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Abstract 

A major obstacle of many active pharmaceutical compounds is their low ability to cross body 

barriers, especially cell membranes. Cell permeability of a drug is therefore considered as a 

key step for therapeutic efficacy. Over the last decades, different approaches to overcome this 

limitation have been studied intensively. Among these are so-called cell-penetrating peptides 

(CPPs). CPPs are able to autonomously internalize into cells without the need for auxiliary 

proteins. However, not only the cellular uptake is important but also cell selectivity has to be 

addressed. Over the past two decades, cancer research has dramatically evolved, particularly 

with the appearance of targeted molecular therapies and advances in antibody engineering 

that allowed the discovery and validation of innovative molecules, more effective and less 

harmful than conventional chemotherapy. Especially small molecule-drug conjugates, like 

peptide-drug conjugates, became of particular interest since they combine several advantages 

as deep tissue penetration, possibility of cell organelle targeting and relatively easy access by 

chemical synthesis.  

This work focuses on the design and synthesis of an array of tumor-targeting peptide-drug 

conjugates combining known tumor-homing peptides with a well-described CPP and potent 

cytotoxic drugs. The development of these hybrids was followed by a validation of the model 

via in vitro studies where their selectivity towards different cell lines was evaluated. Two 

targeting ligands (GnRH-III and c[DKPf3RGD]) were employed for the conjugation to the CPP 

sC18 and a very straightforward synthesis could be developed in both cases. The conjugates 

maintained a remarkable binding affinity in low nanomolar range towards GnRH and αvβ3 

integrin receptors, respectively, and for further in vitro experiments, the expression of the 

receptors in different cell lines was explored. For the investigation of the final compounds, a 

new in vitro model based on a short contact time with the cells was established in order to 

emphasize the role of the fast CPP-mediated internalization after reversible binding to the 

receptors. While for the GnRH-III-conjugates a selectivity was difficult to detect, the 

c[DKPf3RGD] was identified as very effective targeting moiety for the synthesis of an efficient 

drug delivery system. Different drugs were attached to the CPP and daunorubicin turned out 

to be the most advantageous in terms of simple synthesis and stability. Fluorescence analysis 

demonstrated that the internalization was mainly mediated by the CPP but that the ligand had 

an important role in targeting the surface of the cells overexpressing the receptor. The 

selectivity could also be proved by anti-proliferative assays providing another demonstration 

that with this approach it would be possible to overcome the drawbacks of CPP-mediated drug 

transport leading to higher target selectivity and better bioavailability.  

In the second part of the thesis, cyclic CPPs with peculiar diketopiperazine scaffolds (trans 

DKP3 and cis DKP1) were synthesized starting from the sequence of a truncated variant of 
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sC18. An optimized cyclization strategy could be developed and the secondary structure of 

these peptides was analyzed and compared with the linear counterparts by different 

techniques. The biological activity of these compounds was also evaluated in cell systems 

where the ability to transport cytotoxic drugs inside the cells was explored by using both a 

non-covalent as well as covalent drug coupling approach. Notably, the cycle actually showed 

a higher ability to increase the activity of daunorubicin than the linear CPP, proving that 

cyclization via a diketopiperazine scaffold is a promising strategy to improve CPP-mediated 

drug delivery.  
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Zusammenfassung 

Viele aktive pharmazeutische Verbindungen sind nicht in der Lage Barrieren, insbesondere 

Zellmembranen, ohne Hilfe zu überwinden, um ihren spezifischen Wirkort zu erreichen. Aus 

diesem Grund gilt diese Zellpermeabilität eines Arzneimittels als Schlüsselschritt für die 

therapeutische Wirksamkeit. Um diese Verbindungen zu transportieren, wurden bereits 

verschiedene Strategien etabliert, unter denen sich auch sogenannte zellpenetrierenden 

Peptide (CPP, cell-penetrating peptides) einreihen. CPPs sind in der Lage von einer Vielzahl 

von Zellen aufgenommen zu werden, ohne dabei auf Hilfe von Transportproteinen angewiesen 

zu sein. Aber nicht nur die zelluläre Aufnahme steht im Fokus der Forschung, insbesondere 

die Zellselektivität ist von großem Interesse. In den letzten zwei Jahrzehnten hat sich die 

Krebsforschung stark weiterentwickelt, vor allem durch gezielte molekulare Therapien und 

Fortschritte in der Antikörperentwicklung, die die Entdeckung und Validierung innovativer 

Moleküle ermöglichten, die dadurch sowohl wirksamer als auch weniger schädlich als 

konventionelle Chemotherapien sind. Besonders kleine Molekül-Wirkstoff Konjugate, wie zum 

Beispiel Peptid-Wirkstoff Konjugate, sind vielversprechend, da sie sich durch tiefe 

Gewebepenetration und mögliches Ansteuern verschiedenster Zellkompartimente 

auszeichnen. Desweitern sind diese Konjugate relativ einfach herzustellen und so einfach 

zugänglich. 

Diese Arbeit konzentriert sich auf das Design und die Synthese von Krebs spezifischen Peptid-

Wirkstoff-Konjugaten, bei der ein Peptidfragment, das in der Lage ist ein bestimmte Tumorart 

anzusteuern, mit einem bekannten CPP und einem Zytostatikum kombiniert wird. Nach der 

Herstellung dieser Hybride folgte eine Validierung ihrer Aktivität durch verschiedenste in vitro 

Studien. Zwei spezifische Ziel-Liganden (GnRH-III und c[DKPf3RGD]) wurden für die 

Konjugation an das CPP sC18 verwendet, und in beiden Fällen konnte eine optimierte 

Syntheseroute entwickelt werden. Die Konjugate zeigten eine bemerkenswerte 

Bindungsaffinität im niedrigen nanomolaren Bereich zu GnRH bzw. αvβ3 Integrin-Rezeptoren. 

Für weitere in vitro Experimente wurde außerdem die Expression der Rezeptoren in 

verschiedenen Zelllinien untersucht. Für die Analyse der Verbindungen wurde ein neues in 

vitro Modell etabliert, das auf einer kurzen Kontaktzeit mit den Zellen basiert, um die Rolle der 

schnellen Internalisierung durch das CPP nach der Bindung zu den Rezeptoren zu 

untersuchen. Während für die GnRH-III-Konjugate eine Selektivität schwer nachzuweisen war, 

wurde c[DKPf3RGD] als sehr wirksame Zielgruppe für die Synthese eines effizienten 

Transportsystems identifiziert. Verschiedene Toxine wurden an das CPP gebunden, wobei 

sich Daunorubicin im Hinblick auf die einfache Synthese und Stabilität als das 

vielversprechendste erwies. Aufnahmestudien zeigten, dass die Internalisierung hauptsächlich 

durch das CPP vermittelt wurde, der Ligand jedoch möglicherweise eine wichtige Rolle beim 
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Binden an die Oberfläche der Zellen hatte, die den Rezeptor überexprimieren. Die Selektivität 

konnte auch durch antiproliferative Versuche nachgewiesen werden. Somit liefert der hier 

vorgestellte Ansatz eine mögliche Lösung CPPs mit einer Zellselektivität auszustatten.  

Im zweiten Teil dieser Doktorarbeit wurden verschiedene zyklische CPPs synthetisiert. Dafür 

wurden spezielle Bausteine, basierend auf Diketopiperazinen (trans DKP3 und cis DKP1), 

verwendet. Es konnte eine optimierte Zyklisierungsstrategie entwickelt werden und die 

Sekundärstruktur dieser neuen Peptide wurde durch verschiedene Techniken analysiert und 

mit den linearen Versionen verglichen. Die biologische Aktivität dieser Verbindungen wurde in 

Zellen getestet, dabei stand besonders im Vordergrund, zytotoxische Wirkstoffe in Zellen zu 

schleusen. Die Wirkstoffe wurden dabei sowohl nicht-kovalent als auch kovalent an das Peptid 

gekuppelt. Das zyklische Peptid war in der Lage die Aktivität von Daunorubicin deutlich zu 

verbessern im Vergleich zum linearen Peptid. Dieses Ergebnis unterstreicht, dass die 

Zyklisierung mittels eines Diketopiperazingerüstes zu neuen CPPs mit sehr 

vielversprechenden Aktivitäten führt. 
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1. Introduction 

Over the last year, 18.1 million new cases of cancer have been reported worldwide. In other 

words, one in five men and one in six women is diagnosed with cancer and these numbers 

increase constantly. These data from the Globocan report have been published in the journal 

CA: A Cancer Journal for Clinicians and represent a "photograph" of the diagnoses of cancer 

registered globally. The statistics show an increase in cancer diagnosis, which may be due to 

several factors from the aging of the population to the precarious conditions of social and 

economic development that are recorded in different areas of the planet. This second aspect 

also affects cancer-caused mortality, which in 2018 should be almost about ten million, while 

over 43 million people are expected to live within the five-year prevalence. [1] In fact, research 

has led to increasingly effective therapies with fewer side effects, which in many cases are 

able to reduce mortality. The progresses made in the last century are highlighted in Figure 1. 

The main treatments of tumors are represented by surgical resection, [2] chemotherapy, [3-4] 

radiation therapy [5-6] but also by the more innovative hormone therapies, [7-9] targeted 

therapies, [10-11] immuno-oncology and gene therapy, used individually or in combination. [12-13]  

 

Figure 1. Timeline: milestones in cancer therapy. From traditional to targeted therapies. Adapted from DeVita 

et al. and Chabner et al. [14-15]  
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1.1. Traditional chemotherapy versus targeted chemotherapeutics 

Conventional chemotherapy is still widely applied in cancer treatment. 5-fluorouracil/leucovorin 

and oxaliplatin, for example, are still the gold standard for colorectal cancer, [16] while a regimen 

of cisplatin or carboplatin combined with paclitaxel, gemcitabine or docetaxel is currently used 

for the treatment of non-small cell liver cancer at stage IV. [17] However, the compounds used 

as chemotherapeutic agents localize with low efficiency in solid tumors. This unfavorable 

biodistribution profile, exemplified in Figure 2, combined with a mechanism of non-selective 

action, causes serious side effects and prevents a dose increase at therapeutically active 

regimens. [18]  

 

Figure 2. Unfavorable biodistribution profile of traditional chemotherapeutic drugs. A: Tissue distribution of 

5-Fluorouracil (5-FU) in ascitic hepatoma bearing rats. B: Tissue distribution of 3H-Paclitaxel in Balb/c nude mice 

bearing MDA-MB-435 tumors (melanoma). Adapted from Abe et al. and Cao et al. [19-20]  

Two main approaches have been followed to reach the final goal of widening the therapeutic 

window: the combination of two or more cancer drugs without overlapping mechanism and/or 

toxicity [21] and the introduction of more potent drugs administrated at lower dosage. [22] Both 

strategies could lead to encouraging results in terms of efficacy, although an absolutely positive 

safety profile could not be achieved. Researchers understood that the unique key to completely 

avoid a systemic toxicity was the enhancement of selectivity. Targeted therapies, for instance, 

are interfering in a much more directed way with a molecule or a specific process of cell growth, 

not causing damage to healthy tissues, thus reducing side effects. [23-24] In fact, they selectively 

act on specific cell receptors, hence improving the tolerability of the treatment, to the benefit 

of the patient and his quality of life. [25]  

Targeted therapies represent one of the most important tools of personalized medicine, since 

the treatment is no longer chosen only based on the development of the tumor, but also in 

relation to its molecular characteristics and expression of biomarkers, which can be different 

from patient to patient. [26-30] Many efforts have been made in this field and the results obtained 
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in the last few years are exciting. Even if novel targeted therapies are pioneering and reserved 

for particular types of cancer, they already display an important role in the fight against this 

disease. In fact, many data show that they have prolonged survival and improved the quality 

of life of many patients. [31-33] Over the years a number of directed agents have been used and 

these therapies are able to: 

- manipulate the endocrine system through external administration of precise hormones 

or drugs that inhibit their production (hormone therapy for hormone-dependent 

tumors, e.g. anti-estrogens, [34-36] aromatase inhibitors, [37] GnRH agonists, [38-39] anti-

androgens [40-41]); 

- stimulate the immune system to identify and destroy cancer cells (immuno-oncology); 

[42-43] 

- hinder angiogenesis, [44-45] inhibit tumor-related kinases [46] and other oncoproteins 

(targeted therapy);  

- selectively release toxic substances that act on cancer cells through different ways, e.g 

promoting apoptosis or decreasing their uncontrolled ability to grow and divide 

(targeted delivery). [47-48] 

The last example, in particular, has been proposed as an alternative method to overcome the 

limits of classic chemotherapy, carrying powerful cytotoxic compounds at the tumor site after 

conjugation to ligands that are specific towards tumor-associated targets. [24] The conjugation 

of these pharmacodelivery vehicles with a cytotoxic drug realizes the concept of "magic bullet" 

as it was conceived more than a century ago by Paul Ehrlich (1854-1915), who was awarded 

the Nobel Prize for Medicine in 1908. [49-50] In Figure 3 the peculiar and advantageous 

characteristic of these new compounds is illustrated with a schematic representation of their 

mode of action. The selectivity of these drug-delivery systems is driven by the high binding 

affinity towards particular tumor cell substrates resulting in a moderate occurrence of 

undesirable effects since the healthy cell lines should not be affected. 
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Figure 3. Traditional chemotherapy vs targeted delivery of chemotherapeutics. A: General strategy of 

traditional chemotherapy; B: The “magic bullet” concept. 

Antibody-drug conjugates (ADCs) and small molecule-drug conjugates (SMDCs) represent 

two innovative classes of biopharmaceutical products, designed to selectively bring cytotoxic 

agents to the tumor tissue. They combine the best features of two therapeutic modalities. In 

particular, antibodies and small ligands that display target specificity but limited antitumor 

activity are conjugated to cytotoxic agents, very potent but with poor safety and pharmaceutical 

profiles. The following sections will first focus on three commonly used drugs, which were also 

employed in this work, and will further highlight two novel delivery strategies. 
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1.2. Cytotoxic payloads 

1.2.1. Daunorubicin 

Daunorubicin and doxorubicin are the parent compounds of the anthracycline antibiotics. 

Mostly isolated from natural sources (Streptomyces peucetius), [51] they are extensively used 

for the treatment of cancer alone or in combination and widely investigated as cytotoxic 

payloads in conjugation with tumor homing peptides [52-54] or antibodies. [55-56] In fact, they are 

very effective but also very toxic, as they do not discriminate between malignant and healthy 

cells, leading in particular to cardio-toxicity [57-58] and myelosuppression. From the structural 

point of view, anthracycline antibiotics are characterized by a planar tetracyclic portion, 

glycosidically linked to an aminosugar (daunosamine). The molecular structures of 

daunorubicin and doxorubicin differ only in one of the terminal substituents, as it is shown in 

Figure 4.  

 

Figure 4. Structures of the two anthracycline parent compounds: daunorubicin and doxorubicin. Red box: 

planar tetracyclic portion; blue box: daunosamine; green: hydroxyl group substituent in doxorubicin that is missing 

in daunorubicin. 

Although small, this structural difference has important consequences on the activity spectrum 

of the two cytotoxic antibiotics. Doxorubicin, in fact, has significant clinical applications 

especially in solid tumors, [59-62] while the main indication of daunorubicin is acute leukemia. [63] 

The current tendency is to consider the DNA intercalation as necessary but not sufficient for 

anti-tumor action. [64] In fact, numerous results have indicated topoisomerase II as the main 

anthracycline target. This nuclear enzyme relaxes the supercoiled DNA by the formation of a 

phosphodiester bond between the OH group of its active-site tyrosyl residue and the 

phosphoric group of DNA. This allows the free end of the nucleic acid to rotate, solving the 

supercoiling. At this point the OH group at the free end of the DNA can restore the continuity 

of the helix by attacking the activated phosphate. [65] At present, it is known that anthracyclines, 

after intercalating in the double helix, stabilize a ternary cleavage complex between the DNA, 

tied to the enzyme, and the drug. Therefore the action of the drug leads to irreversible cuts in 

DNA that open the way to the programmed cell death in cancer cells. [66] Two further 

mechanisms were identified as responsible for toxicity, notably the production of free oxygen 

radicals through an enzymatic reduction process [67] and induction of histone eviction from open 

chromatin. [68] 
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1.2.2. Chlorambucil 

Chlorambucil is a chemotherapeutic agent belonging to the class of the so-called alkylating 

drugs, in particular deriving from nitrogen mustards.  

 

Figure 5. Structure of chlorambucil. 

At physiological pH, chlorambucil forms a very reactive cyclic intermediate (aziridinium ion) 

which attacks the nitrogen in position 7 of a guanine, present in the DNA chain, building a 

covalent bond. The same process takes place on the other chain (ClCH2CH2N-) of the 

chlorambucil, which in turn will interact with a new guanine, present in the same or in the other 

DNA helix. Inter or intra helix bridges do not allow anymore DNA to perform its biological 

functions (duplication and transcription). [69-70] The alteration that the chlorambucil induces in 

the DNA prevents the cancer cell from dividing, forcing it to undergo apoptosis. [71] It is mainly 

used for the treatment of chronic lymphocytic leukemia, [72-73] normally in combination with other 

chemotherapeutic agents. As previously described in the case of daunorubicin, chlorambucil 

provokes the common side effects of the non-targeted therapies; hence, its conjugation to 

targeting moieties has been studied and researched intensively. [74-77] 

1.2.3. Cryptophycin 

Cryptophycins are 16-membered macrocycles with bacterial origin composed by four units, [78] 

having potent activity towards cancer cells and MDR (multi-drug resistant) cancer cells (IC50 in 

the pM range), as the human cervical carcinoma cell line KB-V1. [79-80] They are able to 

coordinate to β-tubulin interacting with the vinca domain. In particular, they inhibit tubulin 

polymerization, inflicting a conformational change on tubulin dimers and depolymerize 

microtubules in vitro, reducing microtubule dynamics. [81] This leads to mitotic arrest and 

apoptosis.  
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Figure 6. Structure of cryptophycin-52 and derivatives of cryptophycin-55 glycinate conjugated to a 

targeting peptide and a mAb. Blue: unit A; black: unit B; yellow: unit C; pink: unit D. Adapted from Weiss et al. [82] 

 

Cryptophycin-52 is the lead compound within this class and was tested in clinical Phase II, 

where it unfortunately showed a lack of in vivo efficacy and high toxicity (in particular 

neurotoxicity since neurons are the main tubulin producers for the transport of 

neurotransmitters). Cryptophycin-55 (the chlorohydrin of Cry-52) and its glycinate 

correspondent derivative were described as highly active in vivo in preclinical models, 

displaying a better pharmacokinetic profile. [83-84] Under physiological conditions the 

chlorohydrins are converted to the original epoxides, hence they are considered as prodrugs 

of the epoxides. After esterification with the glycine, improvement in water solubility and 

stability was also reached and this most importantly allowed the conjugation to homing 

peptides, like octreotide, but also antibodies [82, 85] and other ligands, e.g. acetazolamide [86] 

(Figure 6). 

1.3. Antibody-drug conjugates (ADCs) 

An antibody-drug conjugate (ADC) is the unique combination of a monoclonal antibody, a linker 

and a potent cytotoxic agent. It is designed to provide therapeutic potency to the antibody and 

specificity to the anti-cancer agents, which can be directed to the tumor cell in a targeted way 
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to limit systemic exposure. [87] This idea dates back to the early eighties. However, the first 

products did not obtain the desired results due to a series of technological limits, inadequate 

knowledge of the receptor target, use of insufficiently potent drugs and instability of the linker 

in biological fluids. [88] Notable improvements in the conjugation technology associated with a 

greater understanding of the biology of the system led to the discovery of a second generation 

of ADCs. These new therapeutic agents have better stability in biological fluids and allow an 

appropriate release of the toxic agent to the target cell. [89] ADCs include some of the most 

promising molecules in the oncology pipeline of large pharmaceutical companies. The 

peculiarity of ADCs is their long half-life (over a week), no systemic toxicity in circulation and 

activity only upon binding to tumors. All these characteristics lead to a maximum efficiency in 

administering the cytotoxic substance to the tumor cells in a perfectly selective way. [90] To 

date, there are four ADCs approved by the FDA: Adcetris ® for the treatment of refractory 

Hodgkin's lymphoma [91] and anaplastic large cell lymphoma, [92-94] Kadcyla ® for the treatment 

of HER2-positive metastatic breast cancer, [95-96] Mylotarg ® for adulte acute myeloid leukemia 

[97-98] and Besponsa ® for adult acute lymphoblastic leukemia, [99-100] as represented in Figure 

7. Auristatin (MMAE), maytansine (DM1) and N-acetyl-gamma-calicheamicin (CCM) are used 

as cytotoxic agents, respectively. On average, two to four toxins are conjugated to the mAb. 

In addition to the four commercial ADCs, nearly forty are under investigation in many different 

types of cancer. [101] 
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Figure 7. FDA approved ADCs. Drug-to-Antibody ratio is different, dependently from the conjugation strategy. n=4 

(Adcetris ®), n=3.5 (Kadcyla ®), n=2.5 (Besponsa ® and Mylotarg ®).  

Despite their growing success, the clinical advances of ADC products may be restricted by 

some limitations. Among these, heterogeneity is a crucial drawback leading to analytical and 

process challenges [102] and difficulties in administrating these compounds to patients. [103-104] 

The optimal design to obtain homogeneous compounds with the same average and distribution 

of payloads is a key point to achieve product safety and it is being addressed by researchers 

with new methods involving site-specific conjugation like engineering of the antibody 

sequence, [105] site-selective conjugation strategies [106] or modular approaches. [107] A high 

Drug-to-Antibody Ratio (DAR) is also affecting the propensity of the ADCs to aggregate, 

especially after being conjugated to very hydrophobic linker-drugs, so that the introduction of 

hydrophilic molecules could help to solve this major problem. [108] Besides that, increased 

stability against extracellular proteases needs to be reached to avoid dangerous off-site toxicity 
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after administration if the linker is not stable enough to prevent the premature release of the 

drug in the circulation before being introduced in the tumor cell. [109] Last but not least, the slow 

extravasation that characterizes immunoglobulins (IgG) is hindering their activity against solid 

tumors leading to the need of optimizing the format of the targeting moiety like for example by 

the introduction of small immune proteins (SIP) distinguished by a fast clearance, good 

extravasation and very good tumor/blood and tumor/organ ratio. [110] 

1.4. Small-molecule drug conjugates (SMDC) 

SMDC products, in particular peptide-drug conjugates, have been proposed to overcome some 

typical limits of antibodies. [111] In fact, small organic ligands can penetrate into depth of solid 

organs and tumors within a few minutes after administration, conveying the drug to the tumor 

with greater efficiency, and are typically characterized by rapid excretion from circulation. [112] 

In addition, they are easily developed, obtainable with inexpensive production and are easy to 

manipulate. However, they are often less selective than the correspondent antibodies. [47, 113] 

Some of the prerequisites for a peptide to become a receptor-mediated carrier are: 

- overexpression of the receptors on the surface of tumor cells; 

- knowledge of SAR to efficiently synthesize peptide analogues; 

- high affinity for the target; 

- efficient internalization (to provide the introduction of the drug). 

Two examples of receptor targeting moieties are gonadotropin-releasing hormone (GnRH) 

agonists and integrin ligands, whose biological background is introduced in the following 

paragraphs.  

1.4.1. GnRH receptors 

GnRH and its analogs have been widely used in clinical medicine since they were identified 

and synthesized in 1971 by Schally’s group. [114] The native GnRH-I, also called luteinizing 

hormone-releasing hormone (LHRH), is a decapeptide (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-

Pro-Gly-NH2), produced and released in a pulsatile manner by the hypothalamus. After binding 

to specific receptors (GnRH-I R) on the plasma membrane of the gonadotrophs (Figure 8), it 

stimulates them to secrete follicle-stimulating hormone (FSH) and luteinizing hormone (LH) 

with a consequent gonadal response. [115] A second form of GnRH (GnRH II) is ubiquitous and 

maintained in its structure throughout different species. Nevertheless, the GnRH-II receptor 

has not been identified yet in humans, even if there is strong evidence that this receptor exists. 

[116] GnRH receptors are highly expressed on various cancer cells and apart from pituitary cells 

and reproductive organs, they are present in a very limited number in healthy tissues. They 

are for this reason a good target for selective cancer chemotherapy. [117-118]  
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Figure 8. Binding of GnRH to its receptor. [119] IC: intracellular; EC: extracellular 

In order to increase the power and duration of action of the GnRH-I, through modifications of 

the molecular structure of this decapeptide, many analogs have been synthesized, and are 

available for clinical use. The substitution with D-amino acids in position 6 (involved in the 

enzymatic cleavage) or 10 (important for the tridimensional structure) resulted in analogs with 

agonist activity with a greater potency and a longer half-life than the native GnRH-I. These 

produce an initial stimulation of the pituitary cells followed by the down-regulation and inhibition 

of the hypophysis-gonadal axis. GnRH-I analogs are powerful therapeutic agents, proved to 

be very useful in various clinical indications, including the therapy of some hormone-dependent 

tumors, like prostate or breast cancer. In this context, doxorubicin was conjugated by an ester 

bond to a GnRH-I agonist called zoptarelin. [120-121] The final conjugate AEZS-108 was tested 

till Phase III of clinical trials on endometrial cancer but failed to extend survival in the advanced 

disease. [122] 

Taking advantage of these findings, some researchers are paying a special attention on the 

improvement of GnRH-based drug delivery systems, by starting from the sequence of a third 

form of GnRH (GnRH-III) discovered in sea lamprey, able to selectively bind to GnRH receptors 

but with a lower endocrine effect compared to GnRH-I agonists. [123-127] In the group of Prof. 

Mező (ELTE University, Budapest) the native sequence was modified in order to obtain a 

higher stability and allow drug-conjugation and many strategies have been pursued. [128-130] In 

particular Ser4 was substituted with a butyrylated lysine, Lys(Bu), while Lys8, functionalized 

with an aminooxyacetic acid linker, was conjugated to daunorubicin by an oxime linkage, in 

order to prevent the enzymatic cleavage of the ester bond by carboxylesterases (Figure 9). [131] 
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Figure 9. Optimization of the GnRH sequence. Pink: changes in the sequence; Green circle: conjugation point 

for the attachment of the drug. Bu: butyryl. 

The conjugates are very stable in human serum from the chemical and enzymatic point of view 

but in presence of lysosomal homogenate they are degraded with subsequent release of 

different metabolites. H-Lys(Dau=Aoa)-OH was recognized as the smallest drug containing 

metabolite which is still able to bind to DNA in vitro. [132] The stability and selectivity of the 

conjugate have been favored at the expense of the cytotoxicity that is in fact lower than the 

free drug. The introduced peptide was chosen in this work for further studies. 

1.4.2. Integrin receptors and integrin ligands 

Adhesive contacts with neighboring cells and with the extracellular matrix (ECM) control cell 

behavior and development. These interactions are mediated by proteins of the cell surface, 

called cell adhesion receptors, divided in four groups: cadherins, selectins, immunoglobulin 

superfamily and integrins. [133] 

Integrins form the largest and most versatile receptor family, being implied in both cell-ECM 

and cell-cell interactions. They are transmembrane heterodimeric glycoprotein receptors found 

in mammals in 24 combinations, constituted from 18 different α- and β-subunits. [134] The 

subunits are not covalently linked and consist of an ectodomain, a transmembrane region and 

a short unstructured cytoplasmic tail (Figure 10). [135] The N-terminal regions of all α subunits 

contain seven repeating sections, folded in the form of a seven-bladed β-propeller, supported 

by a thigh and two calves. The β-chains of αv integrins present a domain I for the interaction 

with the matrix followed by a hybrid and a PSI (plexin-semaphorin-integrin) domain, four 

cysteine-rich EGF-like repeats and a β-tail. [136] A conserved region called MIDAS (metal ion-

dependent adhesion site) in the β-I domain, is particularly important for the sequence 

recognition, because it binds divalent cations (e.g., Ca2+, Mg2+, Mn2+) that can possibly 

coordinate a carboxylic acid residue of the ligand, e.g., aspartic acid residue of the RGD 

pattern. [137] 



 Introduction 

13 

 

 

 

Figure 10. Integrin structure and activation. A: α and β subunits of an integrin receptor. B: Outside-in and inside-

out signaling pathways. Adapted from Shattil et al. [138] EC: extracellular; IC: intracellular. 

The connection between ECM and cytoskeleton provided by integrins is highly dynamic and 

involves a bidirectional transfer of information: while the cytoskeleton regulates the affinity of 

the integrin extracellular domain, the binding of ECM proteins or cell-surface ligands to 

integrins alter the arrangement of the cytoskeletal system. [139] 

In the pathway of signal transduction from the cell interior to outside (inside-out signaling), the 

integrin ectodomain initially adopts a collapsed configuration stabilized by a salt bridge 

between the cytoplasmic domains of the two subunits. This arrangement is susceptible to 

unfold after the recruitment of certain cytosolic proteins, especially talin and kindlin that bind 

to the β-subunit, stimulating the integrin to assume an activated form. [135, 140] Subsequently, 

interaction sites with the extracellular matrix are revealed allowing the interaction with the 

appropriated ligand. At the same time, the interaction of integrins with their extracellular ligands 

changes the conformation of the integrin generating signals in the inside of the cell (outside-in 

signaling). The formation of integrin clusters stimulated by multimeric ligands causes an 

increased ligand-receptor interaction inducing the formation of focal adhesion complexes and 

causing a transfer of stronger signals. [135] The two processes are reciprocally influencing each 

other: while the integrin activation can promote ligand binding, concurrently interaction with the 

ligand can generate intracellular signals. [138] The activation of these receptors can control the 

change of the cell shape, migration and tissue organization playing a crucial role in many 

physiological but also pathological processes like cancer development because of their role 

on the one hand in tumor cells (development of metastases) and, on the other hand, in 

endothelial cells (neo-angiogenesis). For this reason, the pharmacological targeting of these 

receptors for these indications has been the subject of numerous studies. [141]  

In this work, the integrin αvβ3, will serve as a target in the development of tumor therapeutics, 

therefore this class of integrins will be characterized here in more detail. The αvβ3 integrin is 



 Introduction 

14 

 

overexpressed on tumor cells rather than on healthy tissues, e.g. melanoma, breast cancer 

and glioblastoma cells, which is why it is also used as an indicator of the invasive phase of 

tumors. [141] Ligand oriented design was the starting point for the synthesis of new selective 

compounds: each integrin is able to recognize well-defined ligands at the level of extracellular 

matrix and the integrin αvβ3 recognizes the motive Arg-Gly-Asp (RGD) on fibronectin and some 

other proteins. Pierschbacher and Ruoslathi found the tripeptide sequence RGD in fibronectin 

in 1984. [142] This was identified as the minimal fragment for stimulating cell adhesion and called 

'universal' cell recognition motif, as it is present in about half of the matrix proteins and it is 

recognized by eight members of the 24 membered integrin family. [143] Starting from this natural 

binding sequence, a variety of peptidic and non-peptidic integrin ligands were developed, 

resulting in different receptor affinity, selectivity and bioavailability, partly superior to the natural 

ligand. [144] Conformational restriction is a way to achieve superactivity and selectivity of 

sub-type recognition; in peptides, cyclization and peptidomimetic constraints help to pin-down 

the active conformation. [145] It could be shown for example that flanking amino acids of the 

recognition sequence and their conformation are essential for the integrin-ligand interaction, 

the ligand affinity and selectivity. In the research group of Prof. Kessler, the incorporation of 

D-amino acids [146] and N-methylation [147-148] resulted in the first synthetic, metabolically stable 

αvβ3-selective ligand c[RGDf(N-Me)V], called cilengitide. [149] Unfortunately, it failed in Phase 

III of clinical trial because it did not meet its primary endpoint of significantly increasing overall 

survival when added to the current standard chemoradiotherapy regimen. [150] NMR 

spectroscopic studies combined with molecular dynamics simulations revealed that this 

particular conformational restriction was crucial to achieve maximal binding affinity and this 

was finally confirmed by the crystal structure of the αvβ3 integrin in complex with cilengitide, 

reported by Arnaout and coworkers. [151] As schematically illustrated in Figure 11 and 13, the 

side chains of arginine and aspartic acid come thereby in an optimal orientation for interaction 

with the αvβ3 integrin receptor (with Asp218/Asp150 and with the metal ion in the MIDAS region, 

respectively) and have been identified as essential groups. The aromatic residue, adjacent to 

the carboxylic group, increases binding affinity by π-interaction with the receptor (Tyr122). The 

role of the glycine imposing steric restrictions in the relatively flat binding pocket is also 

fundamental, thus analogous RAD peptides possess a much lower affinity and can be used as 

controls. On the contrary, the valine residue does not interact with the receptor, which is why 

it can be replaced through different amino acids without loss of integrin affinity and selectivity.  
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Figure 11. Interactions of cilengitide with the RGD binding pocket. Red circle: π-interaction; blue circle: ionic 

interactions; yellow circle: steric restriction; green arrow: no interaction. Adapted from Mas-Moruno et al.  [149] 

After the structure of the complex between receptors and ligands has been analyzed in detail, 

further optimization could be done via rational structure oriented design. This is what they tried 

to study and efficiently succeeded in the research groups of Prof. Gennari and Prof. Piarulli. In 

this case, important peptidomimetic variations, helping to optimize biological activity and 

selectivity between subtypes, were introduced in the new developed constrained peptides 

containing the RGD motif. They understood that to prepare effective compounds they had to 

work on the conformation; for this reason, various ligands were screened, which differed from 

each other because of the peculiar DKP (diketopiperazine) scaffold used to close the ring, 

each functionalized with a carboxylic acid and a Boc-protected amino group as showed in 

Figure 12 and obtained with good overall yields. [152-154]  

 

Figure 12. DKP library developed in the research groups of Prof. Gennari and Prof. Piarulli. Red box: elected 

DKP scaffold for the synthesis of a DKP-RGD ligand with high affinity and selectivity towards the receptor sub-type 

αvβ3. 

Binding affinity studies on the purified αvβ3 and αvβ5 integrin receptors showed very promising 

results: the affinity rate was in general in nM range a part from the DKP1-containing ligand, 

characterized by a non-extended arrangement. DKP3RGD was chosen for further studies, 

since it showed a high affinity in low nanomolar range, comparable to cilengitide but contrarily 

to the latter, a much higher selectivity for αvβ3 (for the binding to αvβ5 IC50 values in micromolar 
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range were measured). These results were confirmed also by the investigation of ligand-

integrin interactions. The best pose of the ligand into the crystal structure of αvβ3 binding site 

was overlaid on cilengitide during docking studies and showed that all the important 

interactions of the X-ray complex were conserved, in particular the distance between Arg and 

Asp was maintained (Figure 13). [153] 

 

Figure 13. Docking into αvβ3 binding site. All the important interactions are conserved. The metal ion in the 

MIDAS region is represented by a blue sphere. Green: cilengitide. Grey: c[DKP3RGD]. [155] 

 

Since 2012 a functionalized version of the integrin ligand c[DKP3RGD] was employed as 

tumor-homing device for site-directed delivery of paclitaxel, [156-157] SMAC (second 

mitochondrial-derived activator of caspases) mimetic proapoptotic compounds [158] and 

antiangiogenic helical peptides targeting VEGF receptors. [159] In in vivo tumor-targeting 

experiments the paclitaxel conjugate exhibited a superior activity than the free drug despite 

the lower molar dosage used. [156] These results could demonstrate that the position of the 

functionalization was ideal not to interfere with the binding to the integrins and that very likely 

integrin-mediated endocytosis occurred.  

1.5. Receptor-mediated uptake 

Receptor-mediated uptake is a type of endocytosis where specific ligands are combined with 

receptor proteins of the cell membrane and subsequently internalized. These receptors are 

localized and concentrated in particular areas of the membrane called coated pits or migrate 

in these zones after binding to the molecule, which should be transported. The coated pits are 

characterized by the presence of a layer of peripheral membrane proteins known as clathrins. 

Once the receptors are bound to specific molecules, the dimple folds back into the cell and 

forms a vesicle covered by the clathrin layer and containing the substance of interest. 

Subsequently the vesicle loses the clathrin becoming an endosome, which then forms two 

vesicles: one containing the receptors and the other containing the ligand. The receptors are 
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recycled and return to the plasma membrane while the ligand-containing vesicle merges with 

the lysosome to form a secondary lysosome whose content, once digested, is released into 

the cell (Figure 14). [160] 

 

Figure 14. Receptor mediated uptake of SMDCs. After internalization, the linker is cleaved in the lysosome, the 

free drug is released from the ligand and it can express the activity on the particular target (tubulin, DNA, 

neighbouring cells). Adapted from Khalil et al. [160] 

 

An integrin heterodimer can follow more than one internalization route. Both proteins caveolin 

and clathrin are able to interact with the tails of αvβ3 integrin and trigger the vesicles formation. 

[161-163] In this context, Coll and coworkers investigated the integrin mediated-internalization 

pathway of a multimeric cRGD ligand showing that this was able to bind to two integrins at the 

same time favoring clustering and subsequent internalization via clathrin coated vesicles. [164] 

However, issues concerning the respective contributions made by integrin dependent vs 

independent endocytosis remain largely unresolved. [165-166]  

For the GnRH receptors, it has been demonstrated that ligand binding induces receptor 

dimerization and the formation of small receptor groups, which are internalized. Following the 

internalization, the hormone-receptor complex undergoes degradation in the lysosomes and a 

fraction of the receptors is recovered on the plasma membrane, thus participating in a recycling 

process strongly related to the up-regulation of receptors after GnRH stimulation. The agonists 

are internalized very fast: after 15 minutes, the complexes are already transferred to the 

lysosomes and after 30 minutes the shift is completed. [167] 

1.6. CPPs as carrier molecules and their role in cancer therapy 

The bioavailability and efficiency of many biological therapeutic molecules is frequently 

restricted by their chemical features, in particular their large size and hydrophilicity, which 
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contrast with the ability to passively diffuse through the membrane and internalize in the cell 

reaching their site of action. This issue consequently leads to a diminished therapeutic effect 

or even complete loss of activity. The conception of an efficient drug delivery in living cells is 

therefore an essential challenge in the development of new drugs. [168] To overcome this 

problem, during the last years, many research groups have been working on new transport 

vectors called cell-penetrating peptides (CPP). These are short peptides, up to 30 amino acids, 

with low cytotoxicity and exceptional translocation properties being able to pass cell 

membranes without destroying membrane integrity. [169-170]  

Since the discovery of TAT in 1988, originated from a transactivating regulatory protein in HIV, 

[171-172] and penetratin a few years later, derived from the Drosophila antennapedia 

homeodomain, [173-174] the development of innovative CPPs has rapidly expanded. [175] Other 

members included in the class of natural CPPs were identified later, as for example VP22 from 

virus Herpes simplex [176] and pVEC, [177] a peptide of 18 amino acids derived from the cadherin 

of murine vascular endothelium. Based on these discoveries and on SAR studies showing that 

the amino acid arginine plays a fundamental role in the uptake, various synthetic CPPs have 

been also developed and comparable results in cell internalization were obtained. The most 

known representatives of this group are the synthetic oligopeptides R8/9 consisting in poly-

arginine sequences displaying maximum translocation efficiency. [178-179] In our research group 

the CPP sC18 was developed. [180] It derives from the C-terminal domain of the cationic 

antimicrobial protein CAP18, consists of 16 amino acids and belongs to the group of 

amphipathic CPPs. Its internalization is time- and concentration- dependent and mainly occurs 

through endosomal pathways, when cargoes are attached. [180-182] Furthermore, the C-terminal 

truncated fragment sC18*, lacking the last four amino acids, also shows a cell-penetrating 

ability, although weaker than sC18, probably due to the two missing positive charged lysine 

residues. [183-184] These two CPP variants have been used in this work. In Table 1, important 

members of the CPP family are listed with their correspondent amino acid sequences and 

origin. 

Table 1. Name, sequence and source of some important CPPs. 

Name Sequence Origin Reference 

TAT GRKKRRQRRRPPQ HIV-1 [171-172]  

polyarginine Rn Synthetic [178, 185] 

pVEC LLIILRRRIRKQAHAHSK VE-cadherin [177, 186]  

Penetratin RQIKIWFQNRRMKWKK Drosophila antennapedia [173-174]  

VP22 NAATATRGRSAASRPTQR VHS [176] 

sC18 GLRKRLRKFRNKIKEK CAP18 

 

[180-181, 187]  

sC18* GLRKRLRKFRNK [183] 
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Notably, even if the sequence and secondary structure of these peptides are divergent, the 

mechanism of transfer within the cells seems to be quite similar. Thanks to the favorable 

attributes of these peptides, they can transport inside the cell covalently or electrostatically 

bound cargoes, from small therapeutic molecules to plasmid or nanoparticles that otherwise 

could not pass through the cell membrane. [188-189] In order to ensure an efficient drug delivery 

into the target cell, it is fundamental to understand the uptake mechanism. So far, the exact 

process has not been definitively disclosed yet and contrasting data are described even if it is 

believed that the internalization always starts by interacting with the components on the surface 

of the plasma membrane (proteoglycan, phospholipids). The main uptake route for CPPs 

occurs via energy-dependent endocytosis, although direct translocation also exists under 

certain conditions and it cannot be excluded that the different internalization mechanisms are 

concomitantly used (Figure 15). In particular, the type of internalization depends on a variety 

of factors such as the type of CPP, the peptide concentration, the type of cargo molecule, the 

cell type, and the lipid composition. [190] 

 

Figure 15. Cellular uptake mechanisms of CPPs. Adapted from Mickan et al. [191] 

The internalization of CPPs via endocytosis is divided into different subclasses, including 

clathrin, caveolae, lipid-raft mediated endocytosis and macropinocytosis. [192-193] Differently, the 

uptake via direct translocation involves several models, primarily based on the interaction of 

the negatively charged membrane and the positively charged CPP sequence. The inverted 

micelle model, originally proposed for penetratin, describes the uptake of CPPs caused by the 

strong attractive potential between positive residues, in particular arginine, and the anionic 

phospholipids. After merging with the membrane, a subsequent interaction of the hydrophobic 

amino acids with the hydrophobic tails of the phospholipids occurs, resulting in the 

reorganization of the bilayer and formation of inverse micelles that release the CPPs into the 

intracellular space. The pore formation model describes the generation of transient pores 

resulting from the bundles originated from the amphipathic α-helical structure of CPPs, where 

the hydrophobic residues interact with the lipid tails of the phospholipids while the hydrophilic 

side chains are directed towards the lumen of the pore. Differently, in the carpet model, the 
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entry into the cell is facilitated by the parallel alignment of the CPP sequence on the membrane 

surface in a carpet-like manner until a maximal concentration is reached. This provokes the 

rotation of the peptide with the subsequent interaction with the hydrophobic core of the 

membrane leading to its destabilization and the subsequent penetration of the CPP. [194-198] 

The indisputable efficiency of this drug delivery system in cancer therapy is hindered by the 

lack of selectivity so that many researchers had to deal with some new strategies in order to 

overcome this disadvantage, which could lead to unwanted toxicity and side effects on healthy 

cell lines. [197] One approach is to combine CPPs with homing peptides targeting particular 

receptors overexpressed on the surface of cancer cells. This strategy is depicted in Figure 16 

where some examples of active targeted CPPs are exemplified. 

 

 

Figure 16. Different approaches to develop selective CPPs. A: Conjugation of a homing peptide to the CPP 

sequence; B: The CPP is masked by a negatively charged sequence and the construct is selectively directed 

towards tumor cells by the homing peptide. In the tumor environment, the linker will be cleaved by MMP-2 and the 

CPP will restore its penetration ability. C: The targeting moiety is represented by a mAb, conjugated to a molecule 

of heparin, which is electrostatically interacting with the CPP. Adapted from Martin et al. and Kurrikoff et al. [199-200]  

For example, Langel and coworkers conjugated the two homing peptides PEGA and CREKA 

to the CPP pVEC to carry the cytotoxic payload chlorambucil in breast tumor cells. In both 

cases the system improved the cytotoxicity of the drug and the selectivity of the first compound 

could be even demonstrated in vivo. [74, 201] CPP-drug conjugates with monomethylauristatin E 

have been designed by Crisp et al. to selectively target tumor cells overexpressing integrin 

receptors, by adding the ligand cRGD. [202] This strategy involved the preparation of an 

activatable CPP attached to a negatively charged sequence that should prevent the anticipated 

internalization of the construct on healthy cell lines. These two elements are in fact combined 

via a MMP-2 cleavable linker that would be selectively cleaved in the tumor environment where 
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these enzymes are overexpressed. Also in this case, in vivo studies could demonstrate an 

improved tumor targeting. However, not only homing peptides could be used as targeting 

moieties. An example is the employment of a mAb conjugated to heparin and further 

complexed with a TAT-gelonin construct as described by Shin et al., which was also validated 

in several in vivo models. [203] 

A part from selectivity, blood stability is also a very important attribute that a drug should 

possess in order to reach the target without being degraded by blood proteases before arriving 

to the tissue. [204] This obstacle can be circumvented applying different shielding strategies in 

order to protect the structure of the CPPs till reaching the desired tissue and utilizing for 

instance more stable D-amino acid configurations or [205] backbone cyclization. [183, 206-207] 

Further development of CPPs through cyclization strategies will be highlighted in the following 

section. 

1.7. Rational for cyclic peptides 

Cyclic peptides are an unusual class of compounds, first discovered in microorganisms, [208] 

and subsequently object of great interest from the scientific community due to their attractive 

biological activities. [209] Among them are antibiotics, such as bacitracin [210] and polymyxin B, 

[211] immunosuppressive agents as cyclosporine A, [212] or also toxins such as α-amanitin, the 

poison of the mushroom Amanita phalloides. [213] All of these compounds have been very 

actively investigated as potential sources for new drugs and antibiotics. The three-dimensional 

conformation of these peptides is more rigid than that of their linear analogues, which could 

partly explain the observed increase in receptor selectivity and biological activity. [214] 

Moreover, one of their most interesting features is the enhanced resistance to proteolytic 

enzymes in comparison to correspondent linear peptide chains, reaching a higher stability in 

the human body.[215-219] In addition, such cyclic peptides often include unusual amino acids, 

further enhancing their resistance against proteolytic degradation and improving their 

bioavailability. [220-222]  

The concept of cyclization has been found wide acceptance with respect to modulate the 

biological activity of peptides including peptide carriers, such as CPPs. Their cyclization has 

been demonstrated to be an effective strategy for enhancing their proteolytic stability, cellular 

uptake rates and promoting endosomal escape, thus cytoplasmic distribution. [223-224] Indeed, 

endosomal escape is a decisive concern, since for many CPPs the main entry pathways 

proceed via endocytic mechanisms. In fact, the CPP construct must be internalized by cells, 

but more importantly, cargoes have to be released and reach their extra-endosomal targets in 

the cytosol or in the nucleus. 
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1.7.1. Previous work 

Recently, triazole-bridged cyclic peptides were synthesized and characterized in our research 

group. [206] In more detail, a fragment of the cell penetrating peptide sC18 (GLRKRLRKFRNK, 

namely sC18*) was cyclized via chemoselective copper-catalyzed azide-alkyne cycloaddition 

(CuAAC) in three different ways, yielding three different ring sizes.  

  

Figure 17.Structures of the sC18*-derived cyclic peptides synthesized in our group. [184] 

These cyclic CPPs were evaluated regarding cellular uptake, toxicity and interaction with lipid 

systems. It has been observed that the internalization rate was strongly associated with the 

number of arginine residues included in the cycle. The peptides contain respectively one, three 

or five arginine residues and show an improved cell internalization in this order. The rigid 

presentation of guanidinium groups leading to the enhancement of the internalization efficiency 

has been already described by Lättig-Tünnemann et al. in 2011: when guanidinium groups 

were forced into maximally distant positions by peptide cyclization higher uptake rates have 

been registered. [225] Also in this case, the improved interaction with negatively charged 

constituents of the membrane played an important role in cell entry. A certain cancer selectivity 

was demonstrated too, since the internalization pattern in MCF-7 breast cancer cells was 

mainly cytosolic and nuclear, speaking for a direct penetration and good membrane 

permeability, differently from the endosomal distribution observed in HEK-293 (human 

embryonic kidney) healthy cells. Our results let conclude that particularly cyc-3 benefited from 

cyclization, since it demonstrated improved lipid-peptide interaction and thus, cellular uptake 

properties. 

1.7.2. DKP scaffolds 

Peptide cyclization can be achieved in different ways, commonly divided into two groups: head-

to-tail (C-terminus to N-terminus) and side chain-to-side chain cyclization, the latter involving 

various strategies, like thioether and disulfide bond formation, lactone/lactame formation, ring 

closing metathesis and the previously mentioned CuAAC. [226-227] Encouraged by the previously 
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described results, we planned to replace the triazole bridge with a more spatially oriented and 

rigid scaffold such as the bifunctional diketopiperazine scaffold (DKP). 

From the DKP library developed in the group of Prof. Piarulli and Gennari, the cis (DKP1) and 

trans (DKP3) diketopiperazine rigid scaffolds, previously depicted in Figure 12, were chosen 

for the synthesis of cyclic compounds. These two DKP scaffolds showed completely different 

characteristics in the conformation of small cyclic peptide sequences evaluated in previous 

studies. While DKP1 acted as a reverse turn inducer, DKP3 promoted the formation of an 

extended structure. [152-153] Therefore, the comparison of cyclic peptides containing different 

DKP scaffolds would be of great interest. 
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2. Aims of the thesis 

2.1. Receptor-targeted CPPs for selective delivery of anticancer 

therapeutics 

Insufficient cellular uptake of new therapeutic drug candidates often limits their clinical use. A 

promising strategy to solve this permeability obstacle is represented by CPPs, conveniently 

used as appropriate vectors for these applications. They appear to be very advantageous and 

versatile tools to deliver anticancer molecules which otherwise would not be able to cross the 

plasma membrane barrier by their own and the safety of these devices was demonstrated in 

many works, allowing their extensive use for in vitro or in vivo studies. However, their entry 

mechanisms appear to vary with experimental conditions, cargo, types and the details of the 

various uptake ways are poorly understood. Furthermore, none of the studied internalization 

pathways indicated certain selectivity towards cancer cells and this is in total contrast with the 

outstanding development in the course of the last years of selective strategies to limit side 

effects. Trying to fill this gap in the research, the first part of this work will be dedicated to the 

synthesis of novel drug delivery systems constituted by a CPP (sC18) bearing a cytotoxic 

warhead and attached to a targeting ligand (GnRH-R or integrin ligand) by a PEG spacer. By 

this way, we wanted to overcome the selectivity issue in CPP delivery, trying to study which 

entry mechanism would prevail when this construct came in contact with different cell lines 

expressing the receptor of interest at a different level. For this purpose, we wanted to find an 

optimal strategy for the successful synthesis of these conjugates and subsequently biologically 

test them in different cell systems. In particular, we wanted to analyze which role would play 

the receptor-mediated uptake compared to the traditional entry mechanisms previously 

described for CPPs, including endocytosis and direct penetration through the membrane. We 

tried to evaluate this tendency by choosing ideal cell models, which would permit the 

comparison of the different uptake behaviors in presence or absence of the receptors of 

interest.  

2.2. Cyclic CPPs for cargo delivery  

A part from the difficulties encountered in designing selective molecules, the use of CPPs is 

often severely restricted because of their low proteolytic stability in biological fluids and rapid 

degradation in the organism after administration. By cyclization of the peptide backbone, the 

linear truncated version of sC18 has recently displayed an increased internalization rate and 

stability. In the second part of this work, the focus was on the synthesis and characterization 

of analogues of the cyclized sC18* derivatives recently synthesized by Florian Reichart during 

his PhD thesis. Therefore, the triazole bridge obtained by CuAAC reaction should be 

substituted with a DKP scaffold and different conditions should be attempted to obtain a final 

optimization of the cyclization reaction. Afterwards, the secondary structure of the obtained 
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molecules should be investigated in details by CD and NMR spectroscopy and compared to 

the linear peptides. Furthermore, their potential for drug delivery should be determined by 

generating non-covalent and covalent complexes with cytotoxic drugs. To measure the efficacy 

of the drug transport through the membrane and of the effect on cell viability, cytotoxicity 

assays and cellular uptake studies should be performed and the results compared to those of 

the linear counterparts. 
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3. Novel CPP-drug conjugates bearing a targeting moiety 

3.1. GnRH-III as targeting moiety and daunorubicin as cytotoxic payload 

Since GnRH receptors are expressed in different types of tumors but not in healthy cells, they 

could represent an interesting target in the context of tumor selectivity. For this reason, many 

GnRH-drug conjugates have been synthesized and investigated. In this work, the GnRH-III 

derivative developed by Mező and co-workers, where Lys4 was butyrylated, has been used as 

targeting moiety in our drug delivery system, while daunorubicin (Dau) served as cytotoxic 

payload. [131] To simplify the nomenclature of the synthesized conjugates, from now on the 

sequence <EHWK(Bu)HDWKPG-NH2 will be indicated with the name GnRH-III. Any further 

conjugation to the GnRH-III sequence always occurred at Lys8, since it was often confirmed to 

be a good conjugation site, not invalidating the selectivity and activity of the conjugate (Figure 

9). [228-229]  

Considering that small variations at the sugar moiety of daunorubicin caused a drastical 

decrease in activity, it could be deduced that the daunosamine is involved in the interaction 

with DNA; [126, 230] for this reason, to easily conjugate the drug to the peptide, the amide bond 

formation with the amino group of the sugar was not possible without the contemporary drastic 

loss of activity. Due to its structural properties, daunorubicin cannot be conjugated to the 

targeting moiety by ester bond like doxorubicin but the ketone group allows the formation of 

oxime bonds originating conjugates with high stability under physiological conditions. In some 

works an enzymatic cleavable linker, the commonly used tetrapeptide GFLG, was added to 

allow the release of the drug after cleavage by cathepsin B, which is known to be 

overexpressed in tumor cells. [231-232] It has been demonstrated that the release of the free drug 

is not necessary for the antitumor activity of the conjugate since the amino acid-Dau metabolite 

is also able to intercalate with the DNA with sufficient efficiency. [132] Through this approach, it 

was possible to obtain selectivity with a small decrease in activity compared to the free drug. 

[131]  

To further investigate the intracellular drug release and the effect on multi-drug resistant cancer 

cells, we decided to add another important portion to the construct resulting in a new hybrid 

conjugate composed by a targeting moiety (GnRH-III), a carrier moiety (CPP) and the drug. 

Two different variants, with and without cleavable linker were designed and synthesized. The 

synthetic strategy will be discussed and most importantly, the binding affinity of these 

conjugates will be analyzed in detail comparing two overexpressing cell lines (healthy pituitary 

gland and prostate cancer cells). Moreover, cytotoxicity of the novel conjugates on receptor 

positive and negative cell lines will be shown. 
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3.1.1. Synthetic strategy 

The peptide sC18 served as starting point for the conjugation of daunorubicin. As illustrated in 

Figure 18, one first modification was introduced at the side chain of lysine at position 8 within 

the peptide sequence, whereby coupling of daunorubicin was performed via oxime ligation by 

insertion of an aminooxyacetic acid spacer yielding the two CPP-drug conjugates sC18(Dau) 

and sC18(GFLG-Dau), the latter containing the enzymatic cleavage site GFLG. These two 

conjugates were used as control peptides for further investigation of the selectivity in 

comparison with the targeting constructs. Drug conjugation by oxime bond was successfully 

performed but particular care had to be taken to increase the yields and facilitate the 

purification of the final product. Notably, as already described by Mező et al., [233] 10 eq. of Boc-

aminooxyacetic acid were added to the cleavage cocktail and in general use of acetone and 

plastic consumables was limited in order to prevent the formation of the acetone and 

formaldehyde adducts with delta mass +40 and +12. [228, 234] In addition, the temperature for 

every reaction step was maintained under 40 °C to avoid the release of the sugar moiety and 

the subsequent decrease of the cytotoxicity. For the conjugation of the two elements, the 

glycine at the N-terminus of the CPP sequence was replaced by propargylglycine, while, in 

collaboration with the PhD student Sabine Schuster (ELTE University, group of Prof. Mező, 

Budapest), the GnRH-III ligand was synthesized and the side chain of Lys8 within the GnRH-

III sequence was functionalized by incorporation of 2-azidoacetic acid. This allowed the “click” 

reaction (CuAAC) within the two moieties. 

Nevertheless, the conjugation to the functionalized GnRH-III was the yield-limiting factor. The 

reaction was carried out as described by Raposo Moreira Dias et al. [235] and the azido-

functionalized ligand was used in excess (1.3 eq.). The reaction worked very well and no 

limiting reactant was detectable after completion but some difficulties occurred with the 

purification of the crude product, leading to very low yields (20-30%). Furthermore, the 

recovered mixed fractions could not be separated even by changing the gradient or using 

columns with different polarity. This problem could be solved by modifying the reaction 

conditions. This time an excess of the more hydrophilic alkyne-functionalized sC18 (1.3 eq.) 

was added, by means of which the starting GnRH-III was completely converted in the product 

and the CPP could be easily separated from the final conjugate due to their different retention 

time, reaching 91% yield (see Table 20 in the attachment).  
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Figure 18. Synthetic strategy of the full conjugates GnRH-III-sC18(Dau) and GnRH-III-sC18(GFLG-Dau). A: 

Synthesis of the peptide sequence by SPPS, followed by conjugation of daunorubicin. B: “Click” reaction between 

the azido group of GnRH-III and the alkyne group at the N-terminus of the CPP. Reagents and conditions: a: 5 eq. 

Fmoc-L-Pra-OH (B), 5 eq. Oxyma, 5 eq. DIC in DMF, overnight; b: 30% piperidine in DMF (20 min x 2); c: 10 eq. 

Boc2O, 1 eq. DIPEA in DCM for 2 h (2x); d: 2% hydrazine in DMF (10x); e: 5 eq. Bis-Boc aminooxyacetic acid, 5 

eq. Oxyma, 5 eq. DIC in DMF, overnight; f: TFA/TIS/H2O (95:2,5:2,5), 3 h; g: 30% excess daunorubicin, 0.2 M 

NH4OAc, pH 5, 10 mg/ml; h: 1 eq. GnRH-III(N3), 1.5 eq. I or II, 0.5 eq. CuSO4 • 5H2O, 0.6 eq. Na ascorbate, 

H2O:DMF 1:1, 10 mM, 40 °C, N2, 24 h 

Three different conjugates were synthesized (see Table 2). GnRH-III-sC18, not bearing the 

drug, served as a control conjugate in order to investigate the selectivity in presence of the 

large and hydrophilic CPP. The additional GFLG linker in GnRH-III-sC18(GFLG-Dau) was 

introduced between the drug and the CPP to evaluate if the activity could be enhanced in 

respect to GnRH-III-sC18(Dau). 
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Table 2. List of the synthesized GnRH-III conjugates and controls with their names, structures and 

molecular weights (calculated and experimental).  

Conjugate Structure 
MW 

[g/mol] 

MWexp 

[g/mol] 

GnRH-III-

sC18 

 

3561.2 3560.7 

GnRH-III-

sC18(Dau) 

 

4144.3 4145.2 

GnRH-III-

sC18(GFLG-

Dau) 
 

4518.7 4519.7 

sC18(Dau)  2652.2 2653.2 

sC18(GFLG-

Dau) 
 3027.0 3027.9 

 

3.1.2. Triptorelin binding assay 

The affinity of the novel GnRH-III conjugates to GnRH-Rs was investigated by means of a 

radioligand binding study, performed at the Department of Biopharmacy (Faculty of Pharmacy) 

at the University of Debrecen, as previously described. [131] Radioiodinated triptorelin was used 

for this purpose, since it provides a high binding affinity to GnRH-I receptors. In the present 

study, the in vitro competition assay was executed on human pituitary and human prostate 

cancer cells, both overexpressing the receptors, and the displacement of the radiolabeled 

triptorelin was evaluated to characterize the binding affinity of the novel conjugates. It has been 

confirmed by many studies that the receptors in cancer cells are exactly the same as the 

pituitary receptors [236] but, at the same time, it has been also speculated about the presence 

of distinct receptor conformations in different tissues leading to selective binding to specific 

ligands and various intracellular signaling pathways (antagonist or agonist action). [237-238] 

Furthermore, high affinity/low capacity and low-affinity/high capacity receptors have been 

found from the investigation of different research groups. [239] To prove that our conjugates 

could bind with high affinity also on cancer cells, both tissues were analyzed. 
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Table 3. IC50 values corresponding to the ability of the GnRH-III conjugates to replace [125I]-triptorelin. K2 

was also analyzed and served as reference. 

Conjugate 
IC50 (nM) 

Human pituitary gland 

IC50 (nM) 

Human prostate cancer 

GnRH-III-sC18 14.7 ± 2.3 17.8 ± 2.2 

GnRH-III-sC18(Dau) 24.5 ± 0.8 20.9 ± 2.7 

GnRH-III-sC18(GFLG-Dau) 27.1 ± 1.4 29.6 ± 1.4 

K2 (GnRH-III-Dau) 3.9 ± 0.7 3.0 ± 1.1 

 

The novel conjugates were compared to the lead compound K2 

(<EHWK(Bu)HDWK(Aoa=Dau)PG-NH2, synthesized by Sabine Schuster) that was recently 

reported to have a high affinity in low nM range towards GnRH-I receptors. [54] The results 

illustrated in Table 3 are very promising: even if control K2 displays better results, the binding 

affinity of the hybrid-conjugates is slightly reduced, but still in low nM range, underlining that 

the attachment of the CPP does not substantially alter the overall receptor binding. In fact, one 

could think that the CPP would be too large to preserve the selectivity of the GnRH peptide 

but, as already demonstrated in many studies, the Lys8 of GnRH-III, is a very good attachment 

point in order to maintain the structure of the targeting moiety and subsequently the high 

affinity. Another important remark that can be made after analyzing the data is connected with 

the size of the whole conjugate: the larger the dimension, the lower is the affinity to the receptor 

leading to almost a 10-fold decrease for GnRH-III-sC18(GFLG-Dau) in prostate cancer tissue 

compared to K2. Furthermore, as expected, no significant selectivity between pituitary gland 

and cancer cells could be detected and this is valid also for K2. The GnRH-III-Dau conjugate 

cannot easily cross the blood-brain barrier (BBB); therefore, it has only moderate toxic side 

effects at the level of the hypophysis. The remaining question is how the CPP would influence 

the crossing of the BBB. A recent study demonstrated that this ability is not directly connected 

with the cell-penetrating property of the CPP, but that arginine rich cationic amphipathic CPPs 

show a better internalization. [240] This circumstance was evaluated for sC18 in more detail and 

a recent in vivo study shows that sC18 is not accumulating in the brain but only in the ventricles, 

which would circumvent the possible generation of side effects in pituitary gland.  [241] 

3.1.3. Cell viability assays 

Since the results from the receptor binding studies were very encouraging, we decided to 

investigate the cytotoxicity of the compounds on GnRH-IR positive and negative cell lines. The 

expression of the receptor on the surface of different cell lines was evaluated by Sabine 

Schuster by western blot analysis. The western blot was performed on whole cell lysates using 

an anti-GnRH-receptor antibody (Proteintech) and various cell lines were analyzed. As 
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depicted in Figure 19, PANC-1 showed a very low signal together with Ovcar-3 and MRC-5 

cells while good positive controls were represented by A549 and U87 cells.  

 

Figure 19. Western blot studies on cell lysates of A549, U87, PANC-1, Ovcar-3, M24, MRC-5 and HT-29 cells. 

Actin expression was evaluated as loading control. 

The cytotoxicity of K2 was already evaluated by Sabine Schuster on all these cell lines after 

24 h incubation (data not shown). While in U87 and A549 cells the drug conjugate showed 

almost the same median effective concentration EC50 (around 10 µM), a remarkable difference 

was detected in the case of the other cell lines. In particular, the results obtained from MRC-5 

and Ovcar-3 cells showed a 4- to 5-fold higher value of EC50 and this value was doubled in the 

case of PANC-1 (>100 µM). This was a further confirmation of the results of the western blot. 

For this reason, PANC-1 and U87 cells were chosen as negative and positive control cell lines, 

respectively. 

In the case of our novel constructs, we decided to adopt the strategy of a short treatment time 

to ideally simulate the in vivo situation, where the drug, after administration of the therapeutic 

molecule, should easily and selectively penetrate cancer cells as soon as it is in their proximity. 

In order to choose the right contact time of the novel conjugates, the uptake of CF-labelled 

sC18 in U87 cells was analyzed via flow cytometry at different incubation times (Figure 20). 

The cellular uptake of CF-sC18 was evaluated after 5, 15 and 30 minutes, as we reasoned 

that these intervals could highlight the importance of the CPP for a quick and efficient 

penetration and at the same time emphasize the relevance of the ligand targeting ability for a 

selective approach. A 15 minutes incubation time was chosen as optimal compromise between 

5 minutes (too much stress to the cells and poor reproducibility of results) and 30 minutes (too 

long, since the cell-penetrating activity could be too high and cause a negative influence on 

the selectivity of the system and the conjugates could interact with the receptors on the surface 

of the negative control cell lines, even if expressed at lower level).  
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Figure 20. Quantification of the cellular uptake of the CF-labeled sC18 after 5, 15 and 30 min incubation with 

U87 cells. U87 cells were incubated for 5, 15 and 30 minutes with 10 µM peptide solution. The value corresponding 

to the untreated cells was used as negative control and subtracted from the other values. The experiment was 

performed in triplicate with n=1. 

Before analyzing the activity of the drug conjugates, GnRH-III-sC18 needed to be tested to 

prove that the targeted CPP could be considered as a good drug delivery system without 

showing any conspicuous toxicity. The CPP and the targeting moiety alone were also analyzed 

as controls. 

 

Figure 21. MTT-based antiproliferative activity of the targeted conjugate GnRH-III-sC18 and the controls 

sC18 and GnRH-III. The assay was performed incubating U87 and PANC-1 cells for 72 h with washout of the 

peptide solution after 15 min. Values from the positive control (DMSO/EtOH; 1:1) were substracted from all data 

and the untreated cells were set to 100%. The experiment was performed in triplicate with n=2. 

As depicted in Figure 21, only sC18 showed a slight toxicity but just at the highest 

concentration of 100 µM, which is in line with previous studies. [186] In general we can affirm 

that the targeted CPP could be used as safe and selective carrier, showing a high binding 

affinity to the receptor and no antiproliferative activity on both cell lines tested. 

Afterwards, the drug conjugates GnRH-III-sC18(Dau) and GnRH-III-sC18(GFLG-Dau) were 

analyzed under the same conditions (Figure 22 and Table 4). In particular, we were interested 

to observe if the selectivity of the ligand detected by Sabine Schuster could still be preserved 

and how the toxicity changed in comparison to the free drug and the control peptides containing 
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exclusively the targeting sequence, GnRH-III-Dau, or the CPP, sC18(Dau) and sC18(GFLG-

Dau). 

 

Figure 22. MTT-based antiproliferative activity of the targeted conjugates GnRH-III-sC18(Dau) and GnRH-III-

sC18(GFLG-Dau), the controls sC18(Dau) and sC18(GFLG-Dau), the reference K2 (GnRH-III-Dau) and the 

free drug. The assay was performed incubating U87 and PANC-1 cells for 72 h incubation with washout of the 

peptide solution after 15 min. Values from the positive control (DMSO/EtOH; 1:1) were substracted from all data 

and the untreated cells were set to 100%. The experiment was performed in triplicate with n=2. 

Table 4. EC50 values from the antiproliferative assay depicted in Figure 22 (washout after 15 minutes and 

further incubation for 72h). 

EC50 (µM) 

 
GnRH-III-

sC18(Dau) 
sC18(Dau) 

GnRH-III-

sC18(GFLG-

Dau) 

sC18(GFLG-

Dau) 

GnRH-III-

Dau (K2) 
Dau 

U87 >100 42.2 ± 19.2 62.9 ± 20.3 9.6 ± 3.2 >100 0.078 ± 0.008 

PANC-1 78.8 ± 23.1 79.9 ± 56.4 32.13 ± 5.8 9.4 ±0.9 >140 >10 
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Considering the results of the free daunorubicin, we directly notice an outstanding difference 

between the two cell lines, whereby the EC50 in PANC-1 cells is around 50 times higher than 

in U87 cells which is not correlated with the receptor expression since the free drug directly 

penetrates through the cell membrane. This result could be explained by literature data 

indicating PANC-1 as a MDR cell line expressing the Multidrug Resistance associated Protein1 

(MRP1). [242] Daunorubicin typically enters cells via passive diffusion and is thus an easy target 

for the drug efflux pumps on the inner side of the plasma membrane. Thus, we can also 

correlate in a very rational way the results obtained by Sabine Schuster, in particular the much 

lower toxicity of GnRH-III-Dau (K2) shown in PANC-1 cells after 24h incubation in comparison 

to other negative control cell lines and the more than 10-fold lower EC50 compared to U87 cells 

(data not shown). A different pattern was observed when K2 was tested under the short contact 

time conditions: in this case, the discrepancy between the two cell lines was not as evident as 

for the free drug. If we consider that the difference is not significant, we could conclude that 15 

minutes are probably not enough time for the ligand to bind to the receptor and subsequently 

internalize at high efficiency. In contrast to this hypothesis, in previous works GnRH-gold 

conjugates were detected in the lysosomes of gonadotrophs already after 30 minutes [243] and 

the time-dependent uptake of K2 was described with CLSM pictures by Schuster et al., 

displaying a colocalization with endosomes and lysosomes after 5 minutes incubation in MCF-

7 cells. [54] Probably, after 15 minutes there could be a moderate but not sufficient uptake and 

the selectivity towards positive cell lines would be detected only after a longer incubation time. 

This highly interesting aspect was explored by Sedgley et al., who indicated that the absence 

of a cytosolic C-tail in GnRH receptors could penalize the plasma membrane localization. 

GnRH-R was found to be primarily an intracellular protein that traffics to the membrane surface 

from the endoplasmic reticulum and from cryptic receptor pools in the cytosol. [244] Extracellular 

signaling would recruit these intracellular receptors but this is a slow process pointing out that 

maybe the 15 minutes incubation are not enough. Additionally, the reason for the lower 

cytotoxicity of K2 in U87 cells compared to the free drug, a part from the different uptake 

mechanism followed (receptor-mediated endocytosis and passive diffusion, respectively), was 

presumably attributed to the already described inability of releasing the free daunorubicin due 

to the high stability of the oxime bond and this is also true for all the other conjugates. The 

cleavage sites after incubation with rat liver lysosomal homogenate have been identified by 

Sabine Schuster [54] and H-Lys(Dau=Aoa)-OH was recognized as the smallest metabolite. 

Referring to the new synthesized compounds we could suppose that the release of the drug 

would occur after proteolysis at the level of the amino acid lysine, in the case of GnRH-III-

sC18(Dau) and sC18(Dau), and glycine in the compounds containing the cathepsin B 

cleavage site, GnRH-III-sC18(GFLG-Dau) and sC18(GFLG-Dau). These metabolites 
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(Figure 23) are still able to intercalate to DNA but with a weaker activity leading to lower EC50 

values than the free toxin. 

 

Figure 23. Structure of the smallest Dau-containing metabolites obtained after lysosomal degradation of 

the peptide sequence. 

If we analyze the conjugates containing the CPP sequence, we were very pleased to observe 

that the resistance in PANC-1 cells seemed to be overcome with the use of the CPP. The EC50 

measured for sC18(GFLG-Dau) in PANC-1 cells was surprisingly lower than the value of the 

free drug and comparable to the EC50 measured for U87 cells. The ability of the drug to directly 

internalize in the cell is decreased but at the same time the intracellular accumulation of the 

drug was enhanced reducing the drug efflux, as already described by Zheng et al. [245] This 

emphasizes once more the potential of CPP for drug delivery. In this context, Lelle et al. in 

2017 published a work about this aspect: utilizing a CPP carrier they could successfully bypass 

the activity of membrane proteins such as P-glycoprotein, effectively increase the intracellular 

concentration and enhance efficacy of the drug in anthracycline resistant cells. [246] Observing 

the EC50 values of the CPP controls, we can notice that their activity is stronger than for K2 in 

both cell lines, presupposing an efficient internalization mechanism guided by direct 

translocation or endocytosis with subsequent lysosomal cleavage. This demonstrates that 

sC18 can be used as very proficient carrier. In general, the compounds containing the GFLG 

cleavage site displayed a stronger activity and sC18(GFLG-Dau) could be identified as the 

most powerful compound of these series. The higher toxicity can be explained with the 

overexpression of cathepsin B inside the cells, which is able to cleave the peptide sequence 

at the level of the GFLG cleavable linker. We could think that the smaller metabolite Dau=Aoa-

Gly-OH would favor the intercalation of the DNA but Orban et al. already demonstrated that 

the two metabolites (including glycine and lysine) show the same DNA binding characteristics. 

[132] On the contrary, the GFLG spacer is probably cleaved faster than the CPP sequence in 

the lysosomes. This would mean that Dau=Aoa-Gly-OH would be more rapidly released than 

H-Lys(Dau=Aoa)-OH. Since the drug is released in a much faster and more efficient way, this 

could also favor a further internalization of the peptide in the cytosol. Furthermore, the increase 

of hydrophobicity of the peptide sequence by addition of the linker could promote the 

penetration of the CPP leading to a subsequent higher toxicity. The comparison of the retention 
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time of compounds sC18(Dau) and sC18(GFLG-Dau) is illustrated in Figure 88 in the 

attachment. Other considerations should be done by comparing the conjugates containing the 

GnRH-III ligand, GnRH-III-sC18(Dau) and GnRH-III-sC18(GFLG-Dau). The EC50 of the full 

conjugates are always higher if correlated to the CPPs and this could be explained by the 

addition of the targeting sequence, which is probably influencing the uptake ability of the CPP. 

We could in fact imagine that if the CPP alone could be taken up by direct translocation and 

endocytosis, the CPP bound to the ligand presumably internalize in a less efficient way. This 

hypothesis could be verified by secondary structure analysis of the conjugate (e.g. CD 

spectroscopy) to detect if the tendency of the CPP to form an α-helix would be hindered. 

Anyway, already by simple observation of the structure, we could imagine that such a branched 

system would not be inserted so easily inside the cell membrane. Unfortunately, the reduced 

cell-penetrating ability did not even favor selectivity: the conjugates containing the targeting 

moiety GnRH-III-sC18(Dau) and GnRH-III-sC18(GFLG-Dau) show a better activity in PANC-

1 cells differently from U87 cells. This was unexpected, since the affinity shown by the 

triptorelin binding assay was pretty high but again this could be explained with the short 

incubation time as already described for K2.  

In general, we could improve an efficient synthetic strategy to develop conjugates that involve 

a GnRH targeting unit and a CPP showing a very high binding affinity to receptors and 

demonstrating that the presence of CPP does not invalidate the ability to bind the receptor and 

the cytotoxicity of the drug. Unfortunately in vitro studies were not so decisive to show 

selectivity but these results could be justified by the unlucky choice of many factors, in 

particular the model used and the conditions of the experiment. First of all PANC-1 cells were 

chosen as negative control, since they express the receptor at a low level but during the 

experiments we could recognize that they were also resistant to the drug. This of course did 

not facilitate the evaluation of the data because it is a further factor to take into consideration. 

The other unfortunate condition was the choice of the incubation time. Even K2 did not show 

a strong selectivity towards U87 cells after 15 min and this of course negatively influenced also 

the results for the CPP conjugates. It is possible that these selectivity issues could be 

overcome in vivo and this could be proven also by choosing other in vitro cell models and more 

ideal conditions. For example the choice of the short contact time was a very astute idea but 

maybe 30 minutes or one hour incubation could be also tested and would maybe lead to more 

consistent outcomes. A part from that, a positive result could be reached in the context of drug 

resistance and for this reason these conjugates, particularly sC18(GFLG-Dau), are worth for 

a further investigation in this direction.  

3.2. DKP3RGD as targeting moiety 

Since the GnRH system did not show the expected results in terms of selectivity, we 

concentrated on another model using as targeting unit the previously introduced c[DKP3RGD] 
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synthesized in the research group of Prof. Gennari and Prof. Piarulli, which shows a high 

binding affinity towards αvβ3 integrin receptors. [153, 156] Various works where this ligand was 

conjugated to anticancer drugs have been already published showing a favorable targeting 

index when monomeric or multimeric RGD-paclitaxel conjugates were tested on different cell 

lines expressing the integrin receptors at different extent. [157, 235] However, contrasting results 

have been described in recent publications related to the possible interaction of this ligand with 

different integrins and subsequent loss of selectivity. [166, 247] Until now, no study has been done 

with the insertion of CPPs, thus we wanted to investigate how the activity and selectivity of 

these conjugates could be influenced by the presence of this carrier peptide. 

3.2.1. Synthesis and biological evaluation of the drug delivery system 

The functionalized integrin targeting ligand c[DKPf3RGD] was prepared as previously 

described [156] by the PhD students Silvia Panzeri and Sara Parente (research group of Prof. 

Piarulli). This was then functionalized with a commercially available bifunctional azido 

carboxylic PEG4-spacer by a pH-sensitive reaction in ACN/phosphate buffer. The maintenance 

of a specific pH at 7.3-7.5 was necessary to allow the binding between the nucleophilic benzylic 

amine of the ligand and the carboxylic group of the spacer. The conditions were the same as 

described in Zanella et al. [159] and 88% yield was obtained. Afterwards, sC18 was connected 

to the ligand by CuAAC via its N-terminal propargylglycine leading to compound 1. To study 

the cellular uptake, an additional modification was introduced at the side chain of lysine at 

position 8 within the sC18 sequence: labeling with 5(6)-carboxyfluorescein (CF) resulted in 

compound 1a. The synthetic strategy, depicted in Figure 24, worked straightforward and, after 

optimizing the conditions, good yields could be obtained (see Table 20 in the attachment). At 

the beginning, the reaction was performed in t-BuOH:H2O but the best results were achieved 

with DMF and H2O, following the procedure described in Raposo Moreira Dias et al. [235]. 

Contrary to the GnRH-III-conjugates, the use of an excess of the azido compound led to better 

yields since the retention time of the CPP and the final conjugate would be otherwise too similar 

and problems during the purification would occur. The unlabeled and labeled CPPs (2 and 2a) 

were also synthesized as control to allow a direct comparison with the novel targeted drug 

delivery system. The synthesized compounds are listed in Table 5. 
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Figure 24. Synthetic strategy of the full conjugates 1 and 1a. A: Synthesis of the CF-labeled sequence by 

SPPS. B: pH-sensitive reaction for the attachment of the PEG4-linker to the functionalized ligand and “click” reaction 

between the azido group of the linker and the alkyne group at the N-terminus of the CPP. Reagents and conditions: 

a: 5 eq. Fmoc-L-Pra-OH (B), 5 eq. Oxyma, 5 eq. DIC in DMF, overnight; b: 30% piperidine in DMF (20 min x 2); c: 

10 eq. Boc2O, 1 eq. DIPEA in DCM for 2 h (2x); d: 2% hydrazine in DMF (10x); e: 2 eq. CF, 2 eq. HATU, 2 eq. 

DIPEA in DMF for 2 h, then 5 eq. CF, 5 eq. Oxyma, 5 eq. DIC in DMF overnight; f: 20% piperidine in DMF, 45 min; 

g: TFA/TIS/H2O (95:2,5:2,5), 3 h, rt; h: 1 eq. c[DKPf3RGD]-NH2, 2 eq. HOOC-PEG4-N3, PBS/MeCN, pH 7.3-7.5, 

overnight; i: 1 eq. III, 1.3 eq. c[DKPf3RGD]-PEG4-N3, 0.5 eq. CuSO4 5H2O, 0.6 eq. Na ascorbate, H2O: DMF 1:1, 

10 mM, 40 °C, N2, 24 h 

Table 5. List of the synthesized compounds with their codes, names and MW (calculated and experimental). 

Code Conjugate 
MW 

(g/mol) 

MWexp 

(g/mol) 

1 c[DKPf3RGD]-sC18 2998.2 2998.3 

1a c[DKPf3RGD]-sC18(Lys8-CF) 3355.9 3356.6 

2 sC18 2069.6 2069.9 

2a sC18(Lys8-CF) 2427.9 2428.9 
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Next, we measured the binding affinity of the new conjugates towards the isolated integrin 

receptors v3 and v5, which are both tumor-associated integrins (Table 6). The assay was 

performed by Dr. Daniela Arosio (Istituto di Scienze e Tecnologie Molecolari in Milan). 

Compounds 1 and 1a were both able to inhibit biotinylated vitronectin binding to v3 with low 

nanomolar affinity, indicating that the presence of the CPP as well as the fluorophore did not 

interfere with the receptor binding. The free functionalized ligand c[DKPf3RGD] is added in the 

table as reference and it was already reported to be up to 200-fold more selective to v3. [156, 

159] Interestingly, the selectivity was even more pronounced for the conjugate 1 (up to 1.500-

fold) within this assay. If we compare these results with the binding values obtained for the 

dual-action ligand VEGFR-integrin targeting conjugate synthesized in the group of Prof. 

Gennari, we can observe a significant difference. [159] Overall, our results indicated a stronger 

affinity and selectivity even if the size and characteristics of the molecules attached to the RGD 

ligand are comparable (both α-helical peptides, 15 and 16 amino acids for VEGFR ligand and 

sC18, respectively). One explanation for this effect might be the choice of the PEG spacer. For 

the dual action ligand a PEG8 linker was employed in order to create enough distance between 

the two ligands in accordance with a previous work of Papo et al. [248]. Contrarily, we based our 

approach on a work of Penco and co-workers, which pointed out the crucial role of the spacer 

between the targeting device and the drug in small molecule drug conjugates. [249] The spacer, 

in fact, should be able to adequately separate the two moieties in order to prevent a negative 

impact on the receptor binding but also maintain the individual features of each component. 

Short-length PEG spacers were selected to enhance solubility and minimize the formation of 

bulky loops that can interfere with the binding. As a demonstration, to connect the 

c[DKPf3RGD] ligands to a multimeric scaffold, tetraethylene glycol spacers were employed by 

Raposo Moreira Dias et al. in order to render the conjugates more water‐soluble and flexible, 

reaching a very high selectivity. [235] 

Table 6. Inhibition of biotinylated vitronectin binding to αvβ3 and αvβ5 receptors. IC50 values were calculated 

as the concentration of compound required for 50% inhibition of biotinylated vitronectin binding as estimated by 

GraphPad Prism software; all values are the arithmetic mean SD of triplicate determinations. The values 

corresponding to the free functionalized ligand were previously described and are added here as reference. [156] 

Code 
IC50[nM]  

αvβ3 

IC50[µM]  

αvβ5 

1 16.7 ± 0.6 24.9 ± 2.7 

1a 15.3 ± 5.2 2.5 ± 0.2 

c[DKPf3RGD]-NH2 26.4 ± 3.7 >5 
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For further in vitro cell studies, we first investigated which cell lines could be used as positive 

and negative control. From literature data, U87 cells have been reported to display an 

enhanced expression of αvβ3 integrins; on the contrary, HT-29 cells are documented to express 

αvβ5 but not αvβ3 receptors, while MCF-7 cells showed controversial results. [250-252] We verified 

the integrin receptor expression for these cell lines by flow cytometry using for this purpose a 

FITC-labeled anti-integrin αvβ3 monoclonal antibody. The assay was run following a protocol 

developed by the PhD student Ivan Randelovic, in the research group of Dr. József Tóvári at 

the National Institute of Oncology in Budapest. After fixation, the cells were incubated with a 

BSA solution to occupy all the unspecific binding sites on the surface and then incubated with 

the antibody for 1 h. Afterwards, the fluorescence intensity was measured by flow cytometry 

and the value obtained from the measurement of the untreated cells was subtracted. All cell 

lines were tested in the same day to better compare the flow cytometry results. 

From our assay (Figure 25), U87 cells confirmed the literature data expressing αvβ3 integrins 

at higher level compared to HT-29 and MCF-7 cells (7.5 and 5 times higher value, 

respectively), which were therefore used as negative controls. Since in vitro experiments were 

performed in two different laboratories (OOI in Budapest and University of Cologne) using the 

correspondent cell lines (same type but different stocks), the integrin expression was evaluated 

in both cases and showed comparable results (data not shown). This was an essential 

demonstration to assure that the results from different labs could be correlated. 

 

Figure 25. αvβ3 integrin expression level measured by flow cytometry analysis using FITC-conjugated anti-

integrin antibody clone LM609. This is an allosteric inhibitor of integrin αvβ3, which binds to a conformational 

epitope resulting from the post-translational association of the αv and β3 subunits. The experiment was performed 

in duplicate with n=2. 

In a next step, we investigated the cytotoxic profiles of the drug-free peptides, 1 and 2. Thus, 

U87 cells as positive control and HT-29 and MCF-7 cells as negative controls, were incubated 

for 72h with different concentrations of the conjugates (Figure 26). 
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Figure 26. MTT-based antiproliferative study with compounds 1 and 2 on U87, HT-29 cells and MCF-7 cells. 

The peptides were incubated for 72 h without washout. Values from the positive control (DMSO/EtOH; 1:1) were 

substracted from all data and the untreated cells were set to 100%. The experiment was performed in triplicate with 

n=2. 

In U87 and MCF-7 cells, at the highest concentration of 100 µM, compound 1 showed minor 

toxicity whereas the free peptide sC18 (2) significantly harmed the cells. Differently, both 

compounds showed nearly no influence on cell viability when applied to HT-29 cells, even if a 

slightly higher activity of peptide 2 could be recognized also in this case. The lower cytotoxicity 

in HT-29 cells probably directly reflects the reduced sensitivity of this cell line. The high toxicity 

of 2 has not been verified by previous results, but this is maybe related to the fact that the 

cytotoxicity profile has never been tested for 72h. In fact, when the toxicity was tested after 

24h, no effect could be detected even at the highest concentration, showing a very similar 

profile between the different cells (figure 89 in attachment).  

In a 72h experiment, too many factors are playing with each other and the binding affinity 

features of the conjugates could be definitely annulled after such a long incubation time by the 

internalization ability of the CPP and the presence, even if at lower level, of αvβ3 integrin 

receptors also in the control cell lines. For this reason, the distinctive activities of the two 

compounds in the different cell lines should be related to the peculiar biological characteristics 

of each cell type and no theory about selectivity could be drawn. A much more interesting 

investigation to corroborate our hypothesis would be to examine the uptake profiles of 

compounds 1a and 2a, taking into consideration not only different incubation times but also 

the internalization behavior in presence of binding competitors or inhibitors of peculiar transport 

pathways. This was considered as decisive to let us understand the underlying mechanisms 

that influence the cell penetration of the construct, in particular evaluating the dependence on 

receptor-binding. 

First, the time-dependence of peptide uptake was quantified in U87, HT-29 and MCF-7 cells 

(Figure 27A). The three cell lines were incubated with the fluorescently labeled conjugates 1a 
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and 2a for 30 and 60 min and the fluorescence intensity was quantitatively measured by flow 

cytometry. All the results were normalized within the different cell lines to better compare the 

outcomes, not only between the peptides but also between the different systems.  

 

Figure 27. Cellular uptake of 1a and 2a in U87, HT-29 and MCF-7 cells. A: Cellular uptake was quantified by 

flow cytometry. Cells were incubated with 10 µM peptide solution for 30 or 60 min at 37°C. The results are 

normalized to the value of sC18 in U87 cells that is set to 1. The experiment was performed in triplicate with n=2. 

(**: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001). B: Cellular uptake was analyzed by CLSM. Cells were incubated for 

30 min with 10 µM of CF-labeled peptide solution at 37°C. External fluorescence was quenched by treatment with 

150 µM trypan blue for 15 sec. Green: CF-labeled peptide; blue: Hoechst 33342 nuclear stain; scale bar is 10 µm.  

Interestingly, in all the cell lines the uptake of 1a was time-dependent, differently from 2a where 

such a tendency could not be recognized. A general remark about these results is that, as 

already stated for the cytotoxicity, differences in the uptake are sometimes merely influenced 

by the biological characteristics that distinguish a particular cell line from the others. 

Nevertheless, if we compare the two compounds we can notice different behaviors that are 

worth to be described in details for every cell line. What we can observe is that, differently from 

the negative control cell lines, in U87 the internalization of 2a after 30 minutes was stronger 

than 1a. This reduced uptake can be explained with the different uptake modalities 

distinguishing these two peptides. We already showed that the conjugate 1a displays a high 

affinity towards integrin αvβ3. For this reason, we can imagine that, when in contact with the 

cell surface, the compound would tend to bind to the receptor and afterwards internalize by 

receptor- or by CPP-mediated uptake. This important interaction would definitely shorten the 
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time available for internalization leading to an overall reduced penetration. Indeed, since within 

this experiment we washed out the solution and trypsinized the cells, the conjugate, still bound 

to the receptor or interacting at the level of the outer membrane, would detach from the cell 

evolving in a lower cellular uptake. In addition, 1a would be probably taken up at lower extent 

because of the different structure. It has been already demonstrated that the insertion of a 

PEG spacer would enhance the hydrophilicity of the molecule leading to a lower internalization 

rate, since the direct translocation through the lipid phase of the membrane would be limited. 

[253] After 60 min incubation more peptide was able to internalize and for this reason the 

fluorescence intensity measured for 1a and 2a are leveled. Other considerations should be 

made in case of MCF-7 and HT-29 cells since in this case the receptors are present at a lower 

level and should not exert any role in the internalization. In these cell lines, after 30 min the 

uptake levels of the two compounds are comparable while after 60 min incubation, the situation 

is completely overturned in relation to U87 cells, which is a good sign because it means that 

this behavior is dependent on the different integrin expression. What we can presume is that 

1a is probably more stable than 2a, therefore it would not be rapidly degraded so that, after 60 

minutes, 1a would internalize at higher extent. Another hypothesis could be connected with a 

possible receptor-mediated uptake, which could play an important role after longer incubation 

time. As I already illustrated, our control cell lines do not completely lack of integrin receptors 

and their presence should be taken into consideration in the evaluation of the experimental 

results. To clearly understand this phenomenon and concretely imagine what could happen on 

the surface of the cell, the structure of the conjugate 1a was calculated using the Phenix 

software and illustrated with Pymol (Figure 28). 

  

Figure 28. Structure calculation of conjugate 1a illustrated with Pymol. Calculation was performed by the PhD 

student Dirk Lindenblatt (research group of Prof. Niefind, University of Cologne). 

This picture is quite significant for our study since we can directly observe how the helix 

generated by the CPP forms a 90° angle with the targeting moiety and this could allow an 

efficient insertion through the two receptor subunits and effective binding, as already 

demonstrated by the binding studies.  

The cellular uptake was also qualitatively examined by CLSM (Figure 27B): the cells were 

incubated for 30 minutes with the peptide solutions, nuclei were stained with Hoechst 44432 
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and the external fluorescence was quenched with trypan blue. While MCF-7 and HT-29 cells 

were pretty easy to handle, many problems have been met with U87 cells. This cell line is very 

sensitive to every treatment, in particular when many steps are performed in a short time 

interval as it happens for microscopy measurements (treatment, quenching, washout). Indeed, 

the cells rapidly detach from the well surface, become round and cannot be visualized so well. 

For this reason, the outcomes are also difficult to compare within different cell lines. 

Nevertheless, all the cell lines have been tested and from the pictures, we notice a quite similar 

internalization pattern between 1a and 2a. The quantitative difference in uptake shown in the 

FACS results for U87 cells between the two compounds is not clearly visible here but 2a 

displays a high standard deviation, what would explain this result. In the case of MCF-7 and 

HT-29 cells, the FACS results are here validated since the uptake of the two compounds is 

comparable. As already described in the introduction, different entry pathways can be followed 

by CPPs and these could be influenced, a part from the size of the cargo and the concentration 

of the peptide, also by the different cell lines tested. [254] In fact, regard to the uptake pattern, 

we can detect a distinctive vesicular distribution in HT-29 cells, opposed to a more diffuse 

dispersion in the cytosol of U87 and MCF-7 cells, indicating a possible explanation for the 

higher toxicity of 2 in these cell lines observed in the previous antiproliferative assay (Figure 

26). Since the microscope investigation did not offer us more relevant information than the 

quantitative assay by flow cytometry, it would be interesting to perform the same experiment 

after 60 minutes incubation to observe if some variations in the internalization pattern could be 

detected in particular for 1a. 

To better understand this important mechanism of internalization into U87 cells we decided to 

perform more experiments using flow cytometry starting with a competition assay (Figure 29). 

To do so, the competitor used was the free unfunctionalized ligand c[DKP3RGD] synthesized 

by the PhD student Clémence Robert, in the group of Prof. Piarulli. The assay was based on 

the addition of this molecule to the 1a peptide solution followed by incubation with U87 cells 

for 30 or 60 min for a better comparison with the previous results obtained from the cellular 

uptake studies.  
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Figure 29. Competition experiment. Co-incubation of the peptide 1a (10 µM) with a 10-fold excess of the free 

ligand c[DKP3RGD] for 30 and 60 min. The cellular uptake was quantified by flow cytometry. (*: p ≤ 0.05; **: p ≤ 

0.01). The experiment was performed in triplicate with n=2. 

A maximal 10-fold excess of the ligand (100 µM) was used because as soon as we increased 

its concentration, we encountered many problems by handling the cells. This was a further 

demonstration that U87 cells overexpress integrin receptors and that these receptors are very 

important for the adhesion on the surface of the plate. In fact, when RGD was added in excess, 

the cells started to detach even if high care was taken while treating them as already described 

by Russo et al. [255] In the presence of a 100-fold excess of the ligand, in fact, after 30 min 

incubation the cells were completely detached so that a significant number of cells could not 

be counted. Starting from the 30 min incubation, we can see a slight inhibition in the uptake of 

conjugate 1a. After 60 min the effect is higher, corroborating that, after longer incubation, the 

integrin-mediated internalization could have a stronger effect. Since the influence is not 

substantial, we could state that integrin-receptor mediated uptake may have a slight relevance 

on the internalization of 1a but assumedly not as meaningful as the CPP-mediated uptake. An 

additional theory could be that the conjugate recognizes the receptor but does not bind to it 

following a “kiss and run model” being then quickly taken up by CPP-mediated uptake. This 

hypothesis was already described by Reina and coworkers, who proved that the internalization 

of a cRGD ligand was not integrin-dependent but that, after binding the receptors, it would 

follow a fluid-phase endocytosis pathway to lysosomes. [165] 

This assumption could be exemplified by the model depicted in Figure 30 where two 

mechanisms are present at the same time: a receptor-mediated uptake and a CPP-mediated 

uptake. Probably in our case the CPP-mediated uptake is stronger but the recognition of the 

receptor is very important and allows the conjugates to target the cell. 
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Figure 30. Graphic model describing the hypothetical internalization mechanism of the new drug delivery 

system. The selective targeting to receptor-overexpressing cells is allowed by the integrin ligand and the good 

permeability of the CPP improves drug cellular uptake. The CPP-mediated uptake plays a big role: the peptide-drug 

conjugate is first recognized by the receptor and then internalized by CPP-mediated mechanisms (endocytosis or 

direct penetration). Next to this, the peptide drug-conjugate could also internalize inside the cell by receptor-

mediated endocytosis. In the endosomes the conjugates are degraded and the drug released. 

Since we could not demonstrate that only integrin-dependent uptake plays a role in the 

internalization of the constructs, we performed a blocking experiment that would be useful to 

understand the whole mechanism (Figure 31). In this case, the cells were pretreated for 30 

minutes with the correspondent inhibitors, afterwards the blocking solution was removed and 

the cells were incubated for further 30 min with 1a. Additionally to the free ligand c[DKP3RGD], 

other reagents have been used to block some entry pathways typical of CPP internalization. 

Poly-L-lysine (PLL) was used to inhibit the direct membrane translocation of the peptide: this 

inhibitor is meant to interact with the negative charges of the cell membrane and inhibit the 

interaction of the positively charged CPP helix blocking its penetration. The other reagent used 

was methyl-β-cyclodextrin (mβ-cd), responsible for depleting the membrane from cholesterol 

and blocking any cholesterol-dependent endocytic uptake.  
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Figure 31. Blocking experiment. 30 min pre-incubation with c[DKP3RGD] (10 µM), PLL or mβ-cd (1 mM) followed 

by 30 min incubation with 10 µM 1a solution. The experiment was performed in triplicate with n=1. 

It seems from these results that the integrin receptor-mediated uptake has practically no 

influence in the internalization of the conjugate 1a while the CPP-mediated uptake plays a 

crucial role. In fact after treatment with PLL and mβ-cd, the uptake is reduced to the half, 

respect to the control. This does not happen for the free ligand, where we can surprisingly see 

an increase of the uptake probably due to the increment of other ways of penetration mediated 

by the CPP. 

In general, the results achieved so far proved that the ligand chosen to increase the selectivity 

of the CPP could actually lead to crucial differences in the uptake of the conjugate 1 compared 

to the CPP 2 but that the internalization is probably influenced by the CPP while the ligand 

could play an important role in targeting the conjugates towards the cells overexpressing the 

receptors. Since our final goal is connected with the improvement of the traditional 

chemotherapy, especially concerning the reduction of side effects by increasing selectivity, 

new research directions have been undertaken, starting with the development of synthetic 

strategies to accomplish the conjugation to various cytotoxic payloads.  

3.2.2. Development of cryptophycin conjugates 

The first drug to be conjugated with the drug delivery system was cryptophycin-55. The 

molecule was synthesized by the PhD student Eduard Figueras Agustì (research group of Prof. 

Norbert Sewald, University of Bielefeld) and functionalized as glycinate ester of the hydroxyl 

group of the chlorohydrin (Cry-55 glycinate) in order to allow the attachment of a linker. The 

synthetic strategy followed for the preparation of the conjugates, listed in Table 7, is depicted 

in Figure 32. 
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Figure 32. Synthetic strategy for the synthesis of c[DKPf3RGD]-sC18-S-S-Cry. Reagents and conditions: a: 5 

eq. Fmoc-L-Pra-OH (B), 5 eq. Oxyma, 5 eq. DIC in DMF, overnight; b: 30% piperidine in DMF (20minx2); c: 10 eq. 

Boc2O, 1 eq. DIPEA in DCM for 2 h (2x) d: 2% hydrazine in DMF (10x); e: 5 eq. Fmoc-β-Alanine-OH, 5 eq. Oxyma, 

5 eq. DIC in DMF, overnight; f: 5 eq. Fmoc-Pen(Trt)-OH, 5 eq. Oxyma, 5 eq. DIC in DMF, overnight; g: 

TFA/thioanisole/EDT (90:7:3), 3 h; h: 1 eq. 3-mercaptopropionic acid, 2.3 eq. dithiopiridine, MeOH, 3 h, rt; i: 1 eq. 

Cry-55-gly, 4 eq. V, 4 eq. PyBOP, 4.5 eq. HOBt, 5 eq. DIPEA in dry DMF, N2, 5 h, rt; j: 1 eq. VI, 1 eq. IV, dry DMF; 

k: 1 eq. VII, 1.3 eq. c[DKPf3RGD]-PEG4-N3, 0.5 eq. CuSO4 5H2O, 0.6 eq. Na ascorbate, H2O: DMF 1:1, 10 mM, 40 

°C, N2, 24 h. 

The synthesis of the CPP moiety IV was performed as already described but at the side chain 

of Lys8 a β-alanine was attached functioning as spacer and a penicillamine residue was bound 

to it. The penicillamine was chosen because of the branched side chain that could protect the 
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disulfide bridge from the cleavage in biological fluids, thus improving the stability of the 

conjugate and hindering the premature release of the drug causing an off-target effect. [256] For 

the preparation of the drug-linker molecule VI, dithiopyridine was reacted with a thiol acid [257] 

to allow the formation of a peptide bond with the amino group of the glycine residue attached 

to the drug. Particular care had to be taken during all these steps because of the sensitivity of 

the drug. In fact, the maximum temperature that could be used was 40 °C in order to prevent 

the hydrolysis of the chlorine atom. The synthetic strategy until the formation of the CPP-drug 

conjugate VII, easily obtained in DMF solution, [258] worked successfully in optimal yields. The 

critical step during the synthesis turned out to be the “click” reaction. The previously described 

conditions were used but we directly understood that the linker would not be stable in presence 

of the reductive agent sodium ascorbate. The reaction was followed by LC-MS and samples 

were taken at regular intervals. Already after 10 minutes, the peak corresponding to the final 

product was detectable almost at the same retention time of the educt. After 1.5 h the situation 

did not change and there was still the same educt/product ratio. The reaction was left overnight 

and the next day new peaks were detectable corresponding to the oxidized CPP and the 

oxidized CPP conjugated to the ligand (Figure 33).  

 

Figure 33. ESI-MS mass spectrum of the “click” reaction between VII and c[DKPf3RGD]-PEG4-N3 after 24 h 

at rt. 1: oxidized IV; 2: oxidized c[DKPf3RGD]-IV conjugate (without Cry-linker); 3: c[DKPf3RGD]-PEG4-N3; 4+5: 

VII and c[DKPf3RGD]-sC18-S-S-Cry 

The product could be obtained in only very low amounts, the yield was very low and the starting 

material could not be recovered (Table 20 in the attachment). Alternative conditions have been 

considered in order to avoid the presence of reductive agents. In this sense, a publication from 
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Prof. Sewald showed the optimal alternative, where copper powder was used and the yields 

were quite satisfactory. [259] Unfortunately, because of the few amounts available of the 

c[DKPf3RGD] ligand and the cryptophycin variant, it was not possible to optimize the reaction 

with the right solvents and right equivalents and some work still has to be done in this direction. 

Since the compound obtained until now was not sufficient to start biological studies, we 

considered changing the cytotoxic payload but taking into consideration that the synthesis of 

these constructs should be further investigated because of the very promising activity of the 

highly active cryptophycin. 

Table 7. List of Cry-55-glycinate conjugates with their names, structures and MW (calculated and 

experimental) 

Name Structure 

MW 

(g/mol) 

MWexp 

(g/mol) 

c[DKPf3RGD]-

sC18-S-S-Cry 

 

4050.7 4049.7 

sC18-S-S-Cry 

 

3121.7 3121.4 

 

3.2.3. Development of chlorambucil conjugates and their biological evaluation 

Because of the easier way of conjugation, chlorambucil was considered as new cytotoxic 

payload. This project was in collaboration with the PhD student Clémence Robert, who 

synthesized these novel conjugates during her secondment at the University of Cologne. The 

synthetic strategy is not shown but followed the same steps as for the other conjugates. In this 

case, the drug was coupled following the traditional SPPS strategy. The synthesis seemed to 

be easy and straightforward but as soon as the peptide was cleaved from the resin, lyophilized 

and purified, a lot of problems were encountered connected with the high tendency of 
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chlorambucil to hydrolyze when in contact with water, in particular at acidic pH. This hydrolysis 

had been previously described and it could be limited by shortening the time between one 

synthesis step and the other. [260] For this reason, after purification, the dissolved peptide was 

put on ice or directly frozen for freeze-drying and the peptides were preserved at -20 °C or -80 

°C. Stock solutions were prepared in DMSO. Despite these problems, the CPP-conjugates 

could be successfully synthesized and analyzed by LC-MS (Table 8). 

Table 8. List of Chlorambucil conjugates with their names, structures and MW (calculated and 

experimental). 

Name 
Structure MW 

(g/mol) 

MWexp 

(g/mol) 

c[DKPf3RGD]-

sC18(Cbl) 

 

3297.8 3298.4 

Cbl-sC18 

 

2356.8 2356.4 

 

The cytotoxicity of the conjugates could be finally evaluated by MTT-based assay and short 

incubation times were used, for the same reasons as for the GnRH conjugates (Figure 34). As 

we can see, the free cytostatic agent was not active in both cell lines. This outcome is in strong 

relation with the weak internalization of the drug; the CPP in this case would improve a lot its 

efficacy. In fact, if we analyze the graph of Cbl-sC18 we can see that the measured EC50 value 

is much lower in particular for U87 cells and we could improve the cytotoxicity of the drug. In 

the context of selectivity, the results, were not as expected. The conjugate c[DKPf3RGD]-

sC18(Cbl) was slightly more toxic in U87 than in HT-29 cells but the activity compared to the 

free drug was pretty the same if not worse and anyway much less active than Cbl-sC18 (almost 

4-fold higher EC50 for U87 cells). We tried to figure out which could be the reason for that and, 

we realized that this could be connected with the problem of hydrolysis in the cell culture 
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medium. Also in this case we could think about the internalization pathway of the conjugate. 

As already hypothesized before, the conjugate 1 was not internalized so well as 2 because of 

the presence of PEG that could disturb the direct translocation of the peptide. Additionally, in 

U87 cells the targeted conjugate could bind to the receptors hindering a fast CPP-mediated 

penetration. In fact, the same theories shown before could be validated also in this case. 

Therefore, in HT-29 cells the conjugate is simply washed out after 15 min while for U87 cells 

the conjugate is still binding outside on the surface of the cell but, before and after being 

internalized, hydrolysis would occur hampering the alkylating activity when the conjugate finally 

reaches the site of action inside the nucleus.  

 

Figure 34. MTT-based antiproliferative study with compounds c[DKPf3RGD]-sC18(Cbl), Cbl-sC18 and Cbl 

on U87 and HT-29 cells. After 15 min incubation, the peptide solution was removed and the cells were incubated 

for additional 72 h with fresh medium. Values from the positive control (DMSO/EtOH; 1:1) were substracted from 

all data and the untreated cells were set to 100%. The experiment was performed in triplicate with n=2. 

Table 9. EC50 values of the compounds c[DKPf3RGD]-sC18(Cbl), Cbl-sC18 and Cbl referred to figure 34. 

EC50 (µM) 

 U87 HT-29 

c[DKPf3RGD]-sC18(Cbl) >110 >170 

Cbl-sC18 31.6 ± 3.3 78.6 ± 7.1 

Cbl >140 >140 

 

Since the hydrolysis of the compounds would add a further factor to take into consideration in 

this already complex system, we reasoned that chlorambucil was not the ideal drug to be used 

to investigate the selectivity of these conjugates.  

3.2.4. Development of daunorubicin conjugates and their biological evaluation 

Since the conjugation to the previous drugs caused some problems, due to the difficult 

synthesis or the instability of the molecules, we decided to use the same strategy described 

for the GnRH-III-conjugates: daunorubicin was used again for the conjugation to the CPP via 

oxime bond. In the case of GnRH-III conjugates, the main problem was the resistance in 
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PANC-1 cells and the lack of efficacy of the GnRH receptor binding after the short incubation 

time, but the drug showed a relatively good activity and an efficient conjugation strategy. 

Furthermore, the CPP clearly improved the internalization of the homing peptide playing a very 

important role in the delivery of the drug. The CPPs I and II were synthesized as already 

described for the GnRH-III conjugates (Figure 18). The “click” reaction with the ligand worked 

pretty well reaching yields from 75% to 90% (Table 20 in the attachment). In this case, in 

addition to the controls including only the CPP sequence (2b and 2c, previously named 

sC18(Dau) and sC18(GFLG-Dau)), two other determinant controls (Figure 35B) were 

synthesized by the PhD student Sara Parente from the research group of Prof. Piarulli. The 

first one 3b, containing the c[DKPf3RGD] moiety separated from the drug by a PEG4 chain, 

the second one 3c, where the two elements were outdistanced by a GFLG cleavable linker. 

For the last compound, the PEG4 linker was not inserted in order to keep more or less the 

same distance between the targeting moiety and the drug, so that the binding would not be 

influenced. These two controls were synthesized in order to strictly analyze the contribution of 

the RGD moiety to the activity of the drug and compare this to the other conjugates containing 

the CPP as carrier moiety or both the CPP and the c[DKPf3RGD]. The general synthetic 

strategy for the full conjugates is depicted in Figure 35A and all the synthesized compounds 

are listed in Table 10. 
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Figure 35. Synthetic strategy for the synthesis of 1b, 1c (A) and structure of the controls 3b and 3c (B). See 

figure 18 for the synthesis of I and II. Reagents and conditions: a: 1 eq. I or II, 1.3 eq. c[DKPf3RGD]-PEG4-N3, 0.5 

eq. CuSO4 5H2O, 0.6 eq. Na ascorbate, H2O: DMF 1:1, 10 mM, 40 °C, N2, 24 h. 

Table 10. List of synthesized c[DKPf3RGD] conjugates and controls with their codes, names and MW 

(calculated and experimental). 

Code Name 
MW 

(g/mol) 

MWexp 

(g/mol) 

1b c[DKPf3RGD]-sC18(Dau=Aoa-Lys8) 3580.1 3581.1 

2b sC18(Dau=Aoa-Lys8) 2652.2 2653.2 

3b c[DKPf3RGD]-PEG4-Aoa=Dau  1584.2 1585.0 

1c c[DKPf3RGD]-sC18(Dau=Aoa-GFLG-Lys8) 3954.6 3955.6 

2c sC18(Dau=Aoa-GFLG-Lys8) 3027.0 3027.9 

3c Dau=Aoa-GFLG-c[DKPf3RGD] 1587.4 1587.9 
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The same binding assay as for the drug-free conjugates was performed by Dr. Arosio with the 

drug conjugates and the results were quite promising and similar to the previous ones (Table 

11). 

Table 11. Inhibition of biotinylated vitronectin binding to αvβ3 and αvβ5 receptors. IC50 values were calculated 

as the concentration of compound required for 50% inhibition of biotinylated vitronectin binding as estimated by 

GraphPad Prism software; all values are the arithmetic mean SD of triplicate determinations. The values 

corresponding to the free ligand were previously described and are added here as reference. [156] 

Code 
IC50[nM]  

αvβ3 

IC50[µM]  

αvβ5 

1b 31.7 ± 4.2 >10 

1c 9.7 ± 4.0 >10 

3b 14.0 ± 1.6 6.3 ± 0.4 

3c 5.8 ± 0.6 2.1 ± 0.1 

c[DKPf3RGD]-NH2 26.4 ± 3.7 >5 

 

The presence of daunorubicin did not influence the binding to the receptors, contrarily the 

affinity, compared to the free functionalized ligand c[DKPf3RGD], was in some cases even 

improved (1c, 3b, 3c). Furthermore, the selectivity towards the two integrin types was 

maintained. Especially, we can recognize a difference between 1b and 1c but also 3b and 3c. 

It seems that a better binding is connected with the presence of the hydrophobic cleavable 

linker GFLG. An explanation for this result could be only demonstrated by docking studies 

where we could effectively see how the construct is positioned inside the receptor and which 

interactions are feasible to stabilize the complex.  

After these encouraging results, we were interested to see how the secondary structure of the 

CPP-bearing conjugates would change with the addition of the drug and/or the ligand. The 

amphipathic helix is a common motif encountered in various proteins and peptides. 

Amphipathicity induces the partition of hydrophobic and polar residues between the two 

opposite faces of the α-helix, favoring membrane binding and penetration. [261] Previous works 

already demonstrated that sC18 assumes an amphipathic α-helical conformation when in 

contact with artificial lipid membranes, [183] therefore the tendency of the novel conjugates to 

form an α-helix was analyzed by CD spectroscopy.  
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Figure 36. CD spectra of 1b, 1c, 2b and 2c in 10 mM phosphate buffer (left) and 10 mM phosphate buffer/TFE 

1:1 (right). Peptide concentration was 20 µM. 

The conjugates were dissolved in phosphate buffer but also in a 1:1 mixture of phosphate 

buffer and the secondary structure inducer TFE. The α-helical content can be quantitatively 

expressed through the R-value determined by the ratio between the ellipticity values at 220 

nm and 208 nm, [262] where R=1 corresponds to an ideal α-helix. [263] While in phosphate buffer 

only a random-coil structure could be recognized, in the presence of TFE all the conjugates 

displayed the typical curve of an α helix (Figure 36). The first important observation that can 

be evidenced is the higher tendency of the c[DKPf3RGD] conjugates 1b and 1c to form a helix. 

This can be explained by the presence of the cyclic rigid construct at the N-terminus of the 

complex that could stabilize and elongate the whole structure. On the other hand it is possible 

that the c[DKPf3RGD]-linker is well inserted in the amphipathic sequence reinforcing the helix. 

This last theory would not be consistent with the calculated structure of the conjugate 

represented in Figure 28. In fact, in that case, the illustrated construct does not seem so 

homogeneous and it looks like the ligand is not embedded so well in the helical arrangement. 

Conversely, this structure was only calculated and the behavior in presence of a membrane 

could change the resulting organization. The corresponding GFLG variants 1c and 2c always 

display lower R values indicating that the helix is somehow hindered by the presence of this 

linker located in the middle of the sequence. Surprisingly, these results are exactly the opposite 

as for the binding studies: it seems that the presence of a better helix could somehow disturb 

the binding to the receptor. To demonstrate this, we should prove that during the cell-free 

binding assay in the presence of the receptors, an α-helix is also built. 

Like for the GnRH-III conjugates, the coupling to daunorubicin proved to be very effective and 

the compounds could be obtained in a sufficient amount to perform further studies. In 

particular, the binding studies demonstrated that the coupling to daunorubicin did not affect the 

affinity to the receptor, indicating that Lys8 in the sequence of the CPP was an ideal conjugation 

site. Furthermore, the secondary structure of the CPP was not disturbed by the presence of 

the drug in the central part of the sequence, since the R-value for 2b is comparable to the one 
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of 2, as already illustrated in previous works. [186] As a further improvement, the ligand even 

seemed to favor the formation of the helix and subsequently also a possibly interaction with 

the cell membrane. Based on these results, we thought that it was worth to continue 

investigating these conjugates starting with the examination of their cytotoxic effect on the 

already introduced cell lines U87, HT-29 and MCF-7. 

First, the cytotoxic activity of the full-conjugates (1b and 1c) and controls (2b, 3b and 2c, 3c) 

was tested after 72h incubation in presence of the three cell lines. In Figure 37, the EC50 curves 

of every compound are depicted. For a more schematic summary, Table 12 shows the EC50 

values for every cell line. The outstanding difference between the cytotoxic activity of the 

synthesized compounds (low micromolar range) and the EC50 of Dau (low nanomolar range) 

after 72h incubation had been already observed for the GnRH-III conjugates and, as previously 

outlined, it depends from the release of a metabolite that intercalates DNA with lower efficiency 

than the free drug (see Figure 23). Anyway, the lower activity of daunorubicin was not 

considered as a big problem as long as selectivity would be reached and a directed transport 

towards a specific cell line would be achieved. The different activity of the free drug observed 

in the three cell lines is purely depending on the different cellular uptake and not from a targeted 

transport as we want to achieve for our conjugates. These differences can be seen also in the 

case of the CPP controls and are purely connected to the different characteristics of every cell 

line. As already foreseen for the GnRH-III conjugates, after this long incubation time, we could 

not demonstrate any selectivity towards the integrin-overexpressing cell line U87. This is not 

valid for the controls 3b and 3c, where the lowest EC50 value is always exhibited by U87 cells, 

followed by HT-29 and MCF-7 cells. In this case, in fact, the CPP portion is missing and the 

internalization should be totally dependent on the presence of the receptor. Anyway, as already 

described by Bodero et al., within the 72h incubation a different uptake could be preferred 

mediated for example by other integrin receptors and this would explain why the EC50 values 

are not so divergent. [247] The best control to demonstrate this, would be to use isogenic 

knocked-out cells where the αv subunit is not present to definitely confirm that the uptake is 

completely integrin-dependent.  
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Figure 37. Antiproliferative assay with compounds 1b, 2b, 3b, 1c, 2c, 3c on U87, HT-29 and MCF-7 cells (72 h 

incubation). The peptides were incubated for 72 h without washout. Values from the positive control (DMSO/EtOH; 

1:1) were subtracted from all data and the untreated cells were set to 100%. The experiment was performed in 

triplicate with n=2. 

Table 12. EC50 values referred to the antiproliferative assays showed in Figure 37. 

EC50 [µM] EC50 [nM] 

 1b 2b 3b 1c 2c 3c Dau 

U87 5.6 ± 1.1 5.8 ± 1.5 3.0 ± 0.7 3.9 ± 3.9 1.1 ± 0.2 2.5 ± 0.7 7.8 ± 2.4 

HT-29 2.9 ± 0.2 9.2 ± 0.1 9.2 ± 0.9 11.0 ± 1.1 2.8 ± 0.2 5.4 ± 1.3 37.9 ± 7.7 

MCF-7 9.1 ± 2.11 5.0 ± 1.1 21.7 ± 8.3 2.7 ± 0.8 3.5 ± 0.4 14.7 ± 6.5 65.1 ± 18.3 

 



 Results and Discussion 

59 
 

We imagined that, since conjugates 1b and 1c showed a noteworthy binding affinity to αvβ3, 

they would selectively bind to the surface of U87 cells. In the case of MCF-7 and HT-29 cells 

this would also occur since they also express integrins but in a limited grade. If the incubation 

time is too long, the role of the ligand for the selective targeting would be surely annulled and 

the CPP internalization would not bring so many advantages in the activity of the drug. As we 

can see, after 72 h, the EC50 values of 3b and 3c are comparable to the outcomes of 1b, 2b 

and 1c, 2c at least for U87 and HT-29 cells. In general, as we already introduced for the GnRH-

III conjugates, we thought that the incubation time should be shortened if we wanted to achieve 

the best results in terms of targeting since otherwise the different activities of each single 

conjugate would be leveled to the others after such a long interval. Our suggestion was in fact 

to demonstrate the consistent contribution of the CPP in the internalization of the CPP-bearing 

molecules meanwhile restricting the relevance of the ligand in the uptake process. 

Nevertheless, the binding should be efficient even in this short incubation and allow the 

conjugates to target the surface of the cell and subsequently improve the CPP-mediated 

uptake in the cell line displaying the integrin receptors, following the previously described “kiss 

and run” process. In fact we wanted to establish a model where we could visualize the in vivo 

condition where, after the therapeutics are administrated, they are only shortly in contact with 

the tissue and should exert their action very fast. By this strategy, we wanted to show that our 

novel compounds, in such a short time would be able to get in contact to the receptors, bind 

to them, but then be internalized through CPP-mediated uptake as we could infer from the 

results of the flow cytometry. With the intention to find better conditions to explore the biological 

activity of this drug-delivery system, we decided to perform the next experiments using shorter 

incubation times. The same strategy as for the GnRH-III conjugates was used, but before 

studying their cytotoxic effect, a deeper inspection in the internalization of the conjugates was 

carried out. The impact of the ligand and the CPP on the cellular uptake of all the conjugates 

and controls was analyzed by flow cytometry after 15 min incubation (Figure 38) and by CLSM 

after 30 min incubation (Figure 39) with the three cell lines. The choice of the different 

incubation time was due to the peculiar experimental conditions of the two assays. For CLSM, 

15 minutes would be in fact too short to easily handle the cells and this would perturbate their 

condition complicating the entire experiment. 
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Figure 38. Cellular uptake of 1b, 2b, 3b and 1c, 2c, 3c in U87, MCF-7 and HT-29 cells quantified by flow 

cytometry. Cells were incubated with 10 µM peptide solution for 15 min at 37 °C. (*: p ≤ 0.05; ***: p ≤ 0.001). The 

results were normalized to the value of 1b in U87 cells that is set to 1. The experiment was performed in triplicate 

with n=2. 

A first general glance at the results starting from the conjugates without cleavable linker (1b-

3b) shows us that the uptake of the compounds containing the ligand (1b, 3b) is reduced if 

compared to the CPP (2b). 3b shows a lower uptake compared to the CPP-containing 

counterpart since in this case the ligand is directly connected to the drug without the 

interposition of the CPP molecule. The internalization, being just receptor dependent, would 

be therefore reduced and slowed down. As for the other conjugate 1b, in case of U87 cells it 

follows the same internalization tendency like for the CF-labeled compounds 1a and 2a 

(Figure 27, uptake after 30 min incubation) suggesting that the c[DKPf3RGD] containing 

conjugate would bind to the receptors and for this reason the uptake would be decreased, at 

least at the beginning. Since the incubation time in this case is even lower (15 min) this 

supposition would be even more justified. In the case of HT-29 and MCF-7 cells, this tendency 

could be explained by the worse internalization of these conjugates because of the presence 

of the ligand and the PEG linker, which somehow hinder the transport inside the cell as we 

previously discussed. This observation does not fit with the results obtained with the CF-

labeled compounds where for HT-29 and MCF-7 cells no significant difference between 1a and 

2a after 30 minutes could be recognized. It is important to notice that in this case the incubation 

time was different (15 minutes instead of 30 minutes) and that the uptake of 1a, differently from 

2a, was previously recognized to be time-dependent. Therefore, it is possible that after 

15 minutes 1b is still taken up at a lower level. Furthermore, the labeling with a different 

molecule could also lead to discrepancies in uptake. In fact if we compare the uptake of 2b in 

the three cell lines we also notice an outstanding contrast with the CF-compounds where U87 

was the favored cell line. In this case the behavior is dissimilar and highly probably it is also 

connected with the different physicochemical properties of the two attached groups. In Figure 

87 in the attachment the retention time of 1a and 2a is compared. 
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If we correlate the higher inclination of 1b to generate a helix, we would expect that the full 

conjugate 1b would be taken up at higher extent in every cell line, or at least in the negative 

controls since there, the uptake is not dependent on the receptor. On the contrary, the uptake 

of 1b is always lower than 2b. We could explain this contradictory result, changing the 

prospective from CD measurement to a real interaction with the cell membrane. At the 

beginning, the unfolded peptide is laying in parallel with the membrane interacting with the 

phospholipid heads. Afterwards, the peptide spontaneously moves to the core of the 

membrane interacting with the hydrophobic tails (hydrophobic effect) and the sequences 

rearrange to form a helix that reduces the exposition of the peptide bonds. In the case of 1b 

we demonstrated that the helix could be also formed but the initial transfer and insertion inside 

the membrane could be limited by the presence of the highly hydrophilic ligand-linker construct. 

For this reason, these two characteristics (α-helix formation and better cellular uptake) cannot 

be directly correlated without considering other important factors. 

Anyway, most importantly, if we compare the three cell lines we can observe a significant 

selectivity for the conjugates 1b and 3b towards U87 cells that is not present for 2b (lacking 

the targeting moiety). This is a very good result because we can see that at the extent of better 

cellular uptake, a targeting could be favored. The internalization of 3b in U87, being just 

receptor dependent, is reduced compared to the CPP but anyway consistent because of the 

over-expression of the receptors on the surface of these cells, in contrast to the control cell 

lines. In this context, contrasting observations were done in the group of Prof. Gennari where 

RGD-camptothecin conjugates labeled with a naphtalimide fluorophore were tested on U87 

cells and the β3-KO isogenic cells. In this case, after 3 h incubation, no correlation between 

the integrin expression and the cellular uptake could be determined because an observed 

reduction of fluorescence intensity between 7 and 12% could be measured while in our case 

the uptake in the control cell lines HT-29 and MCF-7 was reduced to around 50%. An 

explanation of this behavior was explained by Pina et al. with a possible role of other integrins 

in the uptake of the conjugates in this longer incubation time as we already described for the 

previous cytotoxicity assays. [166] In our case the minimal uptake observed in HT-29 and MCF-

7 cells could be explained by the choice of the control cell lines, which seems to be a crucial 

problem in many works. In fact it would be highly desirable to have αv-KO cells for this purpose. 

In the case of 1b we can say that we could succeed in synthesizing a compound that is taken 

up better than the homing peptide alone and more selectively than the CPP where in fact the 

selectivity is completely lost. We could demonstrate here that the ligand is slightly hindering 

the ability of the CPP to translocate through the membrane but it is also favoring a good 

targeting. The 15 minutes incubation has been a very important model in this case because it 

could mimic the in vivo situation where the compounds come in contact with the cells for a very 
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short time interval and the binding to the receptor could ideally direct the system to interact 

with the surface.  

The microscope images underline the same tendencies observed for the first three conjugates 

by flow cytometry analysis (Figure 39). Nevertheless, in this case, a direct comparison between 

the three cell lines is not so simple since, as already mentioned before, in this kind of 

experiment the strong influence of the biological characteristics of each cellular system has to 

be taken into account, starting from the tendency of U87 cells to form clusters that easily detach 

as soon as the medium is removed and a new solution is added. Indeed, the shape of U87 

cells cannot be defined so well as for the other cell lines and this is a sign that these cells do 

not perfectly adhere to the well surface. Anyway, we can state that for all the conjugates a 

consistent uptake inside the nuclei could be determined proving that a daunorubicin-containing 

metabolite is always generated and can reach its site of action. All in all, a lysosomal 

degradation assay would be very interesting to see how each conjugate is processed after 

being internalized in the cells and which metabolite would be able to translocate through the 

nuclear membrane to reach its target. In this case we could even justify the different relocation 

of every conjugate inside the cell, observed in the CLSM pictures.  

 

Figure 39. Cellular uptake of compounds 1b, 2b, 3b and 1c, 2c, 3c analyzed by CLSM in U87, HT-29 and 

MCF-7 cells. Cells were incubated for 30 min with 10 µM of the Dau-conjugate solution at 37°C. External 

fluorescence was quenched by treatment with 150 µM trypan blue for 15 sec. Red: Dau-conjugate; blue: Hoechst 

33342 nuclear stain; scale bar is 10 µm. 
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Unfortunately, the previously observed selectivity was completely lost in the case of the 

conjugates containing the cleavable linker between the CPP and the drug molecule (1c-3c). 

In general, the GFLG linker increases the unselective uptake compared to the previously 

described conjugates. In this regard, we have to take into consideration that cathepsin B could 

play a big role by promoting the cleavage of the drug and presumably favor the further 

penetration of the conjugates and at this point, the investigation on the expression level of 

cathepsin B in the different cell lines would be crucial. In general, the GFLG conjugates are 

taken up at higher extent in every cell line but have a great influence in particular in HT-29 and 

MCF-7 cells. This is an outstanding improvement regarding the penetration ability of the CPP 

but it is of course a disadvantage in terms of selectivity. Furthermore, we should take into 

consideration also different factors connected with the physicochemical characteristics of 

these compounds. In fact, in the case of 1c and 2c the uptake improvement is maybe explained 

by the increase of the hydrophobicity introduced by the cleavage site that facilitates the 

internalization compared to 1b and 2b (see Figure 88 in the attachment for the comparison of 

the retention time of 2b and 2c). The higher uptake is verified also in the case of 3c in 

comparison to 3b, but still at a lower extent respect to the CPP-containing conjugates. Since 

in this case only the ligand should be responsible for the internalization, a hypothesis for the 

higher uptake in every cell line, leading to comparable fluorescence intensities, could be 

connected with the higher binding affinity shown by the binding assay. Furthermore, 

overexpression of cathepsin B in HT-29 and MCF-7 cells could lead to a faster degradation of 

the compound in the endosomes, a more rapid receptor recycling and promoted uptake. The 

microscopy pictures (Figure 39) are in line with the FACS studies. In particular, the higher 

uptake of 1c and 2c in HT-29 and MCF-7 cells is remarkable and a cytotoxic effect can be 

evidenced as a sign of a higher internalization.  

The results of this last experiment could finally support a significant selectivity for 1b and 3b. 

In contrast to this observation, the GFLG bearing conjugate 1c showed an enhanced uptake 

with a contemporary loss of selectivity while 3c showed comparable results in the different 

cells. These data were qualitatively and quantitatively confirmed by flow cytometry and CLSM 

data, which are in good correlation. As a further demonstration of our finding, another very 

important experiment was performed testing the cytotoxicity of all these compounds after 15 

min incubation. In order to assure the activity of the drug, the medium was removed but fresh 

medium was added for further 72 h. Notably, since we wanted to avoid a premature cell 

detachment, no washing step was performed. Especially, we wanted to correlate the results of 

the cellular uptake with the outcomes of this assay.   
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Figure 40. Antiproliferative assay with compounds 1b, 2b, 3b and 1c, 2c, 3c on U87, HT-29 and MCF-7 cells 

(15 min incubation). The peptides were incubated for 15 min and, after removing the medium, the cells were 

incubated for further 72 h.  Values from the positive control (DMSO/EtOH; 1:1) were substracted from all data and 

the untreated cells were set to 100%. The experiment was performed in triplicate with n=2. 

Table 13. EC50 values referred to the antiproliferative assays showed in Figure 40. 

EC50 [µM] EC50 [nM] 

 1b 2b 3b 1c 2c 3c Dau 

U87 12.5 ± 3 42.2 ± 12.3 56.9 ± 26.3 23.8 ± 4.4 9.6 ± 3.2 49.37 ± 16.0 78 ± 8 

HT-29 50.5 ± 14.0 >80 >180 >80 22.0 ± 7.5 >250 215 ± 105 

MCF-7 53.4 ± 15.6 25.1 ± 4.5 >140 7.8 ± 1.5 6.1 ± 1.2 >140 220 ± 89 
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The EC50 curves are depicted in figure 40 and the EC50 values are summarized in table 13. 

Essentially, we can repeat the same observations made for the FACS studies. The selectivity 

towards 1b and 3b is here clearly detectable; in particular for both compounds the curves of 

HT-29 and MCF-7 cells are overlaying leading to very similar EC50 (differences are connected 

with the standard deviations obtained for each measurement point) while U87 cells presents a 

4-fold lower EC50 compared to the control cell lines. Also in the case of 2b the cytotoxic profile 

in each cell line fits very well to the FACS data: the higher the internalization, the stronger the 

toxicity in the order MCF-7 > U87 > HT-29. For 1c, as we previously mentioned, the selectivity 

is lost but the EC50 does not exactly correlate with the previous data, as also in the case of 2c. 

In this assay, in fact, cathepsin B enzymes could have a more relevant role in the activity of 

the conjugates since, after internalization, they could exert their enzymatic activity within the 

72 hours. Surprisingly, the selectivity is also maintained for 3c. An explanation for this could 

be related with the high binding affinity of 3c to the receptors, which would allow the conjugate 

to bind to the cell surface and be internalized even after removing the medium with the peptide 

solution, since no intermediate washing step was performed. This is a good point, which would 

also explain the higher selectivity obtained in this assay for 1b and 3b compared to the FACS 

data. 

Finally, we proved that 1b could be a very efficient peptide-drug conjugate with selectivity to 

αvβ3 expressing cells. Every element of this hybrid conjugate is essential for the distinctive 

behavior of this compound, for instance the presence of the c[DKPf3RGD] ligand is necessary 

for the targeting ability (1b is selective in comparison to 2b), the CPP is enhancing the 

internalization of the construct, leading to greater toxicity even in a short treatment (1b is taken 

up at higher extent in comparison to 3b) and the PEG is fundamental to separate the two 

moieties and allow the maintenance of the distinguishing features of every component.  
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4. Head-to-tail cyclization of a cell-penetrating peptide through 

DKP scaffolds 

4.1. Novel cyclic peptides bearing a DKP scaffold 

The project presented in this part of the thesis has been developed during my secondment in 

Como, in the group of Prof. Piarulli at Università dell’Insubria. Thanks to the expertize in 

synthesizing DKP scaffolds, I was taught how to proceed with the preparation of DKP3, which 

I could successfully synthesize but, most importantly, I started a very strong collaboration with 

the PhD student Sara Parente, who provided me many times with various batches of DKP1 

and DKP3. Aside from this, we also worked in deep contact, trying to optimize the cyclization 

conditions.  

4.1.1. Synthetic strategy 

First, the scaffolds DKP1 and DKP3 were synthesized as already reported [153]. The linear 

peptide sC18* was synthesized by automated Fmoc/tBu-based SPPS. Chlorotrityl resin was 

used as solid support because of the very mild conditions required cleaving the protected 

peptide fragment from the resin prior to cyclization. We observed that loading of the chlorotrityl 

resin with Fmoc-Lys(Boc)-OH was not very effective, so we decided to use a preloaded resin. 

Afterwards, the DKP scaffold was manually coupled to the N-terminal sC18* peptide chain, still 

immobilized on the solid support, followed by reduction of the azido group with dithiotreitol 

occurring in almost quantitative yields (Figure 41). [264] 

 

Figure 41. Synthetic strategy for the synthesis of the DKP scaffold-bearing cyclic peptides cyc-DKP1 and 

cyc-DKP3. Reagents and conditions: a: 3 eq. Oxyma, 3 eq. DIC, overnight; b: DTT (2M), DIPEA (1M), DCM, 3 h; 

c: acetic acid/ TFE/ DCM 1:1:8, 2h; d: BOP (6 eq.), HOBt (6 eq.), DIPEA (12 eq.), DMF (0,2 mM), rt, overnight; e: 

full cleavage with TFA/phenol/H2O/thioanisol/EDT 82.5:5:5:5:2.5, 3h. 

Trying to obtain the best performance, using the most favorable conditions, Sara Parente 

planned to exploit the tendency of the cis-DKP1 scaffold to keep the two branched ends in the 

same direction like forming a β-hairpin. [265-267] In this case the disconnection was inserted in 

the middle of the sequence and the cyclization would not directly involve the DKP scaffold as 
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in the previous cases. Unfortunately, no improvement of the cyclization yield was obtained 

(data not shown). Comparable results were achieved by using a reverse sequence of the 

peptide: the strategy behind this was to insert the glycine residue at the C-terminus, avoiding 

racemization and allowing the cyclization with a less steric hindered amino acid instead of 

lysine (data not shown). Other expedients have been successfully investigated and actually 

led to a meaningful advancement. After cleavage of the protected linear peptide from the resin, 

the acidic solution was removed by reduced pressure and the remaining acetic acid was 

evaporated in many cycles by adding hexane, acting as azeotrope. A fundamental point in this 

process has been determined by the washing and digestion of the obtained white powder with 

a 5% NaHCO3 solution, filtration and further washing with H2O to remove the salts that could 

disturb the next steps (e.g. by acetylation of the N-terminus). Subsequently, solution-phase 

cyclization could be carried out on the crude lyophilized peptide. Use of dry DMF was not 

considered as necessary since the yields with normal DMF were comparable, but a high 

dilution was crucial to favor the intramolecular reaction at the expense of dimer formation; for 

this reason, the concentration was lowered from 0.65 mM  to 0.2 mM. [268] Another decisive 

adjustment was a second addition of BOP after 6-8 hours from the beginning of the reaction, 

since this coupling reagent is degraded after 8-10 hours, contrarily from HOBt, which is 

regenerated. Thanks to these numerous arrangements, yield of cyclization, after cleavage of 

the protecting groups and purification of the final compound, ranged from 22% for cyc-DKP1 

to 36% for cyc-DKP3. Generally, we assumed that the DKP3 scaffold allows a more efficient 

cyclization by favoring a pre-organized conformation. However, in both cases the cyclization 

remained the major yield-limiting step. The linear versions including the two DKP scaffolds at 

the N-terminus, lin-DKP3, lin-DKP1, were also synthesized (Table 14) and were important to 

better investigate, not only the role of the cyclization regarding both the spatial and the 

biological activity, but also the influence of a non-natural building block inside the peptide 

structure and how this heterocycle could interfere with the features of the CPP.  

Table 14. List of DKP-bearing synthesized compounds with their names, sequences and molecular 

weights (MW calculated and experimental). ____: amino acids involved in cyclization 

Name Sequence MW  
[g/mol] 

MWexp 
[g/mol] 

cyc-DKP3 DKP3-GLRKRLRKFRNK 1827.3 1827.7 

lin-DKP3 H2N-DKP3-GLRKRLRKFRNK-OH 1845.3 1845.7 

cyc-DKP1 DKP1-GLRKRLRKFRNK 1827.3 1827.7 

lin-DKP1 H2N-DKP1-GLRKRLRKFRNK-OH 1845.3 1845.7 
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4.1.2. Circular dichroism 

In order to generate an overall picture of the peptide structure, circular dichroism spectra of 

the synthesized compounds were measured in phosphate buffer alone or in presence of the 

α-helix inducer TFE (figure 42). In agreement with known literature data [183, 269], the linear 

compounds showed a disordered random coil structure in aqueous phosphate-buffered 

solution, while after addition of TFE preferably formed an α-helix. For lin-DKP1 we obtained 

R=0.7, while for lin-DKP3 a lower value of 0.62 was calculated. This means that this small 

DKP scaffold at the N-terminus of the sequence seems to have an influence on the tendency 

to develop a helix stabilizing the structure in a different manner depending on the cis or trans 

conformation. Probably the DKP1 follows the right arrangement to continue the helix 

framework, while the DKP3 generates a certain disorder, counterposed to the helical 

arrangement. Regarding the cyclic peptides, cyc-DKP1 appeared to be pretty flexible 

switching from random coil to helical arrangement, in particular in the presence of TFE. As 

shortly presented in the introduction, the DKP1 was often used as β-hairpin inducer to stabilize 

the formation of β-sheets: this is not the case within the cyclic organization but this is also not 

favoring the generation of a helix. In contrast, cyc-DKP3 appeared more structured displaying 

the typical spectra of slightly helical peptides even in phosphate buffer. These observations 

were made after looking at the general pattern and comparing it to the traditional schemes; 

since the minima and maxima are slightly shifted, we cannot refer to these curves as the typical 

spectra of helical peptides and the R-values were not calculated. Therefore, we considered 

that the linear and cyclic compounds should be further investigated by NMR analysis to prove 

what we could observe through these preliminary assays.  

 

 

Figure 42. Secondary structure investigation of the linear and cyclic compounds by circular dichroism. CD 

spectra of the cyclic (cyc-DKP3 and cyc-DKP1) and linear (lin-DKP3 and lin-DKP1) peptides in 10 mM phosphate 

buffer (left) and 10 mM phosphate buffer/TFE 1:1 (right). Peptide concentration was 20 µM. 
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4.1.3. NMR-based structure elucidation  

The three dimensional structures of both linear and cyclic derivatives have been investigated 

by NMR spectroscopy by Dr. Díaz and the PhD student Linda Jütten (Department of Chemistry, 

University Cologne). Although peptides were not isotopically labeled (i.e., 13C and/or 15N) and 

the availability of sample was limited, their size (12 amino acids and DKP linker, MW ca. 2 

kDa) was fortunately appropriate to carry out a full structural analysis based exclusively on 

mono- and bidimensional homonuclear proton NMR spectra. [270]   

Overall, the 2D TOCSY and 2D NOESY spectra of the linear peptides lin-DKP1 and lin-DKP3 

in aqueous buffer solution suggested a lack of secondary structure. The NMR data acquired 

at 298 K indicated a random coil structure also for the cyclic peptides. Contrarily, the 2D 

NOESY spectra of cyc-DKP3 and cyc-DKP1 acquired at lower temperatures (i.e., the lowest 

temperature allowed for aqueous NMR samples is 283 K) seemed to address specific 

conformational preferences for these peptides pointing out that the stereochemistry of the DKP 

unit is determinant for the conformational arrangement of cyclic peptides, as already described 

by Potenza and coworkers. [271] A closer inspection of all the structures suggested that not only 

one but several structural families may coexist in solution, what has been already 

demonstrated for other DKP-cyclic peptides (Figure 43). 

 

Figure 43. 2D NOESY spectra of cyc-DKP3 and cyc-DKP1 acquired at 283 K and correspondent structural 

families. (top) Amide-amide region of the 2D 1H,1H- NOESY spectra of cyclic peptides (A) cyc-DKP1 and (B) cyc-

DKP3 in solution (50 mM phosphate buffer, pH 6.08, water:D2O 9:1, 283 K, mixing time 200ms, 600MHz). (bottom) 

Overlay of the ensemble of 20 final energy-minimized CYANA structures of the peptides in solution. The main 

chains are shown in black and DKP unit at the N-terminus with color ((A) DKP1, blue; (B) DKP3, red). 
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Most importantly, according to these structure calculations, the mostly preferred conformation 

within the structural families described at 283K for cyc-DKP3 seems to exhibit hydrogen bond 

interactions including Lys8(C=O)-(HN)Asn11, Lys8(C=O)-(HN)Lys12 and Arg5(C=O)-(HN)Arg7 

residues (Figure 44).  

 

Figure 44. Line plot of the solution structure of cyc-DKP3, calculated from NMR derived data collected at 

283 K. Hydrogen bond interactions are shown as yellow dashes.  

To shed light onto a possible interaction of the peptides with cell membranes, NMR 

experiments were conducted not only in aqueous medium but also in SDS micellar medium as 

it is considered, among others, a suitable membrane mimetic agent. In Figure 45 the 1D 1H 

NMR spectra of the linear DKP-peptides in the presence of SDS micelles are displayed. 

Generally, an evident broadening of the signals was observed, what is normally taken as 

indication of an effective interaction of the peptide with the micelles. The signals in the amide 

region were also comparatively more dispersed than the equivalent ones in aqueous medium, 

what pointed out that peptide conformational changes have been induced by the presence of 

the micelles.  
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Figure 45. Structure evaluation of the linear peptides in presence of SDS micelles. (left) 1D 1H NMR spectra 

of linear peptides (A) lin-DKP1 and (B) lin-DKP3 in the presence of SDS micelles (peptide concentration ca. 1.3 

mM, peptide:SDS 1:80, 50 mM phosphate buffer, pH 6.08, water:D2O 9:1, 298 K, 600MHz). (right) Overlay of the 

ensemble of 20 final energy-minimized CYANA structures of the peptides in the presence of SDS micelles. The 

main chains are shown in black and the DKP unit at the N-terminus with color ((A) DKP1, blue; (B) DKP3, red). 

Also the ribbon diagrams of the lowest energy structures are shown in a stick model. 

This result correlates very well with the outcomes from the circular dichroism in presence of 

TFE even if in this case, the insertion of a DKP residue in the sequence does not seem to play 

an important role since no interaction between DKP and any other residue of the peptide 

sequence was observed.  

The preparation of the NMR samples containing the cyclic peptides and SDS micelles has 

been until now quite complicated. The spectra of cyclic peptides in the presence of SDS 

micelles exhibit an extraordinary broadening of the signals that could indicate a more efficient 

interaction between cyclic derivatives and micelles than the one occurring between linear 

peptides and micelles (Figure 46A). Because of the poor resolution of the spectra, the standard 

methods for assignment and structural elucidation failed systematically. As a proof of peptide-

micelle interaction, however, the diffusion coefficient values of cyc-DKP3, both in solution and 

in the presence of micelles, were measured and the results were then compared and analyzed 

(Figure 46B). Although perdeuterated SDS micelles were employed (i.e., d25-SDS), remaining 

protonated signals of the micelles were visible and could be easily identified. The experiment 
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provided information about the diffusion coefficients of peptide and micelles as well as about 

any other species present in the solution mixture including impurities or the chemical shift 

reference system (i.e., TSP). 

 

Figure 46. Structure evaluation of cyc-DKP3 in presence of SDS micelles. A: 1D 1H NMR spectra of cyc-DKP3 

in the presence of SDS micelles. B: Overlapped DOSY NMR spectra of the peptide free (red) and in the presence 

of SDS micelles (black) (peptide:SDS 1:80, 50 mM phosphate buffer, pH 6.08, water:D2O 9:1, 298 K, 600MHz). 

As it can be deduced from the DOSY spectra, the diffusion coefficient values of peptide and 

micelles are coincident although the molecular weight of both the micelle (theoretically ca. 60x 

SDS) and peptide are very much uneven and substantial different diffusion properties were 

expected. Since TSP does not seem to interact with the micelle, its diffusion coefficient was 

taken as diffusion reference and, from this result, one can clearly assert that cyc-DKP3 is 

effectively interacting with the micelle since its diffusion coefficient changes drastically in the 

presence of SDS micelles and has the same value as the micelle itself. 

4.1.4. Biological evaluation 

Taking advantage of the interesting results obtained from the investigation of the secondary 

structure, further examinations of the cyclic peptides in cellular systems were performed. First, 

the influence of cyclization on cell viability was determined. To this purpose, the cytotoxicity of 

all peptides on the tumor cell line HeLa was tested (figure 47). After 24 h incubation, the peptide 

solution was washed-out and the cells were further incubated for additional 48 hours. As first 

evidence, the cyclic peptides show a more significant toxicity compared to the correspondent 

linear versions. As we could already infer from the calculation of the diffusion coefficient of 

cyc-DKP3 in micellar medium, the cyclic peptides are presumably interacting with the lipid 

environment at higher extent than their linear counterpart. As a consequence, even distinct 

entry pathways could be imagined leading to a different cellular uptake level, and finally, 

cytotoxicity. However, this is not the only consideration that can be drawn from the analysis of 
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these results. In fact, a very meaningful difference can be observed in association with the use 

of cis or trans DKP scaffolds. Since preliminary studies in presence of SDS micelles were 

performed only for cyc-DKP3 we cannot directly explain this result by a concrete 

demonstration even if a strong influence of the DKP scaffold was already remarked from the 

analysis of the NOE cross peaks at lower temperature (Figure 43). Furthermore, cyc-DKP3 

also showed a higher tendency to form H-bond within the residues which could lead to a more 

rigid structure. Nonetheless, the highest toxicity corresponding to around 60% viability was 

only observed at peptide concentrations of 100 μM. Since at lower concentrations, the toxicity 

was still around 80% after 72h, we concluded that the cyclic compounds could be safely used 

for further experiments.   

 

Figure 47. Effect of the linear (lin-DKP3 and lin-DKP1) and cyclic (cyc-DKP3 and cyc-DKP1) peptides on the 

viability of HeLa cells measured by resazurin-based assay. Evaluation of the resorufin fluorescence generated 

from resazurin by viable cells after 24h incubation with the peptide solutions, washout and further incubation for 

48h. Untreated cells were used as negative control and set to 100%; positive control was represented by cells 

treated for 10 minutes with 70% EtOH and it was subtracted from the other values. (*: p≤ 0.05; p**: p ≤ 0.01; ***: p 

≤ 0.001). The experiment was performed in triplicate with n=2. 

4.2. Drug delivery with cyclic peptides 

The peculiar interplay between the cyclic peptides and the cell membrane could promote the 

cellular uptake of other molecules, such as cytostatics. To demonstrate this hypothesis, we 

investigated if the peptides were able to support and enhance the intracellular uptake of 

daunorubicin. The anticancer activity of the drug was evaluated, with and without the presence 

of the peptide. Co-incubation was performed using 10 µM of cyc-DKP3 solution and 80 nM of 

daunorubicin (concentration at which almost 40% of cells were still viable). From Figure 48, it 

can be clearly seen that the co-treatment with the peptide and the drug revealed an increased 

toxic activity in comparison with the drug alone. This was already a hint about a possible 

mechanism showing the peptide as useful promoter of penetration. 



 Results and Discussion 

74 
 

 

Figure 48. Influence of daunorubicin on the viability of HeLa cells with or without the cyclic peptide cyc-

DKP3 measured by resazurin-based assay. Evaluation of the resorufin fluorescence generated from resazurin 

by viable cells after 24h incubation with the peptide solutions, washout and further incubation for 48h. The assay 

was performed adding 10 µM of peptide solution together with 80 nM daunorubicin solution or only the free drug 

without peptide. The peptide alone was evaluated as a reference to prove the absence of toxicity at the tested 

concentration. (*: p≤ 0.05). The experiment was performed in triplicate with n=2. 

The same feature was evaluated also by CLSM (Figure 49). Co-incubation was performed 

using 10 µM of cyc-DKP3 solution and 1 µM of daunorubicin. We were interested in observing 

if, in the presence of the peptide, the uptake of the drug molecule would be stronger, thus 

corroborating the outcomes of the cytotoxicity assay. We were pleased to observe that the 

cyclic peptide could really act as efficient carrier transporting daunorubicin at much higher 

extent inside the cells if compared with the drug alone. It is known from the literature that 

daunorubicin enters the cell via direct transportation through the membrane, being a small 

molecule, able to interact with the negatively charged outer surface of the cell membrane and 

capable to insert within the lipid phase of the membrane. [272] We can imagine that the cyclic 

CPP could mediate the formation of pores through which the drug could easily enter the cells 

in a faster way than passive diffusion. The distribution is uniform but with the presence of a 

punctuate pattern that shows a coexistence of endocytic pathway and direct penetration, so 

we could also imagine that being the CPP also internalized by endocytic pathway, the drug 

could also interact with the negatively charged phospholipids and be inserted in the 

endosomes together with the peptide. 
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Figure 49. Cellular uptake after co-incubation of daunorubicin and the cyclic peptide cyc-DKP3 investigated 

by CLSM on HeLa cells. 1 µM daunorubicin alone (top) or together with 10 µM peptide solution (bottom) was 

added to HeLa cells and the uptake was evaluated after 30 minutes incubation. External fluorescence was 

quenched by treatment with 150 µM trypan blue for 15 sec. Red: daunorubicin; blue: nuclear stain with Hoechst 

33342. Scale: 10 µm. 

After these promising results with the compound cyc-DKP3, we decided to investigate a 

covalent delivery approach, too. For this purpose, a molecule of daunorubicin was covalently 

coupled to the cycle according to the synthetic strategy depicted in Figure 50. In brief, the 

peptide chain was again synthesized via SPPS, but the Lys4 of sC18* was modified with a 

protected aminooxy group. After cleavage from the resin and cyclization, which occurred as 

already described above, deprotection of the aminooxyacetic acid and coupling with 

daunorubicin by oxime bond formation was performed. This reaction has been very 

problematic since the aminooxyacetic acid, after completion of deprotection, directly reacted 

with some ketones present in the atmosphere of the laboratory or in the plastic instruments, 

so that, after purification of the deprotection reaction, the only product collected was in fact the 

protected starting peptide. This side reaction could not be avoided even if the glassware used 

was not cleaned with acetone and no plastic tubes were used. This reaction had to be repeated 

many times until I decided to add instantaneously an excess of daunorubicin to the deprotected 

product before its purification and in the tube of the collected pure fraction. By this way, I could 

obtain 1.2 mg of the final product even if the yield of the steps of deprotection and daunorubicin 

conjugation reaction was reduced from 80% (observed in general for other conjugates) to 20% 

because of the repetitive purification steps.   
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Figure 50. Synthetic strategy for the synthesis of the cyclic drug conjugate cyc-DKP3(Dau). Reagents and 

conditions: a: 3 eq. oxyma, 3 eq. DIC, overnight; b: 2% hydrazine in DMF (10x); c: 5 eq. >=Aoa, 5 eq. oxyma, 5 eq. 

DIC, overnight; d: DTT (2M), DIPEA (1M), DCM, 3 h; e: acetic acid/TFE/DCM 1:1:8, 2h; f: BOP (6 eq.), HOBt (6 

eq.), DIPEA (12 eq.), DMF (0,2 mM), rt, overnight; g: full cleavage with TFA/phenol/H2O/thioanisol/EDT 

82.5:5:5:5:2.5, 3h; h: Methoxylamine 1M, NH4OAc 0.2 M, pH 5; i: 30% excess daunorubicin, 0.2 M NH4OAc, pH 5, 

10 mg/ml. 

The product was purified using reversed-phase HPLC and identified via LC-MS. As control we 

used the Dau-modified sC18* version, namely sC18*(Dau), whose synthesis followed the 

same protocol observed for the conjugates described in the previous chapter. (Table 15). 

Table 15. List of the synthesized drug conjugates with the correspondent names, sequences and molecular 

weight (calculated and experimental). 

Name Sequence MW 
[g/mol] 

Mwexp 
[g/mol] 

cyc-DKP3(Dau) DKP3-GLRK(Aoa=Dau)RLRKFRNK 2409.8 2410.5 

sC18*(Dau) H2N-GLRK(Aoa=Dau)RLRKFRNK-OH 2154.5 2155.2 

 

The anticancer activity of the novel drug conjugates in HeLa cells was measured by resazurin-

based toxicity assay. Notably, the cyclic conjugate showed a better activity compared to the 

linear one, which would support our first hypothesis of a better cellular uptake of the cyclic 

peptide (Figure 51 and Table 16). Furthermore, since the target of the drug is the DNA located 

in the nucleus, these results could indicate a more efficient endosomal escape of the cyclic 

peptide.  



 Results and Discussion 

77 
 

 

Figure 51. Effect of the drug conjugates cyc-DKP3(Dau) and lin-DKP3(Dau) on the viability of HeLa cells 

measured by resazurin-based assay. Evaluation of the resorufin fluorescence generated from resazurin by viable 

cells after 24h incubation with the peptide solutions, washout and further incubation for 48h. Untreated cells were 

used as negative control and set to 100%; positive control was represented by cells treated for 10 minutes with 

70% EtOH and it was subtracted from the other values. The experiment was performed in triplicate with n=2. 

Table 16. EC50 values referred to the cytotoxicity assay showed in Figure 51. 

Name EC50 [µM] 

cyc-DKP3(Dau) 9.3 ± 1.7 

sC18*(Dau) 20.1 ± 3.3 

 

One could think that the lower activity of sC18*(Dau) compared to the cycle would be merely 

connected to the presence of a negative charge at the C-terminus of the sequence, since the 

peptide synthesis was performed on chlorotrytil resin, as previously described. To argue this 

hypothesis, the cellular uptake of the cyclic peptide cyc-DKP3(Dau) and the two linear 

peptides sC18*(Dau) and 2b was evaluated. Since previously published results illustrated that 

the truncated sC18* shows a weaker uptake efficiency than sC18, maybe due to the missing 

positive charged lysine residues at the C-terminus of the sequence, [184] we were interested in 

a direct correlation between the cycle and the two linear versions. Notably, a significant 

increased uptake of the cyclic peptide in comparison to both linear variants was observed 

(Figure 52), confirming that the better efficacy of the cyclic peptide could undoubtedly be 

correlated with the cyclization. All in all, these data indicate that the cyc-DKP3(Dau) appears 

to be a very efficient alternative to the original CPP 2b and correspond very well to all the 

results obtained until now. In fact, also in the cytotoxicity studies of the drug delivery system 

(drug-free peptides), the toxicity of the cyclic peptides was higher than the linear, possibly 

depending on the different interaction with the membrane clearly leading to a different cellular 

uptake. 
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Figure 52. Cellular uptake evaluation of the cyclic and linear drug conjugates cyc-DKP3(Dau), sC18*(Dau) 

and sC18(Dau) by flow cytometry. HeLa cells were incubated for 30 minutes with 10 µM peptide solution. The 

value corresponding to the untreated cells was used as negative control and subtracted from the other values. . 

(***: p ≤ 0.001; (***: p ≤ 0.0001). The experiment was performed in triplicate with n=2. 

For a further confirmation, we evaluated the cellular uptake by CLSM. From this analysis, it 

was pretty clear that both peptides were taken up to high extent after 30 minutes incubation, 

while distributing throughout the cytosol as well as the nuclei; in particular, the nuclear 

envelope is well delineated, revealing localization on the nuclear membrane in both cases 

(Figure 53). Also in this case cyc-DKP3 showed an enhanced uptake compared to sC18*(Dau) 

corroborating the flow cytometry data. 

 

Figure 53. Cellular uptake evaluation of the drug conjugates cyc-DKP3(Dau) and sC18*-Dau by CLSM. HeLa 

cells were incubated for 30 minutes with 10 µM peptide solutions, Red: Dau-conjugates; blue: nuclear stain with 

Hoechst 33342. Scale: 10 µm 

We tried to explain this behavior with the higher rigidity of the structure, translated into higher 

and more stable interaction with the membrane. As we could already infer from the NMR 

studies, since the side chains of the polar amino acids are directed towards the outside of the 
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cycle, we could imagine that there is a strong and fast interaction with the hydrophilic heads of 

the phospholipids bilayer generating a curvature that could lead to membrane destabilization 

and subsequent peptide penetration (Figure 54).  

 

Figure 54. Schematic representation of the possible interaction between cyc-DKP3 and the cell membrane. 

The ball-and-stick representation of the solution structure of cyc-DKP3 was calculated from NMR derived data 

collected at 283 K. Side chains of charged amino acids, i.e. Lys and Arg are shown in red. 

This behavior is maybe not so immediate and direct for the more flexible linear peptides 

providing a logical explanation for the enhanced activity of the cyclic peptides. 
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5. Conclusion and Outlook 

5.1. Receptor-targeted CPPs for selective delivery of anticancer 

therapeutics 

In recent years, research on new antineoplastic drugs has raised great hopes and expectations 

for more specific and less toxic treatments in the field of oncology. New targeted therapies 

have been developed using selective drugs that act on different targets (growth factors, 

receptors, enzymes) responsible for the growth and uncontrolled spread of cancer cells, for 

their resistance to traditional therapies and for the production of new blood vessels, resulting 

in less toxicity. [10-11] Peptide-drug conjugates represent novel chemical entities with a targeted 

delivery approach, where highly cytotoxic drugs are combined with peptides that are able to 

recognize tumor cells. [111] 

At the same time, cell-penetrating peptides gained special interest because they can facilitate 

cellular transfer of various molecular therapeutics, from small chemical molecules to big 

nanoparticles and large DNA fragments. [198] Because of this feature, CPPs hold great potential 

as in vitro and in vivo delivery vehicles, but at the same time they also lack selectivity, restoring 

the previously described issue. [197] 

The aim of the first part of my work was to combine these two important elements and obtain 

a drug delivery system, which would be able to efficiently deliver drugs to the cytosol (via the 

CPP) but at the same time be selective on tumor cells without damaging the healthy cells (via 

the targeting ligand). GnRH and integrin receptors have been indicated as ideal 

pharmacological targets based on their overexpression on the surface of many cancer cell 

types in comparison to healthy cells. 
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Figure 55. General concept of the targeting delivery. 

As targeting ligand towards GnRH receptors a variant of the GnRH-III peptide, developed by 

the group of Prof. Mező, [131] was employed and conjugated to the CPP sC18 by “click” 

chemistry. The designed synthetic strategy worked well, and after optimization, the drug 

delivery system could be obtained in high yields. Drug conjugates have been also prepared 

where a molecule of daunorubicin was conjugated to the CPP sequence via an uncleavable 

(aminooxy) or cleavable (GFLG) linker. The GnRH-III conjugates showed a low nanomolar 

binding affinity towards GnRH receptors expressed on pituitary and prostate cancer cells and 

the CPP did not display a dramatic influence on the binding validating the choice of the 

conjugation site. The toxic effects of the compounds on cell types with varying expression 

levels of GnRH receptors were evaluated. For this purpose, a short treatment was estimated 

to be the optimal condition in order to underline the targeting ability of the ligand and 

contemporarily highlight the fast CPP-mediated penetration. Nevertheless, a lack of selectivity 

was observed for the control (GnRH-III-Dau) as well as for the full conjugates GnRH-III-

sC18(Dau) and GnRH-III-sC18(GFLG-Dau) and was attributed to the poor expression of the 

receptor at the cell surface and their slow recruitment mechanism. [244] After these 

considerations, a very interesting experiment would be to examine longer incubation times and 

the correspondent internalization mechanisms. In this sense, cellular uptake studies would be 

crucial to determine which pathways are followed and to demonstrate which role the receptor-

mediated uptake plays in this context. Nevertheless, the CPP conjugates displayed a very 

efficient activity in this short incubation time indicating the importance of the CPP for the 

penetration of the construct. In addition, a remarkable activity of daunorubicin in the resistant 

cell line PANC-1 has been recognized, in particular after treatment with sC18(GFLG-Dau) and 

should be further investigated even with other drugs to corroborate previous observations that 

MDR can be overcome by the use of CPPs. [245, 258, 273-274]  
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In the framework of integrin receptors, a recently developed cyclic peptidomimetic consisting 

of a DKP scaffold and a RGD peptide called c[DKPf3RGD] [153] was employed as tumor homing 

device after conjugation to the CPP by “click” reaction via intersection of a PEG4 linker. After 

proving that the binding affinity of the compound to the receptors was not seriously altered by 

the CPP, cells were treated with the fluorescently labeled conjugate 1a and the uptake was 

measured after co-incubation of the drug delivery system with the free ligand. A significant but 

not dramatic reduction of the uptake was measured in particular after 60 minutes incubation 

compared to 30 minutes and this observation led us to conclude that the binding to the receptor 

is essential for the targeting but that mainly the CPP is involved in the internalization of the 

construct. A blocking experiment with the free ligand led us to draw the same conclusions and 

to imagine a so called “kiss and run” process for our compound, where the ligand recognizes 

the receptor but the strong membrane interaction of the CPP and its mobility on the membrane 

surface lead to the dissociation of the ligand from its binding pocket and the subsequent 

internalization. Since the construct showed remarkable toxicity only at the highest tested 

concentration after 72 h, it could be demonstrated that the compound could be safely used as 

drug delivery system. In a first attempt, the potent drug cryptophycin was attached to the CPP 

by a disulfide bridge but since the “click” reaction for the conjugation to the ligand involved the 

use of the reducing reagent sodium ascorbate, the disulfide bridge was partially broken, and 

oxidized side products were recovered. To optimize this step new strategies should be 

investigated, among those the use of copper powder [259] but also copper-free modalities should 

be attempted. Problems connected with the stability of chlorambucil led us to favor the same 

strategy as for the GnRH-III conjugates by coupling daunorubicin to the CPP via uncleavable 

and cleavable (GFLG) linkers. In this case the synthesis was again successfully achieved and 

the selectivity between cells with different receptor expression was demonstrated by 

cytotoxicity assays and cellular uptake studies proving that the short contact time between the 

cells and the drug delivery system worked well in this case. The most promising conjugate 1b 

is depicted in figure 56.  
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Figure 56. Binding of the lead compound 1b to the integrin receptor. Every element of this hybrid conjugate is 

here highlighted.  

In conclusion, the combination of a ligand with a CPP proved to be a very promising strategy 

that is worth to be further investigated in the future. Anyhow, there is still a long way to go and 

a lot of room for improvement.  

In general, for both targeting strategies presented, to get a deeper understanding of all the 

steps occurring from the binding to the internalization, the intracellular organelles could be 

stained to perform co-localization studies with the labeled compounds and interpret their fate 

in the cytosol. Additionally, the receptors could be labeled via SNAP tag technology followed 

by CLSM in living cells in order to monitor them and study their internalization process after 

binding to the ligand. [275] This could really provide us with an important hint to discern the 

receptor and the CPP-mediated uptake. In this context, a very interesting experiment 

described by Sancey et al. involved the biotinylation of the integrin receptors on the cell 

surface, incubation with different concentrations of the peptide followed by lysis of the cells 

and subsequent quantification of the receptors internalized by endocytosis. This would be a 

definitive indication of the internalization mechanism followed. [164] Furthermore, the use of 

inhibitors like amantadine, which blocks the clathrin mediated uptake, would be also useful for 

our understanding. 

Regarding the binding to the receptor, a cell-free based competitive binding study was 

performed and showed low nanomolar binding affinity between the conjugates and the 

receptors but to increase the knowledge about this binding, docking studies with the 

crystallized receptor could be performed and in the best case a co-crystallization of the two 

elements would determine the whole structure. Another interesting experiment could be to 

measure the Kd value of our conjugates by fluorescence correlation spectroscopy in order to 
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measure an equilibrium constant that could be correlated with the binding affinity obtained by 

the competition assay with vitronectin. [164] 

To increase the selectivity, a very astute strategy published by Crisp et al., already described 

in the introduction, involved the conjugation of the CPP to a negatively charged sequence via 

a MMP-2 cleavable linker. By this approach, the penetrating capability of the CPP could be 

masked until the construct reaches the tumor environment and would be then cleaved by the 

MMP-2 enzymes overexpressed in the tumor stroma. [202] Another way to improve the targeting 

ability could be to substitute the positive charged residues in the sequence of the CPP with His 

residues, known to be negative at neutral pH but positive at the acidic pH of the tumor 

environment. [276] [277] 

To demonstrate the ability of this construct to carry even bigger and more hydrophilic 

molecules inside the cells other cargos could be also employed. In this work small therapeutics 

were conjugated to the CPP but it is known that CPPs are characterized by a great efficiency 

in carrying much bigger and complex systems. [198] For instance, the intercellular transposition 

of protein- and nucleic acid-based drugs, otherwise restricted by their size and hydrophilicity, 

could be increased and subsequently even their potency could be enhanced.  

It would be recommended before going in vivo, to test these conjugates on co-culture models. 

Some trials have been already performed using U87 cells overexpressing the receptor and the 

control cell line HT-29. Unfortunately, the results were difficult to interpret also because the 

cells were hardly distinguishable. A solution to this problem could be to use GFP-labeled U87 

cells, which would help to distinguish one cell line from the other but also the employment of 

inserts to separate the two cell lines in the same well. In the latter case, anyway, the co-culture 

would not exactly mimic the in vivo situation where the different cells are in close contact to 

each other. In general, for these further studies, it would be advisable to use αv-knock out cell 

lines to have an ideal negative control. 

Another important point to be examined is the stability of the conjugates and this should be 

done at different levels starting from the extracellular environment (plasma and blood stability) 

to the lysosomal vesicles (stability in lysosomal homogenate). This is important to see how the 

drug is released and if determinant differences can be shown between the conjugates with and 

without cleavable linker. Since the stability of the sC18 in plasma membrane has been 

determined (Figure 90 in attachment) and the peptide seemed to be highly unstable, for future 

in vivo studies the substitution of all amino acids with D-amino acids should be taken into 

consideration. [241] For the same purpose, the use of PEG shells, liposomes or nanoparticles 

would be highly favorable, leading to the generation of interesting multimodal drug delivery 

systems. These constructs could be used to enhance the stability, since the charged CPP 

sequence would be shielded until it reaches its site of action and thanks to the EPR effect, the 
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extravasation and accumulation at the tumor site would be favored, followed by a slow release 

of the drug. Furthermore, the ADME features of the drug-CPP system would be improved, 

since these molecules would be otherwise degraded very quickly. Trying to overcome the 

stability issue, some developments have been already done in this direction and cyclic variants 

of sC18* were synthesized as described in the second part of this work. 

5.2. Cyclic CPPs for cargo delivery 

By cyclization of known linear cell-penetrating peptides increased proteolytic stability, 

enhancement of cell penetration and high potential for drug delivery should be achieved. Based 

on previous studies, [183] the CAP18 (106-117) fragment of the cationic antimicrobial peptide 

sC18 was used as starting peptide and cyclized by means of a DKP scaffold, namely DKP3 

and DKP1, trans and cis, respectively. After the synthesis by SPPS of the linear sequence, the 

head-to-tail cyclization was performed in solution and the conditions were optimized to 

suppress the formation of undesired dimers and oligomers achieving the two cyclic peptides 

in satisfying yields. The two cyclic versions with their correspondent linear counterparts, were 

evaluated about their tendency to form a secondary structure. In fact, when in contact with cell 

membranes, secondary amphipathic CPPs as sC18 adopt an α-helical structure that allows 

the interaction with the phospholipidic bilayer and favors the internalization. CD spectra of the 

novel molecules have been measured and the formation of an α-helix after addition of TFE 

was corroborated in the case of the linear peptides. As for the cyclic compounds, this analysis 

showed particularly interesting results since cyc-DKP3 tended to develop a secondary 

structure even in phosphate buffer, while for cyc-DKP1 this was observed only after addition 

of TFE. Based on this preliminary information we were very curious to investigate more about 

this aspect and NMR was elected as ideal technique to do this. The NMR data in combination 

with the CD data suggest that the cyclic peptides display a higher preference to form a structure 

in aqueous buffer solution in comparison to the linear variants and that cyc-DKP3 tends to 

generate a slightly more rigid conformation in comparison with cyc-DKP1. 

A very important experiment to better understand the impact of a membrane in the 

arrangement evolution of secondary structure would be to directly test the peptides in the 

presence of artificial membranes to observe changes in their structural organization or also 

their effect on membrane destabilization. In general, interaction with artificial membrane 

systems like neutral or negatively charged large unilamellar vesicles, mimicking the specific 

composition of particular cell types, would be a possible strategy to examine the influence of 

individual membrane components on the internalization mechanisms of these cyclic peptides. 

This would be interesting even to prove a selectivity towards cancer cell lines, characterized 

by a higher negative charged distribution on their cell surface. An investigation in this direction 

has been already started since the secondary structure of the linear peptides have been 

evaluated by NMR in the presence of SDS micelles showing the formation of an α-helix as we 
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expected. The same analysis has been also performed for cyc-DKP3 and the still preliminary 

results already suggest that the cyclic peptide is deeply embedded in the micelle. Further 

examination is ongoing and will surely give us very important elements to understand these 

different interactions. 

Up to now, the cyclic and linear peptides were tested in HeLa cells where a significant cytotoxic 

effect of the cyclic peptides was shown at the highest concentration (100 μM) after 24 h 

treatment followed by washout and further 48 h incubation. This effect was not so remarkable 

in the case of the linear peptides and this could be explained with the different cellular uptake 

mechanisms involved and the possibly higher internalization rates of the cyclic peptides 

compared to the linear ones, as later demonstrated by the cellular uptake evaluation of the 

labeled compounds. If we look at the three-dimensional structure obtained with the NMR 

measurements, we could imagine that the side chains of the basic residues, in particular 

arginine residues, could effectively stick to the surface of the membrane interacting with the 

negatively charged phospholipids or proteoglycans leading to re-structuring of the double layer 

and subsequent pore formation. To validate this theory, the studies with SDS micelles would 

be in this case very useful. Since the toxic activity was observed only at the highest 

concentration, the cyclic peptides should be promising candidates for the cellular transport of 

cytotoxic payloads. Since from CD and NMR measurements, cyc-DKP3 seemed to bear ideal 

features to improve drug transport inside the cell, further biological experiments were 

performed with this variant. To prove that, the evaluation of a non-covalent daunorubicin-CPP 

complex was planned: in fact, a non-covalent drug delivery could be very desirable since the 

drug does not have to be cleaved from the peptide before reaching its site of action. Cyc-DKP3 

was co-incubated with daunorubicin and could improve the internalization of the drug, probably 

promoting the permeability to a higher number of drug molecules after pore formation, as 

previously hypothesized. A covalent link would also have an advantageous impact and for this 

reason a synthetic strategy for the conjugation of the peptide to daunorubicin was proposed 

and realized. It could be immediately noticed that the cyclization positively influenced the 

internalization. The final conjugate was directly compared to the linear version and the cellular 

uptake was quantitatively and qualitatively analyzed. As already introduced for the other 

conjugates, also in this case a lysosomal staining would be particularly relevant to describe 

the destiny of the peptides after internalization and different incubation times could be tested 

to outline a time-dependent uptake. Since we already described that the daunorubicin is not 

released as free drug, the metabolite formation after degradation in lysosomal homogenate 

could be analyzed. 

All in all, enhancement of cell penetration, absence of cytotoxicity and high potential for drug 

delivery could be actually gained. On the contrary, an improvement in the proteolytic stability 

have not been analyzed yet but it would be relevant to examine the influence of the cis and 
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trans DKP scaffold on the peptide stability against trypsin and in blood plasma and this would 

represent a very important point to be tested in the near future. 
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6. Material and Methods 

6.1. Materials 

6.1.1. Chemicals and consumables 

Unless otherwise stated, all reagents, solvents and consumables used were purchased from 

the companies Alfa Aesar (Karlsruhe, Germany), Greiner Bio-One (Kremsmünster, Austria), 

IRIS Biotech GmbH (Marktredwitz, Germany), LP Italiana SPA (Milano, Italy), Merck 

(Darmstadt, Germany), Roth (Karlsruhe, Germany), Ratiolab GmBH (Dreieich, Germany), 

Sigma-Aldrich (Taufkirchen, Germany), Sarstedt (Nümbrecht, Germany) and VWR BDH 

Prolabo (Darmstadt, Germany), and their purity fulfilled at least the specifications for synthesis 

quality. 

6.1.2. Media and solutions for cell culture 

Table 17. An overview about cell culture media and solutions used during the thesis and the correspondent 

producers. If not specified, the producer is referred to the medium/solution used at University of Cologne. 

Media and solutions Producer 

Medium for U87 cells University of Cologne 

Dulbecco's Modified Eagle's Medium (DMEM) complemented 

4500 mg/l glucose, Sigma Aldrich 

OOI 

Dulbecco's Modified Eagle's Medium (DMEM) complemented 

with 4500 mg/l glucose, Lonza (Basel, Switzerland) 

Medium for HT-29, 

MCF-7, HeLa and 

PANC-1 cells 

University of Cologne 

RPMI 1640 Medium, Sigma Aldrich 

OOI 

RPMI 1640 Medium, Lonza 

Medium for FACS RPMI 1145 Medium 

DMSO University of Cologne and OOI 

Sigma Aldrich 

Dulbecco’s Phosphate 

Buffered Saline (DPBS) 

1X 

University of Cologne 

Sigma 

OOI 

Lonza 

EtOH University of Cologne 

VWR 

OOI 

Molar Chemicals Kft. (Halásztelek, Hungary) 

FBS University of Cologne 
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Fetal Bovine Serum, sterile filtered, Sigma Aldrich 

OOI 

Biosera (Nuaillé, France) 

L-glutamine L-glutamine solution 7513, Sigma Aldrich 

Penicilline/Streptomycin OOI 

Lonza 

Trypsin-EDTA University of Cologne 

Trypsin-EDTA solution 3924, Sigma Aldrich  

OOI 

Trypsin 10X and EDTA: Lonza  

Trypsin-EDTA for FACS University of Cologne 

Trypsin-EDTA 1X in PBS, Biowest (Nuaillé, France) 

6.1.3. Equipment 

Table 18. An overview about the equipment used during the thesis and the correspondent producers. If not 

specified, the producer is referred to the instrument used at University of Cologne. 

Instrument Producer 

Balance Analytical balance: FA-210-4, Faust (Klettgau, Germany) 

CD spectrometer Jasco J-715 spectropolarimeter 

Cell culture clean bench University of Cologne 

Herasafe HS12, Thermo scientific (Waltham, Massachusetts, 

USA)  

OOI 

Holten Lamin Air HB2436 

Centrifuges University of Cologne 

Cell culture lab: Centrifuge 5417R, Eppendorf (Hamburg, 

Germany)  

Chemistry lab: Heraeus Multifuge X1R, Thermo Scientific  

OOI 

Heraeus Instruments Function Line Labofuge 400R, Thermo 

Scientific 

CO2-incubator University of Cologne 

CB Series, Binder (Tuttlingen, Germany)  

OOI 

MCO-17AIC, Sanyo (Osaka, Japan) 

Evaporator/ Concentrator XcelVap, Horizon Technology (Salem, New Hampshire, USA) 

Flow cytometer Guava® easyCyte, Merck  
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Haemocytometer Neubauer improved, superior Marienfeld (Lauda-Königshofen, 

Germany)  

Heating block Thermomixer compact, Eppendorf  

HPLC (analytical) Hewlett Packard Series 1100, Agilent (Waldbronn, Germany) 

Column: EC125/4.6 NUCLEODUR 100-5 C18ec, Macherey-

Nagel (Düren, Germany) (solvents incl. 0.1% trifluoroacetic 

acid) 

HPLC (preparative) University of Cologne 

Elite Lachrom, Hitachi (Chiyoda, Japan): Pump L-2130; 

Autosampler L-2200; Diode Array Detector L-2455 and  

Fraction Collector Foxy R1, Teledyne ISCO (Lincoln, Nebraska, 

USA) 

column:  

- VP250/16 NUCLEODUR 100-5 C18ec, Macherey-Nagel 

(preparative) 

- VP250/8 NUCLEODUR 100-5 C18ec, Macherey-Nagel (semi-

preparative) 

ELTE University 

KNAUER 2501 HPLC system (H.Knauer, Bad Homburg, 

Germany)  

column: Jupiter® 10 µm C18 300 Å, 250 x 10 mm, Phenomenex 

(Torrance, California, USA) 

LC-MS University of Cologne 

LC: 1100 Series and 1200 Series, Agilent (Santa Clara, 

California, USA) 

MS: LTQ-XL, Thermo Scientific  

column:  

- Chromolith®Performance RP-18e, 100–4.6 mm, Merck 

- Eclipse Plus C18, 3,5 µm, 4.6 x 100 mm, Agilent  

- EC 125/4.6 NUCLEODUR 100-5 C18ec, Macherey Nagel 

(solvents incl. 0.1% formic acid) 

ELTE University 

LC: Agilent 1100  

MS: Esquire 3000+ ion trap, Bruker Daltonics (Bremen, 

Germany) 

column: Supelco C18 (150 mm x 2.1 mm, 3µm) (Hesperia, 

California, USA) (solvents incl. 0.1% formic acid) 
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Lyophilizer Alpha 2-4 LDplus, Christ (Osterode am Harz, Germany)  

Magnetic stirrer VMS-C7, VWR Advanced 

Microscope University of Cologne 

Inverted microscope: AE31, Motic (Wetzlar, Germany) 

Confocal laser scanning system: D-Eclipse C1, Nikon (Tokyo, 

Japan) and SP8, Leica (Wetzlar, Germany), equipped with a 

60V oil-immersion objective. 

OOI 

Inverted microscope: CK2, Olympus (Shinjuku, Japan) 

Pipettes University of Cologne 

Eppendorf (Hamburg, Germany)  

ELTE University 

Finnpipette F2, Thermo Fisher Scientific (Waltham, 

Massachusetts, USA) 

Plate reader University of Cologne 

Infinite M200, Tecan (Männedorf, Switzerland)  

OOI 

Bio-Rad microplate reader model 550 

Robot for automated 

SPPS 

SyroI, MultiSynTech (Bochum, Germany) 

Rotary evaporator Labo Rota S300, Resona Technics 

Rotary shaker KL-2, Edmund Bühler GmbH (Bodelshausen, Germany) 

Speed-Vac Speedvac  Concentrator  Savant  SC210A and 

RVT5105 Refrigerated Vapor Trap VLP80 Vacuum Pump, 

Thermo Scientific 

Vacuum pump VWR 

Vortex Vortex Genie 2, Scientific industries (Bohemia, USA) 

Water bath SW22, Julabo (Seelbach, Germany) 

 

6.2. Methods 

6.2.1. Automated Solid Phase Peptide Synthesis 

The peptide synthesis was usually carried out on a polymeric, swellable but insoluble support 

material (resin) of divinylbenzene cross-linked polystyrene, modified with Fmoc-Rink amide 

aminomethyl for the anchoring of the first amino acid (Fmoc-Rink amide AM resin, 100-200 

mesh, 75-150 μm, loading 0.48 mmol/g). For the synthesis of the cyclic peptides a preloaded 

2-chlorotrytil chloride resin (H-L-Lys(Boc)-2CT, loading 0.74mmol/g) was used. In both cases, 
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the resin (15 μmol) was loaded in 2 ml propylene syringes, equipped with matching teflon frits. 

The automated synthesis was carried out using a multiple synthesizer robot according to the 

Fmoc/tBu strategy. All used amino acids (aa) were N-terminally Fmoc-protected, while the side 

chains of trifunctional aa were protected with orthogonal, acid labile groups. The following side 

chain protecting groups were used: 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl 

(Pbf)for Arg; Trityl (Trt) for Asn, His, Gln and Pen; tert-Butyl (tBu) for Asp and Glu and tert-

butyloxycarbonyl (Boc) for Lys. For the selective deprotection of side chains also Fmoc-

Lys(Dde)-OH was used. During the automated synthesis, the resin was first pre-swollen for 10 

min in 800 µl of DMF, the solvent was then filtered off and afterwards the Fmoc protecting 

group on the resin was cleaved with 40% piperidine in DMF (400 µl, 3 min) and 20% piperidine 

in DMF (400 µl, 10 min), followed by 4 washing steps with 600 µl DMF each. The aa were 

dissolved to 0.4 M in DMF (Fmoc-Phe-OH: 0.4 M in NMP) and 300 µl (0.12 mmol) of the aa 

solution together with 50 µl (0.12 mmol) Oxyma (2.4 M in DMF) were pipetted to the resin and 

pre-incubated for 3 minutes. After addition of 50 µl (0.12 mmol) of DIC (2.4 M in DMF) the resin 

was left 40 min at rt, shaking occasionally. To improve the coupling yield, after a washing step 

with 800 µl DMF, the reaction was repeated once again (double coupling strategy) and finally 

washed twice with 800 µl of DMF. Consequently, the N-terminal Fmoc protecting group was 

cleaved as already described. All other aa were coupled analogously, with each cycle including 

a double coupling followed by Fmoc-cleavage. Finally, the resin was washed manually with 

DMF, DCM, MeOH and Et2O five times respectively and dried under reduced pressure in a 

vacuum concentrator for 10 min. 

6.2.2. Fmoc-cleavage 

The resin (15 µmol) was initially pre-swollen for at least 10 minutes in 1 ml of DMF. After 

removing the solvent, 500 μl of 30% piperidine in DMF were added and left 20 min shaking at 

rt; the procedure was repeated twice. The resin was then washed with DMF, DCM, MeOH and 

Et2O five times each and dried under reduced pressure in a vacuum concentrator. 

6.2.3. Manual coupling 

The resin (15 µmol) was initially pre-swollen for at least 10 minutes in 1 ml of DMF. Afterwards, 

the solvent was filtered off and the Fmoc-protected aa (45 μmol or 75 μmol) and Oxyma (45 

µmol or 75 μmol) were dissolved in 300 µl DMF. DIC (45 µmol or 75 μmol) was added to the 

mixture that was then loaded to the resin and left shaking at rt, overnight. Alternatively, the 

coupling was carried out with HATU (45 μmol) and DIPEA (45 μmol) for 2 h at rt. The resin 

was then washed with DMF, DCM, MeOH and Et2O five times each and dried under reduced 

pressure. To check the completeness of the coupling a Kaiser test was performed. Manual 

coupling was performed for particularly expensive aa and difficult couplings like for 

Fmoc-Lys(Dde)-OH, Fmoc-Propargylglycine-OH, Fmoc-Penicillamine(Trt)-OH, 
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Bis-Boc-aminooxyacetic acid, fluorophores like 5(6)-carboxyfluorescein (CF) and acid 

functionalized azido DKP scaffolds. 

6.2.4. Coupling of 5(6)-carboxyfluorescein (CF) and polymer cleavage 

The manual coupling was performed as already described. Particular care had to be taken to 

avoid the exposure to direct light and the reaction vessels were therefore precautionary 

covered with aluminium foil. After having verified by Kaiser test that the reaction was 

completed, a polymer cleavage was performed. The resin was swollen in 1 ml DMF for at least 

10 min, the solvent was filtered off and 1 ml of 20% piperidine in DMF was added to the resin 

and left shaking 45 min at rt. The resin was then washed as usual and dried. 

6.2.5. Kaiser test 

With the Kaiser test, any primary and secondary amine can be detected through a colorimetric 

reaction with ninhydrin, thus the completion of a coupling or deprotection reaction can be 

demonstrated. Some dry resin beads were transferred in a closable 1.5 ml tube and one drop 

of each of the following solutions was added in this order: 

- solution I: 1 g of ninhydrin in 20 ml of ethanol (absolute); 

- solution II: 80 g of phenol in 20 ml of ethanol (absolute); 

 - solution III: 0.4 ml of 1 mM aqueous KCN solution in 20 ml of pyridine. 

The reaction mixture was incubated for 5 min at 95 °C in a thermomixer. A blue color of the 

solution or the resin beads suggested the presence of amines, indicating the incompleteness 

of the coupling reaction (positive test). On the contrary, a yellow color implied the absence of 

free amino groups (negative test). Positive control was ethanolamine, as negative control only 

the solutions were added to the vial. 

6.2.6. Boc protection 

The resin (15 μmol) was first pre-swollen for at least 10 minutes in 1 ml DCM. After that, the 

solvent was filtered off and Boc2O (150 μmol) and DIPEA (15 μmol) were dissolved in 500 μl 

DCM, added to the resin and shaken for at least 2 h at rt. Particular attention had to be paid 

handling the Boc2O, since this substance is very dangerous. Scaling was performed under the 

hood to avoid inhalation of poisoning fumes. Subsequently, the resin was washed five times 

with DCM, MeOH and Et2O and then dried under reduced pressure. To check the 

completeness of the protection, a Kaiser test was carried out. 

6.2.7. Dde-cleavage 

The resin (15 μmol) was initially pre-swollen for at least 10 minutes in 1 ml of DMF. The solvent 

was removed and 1 ml of a hydrazine solution (2% in DMF) was added to the resin and shaken 
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for 10 min at rt. The solution was then filtered off while collecting the flow-through, the resin 

was washed twice with 1 ml of DMF and the reaction repeated at least ten times. The 

absorption at 301 nm of the collected solutions after the first and last cleavage were measured 

photometrically. The Dde cleavage was considered complete when the absorption of the first 

solution >1 and of the last solution was <0.1. If the cleavage after 10 repetitions was not 

complete, the hydrazine content was increased to 3% and the reaction repeated till completion. 

Subsequently, the resin was washed five times with DCM, MeOH and Et2O and then dried 

under reduced pressure. 

6.2.8. Sample cleavage 

To monitor the synthesis, in particular after critical steps, the peptide was cleaved from a small 

amount of resin with the simultaneous removal of all acid-labile protective groups. A small 

amount of dry resin beads were transferred into a 1.5 ml closable reaction tube; first 

scavengers (2.5 μl water, 2.5 μl TIS) and then 95 μl TFA were added. For peptides containing 

Pen, 7 μl thioanisole and 3 μl EDT were used instead and filled up with 90 μl TFA. The reaction 

was left 3h shaking at rt and then 1 ml of ice-cold, dried Et2O was added. For very short peptidic 

sequences a mixture of Et2O/n-hexane (3:1) was used. To complete the precipitation of the 

peptide, the reaction vessel was stored at -20 °C for at least 30 min. Afterwards, it was 

centrifuged (4 °C, 10000 g, 5 min), the supernatant was discarded and the pellet of the peptide 

washed at least five times with ice-cold Et2O. The pellet was dried under reduced pressure 

and the peptide was dissolved in 100 μl of H2O or H2O/t-BuOH (3:1) and centrifuged to allow 

the precipitation of the resin beads. For the LC-MS analysis 10 µl of the supernatant were 

diluted with 10 µl of the starting gradient ACN/H2O/0.1% FA. 

6.2.9.  Full cleavage 

To cleave the peptide from the resin with simultaneous removal of all acid labile protecting 

groups, first scavenger (25 μl water, 25 μl TIS) and then 950 μl of TFA were added to the dry 

resin directly in the reactor. In presence of thiol groups (Pen residue), a mixture of 

thioanisole/EDT/TFA (7:3:90) has been used instead, in order to avoid undesired oxidation. 

The solution was shaken for 3 h at rt and afterwards the reaction solution was filtered through 

the teflon frit from the syringe into a 15 ml centrifuge tube containing 10 ml of ice-cold, dry 

Et2O. Residual resin was washed with 200 μl of TFA and the solution was added to the Et2O 

too. For very short peptides instead of Et2O, a mixture of Et2O/n-hexane (3:1) was used. For 

complete precipitation of the peptide, the tube was stored at -20 °C for at least 30 min. Then, 

the solution was centrifuged off (4 °C, 5000 g, 5 min), the supernatant discarded and the 

peptide pellet washed at least five times with ice-cold Et2O by iterative resuspension and 

centrifugation. The pellet was dried under reduced pressure and then dissolved in 2-3 ml of 

H2O or H2O/t-BuOH (3:1). For LC-MS analysis, 5 μl of the solution were mixed with 15 μl 
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ACN/H2O/0.1% FA at different ratios according to the HPLC gradient used. As last step, the 

peptide was freeze-dried. 

6.2.10. Coupling of daunorubicin 

For the conjugation of daunorubicin to the peptide by oxime binding, a molecule of Bis-Boc 

aminooxyacetic acid was coupled to the side chain of a Lys (3 eq. with oxyma and DIC 

overnight). The success of the coupling was checked by Kaiser test. The cleavage from the 

resin occurred with the standard scavenger but, as already described by Mezö et al.44, 10 eq. 

of Boc-aminooxyacetic acid were added in the cleavage cocktail in order to avoid the formation 

of acetone adducts with a delta mass of +40. To circumvent the generation of formaldehyde 

adducts, glas tubes were preferably used to collect the pure fractions and for the washing 

steps. After precipitation, washing and purification, the peptide was freeze-dried and then 

dissolved in ammonium acetate buffer 0.2 M at pH 5 reaching a concentration of around 10 

mg peptide/ml or less. Daunorubicin was added in excess of about 30% and the reaction was 

stirred overnight. In order to remove unreacted daunorubicin, the reaction solution was directly 

injected into the HPLC on a semipreparative RP18 column. ACN/H2O with 0.1% TFA were 

used as eluents changing gradient as needed. The collected fractions were evaporated to 

remove the ACN, analyzed with LC-MS and lyophilized to obtain the purified peptides with 

purities >95%.  

6.2.11. Copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) 

The c[DKPf3RGD]-PEG4-N3 or the azido functionalized GnRH-III were conjugated to the CPP 

by a copper (I) catalyzed azide-alkyne cycloaddition (“click” reaction) occurring between the 

azido group of the ligand and the alkyne group of the propargylglycine at the N-terminus of the 

CPP. In the case of the c[DKPf3RGD] conjugates,1.3 eq. of the azido compound were 

dissolved with 1 eq. of the alkyne-containing peptide in  a 1:1 mixture of dry DMF and degassed 

H2O in a Schlenk tube under N2 atmosphere reaching a concentration of 10mM. The same 

conditions were used also for the GnRH-III conjugates even if here the reaction was performed 

with an excess (1.3 eq.) of the alkyne-including compound. Stock solutions of CuSO4 and Na 

ascorbate in degassed H2O were prepared and 0.5 eq. and 0.6 eq. respectively were added 

to the reaction. The solution was stirred overnight under N2 atmosphere at 40 °C. The reaction 

was controlled by LC-MS till completion and then directly injected into the HPLC on a 

semipreparative RP18 column for purification obtaining final conjugates with purities >95%. 

6.2.12. Synthesis of compound V 

3-mercaptopropanoic acid (20.8 mg, 17 µl, 0.196 µmol, 1 eq.) and dithiopyridine (100 mg, 0.45 

µmol, 2.3 eq.) were dissolved in MeOH (1.2 ml, 0.2 mM) and the solution was stirred for 3 h at 

rt. After completion of the reaction, followed by HPLC, the solvent was removed by reduced 

pressure and the crude was purified by preparative RP-HPLC. The collected fractions were 

https://docs.google.com/document/d/19W55RaXFFzb0Q0Euln9XKqL3Gml5vvPhZ2QJIoYOxvI/edit#heading=h.19c6y18
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analyzed by LC-MS and those corresponding to the pure product were freeze-dried. A 

transparent oil (26 mg, 0.14 µmol) was obtained with 62% yield and analyzed by LC-MS and 

NMR.  

6.2.13. Synthesis of compound VI 

Cry-55-gly (10.4 mg, 13.6 µmol, 1 eq.), compound V (11.7 mg, 54.5 µmol, 4 eq.), PyBOP (28 

mg, 54.5 µmol, 4 eq.) and HOBt•H2O (8.3 mg, 61.2 µmol, 4.5 eq.) were combined under inert 

atmosphere and dissolved in dry DMF (0.5 ml, 27 mM). As soon as all the reagents were 

dissolved, DIPEA was added (8.8 mg, 11.85 µl, 68 µmol, 5 eq.). The solution was stirred at rt 

and followed by HPLC; after 5 h the reaction was completed and directly purified by RP-HPLC. 

After freeze-drying, a white solid (9.2 mg, 9.6 µmol) was obtained with 70% yield. 

6.2.14. Synthesis of compound VII 

For the conjugation to the drug, the peptide (16.13 mg, 4.68 µmol, 1.5 eq.) was dissolved in 

dry DMF together with compound VI (3 mg, 3.12 µmol, 1 eq.). After overnight reaction under 

N2 atmosphere stirring at rt, the reaction was directly injected in the HPLC and purified. The 

peptide was freeze-dried from water obtaining a white solid (8.8 mg, 1.99 µmol, 64% yield). 

6.2.15. Azide reduction 

For the reduction of the azido group, the resin (15 µmol) was pre-swollen for at least 10 minutes 

in DCM and then treated with DTT (2M) in 500µL of DCM. Then, DIPEA (1 M, 87 µL) was 

added and the reaction was left shaking at rt for 2h. Afterwards, the solvent was removed and 

the resin was washed and dried. The success of the reaction was verified by Kaiser test or 

sample cleavage. 

6.2.16. Cyclization 

The synthesis followed the same steps as for the linear peptides. Since during the cyclization 

reaction the aa side chains have to be protected, the cleavage from the resin occurred in milder 

conditions. The resin was treated with a solution of DCM/TFE/AcOH (8:1:1) for 2 h at rt. The 

solution was then filtered and transferred to a flask and the resin was washed two more times 

with the same cleavage solution. The solvent was evaporated under reduced pressure and 

hexane was added to remove acetic acid as azeotrope. The crude was washed and digested 

with 5% NaHCO3, filtered and washed with ddH2O to remove all salts. After freeze-drying, the 

white solid product obtained was subjected to the next step of cyclization. 1 eq. of the fully 

protected linear peptide was dissolved in DMF (0.2 mM) and DIPEA was added till the solution 

reached pH 8 (around 12 eq.). Under these conditions, BOP (6 eq.) and HOBt (6 eq.) were 

added and the reaction was left under stirring at rt. After 6 hours, BOP was added again, the 

pH was adjusted with DIPEA (if necessary) and the reaction was left stirring overnight. For the 

treatment of the cyclization reaction, the mixture was diluted with EtOAc and extracted with 
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brine and saturated NaHCO3. The organic phase was then dried at reduced pressure, freeze-

dried and subjected to full cleavage. The crude was reacted with 1 ml of the cleavage cocktail 

K TFA/phenol/H2O/thioanisole/EDT (82.5:5:5:5:2.5) and treated as described before. After 

washing, the crude was freeze-dried, dissolved in ACN/H2O (10:90) with 0.1% TFA and purified 

on semipreparative RP-HPLC. The peptide was freeze-dried from water obtaining a white solid 

(22 to 36% yield). 

6.2.17. Synthesis of the cyclic peptide conjugated to daunorubicin 

Instead of the Bis-Boc aminooxyacetic acid as for the linear version, an isopropylidene 

protected aminooxyacetic acid was prepared by stirring for 30 minutes carboxymethoxylamine 

hemihydrochloride in acetone obtaining the protected product with quantitative yields. This was 

coupled manually to the peptide using 3 eq. of the reagent, 3 eq. Oxyma and 3 eq. DIC 

overnight. After the cyclization, deprotection of the aminooxyacetic acid was performed with a 

solution of 1 M methoxylamine containing NH4OAc-buffer (0.2 M, pH 5). To avoid undesired 

side reactions with carbonylic groups (acetone or formaldehyde), an excess of daunorubicin 

was added directly after completion of the deprotection and the purification was performed 

directly. A sample for the LC-MS analysis was taken and the fractions were immediately frozen. 

The conjugation to the drug occurred after freeze-drying as previously described. 

6.3. Peptide analysis 

All solvents and eluents used for the HPLC fulfilled the required purity with the specification 

“HPLC Gradient quality” or “LC-MS Quality”. 

6.3.1. Analytical HPLC-MS 

The characterization of the peptides during and at the end of the synthesis was carried out by 

means of reverse phase high-performance liquid chromatography electrospray ionization mass 

spectrometry (HPLC-ESI-MS). Samples were diluted with the starting gradient; the dilutions 

have been previously described for every synthetic step. The linear gradient used was typically 

10-60% B in A in 15 min with a flow rate of 0.6 ml / min (A: 0.1% FA in water, B: 0.1% FA in 

ACN). After chromatographic separation of the analytes from the column, the eluent was 

splitted into two parts (1:20). The main part was conducted to the UV detector for the 

measurement of UV absorbance at 220 or 195 nm; simultaneously the remaining part was 

ionized in the mass spectrometer and the m/z values of the pseudo-molecular ions were 

detected. Control of HPLC and ESI-MS systems as well as the evaluation of UV 

chromatograms and mass spectra were performed with the Software Xcalibur (Version 2.2, 

Thermo Scientific). Images of mass spectra were processed with Origin. The purity of the final 

compounds was determined by calculating the ratio of the product AUC to the total AUC in the 

UV-chromatogram. 
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6.3.2. Preparative HPLC 

The purification of the lyophilized peptides was carried out by preparative reverse phase HPLC. 

The lyophilized peptide (maximum 30 mg for the preparative column and 5 mg for the 

semipreparative) was dissolved in 960µl of starting gradient solution, typically H2O/ACN/TFA 

(90:10:0.1) but depending on the hydrophobicity of the peptide, vortexed and centrifuged. The 

supernatant was then transferred in a glass HPLC vial and 940 µl were automatically injected 

on the column. The elution was performed with a linear gradient, in general 10-60% B in A 

(A: 0.1% TFA in water, B: 0.08% TFA in ACN) in 45 min at a flow rate of 6 ml / min (preparative) 

or 1.5 ml/min (semipreparative). The UV absorbance was detected at 220 and 250 nm and the 

peptide containing fractions were collected in plastic tubes. Afterwards, the solution was 

concentrated using XcelVap or Speedvac for more sensitive products and then lyophilized. For 

LC-MS analysis, 2 μl of the solution were mixed with 18 μl ACN/H2O/0.1% FA at different ratio 

according to the HPLC gradient used. 

6.3.3. Circular dichroism spectroscopy 

CD spectra were recorded from 260 nm to 184 nm at 20°C using a Jasco J-715 

spectropolarimeter purged with N2 gas. For measuring CD spectra the peptides were dissolved 

to a final concentration of 20 μM. Peptide samples were diluted in 10 mM sodium phosphate 

buffer (pH 7) containing 0 or 50% (v/v) TFE. Each measurement was repeated 4 times using 

a sample cell with a path length of 0.1 cm. Instrument parameters were: response time 2 s, 

scan speed 50 nm/min, sensitivity 100 mdeg, step resolution 0.5 nm and bandwidth 1.0 nm. 

The background was removed by subtraction of the CD spectrum of the solvent. 

6.4. Biological methods 

6.4.1. Cell lines and cell culture conditions 

All the cell experiments were carried out under a laminar flow hood in sterile conditions. 

Pipettes and all consumable transferred under the hood were first autoclaved and then 

disinfected with 70% EtOH. Every working step was performed wearing a lab coat and 

disinfected gloves. Sterile Pasteur pipettes were directly connected to a vacuum pump in order 

to remove media during washing steps or by performing experiments. The temperature (37 °C) 

of the chemicals used was adjusted by a heating bath. The culturing of cells was carried out 

at 5% CO2 at 37 °C, using 100x20 mm Petri plates. The cell lines included in this work are 

listed in Table 19. 
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Table 19: Cell lines used during the thesis. 

Name Cell type 

HeLa human cervix carcinoma 

HT-29 human colon adenocarcinoma 

MCF-7 human breast adenocarcinoma 

PANC-1 human pancreas ductal adenocarcinoma 

U87 human glioma cells 

All the media for culturing the cells were supplemented with 10% FBS and adjusted with 

different contents of L-glutamine depending on the cell line (2mM for HT-29 and PANC-1 or 

4mM for U87, HeLa and MCF-7 cells). For the detachment of confluent cells culture medium 

was first removed and the cells were washed twice with DPBS. Afterwards, the cells were 

treated with 1 ml trypsin-EDTA solution for a few minutes depending on the cell line, at 37 °C. 

For U87 cells the treatment with trypsin was not necessary as this cell line was easily detached 

just by resuspending with medium. 9 ml of the appropriate culture medium with FBS were 

finally added and the cells were resuspended and completely detached. 10 µl of the cell 

suspension were taken, inserted into a counting chamber and the total number of cells was 

calculated. The desired amount of cells was subsequently diluted with fresh medium and 

transferred in new Petri plates or in 8-, 24- or 96-well plates where they could grow till reaching 

the desired confluence. 

6.4.2. Freezing and thawing cells 

To freeze the cells, after detaching them with 1 ml trypsin-EDTA solution and resuspending 

them in 9 ml of appropriate cell culture medium, they were transferred in 15 ml tubes and 

centrifuged at 1000 x g for 5 min at 4 °C. Subsequently, the cell pellet was resuspended in 1.5 

ml of freezing medium (appropriate full medium supplemented with 10% DMSO). The cell 

suspension was placed in a freezing vial and frozen in a mild, stepwise manner. The vial was 

stored inside a freezing container for 15 min at 4 °C and then for 2 h at -20 °C. The freezing 

vial was then stored overnight at -80 °C, before relocation in liquid nitrogen for long-term 

storage. 

Thawing of cells stored in liquid nitrogen was carried out by defreezing the vial at 37 °C and 

rapidly transferring it into a 15 ml tube containing 8.5 ml of the appropriate medium. After 

centrifugation, the supernatant was removed and the pellet resuspended in fresh medium. In 

this way, the DMSO could be almost completely discarded from the cell suspension and its 

toxicity could be circumvented. After 24 h at the latest the medium was exchanged to eliminate 

dead cells and the remaining DMSO. 
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6.4.3. Cell viability assays 

6.4.3.1. Resazurin-based cytotoxicity assay 

In order to test the influence of the peptides on cell viability, a resazurin-based cytotoxicity 

assay was performed. For the assay 96-well plates were used. First, a cell suspension with a 

defined concentration (HeLa: 4500 cells per well) was pipetted into the wells and filled up with 

full medium reaching a final volume of 200 μl. The next day, the culture medium was replaced 

by 100 μl of culture medium (without FBS) with a defined peptide concentration. Cells were 

incubated for 24 h with the peptide solution. After removing the solvent, 200 μl of fresh medium 

were added and the cell s were incubated for further 48h. Subsequently, the medium was 

removed, the cells washed with DPBS and then incubated with 10 μl resazurin in 90 μl medium 

(without FBS) for 1 h. As negative and positive controls untreated cells and cells treated 10 

min with 70% EtOH in H2O were used. The fluorometrical measurement was performed with a 

microplate reader at 596 nm with excitation at 550 nm.  

6.4.3.2. MTT-based cytotoxicity assay 

To investigate the antiproliferative activity of the conjugates on the human tumor cell lines U87, 

HT-29, MCF-7 and PANC-1, a MTT assay was performed. Cells were seeded in a 96-well plate 

(U87, HT-29 and MCF-7: 6000 cells per well, PANC-1: 8000 cells per well), grown for 24 h and 

incubated with various concentrations of the conjugate in appropriate serum-containing 

medium for 72 h or for 15 minutes, followed by medium removal and incubation with fresh 

medium for additional 72 h under standard growth conditions. The MTT assay was performed 

by adding 20 µL of MTT solution (5 mg/ml in DPBS) to each well and after 3 h of incubation at 

37°C, the supernatant was removed. The formazan crystals were dissolved in 100 µL of a 1:1 

solution of DMSO and EtOH and the absorbance was determined at 570 nm with a microplate 

reader. Background value (absorbance of DMSO:EtOH) was subtracted from the measured 

values and the percentage decrease in cell proliferation was determined relatively to untreated 

cells. 

6.4.4. Internalization studies 

6.4.4.1. Flow cytometry 

For uptake studies by flow cytometry, cells were seeded in a 24-well plate (Hela: 100000 cells 

per well, HT-29 and MCF-7: 120000 cells per well, U87: 150000 cells per well) and grown to 

70–80% confluency. After incubation at 37°C for 15, 30 or 60 min with the labeled peptides 

(CF or daunorubicin) in serum-free medium, the cells were washed twice with DPBS, detached 

with indicator-free trypsin and resuspended in indicator-free serum containing-RPMI medium. 

The cell suspension was transferred into a 96-well FACS plate and the fluorescence was then 

measured by a flow cytometer where 10000 viable cells were counted. Cellular 

autofluorescence was subtracted and the experiments were performed twice in triplicates. For 
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competition experiments the unfunctionalized c[DKP3RGD] ligand was added to the cells in 

10-fold excess together with the peptide. After 30 or 60 min incubation time the medium was 

removed and the cells were treated as described above. For blocking experiments the cells 

were pre-incubated with c[DKP3RGD] (10 µM), Poly-L-lysine or methyl-β-cyclodextrin (1mM) 

for 30 min followed by peptide incubation for 30 min. 

6.4.4.2. Confocal laser scanning microscopy 

For confocal microscopy uptake studies, cells were seeded in an eight-well (Ibidi) plate (U87: 

70000 cells per well; HT-29 and MCF-7: 50000 cells per well, HeLa:30000 cells per well) and 

grown to 70–80% confluency. The next day the cells were incubated with CF- or daunorubicin-

labeled peptides in serum-free medium for 30 min at 37 °C. The nuclei were stained for 10 min 

with Hoechst33342 nuclear dye (bisbenzimide  H33342, 1 mg/mL in H2O, sterile  filtered) prior 

to the end of peptide incubation. Finally, the solution was removed and cells were treated with 

200 µL trypan blue solution (150 mM in 0.1 M acetate buffer, pH 4.15) for 15 s. After washing 

once with serum-free medium and adding fresh, appropriate serum-containing medium, 

images were taken by using a Nikon Eclipse Ti or a Leica SP8 confocal laser scanning 

microscope. Images were recorded with Nikon EZ-C1 3.91 and Leica Mycrosystems software 

and adjusted with ImageJ 1.43 m and Fiji software. 

6.4.5. Integrin expression on cell surface 

Three million cells were counted for every cell line, then centrifuged in 15 ml tubes at 1000 rpm 

for 5 min at 4 °C; afterwards the supernatant was removed. To fix the cells 300 µl of 4% PFA 

were added to the pellet, which was then resuspended and left 10 minutes at rt. Afterwards, 2 

ml of DPBS were added, the 15 ml tubes vortexed and centrifuged at 1000 rpm, 5 min at 4 °C. 

The supernatant was discarded and 3 ml DPBS were added to the 15 ml tubes. The solution 

was again resuspended and divided into 3 FACS tubes (one as control and two for the 

treatment with antibody). The antibody used was an anti-integrin αvβ3 Ab clone LM609 

purchased from Merck Millipore. After addition of 2 ml of PBS to each tube, centrifugation 

followed with the same conditions as before and supernatant was removed. 50 µl of 3% BSA 

in PBS were added to each tube to block non-specific binding sites. The solution was left 10 

min at rt and moved from time to time. After this blocking step, 50 µl of antibody mixture (dilution 

1:25; 2µl antibody, 23µl DPBS and 25µl 3% BSA) were added to each FACS tube, incubated 

for 60 minutes at 37 °C and moved from time to time. After this incubation time, cells were 

washed by adding 2ml of DPBS. Centrifugation was performed, the supernatant removed and 

the pellet was then dissolved in FACS medium to proceed with the quantification of the 

fluorescence intensity.  
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6.4.6. Solid-phase integrin binding assay 

Human integrin receptors αvβ3 (R&D Systems, Minneapolis, MN, USA) and αvβ5 (EMD Millipore 

Corporation, Inc., Temecula, CA, USA) were diluted to 0.5 µg/mL in coating buffer containing 

20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM MnCl2, 2 mM CaCl2, and 1 mM MgCl2. An 

aliquot of diluted receptor (100 µL/well) was added to 96-well plates (Nunc MaxiSorp, Termo 

Fisher Scientific, Roskilde, DK) and incubated overnight at 4 °C. The plates were incubated 

with blocking solution (coating buffer plus 1% BSA) for additional 2 h at rt to block nonspecific 

binding. After washing 2 times with blocking solution, plates were incubated shaking in the 

dark for 3 h at rt, with various concentrations (10-5–10-12 M) of test compounds in the presence 

of 1 µg/mL vitronectin (Molecular Innovations, Novi, MI, USA) biotinylated using an EZ-Link 

Sulfo-NHS-Biotinylation kit (Pierce, Rockford, IL, USA). After washing 3 times, the plates were 

incubated shaking for 1 h in the dark, at rt, with streptavidin-biotinylated peroxidase complex 

(Amersham Biosciences, Uppsala, Sweden). After washing 3 times with blocking solution, 

plates were incubated with 100 µL/well of Substrate Reagent Solution (R&D Systems, 

Minneapolis, MN, USA) for 30 min shaking in the dark, before stopping the reaction with the 

addition of 50 µL/well 2N H2SO4. Absorbance at 415 nm was read in a SynergyTM HT Multi-

Detection Microplate Reader (BioTek Instruments, Inc.). Each data point represents the 

average of triplicate wells; data analysis was carried out by nonlinear regression analysis with 

GraphPad Prism software. Each experiment was repeated in duplicate. 
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8.  Attachment 

8.1. List of abbreviations 

ACN acetonitrile 

AcOH acetic acid 

ADC antibody-drug conjugate 

Aoa aminooxyacetic acid 

Aoa=X aminooxyacetic acid conjugated via oxyme bond to X 

AUC area under the curve 

BBB blood-brain barrier 

Boc tert-butyloxycarbonyl 

Boc2O di-tert-butyl dicarbonate 

BOP (Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium 
hexafluorophosphate 

BSA bovine serum albumin 

Bu butyryl 

Cbl chlorambucil 

CD circular dichroism 

CF 5(6)-carboxyfluorescein 

CLSM confocal laser scanning microscopy 

CPP cell-penetrating peptide 

Cry cryptophycin 

CuAAC copper-catalyzed azide-alkyne cycloaddition 

Dau daunorubicin 

ddH2O double distilled water 

DCM dichloromethane 

Dde 1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl 
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DIC N,N-diisopropylcarbodiimide 

DIPEA N,N-diisopropylethylamine 

DKP diketopiperazine 

DMEM Dulbecco´s modified Eagle Medium 

DMF N,N-dimethylformamide 

DMSO dimethyl sulfoxide 

DPBS Dulbecco's Phosphate-Buffered Saline 

DTT dithiothreitol 

EC50 half maximal effective concentration 

ECM extracellular matrix 

EDT 1,2-ethanedithiol 

EDTA ethylenediaminetetraacetic acid 

ELTE Eötvös Loránd University (Budapest) 

eq. equivalent 

ESI-MS electrospray ionization mass spectrometry 

Et2O diethyl ether 

EtOAc ethyl acetate 

EtOH ethanol 

FA formic acid 

FACS Fluorescence Activated Cell Sorting 

FDA Food and Drug Administration 

FBS Fetal Bovine Serum 

FITC fluorescein isothiocyanate 

Fmoc 9-fluorenylmethyloxycarbonyl 

GnRH Gonadotropin Releasing Hormone 
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GnRH-R Gonadotropin Releasing Hormone receptor 

HATU O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium 

hexafluorophosphate 

HeLa human cervical carcinoma cell line 

HOBt hydroxybenzotriazole 

Hoechst bisBenzimide H 33342 trihydrochloride 

HPLC high performance liquid chromatography 

HT-29 human colon cancer cell line 

IC50 half maximal inhibitory concentration 

KCN potassium cyanide 

KO Knock-Out 

LC-MS liquid chromatography–mass spectrometry  

m/z mass-to-charge ratio 

mβ-cd methyl-β-cyclodextrin 

mAb monoclonal antibody 

MCF-7 human breast adenocarcinoma cell line 

MDR multi-drug resistant 

MeOH methanol 

MIDAS metal ion-dependent adhesion site 

MMP-2 metalloproteinase 2 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

MW molecular weight 

NMP N-Methyl-2-pyrrolidone 

NMR nuclear magnetic resonance 

OOI National Institute of Oncology (Budapest) 
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PANC-1 human pancreatic cancer cell line 

PBS Phosphate-Buffered Saline 

PEG polyethylene glycol 

PFA paraformaldehyde 

PLL Poly-L-Lysine 

PyBOP benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate 

RP reversed phase 

RPMI 1640 Roswell Park Memorial Institute, cell culture medium 

rt room temperature 

SAR structure activity relationship 

SD standard deviation 

SMDC small molecule-drug conjugate 

SPPS solid phase peptide synthesis  

t-Bu tert-butyl 

t-BuOH tert-butyl alcohol 

TFA trifluoroacetic acid 

TFE trifluoroethanol 

TIS triisopropylsilane 

U87 human primary glioblastoma cell line 

v/v volume per volume 

VEGFR vascular endothelial growth factor receptor 

 

amino acids   

<E Glp pyroglutamic acid 

βAla  β-alanine 
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A  Ala alanine 

B  Pra propargylglycine 

D  Asp aspartic acid 

E  Glu glutamic acid 

F  Phe phenylalanine 

f D-Phe D-phenylalanine 

G  Gly glycine 

H  His histidine 

I  Ile isoleucine 

K  Lys lysine 

K(Bu)   Lys(Bu) butyrilated lysine 

L  Leu leucine 

N  Asn asparagine 

P  Pro proline 

Pen  penicillamine 

Q  Gln glutamine 

R  Arg arginine 

S  Ser serine 

V  Val valine 

Y  Tyr tyrosine 

W  Trp tryptophan 
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8.2. Attachment of supplementary data: spectra, chromatograms and 

figures 

 

 

Figure 57. LC-MS analysis of peptide GnRH-III-sC18(Dau); MW calculated: 4143.8 g/mol. Purity: 93%. UV 

chromatogram (194 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA 

in H2O; B: 0.1% FA in ACN. Red asterisks: peaks corresponding to the product without daunosamine after mass 

fragmentation. 
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Figure 58. LC-MS analysis of peptide GnRH-III-sC18(GFLG-Dau); MW calculated: 4518.2 g/mol. Purity: 95%. 

UV chromatogram (194 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% 

FA in H2O; B: 0.1% FA in ACN. Blue asterisks: peaks corresponding to the TFA adducts (delta mass +114); red 

asterisks: peaks corresponding to the product without daunosamine after mass fragmentation. 
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Figure 59. LC-MS analysis of peptide 1; MW calculated: 2998.2 g/mol. Purity: >99%. UV chromatogram (220 nm) 

and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% TFA in H2O; B: 0.1% TFA in 

ACN. Blue asterisks: peaks corresponding to the TFA adducts (delta mass +114); green asterisk: peaks 

corresponding to the TFA adducts (delta mass +228). 
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Figure 60. LC-MS analysis of peptide 1a; MW calculated: 3355.9 g/mol. Purity: >99%. UV chromatogram 

(220 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% TFA in H2O; B: 0.1% 

TFA in ACN.  
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Figure 61. LC-MS analysis of peptide 1b; MW calculated: 3580.1 g/mol. Purity: 95%. UV chromatogram (194 nm) 

and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% FA in 

ACN. Red asterisks: peaks corresponding to the product without daunosamine after mass fragmentation. 
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Figure 62. LC-MS analysis of peptide 1c; MW calculated: 3954.6 g/mol. Purity: >99%. UV chromatogram 

(194 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% 

FA in ACN. Red asterisks: peaks corresponding to the product without daunosamine after mass fragmentation. 
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Figure 63. LC-MS analysis of peptide 2a; MW calculated: 2427.9 g/mol. Purity: >99%. UV chromatogram 

(254 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% 

FA in ACN. Blue asterisks: peaks corresponding to the TFA adducts (delta mass +114). 
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Figure 64. LC-MS analysis of peptide 2b; MW calculated: 2652.2 g/mol. Purity: 97%. UV chromatogram (254 nm) 

and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% FA in 

ACN. Red asterisks: peaks corresponding to the product without daunosamine after mass fragmentation. 
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Figure 65. LC-MS analysis of peptide 2c; MW calculated: 3026.7 g/mol. Purity: >99%. UV chromatogram 

(254 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% 

FA in ACN. Red asterisks: peaks corresponding to the product without daunosamine after mass fragmentation. 
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Figure 66. LC-MS analysis of peptide 3b; MW calculated: 1584.2 g/mol. Purity: 95%. UV chromatogram (254 nm) 

and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% FA in 

ACN. Red asterisks: peaks corresponding to the product without daunosamine after mass fragmentation. 
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Figure 67. LC-MS analysis of peptide 3c; MW calculated: 1587.4 g/mol. Purity: 98%. UV chromatogram (254 nm) 

and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% FA in 

ACN. Red asterisks: peaks corresponding to the product without daunosamine after mass fragmentation. 
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Figure 68. LC-MS analysis of peptide Cbl-sC18; MW calculated: 2356.8 g/mol. Purity: 91%. UV chromatogram 

(220 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% TFA in H2O; B: 0.1% 

TFA in ACN. Yellow asterisks: peaks corresponding to the hydrolysed product. The first peak is DMSO since the 

compound was dissolved in DMSO to avoid hydrolysis.  
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Figure 69. LC-MS analysis of peptide c[DKPf3RGD]-sC18(Cbl); MW calculated: 3296.5 g/mol. Purity: 86%. UV 

chromatogram (220 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA 

in H2O; B: 0.1% FA in ACN. Yellow asterisk: peaks corresponding to the hydrolysed product; blue asterisks: peaks 

corresponding to the TFA adducts (delta mass +114). The first peak is DMSO since the compound was dissolved 

in DMSO to avoid hydrolysis.  
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Figure 70. LC-MS analysis of peptide c[DKPf3RGD]-sC18-S-S-Cry; MW calculated: 4048.3 g/mol. Purity: 95%. 

Ion current and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% 

FA in ACN.  
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Figure 71. LC-MS analysis of peptide sC18-S-S-Cry; MW calculated: 3121.7 g/mol. Purity: 97%. UV 

chromatogram (220 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA 

in H2O; B: 0.1% FA in ACN.  
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Figure 72. LC-MS analysis of peptide c[DKPf3RGD]-PEG4-N3; MW calculated: 889.6 g/mol. Purity: >99%. UV 

chromatogram (220 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% TFA 

in H2O; B: 0.1% TFA in ACN.  
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Figure 73. LC-MS analysis of peptide I; MW calculated: 2690.2 g/mol. Purity: 98%. UV chromatogram (220 nm) 

and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% FA in 

ACN. Red asterisks: peaks corresponding to the product without daunosamine after mass fragmentation. 
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Figure 74. LC-MS analysis of peptide II; MW calculated: 3064.7 g/mol. Purity: 95%. UV chromatogram (220 nm) 

and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% FA in 

ACN. Red asterisks: peaks corresponding to the product without daunosamine after mass fragmentation. 
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Figure 75. LC-MS analysis of peptide III (R=H); MW calculated: 2107.6 g/mol. Purity: >99%. UV chromatogram 

(254 nm) and ESI-MS mass spectrum. Gradient: 5-55% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% 

FA in ACN. Blue asterisks: peaks corresponding to the TFA adducts (delta mass +114).  



 Attachment 

135 
 

 

Figure 76. LC-MS analysis of peptide III (R=CF); MW calculated: 2466.0 g/mol. Purity: >99%. UV chromatogram 

(220 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% 

FA in ACN.  
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Figure 77. LC-MS analysis of peptide IV; MW calculated: 2309.92 g/mol. Purity: 95%. Ion current and ESI-MS 

mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% FA in ACN. Blue 

asterisks: peaks corresponding to the TFA adducts (delta mass +114); green asterisk: peak corresponding to the 

TFA adducts (delta mass +228). 
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Figure 78. LC-MS analysis of peptide V; MW calculated: 215.29 g/mol. Purity: >99%. UV chromatogram (220 nm) 

and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% FA in 

ACN.  

 

 

1H NMR (300 MHz, DMSO) δ 8.49 – 8.43 (m, 1H, H6), 7.86 – 7.79 (m, 1H, H4), 7.76 (d, J = 8.1 Hz, 1H, H3), 7.25 

(ddd, J = 7.1, 4.8, 1.2 Hz, 1H, H5), 3.00 (t, J = 6.9 Hz, 2H, H2), 2.63 (t, J = 6.9 Hz, 2H, H1) 



 Attachment 

138 
 

 

Figure 79. LC-MS analysis of peptide VI; MW calculated: 959.0 g/mol. Purity: >99%. UV chromatogram (220 nm) 

and ESI-MS mass spectrum. Gradient: 50-90% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% FA in 

ACN.  
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Figure 80. LC-MS analysis of peptide VII; MW calculated: 3158.8 g/mol. Purity: 95%. UV chromatogram (220 nm) 

and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% FA in 

ACN.  
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Figure 81. LC-MS analysis of peptide cyc-DKP3; MW calculated: 1827.3 g/mol. Purity: >99%. UV chromatogram 

(220 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% TFA in H2O; B: 0.1% 

TFA in ACN.  
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Figure 82. LC-MS analysis of peptide cyc-DKP1; MW calculated: 1827.3 g/mol. Purity: 99%. UV chromatogram 

(194 nm) and ESI-MS mass spectrum. Gradient: 5-55% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% 

FA in ACN.  
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Figure 83. LC-MS analysis of peptide lin-DKP3; MW calculated: 1845.3 g/mol. Purity: 99%. UV chromatogram 

(220 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% TFA in H2O; B: 0.1% 

TFA in ACN.  
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Figure 84. LC-MS analysis of peptide lin-DKP1; MW calculated: 1845.3 g/mol. Purity: 97%. UV chromatogram 

(220 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% TFA in H2O; B: 0.1% 

TFA in ACN.  
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Figure 85. LC-MS analysis of peptide cyc-DKP3(Dau); MW calculated: 2409.8 g/mol. Purity: >99%. UV 

chromatogram (254 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA 

in H2O; B: 0.1% FA in ACN. Red asterisks: peaks corresponding to the product without daunosamine after mass 

fragmentation. 
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Figure 86. LC-MS analysis of peptide sC18*(Dau); MW calculated: 2154.5 g/mol. Purity: >99%. UV 

chromatogram (254 nm) and ESI-MS mass spectrum. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA 

in H2O; B: 0.1% FA in ACN. Red asterisks: peaks corresponding to the product without daunosamine after mass 

fragmentation. 
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Figure 87. UV-chromatogram (194 nm) of 1a and 1b to compare the respective retention time. Gradient: 10-

60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 0.1% FA in ACN. 

 

Figure 88. UV-chromatogram (254 nm) of sC18(Dau), namely 2b, and sC18(GFLG-Dau), namely 2c, to 

compare the respective retention time. Gradient: 10-60% B in A in 15 min, 0.6 ml/min. A: 0.1% FA in H2O; B: 

0.1% FA in ACN.  
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Table 20. Yields obtained after the CuAAC reaction between the differently labeled CPP sequence and the 

ligands GnRH-III-N3 and c[DKPf3RGD]-PEG4-N3. 

Compound Yield of “click” reaction (%) 

GnRH-III-sC18 41 

GnRH-III-sC18(Dau) 79 

GnRH-III-sC18(GFLG-Dau) 91 

c[DKPf3RGD]-sC18-S-S-Cry 4 

1 30 

1a 90 

1b 85 

1c 75 

 

 

 

Figure 89. Effect of 1 and 2 on the cell viability measured by resazurin-based assay on U87 and MCF-7 cells. 

Evaluation of the resorufin fluorescence generated from resazurin by viable cells after 24h incubation with the 

peptide solution. Untreated cells were used as negative control and set to 100%; positive control was represented 

by cells treated for 10 minutes with 70% EtOH and it was subtracted from the other values. The experiment was 

performed in triplicate with n=2. 
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Figure 90. Plasma stability investigation. Compound 2 was dissolved in water to a concentration of 300 pmol/µl 

and then diluted with plasma (final conjugate concentration: 30 pmol/µl). The mixture was incubated at 37 °C for 

24 h. Samples of 100 µl were taken at time points of 0 min, 5 min, 30 min, 1 h, 2 h, 4 h, 6 h, 24 h. After addition of 

ACN, the solutions were centrifuged using a membrane with a nominal molecular weight limit of 10 kDa and 

afterwards monitored by RP-HPLC. 
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