. Neurophysiological, Neuropsychological, and Evolutionary 

Perspectives on the Origins and Purposes of Music. In The Origins of Music (S. Brown, Merker, 

& Wallin, 2000), biomusicology as defined as a discipline integrating evolutionary musicology, 

neuromusicology, and comparative musicology (i.e., cross-cultural studies investigating 

universals in music) was then taken up again. Almost at the same time, a conference entitled 

The Biological Foundations of Music (Zatorre & Peretz, 2001) brought scholars together who 

investigate theory, neuroscience, and evolution of music. While The Origins of Music focused 

more on evolutionary musicology, The Biological Foundations of Music rather concentrated 

on neuromusicology. In both cases, computational-representational theories of music 

investigating human cognitive capacity (Lerdahl & Jackendoff, 1983; Longuet-Higgins & Lee, 
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1984; Steedman, 1996; Sundberg & Lindblom, 1991) had earned less attention in light of 

biology. 

Several turning points for more integrated approaches in biomusicology mainly 

happened in the last decade. In a conference proceeding of The Neurosciences and Music II 

(including, for example, Fitch, 2005; McDermott & Hauser, 2005a; Merker, 2005), a special 

issue on The Nature of Music edited by Isabelle Peretz in Cognition (including, for example, 

Fitch, 2006b; Jackendoff & Lerdahl, 2006) and a series of Commentaries on Origins of Music 

in Music Perception (including, for example, Fitch, 2006a; McDermott & Hauser, 2006; Patel, 

2006), computational-representational theories of music, neuromusicology, and evolutionary 

musicology were ready to be integrated. Especially, through comparative language-music 

research, such integrative approaches were promoted. Music, Language, and the Brain by 

Aniruddh D. Patel (2008), Brain and Music by Stefan Koelsch (2012a), Language and Music 

as Cognitive Systems edited by Patrick Rebuschat, Martin Rohmeier, John A. Hawkins, and Ian 

Cross (2012), Language, Music, and the Brain edited by Michael A. Arbib (2013) are examples 

of such integrative challenges. The term “biomusicology” then resurfaced in an article Four 

principles of bio-musicology by Tecumseh Fitch (2015) as a part of Henkjan Honing’s The 

Origins of Musicality research program (Honing, 2018; Honing, ten Cate, Peretz, & Trehub, 

2015) – an integrative research program which can be called “biomusicology in a strong sense”. 

The current thesis is a part of those challenges to yield biolinguistics and biomusicology 

in the strong sense, and even more as a challenge to move toward human cognitive biology 

research discourse, with a particular emphasis on comparative approaches. Thus, the approach 

of the current thesis is called “comparative biomusicology”, and the results of the thesis should 

show a way to move toward a research program which I call “comparative cognitive biology” 

by referring to W. Tecumseh Fitch’s and Cedric Boeckx’s research program, with an emphasis 

on comparative approaches. Especially, in the current thesis, I focus on language-music 

comparison because I argue that the nature of each cognitive system can be better understood 

in relation to other cognitive systems. As a comparative research strategy, I introduce 

principled explanations in terms of 1) syntax as a set of combinatorial principles generating 

hierarchically structured representations and 2) neural structures and operations as 

implementational principles. The idea of principled explanations in this thesis is not only 

influenced by that of Noam Chomsky (2005) investigating syntax, but also extends to more 

biological one inspired by Shepherd (2004) examining synaptic organization. In both cases, the 

central idea is explanation of complex phenomena in terms of basic principles applicable to 

properties in wide range of systems, regardless of cognitive systems or nervous systems. This 
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is at the heart of principled explanations which I introduce in the current thesis to promote 

comparative research and understand cognitive systems such as language and music. 

 

2 “Syntax” or “structure building” for comparative language-music research? 

Research on musical syntax got considerable attention through generative syntax of 

tonal harmony developed by Martin Rohrmeier (2007, 2011) by means of formal grammar. 

Rohrmeier and Pearce (2018, p. 475) reserved the term “syntax” for “approaches presenting a 

formal system characterizing the sequential structure of such building blocks [i.e., elements in 

a lexicon; RA]”. That is, they characterize “syntax” in terms of formalization as a research 

method. On the one hand, I acknowledge the importance of formal approaches. On the other 

hand, I do not adopt this use of “syntax” in the current thesis because the goal of the current 

thesis is not to identify what aspects of language and music can be presented in a formal system. 

In addition, a definition which is too narrow and limited to a particular research method could 

hinder comparative approaches as phenomena which are investigated differently, but share 

biological substrates could not enter the analysis. Therefore, I rather use “syntax” in a broad 

sense applicable for a wide range of domains as a term referring to particular properties and 

functions. Moreover, while Rohrmeier and colleagues (2018; 2015) use “structure building” as 

an umbrella term to investigate structures in different domains, I regard this term as a particular 

part of “syntax”. 

In the current thesis, “syntax” is primarily used to refer to “a set of principles governing 

the hierarchical combination of discrete structural elements into lager units (Bickerton, 2009) 

and/or into sequences (Patel, 2008)” (Asano & Boeckx, 2015, p. 2). This characterization 

comprises processing theories, too, which was suggested by Rohrmeier and Pearce (2018) not 

to belong to the domain of syntax. If nothing else is stated in addition, “syntax” is used in this 

broad sense. Further, the current thesis suggests a core function of syntactic computation, i.e., 

a core task for syntactic computation to accomplish, as mapping between hierarchically 

structured representation and temporal sequence. Thus, I investigate syntax in the current thesis 

by identifying what principles are required and how those principles are applied to map 

hierarchical structure and temporal sequence in different domain such as syntax in language 

and music. Importantly, syntax in language includes different subcomponents such as narrow-

sense syntax (i.e., combining words into phrases and sentences) and phonological syntax. 

Similarly, musical syntax contains subcomponents such as harmonic syntax and rhythmic 

syntax. Throughout the thesis, I will highlight those different subcomponents of syntax in 

language and music. 
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The following concepts are also relevant for the current approach to syntax. I use 

“syntactic computation” to refer to transforming inputs into outputs according to the principles 

that fulfill function of syntactic computation. For example, given words as inputs, syntactic 

computation is carried out on the basis of combinatorial principles and results in a hierarchical 

structure as its output. The term “parsing”, then, refers to structural analysis during moment-

by-moment integration of events in time. That is, parsing deals with online processing of a 

sequence. In both cases, the core function is mapping between hierarchical structure and 

temporal sequence, and a series of words should be transformed into a hierarchical structure. I 

use “(language) syntactic processing” 1 for phrasal syntactic and morpho-syntactic processing, 

and “music syntactic processing” for tonal-harmonic syntactic and rhythmic syntactic 

processing. The term “processing” includes both parsing and production, but the current thesis 

mainly focuses on parsing. Linguistic and musicological theories on syntax introduced in the 

current thesis are computational-representational theories because they attempt to clarify 

syntactic computation in detail, and identify representations which are generated on the basis 

of combinatorial principles and are processed in parsing. 

 

3 Goals and structure of the thesis 

The current thesis tackles the question “Why is music the way it is?” within a 

comparative biomusicology framework by focusing on musical syntax and its relation to syntax 

in language. As a comparative research strategy, I put forward principled explanations 

regarding cognitive systems as different instances of the same principles. The main goal is to 

provide a preliminary answer to this question in form of hypotheses about neurocognitive 

mechanisms, i.e., cognitive and neural processes, underlying a core function of syntactic 

computation in language and music, i.e., mapping between hierarchical structure and temporal 

sequence. The results, especially the insights into neural processes, should then contribute to 

establish comparative cognitive biology in future research. Thus, I see this thesis as an 

integrative challenge dealing with different methodological approaches (e.g., theoretical and 

empirical approaches), multiple cognitive systems (e.g., language and music), and a wide range 

of species (e.g., humans and non-human animals). Such an integrative challenge requires 

various perspectives and it is not possible to introduce all of them. However, I hope the current 

thesis to be an example for dealing with further integrative challenges and to contribute to a 

                                                 
1 The term “syntactic processing” is used to refer to morpho-syntactic and phrasal syntactic processing, but I 

occasionally use “language syntactic processing” and “linguistic syntactic processing” in the same way if I discuss 

the relationship between language syntactic processing and music syntactic processing to avoid confusions. 
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realization of the original dream of cognitive science as a unified science of the mind (G. A. 

Miller, 2003, p. 144). 

The thesis divides into four parts. The PART I Principled explanations in comparative 

biomusicology introduces a framework for integrative challenges, identifies emerging 

problems, and suggests principled explanations as research strategies to tackle those problems. 

Comparative biomusicology integrates different comparative approaches, biological 

frameworks, and levels of analysis in cognitive science. The problems which I will discuss in 

the PART I are those emerging in comparative research and in integrating different levels of 

analysis in cognitive science. PART II and III then implement the strategy which I call 

“principled explanations” from different perspectives. PART II is entitled Top-down 

perspectives to syntax and its neurocognitive mechanisms because the branches of comparative 

language-music research which I put together in this part mainly take top-down research 

strategies. They apply concepts of linguistic theories to musicological theories and those 

theoretical concepts to neuroscientific research. PART III is entitled Rhythmic syntax: An 

integrative approach because I attempt to unify both top-down and bottom-up perspectives in 

this part. In PART IV, I conclude the current thesis, discuss open questions, and suggest a 

possible way going toward comparative cognitive biology.  

As PART III incorporates the central idea of the current thesis, I would like to introduce 

this part in more details in the next paragraph. First of all, it is important to note that, in general, 

I do not introduce any formal-mathematical theory of musical syntax paralleling Rohrmeier’s 

generative syntax of tonal harmony. Rather, in PART III, I develop a computational-

representational theory of rhythmic syntax which is not yet formally explicit, but already 

captures computational principles of rhythmic syntax. Till now, musical syntax was primarily 

associated with tonal-harmonic syntax. However, rhythmic syntax is another constituent part 

of musical syntax. The current thesis, thus, attempts to establish rhythmic syntax as a research 

field of musical syntax. I also elaborate rhythmic syntactic processing and its neural correlates 

on the basis of the developed theory. To identify neural correlates, ALE meta-analysis was 

conducted. This method recently gets increasing attention in music cognition research (e.g., 

Chauvigné, Gitau, & Brown, 2014; Janata & Parsons, 2013; LaCroix, Diaz, & Rogalsky, 2015) 

and turns out to be an important means for integrating theoretical and empirical research. 

Moreover, a large portion of PART III is dedicated to clarification of implementational 

principles and investigation of neurocognitive mechanisms in terms of cognitive and neural 

processes.  
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A comparative language-music research introduced in PART III focuses on the 

investigation of language and music as different instances of same principles. Especially, I 

attempt to take a step toward comparative cognitive biology by discussing neural structures 

and operations as implementational principles in details as well as introducing hypotheses how 

the same implementational principles give rise to different cognitive systems language and 

music. PART III notably puts mechanistic explanations at its heart. Thus, it does not put 

emphasis on the discussions about what is similar and different in language and music (for this 

line of research and discussions, see Asano & Boeckx, 2015; Jackendoff, 2009; Patel, 2008). 

Rather, I privileged discussions on cognitive and neural processes over the elaborations of other 

aspects. However, this does not mean that other aspects are irrelevant. It means that the current 

thesis leaves room for further integrative approaches. 
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PART I: Principled explanations in comparative biomusicology 

 

The goal of this part is to specify the object of inquiry within the newly grounded approach 

called comparative biomusicology, identify problems to be solved, and develop research 

strategies. In particular, I introduce comparative and biological approaches to achieve a 

mechanistic explanation of music as a cognitive system (Chapter 4, p. 9), discuss emerging 

problems and first approaches (Chapter 5, p. 16), and suggest ‘principled explanations’ as 

research strategies to tackle those problems (Chapter 6, p. 30). 

 

4 The research program and its framework .............................................................. 9 

4.1 Comparative approaches .............................................................................. 10 

4.2 Biological frameworks ................................................................................. 10 

4.3 Levels of analysis in cognitive science ........................................................ 11 

4.4 A unified framework .................................................................................... 12 

5 Methodological problems and first approaches ................................................... 16 

5.1 Problem of contrastive comparison ............................................................. 16 

5.1.1 The comparative approach to language and music .................................. 16 

5.1.2 The comparative cognition approach ....................................................... 19 

5.2 The problem of explanatory gaps ................................................................ 21 

5.2.1 Going beyond the competence-performance dichotomy ......................... 21 

5.2.2 Approaching the mind/brain interface problems ..................................... 25 

6 Principled explanations as research strategies ..................................................... 30 
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4 The research program and its framework 

Comparative biomusicology is a research program which strives for an explication of 

the human capacity for music in relation to other cognitive systems such as language and action 

from a biological perspective. Its goal is to answer the question “Why is music the way it is?” 

by revealing the initial state and steady state of the cognitive system music. In general, as in 

biolinguistics (Boeckx & Grohmann, 2007), the following questions have to be investigated: 

What is the knowledge of music? How is that knowledge acquired? How is that knowledge put 

to use? How is that knowledge implemented in the brain? How did that knowledge emerge in 

the species? Therefore, biomusicology and biolinguistic strive for a biological foundation of 

the cognitive systems music and language from theoretical, psychological as well as 

neuroscientific, and evolutionary perspectives (Boeckx & Grohmann, 2007; S. Brown et al., 

2000). Theoretical research such as linguistics and musicology focuses on computational-

representational theory of music and language, psychology and neuroscience of language and 

music on cognitive and neural processes, and evolutionary biology on the phylogeny of 

language and music (Figure 4.1). 

 

Figure 4.1 Comparative biomusicology as an integrated approach to cognitive systems. 

 

Figure 4.1 shows diverse integrative challenges for comparative biomusicology. Figure 

4.1a represents different disciplines such as linguistics, musicology, psychology, neuroscience, 

and evolutionary biology which comparative biomusicology includes. The red arrows indicate 

the challenges to relate those different disciplines to each other. The green boxes stand for 

language research and the blue ones for music research. The white arrows denote language-

music comparative challenges. Figure 4.1b shows integrative challenges not in terms of 

disciplines, but of different approaches and frameworks which I illustrate below in more details. 
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4.1 Comparative approaches 

Comparative biomusicology involves different comparative approaches such as 1) 

within-domain comparisons (e.g. cross-culture comparison), 2) between-domain comparisons 

(e.g. language, music, and action), 3) within-species comparisons (e.g. (developmental) 

disorders), as well as 4) between-species comparisons (e.g. non-human animals and humans). 

All those comparative approaches are crucial to specify and analyze the human capacity for 

music. Cross-cultural comparison can contribute to identifying constituent parts of the music 

capacity (Arom, 2000; S. Brown & Jordania, 2013; Nettl, 2000; Thompson & Balkwill, 2010). 

Comparisons of cognitive systems such as language and music as well as cross-disorder 

comparisons can further specify those constituent parts and approach to the quest for their 

modularity and domain-specificity (Jackendoff, 2009; Jackendoff & Lerdahl, 2006; Peretz, 

2013; Peretz & Coltheart, 2003). Cross-species comparisons could shed light on the evolution 

of the constituent parts and the quest for human uniqueness (Fitch, 2006b, 2010a; Hauser, 2009; 

Hauser & McDermott, 2003; McDermott & Hauser, 2005b; Patel, 2006; Shettleworth, 2012). 

A multi-component approach (Fitch, 2010a) identifying relevant constituents, levels, 

and their interactions is at the center of all comparative approaches (Asano & Boeckx, 2015; 

Fitch, 2015; Fritz et al., 2013; Honing et al., 2015). Language and music considered as 

cognitive systems form a mosaic and consist of multiple components with different 

evolutionary origins, which rely on separate neural and genetic mechanisms (Fitch, 2006b, 

2010a). From a comparative language-music perspective, some components might be shared 

among the domains and based on the same evolutionary genesis, while others might be different 

and emerged independently in the course of evolution. From a comparative between-species 

perspective, some might be shared with other animals, while others might be unique to humans. 

 

4.2 Biological frameworks 

The most appropriate framework to achieve a biological foundation of music research 

is provided by Tinbergen’s four questions and by distinguishing proximate and ultimate 

research questions (Bischof, 2008; Mayr, 1961; Tinbergen, 1963). Proximate causes underlie 

responses of an individual to immediate factors and are mechanical in nature, while ultimate 

causes account for evolution of particular genetic endowments (Mayr, 1961). By no means, 

those two causes should be confused as alternatives. However, proximate and ultimate causes 

are not fully independent of each other. Especially, development should be considered both 

proximately and ultimately causal. Thus, by taking evo-devo and niche construction into 
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account, Laland and colleagues (2011) argued for reciprocal causation allowing for interaction 

between two causes. 

Tinbergen’s four questions for explaining why animals behave the way they do were 

introduced shortly after Mayr’s causal approach and include 1) “What are internal causal 

factors or mechanisms controlling behavior?” (causation / mechanism); 2) “How does behavior 

machinery change during development in an individual?” (ontogeny); 3) “How did behavioral 

traits evolve?” (evolution / phylogeny); and 4) “What is the survival value or the adaptive 

significance of behavior?” (function). Tinbergen’s four questions are suggested as a framework 

for biolinguistics and biomusicology by several authors to investigate biological foundations 

of cognitive systems (e.g., Asano & Boeckx, 2015; Boeckx & Grohmann, 2007; Fitch, 2010a, 

2015). Moreover, a current approach in biology suggests integrative solutions to the four 

questions instead of investigating them independently (Bateson & Laland, 2013). 

One aspect introduced by Bateson and Laland (2013) plays a central role for the 

framework introduced in the Section 4.4 (p. 12) and thus should be mentioned here. As 

characterized above, Tinbergen’s “function” is usually understood as ultimate question, i.e., 

adaptive significance, which is a consensus interpretation and should be maintained in the 

current thesis. However, Tinbergen’s “function” can be also (or even more preferably) 

interpreted as proximate question i.e., current utility, “because it helps to emphasize how the 

current and original function of a characteristic can differ […]” (Bateson & Laland, 2013). This 

understanding is based on their evo-devo framework updating Mayr’s and Tinbergen’s 

biological frameworks. In the current thesis, Tinbergen’s “function” stands for both adaptive 

significance and current utility. 

I regard Mayr’s distinction of proximate and ultimate causes, Tinbergen’s four 

questions, and the updates by Laland and colleagues (2011) taking evo-devo and niche 

construction into account as biological frameworks. In the current thesis, I mainly focus on 

Tinbergen’s biological framework (i.e., his four questions) and especially on the question of 

mechanism. 

  

4.3 Levels of analysis in cognitive science 

Marr (1982, pp. 19–29) introduced three levels at which an information processing 

device should be understood. The most abstract is the level of computational theory about what 

the device does, i.e. what is being computed, and why, i.e. why that particular computation is 
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performed and not another.2 The latter can be formulated as constraints determining which 

computation is appropriate to use. The second level of analysis specifies how information is 

processed concerning representation of the input and output and an algorithm for the 

transformation. The third level deals with the way the process is to be realized physically, i.e. 

hardware implementation. Importantly, Marr emphasized that those three levels are coupled, 

but only loosely in the sense that all levels can influence each other while the explication of 

each level could involve issues independent of the other two. Especially, he advises caution in 

“making inferences from neurophysiological findings about the algorithms and representations 

being used, particularly until one has a clear idea about what information needs to be 

represented and what processes need to be implemented” (Marr, 1982, p. 26). 

Among those three levels, Marr stresses the importance of computational theory from 

an information processing point of view even though algorithms and hardware are empirically 

more accessible: the information processing device cannot be specified without understanding 

the nature of the computational problems to be solved. In this sense, he calls Chomsky’s 

transformational theory “a true computational theory” (Marr, 1982, p. 28). Moreover, Marr 

emphasized that those three levels of analysis are largely independent of each other. Thus, at 

that moment, the goal of any computational theories was solely identifying representations and 

computations which the information processing device deals with, without worrying about 

algorithms and hardware implementations. 

 

4.4 A unified framework 

Comparative biomusicology investigates the question “Why is music the way it is?” by 

comparative approaches within biological frameworks at different levels of analysis. Thus, the 

first task of this research program is to build a unified framework integrating all research 

strategies introduced above in an explicit way. In what follows, I aim at achieving such a 

conceptual synthesis gradually by beginning with relating Tinbergen’s biological framework 

and Marr’s levels of analysis, then integrating the multi-component approach to this unified 

framework, and finally discussing some emergent extensions. 

There is an increasing tendency in modern research discourse to suggest a pluralistic 

explanatory framework integrating Tinbergen’s four questions and Marr’s three levels. For 

example, Poggio (2012), without referring to Tinbergen, suggested to extend Marr’s three 

                                                 
2 In the current thesis, I also use the term “computational-representational theory”. This term covers Marr’s 

computational theory and theory of representations. 
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levels with additional two levels on top: 1) learning and development, and 2) evolution, i.e., 1) 

proximate questions and 2) ultimate questions. That is, he claimed to revise Marr’s three levels 

in light of biology. Krakauer and colleagues (2017) also see Tinbergen’s four questions and 

Marr’s three levels as important parts of pluralistic explanations. While Poggio (2012) as well 

as Krakauer and colleagues (2017) keep those two approaches separate, other researchers 

proposed a more intertwined view. Brase (2014) noted that Marr’s levels should be revised to 

deal with biological information processing systems and Tinbergen’s framework should be 

applied for investigating information processing underlying behaviors. He suggested that 

Marr’s computational level in light of biology fits to ultimate causes, i.e., phylogeny and 

adaptive significance, and the algorithmic level to proximate causes, i.e., mechanism and 

ontogeny. Mobbs and colleagues (2018), by referring to Brase (2014), see Tinbergen’s question 

about mechanism at Marr’s algorithmic as well as implementational level and his question 

about function at Marr’s computational level, while they regard ontogeny and phylogeny as the 

way how Marr’s levels of analysis change over development and evolution. 

Based on the above mentioned extensions and integrations, a framework for 

comparative biomusicology can be formulated as follows. First of all, the most straight-forward 

link between Tinbergen’s questions and Marr’s levels can be achieved by investigating 

mechanisms at the algorithmic and implementational level.3  A mechanism is a system of 

different constituent parts performing unique operations and working in tandem to bring about 

a given phenomenon (Bechtel & Shagrir, 2015; Krakauer et al., 2017; Lobina, 2017). The 

mechanistic questions which can be asked at the algorithmic and implementational level are as 

follows: What kind / formats of representations do we need and how are they manipulated by 

the operations of the constituent parts to run a program, i.e., to process information?  

Next, Bechtel and Shagrir (2015) suggested that the computational level identifies non-

mechanistic aspects of a cognitive system, ideally in form of formal-mathematical descriptions, 

and clarifies the computed mathematical function in the physical environment (Bechtel & 

Shagrir, 2015). In other words, the computational level deals with formal-mathematical 

descriptions of problems which the mechanisms have to solve (what question) and functions 

for which the mechanisms are optimally designed (why question). Thus, although it does not 

seem to be straightforward, Tinbergen’s question about function, i.e., not only current utility, 

                                                 
3 I don’t equate mechanisms with algorithms and hardware implementations as Marr and Poggio (1976) regard 

mechanisms as an independent forth level beside Marr’s classical three levels. Bechtel & Shagrir (2015) and 

Lobina (2017) also regard the level of mechanisms as independent of the other three levels. 
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but also adaptive significance, can be linked to the computational level of the analysis, 

especially to the why question.4 

Finally, ontogeny and phylogeny can be regarded as change of information processing 

over development and evolution. This is similar to the interpretation of Mobbs and colleagues 

(2018): Marr’s levels are levels of analysis and thus change of information processing should 

be analyzed at all three levels. Therefore, the questions can be formulated as following: “What 

is computed and why is that particular computation performed at a certain developmental or 

phylogenetic stage?” (computational level); “How is information processed at a certain 

developmental or phylogenetic stage?” (algorithmic level); “How is the process realized 

physically at a certain developmental or phylogenetic stage?” (implementational level); and 

also “How do computations, representations and algorithms, and implementations change over 

development and evolution?”. 

The unified framework can be regarded as a comparative biological information 

processing framework (Figure 4.2). In this framework, mechanisms play a mediator role for 

biology and information processing. This does not mean that we have to reduce our research 

to mechanisms. However, this means that the investigation of biological information 

processing mechanisms is at the center of comparative biomusicology. Explanations at the 

computational level and answers to questions about function, as a formal-mathematical theory 

in the optimal case, provide top-down constraints on the mechanisms, in the way that they 

determine what problems the mechanisms have to solve and why. Then, the mechanisms can 

be analyzed at the algorithmic and implementational level. The changes of mechanisms and 

their goals over development and evolution can be also investigated. In addition, different 

constituent parts of the mechanisms can be identified by means of a multi-component approach, 

which opens the current framework for comparative approaches. Because mechanisms can be 

investigated at the very bottom level (e.g., molecular level) as well as the ‘higher’ level (e.g., 

behavior), they offer rich comparative options (Bateson & Laland, 2013). 

                                                 
4 In Figure 4.2, I did not explicitly relate Tinbergen’s question of function and Marr’s computational level as it is 

still a matter of debate whether and how they relate to each other. However, research at the computational level 

investigating why a particular computation is performed could be related to research on the current utility and the 

adaptive significance. 
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Figure 4.2 Comparative biological information processing framework. 

 

In addition, the current comparative biological information processing framework 

should be extended to integrate cultural and social aspects as suggested by several authors (e.g., 

Fitch, 2010a, 2015; Laland et al., 2011). First of all, the framework introduced above (see also 

Figure 4.2) keeps the strict separation of proximate and ultimate questions in terms of ontogeny 

and phylogeny. Thus, there is no chance for those two types of mechanism change to influence 

each other. However, such a proximate-ultimate dichotomy was claimed as a conceptual barrier 

and a reciprocal causation approach was suggested as an alternative way (Laland et al., 2011). 

 

During development, features of the trait cause changes in both gene expression 

and environment, which feed back to the developmental process, resulting in a 

different trait in the adult and modifications of both developmental and selective 

environments. (Laland et al., 2011, p. 1514) 

 

In a similar line, Fitch (2010a, pp. 33–34) introduced glossogeny as a distinctive, 

intermediate level concerning culturally transmitted change. Based on such extensions, I 

propose to think of an additional question in terms of social interaction and cognition (e.g., Han 

et al., 2013; Iacoboni, 2009; Koelsch, 2010; Laland et al., 2011; Tomasello, 1999; Vogeley & 

Roepstorff, 2009; Ward, 2012). Taken this challenge into account, comparative biomusicology 

aims to ground and explain social, cultural and historical musical phenomena within a 

biological framework without neglecting their relevance. How to address social interaction and 

social cognition in comparative biomusicology remains an open but important topic. For now, 

this additional question is still underspecified and needs further refinement, but further 



PART I      16 

considerations of this question will be very fruitful for the development of comparative 

biomusicology. In the PART IV (Section 17.1, p. 171), I will briefly come back to this issue. 

 

5 Methodological problems and first approaches 

5.1 Problem of contrastive comparison 

In the Chapter 4 (p. 9), I introduced a comparative biological information processing 

framework and suggested a mechanistic approach, especially a multi-component approach. 

However, contrasting domain- and species-specific constituents also doesn’t lead to true 

comparative research. Therefore, current comparative approaches agree upon the importance 

of such a divide-and-concur strategy, but, at the same time, are worrying about what the right 

level of comparison is. In what follows, I discuss this issue from two perspectives: a 

comparative approach to language and music and a comparative cognition approach.  

 

5.1.1 The comparative approach to language and music 

To avoid a contrastive approach, it is a good starting point to clarify the constituent 

parts of language and music at Marr’s three levels of analysis. In comparative language-music 

research, Fritz et al. (2013) suggested such an approach by largely focusing on the algorithmic 

and implementional level.5 For Fritz et al. (2013, p. 420), “perception and active performance 

of music (including song and dance) as well as language comprehension and production” are 

placed at the level of computation. However, this statement neither explains what is computed 

nor why. As input and output representations, they list up several primitives (see Table 5.1). 

Those representations are suggested as domain-specific. Moreover, concerning algorithms for 

the transformation, several processes are listed (see Table 5.1), which were claimed as domain-

general. Fritz and colleagues (2013) hypothesized that domain-specific representations can be 

processed by domain-general algorithms, but did not elaborate this discussion. The hypothesis 

is stated by Fritz et al. (2013, p. 425) as following: 

 

In contrast to the representational inventories, we hypothesize that many of the 

algorithms/operations that have such primitives as their inputs are, by and large, 

domain-general or, at least, will prove to combine generic algorithms in 

domain-specific ways. One way to conceptualize this is to imagine different 

                                                 
5 Fritz and colleagues (2013) use the term “algorithm” to refer to cognitive processes and they do not introduce 

any concrete algorithm. This is also the case in the current thesis because I investigate algorithm in terms of 

cognitive processes for (psychological) parsing. See also PART IV, Section 17.3, p. 176 for discussions. 
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invocations of the same neural circuitry; that is, “copies” of the same circuitry, 

but which operate on input representations of different types that are domain 

specific. 

Table 5.1 Elementary parts list (preliminary).6 

Marr’s levels Language Music 

Computational 
  

Algorithmic 

Representation (articulatory) Feature; 

Phoneme; 

Syllable; 

Morpheme; 

Phrase (e.g., noun and verb 

phrase); 

Clause; 

Sentence; 

Discourse and narrative 

Note (timbre and pitch); 

Pitch interval (dissonance 

and consonance); 

Octave-based pitch scale; 

Pitch hierarchy (tonality); 

Discrete time interval; 

Beat; 

Meter; 

Motif / theme; 

Melody / satz; 

Piece 

Algorithm Constructing spatiotemporal objects (streams, gestures); 

Extracting relative pitch; 

Extracting relative time; 

Discretization; 

Sequencing, concatenation, ordering; 

Grouping, constituency, hierarchy; 

Establishing relationships: local or long distance; 

Coordinate transformations; 

Prediction; 

                                                 
6 This elementary parts list was suggested by Fritz et al. (2013, p. 420). The labels of Marr’s levels were called 

differently by Fritz et al. (2013), but have been changed here to avoid terminological confusion. I interpret their 

“representational computational” and “algorithmic computational” as belonging to the “algorithmic level”, and 

called the former “representation” and the latter “algorithm”. In addition, I removed “domain-general” and 

“domain-specific” from the list because it is difficult to classify the levels according to those labels (see the 

discussion in the text.  
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Synchronization, entrainment, turn-taking; 

Concurrent processing over different levels 

Implementational 
Generic forms of circuitry; 

General learning rules which can adapt circuits to serve 

one or both domains 

 

Throughout the current thesis, in concert with Fritz et al. (2013), I argue that contrasting 

language and music domain-specific representation is not a fruitful comparative approach. 

Especially, adapting specific concepts developed in linguistics to music might not be as fruitful 

as expected or, even worse, harmful for comparison (Asano & Boeckx, 2015). However, in 

contrast to Fritz et al. (2013), I suggest that even at the level of representation, there is an 

important similarity between language and music, namely headed hierarchical structures. I will 

even make a stronger claim that comparative research on language and music should take a 

bottom-up approach investigating cognitive systems in terms of a set of common principles. 

Of course, such a comparative approach should also explain differences. In explaining 

similarities and differences within a comparative framework, I take the hypothesis on domain-

general algorithms operating on domain-specific representations seriously and elaborate this 

idea from theoretical as well as from empirical perspectives to achieve a comparative approach 

without being contrastive. In any case, such an elementary parts list ranging in all levels is an 

important and necessary starting point.7 

How does the elementary parts list of the current thesis look like? As mentioned above, 

Fritz and colleagues (2013) did not characterize language and music at the computational level 

explicitly. Thus, I begin with updating this level by identifying what is computed and why. At 

the computational level, language is characterized in terms of mapping sound and meaning 

(Chomsky, 2010). For music, linking sound and affect is the computational problem to be 

solved (Jackendoff & Lerdahl, 2006; Lerdahl & Jackendoff, 1983). At the algorithmic level, 

linguistic and musical parsers should be investigated. As for music, two central aspects of 

music processing should be explored: Tonal encoding of pitch, i.e., computing pitch in relation 

to the tonal center, and beat-based encoding of rhythm, i.e., computing rhythm in relation to a 

periodic internal beat. These components were suggested to be potential innate specifications 

                                                 
7 An elementary parts list based on results of the current thesis is presented and discussed in the PART IV. 
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for music (Honing & Ploeger, 2012). Then, the implementational level should identify how the 

parsers are realized in terms of neural structures or circuits and operations carried out by them.  

 

5.1.2 The comparative cognition approach 

Determining constituents for comparative approaches between species based on 

complex mental abilities of humans might also lead to inconclusive contrasting. De Waal and 

Ferrari (2010) emphasized this problem and suggested a bottom-up perspective to between-

species comparative approaches attempting an exploration of basic processes. They put the 

following questions at the center (De Waal & Ferrari, 2010, p. 201): How does cognitive 

capacity X actually work? “What are the necessary ingredients of X and how did these evolve?”. 

Those questions emphasize two of Tinbergen’s four questions: mechanism and phylogeny. By 

discussing mental capacities memory and planning, imitation as well as prosocial behavior and 

empathy, they challenged the claim of human uniqueness and put forward an alternative view 

(De Waal & Ferrari, 2010, p. 205): “De novo appearance of cognitive capacities are apparently 

as unlikely as de novo anatomical features”. If we take the questions of mechanism and 

phylogeny as well as the possibility of evolutionary continuity in complex mental abilities 

seriously, what might be the constituents for between-species comparative approach to 

language and music? 

First of all, a multi-component approach which avoids technical theoretical terms from 

linguistics or musicology, but uses “song” and “dance” (shared with some bird species) as well 

as “drumming” (shared with some non-human primate species) to identify the behavioral 

domains would be a good starting point for between-species comparison (Fitch, 2006b, 2015). 

Moreover, other researchers suggested mammalian calls, i.e. acoustic communication, as 

promising candidate (Ackermann, Hage, & Ziegler, 2014; Fitch & Zuberbühler, 2013; 

Jackendoff, 2009; Rauschecker, 2013), while others put gestural communication forward 

(Arbib, 2011). As for underlying capacities relevant to the discussion of language and music 

evolution, vocal learning or vocal control (Fitch, 2011; Patel, 2006), motor control (Fujita, 

2016; Lieberman, 2010), social learning (De Waal & Ferrari, 2010; Tomasello, 1996; Zentall, 

1996), and imitation (Arbib, 2011) can be listed. Regarding all those candidate domains and 

capacities, one of the central questions in comparative language and music evolution research 

is what makes the human brain differ from that of other animals in being language- or music-

ready, i.e. ‘equipping’ for language and music, and how it got that way. 

In comparing different species, two distinctive classes of shared traits are identified: 

homologies which are derived from a shared trait existing in the common ancestor and 
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analogies which evolved independently in multiple lineages (Fitch, 2017). In addition to those 

two, there is deep homology which arose independently in multiple distant lineages at a 

phenotypic level, but build on the genetic and developmental mechanisms present in the 

common ancestor (Fitch, 2017). For example, concerning the components mentioned above 

(Section 5.1, p. 16), drumming is a homological trait which likely existed in the last common 

ancestor (LCA) of humans and chimpanzees, while song is an analogous trait, which emerged 

by convergent evolution in distant species, or is possibly a case of deep homology (e.g., Foxp2 

gene). Comparative cognition research, then, investigates similarities and differences of 

cognitive and neural mechanisms between those species. 

While some researchers question the usefulness of such an approach in its current form 

(e.g., Hauser et al., 2014), others regard it as one of promising methods to investigate the 

evolution of language empirically (e.g., Fitch, 2017). Importantly, any animal model can be a 

model of human language. Thus, each animal model can potentially inform us about some 

subcomponent of language. For example, song bird models contribute to the investigation of 

vocal learning, but might not be informative to elucidate the evolution of semantics. Moreover, 

in light of comparative cognition, “correct inferences about the relationship between cognitive 

or brain processes in humans and those in nonhuman animals depend on a detailed appreciation 

of the biology of ‘animal models’” (Shettleworth, 2010, p. 16). Therefore, an important 

question in choosing an animal model is whether and how it can contribute to mechanistic 

understanding of a subcomponent of human language or music in terms of cognitive and neural 

processes. 

In approaching this question, a corticocentric myopic view contrasting the cortex 

implementing ‘higher’ functions and subcortical structures implementing ‘lower’ functions 

should be avoided: cortical and subcortical structures are relating to each other to implement 

the ‘higher’ functions (Parvizi, 2009). Thus, integration of subcortical structures is necessary 

for a bottom-up comparative approach. As suggested by De Waal and Ferrari (2010, p. 202), 

“[e]very species, including our own, comes with an enormous set of evolutionarily ancient 

components of cognition that we need to better understand before we can reasonably focus on 

what makes the cognition of each species special”. They further ask whether “[…] cognitive 

specializations [are] due to new capacities or rather to new combinations of old ones” (De Waal 

& Ferrari, 2010, p. 202). 

Throughout the current thesis, to achieve a non-contrastive approach, I hold a view 

against corticocentrism and highlight the role of evolutionarily ancient components in 

cognition and the possibility of language and music having emerged as new combinations of 
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old capacities. In particular, I emphasize key roles of the basal ganglia in cognition and suggest 

that they belong to one of ancient components combined in new ways within the cortico-basal 

ganglia-thalamocortical circuits, yielding one aspect of language- and music-ready brain. 

However, this does not mean that I ignore the cortex. Rather, by investigating the cortico-basal 

ganglia-thalamocortical circuits, I attempt to integrate approaches investigating both cortical 

and subcortical structures. 

  

5.2 The problem of explanatory gaps 

First of all, it is worth noting that the problem of explanatory gaps comprises two 

separate problems: a) How is mapping from theoretical concepts of music theory and linguistic 

theory onto hypothetical constructs of psychology established to get psychologically relevant 

and testable concepts?; b) How to deal with the explanatory gap between mind and brain in 

comparative biomusicology? In language cognition research, those problems have been 

discussed repeatedly. Question a) relates to the debate on how to deal with the competence-

performance distinction and question b) to the discussion about how to relate mind and brain. 

In what follows, first, I briefly summarize the state of the art regarding question a) and b), and 

first approaches suggested in language cognition research. Then, I propose how comparative 

biomusicology might profit from those debates and approaches. 

 

5.2.1 Going beyond the competence-performance dichotomy 

After the cognitive revolution in the 1960’s, linguistic theory and psychology as 

disciplines of cognitive science have been concerned with the internal mechanisms associating 

sound and meaning in a particular way. Chomsky puts emphasis on the internal mechanisms 

by differentiating competence – the capacity / knowledge of the ideal speaker-hearers to map 

sounds and meanings strictly in concert with the rules of their language – and performance – 

the actual use of this capacity / knowledge in a certain situation (Chomsky, 1965, 1968). As he 

states it (Chomsky, 1965, pp. 3–4): 

 

Linguistic theory is concerned primarily with an ideal speaker-listener, in a 

completely homogenous speech-community, who knows its language perfectly 

and is unaffected by such grammatically irrelevant conditions as memory 

limitations, distractions, shifts of attention and interest, and errors (random or 

characteristic) in applying his knowledge of the language in actual performance. 

[...] To study actual linguistic performance, we must consider the interaction of 
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a variety of factors, of which the underlying competence of the speaker-hearer 

is only one. [...] 

We thus make a fundamental distinction between competence (the speaker-

hearer’s knowledge of his language) and performance (the actual use of 

language in concrete situations). Only under the idealization set forth in the 

preceding paragraph is performance a direct reflection of competence.  

 

Based on this agenda of linguistic theory introduced by Chomsky, generative linguistics has 

focused on the investigation of competence in terms of computations and representations 

generating language. Performance is, then, an interaction effect of the competence with a 

variety of factors such as memory limitations, distractions, shifts of attention and interest, and 

errors (Chomsky, 1968). 

Moreover, Chomsky (at least in 1968) characterizes a grammar (G) as a competence 

model for linguistic inquiry and, in parallel, a perceptual model (PM) as a performance model 

for psychological research. On one hand, he points out the parallel between G and PM in the 

sense that both are about internal mechanisms associating sounds and meanings. On the other 

hand, he clearly distinguishes those two levels of investigations. In his words (Chomsky, 1968, 

p. 104): 

 

Both G and PM relate sound and meaning; but PM makes use of much 

information beyond the intrinsic sound-meaning association determined by the 

grammar G, and it operates under constraints of memory, time, and organization 

of perceptual strategies that are not matters of grammar. Correspondingly, 

although we may describe the grammar G as a system of processes and rules 

that apply in a certain order to relate sound and meaning, we are not entitled to 

take this as a description of the successive acts of a performance model such as 

PM - in fact, it would be quite absurd to do so.  

 

This passage, as I understood, emphasizes that the derivation, i.e. stepwise generation of a 

syntactic representation, does not conform to online processing steps in performance. This is 

one of the reasons why linguistic theory and psycholinguistic research went in different 

directions. For decades, this strict distinction between competence and performance was 

maintained. However, the research on the biological foundations of language can be achieved 
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only if both linguistic competence theory and empirical research areas investigating 

performance such as psychology and neuroscience are integrated. 

Beyond differences in theoretical positions, researchers recently agreed upon the view 

that differentiating competence and performance does not mean that linguistic theory is 

independent of any empirical data, nor psycholinguistics as well as cognitive neuroscience of 

language work regardless of linguistic theory (Boeckx, 2010; Ferreira, 2005; Jackendoff, 2002; 

Marantz, 2005; Myachykov, Tomlin, & Posner, 2005). Two major strategies for constructing 

mapping hypotheses between competence and performance, i.e. tackling the mapping problem 

a), dominate current language cognition research so far (Figure 5.1). 

 

Figure 5.1 Two major strategies for constructing mapping hypotheses between competence and 

performance 

 

The first one is the direct correlational mapping strategy connecting linguistic theory 

directly to the measures of psycholinguistics and cognitive neuroscience. For example, Marantz 

(2005) discussed how generative linguistic theory acts as a theory of language within cognitive 

neuroscience and suggested that hypotheses within all generative theories can be empirically 

tested by correlating representational and computational complexity with experimental 

dependent variables. Given the ideal situation in which all other variables are equal, the more 

complex a representation, the longer a subject requires to perform a task and the more activity 

in the brain should be observed. Therefore, he claims that “the categories and operations of 

generative grammar are hypotheses about the representations and computations in the minds 

and brains of speakers” (Marantz, 2005, p. 440). 
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The other type is the convergence strategy by developing competence theory with the 

principles resembling to the principles that the language user actually employs in performance 

(Jackendoff, 2002). Thus, this approach posits a competence theory with a close relation to a 

theory of processing and attempts to integrate concepts from processing theory such as working 

memory to the competence theory. Jackendoff’s approach is based on the soft competence-

performance distinction and advocates the integration of linguistic theory into a broader 

psychological context. Therefore, Jackendoff (2002, p. 34) views the investigation of the 

human language capacity as follows: 

 

Theory of competence: the functional characterization of the “data structures” 

stored and assembled in the f-mind [functional mind; RA] in the course of 

language use. 

Theory of performance: the functional characterization of the use of these data 

structures in the course of language perception and production. 

Theory of neural instantiation: how the data structures and the processes that 

store and assemble them are realized in the brain.  

 

According to those definitions, especially that of the theory of competence, it can be said that 

Jackendoff’s enterprise is geared to usage-based approach aiming at the explanation of online 

language processing. Especially, his theory of language is an integration of the generative 

grammar (computational theory) and Baddeley’s theory of working memory (psychological 

theory) (Baddeley, 2010).8 

What might be an appropriate strategy to deal with problem a) and b) in comparative 

biomusicology? A possible answer to question a) might be tackled by establishing the 

relationship between music theoretical concepts and hypothetical constructs of psychology. A 

promising starting point is working out the relationship between theoretical investigations of 

musical structure in terms of grouping, meter, and tonal hierarchies (Jackendoff & Lerdahl, 

2006; Lerdahl, 2013; Lerdahl & Jackendoff, 1983) and psychological approaches studying 

musical expectancy building based on processing complex hierarchical structure – musical 

event hierarchy including both harmonic and rhythmic aspects – in time within certain context 

(Patel & Morgan, 2017; Rohrmeier & Koelsch, 2012; Tillmann, 2012). 

 

                                                 
8 For recent reviews including updates of the model, see, for example, Baddeley (2010, 2012) 
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5.2.2 Approaching the mind/brain interface problems 

Poeppel and Embick (2005, pp. 1–5) pointed out two interface problems in studying 

cognition at the linguistic-neuroscience interface. The first one is called the Granularity 

Mismatch Problem (GMP), which means that the elemental concepts of linguistics and 

neuroscience (neurobiology as well as cognitive neuroscience) do not match in their 

‘conceptual granularity’. They particularly suggested that linguistic concepts possess more 

fine-grained distinctions than those in neuroscience. The second problem is called the 

Ontological Incommensurability Problem (OIP): the constituent elements of linguistic theory 

cannot be put on a level with the fundamental biological units in neuroscience. A solution of 

those problems, according to Poeppel and Embick (2005, p. 5), is “spelling out the ontologies 

and processes in computational terms that are at the appropriate level of abstraction (i.e. can be 

performed by specific neural populations) such that explicit interdisciplinary linking 

hypotheses can be formulated”. 

The most parsimonious approach concerning this second problem is to assume that it 

will not be possible to close that gap. Although it is important to keep the difficulty in mind, 

modern cognitive science can only make progress by approaching this problem. One way to 

tackle problem b) is explanatory neurolinguistics which aims at establishing explanatory 

relationship between the computational-representational (CR)9  theory of language and the 

neurobiological (NB) domain (Embick & Poeppel, 2015). Within this framework, they suggest 

to investigate the explanatory connections between CR and NB on the basis of Marr’s levels. 

There are three possibilities: Type I Computational/Hardware, Type II Algorithm/Hardware, 

and Type III Computation/Algorithm. Type III implicates mappings between theoretical 

linguistics and psycholinguistics theory and is relating to the issue discussed above concerning 

mapping problem a). Although Type I explanation, i.e. the explanation of why certain NB 

structures computes particular computations and not the others, is the ultimate goal of the 

explanatory neurolinguistics, it is still unclear at present whether this mapping can be yielded. 

Embick and Poeppel (2015) suggest that Type II explanations, i.e. explaining why certain NB 

objects are optimally designed to implement particular procedures, can be yielded in a more 

direct manner than Type I explanations. To their endeavor, moreover, the following two 

questions are central (Embick & Poeppel, 2015, p. 363): 

 

                                                 
9 The computational-representational theory subsumes Marr’s computational and algorithmic levels (Embick & 

Poeppel, 2015). 
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Specialisation question 1: Are there particular levels of NB organization that are to be 

privileged as candidates for CR specialisation? 

Specialisation question 2: Are there particular parts of the CR theory that are more 

likely to be candidates for explanatory neurolinguistic explanation than others?  

 

Concerning the first question, they suggest the level of the neural circuit as an 

appropriate level to investigate the relationship between CR and NB. The second question 

cannot be answered at the moment, especially given the difficulty to establish Type I 

explanations. 

In approaching the Type II explanation, the relationship between cognitive processes 

and brain activities should be carefully evaluated. A logically valid kind of inference drawn 

from neuroimaging data usually has the following form (Poldrack, 2006, p. 59): “if cognitive 

process X is engaged, then brain area Z is active”. From this form, it is possible to deduce a 

conclusion in two logically valid ways: “cognitive process X is engaged, thus brain area Z is 

active” (modus ponens) and “brain area Z is not active, thus cognitive process X is not engaged” 

(modus tollens). However, Poldrack (2006) indicates that reasoning made in experimental 

neuroscience articles is based on a ‘reverse inference’ which is basically a logically invalid 

form, i.e. the logical fallacy of affirming the consequent: “brain area Z is active, thus cognitive 

process X is engaged”. Logically invalid reasoning is per se not a bad reasoning and “reverse 

inference might be useful in the discovery of interesting new facts about the underlying 

mechanisms” (Poldrack, 2006, p. 60), but it should be used with caution because such an 

inference does not necessarily lead to a true conclusion. Poldrack (2006) suggests to restate the 

inference in probabilistic terms by using one form of Bayes’ theorem:10 

(5-1) 𝑃(𝐶𝑂𝐺𝑋|𝐴𝐶𝑇𝑍)  =  
𝑃(𝐴𝐶𝑇𝑍|𝐶𝑂𝐺𝑋) 𝑃(𝐶𝑂𝐺𝑋)

𝑃(𝐴𝐶𝑇𝑍)
 

where 

(5-2) 𝑃(𝐴𝐶𝑇𝑍)  =  𝑃(𝐴𝐶𝑇𝑍|𝐶𝑂𝐺𝑋) 𝑃(𝐶𝑂𝐺𝑋)  +  𝑃(𝐴𝐶𝑇𝑍|¬𝐶𝑂𝐺𝑋) 𝑃(¬𝐶𝑂𝐺𝑋) 

 

                                                 
10 COGX refers to “the engagement of cognitive process X” and ACTZ to “activation in region Z” (Poldrack, 2006, 

p. 60). According to Bayes’ theorem, the conditional probability of COGX given ACTZ (known as the posterior 

probability) can be determined in terms of three components: the conditional probability of ACTZ given COGX–

–the “likelihood”––, i.e., P(ACTZ|COGX), the ‘stand-alone’ probability of COGX without any context (known as 

the prior probability), i.e., P(COGX), and the conditional probability of ACTZ in the absence of COGX, i.e., 

P(ACTZ|ᆨ COGX). The ‘stand-alone’ probability of ACTZ without any context, i.e., P(ACTZ), (known as the base 

rate of ACTZ) can be calculated by means of these three components as stated in the second equation (2). For a 

short, precise characterization of this theorem, see, for example, chap. 7.2 in Tanimoto (1990, pp. 330–335). 
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This means, we regard degrees of belief in a reverse inference as probability values, i.e., 

P(COGX|ACTZ).  

The reason why this probabilistic inference is important can be clarified on the basis of 

Figure 5.2 (Poldrack, 2006, p. 61) which illustrates the relationship between experimental 

manipulation through tasks, (unobservable) cognitive processes, and (observable) measure in 

a probabilistic graph, i.e., Bayesian network. This figure shows that the degree of belief in a 

reverse inference (from observable measures to unobservable processes), i.e., P(COGX|ACTZ), 

depends on “the prior belief in the engagement of cognitive process X given the task 

manipulation”, i.e., P(COGX|TASKY), and “the selectivity of the neural response (i.e. the ratio 

of process-specific activation to the overall likelihood of activation in that area across all 

tasks)”, i.e., P(ACTZ|COGX) (Poldrack, 2006, p. 60). The first aspect relates to the question 

“How likely does TASKY cause COGX?” and the second aspect to “How probably does COGX 

cause ACTZ?”. If the relationship between task and cognitive process is not clear, 

P(COGX|TASKY) might be at the chance level (e.g. 0.5). If not only a particular cognitive 

process 1, but also other cognitive processes 2, 3, 4, and so on cause the activity in the same 

brain region or the same behavioral data, the selectivity of P(ACTZ|COGX) might be low. Thus, 

optimizing those two aspects leads to the improvement of reverse inferences. 

 

Figure 5.2 Relationship between experimental manipulation through tasks, (unobservable) 

cognitive processes, and (observable) measure in a probabilistic graph.11 This figure is adopted 

from Poldrack (2006, p. 61), Trends in Cognitive Sciences, 10 (2): 59-63, with permission from 

Elsevier. 

                                                 
11 To note that P(COGX) in the above mentioned equations are represented hier as the probability of COGX given 

TASKY, i.e. P(COGX|TASKY). 
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Neurocognitive modelling might be one of strategy optimizing P(COGX|TASKY). 

Jacobs and Hofmann (2013) claim that the more precise the specification of cognitive processes 

or implementation in a simulation model, the higher P(COGX|TASKY) becomes. Thus, they set 

the goal of neurocognitive modeling as identifying core processes which underlie effort 

(measured in terms of brain activities or behavioral data) in all experimental paradigms 

inducing a particular cognitive process such as word recognition. They also suggest that a 

successful neurocognitive model should optimize P(ACTZ|COGX) by specifying the function 

of a particular neural structure in a certain cognitive function as precisely as possible. Thus, 

building an effective neurocognitive model requires systematic relationships between cognitive 

function and neural structure, i.e. a detailed cognitive or functional ontology12  (Jacobs & 

Hofmann, 2013; Poldrack, 2006; Price & Friston, 2005).  

There are several approaches to specify functions of neural structures. The first one 

suggested by different authors (e.g., Jacobs & Hofmann, 2013; Poldrack, 2006; Price & Friston, 

2005) is the network approach to the brain (Wilkins, 2018 for neuromusicology), especially by 

using effective connectivity (also called functional connectivity) analysis. This means that the 

structure-function mappings are performed not at the level of single anatomical structures, but 

at the network level by analyzing sets of functionally or effectively interconnected and co-

activated regions. According to this approach, one region activated over different cognitive 

functions might show selectivity to a particular function in terms of the other co-activating 

regions. Another one is a cross-disorder approach to explore the question “What neural 

structure is necessary for a particular cognitive function and what is just involved in it?”. A 

breakdown of cognitive functions through brain lesions provides strong evidences for 

functional selectivity. Therefore, an intertwined research strategy of brain imaging and cross-

disorder approach is a key to construct functional ontology (see Figure 5.3) (Price & Friston, 

2005, p. 271). 

                                                 
12 Price and Friston (2005, p. 269) suggested that a cognitive or functional ontology should integrate structural 

(i.e., neuroanatomical) and functional (i.e., cognitive function related) information, so that a given cognitive 

function predicts the brain structures engaged and vice versa. As shown in Figure 5.3, cognitive functions are 

hierarchically organized into different granularities of sub-processes. They further claim that relationships 

between brain activations should be reflected in the cognitive ontology in terms of functional interactions inferred 

by co-activations in different brain regions rather than neuroanatomical connections. Such systematic structure-

function relationships should be explicitly determined and implemented by means of data base systems, for 

example. 
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Figure 5.3 Structure-function mappings. This figure is adapted from Price and Friston (2005, 

p. 271), Cognitive Neuropsychology, 22 (3-4): 262-275, with permission by Taylor & Francis. 

 

If we regard language and music as neurocognitive systems, the object of the 

investigation is (unobservable) neurocognitive processes. Therefore, the approaches suggested 

above are necessary. Music cognition research indeed makes use of reverse inference. A 

prominent example is represented in a sentence like “Because Broca’s region is activated, 

therefore, music also engages hierarchical structure processing”. This sentence seems to be 

based on the following reverse inference: Premise 1 “If hierarchical structure processing is 

engaged, then the Broca’s region is active”; Premise 2 “The Broca’s region is active”; 

Conclusion “Hierarchical structure processing is engaged”. In such a case, however, not only 

the tasks, but also the stimuli should be considered to optimize the selectivity of an 

unobservable cognitive process given a particular experimental manipulation. This is one 

missing component in the approach of Poldrack (2006). That is, we have to consider 

P(COGX|TASKY and STIMULUSR).  

Moreover, Price and Friston (2005) discuss neural correlates of cognitive processes in 

terms of neural structures and not neural processes. However, comparative biomusicology 
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attempts to explain biological information processing mechanisms in terms of cognitive and 

neural processes. Thus, not only neural structures, but also operations carried out by particular 

neural structures should be identified and integrated in such an approach. The reverse inference 

at the edge of P(ACTZ|COGX) can be also optimized by specifying the neural processes which 

can be implemented by particular neural operations implemented in particular regions. The 

candidate neural processes could then contribute to narrow down conceivable cognitive 

processes among many alternatives. 

 

6 Principled explanations as research strategies 

Comparative biomusicology investigates the question “Why is music the way it is?” in 

relation to other cognitive systems (e.g., language and action) and other species (e.g., non-

human primates and song birds) within a unified comparative biological information 

processing framework in which a mechanistic approach concerning cognitive and neural 

processes plays a central role. Figure 6.1 summarizes the issues discussed in the PART I and 

serves as the basis of the current thesis.  The vertical double arrow between computational and 

algorithmic levels indicates the competence-performance or theory-psychology mapping 

problem. In the current thesis, I discuss this relationship in terms of mapping hierarchical 

structure and temporal sequence as a core function of syntactic computation. In this way, I aim 

at providing Type III explanation introduced by Embick and Poeppel (2015). The mind/brain 

interface problem for the Type II explanation should be investigated in terms of the relationship 

between cognitive and neural processes as a question about mechanism. In the current thesis, 

thus, I approach the Type II explanation by discussing to what extent cognitive and neural 

processes can be related. In Figure 6.1 this challenge is indicated by the equal sign between 

cognitive and neural processes with a question mark.  
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Figure 6.1 Levels of investigations in the comparative biomusicology framework. 

 

As Figure 6.1 shows, there are top-down and bottom-up strategies to yield mechanistic 

explanations in terms of cognitive and neural processes. First, theory formulated explicitly at 

the computational and algorithmic level can contribute to improve P(COGX|TASKY and 

STIMULUSR) from top-down. Second, P(ACTZ|COGX) should be optimized from bottom-up, 

i.e., from neural and behavioral measures to cognitive processes. As discussed above, the 

network approach to the brain and cross-disorder perspectives are two methods that optimize 

this side of inference (Poldrack, 2006; Price & Friston, 2005) which I also adopt in the current 

thesis. In addition, I suggest that implementational level research on neurobiological details 

reveal a set of neural processes which contribute to reveal cognitive processes (putatively) 

measured in experiments. In this way, I attempt to approach Type II explanation, i.e., explaining 

why certain NB objects are optimally designed to implement particular procedures (Embick & 

Poeppel, 2015), by integrating both top-down and bottom-up research strategies, and contribute 

to research on cognitive / functional ontology (Poldrack, 2006; Price & Friston, 2005) by 

identifying systematic relationship between cognitive and neural processes. 

How is it possible to conduct comparative research within this framework? To achieve 

non-contrastive approaches, I put forward principled explanations regarding cognitive systems 

as instances of the same principles. This line of approach was also emphasized by several 



PART I      32 

researchers in the past (e.g., Merker, 2002; Merker, Morley, & Zuidema, 2015), but was not 

developed extensively in a comparative, biological context. One modern comparative, 

biological research program based on such an approach was introduced by Fitch (2014).13 The 

central working hypothesis of the current thesis is as follows: Language and music share a set 

of basic computational and neural principles, but differ in their degree of expressions on the 

motor to cognitive gradient. The main goal of the current thesis is, then, to derive hypotheses 

about cognitive and neural processes of the music capacity and clarify their relation to those of 

the language capacity. At the best, those hypotheses are explicit enough to be implemented as 

a computational neurocognitive model and to generate implications which can be tested 

empirically in the future research. In the current thesis, I discuss how language and music can 

be explained in a principled way from two perspectives: 1) syntax as a set of combinatorial 

principles generating hierarchically structured representations and 2) neural structures and 

operations as implementational principles. 

“Syntax” in its broad sense can be understood as “a set of principles governing the 

hierarchical combination of discrete structural elements into lager units (Bickerton, 2009) 

and/or into sequences (Patel, 2008)” (Asano & Boeckx, 2015, p. 2). Bickerton’s way of the 

characterization is at the computational level, while Patel’s way is relating to parsing. That is, 

the definition of “syntax” in its broad sense as introduced here subsumes both competence and 

performance aspects. This broad sense of “syntax” can be applied to language at different 

representational levels such as phonology, morphology, narrow-sense syntax, semantics, and 

pragmatics as well as to music in terms of tonal hierarchy and rhythmic structure. Hierarchical 

representations of language and music are different. However, once we take a bottom-up 

perspective and regard language and music as different instances of shared combinatorial 

principles, such differences can be explained in terms of difference in their goals to be achieved, 

i.e., the problems to be solved by the algorithm. As mentioned above, at the computational 

level, language is understood as mapping sound and meaning, while music as mapping sound 

and affect. However, both have combinatorial principles in common to achieve their specific 

goals. Therefore, syntax in the broad sense provides a good comparative basis. 

Shepherd (2004) points out that investigations of organism’s behavior and its biological 

substrates include multiple levels of organization: behavioral systems, interregional circuits, 

local (regional) circuits, neurons, dendritic trees, synaptic microcircuits, synapses, molecules 

and ions, and genes. As he suggested (Shepherd, 2004, p. 7), “[a]n important aim of the study 

                                                 
13 I will come back to the approach introduced by Fitch (2014) in PART IV. 
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of synaptic organization is to identify the type of circuits and the functional operations that they 

perform at each of these organizational levels”. At first glance, this approach might seem 

infeasible given the great varieties of neural organization and the vast amount of information 

about the brain. However, as Shepherd (2004) demonstrated, there are some basic principles 

common to the different brain regions and identifiable at successive levels of organization: 

there are fundamental types of synaptic circuits (canonical circuits) and elementary operations 

they perform (canonical operations). Those canonical circuits and operations serve as a 

conceptual framework for understanding how general principles of neural organization are 

adapted to achieve unique aspects of each brain region. Thus, neuroscientific endeavor 

investigating the neural basis of behaviors or cognitive systems should consider a set of 

principles underlying the varieties the brain organization seriously. 

To make a step toward a computational neurocognitive model, in the current thesis, I 

derive a neurocognitive model from the results of comparative language-music research in 

terms of syntax as combinatorial principles and neural structures and operations as 

implementational principles. Several researchers suggested neurocognitive models of speech 

as well as language processing (e.g., Bornkessel-Schlesewsky & Schlesewsky, 2013; Friederici, 

2002, 2011, 2012, 2016, 2017; Hagoort, 2013, 2016; Hickok, 2012; Hickok & Poeppel, 2007, 

2016, 2004). In parallel, neurocognitive models of music processing were suggested (Koelsch, 

2011a, 2012a; Patel, 2003, 2008, 2013). On one hand, such models constructed on the basis on 

language models could lead to a to-be-avoided contrastive approach. On the other hand, if 

language and music rely on the same neural structures and circuits as well as operations, 

neurocognitive models of language, which are already quite clear about the details of cognitive 

and neural processes, can contribute to build neurocognitive models of music processing. An 

example of such an enterprise is one suggested by Koelsch (2011a, 2012a) on the basis of 

Friederici’s model. Thus, in the current thesis, I mainly focus on their models first and then 

discuss those models in light of other models to suggest some extension. 

Friederici’s model is a descriptive, boxological neurocognitive model for stepwise 

parsing of linguistic sentences, which was constructed on the basis of behavioral, brain imaging, 

and neuropsychological studies. However, it does not specify how the different sub-processes 

function (Jacobs & Hofmann, 2013). Therefore, the extended model which is introduced in the 

current thesis aims at providing mechanistic explanation in terms of cognitive and neural 

processes, which is explicit enough to be implemented as a formal-mathematical model in the 

future research. This direction is in line with the proposal that cognitive models should help us 

to specify hypotheses about the functions of brain activities for cognitive processes, so that 
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those hypotheses are falsifiable by the methods of cognitive neuroscience (Jacobs & Hofmann, 

2013). Thus, though I do not build a formal-mathematical model in the current thesis, I will 

suggest a possible way toward computational neurocognitive modeling in cognitive 

musicology research. 
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PART II: Top-down perspectives to syntax and its neurocognitive mechanisms 

 

The goal of this part is to investigate the relationship between language and music in terms of 

syntax as a set of combinatorial principles. In addition, shared aspects of syntax in language 

and music in terms of neurocognitive mechanisms, i.e. cognitive and neural processes, are 

clarified. I review the current comparative language-music research landscape concerning 

syntax from two perspectives: generative neurolinguistics and neuromusicology as well as 

neurocognitive psycholinguistics and psychomusicology (see Section 7.1, p. 37). I then 

introduce a first step toward tackling the problem of contrastive language-music research and 

the problem of explanatory gaps. The approaches of this part are characterized as top-down 

because they investigate syntax and its neurocognitive mechanisms on the basis of the concepts 

from ready-made computational-representational theories. 
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7 On comparing language and music 

7.1 Syntax in the broad sense 

As already mentioned in PART I, the term “syntax” is used in a broad sense (for details, 

see Asano & Boeckx, 2015) in the current thesis. In a broad sense, “syntax” can be defined as 

“a set of principles governing the hierarchical combination of discrete structural elements into 

lager units (Bickerton, 2009) and/or into sequences (Patel, 2008)” (Asano & Boeckx, 2015, p. 

2). The broad sense of syntax applies to several cognitive domains such as language, speech, 

music as well as action, and opens up a new possibility for comparative research with a wide 

range of methods such as theoretical, psychological, and neuroscientific approaches. Below, I 

use “syntax” in this broad sense and call combination of words into phrases building up 

sentences “narrow-sense syntax”. Syntax is one possibility (besides others such as Markov-

chain-based or schema-based approaches) to deal with the problem of temporal integration and 

is applicable for structured sequential behaviors such as language and music as I will show in 

the current thesis. As repeatedly suggested, combinatorial property is not limited to narrow-

sense syntax, i.e., combining words into sentences, but can be applied to a broad range of 

cognitive domains (e.g., Asano & Boeckx, 2015; Fitch, 2010a; Fitch & Martins, 2014; Fujita, 

2016; Jackendoff, 2011, 2015).  

In comparative research on language and music, there are a number of theoretical as 

well as empirical investigations based on such a broad understanding of “syntax” (Table 7.1). 

Table 7.1 contains theoretical and empirical approaches to language (left) and music (right) 

which are relevant for the discussion of the current thesis. The correspondence between 

research on language and music is indicated by locating them in the same row. The upper half 

of the table shows theoretical approaches, while the lower half depicts empirical ones. 

Theoretical and empirical research are not independent of each other. For example, cognitive 

neuroscience of language by Angela Friederici is based on the generative linguistic endeavor 

of Noam Chomsky. Neurocognitive model of music perception by Stefan Koelsch relates to 

the generative approach to music introduced by Martin Rohrmeier. Friederici and Koelsch take 

linguistic and musicological theories seriously and attempt to relate the theoretical concepts to 

neuroscientific research (i.e., direct correlational mapping strategy). Thus, I call those 

approaches “generative neurolinguistics and neuromusicology”. The others prefer more unified 

theories of linguistics and psychology, and apply them to neuroscientific research (i.e., 

convergence strategy). Thus I call those approaches “neurocognitive psycholinguistics” and 

the counterpart in music by Aniruddh Patel “neurocognitive psychomusicology”. 
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Table 7.1 Theoretical and empirical approaches to language and music  

Linguistic theories Theories of music 

Generative grammar (e.g., Chomsky, 1956, 

1957, 1965) 

An unanswered question (Bernstein, 1976) & 

Generative Syntax of Tonal Harmony 

(Rohrmeier, 2007, 2011) 

Minimalist Program (e.g., Chomsky, 1995) Identity thesis (Katz & Pesetsky, 2011) and 

others (Asano, 2012; Fujita, 2016; Roberts, 

2012) 

Parallel architecture (e.g., Jackendoff, 2002) A Generative Theory of Tonal Music 

(Lerdahl & Jackendoff, 1983) 

Psychology and neuroscience of language Psychology and neuroscience of music 

Brain basis of language processing (e.g., 

Friederici, 2002, 2011, 2017) 

Neurocognitive model of music perception 

(Koelsch, 2011a) 

Dependency locality theory (Gibson, 1998, 

2000) 

Shared syntactic integration resource 

hypothesis (Patel, 2003, 2008, 2012) 

Memory, Unification, Control (e.g., Hagoort, 

2005, 2013, 2016) 

Shared syntactic integration resource 

hypothesis (Patel, 2003, 2008, 2012) 

 

As I will review later, research on the relationship between syntax in language and 

music is very much influenced by difference in theoretical orientations mentioned above. 

However, the most important function of syntactic computation which seems common beyond 

theoretical borders is the existence of hierarchical structure underlying temporal sequence. In 

neuroscientific literature, Broca’s region often tends to be associated with processing of 

hierarchical structures in several domains such as language (Friederici, 2011, 2012), music 

(Koelsch, 2011a, 2012a), and action (Fitch & Martins, 2014). Based on this general idea, a core 

function of syntactic computation can be characterized at the best as mapping between 

hierarchically structured representation and temporal sequence (see Figure 7.1). Figure 7.1 

illustrates a function of syntactic computation in language / music as mapping between 

hierarchical structure and temporal sequence to link sound and meaning / affect. In comparative 

research on language and music, such a mapping should be investigated at the computational, 

algorithmic, and implementational levels (see Section 7.2, p. 39, Section 7.3, p. 41, and Section 

7.4, p. 44, for more details). 
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Figure 7.1 Syntax as mapping between hierarchical structure and temporal sequence 

 

The main idea concerning the relationship between syntax in language and music, 

which I will introduce below, is that hierarchically structured representations of each cognitive 

system are different as the building blocks and computational goals of each cognitive system 

are different, but the fact that they are organized in headed hierarchical structures and must be 

mapped onto temporal sequences or vice versa is in common (see for example, Asano & 

Boeckx, 2015; Jackendoff, 2009; Jackendoff & Lerdahl, 2006; Patel, 2008; Thompson-Schill 

et al., 2013). Thus, comparative research on syntax in language and music should focus on such 

a mapping, regardless of whether the inquiry is at the computational level about the capacity / 

knowledge of language and music or at the algorithmic and implementational levels about 

moment-by-moment integration of events in time. In this way, language and music can be 

investigated as different instances of the same principles. 

 

7.2 Computational level: Recursion and hierarchical structure building 

At the computational level, language and music might differ from each other as their 

computational problems vary at first glance: linking sound and meaning for language and 

linking sound and affect for music. Hierarchical structures of the narrow-sense syntax in 

language are built on the basis of syntactic categories (e.g. Verb and Noun), lexical items, and 

propositional meaning. None of them has any proper parallel in music. Instead, hierarchical 

representations of musical syntax are non-categorical, encoding affect, and built on the basis 

of tonal and rhythmic stability or importance. Musical syntax also differs from phonological 

syntax. Hierarchical representations of music and phonology can be compared in terms of pitch 

and rhythm, but tonal hierarchy and isochronous meter are unique organizing principles of 

musical syntax. Therefore, language and music might differ in the way they satisfy those 

domain-specific conditions. However, at the same time, a computational problem for syntax in 

language and music is mapping between hierarchical structure and temporal sequence to link 

sound and meaning / affect. Thus, language and music might share some principles underlying 
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such a mapping. This hypothesis makes comparative language-music research at the 

computational level possible. Generative approaches to language and music (see Chapter 8, p. 

46) which take recursion and hierarchical structure building as central aspects belong to this 

kind of comparative endeavor.  

Recursion is a controversial and much debated term since Hauser and colleagues (2002) 

introduced it in the evolutionary research (see Fitch, 2010b; Lobina, 2017; M. D. Martins, 

2012; Pinker & Jackendoff, 2005). However, as Lobina (2017) noted, it is the property of self-

reference (or self-call) that subsumes all correct uses of recursion in the formal sciences. For 

example, the following definition of the factorial is recursive because “the recursive step 

involves another invocation of the factorial function […]” (Lobina, 2017, p. 11).14 That is, the 

factorial function is invoked on both sides of the equation, i.e., the factorial function calls the 

factorial function itself. 

(7-1) 𝐷𝑒𝑓. 𝑛! {
𝑖𝑓 𝑛 = 1     𝑛! = 1                            (𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒)          

𝑖𝑓 𝑛 > 1     𝑛! = 𝑛 × (𝑛 − 1)!     (𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑠𝑡𝑒𝑝)
  

 

In linguistics, as Bickerton (2009, p. 6) puts it, “recursion is generally defined as the ability to 

insert one structure inside another of the same kind”. This characterization also takes the central 

property of recursion, i.e., self-reference, to heart. Recursion, in this way, can yield discrete 

infinity (Hauser et al., 2002, p. 1571). In other words, it is theoretically possible to define a 

countably (or denumerably) infinite set of discrete elements such as strings of symbols from a 

finite number of rules and a finite number of symbols. Especially, the view of language and 

music as Humboldt systems, i.e., infinite use of finite means, highlighted the necessity of 

theories accounting for discrete infinity (e.g., Chomsky, 1968, p. 15; Merker, 2002, p. 4; Merker 

et al., 2015, p. 3; Rohrmeier & Pearce, 2018, p. 476). 

Hierarchical structure building is another central aspect of syntax in language and music. 

It was also claimed to be the most significant aspect of the narrow-sense syntax (Bickerton, 

2009). For example, in language, relationship between words in a sentence, e.g., a subject-verb 

relationship, is determined not by linear order, but hierarchical structure. This can be illustrated 

by the following example.  

                                                 
14 Given n = 4, according to the recursive step in the recursive definition n! = n x (n – 1)!. The first function 

application results in 4! = 4 x 3!, which means that the function has to evaluate 3!. This, in turn, is again the 

recursive step. Thus, the second function application results in 3! = 3 x 2!, so we get 4 x 3 x 2! and the third 

recursive step leads to 2! = 2 x 1!, i.e., 4 x 3 x 2 x 1!.  Because then the base case applies with 1! = 1, we get 4 x 

3 x 2 x 1, after evaluating this expression we get 24, i.e., the result of 4!.  
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 (7-2) Everyone who knows J. S. Bach likes music. 

 

In this sentence, “Bach” and “likes” are adjacent in linear order and appear to be in the range 

of the subject-verb agreement. However, in the hierarchical structure indicated by brackets, 

those two elements are ‘far away’.15 

 (7-3) [[[Everyone] [who [knows [J. S. Bach]]]] [[likes] [music]]]. 

 

Similarly, relationship between pitch events in a tonal sequence, e.g., tonic-dominant 

relationship, is determined not by physical distance, but cognitive distance based on the tonal 

hierarchy (Jackendoff & Lerdahl, 2006). Therefore, in both language and music, theories of 

hierarchical structure building are required to explain the cognitive relationship between 

elements. Moreover, hierarchical structure of language and music not only stands for 

hierarchical relationship between elements (called dominance relationship), but also includes 

a head element, the red circle in the Figure 7.1, which determines the label of each hierarchical 

unit.  

Generative approaches16 to language and music then investigate hierarchical structure 

building by taking domain-specific constraints into account. By means of recursion and 

hierarchical structure building, most of those approaches 17  attempts to characterize all 

theoretically possible grammatical strings in language and music, and explain structural 

relationships between elements. In addition, the relationship between surface configurations 

and argument structure in language or tension-relaxation pattern in music is determined by a 

set of rules, constraints, or templates, which are also objects of research on syntax. Examples 

of theories applying recursion and hierarchical structure building for language and music are 

discussed in the Chapter 8 (p. 46). 

 

7.3 Algorithmic level: Parsing models 

At the algorithmic level, mapping between hierarchical structure and temporal 

sequence is often investigated as a core function of parsing, i.e., structure analysis during 

moment-by-moment integration of events in time. Again, algorithms in language and music 

                                                 
15 The distance in the hierarchy can be intuitively followed in terms of the number of the brackets between “Bach” 

and “likes”. 
16 Generative approaches to language and music as used in the current thesis include not only computational level 

investigations, but also representational theories (i.e., one part of algorithmic level investigations). 
17 A Generative Theory of Tonal Music (Lerdahl & Jackendoff, 1983) is an exception as it rather deals with a 

psychologically-based parsing theory of temporal organization. See also Footnote 22. 
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may use different representational formats and thus differ to some degree. For example, 

linguistic parsers should deal with phonological, morphosyntactic and phrasal syntactic, 

semantic as well as pragmatic information. A musical parser should process tonal-harmonic 

and beat-based rhythmic information to encode affect. However, the mapping between 

hierarchical structure and temporal sequence remains the central problem for a linguistic and 

musical parser to solve. Moreover, as indicated in the Figure 7.1, hierarchically structured 

representations of language and music determine hierarchical relationship between elements 

(i.e., dominance relationship) and the head (i.e., an element identifying the label of each 

hierarchical unit). Both language and music also contain a temporal dimension. That is, in both 

cases, the algorithm should deal with headed hierarchical structure and temporal sequence. 

Psychology and neuroscience of language and music are often concerned with real-time 

processing of sequences in terms of parsing. A parser is an algorithm realizing online structure 

analysis. In investigating parsing, it is useful to distinguish different parsing models (Harley, 

2001). First, the distinction should be made between autonomous and interactive models. While 

autonomous models assume the initial modular stages of parsing which rely solely on syntactic 

information, interactive models undertake constant influence by multiple information sources 

(e.g., semantic information) on the syntactic processor. Second distinction is concerned with 

one-stage and two-stage models. While one-stage models use syntactic and semantic 

information in one pass, two-stage models consist of an autonomous stage of syntactic 

processing followed by the second stage where semantic information is also used. Moreover, 

fixed- and variable-choice models should be differentiated. The fixed-choice models are also 

characterized as deterministic because they don’t make use of probabilistic elements in 

choosing structural analysis. As they choose one structural analysis at an early time point, they 

require reanalysis if the structural analysis turns out to be incorrect at a later stage. On the 

contrary, the variable-choice models decide on a final analysis on the basis of a competition 

between alternative analyses, i.e., a winner-take-all principle.  

There are mainly three syntactic phenomena which comparative research in psychology 

of language and music frequently investigates in light of parsing: grammaticality or 

acceptability, complexity, and ambiguity. Those phenomena are explained differently 

according to which type of parsing model is assumed (for reviews, see Harley, 2001; Jackendoff, 

1991; Sprouse & Lau, 2013). For example, an autonomous two-stage fixed-choice parser 

assumes that syntactic information of the sentence is first processed alone, which determines 
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the structural analysis on the basis of principles such as minimal attachment and late closure18 

before semantic information enters into the analysis. An incorrect analysis then leads to a 

reanalysis. This type of parsing models is called ‘syntax-first’. In contrast, an interactive one-

stage variable-choice parser uses multiple sources of information called constraints in parallel, 

keep alternative structural analyses, and operates on the basis of the principle of competition. 

Those two parsing models are at the different end of a theoretical pole. In addition, there are 

also parsing models which make use of psychological concepts such as working memory and 

cognitive control. 

As Harley (2001, p. 263) puts it, “[a]ny account of parsing must be able to specify why 

sentences are assigned the structure that they are, why we are biased to parse structurally 

ambiguous sentences in a certain way, and why some sentences are harder to parse than others”. 

All above mentioned parsing models attempt to satisfy this requirement and it is very hard to 

decide between alternative models. Selection of a parsing model is often influenced by 

assumptions from a particular computational-representational theory. On one hand, the tight 

link between computational-representational theory and parser, i.e., algorithm, seems striking 

because investigations at the algorithmic level tend to start with an assumption about 

representations which must be built and units which are manipulated. On the other hand, 

however, as Marr (1982) also noted, the same computational problem can be solved by different 

algorithms, indicating no direct mapping between computational-representational theory and 

parser. 

In sum, there are several ways to approach mapping between hierarchical structure and 

temporal sequence in terms of parsing. While the goals of parsing in language and music are 

partially different, the parser in both case has to deal with the problems such as grammaticality, 

complexity, and ambiguity in mapping between hierarchical structure and temporal sequence. 

A ‘syntax-first’ model of parsing in language and its relation to musical parsing is discussed in 

Chapter 9 (p. 56) from the perspectives of generative neurolinguistics and generative 

neuromusicology, which is then discussed in relation to further models in Chapter 10 (p. 85).  

 

                                                 
18 Minimal attachment and late closure are parsing principles introduced by Frazier and Fodor (1978). It is 

suggested that they are utilized to quickly and efficiently assign structure to incoming sentences. On the basis of 

minimal attachment a structural analysis which contains the fewest number of nodes should be adopted. Late 

closure states that incoming elements should be integrated into the phrase or clause which is currently processed. 
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7.4 Implementational level: Fronto-temporal networks 

The implementational level, then, is concerned with how and where parsing is realized 

in the brain. As I will discuss in Chapter 9 (p. 56) and Chapter 10 (p. 85), research at the 

implementational level depends on the parsing model used to investigate the mapping between 

hierarchical structure and temporal sequence. Depending on which model one chooses, 

interpretation of the results in cognitive neuroscience differs (Kaan, 2007; Sprouse & Lau, 

2013). In this case, a particular parsing model is mapped onto the brain. For example, such a 

mapping is investigated in terms of hierarchical processing and executive function. 

Nevertheless, there is a set of neural structures suggested to be relevant to syntax beyond 

differences in parsing models, namely the left dorsal fronto-temporal network including 

subparts of the Broca’s region and the posterior superior temporal lobe as well as the arcuate 

fasciculus (AF). Before I will discuss those structures in Chapter 9 (p. 56) in details by referring 

to findings from generative neurolinguistics and neuromusicology, below I sketch some aspects 

of those structures which yielded some consensus to take them as starting points of discussions. 

I particularly focus on the Broca’s region here as it was suggested repeatedly as a core shared 

structure for syntax in language and music (Fitch & Martins, 2014; Koelsch, 2011a, 2012b, 

2012a; Patel, 2008, 2012). 

Broca’s region is located in the left inferior frontal gyrus (IFG). The relatively simple 

cytoarchitectonic subdivisions of the Broca’s region in the Brodmann area (BA) 44 and 45 are 

well-known (Figure 7.2a). The BA 44 and 45 are not only cytoarchitectonically different, but 

also differently connected with other regions of the brain via long fiber tracts, i.e., bundles of 

axons (for a review, see Petrides, 2014, pp. 151–154). One of the long fiber bundles well-

known in language research is the arcuate fasciculus (AF) which monosynaptically connects 

Broca’s region to the posterior superior temporal region. The AF consists of three branches 

which were found in macaques and interpreted as homologous connections in the human brain 

as shown in the Figure 7.2b (for discussions, see Petrides, 2014). Figure 7.2b also shows a 

complex relation between the AF and the middle longitudinal fasciculus (MLF). The fibers of 

the AF arch around the end of the lateral fissure and extend to the region where the MLF runs. 

The complexity even increases once the superior longitudinal fasciculus (SLF) I, II, and III are 

taken into account as they overlap largely with the AF (see for example, Gierhan, 2013; and 

Petrides, 2014, p. 171), but I do not elaborate this issue in the current thesis. 
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Figure 7.2 a) Broca’s region (BA 44 and 45), premotor cortex (BA 6), and other surrounding 

structures adopted from Amunts (2010), PLoS Biology, 8: e1000489; b) Arcuate fasciculus (red, 

yellow, and dark blue) and middle longitudinal fasciculus (light blue) adopted from Petrides 

(2014), Elsevier Books, Neuroanatomy of Language Regions of the Human Brain, with 

permission from Elsevier. 

 

As I will review in the Chapter 9 (p. 56), a branch of the AF originating from the left 

posterior superior temporal gyrus / sulcus and terminating in the left BA 44 is ascribed to a 

pathway critical to syntax in language. Does this branch of the left AF also play a crucial role 

in music? In addition, concerning Broca’s region, as shown in Figure 7.2, a further subdivision 

was introduced on the basis of the difference in the regional distribution of transmitter receptors 

(Amunts et al., 2010). The BA 44 is segmented into a dorsal and a ventral part, while the BA 

45 is partitioned into an anterior and a posterior portion. Amunts and colleagues (2010) note 

that the areas involved in similar functions have similar receptor distribution patterns. What is 

the consequence of this new parcellation regarding the claim about Broca’s region as a core 

shared structure for syntax in language and music?  

Experiments which provided evidence for the hypotheses about shared neural resources 

for syntactic processing in language and music (e.g., Koelsch, Gunter, Wittfoth, & Sammler, 

2005; Kunert, Willems, Casasanto, Patel, & Hagoort, 2015; Sammler et al., 2009; Slevc, 

Rosenberg, & Patel, 2009; Steinbeis & Koelsch, 2008) regard interaction and neural overlap as 

implications for neural sharing on the basis of following inferences: 1) Sharing → Interaction; 

2) Sharing → Overlap. Especially, I will review and discuss neural overlap as an implication 

of sharing by focusing on the fronto-temporal networks and especially on the Broca’s region 

later. 
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8 Generative approaches to language and music 

8.1 Formal language theory and the Minimalist Program in generative linguistics 

One approach investigating syntax is about theories of generating and building 

hierarchical representations underlying sequences, with its primary goal as explaining the 

mystery of language acquisition: children are able to acquire knowledge of language in its full 

richness, complexity, and specificity in spite of the limitation of the data available (Chomsky, 

1986, p. 55). Thus, the target of inquiry is the set of principles generating the knowledge or 

internal representations of cognitive systems. In grammar approaches, the knowledge is 

represented by formal rule systems (i.e. grammars) generating all strings of symbols (i.e. 

sentences or expressions) which belong to a formal language (for details about the formal 

language theory, see, e.g., Jäger & Rogers, 2012; Partee, Ter Meulen, & Wall, 1993). In this 

context, a grammar is understood as a string rewriting system, consisting of the start symbol 

(usually S) and a finite number of rules in form of 𝜓  → 𝜔 , which means that a string (𝜓 ) is 

replaced by another string (𝜔 ) to yield a new string. Grammars use two kinds of alphabets: a 

terminal alphabet (usually small letters such as “a” and “b”) and a non-terminal alphabet 

(usually capital letters such as “A” and “B”).  

In the same way, a natural language can be also regarded as a set of strings (e.g., 

sentences). The way of applying the rules is reflected in the derivation of the strings, which can 

often be represented by a constituent structure tree, i.e. a hierarchically structured 

representation of a string (Figure 8.1). 

 

Figure 8.1 Constituent-structure tree of a sentence. 

 

This tree represents three sorts of information about the syntactic structure of a 

sentence: 1) hierarchical organization of the units into constituents (i.e., the dominance relation 
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of constituents), 2) the syntactic category of each constituent such as N (noun) and V (verb) by 

labeling each node, and 3) the serial order of the constituents (i.e. the precedence relation of 

constituents) (Partee et al., 1993, Chapter 16). For example, in Figure 8.1, the node labeled VP 

(verbal phrase) dominates the lower nodes such as V and NP (nominal phrase) as well as Det 

(determiner) connected to “a” and N connected to “book”, but does not dominate the other NP 

consisting of Det connected to “My” and N connected to “sister”. Two nodes (e.g. V and NP) 

immediately dominated by the same node (e.g. VP) are called sister nodes and ordered in the 

left-to-right fashion: the node V precedes NP. Such a linguistic constituent structure tree is also 

called “phrase-structure tree”. The tree in Figure 8.1 is generated by the following phrase 

structure grammar: 

(8-1) S -> NP VP 

(8-2) NP -> Det N 

(8-3) VP -> V NP 

(8-4) Det -> my | a 

(8-5) N -> sister | book 

(8-6) V -> buys 

 

According to such a grammar, it is possible to decide whether strings belong to a particular 

language and thus ‘grammatical’ or not. 

Importantly, there are several formal grammar types, which differ from each other in 

terms of their generative capacity. In parallel, there are different types of formal languages. The 

relationship between different grammar and language types is given by the Chomsky hierarchy 

which includes four classes: regular (or type-3) grammar and language, context-free (or type-

2) grammar and language, context-sensitive (or type-1) grammar and language, and type-0 

grammar and recursively (or computably) enumerable language (Figure 8.2). 
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Figure 8.2 (Extended) Chomsky hierarchy. 

 

The type-3 grammar includes the most constrained form of the rules and thus is most limited 

in its generative capacity, while the type-0 grammar does not include any restrictions on the 

form of the rules and thus is most powerful in its generative capacity. The restrictions of rules 

can be stated as following:19 

(8-7) Type-0: 𝜓  → 𝜔 . 

(8-8) Type-1: 𝛼 A𝛽  → 𝛼 𝜓 𝛽 , where 𝜓  ≠ e. 

(8-9) Type-2: A → 𝜓 . 

(8-10) Type-3: A → 𝑥 B or A → 𝑥 . 

 

In all types of grammar, the left side of the arrow cannot be empty and contains at least 

a non-terminal symbol. Type-0 grammar can be understood as a string rewriting system without 

any other constraints. Type-1 grammar allows for rewriting a string only in a certain context 

(𝛼 _𝛽 ), where the string on the right side of the arrow cannot be shorter than that on the left 

side. This also means that the Type-1 grammar does not permit to replace a string through an 

empty string (e). In the Type-2 grammar, the left side of the arrow should be a single non-

terminal symbol, which can be replaced by any string, i.e., a string mixing up terminal and non-

terminal alphabets. Type-3 grammar, in addition, restricts the right side of the arrow such that 

a string 𝑥  of terminals, is followed by at most one non-terminal symbol. Grammars modeling 

the structural complexity of natural language sentences are called “mildly context-sensitive 

grammars” (Jäger & Rogers, 2012). This class forms a subset of the class of Type-1 grammars. 

                                                 
19 The following descriptions and explanations of different types of grammar are summarized on the basis of 

Partee et al. (1993, p. 451). 
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The type-2 grammar, i.e., context-free grammar, plays a significant role in generative 

neurolinguistics as well as comparative cognition research. Thus, it earns more detailed 

illustration here. The context-free grammar gained attention especially since Chomsky’s 

finding that English is not a regular language because of its center embedding construction 

where the embedding is potentially unbounded (Chomsky, 1957). To characterize such a 

language, at least, a context-free grammar is required. For example, an English embedded 

relative clause sentence (e.g., “The mouse the cat the dog loves married run away.”20) can be 

created by the grammar with the rules S -> NP S VP and S -> NP VP which allow potentially 

unbounded embedding of a relative clause into another relative clause. The language 

characterized by this kind of grammar is also called AnBn-language. 

Although the grammar approach is often applied in linguistic research to generate 

sentences (i.e., strings of words) belonging to a language, natural language contains further 

strings such as sequences of morphemes or phonemes (Partee et al., 1993). Thus, phrasal, 

morphological, and phonological syntax all fall into the scope of the grammar approach. To 

generate strings in different domains of language, grammars with different generative capacity 

are suggested to be necessary: the generative capacity of at least the type-2 grammar (and type-

1 grammar for some cases) is required for sentential syntax, at least the type-3 (and type-2 

grammar for some cases) for morphology, and at most type-3 (and maybe largely limited to its 

subset called sub-regular grammar) for phonology (Heinz & Idsardi, 2013). 

The Minimalist Program (Chomsky, 1995), i.e., a modern approach within the 

generative linguistic tradition, is arranged at the level of mildly context-sensitive grammar and 

focuses on a minimal condition for linguistic discrete infinity called “Merge”. Merge takes two 

already formed structures like X and Y, and combines them hierarchically into a new structure 

A = {X, Y} (Chomsky, 2010, p. 52). Further, two different types of Merge are differentiated: 

Given A, we can merge an element to it from outside of A (external MERGE) or from within 

A (internal MERGE; displacement). That is, external MERGE creates a structure like {B, {X, 

Y}} and internal MERGE creates a structure like {X, {X, Y}}. Therefore, Merge generates 

hierarchically structured representations, i.e., dominance relationship, but does not determine 

the label of the set nor the order of the elements, i.e., precedence relationship. In this approach, 

most of the complexity attributed to grammars in previous research is regarded as a by-product 

of interface systems such as the sensory-motor interface system (e.g., phonology) and the 

                                                 
20 This sentence in the full length is “The mouse which the cat which the dog loves married run away.” and is 

organized according the rules hierarchically as “S[NP[The mouse] S’[which S[NP[the cat] S’[which S[NP[the dog] 

VP[loves]]] VP[married]]] VP[run away].]”. 
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conceptual-intentional interface system (e.g., semantics and pragmatics) (Chomsky, 2010). The 

labeling is carried out by the general principle of minimal search, which determines a 

structurally more prominent element as a label (Fujita, 2016). Moreover, the mapping between 

hierarchical representations and linear order is executed by multi-step linearization operations 

(Boeckx, Martinez-Alvarez, & Leivada, 2014). 

For the discussions below, further concepts such as head-complement as well as 

dependency and agreement are relevant. The first concept was originally introduced as an 

additional characterization / constraint for context-free phrase structure grammars: A phrase 

consists of a head with the same category type as the phrase and a complement.21  Thus, 

concerning the example in the Figure 8.1 above, “book” with the category N is the head of the 

phrase NP, while “a” is the complement. The dependency, i.e., correlation between elements of 

a sequence, is one computational problem for syntax and the agreement is one example of a 

syntactic dependency (Kaplan, 2003, p. 74). Concerning the example in the Figure 8.1 again, 

“My sister” and “buys” are in a dependency relationship and there is an agreement between 

those elements in terms of grammatical number, i.e., singular.  

 

8.2 Generative theories in musicology 

8.2.1 Generative Theory of Tonal Music 

The view that mental representations of music can be also investigated by grammars 

was held by several researchers especially in the 1980’s (for reviews, see Rohrmeier & Pearce, 

2018; Seifert, 1993; Sundberg & Lindblom, 1991) and culminated in A Generative Theory of 

Tonal Music (GTTM) by Lerdahl and Jackendoff (1983). Such a grammar approach was 

suggested as one of promising areas in cognitive musicology research, together with an 

artificial intelligence approach (Seifert, 1993). Although GTTM is situated in the generative 

grammar framework, it aimed at a psychological theory of temporal organization rather than a 

formal description of music.22 Especially, their goal was to identify the knowledge of music in 

form of mental representations which are constructed by (experienced) listeners. Moreover, it 

assumes multiple generative systems working in parallel, as also seen in Jackendoff’s 

constrained-based parallel architecture which regards syntax, phonology, and semantics as 

independent, but interactive generative systems (e.g., Jackendoff, 2002, pp. 107–151). 

                                                 
21 This description is based on that made by Bußmann (2008, pp. 376 & 804) in her linguistic lexicon. 
22 Although the GTTM as a psychological theory of temporal organization which takes the convergence strategy 

(described in PART I, p. 23) rather corresponds to Jackendoff’s parallel architecture, and thus differs from the 

remainder of the generative approaches, it is a reference theory for other theories investigating musical syntax and 

is thus reviewed as the first theory in the current section. 
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GTTM mainly consists of four sub-systems organizing pitch-events into hierarchically 

structured representations (Lerdahl & Jackendoff, 1983): meter, grouping, time-span reduction, 

and prolongational reduction. Metrical structure is the hierarchical organization of periodically 

recurring strong and weak beats. Grouping structure is the hierarchical organization of the 

musical stream into motives, phrases, and sections. Further, time-span and prolongational 

structures were introduced to account for the property of musical knowledge that some pitch-

events are heard as ornamentations or elaborations of others. That is, pitch-events are heard in 

a hierarchy of relative importance. In the time-span structure, harmonic and melodic 

elaborations are studied in the rhythmic framework constructed on the basis of metrical and 

grouping structures. The prolongational structure, then, encodes the tension and relaxation 

patterns (called affect) across phrases, i.e., structural relationships which are non-adjacent, on 

the basis of melodic and harmonic stability conditions. 

Those four components were extended on the basis of Lerdahl’s tonal pitch space (TPS) 

theory (Lerdahl, 2001; for a short summary of the development of the GTTM and TPS, see 

Lerdahl, 2009). Especially, the details of the stability conditions were worked out by including 

components such as tonic finding and pitch-space distances (Figure 8.3). The basic idea of the 

TPS is that “the cognitive distance of an event from a given reference point measures the 

instability of that event in relationship to the reference point” (Lerdahl, 2009, p. 191). That is, 

once the reference point (e.g., the tonic or tonal center which is the most stable pitch-event in 

a Western tonal system) is identified, the stability (or rather instability) of the other pitch-events 

can be determined on the basis of the distance in a pitch space or tonal hierarchy. For example, 

Figure 8.3 demonstrates the basic space for the major and minor modes in Western tonal music 

(Lerdahl, 2001). Lerdahl (2001) conveys further pitch-class and chordal spaces from this basic 

space according to the rules stating how much pitch-class representation in the basic space 

should be shifted to attain a new space. 

 

Figure 8.3 This figure shows the basic space with capital letters representing pitch-classes. In 

this figure, the tonal center is the key of C and pitch class C is on scale step I. The more stable 
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a pitch-class, the higher the level it is projected on to. This figure is adopted from Lerdahl 

(2001, p. 47) with permission by Fred Lerdahl. 

 

Coming back to the GTTM, two central rule systems should be mentioned: “well-

formedness rules, which specify the possible structural descriptions, and preference rules, 

which choose from the possible structural descriptions those that correspond to experienced 

listeners’ hearings of any particular piece” (Lerdahl & Jackendoff, 1983, p. 9). Thus, well-

formedness rules generated multiple, competing representations, of which one23 representation 

is chosen as the most stable interpretation on the basis of preference rules. Lerdahl (2009) 

characterizes preference rules as a conceptual midpoint between neural networks, in which “a 

structure arises from the strongest activation in a network without reliance on rules per se” (p. 

189), and optimality theory, in which “rule derivations are ordered and ranked according to a 

winner-take-all principle” (p. 189). The introduction of preference rules, therefore, made the 

GTTM significantly differ from the grammar approach in generative linguistics. Rather, 

preference rules are similar to one of heuristic strategies used in parsing theory, namely making 

a ‘best guess’ about the sentence structure (Lerdahl & Jackendoff, 1983, p. 314). 

Another important differentiation made in the discussion of hierarchical structure in 

music is that of event hierarchy and tonal hierarchy (Bharucha, 1984; Deutsch, 1984; Dowling, 

1984; Lerdahl, 2001; Patel, 2008; Tillmann, 2012). The former is a hierarchy of the string of 

musical events that constitutes a particular piece of music, while the latter hierarchy is not 

specific to each musical piece, but is a hierarchy of event classes encoding implicit knowledge 

of the abstract musical structure of a culture or genre (Bharucha, 1984). “A native listener has 

access to tonal hierarchies in long-term memory, which, once activated, can facilitate the 

generation of event hierarchies” (Bharucha, 1984, p. 425). That is, an event hierarchy integrates 

both tonal and temporal information to represent hierarchical relationship between events in 

time. Time-span and prolongational structures of the GTTM are examples of event hierarchies. 

A tonal hierarchy rather relates to stability conditions of the GTTM which represents long-term 

knowledge of a particular tonal system independent of the instantiation in a particular piece. 

The group of event classes that are stable within a given tonal hierarchy is also called “tonal 

schema” (Bharucha, 1984). 

                                                 
23 The preference rules do not determine only one preferable representation unambiguously. However, according 

to the preference rules, representations are preferable in different degree so that some representation is more likely 

to be chosen than the others. Here, I say one representation is chosen as the most stable interpretation because 

several authors pointed out that only one representation is attended at a time (e.g., Jackendoff, 1991, p. 214; 

Temperley, 2000, p. 81; Vuust & Witek, 2014, p. 8). 



PART II      53 

8.2.2 Generative Syntax of Tonal Harmony 

The most recent theory of musical grammar is Generative Syntax of Tonal Harmony 

(GSTH) by Rohrmeier (2007, 2011), which provides a formalization of hierarchical tonal-

harmonic structure of music based on the Riemannian functional tradition in the way similar 

to the linguistic phrase structure grammar mentioned above. Rohrmeier’s approach is based on 

formal grammar. In contrast to the GTTM, Rohrmeier’s theory recursively enumerates a set of 

strings which belong to a particular set, i.e., a set of tonal harmonic sequences. Thus, according 

to this theory, there is such classification as grammatical and ungrammatical string sets. 

The core idea of GSTH is that a harmonic sequence can be derived from three 

elementary harmonic functions, i.e. tonic, dominant, and subdominant, and thus can be 

regarded as fundamentally grounded in elaboration of cadential harmony. The formalism of 

this theory described in form of a context-free grammar distinguishes four levels: a phrase level, 

a functional level, a scale degree level, and the surface level. First of all, a piece in a certain 

key (𝕂  is a set of musical keys) consists of one or more phrases (P+) such that each features a 

tonic region (TR) as its functional region. On this phrase level, the key of the piece is 

determined by means of this TR. 

(8-11) 𝑝𝑖𝑒𝑐𝑒𝑘𝑒𝑦=𝑥∈𝕂 → 𝑃+ 

(8-12) 𝑃 → 𝑇𝑅 

 

On the functional level (ℝ is a set of functional regions including tonic region (TR), dominant 

region (DR), and subdominant region (SR)), three sets of rules are introduced. The first set of 

rules called “functional expansion rules” generates core functional sequences terminating with 

tonic (t), dominant (d) and subdominant (s). 

(8-13) 𝑇𝑅 → 𝐷𝑅 𝑡 

(8-14) 𝐷𝑅 → 𝑆𝑅 𝑑 

(8-15) 𝑇𝑅 → 𝑇𝑅 𝐷𝑅 

(8-16) 𝑋𝑅 → 𝑋𝑅 𝑋𝑅  for any 𝑋𝑅 ∈ ℝ 

(8-17) 𝑇𝑅 → 𝑡 

(8-18) 𝐷𝑅 → 𝑑 

(8-19) 𝑆𝑅 → 𝑠 
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The second set of rules called “substitution rules” allows for replacing or substituting each 

functional symbol by their relatives or parallels. 

(8-20) 𝑡 → 𝑡𝑝 

(8-21) 𝑡 → 𝑡𝑐𝑝 

(8-22) 𝑠 → 𝑠𝑝 

(8-23) 𝑑 → 𝑑𝑝 

 

The last set of rules called “modulation rules” enables each function (𝔽  is a set of functional 

terms including t for tonic, d for dominant, s for subdominant, tp for tonic parallel, sp for 

subdominant parallel, dp for dominant parallel, and tcp for tonic counter parallel) to become a 

local tonic.  

(8-24) 𝑋𝑘𝑒𝑦=𝑦 → 𝑇𝑅𝑘𝑒𝑦=𝜓(𝑋,𝑦)   for any 𝑋 ∈ 𝔽 and 𝑦 ∈ 𝕂 

(8-25) 𝑋𝑘𝑒𝑦=𝑦 𝑚𝑎𝑗/𝑚𝑖𝑛 → 𝑋𝑘𝑒𝑦=𝑦 𝑚𝑖𝑛/𝑚𝑎𝑗  for any 𝑋 ∈ 𝔽 and 𝑦 ∈ 𝕂 

 

On the scale degree level, the functional terms are replaced by scale degrees and relative scale 

degrees. On the surface level, the scale degrees are transformed into chords in terms of the 

given key property of the piece.  

Figure 8.4 is an example musical constituent structure which is constructed solely on 

the basis of harmonic rules introduced above. First, this piece in G major key consist of two 

phrases according to rule (8-11). Those phrases correspond to tonic region (TR) according to 

rule (8-12). In focusing on the left hand tree, TR consists of TR and dominant region (DR) 

according to rule (8-15). The second TR then is composed of two TRs according to rule (8-16). 

The left hand TR again consists of two TRs which then terminate in tonic (t). The chord function 

is replaced by scale degree (roman number I for tonic) which turns into chord G major.24 The 

right hand TR is composed of dominant region (DR) and tonic (t) according to rule (8-13). The 

DR is decomposed into subdominant region (SR) and dominant (d) according to rule (8-14). SR 

is then replaced by subdominant (s) according to rule (8-19). The DR in the middle represents 

application of modulation rules: d becomes a local tonic according to (8-24). Thus, t of this TR 

is D major. The rest follows the same procedure as I already explained. 

                                                 
24 Below, I skip this step of explanation. In general, tonic (t) corresponds to roman number I which is G major, 

dominant (d) to V which is D major, subdominant (s) to roman number IV which is C major, and tonic parallel 

(tp) to VI which is E minor. 
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Figure 8.4 Musical constituent structure constructed on the basis of harmonic rules. This figure 

is adopted from Rohrmeier (2011), Journal of Mathematics and Music, 5(1): 35-53, with 

permission by Taylor & Francis. 

 

There are two concepts central to Rohrmeier’s theory. First, “each element (chord) in a 

chord sequence is structurally connected to its preceding or succeeding chord or chord group 

in a dependency relationship” (Rohrmeier, 2011, p. 38). Among two dependent elements, one 

is called “head” and the other is called “dependent”. Importantly, the dependency relationship 

between two elements is established not only between adjacent elements (adjacent dependency), 

but also distant elements (long-distance dependency). Second, “chords are organized into 

functional categories which describe their tonal function which may be instantiated or modified 

by different chords” (Rohrmeier, 2011, p. 38). The functional categories include the three main 

tonal functions tonic, dominant, and subdominant. This second aspect plays a role in 

modulation. Modulation shown in the Figure 8.4 (indicated with “TRkey=ψ(d,Gmaj)”) can be 

characterized as embedding of a key (e.g., D major) into another key (e.g., G major). In this 

case, there are two instantiations of the category tonic: one is D major and the other is G major. 
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In addition, in the Figure 8.4, D gets two categories: one is tonic in the local context of G major, 

the other is dominant in the global context of the G major. That is, the category of each chord 

depends on the current tonal context. 

 

9 Generative neurolinguistics and generative neuromusicology 

9.1 Angela Friederici’s cortical circuit model of language 

The most popular brain model of language processing in the generative linguistics 

tradition is Angela Friederici’s cortical circuit model of language which explains on-line 

auditory sentence processing ranging from auditory perception to sentence comprehension in 

terms of a dynamic temporo-frontal network (Friederici, 2002, 2011, 2012, 2015, 2017; 

Friederici & Gierhan, 2013). This model is an autonomous model assuming initial modular 

stages of parsing which rely solely on syntactic information and assumes structure building, 

agreement checking, and thematic-role assignment as operations involved in syntactic 

computation. Moreover, it tells apart simple and complex syntactic processing. The 

particularity of the Friederici’s model is mainly that it integrates time course and 

neuroanatomical basis of auditory sentence processing on the basis of neuroimaging 

experiments using different methods, and thus provides a hypothesis about when and where a 

particular aspect of language is processed in the brain. Major methodological paradigms used 

in those neuroimaging experiments comprise 1) violation processing, 2) artificial grammar 

learning, 3) isolating syntactic processing, and 4) manipulation of syntactic complexity. The 

first two methods relate to experimental paradigm, while the latter two are concerned with 

manipulation of the stimuli according to particular parameters. In this section, first of all, those 

methodological approaches are summarized with emphasis on syntactic processing, i.e., 

morphosyntactic and phrasal syntactic processing, as it is the focus of later discussion. Then, 

time course and neuroanatomical issues of the model are recapped. 

 

9.1.1 Methodological paradigms 

9.1.1.1 Violation paradigm 

One of the most common approaches to test syntactic processing is the violation 

paradigm in which correct and incorrect natural sentences are contrasted. In most cases, 

incorrect sentences contain at least one of the syntactic violation types listed in the Table 9.1. 

The violation approach assumes that a sentence parser is equipped with a set of rules, by means 

of which irregularity can be detected. In the course of processing sentences in natural languages, 

a parser has to check different types of incoming information (Friederici & Weissenborn, 2007). 
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For example, word category information (e.g., verb, noun, determiner, and preposition) should 

be checked to build a local phrase structure (e.g., verb phrase, determiner phrase, and 

prepositional phrase). This relates to structure building operation. In addition, morphosyntactic 

information (e.g., inflection) and its agreement (e.g., subject-verb and determiner-noun 

agreement) as well as verb’s argument structure (transitive or intransitive) should be identified 

and checked. This recruits agreement checking operation. 

Table 9.1 Violation types and example sentences / phrases. The example sentences / phrases 

are mainly picked up from review articles (Friederici & Weissenborn, 2007; Molinaro, Barber, 

& Carreiras, 2011) and complemented by some other studies (Friederici, Pfeifer, & Hahne, 

1993; Frisch & Schlesewsky, 2001; Kotz, Frisch, von Cramon, & Friederici, 2003; Mueller, 

Hahne, Fujii, & Friederici, 2005; Newman, Pancheva, Ozawa, Neville, & Ullman, 2001). The 

examples are taken from experiments using either auditory or visual presentation of the 

sentences in English, German, or Japanese. The English translations in the brackets are literal 

translations of the original sentences. 

Violation types Examples 

Word category errors / 

Phrase structure violations 

*Max’s of proof vs. Max’s proof 

*your write vs. you write 

*I believe him is a spy. vs. I believe he is a spy. 

*Die Pizza wurde im _ gegessen. (*The pizza was in-the eaten.) 

vs. Die Pizza wurde gegessen. (The pizza was eaten.) 

*Yesterday I cut Max’s with apple caution. vs. Yesterday I cut 

Max’s apple with caution. 

*Ichi wa no kamo ga ni hiki no _ tobikoeru tokoro desu. (One duck 

two _ jump over take place.) vs. Ichi wa no kamo ga ni hiki no 

neko o tobikoeru tokoro desu. (One duck two cats jump over takes 

place.) 

Morphosyntactic violations 
*Das Parkett wurde bohnere. (*The parquet was polish.) vs. Das 

Parkett wurde gebohnert. (The parquet was polished.) 
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Agreement violations 

a) subject-verb 

b) determiner-noun 

a) *As a turtle grows its shell grow too. vs. As a turtle grows its 

shell grows too. 

b) *Sie bereist den [M] Land [N] auf einem kräftigen Kamel. 

(*She travels the [M] land [N] on a strong camel.) vs. Sie bereist 

das [N] Land [N] auf einem kräftigen Kamel. (She travels the [N] 

land [N] on a strong camel.) 

Violations of verb-

argument structure 

*Paul fragt sich, welcher Angler [NOM] der Jäger [NOM] gelobt 

hat. (*Paul asks himself which angler [NOM] the hunter [NOM] 

praised has.) vs. Paul fragt sich, welchen Angler [ACC] der Jäger 

[NOM] gelobt hat. (Paul asks himself which angler [ACC] the 

hunter [NOM] praised has.) 

*Ichi wa no kamo ga [NOM] ni hiki no neko ga [NOM] tobikoeru 

tokoro desu. (One duck [NOM] two cats [NOM] jump over takes 

place.) vs. Ichi wa no kamo ga [NOM] ni hiki no neko o [ACC] 

tobikoeru tokoro desu. (One duck [NOM] two cats [ACC] jump 

over takes place.) 

*Das Zimmer wurde gearbeitet. (*The room was worked.) vs. Im 

Zimmer wurde gearbeitet. (In the room it was worked.) 

 

In an experimental study, behavioral and/or brain responses to correct and incorrect 

sentences are contrasted. Existence of differences between those two responses is interpreted 

as an evidence for participants’ ability to apply the grammar of the given language. Major tasks 

of those experiments include 1) passive listening/reading, 2) comprehension questions, 3) 

acceptability judgement, and 4) grammaticality 25  judgement (Molinaro et al., 2011). The 

former tasks, i.e. passive listening/reading and comprehension questions, are indirect tasks, in 

which the violations are not task-relevant, whereas the latter, i.e. acceptability and 

grammaticality judgement, are direct task, in which participants have to evaluate the sentences 

explicitly and thus the violations play an immediate role for the task. 

                                                 
25 In the case of “grammaticality judgement”, “grammaticality” is used as a synonym of “acceptability”. That is, 

“grammaticality” is not used as a part of the formal language theory. 
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Moreover, violation approach comprises not only investigations of natural language 

sentence processing, but also those examining the processing of Jabberwocky sentences (see 

Table 9.2) and artificial sequences built on the basis of artificial grammars (see  

Table 9.3). Jabberwocky sentences contain morphosyntactic information bootstrapping 

sentence processing, but are lacking lexical semantic information because most words, except 

some function words, are replaced by pseudo-words. While Jabberwocky sentences rely on 

morphosyntactic and morphophonological rules of natural languages, artificial sequences 

require learning of a set of unfamiliar artificial rules (see next section). After mastering a 

particular artificial grammar, participants are able to differentiate sequences created by the 

learned grammar (correct) or not (incorrect). Processing of Jabberwocky sentences and 

artificial sequences are regarded as ‘pure syntactic’ processing without (lexical) meaning. 

Table 9.2 Violation types and example Jabberwocky sentences. The example sentences are 

adopted from studies conducted by Münte, Matzke, and Johannes (1997), Hahne and 

Jescheniak (2001), Yamada and Neville (2007) and a review article by Canseco-Gonzalez 

(2000). 

Violation types Examples 

Word category errors / 

Phrase structure violations 

*Minno can kogg the mibe with her that nove. vs. Minno can kogg 

the mibe with that nove. 

*Das Fiehm wurde im _ gerottert. (*The ploker was being in-the 

rished.) vs. Die Glabbe wurde gerottert. (The wibon was being 

rished.) 

*The celtron resented Tom's about malwars her nabs and her 

cesting. vs. The celtron resented Tom's malwars about her nabs and 

her cesting. 

Agreement violations 

subject-verb 

determiner-noun 

a) *Das Klenck frunen den Wech. (*A mizzel quanch the plurr.) 

vs. Der Kruke plötzt den Schruck. (A flurk nerches the minch.) 

a) *Manche Verzinker trögelt den Blotz. (*Some globbies biggles 

the vinch.) vs. Viele Wenken donzen den Tend. (Many fluzzies brin 

the chink.) 
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Table 9.3 Artificial sequence characterizations and examples. 

Sequence characterizations Examples 

(AB)n  *ABAA or *ABABABAA vs. ABAB or ABABAB 

AnBn  *AABA or *AAAABBBA vs. AABB or AAAABBBB 

 

9.1.1.2 Artificial grammar learning 

Artificial grammar learning (AGL) is an experimental paradigm used in several 

research areas such as psychology, neuroscience, and cognitive biology to investigate the 

capacity to generalize over a set of strings generated by an artificial grammar (for reviews, see 

Fitch & Friederici, 2012; Fitch, Friederici, & Hagoort, 2012; Jäger & Rogers, 2012). A typical 

AGL experiment consists of two phases: a training phase and a test phase. In the training phase, 

the participants are familiarized with a subset of strings generated by a particular artificial 

grammar. The experimental design of this training phase is variable. In some cases, the 

participants are instructed to write or type the presented strings as accurate as possible without 

saying that a particular rule underlies those strings. In other cases, the subjects are explicitly 

asked to extract the rule underlying the presented strings. In the test phase, a discrimination 

task is conducted in which the subjects are required to identify whether novel strings presented 

in the test phase are familiar or surprising. 

Many recent AGL experiments resort to formal language theory (see Section 8.1, p. 46) 

in generating experimental stimuli. Those experiments often employ the patterns of the types 

(AB)n, i.e. {AB, ABAB, ABABAB, ...}, and AnBn, i.e. {AB, AABB, AAABBB, ...}. The former 

patterns, i.e. repeated AB pairs, can be generated by a regular grammar (Fitch & Friederici, 

2012; Fitch et al., 2012), or rather, they belong to the simplest class called the strictly k-local 

language (Jäger & Rogers, 2012). The latter patterns, i.e., a number of As is followed by exactly 

the same number of Bs, is context-free (Fitch & Friederici, 2012; Fitch et al., 2012; Jäger & 

Rogers, 2012). The main interest of such empirical studies integrating AGL and formal 

language theory lies in testing the supra-regular distinctiveness hypothesis stating that 

“humans are unusual (or perhaps unique) among animals in processing supra-regular 

processing power” and the supra-regular neural distinctiveness hypothesis holding that “the 

human capacity for supra-regular grammars may be implemented in brain regions separate 

from those involved in simple sequencing at the sub-regular level” (Fitch et al., 2012, p. 1929). 
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In early neuroscientific AGL experiments (e.g., Bahlmann, Gunter, & Friederici, 2006; 

Fitch & Hauser, 2004; Friederici, Bahlmann, Heim, Schubotz, & Anwander, 2006), AnBn type 

sequences were interpreted as center-embedding on the basis of rewrite rules introduced in the 

formal language theory. Indeed, application of the context-free grammar including 1) S -> aSb 

and 2) S -> ab creates sequences with center-embedding structure such as [a[ab]b] and 

[a[a[ab]b]b]. However, in these experiments, it was not clear whether participants really 

applied such a grammar and processed center-embedding, they processed cross-serial 

dependency, or they counted the number of “a” and “b” to evaluate whether b was presented 

as much as “a” was (for discussions, see also Fitch & Friederici, 2012; Ojima & Okanoya, 

2014). To ensure that participants also process dependencies, later AGL experiments 

introduced a paradigm in which relationship between a and b was made explicit by using 

[a1[a2[a3b3]b2]b1] (e.g., Bahlmann, Schubotz, & Friederici, 2008). In this way, participants 

had to learn and recognize center-embedding pair-wise dependencies which are comparable to 

those in natural language sentences. 

 

9.1.1.3 Isolating syntactic processing 

Comparison of sentences, syntactic prose, Jabberwocky sentences, and nonstructured 

word lists is conducted to isolate syntactic processing (Table 9.4). In the case of the comparison 

between sentences and nonstructured word lists, syntactic operations such as structure building, 

agreement checking, and thematic-role mapping can be isolated because the latter condition 

requires them not at all or less26 if any (Kaan & Swaab, 2002). Nonstructured word lists contain 

either only content words without function words or both, and also vary in semantic relatedness 

between words. Syntactic prose uses existing words to construct a sentence which is 

grammatically correct, but nonsense. Thus, it reduces semantic information from sentences. 

Jabberwocky sentences are also used to reduce semantic processing from sentence processing 

by replacing words through pseudo words which follow phonological rules of the language, 

but doesn’t contain meaning (Kaan & Swaab, 2002). Because Jabberwocky sentences still 

contain morphosyntactic markers such as inflection and function words such as “a” and “the”, 

structure building operation and agreement checking are recruited. 

 

 

                                                 
26 Because of some syntactically legal combinations of two or three words in the word list (e.g., “Der Koch” (“The 

cook”) in the Table 9.4), local structure building might be engaged also in processing word lists (Friederici, 2011). 
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Table 9.4 Examples ordered according to the strength of semantic and syntactic information 

involved in the sequence. The examples stem from Friederici, Meyer, & von Cramon (2000), 

Humphries, Binder, Medler, & Liebenthal (2006), and Kaan and Swaab (2002). 

Types Examples 

Sentence 
Die hungrige Katze jagt die flinke Maus. (The hungry cat chased 

the fast mouse.) 

The man on a vacation lost a bag and a wallet. 

Syntactic prose 
The infuriated water grabbed the justified dream. 

The freeway on a pie watched a house and a window. 

Jabberwocky sentence 
Das mumpfige Fölöfel föngert das apoldige Trekon. (The mumphy 

folofel fonged the apole trecon.) 

The solims on a sonting grilloted a yome and a sovir. 

Semantically related 

word list  

on vacation lost then a and bag wallet man then a 

Semantically random 

word list 

a ball the a the spilled librarian in sign through fire 

Der Koch stumm Kater Geschwindigkeit doch Ehre. (The cook 

silent cat velocity yet honor.) 

Pseudo word list  
rooned the sif into lilf the and the foig aurene to 

Der Norp Burch Orlont Kinker Deftei Glauch Leigerei (the norp 

burch orlont kinker deftey glaunch legery) 

 

9.1.1.4 Manipulation of syntactic complexity 

There are mainly three ways to investigate the effect of syntactic complexity (see also 

Table 9.5). The first one is comparison between canonical and non-canonical sentences 

(Friederici, 2011; Kaan & Swaab, 2002). In English, for example, canonical sentences are 

active sentences or sentences with subject-relative clause, while non-canonical sentences 

include passive sentences and sentences with object-relative clause. The second one is 

contrasting nesting condition with non-nesting condition (Friederici, 2011). In the nesting 

condition, for example, further relative clauses are embedded in a relative clause. The more 

relative clauses are nested, the more complex the sentence. Moreover, syntactic ambiguity is 

sometimes regarded as making sentences complex (Friederici, 2011). Syntactically ambiguous 

sentences are, for example, caused by ambiguity in syntactic category (Stowe, Paans, Wijers, 

& Zwarts, 2004; Tyler & Marslen-Wilson, 2008) or referential ambiguity (Sambin et al., 2012). 
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Table 9.5 Examples are based on Friederici (2011), Kaan and Swaab (2002), Sambin et al. 

(2012), and Stowe et al. (2004). The English translations in the brackets are literal translations 

of the original sentences. 

Types Examples 

Canonical vs. non-canonical sentences 
The reporter who attacked the senator admitted the 

error. vs. The reporter who the senator attacked 

admitted the error. 

Non-nesting vs. nesting 
Peter wusste, dass Achim (S1) den großen Mann 

gestern am späten Abend gesehen hatte (V1). 

(Achim the tall man yesterday at late night saw.) 

vs. Peter wusste, dass Maria (S1), die Hans (S2), 

der (S3) gut aussah (V3), liebte (V2), Johan 

geküsst hatte (V1). (Maria who Hans who was 

good looking loved Johann kissed.) 

Syntactic ambiguous sentence 
Paul smiled when he entered. (“he” can be 

interpreted as co-referential (he = Paul) or non-

coreferential (he ≠ Paul) and thus ambiguous.) 

The red drops from the dye bottle onto the floor. 

(“drops” can be noun or verb at the first moment.) 

 

9.1.2 Time course and functional neuroanatomy 

Concerning the time course of auditory sentence processing, Friederici (2002) 

introduced a three-phase model of language comprehension reflected in different components 

in the event-related potential (ERP) (for details and up-dates, see also Friederici, 2011). The 

first phase deals with the initial build-up of local phrase structure on the basis of the syntactic 

category of a word. Based on ERP studies investigating brain response to phrase structure 

violation (early left anterior negativity; ELAN), this processing phase was suggested to take 

place between 100 and 300 ms. This first phase is claimed to be autonomous or modular and 

precedes semantic processing.  

The second phase which is suggested to occur between 300 and 500 ms is about 

computation of syntactic and semantic relations with the goal of thematic role assignment, i.e. 

understanding who is doing what to whom. Processing of syntactic relations is considered to 

be reflected in the left anterior negativity (LAN), an ERP component elicited by 
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morphosyntactic violations between 100 and 500 ms, whereas processing of semantic relations 

is suggested to be reflected in a centroparietal negativity between 300 and 500 ms (N400) 

elicited by lexical-semantic violations. In this second phase, morphosyntactic and lexical-

semantic processing are suggested to take place in parallel without interaction.  

The third phase in the time window between 500-1000 ms concerns sentence-level 

integration of different types of information (e.g., syntactic and semantic information). A late 

centroparietal positivity (P600) regarded as reflecting this third processing phase is elicited by 

outright syntactic violations, ‘garden-path’ sentences requiring syntactic reanalysis, and 

syntactically complex sentences. In this late phase, syntactic and semantic processing interact. 

Friederici’s model of functional neuroanatomy of auditory sentence comprehension 

centers on dorsal and ventral language pathways as well as brain regions connected by those 

pathways, especially Broca’s region (Friederici, 2011, 2012, 2015, 2017; Friederici & Gierhan, 

2013). Language-related dorsal pathways include 1) D1 (a part of the superior longitudinal 

fasciculus (SLF)) connecting the temporal cortex to the dorsal premotor cortex (dPMC) via 

parietal cortex and 2) D2 (the arcuate fasciculus (AF); or sometimes also AF/SLF) connecting 

the temporal cortex to the posterior portion of Broca’s region (BA 44). Language-related 

ventral pathways comprise 1) V1 (the extreme fiber capsule system (EFCS); or sometime also 

longitudinal inferior-fronto-occipital fasciculus (IFOF)) connecting the anterior portion of 

Broca’s region (BA 45) and BA 47 to the superior temporal gyrus (STG) and 2) V2 (the 

uncinate fasciculus (UF)) connecting the most ventral parts of the inferior frontal region 

including the frontal operculum (FOP) to the temporal cortex. These four language-related 

cortical pathways are represented in Figure 9.1. 
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Figure 9.1 The figure is adopted from Friederici & Gierhan (2013, p. 251), Current Opinion in 

Neurobiology, 23: 250–254, with permission by Elsevier. 

 

Concerning sentence comprehension, three of those four pathways (D2, V1, and V2) 

were suggested to be of particular importance (Friederici, 2015). The recent model (Friederici, 

2015) especially focuses on the ‘core functions’ of language, including semantic and syntactic 

processes, and thus leaves the sensory-motor interface suggested to be supported by D1 (a part 

of the phonological network) among others less discussed (for detailed discussion, see 

Friederici, 2011). As for syntactic processing, two processing stages implemented by different 

syntactic networks are suggested: 1) Step 1 local structure building by ventral syntactic network 

(V2); and 2) Step 2 processing global, hierarchical structural dependencies by dorsal syntactic 

network (D2). The V1, then, is rather involved in semantic processing where controlled 

semantic processing reflected in N400 takes place in BA 45/47 (Friederici, 2012). The fast 

lexical semantic processing is located in the middle temporal gyrus (MTG). 

Friederici (2011) introduced a neurocognitive model integrating the temporo-frontal 

network model with the time course of auditory language comprehension (Figure 9.2). 

Importantly, syntactic networks (pink color) are left lateralized. At step 1, the local phrase 

structure is automatically built on the basis of word category information within the UF 

connecting anterior superior temporal gyrus/sulcus (aSTG/STS) and FOP. This step, therefore, 

corresponds to the first phase of the three-phase model reflected by ELAN and takes place 
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between 100 and 300 ms. Step 2 is concerned with processing syntactically complex sentences 

where the posterior Broca’s region (BA 44) subserves building up of non-adjacent hierarchical 

structure and the posterior temporal gyrus/sulcus (pSTG/STS) integration of syntactic and 

semantic information in complex sentences. Although it was not made explicitly, this second 

stage seems to subsume the second and third phases of the three-phase model introduced above.  

 

Figure 9.2 Time course and functional neuroanatomy of auditory sentence processing. The oval 

called Broca’s area is which is called “Broca’s region” in the current thesis and refers only to 

the region in the left IFG. The figure is adopted from Friederici (2011, p. 1377), Physiol Rev, 

91: 1357–1392, with permission by Angela Friederici. 
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Friederici (2017) introduced an updated model with some changes. First, the 

component “processing of local syntactic structure” in Figure 9.2A turned to “syntactic phrase 

structure building”. Second, the component “gram./thematic relations” (i.e., grammatical / 

thematic relations) in the Figure 9.2A is separated into two components: “thematic relations” 

and “syntactic relations”. The former component is represented as an overlap between semantic 

and syntactic process in the second phase. The latter component is illustrated as purely syntactic 

in the second phase. Third, concerning the Figure 9.2B, Broca’s region (the left BA 44) is 

assigned with “complex syntax”. Further, “semantic” is located in the left BA 45 and 47 as well 

as in the region around the left anterior superior temporal sulcus (aSTS). 

 

9.1.3 Syntactic processing within the temporo-frontal networks 

As reviewed above, Friederici’s model of auditory sentence comprehension assumes 

two types of syntactic processes implemented differently within the left temporo-frontal 

networks: 1) Local phrase structure building in the aSTG and FOP via UF, and 2) Processing 

syntactically complex sentences in the posterior Broca’s region and the pSTG/STS via AF. In 

line with this model, two recent activation likelihood estimation (ALE) meta-analysis studies 

report consistent activity of the left posterior Broca’s region (BA 44) and the left pSTG/STS in 

processing syntactically demanding sentences including noncanonical, embedded, and 

ambiguous sentences (L. Meyer & Friederici, 2015; Rodd, Vitello, Woollams, & Adank, 2015). 

Another ALE meta-analysis study, however, showed that those two regions and the dorsal 

pathway connecting them are reliably activated in structure building during sentence 

comprehension regardless of the complexity of sentences (Zaccarella, Schell, & Friederici, 

2017). Moreover, the left BA 44 was reported to be consistently activated throughout the 

studies investigating semantically demanding sentences including semantic ambiguity, 

anomaly, and unrelatedness (Rodd et al., 2015). They also showed that the cluster for syntax 

and semantics in the left BA 44 partially overlap and challenge the claim that the left BA 44 is 

selectively activated in syntactic processing. None of those three studies show reliable 

activation of aSTG/STS for syntactic processing. 

Another challenge which Friederici’s model encounters is the relationship between 

working memory and syntactic mechanism in the Broca’s region. For example, syntactically 

demanding object wh-questions27  require more working memory resource than subject wh-

                                                 
27 An example of object wh-questions is “Who did the reporter attack?” (notated as “Who did the reporter attack 

t?”). In this sentence, an element was ‘moved’ from the last position (marked with “t” standing for “trace”) in the 
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questions. In an ERP experiment, Fiebach, Schlesewsky, and Friederici (2002) varied the 

distance between filler and gap in subject and object wh-questions. They found that only object 

wh-questions showed a sustained left-anterior negativity and the amplitude of this negativity 

was larger when the filler-gap distance was larger. Those results were interpreted as effects of 

limited working memory resource. In addition, an functional magnetic resonance imaging 

(fMRI) experiment conducted by Fiebach, Schlesewsky, Lohmann, von Cramon, and Friederici 

(2005) showed significant activation of the Broca’s region only for long object wh-questions 

(contrasted with short object wh-questions). Thus, they interpreted the role of the Broca’s 

region in terms of working memory resource. Similarly, another fMRI experiment showed the 

main effect of the filler-gab distance in the left inferior frontal gyrus including the pars 

opercularis (BA 44) and the posterior portion of the pars triangularis (BA 45) as well as the 

inferior frontal sulcus (Makuuchi, Grodzinsky, Amunts, Santi, & Friederici, 2013). 

The generative neurolinguistic model of sentence processing, however, emphasizes 

‘purely’ syntactic mechanisms which are independent of other aspects of cognition such as 

working memory (for discussions, see also L. Meyer & Friederici, 2015). For example, 

Makuuchi, Bahlmann, Anwander, and Friederici (2009) conducted an fMRI experiment which 

showed the main effect of syntactic structure (i.e., multiple levels of embedding) and of 

working memory load (i.e., distance between dependent elements) in different area in the left 

inferior frontal region, with the former in the lateral convexity of the left pars opercularis (BA 

44) and the latter in the left inferior sulcus (Figure 9.3). In those experiments, “working 

memory” is used to denote “maintenance cost of the verbal information for a certain period” 

(Makuuchi et al., 2009, p. 8363). 

 

 

                                                 
sentence to the sentence initial position (realized as “who”). As the distance between the trace and the realization 

is large, processing of object wh-question is considered as demanding. In comparison to object wh-questions, 

subject wh-questions such as “Who did attack the reporter?” (notated as “Who t did attack the reporter?”) are 

regarded as less demanding to process as the trace and the realization are close to each other. 
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Figure 9.3 The main effect of syntactic structure (orange) and of working memory load (blue) 

in the inferior frontal region. The purple area showed a higher coupling with the left pars 

opercularis during sentences with multiple levels of embedding (in comparison with sentences 

with no embedding). The green area is BA 44 and the yellow area BA 45. The figure is adopted 

from Makuuchi et al. (2009, p. 8364), PNAS, 106 (20): 8362–8367, with permission by Michiru 

Makuuchi. 

 

9.2 Cortical circuit model of tonal-harmonic syntax in music 

9.2.1 Stefan Koelsch’ neurocognitive model of music perception 

A neurocognitive model of music perception which shows many parallels to Friederici’s 

model was introduced by Stefan Koelsch (2011a). His model (Figure 9.4) consists of step-by-

step processes including basic auditory information processing (Feature Extraction I and II), 

formation of basic musical representations (auditory sensory memory, Gestalt formation, and 

analysis of intervals), and music syntactic processing (structure building and structural 

reanalysis & repair). Musical meaning is suggested to emerge through the interpretation of 

(musical) information obtained through the above mentioned processing steps. Like 

Friederici’s model, Koelsch’ model is based on several neuroimaging studies investigating the 

time course of processing (by using electroencephalography (EEG) and 

magnetoencephalography (MEG)) as well as brain regions activated by those processes (by 

using fMRI). Below, hypothesized neural correlates of structure building components in music 

syntactic processing are amplified and discussed. 
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Figure 9.4 Neurocognitive model of music perception. The figure is adopted from Koelsch 

(2011a, p. 3), Frontiers in Psychology, 2: 110. 

 

Music syntactic processing studied by Koelsch and his colleagues refers to “the 

processing of major-minor tonal syntax, particularly with regard to chord functions (i.e., with 

regard to harmony [...])” (Koelsch, 2011a, p. 5). Therefore, I use the term “tonal-harmonic 

syntactic processing” below instead of “music syntactic processing” which includes other 

domains of musical syntax. According to Koelsch (2012a, 2012b), tonal-harmonic syntactic 

processing consist of several sub-processes such as extracting tonal center, establishing 

structural relationships between pitch-events (e.g., stability relationship and long-distance 

dependency), hierarchical structure building as well as structural reanalysis and repair. In 

addition, he suggested that further general processes such as prediction, implicit learning, 

working memory, and attention are involved in tonal-harmonic syntactic processing. Most of 

the studies conducted by Koelsch and colleagues which investigate tonal-harmonic syntactic 

processing used the violation paradigm to (indirectly) study structure building by mainly using 

EEG and fMRI. 

One electrophysiological correlate of tonal-harmonic syntactic processing is the early 

right anterior negativity (ERAN), i.e. an event-related potential (ERP) with negative polarity, 

maximal amplitude values at (right) frontal electrodes, and a peak latency around 150-180 ms 

(Figure 9.5C) (Koelsch, 2011a, 2012b). This brain potential was first discovered in an 
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experiment using a chord sequence paradigm (Figure 9.5B), in which ERAN was elicited by 

irregular chords in comparison to regular chords (Koelsch, Gunter, Friederici, & Schröger, 

2000). Afterwards, ERAN was repeatedly found in similar experiments using a chord sequence 

paradigm with partly modified stimuli and/or tasks as well as extended experiments using 

polyphonic stimuli, existing musical piece, and melody (for reviews, see Koelsch, 2009, 2011a, 

2012a). In all those studies, harmonic or tonal violations were considered as tonal-harmonic 

syntactic incongruities. ERAN was suggested to reflect a violation of harmonic structure 

building (Koelsch, 2012a). Moreover, cognitive processes reflected in ERAN are shared with 

those reflected in LAN because they show an interaction (i.e., reduced amplitude) if 

syntactically incongruent words and chords are simultaneously presented (Koelsch, Gunter, et 

al., 2005; Steinbeis & Koelsch, 2008). 

 

Figure 9.5 Illustration of A) chord functions, B) chord sequence paradigm, C) ERAN and N5, 

and D) source localization of ERAN. The figure is adopted from Koelsch (2011a, p. 5), 

Frontiers in Psychology, 2: 110, with permission from Elsevier for the original material 

published by Koelsch and Siebel (2005, p. 580), Trends in Cognitive Sciences, 9 (12): 578-584. 

 

Neuroanatomical correlates of tonal-harmonic syntactic processing were suggested to 

be the inferior pars opercularis of the inferior fronto-lateral cortex (BA 44v) with additional 

contributions from the ventrolateral premotor cortex (BA 6) and the anterior superior temporal 

gyrus (planum polare) (Koelsch, 2012a, p. 131). These areas were more activated in the 

experimental condition including chord sequences with irregular, less-related or unrelated 
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chords in comparison to regular chord sequences largely throughout different EEG and MEG 

source localization studies, fMRI studies, and recordings from intracranial grid-electrodes from 

patients with epilepsy (Bianco et al., 2016; Garza Villarreal, Brattico, Leino, Østergaard, & 

Vuust, 2011; Koelsch et al., 2002; Koelsch, Fritz, Schulze, Alsop, & Schlaug, 2005; Maess, 

Koelsch, Gunter, & Friederici, 2001; Musso et al., 2015; Sammler, 2009; Tillmann et al., 2006; 

Tillmann, Janata, & Bharucha, 2003; for short summary, see Table 9.6; for details see Figure 

9.6). The bilateral BA 44 seem to be consistently more activated in experimental conditions 

including harmonic structure violations. Stronger activation (irregular (or unrelated or less-

related) > regular (or related)) of the aSTG (and pSTG) was reported in some studies.  Figure 

9.6 also shows that peak activations in the left BA 44 are mainly at its ventral part. That is, this 

analysis suggests bilateral BA 44, BA 6, aSTG, and pSTG as possible candidate neural 

correlates of tonal-harmonic syntactic processing and underlines the role of BA 44 (but see 

discussions below and in Section 9.2.2, p. 75).  

Table 9.6 The table summarizes the activations of the neural regions hypothesized by Koelsch 

(2012a) as neuroanatomical correlates of tonal-harmonic syntactic processing and a further 

region (pSTG) additionally reviewed in Friederici (2011) in each study. In this table, only 

studies using chord sequence paradigm are reviewed. Only results gained by the subtraction 

analysis (irregular (or unrelated or less-related) - regular (or related)) are reviewed. 

 Methods 

(Participants) 

BA44/45 

(BA45) 

BA44 BA44/6 BA6 aSTG/ 

planum 

polare 

pSTG/ 

planum 

temporale 

Maess et 

al. (2001) 

MEG source 

localization 

(nonmusicians) 

- bilateral - - - - 

Koelsch et 

al. (2002) 

fMRI 

(nonmusicians) 

 

- bilateral bilateral - bilateral bilateral 

Tillmann et 

al. (2003) 

fMRI 

(adults) 

 

bilateral - - bilateral - - 
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Koelsch et 

al. (2005) 

fMRI 

(adults) 

(children) 

 

(bilateral) 

(right) 

 

bilateral 

right 

 

- 

- 

 

bilateral 

right 

 

- 

- 

 

bilateral 

right 

Tillmann et 

al. (2006) 

fMRI 

(adults) 

 

- right - - left left 

Villarreal 

et al. 

(2011) 

EEG source 

localization 

(adults) 

bilateral - - - - - 

Musso et 

al. (2015) 

fMRI 

(adults) 

 

(bilateral) - - - - - 

Bianco et 

al. (2016) 

fMRI 

(pianists) 

 

(right) - - - - right 

 

 

 

a) 
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b) 

Left hemisphere 

 

Right hemisphere 

 



PART II      75 

Figure 9.6 The figure is an overview of the peak activation foci (in MNI space28) reported in 

the above-mentioned studies. Only adults’ data are included. If the coordinates are reported in 

Talairach space in the original studies, they are transformed by using convert foci function 

(Talairach to MNI (SPM29)) implemented in the BrainMap GingerALE software30. The figures 

were created by MRIcroGL software31. a) Lateral view: The peak activations are projected onto 

the nearest surface. The intensity/brightness of the color represents the distance of the foci to 

the surface. b) Sagittal view: The peak activation foci in the Broca’s region and the temporal 

lobe are labeled with the Brodmann areas. 

 

However, a neuropsychological study comparing ERAN of healthy controls and 

patients with left IFG lesion showed difference only in the scalp distribution (ERAN was more 

anteriorly distributed and strongly right lateralized in the patient group) and not in the 

amplitude (Sammler, Koelsch, & Friederici, 2011). The only finding in favor of the claim that 

the left IFG is necessary for tonal-harmonic syntactic processing was a correlation between 

years of injury and hit rate of the regular-irregular discrimination task (the post-hoc behavioral 

experiment was conducted approx. two days after the main experiment session) and the chance 

level hit rate of this task in the patient group (even though there was no statistically significant 

difference to the hit rate of the control group). Moreover, this study also examined patients with 

the aSTG lesion and showed that there was no difference between control and patient group. 

Therefore, the necessity of the Broca’s region and the aSTG for tonal-harmonic syntactic 

processing is still unclear. 

 

9.2.2 Neural correlates of tonal-harmonic syntactic processing: An ALE meta-

analysis 

As reviewed above, neuroimaging studies using chord-sequence violation paradigm 

provided evidences for engagement of the Broca’s region (especially BA 44) and BA 6 as well 

as the anterior and posterior STG in tonal-harmonic processing. However, it is not clear 

whether they are consistently involved in an extended range of neuroimaging studies 

                                                 
28 MNI (Montreal Neurological Institute) space and Talairach space are based on different standardized 3D 

coordinate frames. 
29 SPM (statistical parametric mapping) is a statistical analysis technique used frequently in fMRI data analysis. 

SPM (https://www.fil.ion.ucl.ac.uk/spm/) is also name of an analysis software (available as a MATLAB toolbox) 

implementing this idea. 
30 GingerALE software (http://www.brainmap.org/ale/) is a software to conduct an ALE meta-analysis. It has 

another function for transforming the data from one coordinate system to another. 
31 MRIcroGL (http://www.cabiatl.com/mricrogl/) is a software for displaying 3D medical image.  

https://www.fil.ion.ucl.ac.uk/spm/
http://www.brainmap.org/ale/
http://www.cabiatl.com/mricrogl/
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investigating tonal-harmonic syntax. Thus, an activation likelihood estimation (ALE) meta-

analysis was conducted on seventeen fMRI studies investigating any of the above-mentioned 

sub-processes in tonal-harmonic syntactic processing. First of all, neuroimaging studies were 

retrieved by using PubMed and Google Scholar with "Music AND Syntax", "Music AND 

Structure AND fMRI", "Music AND Grammar AND fMRI", "(fMRI OR functional magnetic 

resonance imaging) AND (music OR pitch OR melody OR harmony) AND (syntax OR 

structure)", and "fMRI AND music AND tension" as search criteria (Date: July 19, 2018). The 

studies not using fMRI, not focusing on tonal-harmonic syntactic processing, or not measuring 

healthy adults were excluded. The studies reporting only the results of the region of interest 

(ROI) analysis as well as stating no coordinate or coordinate space were also removed. Further, 

all remaining studies were evaluated whether they relate to sub-processes of tonal-harmonic 

syntactic processing and thus enter into the meta-analysis. The criteria designed on the basis of 

computational-representational theories (Section 8.2, p. 50) and Koelsch’ sub-processes 

(Section 9.2.1, p. 69) were applied for the evaluation, which matched seventeen experiments 

(see Table 9.7). 

Table 9.7 Summary of the studies included in the ALE meta-analysis on tonal-harmonic 

syntactic processing. Only the first authors’ names are displayed in the table (Bianco et al., 

2016; Cheung, Meyer, Friederici, & Koelsch, 2018; Durrant et al., 2007; Fedorenko, Behr, & 

Kanwisher, 2011; Foster & Zatorre, 2010; Fujisawa & Cook, 2011; Koelsch, Fritz, et al., 2005; 

Koelsch et al., 2002; Lehne, Rohrmeier, & Koelsch, 2013; Levitin, 2003; Musso et al., 2015; 

Oechslin, Van De Ville, Lazeyras, Hauert, & James, 2013; Schmithorst, 2005; Seger et al., 

2013; Spada, Verga, Iadanza, Tettamanti, & Perani, 2014; Tillmann et al., 2003, 2006). 

Sub-processes Musical domain Studies 

Extracting tonal center 
Tonality Durrant, 2007 

(N = 16) 

tonal > atonal 

Establishing structural 

relationships & 

Structure building 

Transposition Foster, 2009 

(N = 20) 

transposed > simple 

Grammaticality, 

regularity, or 

relatedness 

Tillmann, 2003 

(N = 15) 

related > unrelated 

Koelsch, 2005 

(N = 20) 

irregular > regular 

Tillmann, 2006 less related > related 
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(N = 21) 

Spada, 2014 

(N = 19) 

altered melody > correct 

Musso, 2015 

(N = 11) 

struct. dev. > well-formed 

Bianco, 2016 

(N = 29) 

incongruent > congruent 

Cheung, 2018 

(N = 17) 

ungramm. > gramm. 

Ordering of pitch 

events 

Levitin, 2003 

(N = 13) 

normal > scrambled 

Schmithorst, 2005 

(N = 15) 

melody > random tones 

Fedorenko, 2011 

(N = 12) 

intact > scrambled 

Tension-

relaxation pattern 

Lehne, 2014 

(N = 25) 

tension regressor 

Cadence Fujisawa, 2011 

(N = 12) 

cadence > white noise 

Oechslin, 2013 

(N = 58) 

transgression 

Seger, 2013 

(N = 11) 

cadences > baseline 

Reanalysis and repair 
Modulation Koelsch, 2002 

(N = 10) 

modulation > in-key 

N of studies = 17, N of subjects = 324, N of foci = 193 

 

The ALE meta-analysis was run by using BrainMap software GingerALE version 2.3.6 

(http://www.brainmap.org). First, the foci reported in the Talairach space were converted into 

MNI space by using convert foci function (Talairach to MNI (SPM)) implemented in the 

GingerALE. Second, the ALE meta-analysis was performed. This is a coordinate-based 

analysis of the seventeen studies by using the ALE algorithm as implemented in GingerALE 

to identify the convergent foci over different studies (Eickhoff et al., 2009; Laird et al., 2005; 

http://www.brainmap.org/
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Turkeltaub, Eden, Jones, & Zeffiro, 2002). The maps were thresholded by using a cluster-level 

family-wise error (cFWE) correction (P < 0.05) with a cluster-forming threshold of P < 0.001 

using 1,000 permutations32 . The results of the analysis are reported in the Table 9.8. The 

anatomical labels were automatically generated by Talairach daemon software (Lancaster et al., 

1997, 2000) included in the GingerALE33. Third, the ALE image was overlaid onto the MNI 

template (Colin27_T1_seg_MNI.nii) by using the software Mango34. The reported clusters and 

the anatomical labels of the peaks are represented in Figure 9.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
32  A study shows that the cluster-level FEW thresholds can be reliably estimated with 1,000 permutations 

(Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012). 
33 It converts MNI space to Talairach space to label anatomical regions appropriately. Thus, the outputs of the 

Talairach daemon software can be used as the anatomical labels of the MNI coordinates. 
34 Mango (http://rii.uthscsa.edu/mango/) is a software for displaying medical image. 

http://rii.uthscsa.edu/mango/
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Table 9.8 Results of the ALE meta-analysis on tonal-harmonic syntactic processing. 

Cluster BA MNI coordinates (mm) ALE (x 10-2) Cluster size (mm3) 

 
 x y z   

1 (right) 
13 34 24 0 2.58 7528 

 
44 52 18 8 2.23  

 
13 48 16 -2 2.08  

 
13 44 34 2 1.88  

 
46 44 20 16 1.48  

 
* 38 12 -2 1.38  

 
47 50 22 -12 1.33  

 
9 48 22 26 1.11  

2 (left) 
22 -52 6 -10 1.79 2696 

 
22 -52 10 0 1.61  

3 (right) 
22 60 -34 8 1.87  

 
22 52 -32 0 1.21  

 
22 58 -40 -4 1.14  
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Left hemisphere 

 

Right hemisphere 

 

Figure 9.7 ALE image of the meta-analysis on tonal-harmonic syntactic processing overlaid 

onto the MNI template (Colin27_T1_seg_MNI.nii) by using the software Mango. 
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The analysis revealed three clusters (one large cluster and two small clusters) which 

achieved significance, i.e., reliable activations over different studies (Table 9.8, Figure 9.7, and 

Appendix A, p. 228). The first cluster is a large cluster in the right hemisphere and comprises 

the insula (BA 13) and the pars opercularis (BA 44) extending to the more anterior part of the 

inferior frontal gyrus (BA 47) and to the middle frontal gyri (BA 46 and BA 9). The studies 

investigating grammaticality (Bianco et al., 2016; Cheung et al., 2018; Koelsch, Fritz, et al., 

2005; Spada et al., 2014; Tillmann et al., 2003, 2006), ordering of pitch events (Fedorenko et 

al., 2011; Levitin, 2003), cadence (Fujisawa & Cook, 2011; Oechslin et al., 2013; Seger et al., 

2013), and modulation (Koelsch et al., 2002) contributed to this cluster. The second cluster is 

a small cluster in the left hemisphere and consists of the anterior superior temporal gyrus (BA 

22). A subset of the studies listed concerning the first cluster contributed to this second small 

cluster (Fedorenko et al., 2011; Fujisawa & Cook, 2011; Koelsch, Fritz, et al., 2005; Koelsch 

et al., 2002; Levitin, 2003; Seger et al., 2013; Tillmann et al., 2003, 2006). The third cluster is 

a small right hemispheric cluster including the superior and middle temporal gyrus (BA 22). 

Only studies investigating grammaticality (Bianco et al., 2016; Cheung et al., 2018; Koelsch, 

Fritz, et al., 2005), ordering of pitch events (Fedorenko et al., 2011), and modulation (Koelsch 

et al., 2002) contributed to this cluster. 

Those results indicate that the regions suggested as neuroanatomical correlates of tonal-

harmonic syntactic processing by Koelsch (2012b) show reliable activation over different 

studies. However, there are some unique constraints. First, concerning the Broca’s region, only 

the right pars opercularis (BA 44) reached significant ALE score. The left BA 44 is included in 

the nearest gray matters (within +/– 5 mm) of the cluster 2 and is involved in the dorsal end of 

the cluster, but it did not get a significant ALE score (see also discussions on the limitations of 

the current meta-analysis below). Second, the involvement of the anterior superior temporal 

gyrus was shown only in the left hemisphere. Third, the ventrolateral premotor cortex (BA 6) 

was not included in the clusters. In addition, although the left posterior superior temporal gyrus 

suggested to be involved in syntactic processing (Friederici, 2011) was not included in the 

clusters, the right posterior superior temporal gyrus was. Moreover, in addition to those regions 

hypothesized to be involved in tonal-harmonic syntactic processing, the insula, the middle 

frontal gyrus (BA 46 and 9), and another area in the inferior frontal gyrus (BA 47) showed 

significant ALE scores. 

There are several limitations of the current meta-analysis study. First, it was not able to 

automatically and objectively evaluate which studies relate to sub-processes of tonal-harmonic 

syntactic processing and thus enter into the meta-analysis as there are no established criteria 
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(e.g., stimuli and tasks) associated with each sub-process. Second, although it meets the least 

number of studies (i.e., seventeen studies) required to gain reliable results (Eickhoff et al., 

2016), clearly more studies are required. Especially, seven out of seventeen experiments 

examined in the current meta-analysis used violation paradigm and, thus, it is also possible that 

the results strongly reflect structural violation processing rather than structure building per se. 

Third, the current meta-analysis is a coordinate-based one and excluded experiments using ROI 

analysis as well as stating no coordinate or coordinate space. Some excluded studies suggest 

the involvement of the left inferior frontal gyrus in tonal-harmonic syntactic processing (Kunert 

et al., 2015; Minati et al., 2008), indicating that more studies are needed to evaluate the 

involvement of the left inferior frontal gyrus in tonal-harmonic syntactic processing. 

In sum, the current meta-analysis shows a right hemispheric fronto-temporal network 

for tonal-harmonic syntactic processing with an additional area in the anterior superior 

temporal gyrus extending presumably to the left pars opercularis (Figure 9.8). This corresponds 

to the regions (including the left superior temporal gyrus, the insula, and the right inferior 

frontal gyrus) and the (left) temporo-insular pathway running ventrally along the extreme 

capsule which were suggested to rather uniquely involved in tonal-harmonic syntactic 

processing (Musso et al., 2015). In addition, the arcuate fasciculus connecting the right frontal 

and temporal area seems to be more relevant to tonal-harmonic syntactic processing. 

 

Figure 9.8 Schematic illustration of regions involved in tonal-harmonic syntactic processing. 

The circle with dashed line containing a question mark is BA 44. L = Left hemisphere; R = 

Right hemisphere 

 

9.3 Hierarchical processing as shared aspects of linguistic and musical syntax 

The investigations of the relationship between language and music from the perspective 

of the generative neurolinguistics and neuromusicology provided, as reviewed above, rich 
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comparative options. According to this approach, at the computational level, computational 

problems of language and music can be solved on the basis of abstract principles such as 

recursion and hierarchical structure building. In addition, the relationship between elements are 

further determined in terms of head-complement or head-elaboration. At the algorithmic and 

implementational level, language and music processing was investigated on the basis of syntax-

centered parsing models. Especially, commonality of hierarchical processing implemented in 

BA 44 for both domains was pointed out repeatedly (Fitch & Martins, 2014; Jeon, 2014; 

Koelsch, 2011a, 2012b). In this context, hierarchical processing can be understood as assigning 

hierarchical structures to sequences (also called structure building) and processing (non-

adjacent) structural relationships between elements. Hierarchical processing is assumed on the 

basis of computational-representational theories asserting that language and music are 

structured hierarchically. In this way, generative neurolinguistics and neuromusicology take 

direct correlational mapping approach (see PART I, Section 5.2.1, p. 23). 

To support this top-down assumption from computational-representational theory, the 

argument for shared hierarchical processing in language and music from cognitive 

neuroscience perspectives is often made by a reverse inference (see PART I, Section 5.2.2, p. 

26) as follows: if hierarchical structure is processed, Broca’s region is activated; Broca’s region 

is activated in both language and music; that is, in both language and music hierarchical 

structure is processed (and this process might be shared). To optimize this reverse inference, 

however, the selectivity of Broca’s region activity for hierarchical processing should be 

investigated. In doing so, the Broca’s region should be investigated as consisting of several 

subcomponents (Amunts et al., 2010). For example, Fedorenko and colleagues showed that 

there are (mostly) language-specific area and domain-general area side-by-side within the 

Broca’s region (Fedorenko et al., 2011; Fedorenko, Duncan, & Kanwisher, 2012): language-

specific area especially seems to lie in BA 44v and 45p. This is in line with the finding of a 

study using a meta-analytic connectivity modeling that the left BA 44 can be separated into 

five functionally separable clusters with ‘language cluster’ being in the anterior dorsal BA 44 

and ‘action and music cluster’ (or ‘sequencing cluster’) in the posterior ventral BA 44 (Clos, 

Amunts, Laird, Fox, & Eickhoff, 2013). Figure 9.9 shows tonal-harmonic syntactic regions 

(green; the results of the ALE meta-analysis in the Section 9.2.2, p. 75) together with the 

regions associated with language comprehension35 (red) retrieved from Neurosynth database 

                                                 
35 Note that this is not limited to syntactic processing. By September 22, 2018, the Neurosynth did not have custom 

meta-analysis implemented in the online tool. 
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using another kind of meta-analysis (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). 

This also demonstrates that regions associated with language comprehension show little 

overlap with tonal-harmonic syntactic regions. 

 

Figure 9.9 The result of the meta-analysis of musical syntax (green) in plotted together with 

the data for language comprehension (red) retrieved on September 22, 2018 from Neurosynth 

database. 

 

Moreover, given that hierarchical processing includes two components, i.e., structure 

building and establishing structural relationships, those components should be examined as 

different concepts. For example, on one hand, structure building in terms of linguistic 

constituent structure building was claimed to be implemented rather in the left temporal cortex 

(Brennan et al., 2012; Brennan, Stabler, Van Wagenen, Luh, & Hale, 2016). On the other hand, 

the effect of processing nested dependencies is located in the Broca’s region (Bahlmann et al., 

2008; Makuuchi et al., 2009). In both cases, it deals with hierarchical processing, but the former 

might be more related to structure building, while the latter to recognizing structural 

relationships. To investigate this issue, first of all, those two aspects of hierarchical processing 

should be delineated and then the probability of hierarchical structure building and recognizing 

structural relationships given unique tasks and stimuli should be enhanced. Another method 

might be one utilized by Brennan and colleagues (2016), in which different parsing models are 

used as predictors of brain activation patterns during (more) naturalistic language processing.  

The delineation of hierarchical processing in two independent concepts such as 

structure building and recognizing structural relationships might be also helpful for music 

research as well as comparative language-music research. For example, although there are 
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increasing evidences that local and long-distant structural relationships are processed in music 

(Cheung et al., 2018; Koelsch, 2011a; Koelsch, Rohrmeier, Torrecuso, & Jentschke, 2013; Van 

de Cavey & Hartsuiker, 2016), it is still matter of debate to what extent the hierarchical 

structure of music determined at the computational level is built and reflected in online 

processing (Rohrmeier, 2011) and how musical structure building relates to that in language. 

In addition, linguistic syntactic ERP component LAN is elicited when processing of 

grammatical relations are disrupted (Friederici, 2011). Thus, shared mechanism reflected in the 

interaction between LAN and ERAN could be one underlying recognition of structural 

relationships rather than structure building as such.  

 

10 Perspectives from neurocognitive psycholinguistics and psychomusicology 

10.1 The Shared Syntactic Integration Resource Hypothesis and working memory 

Dependency Locality Theory (DLT) is one of psycholinguistic theories which accounts 

for perceived differences in linguistic complexity as well as preference in syntactic ambiguity 

resolution. DLT examines these aspects in terms of “computational resources in sentence 

parsing that relies on [...] two kinds of resource use”: “performing structural integrations” (i.e., 

“connecting a word into the structure for the input thus far”) and “keeping the structure in 

memory” (i.e., “keeping track of incomplete dependencies”) (Gibson, 2000, p. 95). Both 

structural integration processes and storage are suggested to make use of the same working 

memory resources (Gibson, 1998, 2000). According to DLT, processing of resource intensive 

sentences can be investigated in terms of the integration cost of two elements determined by 

the distance or locality between the two, i.e. the longer the distance between elements to be 

integrated (underlined below), the higher the integration cost (Gibson, 2000). Resource 

intensive sentences are, for example, complex sentences including object-extracted relative 

clauses (RC) or many layers of center embedding: the sentence (10-1) and (10-3) are much 

harder to process (and thus takes much longer to process) than (10-2) and (10-4) respectively 

(for details, see Gibson, 1998, 2000). 

(10-1) The reporter who the senator attacked admitted the error. (Object-extracted RC) 

(10-2) The reporter who attacked the senator admitted the error. (Subject-extracted RC) 

(10-3) The reporter who the senator who John met attacked disliked the editor. (Two 

layers of center embedding) 

(10-4) The reporter who the senator attacked disliked the editor. (One layer of center 

embedding) 
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Based on DLT and Fred Lerdahl’s Tonal Pitch Space theory (TPS), Patel (2003) 

introduced a resource sharing framework for language and music syntactic processing. He 

suggested that structural integration, i.e., mentally connecting an incoming element (e.g., word 

or chord) to another element in the evolving structure, is a key part of syntactic processing and 

proposed the ‘Shared Syntactic Integration Resource Hypothesis’ (SSIRH) stating that 

language and music syntactic processing make use of the same neural resources for structural 

integration. In language, the integration cost is determined in terms of the distance between 

incoming events and their dependents. In music, it deals with the tonal distance between 

context chords and incoming events. The SSIRH concerns with neural resources provided by 

‘processing regions’ in the brain which control the activation level of items in ‘representation 

regions’. The neural resources of the processing regions are shared in language and music 

syntactic processing. The representation regions are understood as the loci where the structural 

integration itself takes place, on one hand, and the parts where domain-specific long-term 

memory representations are placed, on the other hand. Patel (2003) introduced the 

hypothesized loci of control regions (processing regions) as the frontal regions and long-term 

storage regions (representation regions) as the posterior (or rather temporal) regions, but not 

the regions where the actual integration takes place. 

In a later writing, Patel (2013, p. 346) seems to equate “structural integration” with 

“syntactic unification” proposed to be implemented in BA 44 and 45 (Hagoort, 2005, 2013, 

2016). Patel (2013) seems to see similarity between the main ideas of SSIRH and Peter 

Hagoort’s memory unification control (MUC) model (Hagoort, 2016) because both suggest a 

domain-general processing component for structural integration as implemented in the frontal 

cortex and a domain-specific memory representation in the temporal cortex. Although further 

details are not discussed by Patel (2013), I elaborate this discussion a little bit because it has 

an important implication for shared aspects in language and music. First of all, the unification 

approach is a lexicon-centered approach because all words and rules are pieces of structures 

(or schemas) stored in the lexicon and the unification which put those pieces of structures 

together is the only procedural operation (Hagoort, 2005; Jackendoff, 2002, 2011, 2015). 

Moreover, it also assumes a constraint-based, interactive one-stage variable-choice parsing 

model with phonological, syntactic, and semantic unification operating in parallel (Hagoort, 

2005; Jackendoff, 2002, 2011, 2015). Finally, as already noted in the PART I, Jackendoff’s 

parallel architecture theory, which Hagoort (2005, 2013, 2016) and Patel (2013) refer to, is 

understood in terms of a working memory theory concerning language processing (Jackendoff, 

2002). 
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Concerning the DLT and the MUC, therefore, Patel’s SSIRH is framed in a working 

memory theory although he seems to keep distance from it by saying that “[t]he approach taken 

here […] does not propose that […] linguistic and musical syntax share a special memory 

system or symbol manipulation system” (Patel, 2008, p. 276). Importantly, “working memory” 

is understood neither as a mere static temporary storage nor a temporary activation of elements 

in the long-term memory. Instead, Gibson (2000) suggested that both storage and integration 

components make use of the same working memory resources, and Jackendoff (2002, p. 207) 

emphasized that working memory is “not just as a shelf where the brain stores material, but as 

a workbench where processing goes on, where structures are constructed”. Therefore, working 

memory can be regarded as a dynamic workbench or workspace where elements are 

temporarily maintained and integrated into larger units or sequences. In this framework, from 

a theoretical perspective, “shared syntactic integration resource” can be interpreted as working 

memory resource. 

The hypothesis about shared working memory resource in language and music was 

articulated explicitly by Kljajevic (2010). Kljajevic (2010, p. 96) introduced the concept of 

syntactic working memory as “an interface module that enables processes of storage and 

manipulation of intermediate syntactic representations while building full representations”. 

“Interface module” is used to indicate that syntactic working memory operates at an 

intermediate level between short-term and long-term memory, on one hand, and that it 

communicates information from different modalities and domains, on the other hand. This 

corresponds to Jackendoff’s (2000, 2002) interface modules communicating information 

between different domains. “Storage” and “manipulation” correspond to storage and 

integration component by Gibson (1998, 2000). Kljajevic (2010), then, proposed that this 

syntactic working memory is also required for structural integration of musical (as well as 

arithmetic and action) sequences given rule-based manipulation of discrete elements. 

According to Kljajevic (2010), language and music syntactic representations which are built 

during parsing are transient, intermediate structures as sentence and musical sequence unfold 

in time and, thus, cannot be stored in the long-term memory, but should be represented in the 

(syntactic) working memory. 

Beyond the theoretical parallels, there is some indirect empirical evidence for the shared 

working memory resource in language and music. In language research, object-extracted 

relative clauses and object wh-questions claim more working memory resource than subject-

extracted relative clauses and subject wh-questions. In both cases, difference in working 

memory load is based on the distance between dependent elements. In a behavioral study 
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conducted by Fedorenko, Patel, Casasanto, Winawer, and Gibson (2009) which used sung 

melodies, comprehension accuracy of object-extracted relative clause sentences was lower than 

that of subject-extracted relative clause sentences and the accuracy difference between those 

conditions was significantly larger if the melody contained an out-of-key tone. An fMRI 

experiment conducted by Kunert and colleagues (2015) which used similar stimuli revealed 

the interaction effect between types of relative clause (subject-extracted vs. object-extracted) 

and pitch (in-key vs. out-of-key) in Broca’s region.  

 

10.2 Cognitive control approach 

Another process involved in parsing resource intensive sentences can be investigated 

in terms of cognitive control, especially of “overriding highly regularized, automatic processes” 

(Novick, Trueswell, & Thompson-Schill, 2005, p. 263). For example, in processing one-by-

one incoming words, preferred parsing strategy might point toward an incorrect analysis. 

Example (10-5) contains syntactic ambiguity. After reading or listening the first words “The 

man accepted …” people tend to expect a direct object (i.e. something accepted by the man) 

like “The man accepted the money.” automatically. However, at the moment when the word 

“could” come into play, the primary parsing to take the word “the money” as a direct object 

turns wrong - it is actually the subject of the subordinate clause. 

(10-5) The man accepted the money could not be spent yet. 

 

In such garden-path situations, “readers and listeners have to re-rank their initial parsing 

commitments” (Novick et al., 2005, p. 269). The garden-path recovery involves cognitive 

control processes because the previous automatic and “habitual” analyses should be overridden 

or updated to avoid misinterpretation of the whole sequence and can be regarded as analogous 

to the nonparsing cognitive control tasks (e.g. stroop task36 ) including conflict resolution 

(Novick et al., 2005). While detection of response-based conflict was ascribed to anterior 

cingulate cortex, cognitive control in sentence parsing requiring detection and resolution of 

internal (representational) conflict was suggested to be implemented in the left inferior frontal 

gyrus including Broca’s region (Novick et al., 2005; Novick, Trueswell, & Thompson-Schill, 

2010). 

                                                 
36 In the stroop task, subjects view color names presented in various ink colors and are instructed to name the 

color of the ink. The stimuli can be congruent (i.e., the color name and the to-be-named ink color are same) and 

incongruent (i.e., the color name and the to-be-named ink color are different). The task demand is larger in the 

incongruent condition as the participants are exposed to two conflicting representations. 
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In one fMRI experiment, Mestres-Missé and colleagues studied neural implementation 

of conflict detection and resolution in sentence parsing more in detail (Mestres-Missé, Turner, 

& Friederici, 2012). There are two major findings of this experiment. First, the authors 

predicted that processing ambiguous sentences is cognitively more demanding than processing 

ungrammatical sentences because the former requires both conflict detection and resolution 

while the latter entails only conflict detection. An evidence for this prediction was provided by 

behavioral results showing that the reaction time of grammaticality judgement was longer for 

ambiguous sentences then for ungrammatical sentences. In addition, the fMRI result showed 

that ambiguous sentence processing in comparison with ungrammatical sentence processing 

demonstrated increased activations in right superior temporal sulcus, bilateral anterior caudate 

head, left posterior superior temporal gyrus, and left middle temporal gyrus. Reverse contrast 

did not reveal any significantly more activated regions. This indicates that an additional process, 

i.e., conflict resolution, is required for processing ambiguous sentences. Second, this study 

reported two types of cognitive control gradients: a prefrontal cortex gradient ranging from 

dorsolateral, ventrolateral to anterior lateral prefrontal regions and a posterior-to-anterior 

gradient in dorsomedial striatum. 

Recently, cognitive control was suggested to be one of promising candidates for 

resources shared in language and music processing (Slevc & Okada, 2015). Slevc and Okada 

(2015) point out that interaction effect (e.g., interference effect) between language and music 

processing which is regarded as an evidence for shared resources mainly occurs when 

experimental manipulations entail both conflict detection and resolution in language and music 

processing. For example, interaction effects are reported by behavioral and neuroimaging 

experiments which use musical sequences with tonal-harmonic violations and sentences with 

syntactic violations, non-canonical word order, or garden-path (Fedorenko et al., 2009; Fiveash 

& Pammer, 2014; Hoch, Poulin-Charronnat, & Tillmann, 2011; Koelsch, Gunter, et al., 2005; 

Perruchet & Poulin-Charronnat, 2013; Slevc et al., 2009; Steinbeis & Koelsch, 2008). Slevc 

and Okada (2015) further suggest that shared cognitive control resource for language and music 

processing is located in the left inferior frontal cortex among other cognitive processes by 

referring to neuroimaging studies on tonal-harmonic syntactic processing which demonstrated 

bilateral lateral prefrontal areas (Koelsch, Fritz, et al., 2005; Koelsch et al., 2002; Oechslin et 

al., 2013; Seger et al., 2013; Tillmann et al., 2003, 2006) as well as studies which showed 

greater grey matter density of the left inferior frontal gyrus in musicians than in nonmusicians 

(Abdul-Kareem, Stancak, Parkes, & Sluming, 2011; Gaser & Schlaug, 2001; Sluming et al., 

2002). 
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Slevc and Okada (2015) claim that the most direct evidence for involvement of 

cognitive control resource in music processing comes from two studies which demonstrated 

effect of music on the stroop effect (Masataka & Perlovsky, 2013; Slevc, Reitman, & Okada, 

2013). The study conducted by Masataka & Perlovsky (2013) found that parallel presentation 

of music consisting predominantly of dissonant intervals intensifies the stroop effect, while 

parallel presentation of music consisting mostly of consonant intervals does not have any effect. 

Slevc and colleagues (2013) also showed that parallel presentation of out-of-key endings 

enhanced the stroop effect, while in-key endings did not. Although those experiments use 

different musical stimuli, one common aspect which was hypothesized to enhance the stroop 

effect was chords which do not fit to the current tonal context in dissonant form (Masataka & 

Perlovsky, 2013) or consonant form (Slevc et al., 2013). Thus, those experiments, at least, seem 

to provide an evidence for the involvement of cognitive control resource in processing out-of-

key chords, i.e. processing of key-membership. From those experiments, however, it does not 

become clear whether resource for conflict detection or resolution interact in music and stroop 

task. 

 

10.3 Executive function as shared aspects of linguistic and musical syntax 

Neurocognitive psycholinguistics and psychomusicology approaches take intertwined 

relationship between linguistic and psychological concepts. That is, they rather take a 

convergence strategy (see PART I, Section 5.2.1, p. 24) and explain phenomena such as 

grammaticality, complexity, and ambiguity by means of working memory or cognitive control. 

For example, complexity and ambiguity was discussed in terms of resource intensity for 

working memory. Conflict management in processing syntactic violation and ambiguous 

sentence was discussed in relation to cognitive control. The main idea concerning the 

relationship between language and music is that their shared aspects can be explained by means 

of domain-general mechanisms independent of linguistic concept such as syntax. However, by 

just replacing “syntax” with “working memory” or “cognitive control”, the mechanisms 

yielding syntactic computation cannot be revealed. Fernandez-Duque (2009), for example, 

suggested to investigate syntactic complexity (in particular, that of relative clauses) in terms of 

executive function including cognitive processes such as maintenance and manipulation of 

representations in the workspace, coordination of conflicting information, and switching 

between alternative interpretations. 

For example, maintenance and manipulation of representations in the workspace 

corresponds to the idea of syntactic working memory engaged in both language and music. To 
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build a hierarchical structure, there should be a temporal storage of intermediate results (Fitch 

& Martins, 2014; Kljajevic, 2010; Koelsch, 2012b). Further, given conflicting hierarchical 

structures being represented in the workspace in parallel (Jackendoff, 2002, 2007), 

coordination of and switching between those conflicting representations during sentence and 

music parsing might also interact. The clarification of how such processes solve computational 

problems of language and music, e.g., processing structural relationships, will take comparative 

endeavors some steps forward. Especially, in musicology research, this line of investigation is 

still missing. Slevc and Okada (2015) listed up which musical phenomena parallel garden-path 

effect of language. This is an important first step toward a theory of music syntactic processing. 

In addition, the argument from cognitive neuroscience perspectives is often made by a 

reverse inference as follows: if executive function is engaged, the left inferior frontal gyrus is 

activated; language and music processing activate inferior frontal gyrus; that is, a shared aspect 

of language and music processing is executive function. Again, the selectivity of the left 

inferior frontal gyrus for executive function is not strong enough to make this reverse inference. 

Moreover, a fine-grained analysis of the inferior frontal gyrus reveals non-overlap between 

language and music syntactic regions and executive regions. For example, within Broca’s 

region, the most dorsal portion of BA 44 is strongly associated with working memory (Clos et 

al., 2013). This is in line with a study dissociating storage component of working memory and 

nested dependencies (Makuuchi et al., 2009). The area within BA 44 which is associated with 

cognitive control was in the region of the inferior frontal junction (Clos et al., 2013). 

 

11 Shared mechanisms for syntax in language and music 

Experiments which provided evidence for the hypotheses about shared neural resources 

for syntacitic processing in language and music (e.g., Koelsch, Gunter, et al., 2005; Kunert et 

al., 2015; Sammler et al., 2009; Slevc et al., 2009; Steinbeis & Koelsch, 2008) mainly tested 

interaction and neural overlap as implications on the basis of following inferences: 1) Sharing 

→ Interaction; 2) Sharing → Overlap. The results of the review reveal a paradox. On one hand, 

interaction studies show that language and music syntactic processing rely on cognitive 

processes involved in recognition of structural relationship and executive function. On the other 

hand, evidences for neural overlap are very weak. For example, while some studies (Kunert et 

al., 2015; Sammler et al., 2009) provide evidence for overlap between language and music 

syntactic processing, the meta-analysis conducted in the current thesis shows that regions 

(consistently) associated with music syntactic processing little overlap with ‘language 
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regions’.37 Especially, the overlap disappears if the region (e.g., Broca’s region) is subdivided 

into smaller areas. Therefore, the basic premise of current comparative language-music 

research “Sharing → Overlap” showed its limitation. 

Patel (2013, p. 336) introduced three possible hidden connections between language 

and music processing in the brain to account for such a paradox:  

1. The same brain network, but developmentally one domain (language, music) is 

much more robust to impairments in this network. 

2. The interaction of shared brain networks with distinct, domain-specific brain 

networks. 

3. Separate but anatomically homologous brain networks in opposite cerebral 

hemispheres. 

Patel (2013, p. 336) suggested that “musical and linguistic cortical processing rely on a similar 

functional computation, yet musical and linguistic abilities can be dissociated by brain damage” 

in each of those three cases. The first case, for example, explains why subjects with congenital 

amusia show more pronounced deficits in musical pitch processing than in speech, although 

speech and music rely on the same brain networks for relative pitch processing. The second 

case is the core idea of SSIRH, which explains the relationship between linguistic syntactic and 

tonal-harmonic syntactic processing in terms of shared resource networks, but different 

representation networks. The third case was suggested to potentially explain the relationship 

between speech and song motor control in the brain. 

The result of the meta-analysis on tonal-harmonic syntactic processing suggests the 

third hidden connection between syntax in language and music. Tonal-harmonic syntactic 

processing recruits a right fronto-temporal network including the right inferior frontal gyrus 

(BA 44) and the right posterior superior/middle temporal gyrus (BA 22). In addition, current 

comparative language-music research on syntax largely focuses on cortical structures and 

neglects hidden connections in subcortical structures. For example, Seger and colleagues 

(2013) showed that the basal ganglia’s activities were significantly modulated by harmonic 

violations in music. Moreover, the neural generator of P600 was suggested to include the basal 

ganglia (Friederici & Kotz, 2003). Therefore, comparative language-music research could 

                                                 
37 It is worth noting that Kunert and colleagues (2015) as well as Sammler and colleagues (2009) use within-

subject design, while the meta-analysis is conducted by taking multiple subjects from differently designed 

experiments. Thus, this is a basic methodological issue which requires further considerations if we discuss neural 

overlaps. 
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benefit from taking the role of the subcortical structures into account (see, for example, Kotz, 

Schwartze, & Schmidt-Kassow, 2009). 

Another strategy to tackle the paradox is giving up the conceptual dichotomy of sharing 

and non-sharing. Instead, language and music can be best investigated in terms of a continuum 

(Arbib, 2013). For example, within the left BA 44, there could be a dorsal-ventral axis from 

working memory in the most dorsal part via the part associated with language to the most 

ventral ‘action and music’ part. However, the function such as maintenance and manipulation 

could be same for all of them. Similarly, there is a rostro-caudal gradient of memory, control, 

and goal representation in the frontal cortex with motor part in the most caudal part and 

cognitive or abstract part in the most rostral part (Badre & D’Esposito, 2009; Badre & Nee, 

2018; Fuster, 2008b; Koechlin & Jubault, 2006; Rouault & Koechlin, 2018; Uddén & 

Bahlmann, 2012). Language and music can be also differently represented on this axis. For 

example, music syntactic processing rarely extends to BA 45 in contrast to language syntactic 

processing which rely on BA 45 consistently. 

Moreover, generative neurolinguistics and neuromusicology as well as neurocognitive 

psycholinguistics and psychomusicology suggest hypothetical components shared in language 

and music syntactic processing such as hierarchical processing or executive function, but they 

don’t explicitly state how the mind/brain solves the computational problem. That is, they do 

not provide hypotheses about cognitive and neural processes and do not approach mechanistic 

questions. On one hand, computational-representational theories cannot be ignored because 

they provide explanations to given phenomena. However, a purely top-down approach has its 

limit if the target of research are neurocognitive mechanisms. What are cognitive processes 

which can account for the computational problem to be solved and can be implemented by 

neural processes at the same time? A complementary bottom-up approach could take us way 

forward. For example, one could take the brain regions which are hypothesized to be involved 

in language and music syntactic processing, and study on the basis of which implementational 

principles information is processed in those regions.  

For example, the prefrontal cortex, together with the basal ganglia, carry out inhibitory 

control (Aron, Robbins, & Poldrack, 2014; Fuster, 2008b; E. K. Miller & Cohen, 2001) to alter 

on-going action or representation. In the prefrontal cortex, delay neurons provide prerequisite 

to maintain information (Fuster, 2008b; E. K. Miller & Buschman, 2008) to process 

relationship between elements. Thus, control and maintenance are cognitive processes which 

can be implemented by the brain and can also account for some aspects of hierarchical 
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processing and executive function hypothesized to be shared in language and music syntactic 

processing. 
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Part III Rhythmic syntax: An integrative approach 

 

Part III extends the discussion on the relationship between syntax in language and music by 

introducing the concept of rhythmic syntax, which is an often-neglected aspect of musical 

syntax. In the first chapter, I first argue that musical rhythm is best investigated in terms of 

syntax. I further identify components of musical syntax and elucidate how those components 

work together to link sound and affect. Finally, I conclude by proposing operating principles 

of rhythmic syntax. The second chapter deals with rhythmic syntactic processing and its neural 

correlates. In addition, I introduce a hypothesis about neurocognitive mechanisms for rhythmic 

syntactic processing. In the third chapter, then, the relationship between language and music is 

discussed in light of rhythmic syntax, rhythmic syntactic processing, and the underlying 

neurocognitive mechanisms. The final, fourth chapter deals with the relationship between 

syntax in language and rhythmic syntax. 
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12 Computational-representational theory of rhythmic syntax 

12.1 Components of rhythmic syntax  

In current comparative language-music research, as reviewed and discussed in PART 

II, linguistic syntax has been compared with tonal-harmonic syntax in music (e.g., Koelsch, 

2011a, 2012a; Patel, 2003, 2008, 2012, 2013; Rohrmeier, 2011; Tillmann, 2012). However, 

links from the musical domain to linguistic syntax are not limited to tonal-harmonic syntax. 

Musical rhythm is an organizing principle of music (Asano & Boeckx, 2015; Fitch, 2013; 

Longuet-Higgins & Lee, 1984; Patel, 2008) and thus is an integrative part of musical syntax. 

As the central computational problem of music is linking sound and affect, rhythmic syntax 

then should account for it solely in terms of temporal organization. In the following, I discuss 

which components constitute rhythmic syntax as well as what they do and how they work 

together to link sound and affect. Musical rhythm entails two distinct, but interacting 

subsystems, namely grouping and meter (Lerdahl & Jackendoff, 1983). Importantly, both 

subsystems organize auditory events hierarchically. Interaction between those two subsystems 

results in an asymmetrical headed hierarchy representing structural importance and affect. 

Grouping refers to a hierarchical organization of the musical stream into motives, 

phrases, and sections (Lerdahl & Jackendoff, 1983). The boundaries of groups at the phrase 

level and all larger grouping levels were suggested to mark structural beginning and ending (or 

cadence) called “structural accents”. Thus, it can be seen as segmentation of the musical stream 

into units. A group is the basic unit of grouping and can be constituted by any contiguous 

auditory event. Hierarchical grouping structures can be called ‘recursive’ in a way that is 

similar to visual grouping (Jackendoff, 2009). In Figure 12.1, a set of ‘x’ forms a line, a set of 

lines forms a small rectangle, and a set of small rectangle forms a larger rectangle. Jackendoff 

and Pinker (2005) suggested that this kind of visual grouping is recursively and hierarchically 

organized. Such groupings are recursive in the sense that the results of lower hierarchical levels 

are the inputs to higher hierarchical levels, i.e., a form of self-reference. The groups of the 

lower levels are contained in the groups of the higher levels, which means that the lower-level 

groups are subordinate to the higher-level groups and the higher-level groups dominate or are 

superordinate to the lower-level groups. Thus, the result of grouping is a layered hierarchical 

structure with multiple hierarchical levels that are in a subordinate-dominate relationship. 
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Figure 12.1 Visual grouping. Adopted from Jackendoff & Pinker (2005, p. 218), Cognition, 97: 

211-225, with permission by Elsevier. 

 

Meter generates a regular pattern of strong and weak beats called “metrical accent” that 

is represented as hierarchical metrical structure (Lerdahl & Jackendoff, 1983). The basic 

elements of meter are beats, which, “as such, do not have duration” (Lerdahl & Jackendoff, 

1983, p. 18). Thus, beats are analogous to geometric points rather than to lines. Importantly, 

metrical accent and beats are mental constructs that are inferred from, but not identical to the 

patterns of phenomenal accent, i.e., accentuation at the musical surface.38 In metrical structures, 

beats are organized hierarchically according to their relative strength (see Figure 12.2). 

Hierarchical organization of metrical structure represents strong and weak beats at different 

levels. As shown in Figure 12.2, metrical structure is often notated in a metrical grid, in which 

strong beats project onto higher levels. In (western) music, the beats are equally spaced, i.e., 

isochronously organized, in a sequence and the pattern of strong and weak beats, i.e., metrical 

accent, is periodic (Lerdahl & Jackendoff, 1983; Patel, 2008). In binary meter, two beats are 

assembled at each level and in ternary meter three beats. Metrical structure is recursively 

organized in the sense that the results of lower hierarchical levels are the inputs to higher 

hierarchical levels, which is, again, a form of self-reference.  

                                                 
38 Accentuation at the musical surface includes, for example, “attack points of pitch-events [or auditory events; 

RA], local stresses such as sforzandi, sudden changes in dynamics or timbre, long notes, leaps to relatively high 

or low notes, harmonic changes, and so forth” (Lerdahl & Jackendoff, 1983, p. 17). In the current thesis, in most 

of the case, “phenomenal accent” refers to attack points of auditory events. 
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Figure 12.2 Metrical grid representing beats at multiple hierarchical levels. 

 

The hierarchical metrical structure is different from that of grouping: metrical structure 

is organized asymmetrically in form of (quasi-)headed hierarchy (Fitch, 2013; Jackendoff, 

2009; Lerdahl & Jackendoff, 1983). That is, metrically stable and important elements, i.e. heads, 

serve as reference points of hierarchical organization. The heads are indicated as higher 

projecting beats in Figure 12.2. In music, such a metrical hierarchy contains a particular 

hierarchical level called “tactus” (Lerdahl & Jackendoff, 1983, p. 21). Tactus is the level where 

listeners tap their foot or clap their hands. It shows the most stringent regularities of metrical 

structures. This is also the level of the shared beats for coordinating ensemble and dance 

performance. That is, listeners usually focus on the beats at one level of hierarchical metrical 

structure, i.e., the tactus, and do not perceive the beats at all hierarchical levels in parallel. 

Below, I call the beats at the tactus level “primary beats”. 

Hierarchical structure of musical rhythm, then, is determined on the basis of both 

components, i.e., meter and grouping, in form of an asymmetrical headed hierarchy 

representing structural importance called “time-span structure” (Lerdahl & Jackendoff, 1983, 

p. 146).39 Musical sequence is segmented into hierarchical layers ranging from micro to macro 

time units. This is what is called “time-span segmentation” in GTTM (Lerdahl & Jackendoff, 

1983). A time-span is a rhythmic unit and an interval of time between successive beats at the 

smallest level. At the smallest level, time-spans are built solely on the basis of metrical structure 

and are regular in length. At the intermediate levels, regularity of time-spans imposed by 

metrical structure is interrupted by grouping boundaries. At larger levels, then, grouping 

                                                 
39 “Time-span structure” is defined as “the segmentation of a piece into rhythmic units within which relative 

structural importance of pitch-events can be determined” (Lerdahl & Jackendoff, 1983, p. 146). “Time-span 

reduction” is another term which is possibly better known in the context of A Generative Theory of Tonal Music 

(Lerdahl & Jackendoff, 1983 Chapter 6). The concept of “reduction” strongly implies “a step-by-step 

simplification […] of a piece” (Lerdahl & Jackendoff, 1983, p. 106). Because I do not intend to emphasize the 

step-by-step procedure in the current thesis in developing a computational-representational theory, I use “time-

span structure” which rather points out hierarchically structured representation. In the Figure 12.3, the idea of the 

reduction is represented below as (a) → (b) → (c) and so on. The same applies to “prolongational structure” and 

“prolongational reduction”. 



PART III      100 

completely takes over determining role. In this way, time-spans are organized hierarchically 

from small to large level (Figure 12.3 bottom). Within each time-span at each hierarchical layer, 

a structurally most important event is chosen as a head. In Western tonal music, the heads are 

selected on the basis of metrical strength, group boundary, and melodic and harmonic stability. 

Such a time-span structure is represented at the top of Figure 12.3. That is, meter and grouping 

not only segment the musical stream into rhythmic units, i.e., time-spans, but also determine 

the structural importance of auditory events. 

 



PART III      101 

Figure 12.3 Time-span structure. The figure is adopted from Jackendoff (1987, p. 226) with 

permission: Credit to Ray S. Jackendoff, Consciousness and the Computational Mind, 

reprinted courtesy of The MIT Press. 

 

It is reasonable to consider melodic and harmonic stability in the time-span structure of 

tonal music because tonal-harmonic structure is central to it. However, this stability criterion 

cannot be applied to rhythmic music such as Western African drumming music. To build up a 

time-span structure of music which does not rely on pitch stability condition, we therefore need 

other criteria. In addition, time-span structure does not encode affect and prolongational 

structure encoding tension-relaxation pattern centers on tonal motion. Tension-relaxation 

patterns that are built solely by rhythm were neglected in GTTM. Because the link between 

sound and affect is the central computational problem to be solved in music, any theory of 

rhythmic syntax should account for building up tension-relaxation patterns in musical pieces 

which do not rely on pitch stability conditions (see PART II, Section 8.2.1, p. 51).  

Lerdahl (1989) introduced salience conditions to account for time-span and 

prolongational structure independent of pitch stability conditions. Salience conditions for 

determining heads in time-span structure includes local conditions such as 1) corresponding to 

attack, i.e., sound onset, 2) at metrically strong position, 3) relatively loud, 4) relatively 

prominent timber, 5) in an extreme registral position (high or low), 6) relatively dense, and 7) 

relatively long in duration as well as global conditions such as 8) motivically relatively 

important, 9) grouping boundary, and 10) parallel to a choice elsewhere in the analysis. The 

local conditions can be explained in terms of metrical and phenomenal accents. The global 

conditions largely relate to grouping and structural accents. 

Based on the salience conditions, I suggest that an auditory event is maximally stable 

if phenomenal, metrical, and structural accents correspond to each other and maximally 

instable if there is no correspondence between them. Instable auditory events cause tension. 

There are several phenomena in musical rhythm that are known to cause tension based on 

salience conditions: syncopation and polyrhythm (Fitch, 2016; Vuust, Gebauer, & Witek, 2014; 

Vuust & Witek, 2014). For example, syncopation occurs when phenomenal and metrical 

accents do not match. Thus, from a computational perspective on rhythmic syntax, music that 

makes use of those phenomena to create tension-relaxation pattern is of particular interest. One 

example of such music is West African drum ensemble music. As we will see below, tension-

relaxation patterns in West African drum ensemble music can be analyzed by applying such 
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salience conditions in terms of the relationship between structural, metrical, and phenomenal 

accents. 

 

12.2 Structural analysis of African drum ensemble music 

West African drum ensemble music emphasizes the role of timeline patterns (also called 

“standard patterns”) which is usually played on instruments with timbres distinct from the rest 

of an ensemble (Polak, 2010). The pattern shown in Figure 12.4 is a timeline pattern of Ewe 

music called (slow) Agbekor in Ghana. The lowest level of metrical structure is inserted at the 

eighth note level so that all attacks on the musical surface are associated with a beat. This 

lowest subdivision level of meter containing 12 beats is the baseline for every rhythmic activity 

(Locke, 1982). Then, strong beats are projected onto the higher level which is the tactus of this 

standard pattern.40 This interpretation is represented in the foot movements of West African 

dance (Agawu, 2006; London, 2012a) and also played by rattles which have very prominent 

timbre. Most authors seem to agree on the existence of such a particular beat cycle underlying 

polyrhythm (Polak, 2010). Those four beats were claimed to receive equal metrical accents 

(Locke, 1982). However, at least one higher metrical level called “metric cycle” or “metrical 

cycle” can be assumed because the first beat of the timeline pattern is considered as the 

downbeat (Polak, 2017; Temperley, 2000). There is some very weak evidence for an additional 

level between tactus and metrical cycle (Temperley, 2000). Nevertheless, this additional level 

is plausible as African performers clap at this level, too.  

Therefore, there are at least three hierarchical levels of metrical structure (and very 

likely also a fourth level) as displayed in Figure 12.4 in metrical grid notation. The primary 

beats are generated on the basis of ternary organization of beats at the lowest subdivision level. 

The metrical level above the tactus is then based on binary organization of the primary beats. 

Finally, the metrical cycle level organization is also based on binary organization. That is, to 

construct the metrical hierarchy, beats are first combined into ternary units and then into binary 

units. 

 

 

                                                 
40 The metrical ambiguity which is inherent in this standard pattern as well as the possibility of non-isochronous 

meter are discussed in Section 13.2. 



PART III      103 

 

Figure 12.4 Metrical structure underlying the timeline pattern of Agbekor. The level between 

tactus and metrical cycle is in gray because there is no consensus among researchers whether 

this structural level is relevant or not. 

 

This metrical structure is well-formed according to a set of rules suggested by Lerdahl 

and Jackendoff (1983) to generate metrically well-formed structures. 

 

(12-1) Metrical well-formedness rules (MWFR) (Lerdahl & Jackendoff, 1983, p. 347) 

 

MWFR 1 (revised) (p. 72) 

Every attack point must be associated with a beat at the smallest metrical level 

present at that point in the piece. 

 

MWFR 2 (revised) (p. 72) 

Every beat at a given level must also be a beat at all smaller levels present at 

that point in the piece. 

 

MWFR 3* (p. 68) 

At each metrical level, strong beats are spaced either two or three beats apart. 

 

MWFR 4 (revised)* (p. 72) 

The tactus and immediately larger metrical levels must consist of beats equally 

spaced throughout the piece. At subtactus metrical levels, weak beats must be 

equally spaced between the surrounding strong beats.  

 

First, as every attack point must be associated with a beat at the smallest metrical level 

according to MWFR 1, the lowest subdivision level is at the eighth note level as shown in 

Figure 12.4. Second, according to MWFR 2 and 3, every two or three beat at a given level (l) 
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can be projected onto the higher level (l + 1). In Figure 12.4, every three beat at the lowest 

subdivision level projects onto the tactus level and every two beat at the tactus level projects 

onto the higher level (tactus + 1), corresponding to what MWFR 2 and 3 state. In accordance 

with MWFR 4, beats are equally spaced at the tactus and immediately larger metrical levels.  

Some readers might have recognized that MWFR 2 and 3 lead not only to metrical 

structure represented in Figure 12.4, but also to other possibilities. I will elaborate this issue 

later in Section 13.2 (p. 122). For now, I only discuss whether this particular metrical structure 

in Figure 12.4 can be supported by metrical preference rules (MPR) introduced by Lerdahl and 

Jackendoff (1983). Among a series of MPRs, Lerdahl and Jackendoff (Lerdahl & Jackendoff, 

1983, pp. 278–279) suggested MPR 4 (Stress) as applicable to a wide range of musical idioms. 

MPR 4 (Stress) states “[p]refer a metrical structure in which beats of level Li that are stressed 

are strong beats of Li” (Lerdahl & Jackendoff, 1983, p. 79). What does “stressed” mean in 

African music? As Agbekor is a dance music, one possibility is regarding dance movements as 

placing stresses to beats of the timeline pattern. This interpretation is in line with the claim that 

the primary beats represented in the foot movements of West African dance (Agawu, 2006; 

London, 2012a). Every three beat at the lowest subdivision level projects onto the tactus level 

because dance movements put stress on every three beat.41 In addition, the first beat of the 

timeline pattern is often stressed by large dance movement and lower pitched bell sound, 

leading to the metrical representation where the first beat of the timeline pattern gets the 

strongest metrical accent. Of course, there are other factors which put stress on the timeline 

pattern to prefer other metrical representations, which I will discuss in Section 13.2 (p. 122). 

A grouping structure which can be represented without controversies (for discussions, 

see Agawu, 2006) is the whole pattern, which is repeated during the entire performance. 

Grouping structure of West African drum ensemble music is often notated in form of the 

number of time-spans at the lowest subdivision level which fall into one inter-onset interval 

(IOI) (Figure 12.5). This is also called “interval-vector” (Pressing, 1983). For example, the first 

IOI of the timeline pattern of Agbekor contains two time-spans and notated as 2, while the third 

IOI contains only one time-span and is thus notated as 1. Concerning the subgroups, the 

timeline pattern seems to additively consist of a pattern of 5 beats organized in 2+2+1 and a 

pattern of 7 beats in 2+2+2+1. In this way, two or three long strokes are separated by one short 

stroke (Agawu, 2006; Locke, 1982). Although 5+7 organization is one possible interpretation 

                                                 
41 Agbekor dance performance consists of multiple dance figures. Only some of the figures is in support of this 

view. See also the discussions concerning the relationship between grouping structure and dance figure below. 
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of the timeline pattern on the basis of the analysis of IOIs at the musical surface, 7+5 

organization is more plausible (Figure 12.5 top). For example, the timeline pattern can be also 

realized in five stroke version in form of 2+2+3+2+3 (Agawu, 2006) indicating 7+5 

organization rather than 5+7. Moreover, 2+2+3+2+3 patterns are more common in African 

music than 2+3+2+2+3 patterns (London, 2012a). In addition, in contrast to grouping 

preference in Western music, African music favors strong beats occurring at the ends of groups 

(Temperley, 2000), which is true for 7+5 grouping. 

 

Figure 12.5 Grouping structures underlying the timeline pattern of Agbekor. 

 

This grouping structure (Figure 12.5 top) is well-formed according to a set of rules 

suggested by Lerdahl and Jackendoff (1983) to generate well-formed grouping structures. 

 

(12-2) Grouping well-formedness rules (GWFR) (Lerdahl & Jackendoff, 1983, p. 345) 

 

GWFR 1 (p. 37) 

Any contiguous sequence of pitch-events, drum beats, or the like can constitute 

a group, and only contiguous sequences can constitute a group. 

 

GWFR 2 (p. 38) 

A piece constitutes a group. 
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GWFR 3 (p. 38) 

A group may contain smaller groups. 

 

GWFR 4 (p. 38) 

If a group G1 contains part of a group G2, it must contain all of G2. 

 

GWFR 5 (p. 38) 

If a group G1 contains a smaller group G2, then G1 must be exhaustively 

partitioned into smaller groups. 

 

GWFR 1 is a kind of prerequisite for grouping analysis and allows that all adjacent auditory 

events can be grouped together. GWFR 2 refers to a piece which I regard as equating the entire 

Agbekor performance in our example. GWFR 3 and 4 correspond to hierarchical organization 

of Figure 12.5 in which a group contains smaller groups and the smaller groups are entirely 

subsumed in the larger group. Is it possible to identify the 7+5 organization of grouping 

structure according to grouping preference rules (GPR)?42 First of all, the timeline pattern can 

be regarded as a group on the basis of GPR 6 (Parallelism): “Where two or more segments of 

the music can be construed as parallel, they preferably form parallel parts of groups” (Lerdahl 

& Jackendoff, 1983, p. 51).  

Concerning the smaller groups, a 1+2 group (i.e., a group consisting of an eighth note 

and a subsequent quarter note) can be formed according to the GPR 2 (Proximity) b. (Attack-

Point) (Lerdahl & Jackendoff, 1983, p. 45). The interval between the attack of the eighth note 

(a) and the attack of the quarter note (a + 1) is smaller than the surrounding intervals between 

attacks, i.e., attack between the eight note (a) and the previous quarter note (a - 1) as well as 

that between the quarter note following the eight note (a + 1) and the subsequent quarter note 

(a + 2). Although the same can be said about the interval between the last eight note of the 

timeline pattern and the first quarter note of the next timeline pattern, there are good reasons to 

not regard them as a group. First, the first quarter note of the timeline pattern is often played 

by a lower pitched bell so that a group boundary can be assigned before this quarter note 

according to GPR 3 (Change) a. (Register) (Lerdahl & Jackendoff, 1983, p. 46). Moreover, a 

                                                 
42 Tmeperley (2000) also discusses this question. His strategy was to take the phrasing slurs used in transcriptions 

(Temperley, 2000, p. 89). However, this approach faces a serious problem that the slurs used in transcriptions 

often reflect interpretations of Western researcher and might not correspond to groupings of African music. 

Therefore, I suggest an alternative strategy to take dance segments to identify grouping boundaries. 
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new dance figure begins with the first quarter note of the timeline pattern, also indicating a 

group boundary before the first quarter note of the timeline pattern. 

Finally, concerning the 7+5 grouping, again, dance figure boundaries should be taken 

into account because ‘musical surface’ otherwise cannot grouped unambiguously into 7+5 

grouping instead of 5+7 grouping. Some segments of Agbekor dance performance contain a 

figure combination consisting of a large jump and three small steps (turning knee back and 

forth) where the jump corresponds to 7 interval vectors (i.e., 2+2+3) and three small steps 

correspond to 5 interval vectors (i.e., 2+2+1). This grouping by dance can be established 

according to GPR 3 (Change) b. (Dynamics) (Lerdahl & Jackendoff, 1983, p. 46) as the large 

jump figure and the small three-step figure differ in their dynamics. 

Concerning grouping, in addition, there are further patterns in polyrhythmic texture of 

Agbekor. One very common grouping is shown by the clapping pattern: 2+2+2+3+3 (Locke, 

1982; Temperley, 2000). An accompanying song melody is also grouped into this pattern 

according to GPR 3 (Change) a. (Register) (Lerdahl & Jackendoff, 1983, p. 46): all group 

boundaries in the song melody are marked by pitch changes. The 2:3 ratio of grouping is called 

“hemiola” (London, 2012a): the first half of the 12 beats is grouped in 2 and the latter half in 

3 (Figure 12.5 bottom). This 2:3 ratio of grouping in clapping and song melody is in line with 

the heart of Ewe drum music, namely “each instrument relates its pattern both to the bell pattern 

and the primary metric accents” (Locke, 1982, p. 222). The clap pattern corresponds to the bell 

pattern in the first half and to the metrical accent in the second half. Although this 2+2+2+3+3 

pattern is often discussed in terms of non-isochronous meter (e.g., London, 2012a), I regard it 

as grouping because it has to do with the IOIs, i.e., groups of time-spans, and keep the 

discussion about non-isochronous meter for Section 13.2 (p. 122).  

The results of the above mentioned grouping analyses are shown in Figure 12.5. Figure 

12.5 reveals two concurrent grouping structures, which persist in parallel to further rhythmic 

patterns with own grouping structure. Existence of multiple concurrent grouping structures is 

characteristic of polyrhythmic music. An analysis of Agbekor dance which I used to identify 

grouping structure can be found in Appendix B (p. 237). 

From the structural analysis of meter and grouping in Agbekor drum music conducted 

so far, one combinatorial principle becomes apparent: both metrical and grouping structures 

are constructed by combining two or three elements. For example, beats are combined 

hierarchically in a 3*2*2 manner to build metrical structure represented in Figure 12.4. 

Although it is not clear whether inherent ‘twoness’ or ‘threeness’ are perceived quantitatively, 

they are suggested to be categorically different in their quality being short (S) or long (L) 
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(London, 2012a). Especially, this short-long qualitative difference is evident in the binary and 

ternary combination of units in a sequential order as seen in 2+2+3+2+3 or 2+2+2+3+3 patterns 

which can be re-written as S-S-L-S-L and S-S-S-L-L. Alternatively, Lerdahl and Jackendoff 

(1983), following Singer (1974), use quick (Q) and slow (S) to characterize the 2+2+3 pattern 

in Macedonian dance as Q+Q+S. That is, two and three can be considered as labels of 

combinatorial units regardless of meter or grouping.  

Moreover, it is important to note that binary and ternary combinatorics is not an ‘exotic’ 

phenomenon. For example, all pieces in Western music with the time signature 6/8 make use 

of 3*2 or 2*3 combinatorics to build metrical structure and 3+3+2+2+2 patterns are also used 

in America of the West Side Story composed by Leonard Bernstein. The score in Figure 12.6 

represents the 3+3+2+2+2 pattern in America on the basis of eight notes. In the first bar, three 

eight notes are tied together as a unit twice. This corresponds to a 3+3 pattern. The second bar 

contains three quarter notes. Because one quarter note consists of two eight notes, the pattern 

in the second bar corresponds to 2+2+2. Both together, then, form a 3+3+2+2+2 pattern. 

In addition, the binary and ternary combinatorics is not limited to create one particular 

level of representation. This is used at all hierarchical levels. For example, in the African 

timeline pattern (Figure 12.5 top), 2+2+3+2+3 are again hierarchically organized by combining 

the first three units as a larger unit and the following two units as another larger unit. In addition, 

by regarding three as combination of two units, i.e. two and one, the surface representation of 

the seven-stroke timeline pattern, i.e., 2+2+1+2+2+2+1, can be derived at the surface level.  

In the West Side Story example, higher level binary and ternary combinatorics is 

reflected in conductor’s arm movements: 3+3+2+2+2 pattern is organized hierarchically by 

combining 3+3 as a binary unit and 2+2+2 as a ternary unit. Figure 12.6 (bottom) shows that 

the conductor shows two movement units in the first bar (Figure 12.6 bottom left) and three 

movement units in the second bar (Figure 12.6 bottom right). The first two movement units 

correspond to 3+3 and the following three movement units match 2+2+2. That is, in the West 

Side Story example, eighth notes are first combined into ternary and binary units which are 

again combined into binary and ternary units: 2[3[x, x, x], 3[x, x, x]], 3[2[x, x], 2[x, x], 2[x, x]].43 

Thus, the binary and ternary combinatorics is one way to characterize hierarchical structure of 

                                                 
43 Elements (x) are combined into units as indicated with “[ ]”, which are combined into further units. Here, “x” 

stands for a beat at the eighth note level. “2” stands for binary unit and 3 for ternary unit. The units indicated with 

“[ ]” are order sensitive, i.e., the sequential order of elements / units within “[ ]” should be as they notated. This 

differs from units indicated with “{ }”, which does not determine the sequential order of elements / units. That is, 

[x, y] and [y, x] differ, while {x, y} and {y, x} are the same. To put it other words, “[ ]” notation represents both 

precedence and dominance relationship between elements / units, while “{ }” notation only determines dominance 

relationship between elements / units. 
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musical rhythm, which is applicable to wide range of musical culture. Further, ‘twoness’ and 

‘threeness’ of units can be regarded as categories or ‘labels’ of those units. 

 

Figure 12.6 Conductor’s movement trajectory in America from the Westside Story composed 

by Leonard Bernstein. A part of the score is depicted at the top of the figure and the 

corresponding movement trajectory is represented at the bottom. The trajectory was created 

with Kinovea software (https://www.kinovea.org/). The marker was put on the top of the baton 

as indicated with the black-white circle for automatic trajectory tracking (with some manual 

corrections). The video (https://www.youtube.com/watch?v=_LDABUJAS1w) was retrieved 

from YouTube on November 1st, 2018, and converted by using RealPlayer 

(https://www.real.com/de). The picture was edited with GIMP software 

(https://www.gimp.org/). 

 

Metrical and grouping structures of West African drum ensemble are hierarchically 

organized by means of binary and ternary combinatorics as discussed above. The question 

remains how tension-relaxation patterns are encoded on the basis of those hierarchical 

structures. While tension-relaxation patterns of Western tonal music are encoded on the basis 

https://www.kinovea.org/
https://www.youtube.com/watch?v=_LDABUJAS1w
https://www.real.com/de
https://www.gimp.org/
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of tonal motion, some authors suggested that tension in West African drum ensemble music 

can be created in terms of mismatch or conflict between metrical and phenomenal accents. For 

example, Locke (1982) pointed out that Ewe music makes use of off-beat timing (also called 

“syncopation”), i.e., non-correspondence of attacks to metrical accent, to create tension, and 

suggested that a sense of arrival, i.e., relaxation, is created if attacks coincide with metrical 

accent. Temperley (2000) also notes that conflict between surface events and meter gives rise 

to tension. In Figure 12.7, tension-relaxation patterns of the standard pattern are encoded on 

the basis of the relationship between metrical accent and attacks on the musical surface, with 

the correspondence as stability causing relaxation and incongruity as instability causing tension. 

The tree notation is adopted from prolongational structure (Lerdahl & Jackendoff, 1983) and 

encodes different tension-relaxation patterns. The branching considers metrical structure and 

its relation to phenomenal accent only. 

 

Figure 12.7 Tension-relaxation pattern of the standard pattern of Agbekor (preliminary). In this 

prolongational structure, the branching considers metrical structure and its relation to 

phenomenal accent only. 

 

Further, the hemiola created by clapping adds more fine-grained tension-relaxation 

patterns in the middle of the metrical cycle. The second and third attack of the clap co-occur 

with those of the bell on weak beats in the metrical framework of Agbekor (gray beats marked 

with red arrows in Figure 12.8a). This creates a sense of two-beat periodicity in contrast to 

three-beat periodicity which is represented in the primary beats. That is, in the first half, 

grouping and metrical structure do not align and grouping structure is even in support of a 

conflicting metrical interpretation with a two-beat periodicity. Such a temporal conflict causes 

a phenomenon called “metrical dissonance” (Krebs, 1999; London, 2012a) and causes maximal 
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instability in terms of meter. However, in the second half, the attacks of the clap completely 

align with the primary beats and thus grouping structure conforms to metrical structure. As the 

attack of the clap corresponds to the third beat in the tactus44 (marked with a red dashed square 

in Figure 12.8a), it is more stable than the second beat in the tactus, while it is less stable than 

the first and the last beat. The updated tension-relaxation pattern of the standard pattern is 

represented in Figure 12.8b. In contrast to Figure 12.7, the branching of this hierarchical 

structure additionally considers 7+5 grouping structure and different degrees of instability. 

a) 

 

b) 

 

                                                 
44 In the current example, the primary beats correspond to the foot movements of the dancers. 
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Figure 12.8 Tension-relaxation pattern of the standard pattern of Agbekor (final). a) Stability 

of the primary beats by taking hemiola displayed in the claps into account. b) Updated 

prolongational tree representing tension-relaxation pattern of the standard pattern of Agbekor. 

 

Formal mathematical models integrating meter and grouping to encode affect are still 

missing. Toussaint (2003) focused on combinatorial aspect of the seven-stroke 12/8 rhythm in 

African and Afro-American music and claimed that there are mathematical constraints for 

rhythmic realization. Although 12!/(7!)(5!), i.e., 792, patterns are theoretically possible, actual 

rhythmic patterns are limited to a subset. Most of those theoretically possible rhythmic patterns 

are not ‘good enough’ to serve as a timeline and only ten out of 792 possible patterns are known 

to be used in traditional music (Toussaint, 2003). Those ten patterns notated by using the 

interval-vector notation are listed in the Table 12.1 and named after the convention used in 

Toussaint (2003). First of all, he showed that all ten patterns can be derived from three 

canonical patterns (see also Figure 12.9 I - III). Second, the pattern called “Ashanti” is a 

Euclidean rhythm45 which can be built by the Bjorklund algorithm and has the property that 

the onsets are maximally evenly distributed (Toussaint, 2005). The rest of patterns belonging 

to the canonical pattern III can be then created by rotating Ashanti pattern. Finally, the 

remaining four patterns can be obtained by permutations of the interval-vector elements of 

Ashanti pattern, i.e., two-times one and five-times two. Thus, all ten rhythms belong to the 

same interval combinatorial class. However, it is still not clear why only ten of (7!)/(2!)(5!), 

i.e., 21, possible permutations occur in world music culture. 

 

Figure 12.9 Three canonical patterns generating ten African timeline patterns. Adopted from 

Toussaint (2005, p. 5) with permission by Godfried Toussaint. 

                                                 
45 Euclidean rhythms are rhythms which have “the property that their onset patterns are distributed as evenly as 

possible” (Toussaint, 2005, p. 1). 
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Table 12.1 Ten African timeline patterns notated by using the interval-vector notation. 

Canonical Name Pattern Max. even? Off-beatness 

I Sorsonet 1+1+2+2+2+2+2 No 1  

II Asaadua 2+2+2+1+2+1+2 No 1  

II Soli 2+2+2+2+1+2+1 No 1  

II Tonada 2+1+2+1+2+2+2 No 1  

III Ashanti 2+1+2+2+1+2+2 Yes 2  

III Bemba 2+1+2+2+2+1+2 Yes 2  

III Bembé-2 1+2+2+1+2+2+2 Yes 2  

III Tambú 2+2+2+1+2+2+1 Yes 2  

III Yoruba 2+2+1+2+2+1+2 Yes 2  

III Bembé 2+2+1+2+2+2+1 Yes 3  

 

Although Toussaint’s approach makes it possible to describe characteristics of rhythmic 

patterns in a wide range of musical cultures, it does not tackle the computational problem of 

music, namely linking sound and affect. As discussed above, tension-relaxation patterns of non-

tonal music emerge from the relationship between hierarchical metrical structure giving rise to 

metrical accents and phenomenal accents created by the onsets at the surface. Further, grouping 

structure adds refinements to the so-created tension-relaxation patterns. However, Toussaint’s 

theory considers neither hierarchical metrical and grouping structure nor affect. Toussaint 

(2005) characterizes African rhythms as off-beat46 rhythms, i.e., patterns with the onsets at the 

off-beat positions including 1st, 5th, 7th, and 11th beats in 12 beat cycle (see Figure 12.10). Those 

positions are off-beat because they do not belong to the beats included in binary and ternary 

subdivision of 12 beats. For example, Bembé is maximally off-beat because three of those off-

beat positions are included in its onsets. This measure considers binary and ternary metrical 

organization, but does not touch the dynamics of the tension-relaxation patterns. 

                                                 
46 Here, the off-beats are weak beats concerning both binary and ternary subdivisions. That is, for example, the 

beat 3 and 9 are not classified as off-beats even though they are off-beats in the binary subdivision. This is because 

they are strong beats in the ternary subdivision. 



PART III      114 

 

Figure 12.10 African rhythms as offbeat rhythms. Adopted from Toussaint (2005, p. 11) with 

permission by Godfried Toussaint. 

 

Nevertheless, research on rhythmic syntax can learn an important lesson from the 

mathematical approach of Toussaint (2005), namely a cyclic organization of beats. As shown 

in Figure 12.9, the rhythmic patterns of African drum ensemble music discussed above are 

organized in 12 beat cycle47. Further, meter in a wide range of musical cultures such as Western, 

African, and Hindustani music, builds on such a cyclic organization with diverse cardinality, 

i.e., the total number of beats involved in a cycle (London, 2012a). Patel (2008, p. 96) suggests 

periodicity, i.e., “a pattern repeating regularly in time”, as a central aspect of musical rhythm, 

which differs from speech rhythm. This characteristics of musical rhythm can be best yielded 

by cyclic organization of beats. Thus, the cyclic organization seems to be one candidate 

principle in rhythmic syntax explaining why musical rhythm is the way it is, e.g., featuring 

periodicity.  

 

12.3 Computational principles of rhythmic syntax 

As discussed in PART II, recursion and hierarchical structure building are two core 

concepts of syntax at the computational level. Concerning musical rhythm, metrical and 

grouping structures are organized recursively and hierarchically. Metrical structure is built up 

by embedding beats into a beat and grouping structure is constructed by embedding groups into 

a group. Those hierarchical structures are yielded by binary and ternary combinatorics. A set 

of rules (e.g., MWFRs, GWFRs, MPRs, and GPRs) constrain 48  combinatorial possibility. 

Moreover, once we consider a hierarchical structure encoding tension-relaxation patterns, 

binary (but not ternary) combinatorics becomes more important. The central aspect of such a 

                                                 
47 In this case, “beat cycle” refers to the beats at the lowest subdivision level. 
48 I use here the term “constrain” instead of “determine” as the rule system introduced by Lerdahl and Jackendoff 

(1983) are not generative rules deriving grammatical sequences (see also Rohrmeier & Pearce, 2018). Their rules 

rather constrain combinatorial possibilities. 
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hierarchical structure is headedness, i.e., the most stable event is considered as a head which is 

determined by means of the relationship between metrical and phenomenal accent and refined 

on the basis of grouping structure as discussed above. In this way, the current chapter 

investigated the computational problem for rhythmic syntax as linking sound and affect by 

mapping metrical and grouping structure and temporal sequence. 

In constructing a headed hierarchy, binary combinatorics identifies stability relationship 

between events unambiguously, but ternary combinatorics does not. Lerdahl and Jackendoff 

(1983) also pointed out the potential for strictly binary combinatorics in music. It is possible 

that 3 is additionally segmented in 2+1 (e.g., half note + forth note) or 1+2 (e.g., quarter note 

+ half note) (Lerdahl & Jackendoff, 1983, pp. 327–330). Concerning Mozart’s Sonata K. 331 

in 6/8 measure, three eighth notes are combined in 2+1, i.e., one quarter note (= two eighth 

notes) and one eighth note, as particularly seen in the accompaniment. This is in line with a 

study conducted by Palmer and Krumhansl (1990) showing that events occur more often at the 

first, third, fourth, and sixth eighth note in 6/8 measure, indicating (2+1)+(2+1) structuring. In 

the timeline pattern of West African drum ensemble music discussed above, three eighth notes 

are combined into 1+2, i.e., one eighth note and one quarter note (= two eighth notes), as well 

as 2+1, i.e., one quarter note (= two eighth notes) and one eighth note. In addition, there is a 

tendency to prefer binary metrical interpretation of sequences (Huron, 2006; London, 2012a). 

Thus, it is likely that the first two incoming events are put together [x, x] foremost and then the 

third event is integrated [[x, x], x]. 

A further aspect playing a central role in rhythmic syntax is a cyclic organization of 

beats giving rise to periodicity in musical rhythm. Cyclicity as a structuring principle also 

earned considerable attention in language research (Boeckx, 2014; Boeckx & Theofanopoulou, 

2018; Murphy, 2015; Samuels, 2011). In general, cyclicity refers to recurrence of events at 

regular intervals. In its simplest form, cyclicity is realized as isochronous beats in musical 

rhythm. However, musical rhythm is not a mere line up of regular recurrent events, but a 

structured sequence yielded by combining events hierarchically, giving rise to (isochronous or 

non-isochronous) metrical cycles. Importantly, once events are combined in a unit, only one 

event, namely the head of each unit, is visible to the next combinatorial cycle. Once those units 

are combined in a larger unit, again, only one event is visible to the next cycle, and so on. 
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Hierarchical combination of a head and an elaboration event in a cyclic manner (e.g., {{head, 

elaboration}, {head, elaboration}}49) gives rise to musical rhythm. 

One relevant syntactic approach considering both combinatorial and cyclic 

computations was proposed by Knott (2014) in research on sensorimotor syntax. The central 

idea which is relevant to rhythmic syntax is one regarding attentional and motor actions as 

‘building blocks’ to plan sensory-motor sequences. According to Knott (2014), sensorimotor 

sequences are hierarchically planned by combining attentional and motor actions recursively. 

Attentional and motor actions are deictic operations, i.e., “cognitive operations which bring 

about updates in the agent’s physical relationship with the environment, and also in his internal 

cognitive representations” (Knott, 2014, p. 9). Thus, as seen in the following example of a cup-

grapping episode (Figure 12.11), a deictic operation (e.g., attend_man) performed in a 

particular context (e.g., c1) causes a new context (e.g., c2) according to which the subsequent 

deictic operation (e.g., attend_cup) is performed. This combinatorial procedure cyclically 

continues until a motor program (e.g., grap motor program) is activated. In addition, Knott 

(2014) suggest a hypothesis that a hierarchical structure as illustrated in Figure 12.11 is a 

working memory representation of a cup-grapping episode. 

 

Figure 12.11 Cyclic organization of sensorimotor syntax. The figure is adopted from Knott 

(2014, p. 24), Biolinguistics, 8: 001-052. 

 

The hierarchical structure represented in Figure 12.11 parallels the X-bar schema 

developed in linguistic research. The hierarchical structure consists of four phrases (XP), i.e., 

                                                 
49 Here, I use “{ }” notation as both head-elaboration and elaboration-head sequential order are equally possible. 

See also footnote 43. 
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a subject agreement phrase (AgrSP), an object agreement phrase (AgrOP), a verb phrase (VP), 

and a determiner phrase (DP). In linguistic X-bar tree structure, the VP represents a predicate-

argument structure 50  and subject and object agreement features are checked within the 

agreement phrases. Knott (2014) proposed to apply this linguistic structure to sensorimotor 

syntax. In sensorimotor syntax, VP is interpreted as representing a motor program and AgrPs 

as representing attentional action. Each phrase corresponds to a cycle of context-updating. As 

such, this model relies too much on linguistic sentential structure and is difficult to apply to 

rhythmic syntax. However, at a very abstract level, the concepts introduced in Knott (2014) 

might be applicable to rhythmic syntax. 

On the basis of Knott’s (2014) conception of  a sensorimotor syntax, rhythmic syntax 

can be understood as combinatorial and cyclic computation of deictic operations such as 

attentional and motor actions, in which meter can be understood as attentional action and 

drumming, hand clapping, and dancing are motor actions. In this line, for example, London 

(2012a, p. 91) suggested that “[a] meter is a coordinated set of periodic temporal cycles of 

sensorimotor attention”. In particular, London (2012b) suggested primary beats as peaks of 

attentional energy by referring to Edward Large’s and Mary Ries Jones’ dynamic attending 

theory (e.g., Large & Jones, 1999). In addition, cyclic computation of rhythmic syntax has an 

important implication for memory: Cyclic computation achieves minimization of memory load 

by keeping a minimum amount of information accessible for each manipulation step in 

hierarchical structure building. This is similar to chunking, an information processing 

mechanism proposed by Miller (1956), in terms of optimizing memory capacity. In general, a 

“chunk” is “a collection of elements having strong associations with one another, but weak 

associations with elements within other chunks” (Gobet et al., 2001, p. 236). Thus, hierarchical 

structure of musical rhythm generated by combinatorial and cyclic computation may be 

regarded as working memory representation in parallel to the suggestion by Knott (2014). In 

this line, Palmer and Krumhansl (1990) showed that people memorize a probe tone better if it 

is on the strong beat, i.e., the head. 

Last but not least, hierarchical combination of a head and an elaboration event in a 

cyclic manner is a general principle for temporally structured cognitive capacities including 

speech, music, and action (Asano & Boeckx, 2015; Fitch & Martins, 2014; Lashley, 1951; 

Lerdahl & Jackendoff, 1983). As Lerdahl and Jackendoff (1983, p. 330) suggested, this is 

“more highly structured than one articulated only in terms of “chunking”, since it accords one 

                                                 
50 In the current case, predicate, i.e., the verb “grab”, takes two arguments, i.e., object “cup” and subject “man”. 
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element of each “chunk” the privileged status of head”. In other words, heads are needed to 

manipulate chunks hierarchically. In addition, as I will discuss in details in Section 15.1 (p. 

146), prosodic hierarchy consists of onset, nucleus, and coda with the nucleus as a head and 

action hierarchy is consisted of preparation, head, and coda. They parallel hierarchical 

structures of musical rhythm and dance. Therefore, hierarchical and cyclic combination of 

events are general principles of temporally organized cognitive domains. 

 

13 Rhythmic syntactic processing and its neural implementation 

13.1 Processing structural relationships in musical rhythm 

Beat-based encoding of rhythm can be regarded as hierarchical processing in parallel 

to that of tonal-harmonic processing as discussed in PART II. In processing musical rhythm, 

auditory events are perceived in relation to the primary beats which act as mental reference 

points. Thus, beat-based encoding of rhythm, first, entails a sub-process abstracting the primary 

beats from the musical surface (i.e., beat abstraction). Moreover, to establish structural 

relationship between auditory events based on the primary beats, listeners internally generate 

primary beats to produce expectancies in real-time (i.e., beat generation). This also enables the 

listeners to recognize structural violations. In the following section, I claim that both beat 

abstraction and beat generation can be considered as hierarchical processing, i.e., mapping 

between hierarchical structure and temporal sequence. I regard “beat-based encoding of rhythm” 

(PART I) as an umbrella term51 referring to the interaction of both sub-processes to process 

structural relationship in musical rhythm. In addition, I consider those aspects of beat-based 

encoding of rhythm which relate to hierarchical combination of elements into sequence as 

belonging to rhythmic syntactic processing. 

Although there is skepticism about the existence of metrical hierarchy extending 

beyond the primary beats (e.g., Vuust & Witek, 2014), there are some arguments for the need 

of metrical hierarchy in beat-based encoding of rhythm. First, several tapping studies showed 

that, at fast tempi, people tend to choose the tactus at a higher level in the metrical hierarchy 

than at slow tempi (McAuley, 2010 and references therein). This systematic relationship 

between the tactus level in metrical structure and tempo is in favor of hierarchical processing. 

It also provides an additional argument for assuming hierarchical metrical structure in beat-

                                                 
51 In music cognition research, other terms such as “beat induction” (Honing, 2012) and “beat perception” (Patel, 

2006) are used instead. To avoid invoking connotations which are sometimes associated with those terms, I use 

“beat-based encoding of rhythm” in the current thesis. Honing (2012 in footnote a) and Fitch (2013, p. 9) discuss 

some terminological issues. 
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based encoding of rhythm. The discussion on the relationship between hierarchical metrical 

structure and tempo opens up possibility to link hierarchical processing in musical rhythm to 

more general processing principles underlying temporal organization.  

McAuley (2010) suggested that the influence of tempo on listener’s choice of the tactus 

level in metrical hierarchy relates to the preferred tempo which lies around 600 ms inter-beat 

interval (IBI) or inter-tap interval (ITI), i.e., 100 beats per minute (BPM), regardless of 

perceptual or motor tasks. 52  At this tempo, the motor-related circuitry including the 

supplementary motor area (SMA), basal ganglia, and premotor cortices, together with 

additional areas, is more activated than at a slower tempo (McAuley, Henry, & Tkach, 2012). 

The preferred tempo is optimal for binding sensory and motor information into a sensory-motor 

unit as well as integrating sensory-motor units (e.g., the primary beats) into a memory unit (e.g., 

measure). For example, the preferred tempo corresponds to the processing level mediating 

external sensory data and internal cognitive programs, namely the embodiment level (Ballard, 

Hayhoe, Pook, & Rao, 1997).53  More precisely, as the embodiment level by Ballard and 

colleagues (1997) refers to saccadic eye movements taking place in the 300 ms time window, 

the limb movements in the 600 ms span are between the embodiment and cognitive level.54 At 

the embodiment level, sensorimotor primitives are created in a fraction of a second to bind the 

current items into memory. They are then synthesized to execute the task.  

In addition, given a quarter note has the duration of 600 ms in 4/4 measure and is 

perceived as the primary beats, a half note corresponding to the metrical level which is one 

level above equals to 1,2 s. The entire measure, then, is 2,4 s of duration, which approximately 

parallels the ‘3 second window’ of automatic, pre-semantic temporal integration proposed by 

Pöppel (2004, p. 298) and matches the time window between auditory echoic memory (approx. 

1 second) and auditory short-term memory (approx. 4-8 seconds) (Snyder, 2016, p. 168). 

In any case, it deals with temporal hierarchy, i.e., nesting of time-spans into a time-span. 

A direct mapping hypothesis between such a temporal hierarchy and nested neural oscillations 

was suggested by different authors working in the framework of dynamic attending theory (for 

reviews, see Mari Riess Jones, 2016; Large, 2008). Neural oscillations, generated by balanced 

interaction between excitatory and inhibitory neural activities, are considered to be 

                                                 
52 Preferred tempo for children between the ages of 4 and 7 years lies between 300 and 400 ms (McAuley, 2010). 
53 It is also worth noting that Knott (2014) relates his sensorimotor syntax to the embodiment level of Ballard and 

colleagues (1997). 
54 Ballard and colleagues (1997) introduced two neural levels (1 ms for neuron spike and 10 ms for lateral 

inhibition in neural circuit) as well as attentive level (50 ms for deliberate act) in addition to embodiment and 

cognitive level.  



PART III      120 

hierarchically organized from fast to slow oscillations (e.g., delta 0.5–1.5 Hz < theta 4–10 Hz 

< alpha 8–12 Hz < beta 13–30 Hz < gamma 30–120 Hz) (Buzsáki, Logothetis, & Singer, 2013). 

Faster oscillations are considered to be embedded into slower oscillations. The dynamic 

attending theory assumes that multiple, self-sustaining neural oscillations are activated by 

different time levels within metrical structures, indirectly relating the hierarchy in neural 

oscillations and hierarchical metrical structure (Mari Riess Jones, 2016). Jones (2016) extended 

the dynamic attending theory and introduced the metric binding hypothesis stating that 

simultaneously active oscillations at different hierarchical levels internally entrain overtime to 

internalize metrical accents. 

Second, hierarchical processing can be investigated by examining syncopation, a 

phenomenon well-known in musicology. Figure 13.1a and c are syncopated, whereas Figure 

13.1b is unsyncopated. The difference between those sequences is, roughly speaking, that in 

the former case “a “heavier” note is tied back to a “lighter” sounded note” and in the latter case 

“the “heavier” note is the first of the tied pair” (Longuet-Higgins & Lee, 1984, p. 430). The 

weight of a given note or rest can be determined by their position in the underlying metrical 

hierarchy (Figure 13.1). Because of the conflict between the internal representation 

(hierarchical metrical structure) and the information from the actual rhythmic sequence, 

syncopation is considered to be complex and requires more cognitive resources (Fitch & 

Rosenfeld, 2007). Based on the note weight, syncopation strength can be calculated as the 

weight of R (a rest or a tied note) - the weight of N (the next sounded note before R) (Longuet-

Higgins & Lee, 1984).55  The syncopation index of the whole sequence is the sum of the 

individual syncopation strengths (Fitch & Rosenfeld, 2007).  

 

Figure 13.1 Syncopated rhythms with different degree of syncopation index.  

                                                 
55 In a complementary model which assumes a generation of an “internal clock” (i.e. meter and the beat) specifying 

the temporal structure in the pattern, too, the complexity of rhythmic sequences is mainly determined by the 

strength of the beat induction (also called “clock induction”), measured on the basis of the relationship between 

the best fitting clock and the perceived accent of the sequences (Povel & Essens, 1985). 
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For example, the strength of the syncopated rhythm (Figure 13.1c) is calculated as 

following: -1 (the weight of R) - -3 (the weight of N) = 2. Because there is only one syncopation 

in this rhythmic sequence, the syncopation index of the whole sequence is 2. The higher the 

syncopation index, the more complex the rhythmic sequence (Fitch & Rosenfeld, 2007). The 

other syncopated rhythm (Figure 13.1a) has syncopation index of 1 (i.e., -1 - -2), meaning that 

this rhythm is less complex than the former rhythm (Figure 13.1c). The remaining rhythm 

(Figure 13.1b) has a syncopation index of -2 (i.e., -2 - 0), meaning that the rhythm does not 

form a syncopation. In this way, complexity of the rhythmic sequence can be identified on the 

basis of hierarchical structure. 

In line with this theoretical consideration, Fitch and Rosenfeld (2007) showed that 

tapping along the primary beats with the syncopated rhythms as well as reproducing and 

recognizing syncopated rhythms are significantly harder in comparison with the same task with 

unsyncopated rhythms. The higher the syncopation index, the worse the task performance. 

Moreover, in the same experiment, they found that participants tend to ‘reset’ the internally 

represented beat during tapping along syncopated rhythms, i.e. they preferred unsyncopated 

representations of rhythmic sequences. This is also in line with the theoretical consideration 

that ‘natural’ interpretations of rhythmic sequences are those that enable listeners to interpret 

them as a realization of an unsyncopated passage (Longuet-Higgins & Lee, 1984). 

In addition, a recent study reported a significantly larger Mismatch Negativity (MMN) 

amplitude when a deviant sound (i.e. the omission of a sound) occurred in strong metrical 

positions (indicating that these sounds were more unexpected), compared to when it occurred 

in weak metrical positions (Bouwer, Van Zuijen, & Honing, 2014). The omission in the strong 

metrical position created a syncopation. The MMN is taken to reflect the processing of 

expectancy violations, and its amplitude scales with the degree of the expectancy violation 

(Honing, Bouwer, & Haden, 2014; Winkler, 2007). Thus, the result that a beat omission in 

strong metrical position causes a greater expectancy violation and elicits a larger MMN is in 

favor of hierarchical processing in music in terms of mapping hierarchical metrical structure 

and rhythmic sequence. Moreover, another EEG experiment showed that a syncopated ending 

in contrast to an unsyncopated ending elicits an early right anterior negativity (ERAN), i.e., an 

ERP component associated with music syntactic violation (Sun, Liu, Zhou, & Jiang, 2018). 

Importantly, syncopation is possible just because there is hierarchical metrical structure 

that is cyclic and highly regular. Without relating the internally represented hierarchical 

metrical structure and the rhythmic sequence, one cannot tell whether some rhythm is 

syncopated or not. Moreover, the syncopation strengths and their behavioral correlates 
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discussed above can be explained only if we acknowledge hierarchically structured 

representations underlying the rhythmic sequences. Indeed, the syncopation strengths are 

constructs yielded by the mapping between hierarchically structured metrical representations 

and rhythmic sequences. 

Finally, even in hearing an acoustically identical series of tones, listeners tend to 

subjectively hear patterns of two or three, i.e. they hear some auditory beats as more important 

than the others (Fitch, 2013; London, 2012a). Two ERP studies showed that a late positive P3-

like component was larger if deviants (i.e., 4 dB softer in comparison with the standard tones) 

were placed at (putatively) subjectively metrically strong positions (i.e., odd numbered tones) 

of isochronous unaccented stimulus than at subjectively metrically weak positions (Brochard, 

Abecasis, Potter, Ragot, & Drake, 2003; Potter, Fenwick, Abecasis, & Brochard, 2009). Those 

experiments also provided evidence that people tend to form subjective accentuation in binary 

meter. A MEG study tested participants imagining march or waltz metrical structure while 

listening to an isochronous unaccented stimulus and showed that beat-related beta-power56 

decrease associated with the imagined strong beat (i.e., down-beat) was larger than that 

associated with the imagined weak beat following the imagined strong beat (Fujioka, Ross, & 

Trainor, 2015). 

 

13.2 Processing structural ambiguity 

Any given note sequence can be interpreted in potentially infinite ways and is therefore 

in principle infinitely ambiguous (Longuet-Higgins & Lee, 1984), but an ‘experienced listener’ 

‘knows’ that there are a few particular ways to infer structures from note sequences adequately 

(Lerdahl & Jackendoff, 1983). In this case, ambiguity means that there are multiple possible 

well-formed representations. For example, Mozart’s Sonata KV 331 can be interpreted in form 

of different metrical structures represented as Figure 13.2a and b, but not in the way represented 

in Figure 13.2c. That is, the structural representations in Figure 13.2a and b are well-formed, 

but that of Figure 13.2c is not. However, experienced Western listeners would intuitively 

choose the interpretation of Figure 13.2a even though according to Lerdahl and Jackendoff 

(1983) both structural representations are possible interpretations. That is, the representation in 

Figure 13.2a is more preferred by Western listener than that in Figure 13.2b. The choice of 

                                                 
56 EEG signals recorded on the scalp can be decoded into different frequency bands of neural oscillations, i.e., 

synchronized rhythmic patterns of electrical activity induced by synchronized activations of large amount of 

neurons (in this case). The beta-band is such a frequency band corresponding to 10-30 Hz oscillations. The power 

of each frequency band in EEG signals are examined by time-frequency analysis. 
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well-formed and preferred interpretations is not arbitrary, but there are rule systems and 

constraints which determine well-formedness and preference of structures (Lerdahl & 

Jackendoff, 1983; London, 2012a). 

 

Figure 13.2 Well-formed and ill-formed metrical structures of Mozart’s Sonata KV 331. 

 

For example, metrical well-formedness rules (MWFR) (see also (12-1) in the current 

thesis) state how to yield a metrically well-formed representation in parsing a musical sequence. 

I discussed MWFRs and the others concerning computational-representational theories of 

rhythmic syntax, but, at the same time, I agree with Rohrmeier and Pearce (2018) that GTTM 

is a parsing model. Thus, the rule systems of GTTM rather constrain amounts of representations 

available to the parser and weight preferred representation in online processing. In case there 

are conflicting well-formed representations, like in Figure 13.2a and b, metrical preference 

rules (MPR) take effect. In the case of the above-mentioned example, the representation Figure 

13.2a ‘wins’ on the basis of the MPR 3: “[p]refer a metrical structure in which beats of level Li 

that coincide with the inception of pitch-events are strong beats of Li” (Lerdahl & Jackendoff, 

1983, p. 347). 

Similarly, metrical structure of the Agbekor bell pattern can be represented as a) or b) 

(Figure 13.3). Western listeners would prefer Figure 13.3a and extract the primary beats at each 

quarter or half note, but for African listeners the normal interpretation is Figure 13.3b with the 

primary beats at every dotted quarter note. Again, both interpretations are well-formed, but one 

of them is more preferred over the other. For example, MPR 10 “[p]refer metrical structures in 

which at each level every other beat is strong” (Lerdahl & Jackendoff, 1983, p. 348) is in favor 
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of the metrical structure Figure 13.3a. This is also in line with the binary meter bias in Western 

music (Huron, 2006). However, polyrhythmic textures created by Agbekor drum ensemble 

including dance and song prefer the metrical structure of Figure 13.3b and even a non-

isochronous meter such as Figure 13.3c. Although the representation Figure 13.3c violates the 

MWFR 4, it can be considered as well-formed on the basis of the updates called well-

formedness constraints (WFC) introduced by London (London, 2012a) to extend the research 

to non-Western culture: “WFC 4.2.2 If the beat cycle is non-isochronous, then either (1) it is 

maximally even, or (2) the cycle above the beat cycle, in most cases the half-measure cycle, 

must be maximally even” (London, 2012a, p. 158).  

 

Figure 13.3 Well-formed metrical structures of Agbekor’s standard pattern. 

 

Importantly, each metrical structure creates different tension-relaxation patterns. 

Regarding Figure 13.3a with the tactus at the half-note level, the emerging stability pattern is 

stable  stable  unstable and thus the tension-relaxation pattern has the form of weak 

prolongation  tension. As discussed already, the metrical structure Figure 13.3b creates stable 

 unstable  unstable  stable pattern, meaning tension  relaxation. Concerning Figure 

13.3c with the tactus at the second level (i.e., 2-2-2-3-3 or short-short-short-long-long), the 

stability pattern is in form of stable  stable  stable  unstable  stable which creates the 

tension-relaxation pattern of weak prolongation  strong prolongation  tension  relaxation. 

Moreover, throughout the performance there is usually one prominent metrical representation 

although both Figure 13.3b and Figure 13.3c are preferred metrical representations of Agbekor 

and the prominent metrical representation changes from section to section depending on the 

currently dominant rhythm. For example, Agbekor dance foregrounds the metrical structure 
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Figure 13.3b and the song mainly the metrical structure Figure 13.3c. In addition, by putting 

phenomenal accent at different positions with different instrument, additional tension-

relaxation patterns can be created. In this way, Agbekor performance seems to make use of 

ambiguity to create diverse tension-relaxation patterns and a large-scale structure. 

Another kind of ambiguity, i.e., the existence of some conflicting representations, is 

reflected in “rhythmic garden-path” effects in which the established metrical representation 

turns out to be implausible at a later time point, i.e., the information provided at a later time 

point conflicts with the established metrical representation (Slevc & Okada, 2015). Based on 

the example in the Figure 13.4, Slevc and Okada (2015) suggested that listeners first establish 

either binary meter (Figure 13.4a) or ternary meter (Figure 13.4b) and, in the former case, 

potentially revise the first interpretation after having reached the 4th bar. Similarly, in Figure 

13.5, metrical ambiguity inherent in the first few notes is resolved by later notes (Longuet-

Higgins & Lee, 1984). In this example, in the first two bars, it is not clear whether underlying 

metrical structure is in form of Figure 13.5a or b. Once the parser reached the third bar, a clear 

preference for each structure can be established on the basis of MPR 3. In this case, too, 

depending on which metrical representation was built in the first two bars, the listener 

encounters the situation in which the established metrical representation and the alternative 

more plausible one are in conflict. 

 

Figure 13.4 Rhythmic garden-path. The figure is adopted from Slevc and Okada (2015, p. 643), 

Psychon Bull Rev, 22 (3): 637–652, with permission by Springer. 

 

Figure 13.5 Ambiguity resolution in rhythm processing as discussed by Higgins and Lee (1984). 
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Slevc and Okada (2015) pointed out that it is not clear whether the listeners resolve the 

conflict. In doing so, they refer to a study conducted by Vazan and Schober (2004) which 

demonstrated that only a few participants revised their initial metrical interpretation. Vazan and 

Schober (2004) used the rock song “Murder by Numbers” by The Police which contains 

metrical ambiguity. This song begins with a clear ternary meter represented in the percussion 

and then ‘changes’ to a binary meter. For the remaining of the piece, the binary meter is more 

dominant. In the experiment, the participants first tapped the meter which they found most 

natural during listening the entire piece. After this familiarization phase, the first 80 seconds of 

the piece with the switching from ternary to binary meter was presented repeatedly. One group 

was instructed to tap the meter which they found most natural, while the other group was 

instructed to tap in a single coherent way. During the first listening, most participants switched 

their tapping from ternary to binary meter. Even after repeated listening, most participants 

tended to tap the ternary meter first and then change to the binary meter. Only a few participants 

in the coherent tapping group showed increasing tendency to tap only binary meter from the 

beginning. This result was interpreted as the listeners not reinterpreting metrical structure, i.e., 

not using retrospective listening strategy.  

However, this particular experiment cannot be used as an evidence against garden-path 

processing in musical rhythm. First, the fact that the participants spontaneously switch from 

ternary to binary meter parallels the garden-path effect. The switching from ternary to binary 

meter, i.e., from SWW to SWSW,57 engages a reinterpretation of the underlined weak beat as 

the underlined strong beat. That is, structurally, the listeners should switch from [[x, x], x]] to 

[[x, x], [x, x]]. Second, even in the garden-path sentences, the reinterpretation often takes place 

in a local manner. Let us consider the following example garden-path sentence (13-1). 

 (13-1) The man accepted the money could not be spent yet. 

 

In this example sentence (13-1), the noun phrase “the money” is first interpreted as the direct 

object of the verb “accepted”, but then is reinterpreted as the subject of the passive voice 

subordinate clause. Thus, the syntactic function of the noun phrase “the money” is reinterpreted 

and the interpretation of something accepted by the man, but neither the syntactic structure of 

“The man accepted [something]” nor its meaning is affected by the garden-path effect. This 

indeed parallels the finding by Vazan and Schober (2004) that the later metrical interpretation 

                                                 
57 S = strong beat, W = weak beat 
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does not affect the early metrical interpretation. The rock song “Murder by Numbers” makes 

use of the metrical ambiguity to modify the tension-relaxation pattern of each section by 

foregrounding different metrical structure trough phenomenal accents created by the 

percussion. Thus, it is appropriate that the listeners tend to experience the switching between 

ternary and binary meter. Similar switching between ternary and binary meter is engaged in 

processing non-isochronous (additive) meter or hemiola. A MEG study that investigated 

processing of hemiola (3+3+2+2+2) demonstrated that auditory evoked response change from 

ternary to binary pattern just before the point where metrical change takes place (Fujioka, Fidali, 

& Ross, 2014). This study thus provides an additional evidence for switching metrical 

representations. 

 

13.3 Processing affect encoded by rhythmic syntax 

As repeatedly pointed out, hierarchical structure of music represents stability 

relationship that encodes affect, i.e., pattern of tension and relaxation. In a framework 

considering beat-based encoding of rhythm in terms of hierarchical processing, tension is 

created by conflict between hierarchical metrical structure and phenomenal accent or group 

boundary. The examples are syncopation and polyrhythm. The processing of affect in musical 

rhythm can be investigated in terms of a parallel parser that keeps alternative structural analyses, 

and operates on the winner-take-all principle. A parser concatenates incoming events, inserts 

multiple possible structural analyses to the part of music heard so far, and weights one analysis 

as the most likely representation (Jackendoff, 1991). In the course of processing, however, a 

parser might encounter a situation in which the established representation is in conflict with 

the incoming information from the musical surface or multiple representations are equally 

likely. The former situation fits to syncopation, while the latter to polyrhythm. Such situations 

are then processed as instable and causing tension. A parser ‘projects’ the established 

representation beyond the heard part of music. Thus, tension can be investigated in terms of 

expectancy violation or prediction error as suggested within different frameworks (Huron, 

2006; Jackendoff, 1991; L. B. Meyer, 1956; Narmour, 1977; Vuust et al., 2014; Vuust & Witek, 

2014).  

In addition, musical affect has very strong relation to movement and bodily 

representation (Bierwisch, 1979; Colling & Thompson, 2013; Jackendoff, 1987; Molnar-

Szakacs & Overy, 2006; Trost & Vuilleumier, 2013; Witek, Kringelbach, & Vuust, 2015). 

Based on the well-known experimental cartoon by Heider and Simmel (1944) showing that the 

character of motion can ascribe animacy to the geometric figures and encode affect, Jackendoff 
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and Lerdahl (2006) argue that temporal patterns can similarly convey affect in music. I 

therefore suggest that temporal patterns in music convey affect via engagement of motor 

system. Just listening to music activates several motor areas in the brain (for reviews, see 

Cameron, Pickett, Earhart, & Grahn, 2016; Grahn, 2012; Leow & Grahn, 2014; Merchant, 

Grahn, Trainor, Rohrmeier, & Fitch, 2015). Body movement influences one’s way to abstract 

metrical representation (Phillips-Silver & Trainor, 2005, 2007). The strong link between music 

and dance also supports the connection between music and motor system (Fitch, 2016; 

Jackendoff & Lerdahl, 2006). Moreover, the music-dance link is a key domain to investigate 

how affect is processed in music via engagement of motor system. Especially, entrainment and 

groove are two relevant phenomena.  

In general, “entrainment” refers to “the process by which independent rhythmical 

systems interact with each other” (Clayton, 2012, p. 49) and can be observed not only in 

musical context, but also in several biological, physical, and social contexts. Trost and 

colleagues (2017) suggested that different levels of entrainment such as neural, perceptual, 

motor, and social entrainment all could induce affect in the subjects sharing a musical activity 

and thus affective entrainment takes place at all levels and also through interdependency of 

those levels. Groove is characterized as “a pleasurable drive toward body-movement in 

response to rhythmically entraining to music” (Vuust & Witek, 2014, p. 9) and is thus “[o]ne 

common source of affective entrainment in music” (Witek et al., 2015). Groove is often 

discussed in terms of prediction error (Vuust et al., 2014; Vuust & Witek, 2014), but the factors 

that lead to groove are not limited to this (Fitch, 2016; Merker, 2014). Further, entrainment and 

groove are often discussed in embodiment frameworks and are not investigated within a 

syntactic framework. However, entrainment presupposes the existence of regular beats that, as 

discussed above, are abstracted from musical surface. Moreover, social entrainment presumes 

the presence of shared beats between individuals, indicating that there should be common 

principles for beat abstraction. 

 

13.4 Neural correlates of rhythmic syntactic processing: An ALE meta-analysis 

Beat-based encoding of rhythm is largely implemented in a timing network (for review, 

see Merchant, Harrington, & Meck, 2013). This timing network comprises two functionally 

distinct but complementary neural circuits: one is the olivocerebellar-thalamocortical circuit 

underlying absolute, duration-based timing and the other consists of the CBGT circuits 

involved in relative, beat-based timing (Teki, Grube, & Griffiths, 2012; Teki, Grube, Kumar, 

& Griffiths, 2011). In a perception experiment using fMRI, Teki et al. (2011) showed that the 
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former network is activated when the rhythmic context of the preceding intervals are irregular, 

while the latter is involved in processing regular, predictable intervals resulting from periodic 

sequences. To achieve accurate timing, both complementary circuits are activated in a 

coordinated way (Teki et al., 2012).  

In addition to the timing network, neural correlates of rhythmic syntax might include 

other regions supporting hierarchical processing, especially areas in the inferior frontal gyrus 

(IFG) (see Figure 13.6). For example, polyrhythm processing shows bilateral or left BA 47 

activation in musicians (Vuust, Roepstorff, Wallentin, Mouridsen, & Østergaard, 2006; Vuust, 

Wallentin, Mouridsen, Østergaard, & Roepstorff, 2011). Offbeat tapping in non-musicians 

engages the right BA 47 (Mayville, Jantzen, Fuchs, Steinberg, & Kelso, 2002) and the right BA 

44 (Jantzen, Steinberg, & Kelso, 2002). Beat abstraction involves the right BA 44/6 and the 

right BA 47 (Kung, Chen, Zatorre, & Penhune, 2013). In addition, listening to musical rhythm 

activates the left BA 44/6 (Chen, Penhune, & Zatorre, 2008a), the left BA 44 (Konoike, Mikami, 

& Miyachi, 2012), the left BA 45/46 (Bengtsson et al., 2009), and the left BA 46 (Grahn & 

Brett, 2007) in non-musicians. 
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a) 

 

b) 

Left hemisphere 
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Right hemisphere 

 

Figure 13.6 Activation peaks in the inferior frontal gyrus (IFG) in rhythmic syntactic 

processing. The figure is an overview of the peak activation foci (in MNI space) reported in 

the above-mentioned studies. Coordinates reported in Talairach space were transformed by 

using convert foci function (Talairach to MNI) implemented in the BrainMap GingerALE 

software. If a paper mentioned SPM or FSL, the options “Talairach to MNI (SPM)” or 

“Talairach to MNI (FSL)” were used. The figures were created by MRIcroGL software. a) 

Lateral view: Peak activations are projected onto the nearest surface. The intensity/brightness 

of the color represents the distance of the foci to the surface. b) Sagittal view: Peak activation 

foci in Broca’s region and the temporal lobe are labeled with Brodmann areas. 

 

To identify regions constantly involved in rhythmic syntactic processing, an ALE meta-

analysis was conducted. First of all, neuroimaging studies were retrieved by using PubMed 

with “syncopation fMRI”, “music rhythm fMRI”, and “music beat fMRI” (Date: December 29, 

2018). The experiments not using fMRI and using only non-metrical stimuli were excluded. 
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Further, only one of the experiments that measured exactly same participant group was 

included. As the number of perception studies were limited, both perception and production 

studies were included. The experiments investigating both tonal and rhythmic processes were 

also excluded. Moreover, the experiments that tested listening to or tapping in synchrony with 

isochronous sequence were excluded as they could mask other rhythmic syntactic regions 

because of a large number of experiments. In addition, they were analyzed in other meta-

analyses and reviews (Chauvigné et al., 2014; Grahn, 2012; Leow & Grahn, 2014; Repp & Su, 

2013; Wiener, Matell, & Coslett, 2011; Wiener, Turkeltaub, & Coslett, 2010) so that the results 

can be still discussed in relation to the current meta-analysis. There was no study testing affect 

generated solely by rhythm. The 18 experiments included in the current meta-analysis are listed 

in the Table 13.1. 

Table 13.1 List of the experiments which entered the ALE meta-analysis on rhythmic syntactic 

processing. Only the first author’s name of a study is displayed in the table. 

Rhythmic syntactic processing Experiments 

Beat abstraction  Chen (2008a) Ex1 

(N = 12) 

Anticipatory listening > Silence 

  Chen (2008a) Ex2 

(N = 12) 

Anticipatory listening > Silence 

  Grahn (2009) 

(N = 36) 

Beat-based rhythm > Non-beat 

rhythm 

  Kung (2013) 

(N = 11) 

Beat finding > Listen 

isochronous cues 

Processing structural 

relationship 

Meter and 

Grouping 

Konoike (2012) 

(N = 17) 

Rhythm encoding > Number 

encoding 

  Grahn (2007) 

(N = 27) 

Metrically simple > Metrically 

complex & non-metric 

  Bengtsson (2009) 

(N = 17) 

Rhythmic > Random 

 Syncopation Mayville (2002) 

(N = 9) 

Syncopation > Synchronization 

  Jantzen (2002) 

(N = 8) 

Syncopation > Rest 
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  Jantzen (2005) 

(N = 12) 

Syncopation > Synchronization 

  Jantzen (2007) 

(N = 9) 

Syncopation > Synchronization 

  Oullier (2005) 

(N = 15) 

Imagine syncopation > Imagine 

synchronization 

  Herdener (2014) 

(N = 22) 

Main effect of syncopation 

  Chen (2008b) 

(N = 12) 

Covariation with complexity 

  Chapin (2010) 

(N = 13) 

Attend to auditory rhythm 

(phase 2) > Rest 

Processing structural 

ambiguity 

Polyrhythm Vuust (2006) 

(N = 18) 

Tap main meter (M) to counter 

meter (C) > Tap M to M 

  Thaut (2008) 

(N = 12) 

Polyrhythmic tapping > 

Listening 

 Drum break Danielsen (2014) 

(N = 19) 

Transition > Continuous 

N of experiments = 18, N of subjects = 281, N of foci = 213 

 

The ALE meta-analysis was carried out using BrainMap software GingerALE version 

2.3.6 (http://www.brainmap.org). First, the foci reported in the Talairach space were converted 

into MNI space by using convert foci function (Talairach to MNI) implemented in the 

GingerALE. If the papers mention SPM or FSL, the options “Talairach to MNI (SPM)” or 

“Talairach to MNI (FSL)” were used. Second, the ALE meta-analysis was performed. This is 

a coordinate-based analysis of the eighteen experiments which is conducted by using the ALE 

algorithm as implemented in GingerALE to identify the convergent foci over different studies 

(Eickhoff et al., 2009; Laird et al., 2005; Turkeltaub et al., 2002). The maps were thresholded 

by using a cluster-level family-wise error (cFWE) correction (P < 0.05) with a cluster-forming 

threshold of P < 0.001 using 1,000 permutations. The results of the analysis are reported in the 

Table 13.2. The anatomical labels were automatically generated by Talairach daemon software 

(Lancaster et al., 1997, 2000) included in the GingerALE. Third, the ALE image was overlaid 

http://www.brainmap.org/
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onto the MNI template (Colin27_T1_seg_MNI.nii) by using Mango. The reported clusters and 

the anatomical labels of the peaks are represented in the Figure 13.7. 

Table 13.2 Results of the ALE meta-analysis on rhythmic syntactic processing. 

Cluster BA MNI coordinates (mm) ALE (x 10-2) Cluster size (mm3) 

  x y z   

1 (Left) 6 -2 -4 58 1.97 4144 

 6 2 16 54 1.51  

 6 2 -4 70 1.28  

2 (Left) * -30 -64 -26 2.21 2216 

3 (Left) 22 -54 8 0 1.76 1896 

 22 -52 -8 -2 1.60  

4 (Right) * 24 10 6 1.96 1368 
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Left hemisphere 

 

Axial view 

 

Figure 13.7 ALE images of the meta-analysis on tonal-harmonic syntactic processing overlaid 

onto the MNI template (Colin27_T1_seg_MNI.nii). 

 

The analysis revealed four significant clusters, i.e., reliable activations over different 

studies (Table 13.2, Figure 13.7, and Appendix A, p. 228). The first cluster consists of the 

supplementary motor area (SMA; BA 6). The studies investigating beat abstraction (Chen et 

al., 2008a; Kung et al., 2013), meter and grouping (Bengtsson et al., 2009), syncopation 

(Chapin et al., 2010; Chen, Penhune, & Zatorre, 2008b; Jantzen, Oullier, Marshall, Steinberg, 

& Kelso, 2007; Jantzen et al., 2002; Jantzen, Steinberg, & Kelso, 2005; Mayville et al., 2002; 

Oullier, Jantzen, Steinberg, & Kelso, 2005), and polyrhythm (Thaut, Demartin, & Sanes, 2008) 
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contributed to this cluster. The second cluster is located in the left cerebellum and peaks in 

culmen. Studies investigating beat abstraction (Chen et al., 2008a), meter and grouping 

(Konoike et al., 2012), and syncopation (Chen et al., 2008b; Jantzen et al., 2007, 2005; 

Mayville et al., 2002; Oullier et al., 2005) contributed to this second cluster. The third cluster 

is a left hemispheric cluster with peaks in the anterior superior temporal gyrus (aSTG; BA 22) 

and extensions to the left IFG (BA 44) as well as the left insula (BA 13). Studies investigating 

beat abstraction (Chen et al., 2008a; Kung et al., 2013), meter and grouping (Grahn & Brett, 

2007; Konoike et al., 2012), syncopation (Mayville et al., 2002), and polyrhythm (Thaut et al., 

2008) contributed to this cluster. Finally, the fourth cluster is placed in the right basal ganglia, 

peaks in the right putamen, and extends to the right caudate body as well as globus pallidus. 

The studies that contributed to this cluster include those examining beat abstraction (Chen et 

al., 2008a; Grahn & Rowe, 2009; Kung et al., 2013), meter and grouping (Grahn & Brett, 2007), 

and syncopation (Jantzen et al., 2002; Mayville et al., 2002). 

The results show the contribution of the timing network including the SMA, basal 

ganglia, and cerebellum together with the aSTG to rhythmic syntactic processing. Those 

regions largely correspond to a subset of the conjunction areas for motor and perceptual sub-

second timing studies revealed by an ALE meta-analysis (Wiener et al., 2010). One relevant 

difference is that Wiener and colleagues (2010) found a peak in the bilateral IFG, while the 

current meta-analysis in the left aSTG (BA 22) with extensions to the left IFG (BA 44) and 

insula (BA 13). The most significant difference between the meta-analysis conducted by 

Wiener and colleagues (Wiener et al., 2010) and the current one lies in the selection of the 

studies. While the former included all timing related studies regardless or modality and 

stimulus property, the latter only investigated musical rhythm. The studies examined in the 

current meta-analysis, therefore, used auditory stimuli with cyclic regularity, i.e., high 

predictability, possibly leading to a substantial contribution of the left aSTG. Moreover, the 

third cluster resembles the second cluster in the meta-analysis on the tonal-harmonic syntax 

(see PART II) and thus is a good candidate for a core region of music syntax. As the restrictions 

of the current meta-analysis are similar to those discussed in the PART II, I only add a comment 

that 8 out of 18 studies included in the current meta-analysis investigated syncopation and 5 

out of syncopation studies regarded syncopation as off-beat / anti-phase tapping. This type of 

syncopation only sparsely taps the syntactic aspects of syncopation discussed in the Section 

13.1 (p. 118). 

In sum, the core neural correlates of rhythmic syntax are implemented in the left aSTG 

extending to the left IFG (BA 44) and the left insula (BA 13) and a timing network consisting 
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of two complementary neural circuits including the SMA, basal ganglia, and cerebellum. This 

indicates an interplay between cortico-subcortical circuits and the temporo-insular pathway for 

rhythmic syntactic processing. That is, rhythmic syntactic processing has a lot to do with 

sensory-motor systems in the brain. 

 

14 Neurocognitive mechanisms of rhythmic syntactic processing 

14.1 The basal ganglia (BG) and the cortico-basal ganglia-thalamocortical (CBGT) 

circuits 

The basal ganglia (BG) are a set of interconnected subcortical nuclei, located outside 

of the thalamus and make up the largest subcortical structures in the human forebrain (see 

Figure 14.1 for a detailed anatomical description). The striatum, consisting of the putamen and 

caudate nucleus, primarily (95%) consists of medium spiny neurons (MSNs) (Graybiel, 2000; 

Matell & Meck, 2004). It largely receives cortical inputs beside inputs from the thalamus and 

the midbrain and projects to the other BG structures (Matell & Meck, 2004). By means of their 

output nuclei such as the internal segment of globus pallidus and substantia nigra pars reticulata, 

the basal ganglia nuclei project to thalamus, which in turn projects to different cortical areas 

(Graybiel, 2000). Thus, together with several cortical areas and the thalamus, the basal ganglia 

nuclei are organized into circuits. 

 

Figure 14.1 The basic anatomy of the basal ganglia. The putamen and caudate nucleus (also 

caudate) make up the striatum, which receives the most of the cortical input. The pallidum (also 

globus pallidus; GP) consists of internal and external segments (also globus pallidus internal 

and external; GPi and GPe) and receives most of the output of the striatum. The subthalamic 

nucleus (STN) is a key structure controlling pallidal function by receiving inputs from GPe and 

projecting to GPi. The substantia nigra (SN) entails a dopamine-containing region, pars 

compacta (SNc), and another region, pars reticulata (SNr). The figure is adopted from Graybiel 

(2000, p. R509), Current Biology, 10 (14): R509-R511, with permission by Elsevier. 
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Those circuits involve at least58 five distinctive networks mainly studied in non-human 

primates’ brains: the “motor”, "oculomotor", "dorsolateral prefrontal", "lateral orbitofrontal", 

and "anterior cingulate" circuits (Alexander, Delong, & Strick, 1986). Together, they are called 

“cortico-basal ganglia-thalamocortical circuits” (CBGT circuits). Recurrent circuits are also 

called “loops”. Within each circuit, corticostriate inputs are progressively integrated and sent 

back to a single cortical area. The ‘funneling’ of the inputs are carried out gradually at striatal, 

pallidal / nigral, and thalamic levels (see Figure 14.2). Importantly, such funnelling occurs 

largely in a very ‘modular’ way, i.e. only within the segregated functional circuits (Alexander 

et al., 1986), thus called “parallel circuits” (Haber, 2003, 2016). Remarkably, however, there 

are also mechanisms (so-called “integrative circuits”) enabling information flow through those 

functionally segregated circuits (Haber, 2003, 2016). 

 

Figure 14.2 Parallel circuits. Different CBGT circuits run in parallel, i.e. projection targets of 

each circuit differ from each other. The inputs are ‘funnelled’ gradually at striatal, pallidal / 

nigral, and thalamic levels. Circuits A, B, and C are corresponding to the circuits a) motor 

circuit, b) dorsolateral prefrontal circuit, and c) anterior cingulate circuit, respectively. 

Abbreviations are as follows: ACC (anterior cingulate cortex); CAUD (caudate), (h) (head); 

GPi (globus pallidus internal); HC (hippocampal cortex); MC (motor cortex); MD (medialis 

dorsalis); MDpc (medialis dorsalis pars pavocellularis); pre-SMA (pre-supplementary motor 

area); PPC (posterior parietal cortex); PUT (putamen); SC (somatosensory cortex); SMA 

(supplementary motor area); SNr (substantia nigra pars reticulata); STG (superior temporal 

gyrus); VApc (ventralis anterior pars parvocellularis); VLm (ventralis lateralis pars medialis); 

                                                 
58 Recently, much more details of those circuits have come to be identified. To discuss and describe all those 

circuits is beyond the scope of the current thesis. For further details, see for example Haber (2003, 2016), Lehéricy, 

Ducros, Krainik, et al. (2004), Lehéricy, Ducros, Van De Moortele, et al. (2004), Middleton & Strick (2000). 
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VLo (ventralis lateralis pars oralis); VP (ventral pallidum); VS (ventral striatum); cl- 

(caudolateral); dl- (dorsolateral); dm- (dorsomedial); pm- (posteromedial); rd- (rostrodorsal); 

rl- (rostrolateral); vl- (ventrolateral). The figure is based on Alexander et al. (1986). 

 

The function of each circuit is determined on the basis of the cortical areas providing 

input to the basal ganglia and also the part of the striatum receiving this input. For example, 

within the “motor” circuit (Figure 14.2a), the cortical projections from supplementary motor 

area (SMA) and other cortical sensory-motor areas mainly59 terminate in putamen, while within 

the “dorsolateral prefrontal” circuit (Figure 14.2b), cortical projection terminates largely60 

within different striatal parts, namely parts of caudate nucleus. The (dorsolateral) prefrontal 

circuit is also called “executive” or “cognitive” circuit (Watkins & Jenkinson, 2016). Within 

the “anterior cingulate” circuit (Figure 14.2c), projections from e.g. the limbic structures (such 

as the hippocampus (HC) and the amygdala) and the anterior cingulate cortex terminate in 

ventral striatum including nucleus accumbens. The further projection chains via globus pallidus 

(GP), substantia nigra (SN), and thalamic nuclei back to the cortical area also differ from each 

other within those distinctive circuits (see Figure 14.2a, b, and c respectively; see also 

Alexander et al., 1986; Haber, 2003, 2016; Lehéricy, Ducros, Krainik, et al., 2004; Lehéricy, 

Ducros, Van De Moortele, et al., 2004; Middleton & Strick, 2000 for details). 

Concerning the cortical projections toward the basal ganglia, it is worth noting that 

those projections build a “functional gradient of inputs” within the striatum. For example, 

diffusion tensor imaging (DTI) studies with human subjects showed that the tracts projecting 

from the motor cortex and SMA are mainly directed to the posterior putamen (sensorimotor 

compartment of the putamen) whereas pre-SMA projections are directed to more rostral parts 

of the striatum (Lehéricy, Ducros, Krainik, et al., 2004; Lehéricy, Ducros, Van De Moortele, et 

al., 2004). The fibres originating from the prefrontal cortex end up in the anterior striatum 

(associative compartment of the striatum) and the head of the caudate nucleus (Lehéricy, 

Ducros, Van De Moortele, et al., 2004). Further, the medial and orbital prefrontal cortex 

terminates in the ventromedial part, the dorsolateral prefrontal cortex in the central area, and 

the motor cortex in the dorsolateral region (Haber, 2003). Those results are suggested to be in 

                                                 
59 There are also ‘bridging’ projections from the rostral premotor areas to both the caudate nucleus and putamen 

(Haber, 2003). 
60 Cf. “The DLPFC projects most densely to the rostral striatum including both the caudate n. and the putamen, 

rostral to the anterior commissure. [...] While there are few terminals in the central and caudal putamen posterior 

to the anterior commissure, the caudate n. does remain innervated” (Haber, 2003, p. 320). 
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line with findings from several monkey studies (Haber, 2003; Lehéricy, Ducros, Krainik, et al., 

2004; Lehéricy, Ducros, Van De Moortele, et al., 2004). 

Moreover, there are two distinctive pathways going through the basal ganglia known as 

the cortico-striatal and cortico-subthalamo-pallidal pathways (Figure 14.3; for details, see e.g. 

Graybiel, 2000; Graybiel & Mink, 2009; Matell & Meck, 2000, 2004; Watkins & Jenkinson, 

2016). Within the cortico-striatal pathways, further distinctions are made in terms of the direct 

pathway and indirect pathway. Metaphorically, the direct pathway, leading to decreased 

inhibition (i.e. release) of the thalamus to excite the cortex, parallels the accelerator of a car 

sending a ‘go’ signal, while the indirect pathway, leading to increased inhibition of the thalamus 

and thus decreased activity in the cortex, can be seen as the brake sending a ‘no-go’ signal. 

Within the cortico-subthalamo-pallidal pathway (also hyperdirect pathway), cortical 

projections ‘skip’ the striatum and terminate in STN, leading to the rapid inhibition of basal 

ganglia output. Besides those cortical inputs, the striatum gets dopaminergic inputs from the 

SNc, which most commonly co-occur with glutamergic inputs. In addition, the striosomes 

(striatal bodies) are interconnected with the SNc and regulate its functions (Figure 14.3). 

 

Figure 14.3 Cortico-striatal and cortico-subthalamo-pallidal pathways. The CBGT circuits 

include different pathways: direct pathway, indirect pathway, and hyperdirect pathway. The 

direct pathway disinhibits the thalamus, leading to excitation of the cortex. Indirect and 

hyperdirect pathway inhibit the thalamus, i.e. resulting in decreasing cortical activities. 

Abbreviations are as follows: D (dopamine receptor); DA (doperminergic); GABA 
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(GABAergic); Glu (glutamergic); GPe (globus pallidus external); GPi (globus pallidus 

internal); S (striosome); SNc (substantia nigra pars compacta); SNr (substantia nigra pars 

reticulate); STN (subthalamic nucleus). 

 

A balanced combination of these pathways is very important for the normal function of 

the basal ganglia. Dysfunctions at that level cause several motor and cognitive impairments. 

For example, Parkinson’s and Huntington’s disease are neurodegenerative diseases and belong 

to classical basal ganglia disorders. Parkinson’s disease (PD) is caused by degeneration of the 

dopamine-containing neurons in the SNc, which in turn disables to supply the striatum with 

dopamine (Graybiel, 2000; Watkins & Jenkinson, 2016). The loss of dopamine innervation in 

the striatum first affects the putamen, resulting in poor motor output. Huntington’s disease 

(HD) is caused by degeneration of GABAergic neurons in the striatum (MSNs in the indirect 

pathway), resulting in movement control deficits (e.g. choreiform or “dancing”) (Graybiel, 

2000; Watkins & Jenkinson, 2016). 

The roles of the striatal MSNs and the dopaminergic inputs from the SNc have been 

discussed extensively by several authors (e.g., Coull, Cheng, & Meck, 2011; Graybiel & Mink, 

2009; Matell & Meck, 2004; the description below refers mainly to the last authors). Each 

striatal MSN receives 10,000 to 30,000 separate inputs from cortical and thalamic neurons that 

are considered to represent particular tasks and abstract rules by firing in an oscillatory fashion 

at a particular rate. The coherent number of coincidental cortical or thalamic activations provide 

simultaneous inputs to the striatum which are necessary for the striatal MSNs to fire. Thus, the 

striatal MSNs act as a coincidence detector. Moreover, the firing threshold of the striatal MSNs 

is considered to be modulated by the GABAergic inhibitory striatal interneurons and the non-

burst, tonic dopaminergic input from SNc. Burst-mode, phasic dopaminergic input from SNc 

is suggested to modulate the direction of synaptic strength change, cause the long-term 

potentiation or depression, and thus serve as the reinforcement signal. 

Though the role of the BG in motor control (which is the most well-known and 

uncontroversial function of the basal ganglia) has long been emphasized in research, it is now 

widely accepted that the BG, as parts of the CBGT circuits, function in a wide range of 

cognitive processes at this circuit level (Graybiel, 2000; Graybiel & Mink, 2009; Lieberman, 

2002, 2010, 2016; Middleton & Strick, 2000). For example, the basal ganglia have been 

claimed to be involved in sequence learning and control (Ullman, 2006; Ullman & Pierpont, 

2005), cognitive set-shifting (Hochstadt, Nakano, Lieberman, & Friedman, 2006; Monchi, 

Petrides, Petre, Worsley, & Dagher, 2001), attention (Grossman, 1999), and working memory 
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(Harrington, Zimbelman, Hinton, & Rao, 2010; Hochstadt et al., 2006; Lustig, Matell, & Meck, 

2005). The BG and the CBGT circuits are also repeatedly suggested to play a crucial role in 

processing linguistic syntax (e.g., Dominey & Inui, 2009; Friederici & Kotz, 2003; Lieberman, 

2002; Ullman, 2006) and musical rhythm (e.g., Grahn, 2009; Leow & Grahn, 2014). In the 

following subsections, I review the studies investigating the role of the BG and the CBGT 

circuits in linguistic syntax and beat-based encoding of rhythm. 

 

14.2 Cognitive and neural processes implemented in the CBGT circuits    

As noted above, any given temporal sequence is ambiguous and the interpretation of a 

rhythmic sequence changes depending on which underlying hierarchical representation the 

listener may choose. Thus, how people extract primary beats from musical surface is based on 

which hierarchical structure is represented or built up online in the listener’s mind/brain. The 

ambiguity in terms of multiple conflicting representations was best posed in the examples of 

polyrhythm and hemiola. In both cases, a flexible switching between conflicting 

representations is required. That is, a parser should keep conflicting representations in parallel 

and this is in favor of a variable choice model of parsing where the parser selects a final analysis 

on the basis of a competition between alternative analyses, i.e., a winner-take-all principle. 

Concerning musical rhythm, switching between well-formed, yet conflicting representations 

was suggested to figure-ground switching (London, 2012b; Vuust & Witek, 2014). As 

Jackendoff (1991, p. 214) puts it, “one can attend to only one analysis at a time”. The parser 

evaluates plausibility of various representations by integrating multiple sources of information 

and then selects the currently most salient interpretation. This process is implemented by a 

selection function (Jackendoff, 1991). Some contextual information, e.g., dance or song in case 

of African drum ensemble music, weight one interpretation over another. Moreover, keeping 

multiple representations in parallel requires a maintenance function. 

The cognitive processes such as integration, selection, weighting, and maintenance 

have an appropriate granularity so that they can be implemented by neural processes. In the 

following, I argue that the CBGT circuits belong to neural mechanisms that implement those 

cognitive processes. First, as reviewed above, the MSNs in the striatum serve as integrators by 

detecting coincidental inputs from cortical areas. Second, by inhibiting or releasing cortical 

representations, the basal ganglia are able to select a salient representation. The selection 

function of the basal ganglia is carried out based on the winner-take-all principle (Graybiel & 

Mink, 2009). Third, the dopaminergic input from the SNc into the striatum weights cortical 

inputs differently by modulating the firing thresholds of the MNSs. The representations are 
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maintained in the (pre)frontal cortex by recurrent excitation, with the aid of the basal ganglia 

functions if conflicting representations should be maintained. These interpretations are in line 

with computational and functional models of the CBGT circuits developed in research on 

working memory (Frank, Loughry, & O’Reilly, 2001; Lustig et al., 2005), functional models 

of the frontal cortex (Fuster, 2008a; E. K. Miller & Cohen, 2001), and a general functional 

architecture implemented in the ACT-R (Anderson et al., 2004). Syntax as mapping between 

hierarchical structure and temporal sequence can be implemented based on those cognitive and 

neural processes. 

Before proceeding in the next section with a discussion of how those cognitive and 

neural processes lead to rhythmic syntactic processing, I would like to point out further relevant 

aspects. Concerning the representations in the prefrontal cortex, as already mentioned in PART 

II, there is a rostro-caudal gradient of memory, control, and goal representation in the frontal 

cortex with motor part in most of the caudal part and cognitive or abstract part in the most 

rostral part (Badre & D’Esposito, 2009; Fuster, 2008b; Koechlin & Jubault, 2006; Uddén & 

Bahlmann, 2012). As mentioned in the Section 14.1 (p. 137), different cortical areas preferably 

project to different parts of the striatum, with motor-related areas projecting to the putamen and 

more cognitive or associative areas to the caudate. Therefore, it can be hypothesized that the 

same above-mentioned cognitive and neural processes account for syntax in both motor and 

cognitive domains, with the former relying more heavily on the motor circuit and the latter on 

the cognitive circuit. Thus, different configurations of the CBGT circuits account for different 

cognitive systems such as language and music. 

One promising avenue may be cognitive control (E. K. Miller, 2000; E. K. Miller & 

Cohen, 2001), i.e. control of lower-level sensory, memory and/or motor operations to achieve 

a goal (internally represented). For instance, E. K. Miller and Cohen (2001, p. 170) built on 

“the fundamental principle that processing in the brain is competitive: Different pathways, 

carrying different source of information, compete for expression in behavior, and the winners 

are those with the strongest sources of support”. This is exactly the principle of neural 

computation that is consistent with one suggested to be implemented in the BG and the CBGT 

circuits (Coull et al., 2011; Dominey & Inui, 2009; Graybiel & Mink, 2009; Matell & Meck, 

2004; Sambin et al., 2012; Teichmann, Dupoux, Cesaro, & Bachoud-Lévi, 2008). Moreover, 

the role of the BG and the CBGT circuits in cognitive control has repeatedly been suggested 

both in theoretical (Lieberman, 2002, 2010, 2016) and experimental research (Monchi et al., 

2001), as well as in modelling (Caso & Cooper, 2001). 
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Jackendoff (1991, p. 226) adds that “[the] tension among the conflicting analyses may 

also surface in the listener’s experience as affect, even though only one of the analyses is 

experienced at the moment as “the” structure of music”. Polyrhythmic tension is a good 

example and provides strong evidence for a variable choice model of parsing (see PART II, 

Section 14.2, p. 142) as multiple rhythmic interpretations exist in parallel. By selecting the 

most salient representation at a given moment, the CBGT circuits contribute to resolve such 

tension between conflicting analyses. The function of the limbic circuits including the limbic 

systems and the ventral striatum thereby is a relevant issue, but beyond the scope of the current 

thesis. This issue together with the interplay between STG, BA 44, and insula in processing 

affect (Molnar-Szakacs & Overy, 2006) might be a promising future direction. Finally, the 

cerebellum’s role in sensory-motor integration, sensory prediction, and feedback error 

processing (e.g., Kotz, Brown, & Schwartze, 2016 for discussions) should be also integrated in 

the current model. 

 

14.3 The CBGT circuits for rhythmic syntactic processing 

The current meta-analysis on rhythmic syntactic processing points out the involvement 

of the CBGT circuits, especially of the motor circuit through the putamen. Importantly, 

however, different parts of the basal ganglia, especially different striatal components, and the 

different CBGT circuits seem to be involved in (at least) three distinctive sub-processes: beat 

finding, beat continuation, and beat adjustment (Grahn & Rowe, 2013). “Beat finding” means 

abstracting the underlying regular beat and thus corresponds to beat abstraction as introduced 

above. “Beat continuation” refers to continually generating and predicting the internal beat, 

and thus parallels to beat generation introduced above. “Beat adjustment” relates to processing 

prediction errors and updating the subsequent predictions. Those sub-processes might recruit 

cognitive processes implemented in the CBGT circuits differently or combine them with 

processes implemented in other networks, thus requiring further differentiations (Leow & 

Grahn, 2014). 

Among those sub-processes, the putamen is most strongly engaged in beat continuation, 

i.e. during continually predicting the timing of future events at the same rate without tempo 

change (Grahn & Rowe, 2013). The parallel activation of the SMA during beat continuation in 

this experiment indicates that the motor CBGT circuit is involved in beat continuation. Thus, 

the motor CBGT circuits involving the SMA and the putamen seem to play a particularly 

important role in maintaining periodic predictions (Leow & Grahn, 2014). A single-cell 

recording study with two rhesus macaques showed that the cells in their medial premotor cortex 
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(corresponding to the SMA) are tuned to interval durations ranging from 450 ms to 1000 ms 

during the synchronization-continuation task and a single interval reproduction task (Merchant 

et al., 2013), indicating that the SMA represents different time intervals. During the 

continuation phase, the SMA and the putamen selecting and maintaining the particular time 

interval over others could be more strongly engaged, as there is no external cues that 

synchronize cortical cell firing and provide simultaneous inputs to the MSNs. 

The caudate, in contrast, seems to play a more important role in beat finding, i.e. 

generating the beat in concert with the external cues, in a perceptual task (Kung et al., 2013). 

In this experiment, the caudate was engaged together with several cortical regions such as the 

STG and the VLPFC whose activity was sensitive to metrical complexity or beat strength.61 

VLPFC showed increasing connectivity with the right DLPFC and bilateral BG at the caudate-

putamen border in correspondence with increasing metrical complexity. Moreover, based on 

some studies outside of the research on music, the caudate was suggested to be involved in 

processing prediction errors (Grahn & Rowe, 2013). For example, the head of caudate nucleus 

was suggested to be engaged especially in processing breaches of expectation during 

judgement task in which participants indicated whether the presented dance performance was 

correct, based on the rules they previously learnt (Schiffer & Schubotz, 2011). In beat finding, 

the integration of auditory and motor cues is required to generate the beat (Kung et al., 2013) 

and prediction errors should be processed till the beat got generated and automated. Thus, the 

functions of the caudate in beat-based encoding of rhythm can be hypothesized as generating 

the beat in concert with external cues by integrating them and processing prediction errors, 

possibly with a strong collaboration with the cerebellum. 

Moreover, PD patients show impaired beat-based encoding of rhythm. While their 

general perceptual and motor timing deficits were claimed (C. R. G. Jones & Jahanshahi, 2014), 

the studies which I reviewed show impairments rather in particular aspects of timing abilities. 

For example, timing deficits of PD patients are especially pronounced in perceptual tasks 

requiring maintenance of internal periodic prediction to discriminate durational cues or 

rhythms (Benoit et al., 2014; Cameron et al., 2016; Grahn & Brett, 2009). Other perceptual 

experiments in which physical cues seem to have provided enough information to succeed in 

the tasks,62 in contrast, showed intact beat-based timing in PD (Cameron et al., 2016; Geiser & 

                                                 
61 A stimulus is metrically complex or the beat strength of a stimulus is weak, if external cues don’t occur 

coincidentally with the underlying periodic beat. 
62 The stimulus material used by Geiser and Kaelin-Lang (2011) contained very simple repetitive patterns, in 

which strong beat positions (i.e. ‘one’ and ‘three’ in 4/4 meter) always underwent physical cues. In the beat 
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Kaelin-Lang, 2011; but see Benoit et al., 2014). Motor timing deficits of PD patients depend 

very much on metronome tempo63 (Benoit et al., 2014; N. S. Miller et al., 2013) and are more 

evident in the continuation phase where the external cue disappears and internal periodic 

prediction should be maintained, than in the synchronization phase where one taps along the 

physical cues (Benoit et al., 2014; Tolleson et al., 2015). Moreover, variability in timing tasks 

was especially pronounced only in a subset of the PD group (Merchant, Luciana, Hooper, 

Majestic, & Tuite, 2008). To my knowledge, there is no study on beat-based encoding of 

rhythm conducted with HD patients in a comparable way, but some studies showed deficits of 

general timing ability in HD patients (Cope, Grube, Singh, Burn, & Griffiths, 2014; Thaut, 

Miltner, Lange, Hurt, & Hoemberg, 1999). 

In sum, the motor circuit including the SMA and the putamen plays a central role in 

beat-based encoding of rhythm, especially in continually predicting the internal beat. Moreover, 

the executive circuit including the VLPFC and the caudate preferably involved in beat finding, 

especially when the internal beat is hard to generate. Regardless of the limited number of 

studies, it can be said that the results of patient studies support the hypothesized functions of 

the BG and the CBGT circuits in beat-based encoding of rhythm, i.e. selecting and maintaining 

the beat.  

 

15 On the relationship between syntax in language and rhythmic syntax 

15.1 Identifying the missing link from theoretical and empirical perspectives 

Language-music comparative research mainly focused on metrical structures of music 

and speech, which are often regarded as similar in terms of hierarchical metrical grids (Fabb & 

Halle, 2012; Fitch, 2013; Jackendoff, 2009; Jackendoff & Lerdahl, 2006; Lerdahl & Jackendoff, 

1983). Each note in music and each syllable in speech gets a beat at the lowest level of hierarchy, 

which is projected onto the higher levels if it is more salient than the others. In this way, 

metrical grids of music are formally homologous to those of phonology (Jackendoff & Lerdahl, 

2006). In addition, Lerdahl and Jackendoff (1983) pointed out parallels between prosodic 

structure and time-span structure. Prosodic hierarchy consists of syllables grouped into a foot, 

                                                 
alignment tests (BATs), the task can be solved by simply evaluating the alignment of two physical cues, i.e. 

musical excerpts and the metronome ticks. Given a large difference in the stimulus features and numbers, it is 

hard to make any well-founded proposals why PD patients’ performance was impaired in one experiment (Benoit 

et al., 2014) and not in the other (Cameron et al., 2016). Especially, concerning the BATs, it is important to control 

for the beat strength of the stimuli by using the model of, for example, Povel & Essens (1985) or Longuet-Higgins 

and Lee (1984). 
63 It was suggested that the interval range of 400-600 ms is critical for the PD patients (C. R. G. Jones & Jahanshahi, 

2014). The study conducted by N. S. Miller et al., 2013 also showed that PD patients were less accurate in tapping 

along the metronome with 500 ms IOIs in comparison with those with 1000 ms and 1500 ms IOIs. 
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feet grouped into a phonological word, and phonological words grouped into phrases. Thus, 

the authors argued that prosodic and time-span structures are both based on “a segmentation of 

the surface string into a layered hierarchy” (Lerdahl & Jackendoff, 1983, p. 321). This is highly 

relevant to the idea introduced in the Section 12.3 (p. 114), to regard one aspect of rhythmic 

syntax, i.e., cyclicity, as a special form of chunking, with accented elements as heads projecting 

to higher layer for further computation.  

Lerdahl and Jackendoff (1983, p. 218) further distinguish prosodic structure from 

narrow-sense syntactic structure: While “in [narrow sense; RA] syntactic structure a category 

may recur inside one of its constituents (for instance, NP inside PP inside NP), this is impossible 

in the phonological segmentation”. They then argue that prosodic structure is thus rather similar 

to time-span structure than narrow-sense syntactic structure. However, this contrast is not 

fruitful if we take rhythmic syntax seriously and investigate the relationship between language 

and music. Contrarily to speech allowing one to one assignment of beats to syllables, in music 

“a single note can subtend multiple beats, and a beat can be subdivided by multiple notes” 

(Jackendoff, 2009, p. 199). This unique feature of musical meter allows for structural 

complexity by recursive embedding of beats into beats, which is regarded by Longuet-Higgins 

and Lee (1984) as parallel to phrasal structures of narrow-sense syntax. Moreover, as discussed 

above, two-ness and three-ness of meter are categorical and the binary meter can be embedded 

into ternary meter that is embedded in binary meter (Figure 15.1).  

 

Figure 15.1 Recursive embedding of meter into meter. 

 

In addition, Lerdahl & Jackendoff (1983) do not discuss the relationship between 

syllable structure and musical rhythm as well as dance because they limit themselves to 

metrical structure. A syllable consists of an onset, nucleus, and coda. The nucleus is the head 

of a syllable and thus corresponds to a beat in metrical structure. This structure parallels to that 
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of action syntax consisting of a preparation, head, and coda as introduced by Jackendoff (2009). 

In both cases, the hierarchical structure is represented as [[onset/preparation, [nucleus/head, 

coda]]. In music, ternary meter intuitively is structured in [[strong, weak], weak] and this does 

not seem to include any preparation element. However, in dancing Waltz (step – turn – feet 

together), the structure is rather {{step, turn}, feet together} and the feet together is a 

preparation to the next step, i.e., [feet together, [step, turn]] (Fitch, 2016). A stable body 

configuration such as two feet together on the ground is often regarded as a preparation to the 

next unstable motion (Lasher, 1981). Therefore, a person with an experience of dancing waltz 

might regard the three of the waltz music as a preparation to the next one, i.e. [weak, [strong, 

weak]]. This type of structure in phonology, action, and music is not a layered hierarchy, but 

an asymmetrical hierarchy for action planning. 

In sum, rhythmic syntax relates to both narrow-sense syntax and phonological syntax. 

Of course, rhythmic syntax encodes affect, i.e., tension-relaxation pattern, which has no good 

parallel in language domain. This is, however, somewhat evident given a difference between 

language and music in terms of computational problems to be solved. More importantly, rather, 

narrow-sense syntax, phonological syntax, and rhythmic syntax all have to go with mapping 

between hierarchical structure (regardless of layered, (recursively) embedded, or asymmetrical 

planning hierarchy) and temporal sequence. 

From empirical perspectives, too, there is an increasing number of studies pointing out 

a close relationship between linguistic and rhythmic syntactic processing (for a review, see also 

Gordon, Jacobs, Schuele, & McAuley, 2015). In linguistic sentence comprehension and 

production, a critical problem for syntactic processing is the mapping between hierarchical 

predicate-argument structure reflecting who did what to whom and surface morphosyntactic 

and phrasal syntactic configurations of a string (e.g., a sentence) expressed by functional 

morphemes or word orders (Kaplan, 2003). As for rhythmic syntactic processing, the mapping 

between hierarchical metrical structures and phenomenal accents should be established to 

generate the primary beats. Comparative research on language syntactic processing and 

rhythmic syntactic processing from empirical perspectives largely deals with interaction and 

transfer effects of linguistic syntactic processing and rhythmic syntactic processing. 

For example, several event-related potential (ERP) studies show a tight relationship 

between rhythm and syntax in auditory language processing. Metric and syntactic violation 

processes interact in later integration process reflected in P600 (Schmidt-Kassow & Kotz, 

2009). Metric regularity also seems to facilitate processing complex sentence structures – the 

P600 mean amplitude shows reduction in structurally demanding sentences when presented 
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with a metrically regular speech rhythm (Roncaglia-Denissen, Schmidt-Kassow, & Kotz, 2013). 

Behavioral experiments with children, too, demonstrate a strong correlation between rhythm 

and syntactic processing: 6-year-old children’s ability to discriminate rhythmic sequences 

correlates with their morpho-syntactic processing ability in a language production task (Gordon, 

Shivers, et al., 2015). Moreover, children with specific language impairment (SLI)1 show better 

morphosyntactic processing if an auditory sentence follows a metrically regular cue 

(Przybylski et al., 2013). 

In the following, I argue that shared neurocognitive mechanisms behind the interaction 

and transfer effects are best investigated by extending research to the subcortical structures. 

Comparative language-music research on syntax continues to focus on cortical structures, but 

there is growing evidence that such a discussion could benefit from taking the role of the 

subcortical structures into account (see, for example, Kotz et al., 2009). Indeed, the CBGT 

circuits are at the core of rhythmic syntactic processing and thus provide a good starting point 

for comparative endeavor. 

 

15.2 The CBGT circuits for syntactic processing in language 

To date, several models have been suggested to investigate the brain basis of speech as 

well as language processing and, in discussing syntactic processing, many of them largely focus 

on cortical structures and cortico-cortical circuits (e.g., Bornkessel-Schlesewsky & 

Schlesewsky, 2016; Friederici, 2016; Hagoort, 2016; Hickok & Poeppel, 2016). The current 

review adds to such cortically based models by investigating the role of the BG in syntactic 

processing and extending the brain circuits under consideration to the CBGT circuits. This 

extension is of particular importance because there is an increasing number of evidences 

suggesting involvement and necessity of the BG and the CBGT circuits in language processing. 

For example, within the language network, the BG, but not other structures, were preferably 

engaged in representing syntactic constituent structures of language – regardless of written 

language or sign language (Moreno, Limousin, Dehaene, & Pallier, 2018; Pallier, Devauchelle, 

& Dehaene, 2011). 

The findings especially point out the prefrontal circuit including the ventrolateral 

prefrontal cortex (VLPFC) and the caudate (so-called “executive” or “cognitive” circuit) in 

processing linguistic syntax among different parallel CBGT circuits. For example, 

neuroimaging experiments showed that Broca’s area including the BA 44 and BA 45 as well 

as the caudate are involved in syntactic (i.e. word order) anomaly recognition in pseudoword 

sentences (Moro et al., 2001) and processing syntactically ambiguous sentences (Stowe et al., 
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2004). The caudate activity was not observed during anomaly recognition of phonological rule 

and agreement in pseudoword sentences (Moro et al., 2001). 

Another study further specified the role of the BG in syntax at the network level. By 

using fiber tracking, voxel-based lesion-symptom mapping (VLSM), and behavioural measure, 

Teichmann et al. (2015) investigated a genuine role of the Broca-caudate tract in processing 

canonical and non-canonical sentences (i.e. phrasal syntax) as well as regular and subregular 

nonce-verbs (i.e. combinatorial morphosyntax). VLSM results suggest that processing 

noncanonical sentences and subregular nonce-verbs is associated with voxels of a region 

ranging from the left inferior prefrontal cortex (BA 44, BA 45, rostrally adjacent areas of BA 

47), through the intervening white matter, to the head of the left caudate. The largest number 

of voxels was identified in BA 45. Regular nonce-verb processing was associated with two 

separated voxel clusters in Broca’s region (BA44 and 45) and left caudate head, respectively, 

and canonical sentence processing with a voxel cluster of BA 44 and 45 extending to white 

matter, without involvement of deep white matter regions or the caudate. 

However, one study reported increased putamen activation together with the caudate in 

the domain of linguistic syntax (Moreno et al., 2018). Importantly, in this study, the boundaries 

of constituents appeared very periodically and predictive. Another study reported increased left 

putamen activation (but no activations in the cortical nodes of the motor circuit) in phrase 

structure violation processing together with the left frontal operculum and the left anterior 

superior temporal gyrus (Friederici, Rüschemeyer, Hahne, & Fiebach, 2003). Although the 

putamen was involved in this study, the motor circuit is unlikely to play a significant role. It is 

possible that the putamen contributed to execution of the patterns generated in the temporal 

cortex, which, however, still remains speculative for now. 

A series of sentence comprehension as well as judgement studies with explicit and 

implicit tasks suggests impaired morphosyntactic and phrasal syntactic processing abilities of 

patients with PD and HD in comparison to control participants. Especially, PD and HD patients 

show reduced abilities in processing non-overlearned sequences requiring rule-based online 

manipulation (Bocanegra et al., 2015; Friederici, Kotz, Werheid, Hein, & von Cramon, 2003; 

García, Bocanegra, et al., 2017; García, Sedeño, et al., 2017; Grossman, 1999; Sambin et al., 

2012; Teichmann et al., 2008, 2005). However, their ability to process lexicalized or 

overlearned morphosyntactic and phrasal syntactic configurations is relatively preserved 

(Friederici, Kotz, et al., 2003; Longworth, 2005; Teichmann, Dupoux, Kouider, & Bachoud-

Lévi, 2006; Teichmann et al., 2015). In addition, there are important between-diseases 

differences of anomaly patterns. 
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Concerning PD patients, the difference in canonicity (e.g. active vs. passive voice), in 

general, seems to have no effect on their performance (Grossman, 1999; Terzi, Papapetropoulos, 

& Kouvelas, 2005). Rather, presence of alternative interpretation, and thus the need of 

reordering or altering, seems to affect their sentence comprehension (Bocanegra et al., 2015; 

Friederici, Kotz, et al., 2003; García, Sedeño, et al., 2017). The PD patients’ impairment in 

controlled syntactic processing seems to stem from limitations in the strategic distribution of 

cognitive resources such as selective attention (Grossman, 1999). However, the PD patients’ 

impairment does not deal with selective attention in general (Kotz et al., 2009), but especially 

with internally (and not externally) controlled attention (R. G. Brown & Marsden, 1988). 

In support of this hypothesis, BG patients64 showed normal P300 in an auditory oddball 

experiment where the deviant is marked by external cue (e.g. by pitch change), but no P600 

was displayed in PD patients and the BG patients in syntactic parsing experiments where 

acceptability of the sentence had to be judged and thus it was required to focus attention 

according to the internal cue such as predicate-argument structure (Friederici, Kotz, et al., 

2003; Frisch, Kotz, von Cramon, & Friederici, 2003; Kotz et al., 2003). Moreover, over-

regularization or priming of external rhythmic cue in the stimuli causes recovery of P600 in 

PD patients because those external cues guide the internal attentional control (Kotz & Gunter, 

2015; Kotz & Schmidt-Kassow, 2015). Certain tasks as well as external or surficial 

morphosyntactic cues also seem to guide the attention of PD patients (Grossman, 1999; 

Grossman et al., 2003). 

Concerning HD patients, their deficits are strongly associated with structural 

complexity and canonicity of sentences (García, Bocanegra, et al., 2017; Sambin et al., 2012; 

Teichmann et al., 2008, 2005) because of their more general impairments in suppressing 

automatically engaged representations (e.g. canonical interpretation) and applying rules to 

select an alternative representation (e.g. noncanonical interpretation) (Sambin et al., 2012; 

Teichmann et al., 2008, 2005). Again, in HD patients, too, the selection function is impaired.  

Moreover, in relation to the neurophysiological details of the BG and the CBGT circuits 

reviewed in the Section 14.1 (p. 137), the following hypotheses can be built. First, 

dopaminergic input to the striatum is considered to have a modulatory and reinforcing effect 

on striatal MSN activities and ‘weights’ the cortical (or thalamic) inputs to the striatum, i.e. 

associates them with a certain relevance and create attentional or ‘goal-oriented’ biases 

(Graybiel & Mink, 2009; Haber, 2016; Lustig et al., 2005; Matell & Meck, 2000, 2004; E. K. 

                                                 
64 Frisch et al. (2003) and Kotz et al. (2003) did not examine PD patients, but patients with BG lesions. 
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Miller & Buschman, 2008). Thus, abnormal dopaminergic inputs in PD could lead to impaired 

internal control in associating striatal activities with goals (or meanings), which possibly leads 

to their difficulties to distribute internal attentional resources between possible alternative 

interpretations, i.e., malfunctioning of the selection function. Second, degeneration of 

GABAergic MSNs in HD patients seems to primarily affect inhibitory control to suppress 

automatic syntactic processes. Moreover, loss of MSNs leads to insufficient integration of 

cortical inputs encoding different syntactic representations within striatum, which could lead 

to difficulty in choosing an alternative representation, i.e., again malfunctioning of the selection 

function. 

In sum, the executive circuit, especially the Broca-caudate tract, plays a central role in 

syntactic processing. Moreover, the BG are preferably involved in processing non-canonical 

and ambiguous sentences as well as non-overlearned forms. Processing canonical sentences 

and overlearned forms largely relies on the cortico-cortical activations. The selection, 

weighting, and integration function implemented in the BG seem to be required for inhibiting 

automatic structuring and selecting alternative one. 

 

15.3 Shared neurocognitive mechanisms implemented by the CBGT circuits  

The results of this chapter reveal a hidden connection between language and music 

processing. The same neural mechanisms implemented in the same neural structures and 

circuits, i.e. the BG and the CBGT circuits, are necessary for language and music processing, 

but degrees of expression on the motor to cognitive continuum within those neural structures 

and circuits vary between those two domains. The studies reviewed above suggest that the BG 

and the CBGT circuits are constituent parts of both linguistic and rhythmic syntactic processing. 

Therefore, on one hand, it is possible to say that both domains are implemented in the same 

neural structures and even the same neural circuits. On the other hand, a closer look at the way 

linguistic syntactic and rhythmic syntactic processing are implemented in those structures and 

circuits reveals that both domains are processed differently within those overlapping neural 

structures. As reviewed above, among different parallel circuits, linguistic syntactic processing 

makes demands on the executive circuit, while rhythmic syntactic processing in music 

primarily engages the motor circuit. Thus, I hypothesize that linguistic syntax and beat-based 

encoding of rhythm both rely on the BG and the CBGT circuits, but do so in different ways. 

It is worth noting that I do not suggest qualitative difference between both domains in 

the way that linguistic syntactic processing relies on a particular subpart of the structures and 

beat-based encoding of rhythm on another. Indeed, though beat-based encoding of rhythm 
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predominantly calls for the motor circuit, at least one study demonstrates the activation of the 

caudate together with the ventrolateral prefrontal cortex, indicating activation of the executive 

circuit rather than the motor circuit (Kung et al., 2013). That is, rhythmic syntactic processing 

involves both motor and executive circuits with an emphasis on the former. While linguistic 

syntactic processing relies more on the executive circuit, the putamen is rather involved in 

motor coordination for speech articulation (Watkins & Jenkinson, 2016) and thus more 

contributes to phonological syntax. However, as mentioned above, some studies showed the 

putamen involvement in linguistic syntactic processing (Friederici, Rüschemeyer, et al., 2003; 

Moreno et al., 2018). In the case of phonological syntactic processing, too, both the executive 

and the motor loop are involved (Bohland, Bullock, & Guenther, 2010; Guenther, 2016). 

Therefore, I regard linguistic syntactic processing (including phonological syntax) and 

rhythmic syntactic processing as different uses of the same neural structures, or rather as 

varying degrees of expression on the motor to cognitive gradient (Figure 15.2). 

 

Figure 15.2 Linguistic and rhythmic syntactic processing as varying degrees of expression on 

the motor to cognitive gradient within the BG and the CBGT circuits. Linguistic syntax 

processing engages the caudate and the executive circuits (the cortico-striatal projection blue 

area) to a great extent, while rhythmic syntax rather makes use of the putamen and the motor 

circuit (the cortico-striatal projection red area). Musical rhythm processing extends to the 

caudate, but only to a minor degree. DLPFC (dorsoslateral prefrontal cortex); pre-SAM (pre-

supplementary motor area); SMA (supplementary motor area); VLPFC (ventrolateral 

prefrontal cortex). 
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The investigations of the CBGT circuits provide an opportunity to explore how 

language and music emerge based on the same mechanisms in terms of “modifiable cortico-

striatal synapses” (Dominey & Inui, 2009, p. 1014) and “specialized sub-circuits subserve 

different domains” (Ullman, 2006, p. 483). Several authors pointed out the functions of the BG 

and the executive CBGT circuits in learning of grammatical and procedural knowledge 

(Krishnan, Watkins, & Bishop, 2016; E. K. Miller & Buschman, 2008; Ullman, 2006; Ullman 

& Pierpont, 2005). In particular, Miller and Buschman (2008) suggested two kinds of learning 

mechanisms supported by different neural mechanisms. The first one is rapid reinforcement 

learning by the BG, which leads to acquisition of concrete rules associating specific 

experiences to rewards. This type of learning is guided by dopaminergic modulatory processing. 

The second one is the slower learning by the prefrontal cortex (PFC), which facilitates 

generalized rule acquisition by detecting the regularities and commonalities across many 

different experiences. Thus, the CBGT circuits, in which those mechanisms form a closed loop, 

allow for the ‘bootstrapping’; i.e. “the process of building increasingly complex representations 

from simple ones” (E. K. Miller & Buschman, 2008, p. 433). 

In this line, regarding impaired syntactic processing ability of the SLI children, the BG 

role in rule learning was hypothesized (Krishnan et al., 2016; Ullman & Pierpont, 2005). One 

systematic review article discussing neuroimaging studies about childhood language disorders 

found out that several studies consistently identified atypical brain structures in the inferior 

frontal gyrus (especially in the pars triangularis), the caudate nucleus, and the posterior superior 

temporal gyrus (Mayes, Reilly, & Morgan, 2015). Concerning the SLI, the anomaly in the 

caudate is also pointed out by Ullman and Pierpont, (2005) as well as Krishnan, Watkins, and 

Bishop (2016). Some SLI children also show deficits in rhythmic syntactic processing 

(Corriveau & Goswami, 2009; Cumming, Wilson, Leong, Colling, & Goswami, 2015). This is 

one additional evidence for the relationship between linguistic and rhythmic syntactic 

processing in the CBGT circuits.  

The CBGT circuits are involved in and are necessary for learning and performing 

procedures, i.e. organizing sequences of actions toward a goal. Especially, the basal ganglia are 

known to contribute as a ‘control center’ and an ‘associative learner’ in both motor and 

cognitive domains. For example, they play a part in two aspects of motor control: 1) assisting 

execution of cortically driven predictable and automatic motor patterns; and 2) adapting to 

unusual circumstances by interrupting and altering the automatically running motor 

representations (Marsden & Obeso, 1994). Those dual motor functions of the basal ganglia 

facilitate flexibility and adaptation in motor control. The CBGT circuits are also involved in 
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and necessary for cognitive control, i.e. control of lower level sensory, memory and/or motor 

operations to achieve a goal (Graybiel, 1997; Lieberman, 2002, 2016; E. K. Miller, 2000; E. K. 

Miller & Cohen, 2001; Monchi et al., 2001). Moreover, the basal ganglia contribute to goal-

directed (or reward-based) learning processes by acquiring rules associating signal, action, and 

goal, reinforcing new behavior-guiding rules, and predicting a goal (Graybiel & Mink, 2009; 

Haber, 2003; Haruno & Kawato, 2006; Lieberman, 2016). As computational goals of language 

and music are different, those cognitive systems might be canalized differently within the 

CBGT circuits during the development. 

 In sum, the following hypotheses can be derived: 1) the putamen-based circuits assist 

execution of cortically driven predictable and automatic motor and cognitive patterns; 2) the 

caudate-based circuits get involved in adapting to unusual circumstances where prediction 

errors happen frequently by interrupting and altering the automatically running motor and 

cognitive representations. Those hypotheses are in line with general motor and cognitive 

functions, language syntactic functions as well as rhythmic syntactic functions of the BG and 

the CBGT circuits. Moreover, those hypotheses imply that, in both language and music, 

experiments requiring engagement and maintenance of internal periodic prediction activate the 

putamen-based circuits (Type 1), while deviation from the regularity activates the caudate-

based circuits (Type 2).  
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16 Main results of the current thesis 

16.1 Comparative biomusicology as a comparative biological information processing 

framework  

The current thesis tackled the question “Why is music the way it is?” within the 

framework of comparative biomusicology by focusing on musical syntax and its relation to 

syntax in language. Comparative biomusicology was introduced as a framework investigating 

biological foundations of music by integrating 1) comparative approaches, 2) biological 

approaches and 3) information processing approaches. Comparative approaches include 

different strategies such as within-domain comparisons (e.g. cross-culture comparison), 

between-domain comparisons (e.g. language, music, and action), within-species comparisons 

(e.g. (developmental) disorders), as well as between-species comparisons (e.g. non-human 

animals and humans). Biological approaches are based on Tinbergen’s four questions, i.e., 

causation / mechanism, ontogeny, evolution / phylogeny, and function. Information processing 

approaches, which are at the core of cognitive science, contain different levels of analysis 

known as David Marr’s three levels of analysis, i.e., the computational level, the algorithmic 

level, and the implementational level. Therefore, comparative biomusicology as an integrative 

approach provides a comparative biological information processing framework. 

At the very heart of the current thesis lies the question of causation / mechanism, which 

should be investigated at the algorithmic and implementational level. Within the framework of 

comparative biomusicology, mechanism plays a mediator role for biology and information 

processing. Identification of computational problems / functions also played a key role as it is 

a necessary step in order to approach mechanistic explanations of cognitive systems. 

Computational problems and functions provide top-down constraints to the mechanisms, and 

in that way they determine what problems the mechanisms have to solve and why. One goal of 

comparative approaches is to clarify computational problems and mechanisms of cognitive 

systems such as music and language by applying the four comparative strategies mentioned 

above. Ontogeny and phylogeny were regarded as changes in mechanism (i.e., algorithms and 

implementations) and/or function (i.e., computational problems to be solved). The main content 

of the current thesis did not touch on ontogeny and phylogeny, but I will introduce some 

implications later in this chapter. In particular, I discussed the following three questions in the 

thesis: 1) What are the computational problems of music, and musical syntax in particular?; 2) 

What are neurocognitive mechanisms underlying music syntactic processing?; and 3) How do 

computational problems and neurocognitive mechanisms of musical syntax relate to those of 

language?  
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As starting points, I suggested linking sound and affect as a computational problem for 

music, and tonal encoding of pitch and beat-based encoding of rhythm as two constituent parts 

of music to be investigated at the algorithmic level in terms of parsing as well as at the 

implementational level in terms of neural implementation. To approach a mechanistic 

explanation in terms of cognitive and neural processes, I proceeded along the following 

methodological pipeline. First, some analyses were conducted at the computational level to 

identify computational problems. Second, the computational level analysis was related to 

processing, especially in terms of parsing. Third, reviews and meta-analyses were conducted 

to figure out the neural correlates of the processing. Based on the results concerning processing 

and neural correlates, candidate cognitive and neural processes have been worked out. In this 

way, the current thesis provided a first step toward resolving the problem of explanatory gaps 

including a mapping from theoretical concepts of music theory (and linguistic theory) onto 

hypothetical constructs of psychology and a mapping between mind and brain. 

Concerning the relationship between language and music, I introduced a possible way 

to achieve a non-contrastive comparative approach, namely principled explanations, i.e. 

regarding cognitive systems as different instances of the same principles. As such, the question 

“Why is music the way it is?” was investigated in terms of how a set of basic principles is ‘put 

into use’ in the way music does. In particular, the current thesis was concerned with syntax as 

a set of combinatorial principles generating hierarchically structured representations and/or 

sequences, and neural structures and operations as implementational principles. Thus, instead 

of emphasizing differences between language and music in details, I largely focused on 

clarifying the principles underlying language and music that can be abstracted at different 

levels of comparative inquiry. Then, I discussed to what extent differences between language 

and music can be explained in terms of different instances of the basic abstract principles 

revealed so far. Finally, I provided a possible mechanistic explanation stating that language and 

music processing can be partly explained in terms of the same neurocognitive mechanisms with 

different expressions on the motor-to-cognitive gradient. In this way, I provided principled 

explanations to language and music. 

 

16.2 Computational problem of musical syntax: Mapping between hierarchical 

structure and temporal sequence to link sound and affect 

One of the computational problems to be solved by musical syntax, i.e., a core function 

of syntactic computation, is the mapping between hierarchical structure and temporal sequence 

to link sound and affect. Musical syntax at least includes two subcomponents, namely tonal-
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harmonic syntax (PART II) and rhythmic syntax (PART III). Tonal-harmonic syntax links 

sound and affect on the basis of tonal hierarchy which represents stability relationships between 

pitches. Relative importance of pitches is determined in relation to the most stable and 

important pitch, i.e., the tonic. Rhythmic syntax links sound and affect on the basis of 

hierarchical metrical and grouping structure. Metrical structure represents relative prominence 

of beats, while grouping structure represents musical units such as motives, phrases, and 

sections. Relative salience of beats is determined by interaction between metrical and grouping 

structure. A beat is regarded as stable if a phenomenal accent matches with relative salience of 

the beat and as unstable in case of mismatch. In both tonal-harmonic and rhythmic syntax, a 

transition from relatively stable to unstable pitch creates tension, while a transition from 

relatively unstable to stable pitch causes relaxation. In addition, ambiguity, i.e., parallel 

existence of multiple possible representations, also leads to tension.  

Concerning the relationship between syntax in language and music at the computational 

level, this characterization of the computational problem adds to non-contrastive comparative 

research: One of the computational problems to be solved by syntax in language is likewise the 

mapping between hierarchical structure and temporal sequence to link sound and meaning. 

Although the computational problem of language, i.e., linking sound and meaning, differs from 

that of music, i.e., linking sound and affect, at least one of the computational problems for 

syntax is the same for language and music, i.e., mapping hierarchical structure and temporal 

sequence. Of course, syntax in language differs in many ways from tonal-harmonic and 

rhythmic syntax. However, syntax in language and music can be comparatively investigated in 

terms of mapping between hierarchical structure and temporal sequence. Then, we can start 

discussing whether the same formalism (e.g., formal grammar, merge, constructions, or 

schemas) provides an appropriate characterization of the computational problem for syntax in 

language and music. 

Recursion and cyclicity were suggested to belong to a set of abstract principles 

according to which combinatorial and labeling operations should perform the mapping between 

hierarchical structure and temporal sequence. Of course, they are not exhaustive. However, 

those principles provide important constraints to computational-representational theories and 

the other levels of investigation. Whatever formalism is applied to characterize the 

computational problem for syntax in language and music, computational-representational 

theories of language and music might not be different in those principles. Moreover, those 

principles especially determine the nature of the representations processed by the algorithms. 

One example in language are sentences with embedded relative clauses: How does an algorithm 
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solve the problem of mapping hierarchical structure with multiple embedded clauses and 

temporal sequence to correctly link sound and meaning? An example in music is syncopation: 

How does an algorithm solve the problem of mapping hierarchical metrical structure and 

temporal sequence to meaningfully link sound and affect? 

Importantly, this does not mean that there is only one algorithm which operates 

according to the principles at the computational level because the same computational problem 

can be solved by different algorithms. Although all levels of investigation relate to each other, 

it is still central to differentiate the question of what the device does and how, i.e., the functional 

question of what task has to be solved at the computational level and mechanistic question at 

the algorithmic and implementational levels. 

 

16.3 Neurocognitive mechanisms of music syntactic processing revealed by investigating 

tonal encoding of pitch and beat-based encoding of rhythm 

To approximate mechanistic explanations to musical syntax in terms of cognitive and 

neural processes, the current thesis dealt with tonal encoding of pitch and beat-based encoding 

of rhythm at the algorithmic and implementational levels. Concerning the algorithmic level, I 

regarded music syntactic parsing as online execution of mapping between hierarchical structure 

and temporal sequence to link sound and affect, and investigated it in terms of representations 

and cognitive processes to identify how music syntactic parsing is performed.  

Tonal encoding of pitch contains transformation of a sequence of pitch events into a 

hierarchical structure representing their relative stability based on a tonal hierarchy. I regarded 

this aspect of tonal encoding of pitch as tonal-harmonic syntactic processing. This 

transformation requires sub-processes such as extracting a tonal center, establishing structural 

relationship, hierarchical structure building as well as structural reanalysis and repair. Thus, 

experimental studies which attempt to examine tonal-harmonic syntactic processing 

manipulate the stimuli and tasks in terms of tonal hierarchy and the aforementioned sub-

processes. Extracting a tonal center is tested in terms of tonality (in contrast to atonality), 

establishing structural relationships and hierarchical structure building in terms of 

grammaticality, regularity, relatedness, and tension-relaxation, and structural repair and 

reanalysis in terms of modulation.  

I carried out an ALE meta-analysis of fMRI studies investigating tonal-harmonic 

syntactic processing which revealed the left anterior superior temporal gyrus (BA 22) and a 

right fronto-temporal network including the posterior superior / middle temporal gyrus (BA 

22), the inferior frontal gyrus (BA 44 and BA 47), the middle frontal gyrus (BA 9 and 46) in 
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addition to the right insula. Although this meta-analysis did not show significant activation in 

the left BA 44, several neuroimaging studies emphasize its importance in establishing structural 

relationship and hierarchical structure building. An analysis conducted by plotting peak 

coordinates of those studies revealed that the activation peaks are especially pronounced in the 

ventral part of BA 44. Therefore, the role of the left BA 44 for tonal-harmonic syntactic 

processing is still controversial. More fMRI studies examining tonal-harmonic syntactic 

processing with more variable stimuli and tasks to manipulate different sub-processes are 

desiderata for future research. 

Beat-based encoding of rhythm includes transformation of a sequence of auditory 

events into a hierarchical structure representing their relative salience of beats. I regarded this 

aspect of beat-based encoding of rhythm as rhythmic syntactic processing. This transformation 

requires sub-processes such as beat abstraction (and generation), processing structural 

relationship, and processing structural ambiguity. Thus, again, experimental studies which 

attempt to examine rhythmic syntactic processing manipulate the stimuli and tasks in terms of 

metrical and grouping structures as well as those sub-processes. Beat abstraction is tested in 

terms of beat-based rhythmic stimuli (in contrast to non-beat rhythm, for example), processing 

structural relationship in terms of meter and grouping as well as syncopation, and processing 

structural ambiguity in terms of polyrhythm and drum break.  

Another ALE meta-analysis of fMRI studies investigating rhythmic syntactic 

processing carried out for this thesis revealed significant activations in the supplementary 

motor area (SMA) (BA 6), the right basal ganglia (putamen), the left cerebellum (culmen), and 

the left anterior superior temporal gyrus (BA 22). That is, the timing networks including the 

motor cortico-basal ganglia-thalamocortical (CBGT) circuit and the cerebellum together with 

the left auditory association area indicate an interaction between auditory and motor systems 

to yield rhythmic syntactic processing. Although my meta-analysis did not show any significant 

inferior frontal gyrus activation, some studies demonstrated activations in the bilateral BA 44, 

45, 46, and 47. Here, too, more fMRI studies investigating rhythmic syntactic processing in 

terms of subcomponents introduced in the current thesis are required to reveal the role of the 

inferior frontal gyrus for rhythmic syntactic processing. 

Thus, by investigating tonal-harmonic and rhythmic syntactic processing in terms of 

their subsystems, it was possible to identify their candidate neural correlates. However, tonal-

harmonic syntactic processing, rhythmic syntactic processing, and their sub-processes are 

cognitive processes which don’t have an appropriate granularity to be implemented in the brain 

as neural processes and, thus, to achieve a mechanistic explanation in terms of cognitive and 
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neural processes as pursued in the current thesis. Although the specification of sub-processes 

alongside computational-representational theories is a necessary first step, a purely top-down 

approach has its limit if the target of research comprises neurocognitive mechanisms. Thus, the 

current thesis introduced a complementary bottom-up approach taking neural structures and 

operations as implementational principles. More specifically, this approach was elaborated by 

focusing on the CBGT circuits. 

The CBGT circuits carry out processes such as maintenance and control which can be 

interpreted as cognitive and neural processes. Candidate neural implementations of the 

maintenance function comprise delay neurons in the prefrontal cortex as well as the recurrent 

excitation of the prefrontal pyramidal neurons. The control function seems to be implemented 

by interaction between cortical and basal ganglia activities. Especially, the basal ganglia control 

cortical representations by integration, selection, and modulation functions. First, the medium 

spiny neurons (MSNs) in the striatum serve as integrators by detecting coincidental inputs from 

cortical areas. Second, by inhibiting or releasing cortical representations, the basal ganglia are 

able to select a salient representation. The selection function of the basal ganglia is carried out 

based on the winner-take-all principle. Third, the dopaminergic input from the substantia nigra 

pars compacta into the striatum weights cortical inputs differently by modulating the firing 

thresholds of the MNSs. 

In the context of music syntactic processing, those cognitive and neural processes were 

discussed by focusing on rhythmic syntactic processing. For example, I suggested that the 

motor CBGT circuit involving the SMA and the putamen plays an important role in maintaining 

periodic predictions because the SMA represents different time intervals and the putamen keeps 

selecting a particular interval by suppressing the alternatives. In addition, I hypothesized that, 

especially in case of polyrhythm, multiple representations should be maintained (possibly in 

BA 47) and that the CBGT circuits might contribute to selecting a currently most salient 

interpretation by weighting it. The functions of the caudate in rhythmic syntactic processing 

were hypothesized as generating the beat in concert with external cues by integrating different 

sources of information and processing prediction errors, possibly with a strong collaboration 

with the cerebellum. 

 

16.4 Neurocognitive mechanisms for language and music syntactic processing: Going 

beyond the shared/distinct dichotomy 

Ever since the resource sharing framework for syntactic processing in language and 

music was introduced by Patel (2003), especially since two prominent books (Koelsch, 2012a; 
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Patel, 2008) have been published on the subject matter, there is a general consensus that there 

are neural resources shared in language and music syntactic processing. However, it is still not 

clear what those neural resources are. Generative neurolinguistics and neuromusicology, which 

apply a top-down strategy by directly mapping concepts of computational-representational 

theories onto the algorithmic and implementational level research, suggested that language and 

music share hierarchical processing implemented in Broca’s region. However, hierarchical 

processing (even in its sub-processes such as structure building and establishing structural 

relationship) again is not at an appropriate level of granularity to be implemented in the brain 

as a neural process. Neurocognitive psycholinguistics and psychomusicology, on the other hand, 

suggest executive functions such as working memory and/or cognitive control as candidates 

for shared aspects of language and music syntactic processing. Executive function in its sub-

processes such as maintenance, manipulation, coordination, and switching are cognitive 

processes which could be implemented in the brain as neural processes. Yet, how such 

processes solve the computational problem for language and music, i.e., mapping hierarchical 

structure and temporal sequence to link sound and meaning or affect, was not made clear by 

those approaches. 

Furthermore, the hypotheses about shared neural resources for syntactic processing in 

language and music were mainly tested in terms of interaction and neural overlap as 

implications on the basis of the following inferences: 1) Sharing → Interaction; 2) Sharing → 

Overlap. The current thesis suggests that the second inference (i.e., Sharing → Overlap) is a 

weak one. First, the comparison of the meta-analysis of tonal-harmonic syntactic processing 

with that of language comprehension revels little overlap. In particular, the fronto-temporal 

network of language is more strongly articulated in the left hemisphere, while that of tonal-

harmonic syntactic processing can mostly be found in the right hemisphere. Second, within 

Broca’s region in which language and music processing were suggested to overlap, there is an 

area that is more sensitive to language than other domains. Even BA 44 can be separated further 

into functionally separable clusters with the ‘language cluster’ being located in the anterior 

dorsal BA 44 and the ‘action and music cluster’ in the posterior ventral BA 44. Third, language 

syntactic processing and rhythmic syntactic processing both rely on the CBGT circuits, 

whereas the former is based more heavily on the executive circuit, while the latter rather relies 

on the motor circuit. 

Last but not least, “[i]t is important to keep in mind that neural overlap does not 

necessarily entail neural sharing” (Peretz, Vuvan, Lagrois, & Armony, 2015, p. 3) because the 

pattern of activation and/or connectivity could be very different for language and music, even 
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though there is an overlap. This is a standard logical issue. As “Sharing → Overlap” is the first 

premise of the argument, it is a logical fallacy to infer sharing from overlap. Of course, as 

discussed in the current thesis, this type of reverse inference is not uninteresting. However, in 

the current case, the probability of overlapping activation areas given shared cognitive process 

is far from optimal and even near to zero. Thus, this reverse inference is very weak. 

What are cognitive processes shared between language and music syntactic processing 

which are in such a granularity that they can be implemented in the brain in terms of neural 

processes? How do those processes account for the computational problem to be solved by 

syntax in language and music? If overlap is a weak argument for sharing, what is an alternative 

approach? The current thesis provided an approach to tackle those three questions by working 

out a mechanistic explanation for the relationship between language and music syntactic 

processing, i.e., revealing cognitive and neural processes. The central claim, which is at the 

same time the main result of the current thesis, is that the same neurocognitive mechanisms are 

differently expressed on the motor-to-cognitive gradient to solve partially different 

computational problems of language and music syntactic processing. The details of this 

approach were worked out by focusing on the relationship between language syntactic 

processing and rhythmic syntactic processing. 

Both linguistic syntactic processing and rhythmic syntactic processing require the 

CBGT circuits. Concerning language syntactic processing, the executive circuit including the 

prefrontal cortex and the caudate plays a role in suppressing automatic syntactic representation 

and selecting an alternative one to process, for example, non-canonical sentences. Regarding 

rhythmic syntactic processing, the motor circuit including the SMA and the putamen acts as a 

part in suppressing alternative rhythmic representations and continuously activating the current 

representation to maintain periodic predictions. Both cases particularly require a selection 

function, which the basal ganglia execute by inhibiting or releasing cortical representations via 

the thalamus. Therefore, they use the same neurocognitive mechanisms. However, there is a 

tendency that linguistic syntactic processing rather makes use of the executive circuit, while 

rhythmic syntactic processing more strongly relies of the motor circuit. Thus, the same 

neurocognitive mechanisms show the domain-relevant biases on the motor-to-cognitive 

gradient.  

The current thesis also suggests that the motor-to-cognitive gradient is widely 

applicable beyond the CBGT circuits. There is a rostro-caudal gradient of memory, control, 

and goal representation in the frontal cortex with motor part in the most caudal part and 

cognitive or abstract part in the most rostral part. Even within the BA 44 alone, there is a dorsal-
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ventral axis for the maintenance function that extends from the general maintenance function 

in the most dorsal part via the part associated with language to the most ventral ‘action and 

music’ part. In those cases, the main idea is the same: language and music make use of the 

same neurocognitive mechanism of maintenance, for example, but differ in their degrees of 

expression on the motor-to-cognitive gradient.  

The mechanistic explanation provided by the current thesis is an example of principled 

explanations to language and music from a bottom-up perspective in terms of neural structures 

and operations as implementational principles. This kind of principled explanations is 

necessary if we take comparative approaches, cognitive science, and biological framework 

seriously. Until now, little has been done to investigate language and music in such a principled 

way. Thus, the current thesis made a very important step toward a new research strategy 

investigating the biological foundations of cognitive systems from comparative perspectives. 

 

16.5 Answers to further relevant questions 

16.5.1 Did the thesis solve the problem of explanatory gaps? 

The mechanistic explanation to language and music syntactic processing worked out in 

the current thesis provides a partial solution to the problem of explanatory gaps comprising two 

separate mapping problems: a) How is a mapping from theoretical concepts of music theory 

(and linguistic theory) onto hypothetical constructs of psychology established to get 

psychologically relevant and testable concepts?; b) How can we deal with the explanatory gap 

between mind and brain in comparative biomusicology? Concerning the mapping problem a) 

linguistic and musicological theories deal with computational problems to be solved as well as 

with representations to be processed. By explaining how cognitive processes such as 

maintenance and control operate in transforming temporal sequence to hierarchical structure 

(and vice versa) to link sound and affect or meaning, the relationship between theoretical and 

psychological concepts can be established. Moreover, as those cognitive processes can be 

regarded as neural processes implemented in the brain, the mapping problem b) was also 

tackled. 

For example, the maintenance function implemented in the pre-frontal cortex is 

required to process the relationship between non-adjacent elements and is thus necessary to 

implement hierarchical processing of language and music. The control function implemented 

in the CBGT circuits is essential to select the currently most salient representation among 

different alternatives. This is of particular importance for resolving tension created by 

conflicting representations in music and interpreting sentential meaning (e.g., who did what to 



PART IV      166 

whom) in language. Moreover, the cortico-striatal synapses are modifiable and the modulation 

function implemented by dopaminergic weighting from the substantia nigra pars compacta 

contributes to reinforcement learning. Together with the prefrontal learning mechanism, the 

modulation function could play a role in building representations by learning, which is still a 

matter of future investigations. 

 

16.5.2 How does the elementary parts list of the current thesis look like in the end? 

In the Part I, I started with a preliminary list of the elementary parts which was 

elaborated in the course of the current thesis by focusing on syntax and syntactic processing of 

language and music. Table 16.1 is a list of the elementary parts as a result of the current thesis, 

which is again still preliminary and open for changes in future research. 

Table 16.1 Elementary parts list (final, but open for changes in future research) 

Language Music Principles 

Computational level 

Linking sound and meaning Linking sound and affect 

- Stability condition 

- Salience condition 

Recursion 

Cyclicity 

Mapping between hierarchical structure and temporal sequence 

Algorithmic level 

– Representations – 

Lexical items 

Syntactic structure 

- Constituent structure 

- Syntactic categories 

- Serial order 

Meaning (e.g., thematic role) 

Tonal encoding of pitch 

- Tonal center 

- Tonal hierarchy 

Beat-based encoding of rhythm 

- Beat 

- Group 

- Metrical structure 

- Grouping structure 

Event hierarchy 

Affect 

Autonomous single 

syntactic representation  

          vs. 

Parallel representations 

Headed hierarchical structure and temporal sequence 
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– Cognitive processes  – 

(instead of algorithm – see Section 17.3, p. 178 for discussions) 

Syntactic processing 

- Structure building 

- Agreement checking 

- Thematic-role assignment 

- Structural reanalysis and 

repair 

 

Tonal encoding of pitch 

- Extracting tonal center 

- Establishing structural 

relationship 

- Hierarchical structure 

building 

- Structural reanalysis and 

repair 

Beat-based encoding of rhythm 

- Beat abstraction 

- Beat generation 

- Processing structural 

relationship 

- Processing structural 

ambiguity 

Syntax-first principle 

          vs. 

Winner-take-all principle 

Hierarchical processing and executive function 

→ Maintenance and control 

Implementational level 

– Neural structure – 

Left fronto-temporal network Right fronto-temporal network Neurons 

Neural circuits Left BA 44 

Cortico-basal ganglia-thalamocortical circuits 

– Neural operations – 

(or neural processes) 

Maintenance and control 

- Maintenance 

- (Goal) Representation 

- Integration 

- Selection 

- Modulation 

Delay firing 

Recurrent excitation 

Coincidence detection 

Inhibition 

Dopaminergic weighting 

 

Winner-take-all principle 
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17 Open questions and future directions 

17.1 How valid is it to assess syntax apart from ‘semantics’?65 

The simplest answer is that it is not at all valid to assess syntax apart from ‘semantics’. 

With ‘semantics’, I indicate its broad understanding which is not limited to propositional 

meaning of language (for a broad use of “semantics”, see Seifert et al., 2013). Concerning 

language, from a theoretical perspective, as the central computational problem of syntax is 

mapping between hierarchical structure and temporal sequence to link sound and meaning, 

there is a tight relationship between syntax and semantics. As for the representations, 

hierarchical structure of language encodes meaning. That is, in terms of computational 

problems and representations, the relationship between syntax and semantics is very tight. 

Research on syntactic processing, too, suggests that it is hard to disentangle syntactic and 

semantic processing. For example, it is broadly assumed that the left anterior negativity (LAN) 

stands for syntactic processing, while N400 reflects semantic processing. However, if access 

to lexical information is required during agreement checking, i.e., a sub-process of syntactic 

processing, N400 is triggered by agreement mismatch (for a review, see Molinaro et al., 2011).  

As the issue is less clear for music, I elaborate the discussion on the relationship 

between syntax and ‘semantics’ regarding music below. In doing so, first of all, I stick to the 

idea that one component of musical ‘meaning’ is affect, i.e., patterning of tension and relaxation, 

then extend the discussion to further components. From a theoretical perspective, as the central 

computational problem of syntax is mapping between hierarchical structure and temporal 

sequence to link sound and affect, there is a tight relationship between syntax and ‘semantics’. 

As for the representations, hierarchical structure of music encodes affect. That is, again, in 

terms of computational problems and representations, the relationship between syntax and 

‘semantics’ is very tight. The current thesis showed that both tonal-harmonic and rhythmic 

syntax demonstrate this tight syntax-affect relationship. Concerning tonal-harmonic syntax, 

moving away from and back to the tonal center creates a dynamics of tension and relaxation. 

In rhythmic syntax, tension is caused when metrical and structural accents do not match to 

phenomenal accent (e.g., syncopation) or when there are multiple conflicting structural 

interpretations (e.g., polyrhythm). 

Several empirical studies provided evidence for the intertwined relationship between 

syntax and affect in music processing. For example, tension and relaxation patterns encoded in 

hierarchical structure built on the basis of tonal hierarchy match to listeners’ tension ratings 

                                                 
65 Special thanks to Michael A. Arbib for asking me this question. 
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well (for reviews, see Krumhansl, 2002; Krumhansl & Lerdahl, 2010). Moreover, harmonically 

unexpected chords elicit brain responses relating to tonal-harmonic syntactic processing and 

cause a systematic increase in the electrodermal activity, indicating emotional response 

(Steinbeis, Koelsch, & Sloboda, 2005, 2006). In addition, N5 event-related potential 

component elicited in response to unexpected chords got reduced significantly when the 

simultaneously presented word of a sentence is semantically less expected, indicating that N5 

elicited by tonal-harmonic syntactic errors has to do with some ‘meaning’ related process, i.e., 

affect processing (Steinbeis & Koelsch, 2008). Those studies show that tonal-harmonic 

syntactic processing and affect processing strongly relate to each other. Concerning tension and 

relaxation encoded in rhythm, syncopation is associated with pleasurable engagement with 

music (Keller & Schubert, 2011; Witek, Clarke, Wallentin, Kringelbach, & Vuust, 2014) 

although its relation to tension remains unclear (Keller & Schubert, 2011). To the best of my 

knowledge, there is no empirical study examining affect induced by polyrhythm. 

What are the candidate neural correlates of processing musical affect? An fMRI study 

showed that the left pars orbitalis is sensitive to felt tension indicated by listeners and the right 

amygdala is more active (Lehne et al., 2013). My meta-analysis of tonal-harmonic syntactic 

processing conducted in the current thesis showed the activation in the right pars orbitalis (BA 

47). Similarly, in musicians, polyrhythm processing shows the bilateral pars orbitalis (BA 47), 

the supramarginal gyrus (BA 40), and the right anterior insula activation (Vuust et al., 2006) 

and the left pars orbitalis (BA 47) and the right anterior cingulate (BA 32) (Vuust et al., 2011). 

Thus, one candidate structure playing a role in processing affect caused by music syntactic 

structure is the pars orbitalis (BA 47) as an intersection of the inferior frontal gyrus (IFG) and 

the orbitofrontal cortex (OFC). 

In the context of the discussion about music and emotion, the OFC together with the 

ventromedial prefrontal cortex (VMPFC) was suggested to be involved in high-level, 

evaluative emotional processing including the integration of internal information (e.g., 

information on internal states as provided from other affect66 systems) and external / contextual 

information such as rules and current goals (Koelsch et al., 2015; Salimpoor, Zald, Zatorre, 

Dagher, & McIntosh, 2015). The OFC, similar to the anterior cingulate cortex (ACC), is a part 

of the so-called reward CBGT circuits and projects primarily to the rostral striatum including 

the medial caudate nucleus, the medial and ventral rostral putamen, and the nucleus accumbens 

(NAcc) (Haber, 2011, 2016). The VMPFC, also a part of the reward CBGT circuits, is strongly 

                                                 
66 Here, “affect” is used in a very broad sense and not limited to the patterning of tension and relaxation. 
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connected to the hypothalamus, the amygdala, and the hippocampus as well as projects to the 

shell of the ventral striatum and the lateral wall of the caudate (Haber, 2011, 2016). To what 

extent do the reward CBGT circuits contribute to the discussion on the relationship between 

syntax and affect in music? 

One promising framework is a dopaminergic reward prediction framework (for 

example, see Salimpoor et al., 2015). One experiment combining positron-emission 

tomography (PET) and fMRI showed that not only experience of pleasure (i.e., rewarding 

experience) is associated with dopamine release in the striatum, but also anticipation of 

rewarding experience (Salimpoor, Benovoy, Larcher, Dagher, & Zatorre, 2011). Importantly, 

this study also showed that experience and anticipation of reward relate to the effect of 

dopamine in a different part of the striatum: the experience of reward was linked up with 

activations of the NAcc, while the anticipation of reward was associated with activations of the 

caudate. This is striking as there are different dopaminergic-striatal pathways: to put it very 

simplified, the ventral striatum receives dopaminergic inputs largely from the ventral tegmental 

area together with the dorsal cell groups of the substantia nigra pars compacta (SNc), while the 

caudate and putamen rather receive the dopaminergic inputs from the other parts of the SNc 

(for more details, see Haber, 2011, 2014, 2016).  

Future research on the relationship between syntax and affect could profit from such a 

dopaminergic reward prediction framework by explicitly linking psychological concepts such 

as anticipation, expectation, and prediction to tonal-harmonic syntactic processing and 

rhythmic syntactic processing and then identifying cognitive and neural processes. It was 

suggested repeatedly that the types of prediction (e.g., what and when), its modes (e.g., top-

down and bottom-up), its levels (e.g., low-level sensory-based prediction and high-level 

knowledge-based prediction), and its time-scales (e.g., local structure and large-scale structure) 

should be differentiated (for discussions, see also Koelsch, Vuust, & Friston, 2019; Patel & 

Morgan, 2017; Rohrmeier & Koelsch, 2012; Seifert et al., 2013; Tillmann, 2012). Do those 

conceptual differences have consequences for mechanistic explanations and (if yes) how? 

Research investigating those questions could potentially extend mechanistic explanations for 

the relationship between language and music beyond syntactic processing. 

 So far, I discussed ‘meaning’ of music in terms of affect, i.e., patterns of tension and 

relaxation, encoded on the basis of musical syntax. Importantly, as such, patterns of tension 

and relaxation do not encode specific emotions, but provide a multivalent quality which can be 

evaluated in terms of different emotions (Krumhansl & Lerdahl, 2010). The affect encoded in 

hierarchical structure of music does not refer to an external referent. It is based on internal 



PART IV      171 

reference of musical elements to each other and can thus be called intramusical meaning 

(Koelsch, 2011b; Koelsch & Moya, 2014). Intramusical meaning is not compositional in the 

way language meaning is. Rather it is constructive in the sense that global level affect builds 

on local level affects. Intramusical meaning also does not convey unambiguous information as 

propositional meaning in language does, but exactly this ambiguity is what makes music to a 

unique mode of communication (Cross, 2011).  

Affect as intramusical meaning is, of course, not the only aspect of musical ‘semantics’. 

For example, Cross (2012) criticized Western culture centered research investigating music as 

“complex and time-ordered sequences of sonic events varying in pitch, loudness, and timbre 

that are capable of eliciting emotion” (p. 1). Instead, he emphasized the importance of the socio-

intentional, pragmatic, or communicative dimension of musical meaning (Cross, 2011, 2012, 

2014). Seifert and colleagues (2013) also emphasize the importance of social cognitive 

neuroscience research investigating musical meaning as grounded in interactions. How does 

syntax relate to this kind of ‘meaning’? One promising starting point is affective and social (or 

inter-individual) entrainment (Clayton, 2012; Clayton, Sager, & Will, 2004; Knoblich & 

Sebanz, 2008; Phillips-Silver, Aktipis, & Bryant, 2010; Phillips-Silver & Keller, 2012; Sebanz, 

Bekkering, & Knoblich, 2006; Trost et al., 2017).  

Musical syntax is often neglected in discussions concerning entrainment. However, as 

already pointed out, rhythmic syntax accounts for abstraction of the primary beats, which then 

become the shared beats for musical interaction. Moreover, African drum ensemble 

performance is a good example of how social interaction encodes affect on the basis of 

rhythmic syntax. All performers play different rhythmic patterns by referring to 12 beats as a 

cycle. Thus, the inter-individual entrainment may take place at this level. The existence of 

multiple conflicting hierarchical structures underlying each rhythmic pattern leads to 

polyrhythmic tension, but there are moments of relaxation identified as down-beats where most 

of instruments play together. This kind of co-construction of tension-relaxation patterns can be 

regarded as musical joint action. 

Another related question is which formalism might be appropriate to investigate the 

relationship between language and music without neglecting ‘semantics’. The approach 

developed in the current thesis takes syntax as a mediator for linking sound and ‘meaning’ in 

language and music. An alternative approach is a schema-based approach regarding language 

and music as ways of interacting with, perceiving, representing, and communicating about the 

internal and external worlds (e.g., emotions and environments) (Seifert et al., 2013). Seifert 

and colleagues (2013) introduced anticipatory, perceptual, motor and social schemas and seem 
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to understand “schema” as a dynamic and adaptive unit roughly corresponding to a domain of 

interaction such as an object or event for perception and a way to act on an object for action. 

They also suggested that assemblages of such schemas enable flexible anticipation, perception, 

action, and social interaction.  

However, at least in this article, Seifert and colleagues (2013) don’t make explicit how 

those assemblages are ‘tuned’ and implemented in language and music. In addition, their 

approach is semantics-centered and its relation to syntax is not clear. Seifert and colleagues 

(2013, p. 208) say “we are prepared to interact with [the environment] in some reasonably 

structured fashion”. Is this “some reasonably structured fashion” their link to syntax? Or do 

they intend to integrate syntax, semantics, and pragmatics in Morris’ semiotics framework 

dealing with signification and significance? Seifert (2011) pointed out that the signification 

process is “rooted in actions and motor behavior of organisms, i.e., for humans in social 

interaction and gestures” (p. 123). Tension-relaxation patterns encoded by musical syntax are 

‘embodied’ in the posture and gesture of conductors or musicians, and dance movement. 

Therefore, Jackendoff (1987) hypothesized that “musical structures are placed most directly in 

correspondence with the level of body representation rather than with conceptual structure” 

(239). A schema-based approach could profit from research on musical gesture. 

A further related framework is construction grammar. In general, constructions are 

form-meaning pairs, i.e. pairing of a particular syntactic pattern with a particular semantic 

pattern, and are suggested as integrating syntactic, semantic, and sometimes also phonological 

information (Arbib & Lee, 2008). Lexical items are an example of constructions. Although 

construction grammar frameworks seem to contribute to working toward a computational 

neurolinguistics (for discussions, see Arbib, 2016b), it is still a matter of debates how such 

construction grammar frameworks can add to research on musical syntax and semantics. What 

are form-meaning pairs in music? This question strongly relates to the nature of musical lexicon 

and musical memory. Snyder (2016) proposed that structural regularities in music such as tonal 

hierarchy and meter as well as established musical forms can be stored in musical long-term 

memory. He also points out the possibility that affect could influence how and what we 

remember. This could be one possibility to investigate constructions in music. For example, 

cadence is an example of form-affect pairs, e.g., tonic-subdominant-dominant-tonic (that is, 

stable-unstable-less unstable-stable) and tension-relaxation-relaxation (Lerdahl, 2013). 
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17.2 What might be constituents for a between-species comparative approach to 

language and music? 

There are two central questions relating to between-species comparative approach to 

language and music. 1) How can animal models contribute to mechanistic explanations of 

language and music?67 2) What makes the human brain differ from that of other animals in 

being language- or music-ready, i.e. ‘equipping’ for language and music, and how it got that 

way? Those two questions are closely related, but should be differentiated because the first 

question deals with the proximate question and the second with the ultimate question. As 

suggested by De Waal and Ferrari (2010), “[e]very species, including our own, comes with an 

enormous set of evolutionarily ancient components of cognition that we need to better 

understand before we can reasonably focus on what makes the cognition of each species special” 

(p. 202). Thus, animal models could at least inform research on language and music about what 

those ancient mechanisms are and how they work. They further ask whether “[…] cognitive 

specializations [are] due to new capacities or rather to new combinations of old ones” (De Waal 

& Ferrari, 2010, p. 202). That is, the second, ultimate question can be approached by 

investigating whether and to what extent language and music can be regarded as new 

combinations of old mechanisms. Below, I elaborate the discussions concerning question 1) 

and 2). 

Marler (1998, 2000) introduced the distinction between phonological syntax / 

phonocoding and lexical syntax / lexicoding as a fruitful difference for investigating the 

relationship between animal signaling, speech, and music. Marler (2000, p. 36) defined 

“phonological syntax” as “recombinations of sound components (e.g., phonemes) in different 

sequences (e.g., words), where the components themselves are not meaningful”. This differs 

from lexical syntax, defined as “recombinations of component sequences (e.g. words in the 

lexicon) into different strings (sentences)” (p. 36) which can be regarded as a narrow-sense 

syntax. Learned birdsongs, for example, “employ phonocoding to create individual song 

repertoires numbered in the hundreds” (p. 37). This was an important step as animal signaling, 

speech, and music were made comparable in terms of phonological syntax / phonocoding. This 

approach was applied by many scholars to investigate the evolution of speech, language, and 

music (for reviews, see, for example, Berwick, Beckers, Okanoya, & Bolhuis, 2012; Berwick, 

Okanoya, Beckers, & Bolhuis, 2011; Fitch, 2010a; Rohrmeier et al., 2015; Rothenberg, Roeske, 

Voss, Naguib, & Tchernichovski, 2014; ten Cate, 2017; ten Cate & Okanoya, 2012). 

                                                 
67 Special thanks to Erich Jarvis for convincing me to investigate this type of questions. 
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This comparative research program led to two different research strategies, which I call 

“linguistics and musicology of animal signaling” and “evolutionary neuroscience of music and 

language”. The former deals with structure of calls and songs, and is well established in bird 

song research. Especially, complexity of birdsongs, language, and music have been compared 

in terms of the Chomsky hierarchy. The questions investigated so far center on “Is animal 

signaling as complex as language?” which is examined by analyzing signals on the basis of the 

formal language theory as well as “Are non-human animals able to learn a context-free 

grammar?” which is tested by using the artificial grammar learning (AGL) paradigm (for 

reviews, see ten Cate, 2017; Wilson, Marslen-Wilson, & Petkov, 2017). Those questions are 

contrastive in nature and researchers often come up with the conclusion that birdsongs are not 

complex enough to be compared with human language. In addition, concerning the AGL 

experiments, it is not at all clear what cognitive processes work together in what way in 

different species to solve the task (for discussions, see also ten Cate, 2017). However, this does 

not mean that animal models cannot add to research on neurocognitive mechanisms of language 

and music as well as their evolution. This also does not mean that only species with ‘similar’ 

phenotypes, e.g., song, speech, and music, can be comparatively studied.  

The second strategy, i.e., evolutionary neuroscience, is a bottom-up strategy for 

comparative investigations of neurocognitive mechanisms, which I suggest to adopt in order to 

identify constituents for between-species comparative approach. This strategy investigates how 

a set of neural structures and processes (i.e., implementational principles) brings about species 

specific phenotypes and makes it possible to compare different species in terms of neural 

structures and processes. For example, parallel functions of the basal ganglia and the CBGT 

circuits for vocal learning in songbirds and humans have been pointed out repeatedly (Fitch & 

Jarvis, 2013; Jarvis, 2004; Petkov & Jarvis, 2012). In addition, those structures underlie motor 

control in non-human primates and humans (Mendoza & Merchant, 2014). The role of the basal 

ganglia was even suggested for rule-based coding of self-grooming motor sequences in rats 

(Aldridge & Berridge, 2003). The dopamine regulation in the basal ganglia also plays important 

roles for associative learning in rodents, songbirds, non-human primates, and humans (for 

reviews, see Graybiel & Mink, 2009; Matell & Meck, 2004; Simonyan, Horwitz, & Jarvis, 

2012). Thus, in terms of motor control and learning, independently of vocal or non-vocal 

domains, the basal ganglia and the CBGT circuits can be comparatively investigated in a wide 

range of species (Petkov & Jarvis, 2012) and the comparative research on those structures 

opens up rich opportunities for comparative genomics and neurogenetics (Enard, 2011; Scharff 

& Adam, 2013; Scharff & Petri, 2011; Vernes, 2017).  
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In this way, evolutionary neuroscience can contribute rich animal models to investigate 

neurocognitive mechanisms of language and music as well as empirically testable evolutionary 

hypotheses. On the basis of those animal models, the mechanistic explanations of language and 

music proposed in the current thesis can be extended. For example, studies investigating 

genetically modified mice carrying a humanized Foxp2 gene showed an increase in total 

dendrite length of the MSNs and the effect of a humanized Foxp2 on total dendrite length was 

unique in the CBGT circuits (for reviews, see Enard, 2011; Scharff & Petri, 2011). In addition, 

mice with a humanized Foxp2 showed significantly more rapid switching of their behavioral 

strategy (Schreiweis et al., 2014). It is possible that the increase in total dendrite length of the 

MSNs led to an enhancement of the integration function and enabled effective sensory-motor 

integration to flexibly select between alternative representations in humans. Moreover, 

between-species difference in and effect of a humanized Foxp2 on dopaminergic modulation 

in the basal ganglia was pointed out repeatedly (Enard, 2011; Scharff & Petri, 2011; Simonyan 

et al., 2012). 

As discussed in the current thesis, flexible switching between alternative 

representations yielded by integration, selection, and modulation function in the CBGT circuits 

is crucial for syntactic processing and rhythmic syntactic processing. Given the rich between-

species comparability and some species specificity at the same time, the CBGT circuits and 

motor control as well as learning are optimal constituents for a between-species comparative 

approach. In humans, their functions might have extended from motor to cognitive functions. 

In addition, as the CBGT circuits play important roles in learning, they are also optimal means 

to investigate ontogeny. Again, mice with a humanized Foxp2 showed increased synaptic 

plasticity in the cortico-basal ganglia circuits, as reviewed by Enard (2011) as well as Scharff 

and Petri (2011), indicating possibly more flexible learning mechanism in humans.  

Moreover, neurogenetics also makes a better understanding of developmental speech 

and language disorders possible (Fisher, 2017). One prominent example is the research on the 

KE family members carrying a FOXP2 mutation causing speech and language impairment as 

well as motor-related impairments. In addition, the members with speech and language 

impairments were deficient in perception and production of rhythm (but not pitch) (Alcock, 

Passingham, Watkins, & Vargha-Khadem, 2000), which is striking as the meta-analysis of the 

current thesis showed that the CBGT circuits’ role in rhythmic syntactic processing, but not in 

tonal-harmonic syntactic processing. Thus, research on the CBGT circuits and the related genes 

might also reveal how innate learning mechanisms give rise to different cognitive systems 

language and music by interacting with the environment. 
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The evolutionary neuroscience strategy together with the mechanistic explanations of 

language and music yielded by the current thesis fulfill the criteria to be a part of the cognitive 

biology framework integrating cognition, neural mechanisms, and comparative biology (Fitch, 

2014). Within this framework, Fitch (2014) argued against the nature / nurture dichotomy and 

the associanist 68  / cognitivist opposition. He also suggested individual cells as the basic 

computational unit, brains as predictive systems, and the ability to infer hierarchical structure 

as being critical for human cognitive systems. I agree that midbrain dopaminergic reward 

prediction systems are promising targets of research to bridge the gap between cognition and 

biology. I am also sympathetic to the idea that individual cells should be regarded as the basic 

computational unit. I highly agree that the nature / nurture dichotomy and associanist / 

cognitivist opposition can and should be avoided.  

However, I emphasize that neural processes such as integration, selection, and 

modulation are more central to linking cognition and biology than tree-shaped cell structure as 

such although I definitely do not deny the importance of cell structures. In addition, the 

emphasis should be not only on what the single cell does, but also on how the cell orchestrates 

with other structures in larger networks. For example, just identifying that the MSNs’ dendrite 

length is enhanced in humans does not say anything about cognition. Without identifying which 

neural process is implemented by the MSNs and what effect the particular structure causes on 

this neural process, it is not possible to make a link to cognition from a biological perspective. 

In addition, the formal language theory is one useful approach at the computational level, but 

the mapping between the computational and implementational level is not one to one. This does 

not mean that the mapping between the computational and implementational level is impossible. 

Rather, I suggest, instead of claiming the IFG-as-stack model, it is more fruitful to investigate 

which neural structures and processes are required to implement a stack-like storage and 

retrieval mechanism in the IFG. The delay neurons and recurrent excitation, for example, could 

contribute to the maintenance part. 

To promote such an evolutionary neuroscience endeavor, comparative atlases 

integrating neuroanatomy, neurogenetics, and cognitive functions similar to the Zebra Finch 

Expression Brain Atlas (ZEBrA) (Oregon Health & Science University, Portland, OR 97239; 

http://www.zebrafinchatlas.org) and Neurosynth (http://www.neurosynth.org/genes/) are 

                                                 
68 Fitch (2014) seems to use “associanist” to refer to research investigating associative learning, i.e., learning 

stimulus-response associations, by classical conditioning paradigm. 

http://www.zebrafinchatlas.org/
http://www.neurosynth.org/genes/
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useful. Platforms such as the Allen Brain Map (http://portal.brain-map.org/) contributed to 

develop this line of research bridging between cognition and biology. 

Last, but not least, the evolutionary neuroscience strategy together with the mechanistic 

explanations of language and music can also limit the possible hypothesis space for the 

evolution of language and music. For example, the above discussion about the CBGT circuits 

can add to the research on the evolution of beat-based encoding of rhythm69 . Patel (2006) 

discussed the ability of beat perception and synchronization (BPS) in terms of innateness, 

domain-specificity, and human-specificity. To investigate the nature of this distinctive 

component of music cognition and its relation to language, he introduced “vocal learning and 

rhythmic synchronization hypothesis” which claims that “having the neural circuitry for 

complex vocal learning is a necessary prerequisite for the ability to synchronize with an 

auditory beat” (Patel, 2006, p. 102). In particular, it was suggested that basal ganglia were 

modified to be more sensitive to auditory-motor coupling because of the need for vocal learning 

(Patel, 2006, 2008). 

Patel and Iversen (2014) extended the vocal learning hypothesis by focusing on the 

predictive nature of beat induction and introduced the “action simulation for auditory 

prediction” (ASAP) hypothesis which claims that “simulation of periodic movement in motor 

planning regions provides a neural signal that helps the auditory system predict the timing of 

upcoming beats” (p. 1). Moreover, they point out the central role of dorsal auditory pathway 

connections (i.e., connections through the superior longitudinal fasciculus (SLF), in particular 

the branch 2 (SLF-II) and the temporo-parietal part of SLF (SLF-tp)) for auditory-motor 

coupling to predict regular temporal pattern in auditory rhythm (Patel & Iversen, 2014). They 

also suggest that these connections (especially the SLF-tp connections) are more articulated in 

humans than in non-human primates due to the emergence of vocal learning in our lineage 

based on the evolutionary neuroscience research conducted by Rilling and colleagues (2008). 

Merchant and Honing (2014) also emphasize the importance of auditory-motor 

coupling for rhythmic entrainment within their Gradual Audiomotor Evolution (GAE) 

Hypothesis. Their core assumption is that “the human auditory system has a privileged access 

to the temporal and sequential mechanisms working inside mCBGT [(motor CBGT); RA] 

circuit in order to determine the exquisite rhythmic abilities of the Homo sapiens” (Merchant 

& Honing, 2014, pp. 4–5). They mainly mention that two candidate evolutionary changes in 

                                                 
69 Here, I prefer to use “beat-based encoding of rhythm” as researchers do not explicitly refer to the computational 

problem of rhythmic syntax and the rhythmic syntactic processing in terms of its sub-processes which I introduced 

in the current thesis. 

http://portal.brain-map.org/
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the brain enabled the privileged access of the human auditory system to the motor CBGT 

circuits: 1) the audio-premotor circuits via extension of the dorsal stream projections 

connecting the superior temporal auditory areas and the frontal lobe, and 2) audio-basal ganglia 

circuits, i.e. the projections of the superior temporal areas to the basal ganglia (Merchant & 

Honing, 2014). 

The results of the meta-analysis conducted in the current thesis strongly support the 

importance of the basal ganglia and the motor CBGT circuit for the evolution of the beat-based 

encoding of rhythm, but not the fronto-temporal network via the SLF. Thus, the changes that 

happened in the CBGT circuits and their causes seem to be more relevant for the discussion of 

the evolution of musical rhythm. Concerning the privileged assess of the human auditory 

system to the motor CBGT circuit, the role of the left anterior superior temporal lobe, which 

was also consistently activated during the beat-based encoding of rhythm is of interest. In 

addition, the cerebellum should be definitely integrated to the discussion on the evolution of 

musical rhythm as the culmen activation was also demonstrated in the current meta-analysis. 

 

17.3 How does a possible way toward computational neurocognitive modeling in 

comparative biomusicology research look like? 

The current thesis examined the neurocognitive mechanisms of music syntactic 

processing mainly at the implementational level. Concerning the algorithmic level, I worked 

out the representations and processes of language and music, but did not suggest any concrete 

algorithm. However, the mechanistic explanations introduced in the current thesis can 

contribute to develop the algorithms for the computational neurocognitive modeling. 

Particularly, I suggest that the model developed in the current thesis is a conceptual model, i.e., 

a ‘computationally possible’ model which can be extended to an explicit computational model, 

i.e., an algorithm written in programming codes to run simulations, of “how a particular brain 

system operates at […] the level of dynamic interactions in biologically realistic brain regions 

and neural networks” (Arbib, 2016a, p. 5). Below, I briefly illustrate how such an extension 

can be made on the basis of the pre-existing explicit computational models and the conceptual 

model developed in the current thesis. 

An example of a computational neurocognitive model potentially fruitful for 

comparative research on language and music is the ones suggested by Dominey and colleagues 

(e.g., Dominey, 2005; Dominey & Inui, 2009; Hinaut & Dominey, 2013). They integrated 

concepts from construction grammar, i.e., theoretical linguistic approach, and results from 

behavioral, neuroimaging, and neuropsychological experiments in quantitative neurocognitive 
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models. Those models carry computations, i.e. transforming strings to meaning representations, 

on the basis of functional hypotheses how specific cognitive processes required for a particular 

grammatical construction processing, i.e., thematic role assignment, are implemented in the 

CBGT circuits. The simulation of neuroimaging and neuropsychological studies conducted on 

the basis of those models showed that the simulation results are comparable to those of the real 

experimental studies (Dominey, 2005; Dominey & Inui, 2009; Hinaut & Dominey, 2013; 

Szalisznyó, Silverstein, Teichmann, Duffau, & Smits, 2017).  

The models developed by Dominey and colleagues can be regarded as computational 

neurocognitive models of learning and manipulating sequences regarding serial, temporal, and 

abstract structures. Thus, it might be possible to extend them to music processing, especially 

rhythmic syntactic processing, too. However, there should be some difference in the 

architecture of language and music models as the thematic role assignment recruits the 

executive loop, while rhythmic syntactic processing rather claims the motor circuits. For 

example, rhythmic syntactic processing requires time representations in the SMA instead of 

different classes of word representations in the PFC. Instead of the thematic roles, the metrical 

structure should be inferred in rhythmic syntactic processing. 

Another model which relies more heavily on neural processes implemented in the 

CBGT circuits is a cognitive control model performing the Wisconsin Card Sorting Task 

(WCST) and simulating human behavioral data (Caso & Cooper, 2001). This task requires 

switching between three behavioral strategies, i.e., sorting cards according to the color, shape, 

or number of the symbols, depending on the current context, i.e., positive or negative feedback. 

In the model, each behavioral strategy has a dynamically changing activation level. According 

to the currently most salient behavioral strategy, the current action gets selected. This 

competition between conflicting behavioral strategies was suggested to be implemented in the 

CBGT circuits, and thus the authors interpreted their model as the CBGT circuits’ model of 

cognitive control. This mode’s algorithm is based on integration, selection, and modulation 

which are neural processes carried out in the CBGT circuits.  

Similar models could be built to investigate flexible switching between alternative 

representations in language and music. In speech motor control research, Guenther and 

colleagues developed computational neurocognitive models called DIVA (Directions Into 

Velocities of Articulators) (Guenther, 2006) and GODIVA (Gradient Order DIVA) (Bohland et 

al., 2010) with an explicit link to neural structures and processes (for a review, see also 

Guenther, 2016). Especially, the integration of both models as done by Civier and colleagues 

(2013) to simulate speech dysfluency in stuttering is of particular interest as it implements the 



PART IV      180 

motor and executive CBGT circuits for selection, initiation, and sequencing of speech 

movements. This model carries out selection of the currently most salient syllable, i.e., syllable 

with the highest activation level, among conflicting alternatives on the basis of inhibitory and 

excitatory control of the CBGT circuits in which cell level processes are also included. This 

model could be detailed enough to implement neural processes hypothesized in the current 

thesis concerning rhythmic syntactic processing and abstract enough to extend to non-linguistic 

domain. 

Although the question of how rhythmic syntactic processing can be realized in an 

algorithm still remains open, the current mechanistic explanation provides rich opportunity for 

the future computational neurocognitive modeling research. Arbib (2016a) emphasized the 

importance of understanding the relationship between models and empirical data in terms of 1) 

empirical data used to constrain the design of the model, 2) those used to test the model’s 

performance, and 3) the simulation results. Those three aspects are integrated in a 

neuroinformatics database called BODB (Brain Operation Database) as Brain Operation 

Principles (BOPs), Summaries of Empirical Data (SEDs), and Summaries of Simulation 

Results (SSRs). One example of the BOPs is the winner take all principles according to which 

the selection function implemented in the CBGT circuits operate. Such an integrated database 

could promote the communication between researchers interested in cognition, biology, and 

computation. 

 

18 Call for comparative cognitive biology 

The current thesis introduced comparative biomusicology as a comparative biological 

information processing framework and examined language and music at different levels of 

investigations. Those levels involved computation, representation and algorithm in terms of 

parsing, mechanisms, neural implementations in terms of structures and operations, and neural 

and behavioral measures as demonstrated in Figure 6.1 of PART I. PART II approached the 

mechanistic explanation by a purely top-down approach from the computational-

representational theory via parsing theory. PART III took both top-down and bottom-up 

strategies and figured out cognitive and neural processes that facilitate language and music 

syntactic processing. The thesis identified a set of principles in terms of syntax and neural 

implementations, and yielded principled explanations regarding language and music as 

different instances of the same principles. At the mechanistic level, in particular, the same 

neurocognitive mechanisms are differently expressed on the motor-to-cognitive gradient to 

solve partially different computational problems of language and music syntactic processing. 
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The mechanistic explanation provided by the current thesis is an example of principled 

explanations to language and music from a bottom-up perspective in terms of neural structures 

and operations as implementational principles. 

Once a linking hypothesis between mind and brain is formulated at the mechanistic 

level in terms of cognitive and neural processes as done in PART III of the thesis by integrating 

top-down and bottom-up approaches, a framework which puts more emphasis on biology, i.e., 

the cognitive biology framework (Fitch, 2014), is ready for action. Especially, the 

implementational principles can be refined and their phylogenic changes can be identified by 

the evolutionary neuroscience strategy. As emphasized in Section 17.2 (p. 173), a cognitive 

biology framework should regard not only single neurons, but also neural circuits as basic 

computational units. It should take neural processes into account to investigate why a particular 

computation is associated with particular neural structures and how that particular computation 

is carried out by particular neural structures. Moreover, even though such a bottom-up strategy 

is helpful, a complementary top-down strategy is necessary to restrict the ‘search space’ in 

order to find mechanistic explanations (Asano & Seifert, 2018).  

Finally, the emphasis on comparative approaches should still remain essential in the 

proposed framework for cognitive biology as I think biological foundations of each cognitive 

system can be best investigated in comparative approaches. Therefore, even though the 

cognitive biology framework includes comparative approaches as a method – as the title of the 

article by Fitch (2014) clearly states – I would like to call the framework “comparative 

cognitive biology” for reference in future research. As the readers might have recognized, 

comparative approaches keep creating new challenges, but for this very reason, I think, 

comparative approaches will promote future research on the biological foundations of cognitive 

systems – the human capacities for music and language. 
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List of abbreviations 

 

This list includes abbreviations used in cognitive neuroscience research, evolutionary 

research, and theoretical research. The theoretical concepts, hypotheses, and theories are 

written in italics. 

 

a-  anterior 

ACC  Anterior cingulate cortex 

[ACC]  Accusative 

ACT  Activation 

ACT-R  Adaptive Control of Thought-Rational 

AF  Arcuate fasciculus 

AGL  Artificial grammar learning 

AgrOP  Object agreement phrase 

AgrSP  Subject agreement phrase 

ALE  Activation likelihood estimation 

ASAP  Action simulation for auditory prediction 

BA  Brodmann area 

BAT  Beat alignment tests 

BG  Basal ganglia 

BODB  Brain Operation Database 

BOP  Brain operation principle 

BPM  Beats per minute 

BPS  Beat perception and synchronization 

CAUD  Caudate 

CBGT  Cortico-basal ganglia-thalamocortical 

cFWE  Cluster-level family-wise error 

cl-  caudolateral 

COG  Cognitive process 

CR  Computational-representational 

d-  dorsal 

d  dominant 

D  Dorsal stream / pathway 

D  Dopamine receptor 
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DA  Dopaminergic 

Det  Determiner 

DIVA  Directions Into Velocities of Articulators 

dl-  dorsolateral 

DLPFC Dorsolateral prefrontal cortex 

DLT  Dependency Locality Theory 

dm-  dorsomedial 

DP  Determiner phrase 

DR  Dominant region 

DTI  Diffusion tensor imaging 

EEG  Electroencephalography 

EFCS  Extreme fiber capsule system 

ELAN  Early left anterior negativity 

ERAN  Early right anterior negativity 

ERP  Event-related potential 

FC  Frontal cortex 

fMRI  Functional magnetic resonance imaging 

FOP  Frontal operculum 

G  Grammar 

GAE  Gradual Audiomotor Evolution 

Glu  Glutamergic 

GMP  Granularity Mismatch Problem 

GODIVA Gradient Order DIVA 

GPe  Globus pallidus external 

GPi  Globus pallidus internal 

GPR  Grouping preference rule 

GSTH  Generative Syntax of Tonal Harmony 

GTTM  A Generative Theory of Tonal Music 

GWFR  Grouping well-formedness rule 

HC  Hippocampal cortex 

HD  Huntington’s disease 

IBI  Inter-beat interval 

IFC  Inferior frontal cortex 

IFG  Inferior frontal gyrus 
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IFOF  Longitudinal inferior-fronto-occipital fasciculus 

IOI  Inter-onset interval 

ITI  Inter-tap interval 

LAN  Left anterior negativity 

LCA  Last common ancestor 

[M]  Masculine 

MC  Motor cortex 

MD  Medialis dorsalis 

MDpc  Medialis dorsalis pars pavocellularis 

MEG  Magnetoencephalography 

MLF  Middle longitudinal fasciculus 

MMN  Mismatch Negativity 

MNI  Montreal Neurological Institute 

MPR  Metrical preference rule 

MSN  Medium spiny neuron 

MTG  Middle temporal gyrus 

MUC  Memory unification control 

MWFR  Metrical well-formedness rule 

N  Noun 

[N]  Neuter 

NAcc  Nucleus accumbens 

NB  Neurobiological 

[NOM] Nominative 

NP  Noun phrase 

OC  Occipital cortex 

OFC  Orbitofrontal cortex 

OIP  Ontological Incommensurability Problem 

p-  posterior 

-p  parallel 

P  Phrase 

PC  Parietal cortex 

PD  Parkinson’s disease 

PET  Positron-emission tomography 

pm-  posteromedial 
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PM  Perceptual model 

PMC  Premotor cortex 

PP  Prepositional phrase 

PPC  Posterior parietal cortex 

PUT  Putamen 

RC  Relative clause 

rd-  rostrodorsal 

rl-  rostrolateral 

ROI  Region of interest 

s  subdominant 

S  Sentence 

S  Striosome 

SC  Somatosensory cortex 

SED  Summaries of Empirical Data 

SLF  Superior longitudinal fasciculus 

SLI  Specific language impairment 

SMA  Supplementary motor area 

SNc  Substantia nigra pars compacta 

SNr  Substantia nigra pars reticulate 

SPM  Statistical parametric mapping 

SR  Subdominant region 

SSIRH  Shared syntactic integration resource hypothesis 

SSR  Summaries of Simulation Results 

STG  Superior temporal gyrus 

STN  Subthalamic nucleus 

STS  Superior temporal sulcus 

t  tonic 

TC  Temporal cortex 

TPS  Tonal pitch space 

TR  Tonic region 

UF  Uncinate fasciculus 

v-  ventral 

V  Verb 

V  Ventral stream / pathway 
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VApc  Ventralis anterior pars parvocellularis 

vl-  ventrolateral 

VLm  Ventralis lateralis pars medialis 

VLo  Ventralis lateralis pars oralis 

VLPFC Ventrolateral prefrontal cortex 

VLSM  Voxel-based lesion-symptom mapping 

VMPFC Ventromedial prefrontal cortex 

VP  Verbal phrase 

VP  Ventral pallidum 

VS  Ventral striatum 

WCST  Wisconsin Card Sorting Task 

WFC  Well-formedness constraints 

ZEBrA  Zebra Finch Expression Brain Atlas 
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Appendix A: Output files of the ALE meta-analyses 

 

Appendix A contains information provided by GingerALE output files after conducting 

the ALE meta-analyses presented in the current thesis. This includes information concerning 

analysis parameter settings and more detailed cluster descriptions. This information is provided 

to ease other researchers to replicate the current meta-analyses. 

 

1 An ALE meta-analysis of tonal-harmonic syntactic processing  

Mask: 

Dimensions    = 77x96x79 

Number of within-brain voxels = 264227 

Mask Size    = Less Conservative (Larger) 

 

Foci: 

Coordinate System  = MNI 

File of foci coordinates = Syntax_melody-harmony_MNI_2018_08_16.txt 

Number of foci  = 193 

Number of experiments = 17 

Total number of subjects = 324 

 

ALE - Random Effects, Turkeltaub Non-Additive (HBM, 2012): 

File of ALE voxels  = Syntax_melody-harmony_MNI_2018_08_16_ALE.nii 

FWHM minimum value = 8.706421297150076 

FWHM median value  = 9.437333897527274 

FWHM maximum value = 10.002568195473065 

Minimum ALE score  = 7.675972E-35 

Maximum ALE score  = 0.02577522 

 

P Values: Eickhoff (HBM, 2009) 

File of P values  = Syntax_melody-harmony_MNI_2018_08_16_P.nii 

Minimum P value  = 1.1187414E-9 

 

Thresholding: 

Threshold Method  = Cluster-level Inference 
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Thresholding Value  = 0.05 

Thresholding Permutations = 1000 

Cluster-Forming Method = Uncorrected P value 

Cluster-Forming Value = 0.001 

Volume > Threshold  = 11296 mm^3 

Chosen min. cluster size = 832 mm^3 

Thresholded ALE image = Syntax_melody-harmony_MNI_2018_08_16_ALE_C05_1k.nii 

 

Cluster Analysis: 

#1: 7528 mm^3 from (28,8,-16) to (58,42,28) centered at (45.2,22.5,1.9) 

Extrema: (Labels are within +/-5mm) 

0.02577522 at (34,24,0) Right Cerebrum.Sub-lobar.Insula.Gray Matter.Brodmann area 13 

0.022346536 at (52,18,8) Right Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray 

Matter.Brodmann area 44 

0.020763263 at (48,16,-2) Right Cerebrum.Sub-lobar.Insula.Gray Matter.Brodmann area 13 

0.018753408 at (44,34,2) Right Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray 

Matter.Brodmann area 13 

0.014828126 at (44,20,16) Right Cerebrum.Frontal Lobe.Middle Frontal Gyrus.Gray 

Matter.Brodmann area 46 

0.013811457 at (38,12,-2) Right Cerebrum.Sub-lobar.Claustrum.Gray Matter.* 

0.013333128 at (50,22,-12) Right Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray 

Matter.Brodmann area 47 

0.011143876 at (48,22,26) Right Cerebrum.Frontal Lobe.Middle Frontal Gyrus.Gray 

Matter.Brodmann area 9 

Labels: (Nearest gray within +/-5mm) 

1792mm Right Cerebrum.Sub-lobar.Insula.Gray Matter.Brodmann area 13 

976mm Right Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.Brodmann area 47 

880mm Right Cerebrum.Sub-lobar.Claustrum.Gray Matter.* 

744mm Right Cerebrum.Frontal Lobe.Precentral Gyrus.Gray Matter.Brodmann area 44 

648mm Right Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.Brodmann area 46 

616mm Right Cerebrum.Frontal Lobe.Middle Frontal Gyrus.Gray Matter.Brodmann area 46 

448mm Right Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.Brodmann area 45 

440mm Right Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.Brodmann area 13 

400mm Right Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.Brodmann area 44 
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184mm Right Cerebrum.Sub-lobar.Insula.Gray Matter.* 

136mm Right Cerebrum.Frontal Lobe.Middle Frontal Gyrus.Gray Matter.Brodmann area 9 

104mm No Gray Matter found 

48mm Right Cerebrum.Sub-lobar.Insula.Gray Matter.Brodmann area 47 

40mm Right Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.* 

40mm Right Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.Brodmann area 9 

24mm Right Cerebrum.Sub-lobar.Inferior Frontal Gyrus.Gray Matter.Brodmann area 45 

8mm Right Cerebrum.Sub-lobar.Insula.Gray Matter.Brodmann area 45 

 

#2: 2696 mm^3 from (-60,2,-16) to (-42,18,6) centered at (-50.4,9.9,-5.6) 

Extrema: (Labels are within +/-5mm) 

0.017942585 at (-52,6,-10) Left Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray 

Matter.Brodmann area 22 

0.016120544 at (-52,10,0) Left Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray 

Matter.Brodmann area 22 

Labels: (Nearest gray within +/-5mm) 

912mm Left Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray Matter.Brodmann area 

22 

840mm Left Cerebrum.Sub-lobar.Insula.Gray Matter.Brodmann area 13 

352mm Left Cerebrum.Frontal Lobe.Precentral Gyrus.Gray Matter.Brodmann area 44 

312mm Left Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray Matter.Brodmann area 

38 

192mm Left Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.Brodmann area 47 

72mm Left Cerebrum.Sub-lobar.Insula.Gray Matter.* 

16mm Left Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.* 

 

#3: 1072 mm^3 from (48,-42,-6) to (64,-30,12) centered at (57.7,-33.7,4.4) 

Extrema: (Labels are within +/-5mm) 

0.018720051 at (60,-34,8) Right Cerebrum.Temporal Lobe.Middle Temporal Gyrus.Gray 

Matter.Brodmann area 22 

0.012114726 at (52,-32,0) Right Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray 

Matter.Brodmann area 22 

0.011361487 at (58,-40,-4) Right Cerebrum.Temporal Lobe.Middle Temporal Gyrus.Gray 

Matter.Brodmann area 22 
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Labels: (Nearest gray within +/-5mm) 

312mm Right Cerebrum.Temporal Lobe.Middle Temporal Gyrus.Gray Matter.Brodmann area 

22 

296mm Right Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray Matter.Brodmann 

area 22 

176mm Right Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray Matter.Brodmann 

area 41 

120mm Right Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray Matter.Brodmann 

area 42 

96mm Right Cerebrum.Temporal Lobe.Middle Temporal Gyrus.Gray Matter.* 

56mm Right Cerebrum.Temporal Lobe.Middle Temporal Gyrus.Gray Matter.Brodmann area 

21 

8mm No Gray Matter found 

8mm Right Cerebrum.Sub-lobar.Insula.Gray Matter.Brodmann area 22 

 

Experiment Table: 

[ 3 4 0 4 0 2 2 3 0 1 2 1 0 1 1 3 2 ] 

[ 0 0 0 2 0 1 2 2 0 1 0 0 0 1 0 1 1 ] 

[ 2 1 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 ] 

 

Contributors to cluster #1 

3 foci from Bianco, 2016: incongruent > congruent  

4 foci from Cheung, 2018: ungrammatical > grammatical    

4 foci from Fedorenko, 2011: intact > scrambled   

2 foci from Fujisawa, 2011: harmony > white noise      

2 foci from Koelsch S, 2002: modulation > in-key   

3 foci from Koelsch S, 2005: Irregular > Regular   

1 foci from Levitin, 2003: normal > scrambled       

2 foci from Musso, 2015: structural deviant > well-formed    

1 foci from Oechslin, 2013: main effect of transregression  

1 foci from Seger, 2013: cadences > baseline     

1 foci from Spada, 2014: altered melody > correct melody   

3 foci from Tillmann, 2003: UC > RC  

2 foci from Tillmann, 2005: less related > related    



APPENDICES 232 

Contributors to cluster #2 

2 foci from Fedorenko, 2011: intact > scrambled   

1 foci from Fujisawa, 2011: harmony > white noise      

2 foci from Koelsch S, 2002: modulation > in-key   

2 foci from Koelsch S, 2005: Irregular > Regular   

1 foci from Levitin, 2003: normal > scrambled       

1 foci from Seger, 2013: cadences > baseline     

1 foci from Tillmann, 2003: UC > RC  

1 foci from Tillmann, 2005: less related > related    

 

Contributors to cluster #3 

2 foci from Bianco, 2016: incongruent > congruent  

1 foci from Cheung, 2018: ungrammatical > grammatical    

2 foci from Fedorenko, 2011: intact > scrambled   

1 foci from Koelsch S, 2002: modulation > in-key   

1 foci from Koelsch S, 2005: Irregular > Regular   

 

2 An ALE meta-analysis of rhythmic syntactic processing 

Mask: 

Dimensions    = 77x96x79 

Number of within-brain voxels = 264227 

Mask Size    = Less Conservative (Larger) 

 

Foci: 

Coordinate System  = MNI 

File of foci coordinates = Meta-analysis_Rhythm_2018-12-30.txt 

Number of foci  = 213 

Number of experiments = 18 

Total number of subjects = 281 

 

ALE - Random Effects, Turkeltaub Non-Additive (HBM, 2012): 

File of ALE voxels  = Meta-analysis_Rhythm_2018-12-30_ALE.nii 

FWHM minimum value = 8.881953893794925 

FWHM median value  = 9.755397007122182 
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FWHM maximum value = 10.362276299774612 

Minimum ALE score  = 2.5330834E-33 

Maximum ALE score  = 0.02207786 

 

P Values: Eickhoff (HBM, 2009) 

File of P values  = Meta-analysis_Rhythm_2018-12-30_P.nii 

Minimum P value  = 4.1158213E-8 

 

Thresholding: 

Threshold Method  = Cluster-level Inference 

Thresholding Value  = 0.05 

Thresholding Permutations = 1000 

Cluster-Forming Method = Uncorrected P value 

Cluster-Forming Value = 0.001 

Volume > Threshold  = 9624 mm^3 

Chosen min. cluster size = 696 mm^3 

Thresholded ALE image = Meta-analysis_Rhythm_2018-12-30_ALE_C05_1k.nii 

 

Cluster Analysis: 

#1: 4144 mm^3 from (-10,-8,48) to (10,20,72) centered at (.4,3,59.1) 

Extrema: (Labels are within +/-5mm) 

0.019667547 at (-2,-4,58) Left Cerebrum.Frontal Lobe.Medial Frontal Gyrus.Gray 

Matter.Brodmann area 6 

0.015092112 at (2,16,54) Left Cerebrum.Frontal Lobe.Superior Frontal Gyrus.Gray 

Matter.Brodmann area 6 

0.012789007 at (2,-4,70) Left Cerebrum.Frontal Lobe.Medial Frontal Gyrus.Gray 

Matter.Brodmann area 6 

Labels: (Nearest gray within +/-5mm) 

2200mm Left Cerebrum.Frontal Lobe.Medial Frontal Gyrus.Gray Matter.Brodmann area 6 

864mm Right Cerebrum.Frontal Lobe.Medial Frontal Gyrus.Gray Matter.Brodmann area 6 

640mm Left Cerebrum.Frontal Lobe.Superior Frontal Gyrus.Gray Matter.Brodmann area 6 

424mm Right Cerebrum.Frontal Lobe.Superior Frontal Gyrus.Gray Matter.Brodmann area 6 

16mm Left Cerebrum.Frontal Lobe.Medial Frontal Gyrus.Gray Matter.Brodmann area 32 
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#2: 2216 mm^3 from (-38,-72,-42) to (-24,-60,-18) centered at (-30.9,-65.3,-28.8) 

Extrema: (Labels are within +/-5mm) 

0.02207786 at (-30,-64,-26) Left Cerebellum.Anterior Lobe.Culmen.Gray Matter.* 

Labels: (Nearest gray within +/-5mm) 

648mm Left Cerebellum.Anterior Lobe.Culmen.Gray Matter.* 

616mm Left Cerebellum.Posterior Lobe.Cerebellar Tonsil.Gray Matter.* 

312mm Left Cerebellum.Posterior Lobe.Declive.Gray Matter.* 

232mm Left Cerebellum.Posterior Lobe.Pyramis.Gray Matter.* 

144mm Left Cerebellum.Posterior Lobe.Tuber.Gray Matter.* 

144mm Left Cerebellum.Posterior Lobe.Uvula.Gray Matter.* 

104mm Left Cerebellum.Anterior Lobe.*.Gray Matter.* 

16mm Left Cerebellum.Posterior Lobe.Inferior Semi-Lunar Lobule.Gray Matter.* 

 

#3: 1896 mm^3 from (-58,-12,-10) to (-46,14,6) centered at (-52.7,3.5,-1) 

Extrema: (Labels are within +/-5mm) 

0.017584482 at (-54,8,0) Left Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray 

Matter.Brodmann area 22 

0.015968941 at (-52,-8,-2) Left Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray 

Matter.Brodmann area 22 

Labels: (Nearest gray within +/-5mm) 

1176mm Left Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray Matter.Brodmann area 

22 

384mm Left Cerebrum.Frontal Lobe.Precentral Gyrus.Gray Matter.Brodmann area 44 

168mm Left Cerebrum.Sub-lobar.Insula.Gray Matter.Brodmann area 13 

112mm Left Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray Matter.* 

56mm Left Cerebrum.Sub-lobar.Insula.Gray Matter.* 

 

#4: 1368 mm^3 from (14,4,-2) to (28,14,10) centered at (22.6,9,4) 

Extrema: (Labels are within +/-5mm) 

0.019573327 at (24,10,6) Right Cerebrum.Sub-lobar.Lentiform Nucleus.Gray Matter.Putamen 

Labels: (Nearest gray within +/-5mm) 

1152mm Right Cerebrum.Sub-lobar.Lentiform Nucleus.Gray Matter.Putamen 

184mm Right Cerebrum.Sub-lobar.Caudate.Gray Matter.Caudate Body 

32mm Right Cerebrum.Sub-lobar.Lentiform Nucleus.Gray Matter.Lateral Globus Pallidus 
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Experiment Table: 

[ 0 5 1 0 0 0 0 2 1 1 1 1 1 1 1 0 1 2 ] 

[ 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 ] 

[ 0 1 1 2 0 2 0 0 0 1 0 2 0 0 0 0 0 0 ] 

[ 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 ] 

 

Contributors to cluster #1 

5 foci from Thaut, 2008: Polyrhythmic tapping > listening  

1 foci from Kung, 2013: beat finding > listen isochronous  

2 foci from Chen, 2008b: Covariation with complexity  

1 foci from Chen, 2008a: Anticipatory listening > Silence (Group 1)  

1 foci from Chen, 2008a: Anticipatory listening > Silence (Group 2)  

1 foci from Oullier, 2005: ImSyncopation > ImSynchronization   

1 foci from Mayville, 2002: Syncopation  > Synchronization     

1 foci from Jantzen, 2007: Syncopation > Synchronization   

1 foci from Jantzen, 2005: Syncopation > Synchronization   

1 foci from Jantzen, 2002: Syncopation  > rest (pre-practice)   

1 foci from Chapin, 2010: Auditory attend 2 > rest   

2 foci from Bengtsson, 2009: Rhythmic > Random   

 

Contributors to cluster #2 

1 foci from Konoike, 2012: Rhythm Encoding auditory > Number Encoding auditory  

1 foci from Chen, 2008b: Covariation with complexity  

1 foci from Chen, 2008a: Anticipatory listening > Silence (Group 1)  

1 foci from Chen, 2008a: Anticipatory listening > Silence (Group 2)  

1 foci from Oullier, 2005: ImSyncopation > ImSynchronization   

1 foci from Mayville, 2002: Syncopation  > Synchronization     

1 foci from Jantzen, 2007: Syncopation > Synchronization   

1 foci from Jantzen, 2005: Syncopation > Synchronization   

 

Contributors to cluster #3 

1 foci from Thaut, 2008: Polyrhythmic tapping > listening  

1 foci from Kung, 2013: beat finding > listen isochronous  

2 foci from Konoike, 2012: Rhythm Encoding auditory > Number Encoding auditory  
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2 foci from Grahn, 2007: Metrically simple > Metrically complex & non-metric  

1 foci from Chen, 2008a: Anticipatory listening > Silence (Group 2)  

2 foci from Mayville, 2002: Syncopation  > Synchronization     

Contributors to cluster #4 

1 foci from Kung, 2013: beat finding > listen isochronous  

1 foci from Grahn, 2009: Beat > Nonbeat  

1 foci from Grahn, 2007: Metrically simple > Metrically complex & non-metric  

1 foci from Chen, 2008a: Anticipatory listening > Silence (Group 1)  

1 foci from Mayville, 2002: Syncopation  > Synchronization     

1 foci from Jantzen, 2002: Syncopation  > rest (pre-practice)  
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Appendix B: Illustration of Agbekor dance 

 

In PART II (Section 12.2, pp. 102), the structure of African drum ensemble music was 

described to develop a computational-representational theory of rhythmic syntax which is also 

applicable to non-Western music tradition. This appendix illustrates main aspects of this 

analysis of an Agbekor performance. It focuses on the illustration of dance figures which played 

an important role to analyze metrical and grouping structure in PART II (Section 12.2, pp. 102). 

The video material was recorded by Jason Aryeh. It is available from YouTube 

(https://www.youtube.com/watch?v=7NUjDKOiyas) and was published on September 7th, 

2013 and retrieved on October 28th, 2018. The analysis was carried out with ELAN software 

which is an open-source annotation software (https://tla.mpi.nl/tools/tla-tools/elan/) developed 

and made available by Max Planck Institute for Psycholinguistics, The Language Archive, 

Nijmegen, The Netherlands. The figures are edited by GIMP software which enables picture 

editing and Microsoft PowerPoint. 

 

Figure 2.1 Agbekor Ensemble (Ewe, Ghana). This ensemble consists of five instrumentalists 

and four dancers. There are five instruments: Axatse (top left), Gankogui (top right), and three 

drums. The picture was edited so that the identification of the performers is not possible. 

 

https://www.youtube.com/watch?v=7NUjDKOiyas
https://tla.mpi.nl/tools/tla-tools/elan/
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An Agbekor performance consists of singing, drumming70, and dancing. The timeline 

pattern is played on the Gankogui. The performance which I analyzed has a total length of 

approximately nine minutes (from 00:08.000 to 09:12.000)71 and is made up of two parts, i.e., 

a slow part (00:08.000 - 04:33.360) and a fast part (04:33.360 - 09:12.000), four sections as 

well as different sub-sections: an opening section (00:08.000 - 01:29.000), a main slow section 

(01:29.000 - 04:33.360), a main fast section (04:33.360 - 07:59.420), and a closing section 

(07:59.420 - 09:12.000). The opening section begins with singing and drumming, then the 

dancers enter the ‘stage’ to perform the two main sections. In the closing section, the dancers 

bow down and leave the ‘stage’. The performance ends with singing and drumming. The 

drumming stretches out over the entire performance and the singing accompanies the entire 

performance from time to time. The discussions in the current thesis referred to the first thirty 

seconds of the main slow section (01:29.00 - 01:58.080). The analysis window is shown in 

Figure 2.2.  

 

Figure 2.2 The main slow section in the analysis window 01:29.00 - 01:58.080 as displayed in 

ELAN. 

 

The main slow section consists of three sub-sections, i.e., i.e., Dance B1, Dance B2, 

and Dance C, which are categorized according to the dance figures. The first sub-section 

                                                 
70 Drumming also includes playing the rattle (Axatse) and the bell (Gankogui). 
71 “00:08.000” means 0 minute 8 seconds 000 millisecond. 
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(Dance B1 in Figure 2.2; 01:29.000 - 01:38.640) includes steps and arm movements which 

strongly corresponds to the primary beats. Especially, through the steps from left to right and 

vice versa, the primary beats are clearly identifiable (Figure 2.3 Dance figure B1). The dance 

figure in the second sub-section (B2 in Figure 2.2; 01:38.640 - 01:48.704) does not strongly 

corresponds to the primary beats. Rather, the movements make the 7+5 grouping clear. The 

first large dance movement corresponds to seven beats at the lowest subdivision level and the 

small knee movements correspond to five beats (Figure 2.3 Dance figure B2). The third 

subsection (C in Figure 2.2; 01:48.704 - 01:58.080) again includes dance steps strongly 

corresponding to the primary beats. In this way, from sub-section to sub-section, dance 

movements put emphasis on different aspects of the piece’s rhythmic structure, namely metrical 

and grouping structure. Because the illustration of this appendix is limited, it is recommended 

to watch the video to get closer impression of Agbekor performance. 

 

Figure 2.3 Dance figures of the first and second subsection of the main slow section.  
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