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Chapter 1 

Introduction 

People frequently break rules. Such rule-breaking behavior is manifold. Not only does it 

manifest itself in unethical behavior, such as the violation of legal or moral standards, but also in 

innovating behavior, when e.g., existing conventions and habits are overcome. Consequently, 

depending on the situation and environment, rule-breaking may be either strictly condemned or 

highly socially approved. This thesis deals with the investigation and identification of the 

behavioral mechanisms underlying these two distinct classes of rule-breaking behavior. 

In today’s economy, innovation is an essential determinant of an organization’s competitiveness 

and economic success. Hence, generating creative ideas and finding unorthodox approaches to 

existing problems is becoming increasingly relevant and understanding how to facilitate this idea 

generation process is clearly important. We therefore study how creative performance can be 

fostered, in particular focusing on two factors – incentives and expertise – and their role in 

individual creative performance (chapter 2 and 3).  

However, in many other situations breaking the rules is not associated with productivity 

enhancements and carries a negative connotation. Examples include tax evasion or lying to 

achieve a personal advantage. In these cases, rule violating behavior is considered detrimental, 

because individuals, organizations or society as a whole may be harmed. Since such unethical 

behavior is prevalent in many economic transactions, policy-makers undertake considerable 

efforts to minimize it. We contribute to these endeavors by investigating the effectiveness of two 

deterrent mechanisms in reducing unethical behavior. In particular, we systematically vary the 

size of the fine and the probability of punishment and study their effects on decision-making in 

the context of lying (chapter 4).  
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Neoclassical economic theory assumes individuals to behave rationally at all times, i.e. they 

know their preferences, are perfectly informed and maximize their personal benefit. With the help 

of insights from psychology, sociology and, more recently, neuroscience behavioral economics 

identifies systematic deviations from these behavioral assumptions of decision-making and 

incorporates those findings into economic models. The goal is to provide a more realistic 

foundation of human decision-making in order to increase the explanatory power of economic 

analyses.  

Empirical investigations of human behavior have been at the heart of behavioral economics and 

typically involve the use of experiments. Experiments are one widely applied methodology within 

the social sciences and can be regarded as a major source of knowledge that complements other 

sources such as theory or field data (Falk and Heckmann 2009). Experiments can be roughly 

divided into three categories. Laboratory experiments, field experiments and experiments on 

Amazon’s Mechanical Turk marketplace (Mturk) (for a more detailed taxonomy see Harrison and 

List 2004). Laboratory experiments allow for a tight control of the decision environment, a fact 

that is hard to obtain in natural occurring settings. This is important because together with the 

exogenous assignment to treatment and control conditions, it allows to draw inference about the 

causal relationship of interest. In recent years, experiments on the internet platform Mturk have 

become increasingly popular as a source for recruiting participants for experiments. Compared to 

laboratory experiments, experiments on Mturk have the disadvantage that control of the decision 

environment is less tight. However, the subject pool is typically more diverse and due to technical 

ease a high number of subjects can be recruited within a short time period. Field experiments have 

the great benefit that they occur in the natural environment of the participants where they do not 

know that they are part of an experiment. Therefore, the external validity is highest in field 

experiments. In all chapters of this thesis we use experiments as a common element. However, 

depending on the best fit for answering our research questions we apply different experimental 

approaches and use either laboratory experiments, field experiments or experiments on Mturk.  

In Chapter 2 we are interested in the effect of piece-rate incentives on idea generation.1 While 

recent economic research has made great advancements in understanding the effect of incentives 

on performance in routine tasks (see e.g., Prendergast 1999, Lazear 2000), we know surprisingly 

little about the effectiveness of incentives on performance in creative tasks. There are some 

indications that the assumptions traditionally made in economic theory regarding the effect of 

                                                 
1

 Chapter 2 is joint work with Marina Schröder and based on Laske and Schröder (2018). 
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incentives on performance may not hold for creative tasks. For example, one important difference 

between both task types is their quality requirement: in routine tasks, quality is typically defined 

by the usefulness of a product for its predefined purpose. For these tasks, firms try to design 

incentives such that they achieve a high number of output units that meet a certain usefulness 

threshold. Creative products, however, in addition to being useful must also be original. Thus, for 

creative tasks the quality dimension is multi-dimensional involving both a usefulness and an 

originality dimension. To study whether the effect of piece-rate incentives may play out differently 

for creative tasks compared to routine tasks, we developed a new real-effort task that allows us to 

objectively measure three different dimensions of creative performance separately. These 

dimensions are quantity, usefulness and originality of the generated ideas. Between treatments, 

we vary whether piece-rate incentives are implemented and whether these are weighted by a 

quality component which either rewards usefulness or originality. We compare the results to a 

baseline with a fixed payment.  

We observe that piece-rate incentives per se - whether weighted or not - result in an increase in 

the number of good (useful and original) ideas compared to a fixed wage. This positive effect of 

incentives is due to an increase in the overall number of ideas and to an increase in the variance 

of the quality of ideas. The higher the variance, the more likely it is that an individual comes up 

with an extraordinarily good idea. However, adding a usefulness-weighting component to the 

incentive scheme (paying workers according to how useful an idea is) reduces the positive effects 

of piece-rate incentives, because it leads to inefficient distortions of effort provision. Workers then 

focus too much on usefulness at the cost of quantity and originality of their ideas. Adding an 

originality-weighting to the incentive scheme (paying workers only for ideas that no one came up 

with before) simply adds complexity to the incentive system without being associated with any 

benefit.  

Our findings provide interesting insights for organizations seeking to incentivize creativity. 

They imply that the most efficient way to incentivize idea generation may simply be by paying 

per idea without any ‘judgement’ regarding the originality or the usefulness of these ideas - even 

though they desire employees pay attention to multiple dimensions. 

Besides heterogeneity in incentives, another factor that may be associated with the creative 

outcome is the level of an individual’s expertise in the focal field. Some researchers argue that 

creativity needs knowledge as a source of ideas from which original products can then be 

generated (Amabile 1998, Cropley 2006). They conclude that people who are familiar with the 

focal field will be more successful in finding good solutions. A different view, however, argues 
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that experts rely on accustomed habits and think in familiar patterns which may block divergent 

thinking and reduce average creative performance (Wiley 1998). In chapter 3 we consider the case 

of outsourcing a creative task in a marketing context and study what is the most efficient way in 

terms of cost-benefit calculations when a company is in search of a creative solution: hire few 

expensive experts or many less costly non-experts? Our argument is as follows: even if, on 

average, experts produce a more creative outcome, average outcome is not the right measure. Since 

only the best ideas - the positive outliers - matter in creative tasks, it might be better to have more 

solutions and hire many non-experts than few experts. We explore this hypothesis by conducting 

a field experiment in which we use a new real-effort task that allows us to derive an objective 

measure for the quality of ideas. The difference between the two treatments is that experts were 

obtained via the world’s largest freelancing platform upwork, where independent professionals 

from all of the world offer their expertise to potential customers and that non-experts consist of 

members from the platform Mturk. 

We observe that for a given budget, hiring many non-experts instead of a few experts is more 

efficient in our setting. Although experts put significantly more effort into the task, as measured 

by time, this effort does not translate into better performance. This finding is consistent with the 

literature on creativity suggesting that creative performance is likely a probabilistic function of 

quantity (Laske and Schröder 2018). Our results provide a rationale for why an increasing number 

of firms have chosen to utilize crowdsourcing for idea generation purposes. 

In chapter 4, we switch our attention to investigating factors that help to reduce rule violations 

in situations in which individuals, organizations or society as a whole may be negatively affected.2 

Several work has explored ways to prevent unethical behavior focusing on the intrinsic costs to 

individuals’ self-image that arise from behaving unethically (e.g., Mazar, Amir, and Ariely 2008, 

Gneezy, Saccardo, Serra-Garcia, and van Veldhuizen 2015). In this paper we take a different 

approach and study how individuals react to interventions that focus on the extrinsic costs of 

unethical behavior. The standard economic model of crime (Becker 1968) assumes that the 

decision whether to perform a crime is similar to a choice of a lottery. There are three possible 

outcomes: the decision maker can choose not to commit a crime. If she chooses to commit a crime, 

then either she is successful, or she is caught and punished. In this model, the decision maker 

calculates her expected utility, weighs the utility of each outcome and the associated probabilities, 

and commits the crime if the expected utility of doing it is higher than the utility of not performing 

                                                 
2

 Chapter 4 is joint work with Silvia Saccardo and based on Laske and Saccardo (2018). 
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the crime. In order to identify what kind of policy would deter unethical behavior effectively, we 

use a systematic approach based on Becker’s model. We investigate a situation in which 

participants can lie at another participants’ cost to achieve an economic advantage and vary the 

size (high or low) and probability (5%, 10%, 25% or 50%) of punishment to study how these two 

factors affect unethical behavior in everyday life.  

In all our one-shot experiments, when individuals are presented with only one set of parameters 

and are asked to make a decision only once, we find that lying decreases with the size of the fine. 

However, individuals are insensitive to changes in detection probabilities. Why is that the case? 

In two additional experiments, we show that sensitivity to detection probabilities only emerges 

when individuals can directly compare different detection probabilities in a within-participant 

design, or when they experience the same probability level over time in a repeated setting.  

Our findings have several interesting implications: they suggest that harsher fines are likely to 

be a more successful means of deterrence of small-scale unethical behavior than increasing the 

probability of detection. Sanctions that are based on increases in detection probability may work 

under two conditions: First, providing individuals with a reference point could potentially increase 

the sensitivity to probabilities because this enables them to compare different probability levels. 

For example, instead of simply announcing a given detection probability, informing people that 

their chance of being audited has increased may help them to incorporate detection likelihoods 

into their decision. Second, such deterrence policies are likely to be effective for reducing 

unethical behavior in situations in which individuals receive frequent feedback on the outcome 

and likelihood of being audited. One example may be fare evasion in public transportation. 

However, such policies may be less effective in deterring unethical behavior when detection 

probabilities can only be presented via a description and feedback is rare, such as small-scale tax 

evasion.  
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Chapter 2 

Quality through Quantity - The 

Effects of Piece-Rate Incentives on 

Creative Performance 

 
        “The best way to have a good idea is to have many ideas” (Linus Pauling) 

2.1 Introduction  

Creativity is among the most important, yet least understood factors that influence economic 

success. As a reaction to constant technological change and fierce competition, organizations are 

forced to permanently generate creative ideas to drive innovation. Hence, it is not surprising that 

fostering creativity is consistently rated as a primary concern of global top managers (see e.g., The 

Conference Board 2012, 2013, 2014). The important question is what organizations can do to 

successfully foster creativity. Despite its importance, there is very limited research on this topic. 

One reason for the scarcity of research is that creativity is notoriously difficult to define and to 

quantify. In this paper, we define creativity from a functional problem solving perspective, where 

good creative ideas must be both useful for a predefined purpose and original (Cropley and 

Cropley 2008). In our approach usefulness refers to the extent to which an idea meets the 

functional requirements of a task. Originality refers to the statistical infrequencies of an idea. We 

introduce a novel experimental design, which involves clearly defined and quantifiable 

performance indicators for these dimensions and study the effect of piece-rate incentives on idea 

generation.  
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While recent economic research has made advancements in understanding the effect of 

incentives on performance in routine tasks (see e.g., Prendergast 1999, Lazear 2000, Laffont and 

Martimort 2009, Gneezy, Meier, and Rey-Biel 2011), we know surprisingly little about the 

effectiveness of incentives on performance in creative tasks. There are some indications that the 

assumptions traditionally made in economic theory regarding the effect of incentives on 

performance may not hold for creative tasks. Consequently, the effect of incentives may play out 

differently for creative tasks compared to routine tasks. For example, intrinsic motivation is often 

considered to play a special role for creative performance. It has been claimed that intrinsic 

motivation will be conducive to creative work, while extrinsic incentives such as performance pay 

may be detrimental (see e.g., Amabile 1996). Furthermore, the effort-performance relation seems 

to be different for creative tasks compared to simple routine tasks. Unlike most other desirable 

workplace behaviors, effort provided for creativity does not necessarily always translate into better 

performance (Amabile 1996, Erat and Gneezy 2016). Additionally, pressure induced by incentives 

may actually undermine creative performance (Ariely, Gneezy, Loewenstein, and Mazar 2009, 

Azoulay, Zivin, and Manso 2011, Gross 2016). Another specificity distinguishing creative tasks 

from many routine tasks is the lack of clear definitions and objective measures. In the absence of 

a clear definition and objective measures, individuals may do not know what is expected from 

them and thus may, even if they wanted to, not be able to react to incentives (Byron and Khazanchi 

2012, Charness and Grieco forthcoming). Furthermore, the lack of objective measures may lead 

to (strategic) distortions in the evaluation of creative performance, which potentially further 

undermines the effectiveness of incentives (Bradler, Neckermann, and Warnke forthcoming, 

Balietti, Goldstone, and Helbing 2016, Petters and Schröder 2017). Finally and importantly, the 

quality requirements for creative tasks are different from those for routine tasks. In routine tasks, 

quality is typically defined by the usefulness of a product for its predefined purpose. For these 

tasks, firms typically try to design incentives such that they achieve a high number of output units 

that meet a certain usefulness threshold. In addition to being useful, creative products must also 

be original. Hence, for creative tasks the quality dimension is multi-dimensional involving both a 

usefulness and an originality dimension. Firms therefore should seek to design incentive schemes 

for fostering creativity in a way that employees generate a high number of outliers which are at 

the same time highly useful and original. In our approach to understanding the effect of piece-rate 

incentives on creative performance, we focus on this special multi-dimensional characteristic, 

which is likely to have an influence on how incentives affect creative performance.  
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According to multi-tasking theory (see e.g., Holmstrom and Milgrom 1991, Lazear 2000), 

incentives in multi-dimensional contexts may entail undesirable distortion effects. The theory 

predicts that with the introduction of performance related incentives, individuals will focus on the 

productivity dimensions that can be easily measured and may reduce their effort in the productivity 

dimensions, which are not measured and thus provide lower returns for the agent. Recent empirical 

work shows evidence for such distortion effects in contexts involving a quantity and a one-

dimensional quality measure (see Kachelmeier Reichert, and Williamson 2008, Hossain and List 

2012). To the best of our knowledge, we are the first to focus on the multi-dimensional 

characteristic of quality measures for creative tasks.  

In this paper, we contribute to the research on creativity by studying the effect of piece-rate 

incentives on performance in an idea generation task where usefulness and originality of creative 

ideas can be measured separately and objectively. Previous experimental research on the effect of 

piece-rate incentives on creative performance has led to inconclusive results. While some 

experimental studies find no effect of piece-rate incentives on creative performance (Eckartz, 

Kirchkamp, and Schunk 2012, Erat and Gneezy 2016) other studies find a positive impact 

(Kachelmeier, Reichert, and Williamson 2008). In this paper, we aim to provide further insights 

by focusing on the special multi-dimensional characteristic of creative work. This allows us not 

only to assess if and when incentives work, but also to provide novel insights into the mechanisms 

through which incentives affect creative performance.  

We introduce a novel experimental design, in which participants are asked to illustrate words 

with the help of a given set of materials. They are instructed to create as many illustrations as 

possible (quantity) that can be recognized by independent raters (usefulness), and that are 

statistically infrequent (originality). In the task, participants do not receive a list or any 

specifications of words to illustrate or how to use the provided materials. Hence, they have to 

come up with both the words they want to illustrate and a way of how to illustrate these words. 

Between treatments, we vary whether piece-rate incentives are introduced and whether these are 

weighted by the usefulness or originality of ideas. We compare the results to a baseline with a 

fixed payment. The advantage of this experimental design is that we can establish objective 

creativity measures in a domain where this has so far been challenging. Furthermore, the 

experimental approach allows us to isolate the behavioral effect of creativity-based compensation 

under otherwise identical conditions. 

We find that piece-rate incentives have a positive and significant effect on the number of high 

quality (useful and original) creative ideas, if designed appropriately. We uncover two channels 
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for these positive effects: first, piece-rate incentives lead to an increase in the number of ideas 

generated; second, piece-rate incentives lead to an increase in the variance of the quality of ideas. 

The higher the variance, the more likely it is that an individual comes up with an extraordinarily 

good idea. However, we show that piece-rate incentives that reward quantity and usefulness can 

lead to an inefficient distortion in effort provision where participants focus too much on usefulness 

at the cost of quantity and originality.  

Overall, we show that the special multi-dimensional characteristic of creative tasks is crucial to 

understand the effect of incentives on creative performance. Our results suggest that piece-rate 

incentives can work to foster creativity, but that organizations seeking to incentivize creative 

performance can be better off avoiding ‘judgmental’ incentives where the level of reward depends 

on the usefulness of ideas. 

 

2.2 Experimental Design and Procedure 

2.2.1 The Task 

We propose a novel experimental design that allows for an objective assessment of performance 

in three dimensions of creativity, i.e. quantity, usefulness and originality. In this experimental 

design, we ask participants to illustrate words using several simple materials. The set of materials 

provided for each participant consists of one string, two O-rings, four wooden sticks, and twelve 

colored glass pebbles (see Figure 2.1 left picture). Participants can use some or all of these 

materials to illustrate words (see Figure 2.2 for example illustrations). Participants do not receive 

a list or any specifications of words to illustrate or how to use the provided materials; hence, in 

this task, they have to come up with both the words they want to illustrate and a way of illustrating 

these words. They can illustrate as many words as they want within a period of 20 minutes. After 

finishing an illustration, participants are instructed to take a picture using a pre-installed camera 

and to type in the illustrated word.1 The advantage of the task is that it allows us to objectively 

measure multiple dimensions of participants’ creative performance. 

 
 

                                                 
1 A detailed description of how lab participants took a picture of an illustration is given in Appendix B.  
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FIGURE 2.1: SET OF MATERIALS AND EXPERIMENTAL SETUP 

 

We measure quantity as the number of different words illustrated. That is, a participant scores 

high in this dimension if she illustrates a high number of different words. We directed participants 

to only illustrate single words (e.g., “tree”, “face”), to illustrate each word only once, and informed 

them that they are not allowed to use or illustrate any symbol found on the keyboard (e.g., “!”, 

“8”, “b”, “@”, “>” “+”). Illustrations of phrases consisting of more than one word (e.g., “tree in 

the woods”, “happy face”), multiple illustrations of the same word (e.g., two different illustrations 

of the word “house”), and illustrations including symbols from the keyboard (e.g., using “8” to 

illustrate the word “eight”) were not valid. We instructed participants about these rules and 

informed them that illustrations violating these rules would not be considered for payment. See 

Appendix B for the instructions. 

To measure the usefulness of each valid illustration, we elicit the recognition rate by external 

raters through an online survey, which was conducted two weeks after the lab experiment. In this 

online survey, raters are provided with pictures of the illustrations from the lab experiment and 

are asked to type in the exact word that is illustrated.2 We incentivize answers in this online survey 

by rewarding online raters €0.10 for each correct answer, which is defined as an exact match of a 

word illustrated by a lab participant and the answer by the online participant. See Appendix C for 

the instructions of the online survey and a screenshot of the online survey. Raters in the online 

survey did not take part in any previous related experiments and were blind to treatments. Each 

illustration was rated by at least ten online raters, and each rater rated a random sample of 50 

illustrations.3 For each illustration, we derive usefulness as the fraction of raters who correctly 

                                                 
2 In the assessment of usefulness, we did not account for synonyms since we explicitly informed participants of both the lab experiment 

and the online survey in the instructions that only the exact match of the illustrated word by the lab participant and the answer by the 

online rater will be considered for payment. Spelling errors were not corrected. The special characters ä, ö, ü and ß were standardized 

to ae, oe, ue and ss, respectively. Capitalization of letters was not taken into account. 
3 We restricted the sample to 50 illustrations per rater to avoid overload of the raters.  
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identified the illustrated word. For instance, if 10 out of 10 raters recognize an illustrated word 

correctly, it would receive the highest usefulness score of 1. An illustration that is only identified 

by 1 out of 10 raters receives a usefulness score of 0.1. See Figure 2.2 (left column) for examples 

of high and low usefulness illustrations. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.2: EXAMPLES OF ILLUSTRATIONS 

 

We measure originality as the statistical infrequency of an illustrated word within the entire 

experiment. Specifically, we derive the originality of an illustration as the ratio of 1 and the number 

of times the same word is illustrated in the sample. For instance, a word that is illustrated once in 

the whole experiment, such as “tennis,” receives the highest originality score of 1. A word that is 

illustrated many times, such as “house”, which was illustrated 82 times, receives a low score of 

 

HIGH USEFULNESS ILLUSTRATION 

      illustrated word: dog 

      usefulness: 1 

      originality: 0.17 

 

HIGH ORIGINALITY ILLUSTRATION 

illustrated word: tennis 

usefulness: 0.9 

originality: 1 

 

LOW USEFULNESS ILLUSTRATION 

illustrated word: pig 

usefulness: 0 

originality: 0.33 

 

 

LOW ORIGINALITY ILLUSTRATION 

illustrated word: house 

usefulness: 1 

originality: 0.01 
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0.012. See Figure 2.2 (right column) for examples of illustrations that scored high or low on 

originality.  

Since only ideas that are at the same time highly useful and original can potentially result in 

innovation (economic implementation of an idea), we define the quality of an illustration as the 

product of usefulness and originality. In the later analysis, we focus on good ideas - those ideas 

where quality rates above or equal to the 75th percentile of all ideas with the baseline as reference 

group and on excellent ideas - those ideas where quality rates above or equal to the 90th percentile 

of all ideas in the baseline. 

 

2.2.2  Treatments 

Between treatments, we vary whether piece-rate incentives are implemented and whether these 

are weighted by a quality component which either rewards usefulness or originality. In the baseline 

treatment, all participants receive a €10 fixed payment, independent of their performance. After 

conducting the baseline treatment, we calibrated the size of the piece-rate incentives for the three 

treatments based on the performance in the baseline experiment. That is, given the performance 

in the baseline treatment, average payment would have been equal in all three treatments.  

In the unweighted piece-rate treatment, participants are paid based on the number of words 

illustrated. For each illustration, they receive €0.60. In the usefulness-weighted piece-rate 

treatment, the piece-rate paid for an illustration depends on the number of raters who correctly 

identify the illustrated word. All illustrations are rated by 10 incentivized raters. For each 

illustration, participants in the usefulness-weighted piece-rate treatment receive €0.10 per rater 

who correctly identifies the illustrated word. Finally, in the originality-weighted piece-rate 

treatment, participants are paid based on the number of illustrations that are unique within a group 

of four participants.4 For each illustration of a word that has not been illustrated by another 

participant in the randomly assigned group of four participants, participants receive €0.85.  

Except for the description of the incentive scheme, all participants in our experiment receive the 

same information about the relevant dimensions of productivity and their measurement. Table 2.1 

summarizes the treatments in our experiment and the number of participants in each of the 

treatments.5  

                                                 
4 We used uniqueness within a group of four instead of originality as an incentive measure because of procedural reasons in running 

the experiment. However, this design element should not have an effect on subject’s strategic considerations. 
5 For our analysis, we excluded one observation from the unweighted piece-rate treatment, because this participant only generated 

invalid illustrations.  
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TABLE 2.1: EXPERIMENTAL TREATMENTS 

Treatment Payment Amount N 

Baseline Fixed payment €10 32 

Unweighted piece-rate Number of illustrations €0.60 per illustration 31 

Usefulness-weighted 

piece-rate 

Number of raters who correctly 

identify each illustration 

€0.10 per correct identification of 

each illustration per rater 
30 

Originality-weighted 

piece-rate 

Number of unique illustrations 

(in a group of four)  

€0.85 per illustration unique 

within a group of four participants 
32 

 

2.2.3 Procedural Details 

The experiment was conducted at the Cologne Laboratory for Economic Research at the 

University of Cologne. Participants were recruited with the online recruiting system ORSEE 

(Greiner 2004). We ran eight sessions in May 2014, with two sessions for each treatment 

condition. Participants were randomly seated in separated cubicles in the lab. To inform 

participants about the task, they received written instructions, which were read aloud by the 

experimenter. After the experimenter had answered all questions individually, the set of materials 

was handed to the participants. All illustrations of words had to be placed within a designated area 

on the desks. We told participants to place all materials that were not used for the illustration 

outside this area. Additionally, participants were instructed not to use any materials other than 

those provided by the experimenter. Once a participant made an illustration, she pressed a button 

on the screen of the computer so that the software would automatically take a picture of the 

designated area including the illustration. If participants were satisfied with the picture, they were 

asked to type in the word that they had illustrated and could then proceed with their next 

illustration. If they were not satisfied, participants could take another picture before proceeding. 

Figure 2.1 (right side) illustrates the cubicle in the laboratory, including the designated area in 

which participants provided illustrations and the web cam taking the pictures. As soon as the 

working time of 20 minutes was over, the experimental software automatically stopped and then 

initiated a questionnaire with some general demographic questions.  

On average, each session lasted 40 minutes, and the average payoff was €14.43. The final payoff 

for each participant consisted of the money earned during the experiment and a standard show-up 

fee of €2.50. In all treatments, the money was paid out two weeks after the experiment, and 

participants could choose whether they preferred to collect the money in cash at the university or 

have it transferred directly to their bank account.  
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For the online survey, we recruited 540 participants from the same subject pool via ORSEE 

(Greiner 2004) and excluded participants who had previously taken part in the lab experiment. 

The online survey lasted about 20 minutes, and the average earnings were €4.50, including a €2.00 

show-up fee. As in the lab experiment, participants had a choice between collecting the money in 

cash or a bank transfer.  

 

2.3 Results 

As a first step of our analysis, we study if piece-rate incentives work for creative tasks. To assess 

the success of the different incentive schemes, in Figure 2.3 we focus on the number of high quality 

ideas, where quality is defined as the product of usefulness and originality. By the term high 

quality ideas we subsume good and excellent ideas. Good ideas are classified by the average 

number of ideas above the 75th percentile of the product of usefulness and originality with the 

baseline as reference group. Excellent ideas are classified by the average number of ideas above 

the 90th percentile of the product of usefulness and originality with the baseline as the reference 

group for each of the treatments. The average number of good and excellent ideas from the 

baseline which does not involve piece-rate incentives is indicated by the solid black line. 

 

 

 Notes: Solid line indicates the average number of ideas in the baseline. Stars indicate the results from a two-tailed U-test *** p<0.01, 

** p<0.05, * p≤0.1, n.s. not significant. 

FIGURE 2.3: NUMBER OF HIGH QUALITY IDEAS BY TREATMENT 

 

When we introduced piece-rate incentives in general (unweighted and weighted), participants 

reacted by producing a higher number of good ideas. This increase is only significantly for the 
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unweighted- and originality-weighted piece-rate incentives (pairwise U-test, p<0.016). We find 

very similar results, however on a lower level, when focusing on excellent ideas7  

 

Result 1 The introduction of piece-rate incentives increases the number of good and excellent 

creative ideas, but this positive effect is reduced if piece-rates are usefulness-weighted.  

 

Above we showed that piece-rate incentives can work, if designed appropriately. Next, we want 

to investigate through which channel incentives affect creative performance. As a first step, we 

focus on the average performance in the separate dimensions of creativity, i.e. on quantity, 

usefulness and originality. Table 2.2 reports the results of regression analysis exploring the effect 

of incentives on the three dimensions separately. Starting with quantity, columns 1 and 2 show the 

results on the overall number of illustrations per participant. In the model in column 1, we include 

a dummy for piece-rate incentives, which is equal to one whenever any form of piece-rate 

incentives (unweighted or weighted) is applied. Additionally, we control for whether a usefulness-

weighting or an originality-weighting is implemented. The reference group is the baseline with 

fixed pay. We find that piece-rate incentives per se significantly increase the number of ideas 

generated. In particular, participants under a piece-rate scheme on average come up with about 9.5 

ideas more compared to those receiving fixed pay. However, when a usefulness-weighting is added 

to the piece-rate incentive, this positive effect is strongly mitigated and participants on average 

submit only about 1.5 more ideas. This net effect is no longer different from zero (Wald test, 

p=0.42). Adding an originality-weighting to the incentive scheme does not have a significant effect 

on the number of ideas generated. Changes in performance in one dimension of creativity could be 

due to an incentive effect (increase in overall effort provided) or due to a distortion effect where 

individuals shift effort from one dimension to the other (see e.g., Holmstrom and Milgrom 1991). 

To control for such possible distortion effects, we add controls for productivity in the other 

dimensions of creativity in column 2 (i.e., controls for the average usefulness and the average 

originality of illustrations). Including these controls in the model, the coefficient for piece-rate 

incentives remains significant, but significantly reduces its size by 21 percent (2-test, p<0.05). 

This suggests that introducing piece-rate incentives increases the quantity of ideas in large part 

                                                 
6 We report two-sided p-values in the entire paper. 
7 To test whether our quality measure as the product of usefulness and originality actually captures the perceived quality of creative 

ideas, we also assess a subjective quality measure through an online-questionnaire. Our findings are robust to using this subjective 

measure in order to derive good and excellent ideas (see Appendix A). 
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through an incentive effect and to a smaller degree also through a distortion effect. The coefficient 

indicating a negative effect on quantity when a usefulness-weighting is implemented decreases by 

32 percent as soon as we control for performance in the other dimensions (2-test, p<0.05), but 

remains significantly negative. Hence, adding a usefulness-weighting to the incentive scheme leads 

to an additional distortion of effort but also reduces the incentive effect of piece-rate incentives.  

 

TABLE 2.2: EFFECT OF PIECE-RATES ON SEPARATE DIMENSIONS OF CREATIVITY 

Dependent 

variable: 
Quantity  

 
(Avg.) Usefulness 

 
(Avg.) Originality 

 (1) (2)  (3) (4)  (5) (6) 

Piece-rate in 

general 

9.467*** 7.469***  -0.080** -0.024  0.036 -0.018 

(2.427) (2.289)  (0.038) (0.022)  (0.040) (0.025) 

Piece-rate with 

usefulness-

weighting 

-8.031*** -5.423***  0.114*** 0.030  -0.085** -0.010 

(2.240) (1.908)  (0.035) (0.023)  (0.035) (0.021) 

Piece-rate with 

originality-

weighting 

-1.256 -0.419  0.038 0.020  -0.027 -0.005 

(2.471) (2.263)  (0.033) (0.019)  (0.034) (0.022) 

Female 
-2.556 0.298  0.131*** 0.064***  -0.090*** -0.022 

(1.771) (1.738)  (0.026) (0.016)  (0.025) (0.015) 

Quantity 
    -0.003***   0.002 

    (0.001)   (0.001) 

(Avg.) Usefulness  
-30.887***  

  
 

 
-0.541*** 

(7.205)   (0.019) 

(Avg.) Originality 
 -10.241   -0.608***    

 (11.753)   (0.019)    

Constant 18.042*** 34.921***  0.440*** 0.688***  0.298*** 0.506*** 

 (1.693) (6.042)  (0.027) (0.025)  (0.031) (0.037) 

Observations 125 125  2,648 2,648  2,648 2,648 

Clusters    125 125  125 125 

R2 0.193 0.316       

Notes: Columns (1) and (2) report OLS regressions with robust standard errors in parentheses. Columns (3)-(6) report random effects 

regression models with robust standard errors clustered on individual level. The dependent variable in columns (1) and (2) is a 
continuous variable indicating the overall number of illustrations produced, in columns (3) and (4) it is a continuous variable between 

0 and 1 indicating the average usefulness of an illustration; in columns (5) and (6) it is a continuous variable between 0 and 1 indicating 
the average originality of an illustration. Piece-rate in general is a dummy variable coded as 1 whenever piece-rate incentives are 

introduced (unweighted or weighted). Piece-rates with usefulness-weighting and piece-rates with originality-weighting are equal to 1 

in the corresponding treatments involving this weighting. Female is a dummy variable coded as 1 if the participant was a woman, and 
zero otherwise. In columns (1) and (2) we control for average usefulness and average originality on individual level, in columns (3) 

and (4) we control for the overall number of illustrations and the average originality on illustration level and in columns (5) and (6) 

we control for the overall number of illustrations and the average usefulness on illustration level. Reference group is the baseline with 
fixed pay. The stars indicate significance levels: * p-value<0.1, ** p-value<0.05, *** p-value<0.01. 

Columns 3 and 4 display the results of a random effects regression model, with average 

usefulness as the dependent variable. In these models related to usefulness and in the following 
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models related to originality (columns 5 and 6), we focus on results on illustration level. Column 3 

reveals a significant decrease in average usefulness whenever piece-rate incentives are present. 

Putting this into perspective, on a scale from 0 to 1, the average usefulness per illustration drops by 

about 0.08 units. Given that the mean usefulness in the baseline is about 0.5, piece-rate incentives 

result in a 16 percent reduction in the average usefulness of ideas. Adding a usefulness-weighting 

component compensates for this negative effect of piece-rate incentives. Adding an originality-

weighting does not have a significant effect on the average usefulness of ideas. As above, in column 

4 we additionally control for performance in the other dimensions of creativity to test for the 

relevance of distortion effects. Adding these controls, we no longer observe any significant 

treatment effects. This suggests that the observed effects on usefulness seem to be driven by a 

distortion of effort rather than an increase in overall effort provision.  

Columns 5 and 6 display the results of a random effects regression model with average originality 

of an illustration as the dependent variable. We find no significant effect of piece-rate incentives 

on originality. However, we observe that interacted with a usefulness-weighting of piece-rate 

incentives significantly decreases the likelihood that an idea is original by 8.5 percentage points. 

Surprisingly, an originality-weighting does not have any significant effect on the average 

originality of ideas. We conjecture that individuals may not be able to increase originality just by 

trying harder. Controlling for performance in the other dimensions of creativity (column 6) reveals 

that the negative effect of the usefulness-weighting seems to be driven by a distortion of effort.  

 

Result 2 Piece-rate incentives per se increase the number of ideas and decrease the average 

usefulness of ideas generated. Adding a usefulness-weighting results in a distortion of effort, which 

leads to an increase in average usefulness but a decrease in quantity and average originality of 

ideas. Adding an originality-weighting does not have a significant effect on the performance in the 

separate dimensions of creativity.  

 

Unlike in routine tasks where high quality is typically characterized by a high average usefulness 

and/or a low scrap rates, in creative idea generation tasks it is typically only the positive outliers 

that are relevant. Consider for example a company looking for a new slogan to advertise a new 

product. Only ideas that are positive outliers have a chance to lead to successful marketing, while 

ideas of average or low quality are irrelevant. To study the effect of incentives on the likelihood 

of finding such outliers, we focus on the within-subject standard deviations in the quality of ideas. 

In the baseline, the average within-subject standard deviation in the quality is equal to 0.056, while 
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it is equal to 0.077, 0.075 and 0.073 in the unweighted piece-rate, usefulness-weighted piece-rate 

and originality-weighted piece-rate treatments, respectively. We find that the standard deviations 

in quality are significantly larger for all treatments involving piece-rate incentives compared to 

the baseline (pairwise U-test, p<0.07), but that there are no significant differences in the standard 

deviations in quality between the three treatments involving piece-rate (pairwise U-test, p>0.50). 

 

Result 3 Piece-rate incentives increase the variance of the quality of ideas an individual 

generates. 

  

Finally, we want to bring together the previous findings and test how relevant the performance 

in the separate dimensions of creativity and the variance in creative performance are to explain 

the observed effects of piece-rate incentives. Table 2.3 provides the results of an OLS regression 

with the number of good ideas in columns 1-3 and the number of excellent ideas in columns 4-7 

as dependent variables.8 Column 1 presents a model for the number of good ideas controlling for 

whether piece-rate incentives are present and whether a quality-weighting (either usefulness-

weighting or originality-weighting) is implemented. In line with the non-parametric analysis 

above, we find that compared to the baseline with fixed wage, participants respond to piece-rate 

incentives by generating on average about 2.3 more good ideas. Adding a usefulness-weighting to 

the incentive scheme, however, significantly reduces this number to 1.1 more good ideas, while 

adding an originality-weighting does not have a significant effect on the generated number of good 

ideas. In the model in column 2, we include controls for the average performance in the separate 

dimensions of creativity and find that they are highly predictive for the number of good ideas. 

Consequently, the coefficient for piece-rate incentives, while remaining significant, substantially 

decreases by more than 60 percent when these controls are introduced (2-test, p<0.01). When 

adding these controls, the coefficient for the usefulness-weighting is no longer significantly 

different from zero. Thus, the negative effect of adding a usefulness-weighting to a piece-rate 

incentive scheme seems to be due to the distortion effect that this weighting has on average 

performance in the separate dimensions of creativity. In the model in column 3 we control for the 

variance in quality. We find that this variance is highly predictive on the number of good ideas. 

                                                 
8 The following findings are robust to some differences in the specification. First, the result is robust to changes in the threshold used 

to classify ideas as either good or excellent. We have conducted the same analysis with a threshold of 0.65, 0.70, 0.80, 0.85 and 0.95 

and the results remain qualitatively the same. Second, the main results remain stable if we use a non-linear poisson model for the 

regression.  
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When adding this variable, the coefficient for piece-rate incentives is no longer significantly 

different from zero, suggesting that the positive effect of piece-rate incentives on the number of 

good ideas can be partly explained by an increase in the performance in the separate dimensions 

of creativity and partly explained by an increase in the variance of the quality of generated ideas. 

 

TABLE 2.3: EFFECT OF PIECE-RATES ON NUMBER OF HIGH QUALITY ILLUSTRATIONS 

Dependent variable: No. of good ideas  No. of excellent ideas 

 (1) (2) (3)  (4) (5) (6) 

Piece-rate in general 
2.271*** 0.905* 0.331  1.496*** 0.898** 0.255 

(0.617) (0.518) (0.521)  (0.487) (0.437) (0.398) 

Piece-rate with 

usefulness-weighting 

-1.165* 0.00135 0.0250  -0.718 -0.0385 0.0217 

(0.668) (0.541) (0.524)  (0.553) (0.476) (0.430) 

Piece-rate with 

originality-weighting 

0.231 0.323 0.409  -0.0777 -0.0231 0.0884 

(0.738) (0.547) (0.516)  (0.576) (0.482) (0.425) 

Female 
-0.414 -0.577 -0.512  -0.276 -0.460 -0.334 

(0.478) (0.396) (0.363)  (0.383) (0.354) (0.285) 

Quantity 
 0.215*** 0.205***   0.126*** 0.112*** 

 (0.0339) (0.0285)   (0.0306) (0.0228) 

(Avg.) Usefulness 
 11.70*** 6.962***   11.14*** 5.654*** 

 (2.171) (2.265)   (1.867) (1.905) 

(Avg.) Originality 
 8.957*** 3.617   10.92*** 5.409** 

 (2.241) (2.609)   (2.086) (2.210) 

Standard deviation in 

innovation 

  19.65***    21.99*** 

  (5.197)    (4.070) 

Constant 4.100*** -7.706*** -4.839***  2.161*** -8.385*** -5.166*** 

 (0.477) (1.842) (1.772)  (0.388) (1.652) (1.493) 

Observations 125 125 123  125 125 123 

R2 0.122 0.504 0.551  0.074 0.419 0.563 

Notes: Robust standard errors in parentheses. The dependent variable in columns (1)-(3) is number of good ideas (quality ≥75th 
percentile) and in columns (4)-(6) it is number of excellent ideas (quality≥ 90th percentile). Piece-rate in general is a dummy variable 

coded as 1 whenever piece-rate incentives are introduced (unweighted or weighted). Piece-rates with usefulness-weighting and piece-

rates with originality-weighting are equal to 1 in the corresponding treatments involving this weighting. Female is a dummy variable 
coded as 1 if the participant was a woman, and zero otherwise. In columns (2), (3), (4) and (5) we control for the overall number of 

illustrations, average usefulness and average originality on individual level, Reference group is the baseline with fixed pay. The stars 

indicate significance levels: * p-value<0.1, ** p-value<0.05, *** p-value<0.01. 

The models in columns 4 to 6 provide results for the number of excellent ideas. Generally, these 

results mirror the results for good ideas (columns 1 to 3). Again, we observe that participants come 

up with about 1.5 more excellent ideas when they are confronted with piece-rate incentives. Adding 

a usefulness-weighting to the incentive scheme slightly decreases this positive effect but not 

significantly so. Adding an originality-weighting does not have a significant effect on the number 
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of excellent ideas. As above, we control for the average performance in the separate dimensions of 

productivity in the model in column 5. Again, we find that average performance in the separate 

dimensions of creativity is highly predictive for the number of excellent ideas and that adding these 

controls substantially reduces the coefficient for piece-rate incentives by about 40 percent (2-test, 

p<0.1). Again, we observe a residual positive effect of piece-rate incentives, which is explained by 

an increased variance in the quality of ideas (column 6).  

 

Result 4 Piece-rate incentives affect creative performance both through a change in performance 

in the separate dimensions of creativity (i.e. quantity, usefulness and originality) and due to an 

increase in the variance of the quality of ideas.  

 

2.4 Conclusion 

The relevance of creativity as a driving force of economic growth raises the question of which 

factors influence creative performance. In this study, we examine the effect of piece-rate 

incentives on creative idea generation. We find that piece-rate incentives per se have a positive 

effect on the number of high quality ideas. This effect is due to an increase in the overall number 

of ideas and an increase in the variance of the quality of ideas generated.  

Our results show that quality-weightings of piece-rate incentives are not advisable. Although 

organizations may be inclined to only pay for useful ideas instead of rewarding their mere number, 

such a weighting to piece-rate incentives can have a detrimental effect. We observe that adding a 

usefulness-weighting (i.e. paying workers a piece-rate that depends on how useful an idea is) 

mitigates the positive effect of piece-rate incentives. The negative effect of this weighting arises 

because a usefulness weighting leads to a distortion of effort. Participants focus on generating 

useful ideas, but this concentration on the usefulness entails a reduction in the overall number and 

in the average originality of ideas generated. Adding an originality-weighting to the piece-rate (i.e. 

paying workers only if they come up with ideas that no one had before) solely adds complexity to 

the incentive system, without bringing a benefit. 

In this research project, we provide unique experimental evidence on the effect of incentives on 

quantity, usefulness and originality of creative ideas. Our results contribute to the understanding 

of how piece-rate incentives affect creative performance. We show that the special multi-

dimensional characteristic of creativity – especially the relevance of simultaneous usefulness and 

originality of creative ideas – has a substantial impact on the effect of incentives on creativity. To 
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the best of our knowledge, we are the first to reveal distortion effects between the separate quality 

dimensions of creative performance. Furthermore, we are the first to show that incentives have an 

impact on the variance in creative performance, which is associated with an increase in creative 

outliers. More research is needed to fully understand the behavioral mechanisms behind these 

effects.  

Our research provides valuable insights for organizations seeking to incentivize creativity. We 

demonstrate that incentives can work to increase the number of high quality ideas generated. 

However, organizations should be very careful when designing such incentive schemes. Our 

results suggest that the most efficient way to incentivize idea generation may simply be by paying 

per idea without any ‘judgement’ regarding the originality or the usefulness of these ideas - even 

though they desire employees pay attention to multiple dimensions.  



22 

 

2.5 Appendix to Chapter 2 

A Robustness Check 

In addition to the objective measures of creativity we elicit a subjective measure for the quality 

of creative ideas. To obtain this measure, we asked two independent raters who were blind to the 

treatments to evaluate the creativity of all illustrations on an integer scale from 0 to 100. We derive 

the subjective quality of an illustration as the mean of these two evaluations. We conduct the same 

non-parametric analysis using this subjective measure as we did for the objective measure (see 

Figure 2.4). Using the score from this subjective quality assessments as the dependent variable 

does not change our results.  

 

 

Notes: Solid line indicates the average number. of ideas in the baseline. Stars indicate the results from a two-tailed U-test *** p<0.01, 

** p<0.05, * p<0.1, n.s. not significant. 

FIGURE 2.4: NUMBER OF HIGH QUALITY IDEAS BY TREATMENT (SUBJECTIVE QUALITY MEASURE) 
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B Experimental Instructions for the Lab Experiment  

Instructions 

(Translation from German) 

Welcome to this experiment! 

 

Please carefully read the following instructions. If you have any questions, raise your hand. We 

will come to you and answer your question. Please do not begin the experiment until we ask you 

to do so. None of the other participants will receive information about your payoff. 

Communication with other participants is forbidden throughout the entire experiment. We also 

request that you switch off your mobile phone and remove it from the desk. 

Task. - Immediately before the start of the task, you will receive various materials. The task 

consists of illustrating words with the provided set of materials. The goal is: 

 To illustrate as many different words as possible, 

 Which can be identified by others, 

 And that the illustrated words are unique, meaning that they were not illustrated by any 

of the participants in the randomly selected four-person group.  

After the experiment, we will evaluate how well you achieved this goal. 

 

Please proceed with the illustration of each word in the following manner: 

 

i. Illustrate the word in the designated area using the provided materials. 

 

ii. Take a picture of the illustrated word. 

iii. Enter the word that you illustrated in the field “illustrated word”. 

iv. Save the picture by clicking on the “save” button.  

i. 
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Please keep the following in mind:  

 

 Use only the materials provided. 

 For each illustrated word, you can use all of the materials or a selection of them. 

 The illustration of the word should only be placed within the designated area on the sheet 

of paper (only this area will be captured by the camera). 

 Make sure that your illustration is made in the correct direction (the sheet is marked “top” 

and “bottom”). 

 Make sure that your hands are not visible in the designated area.  

 Keep any unused materials outside of the designated area.  

 Illustrate only one word at a time. This means that the name of the picture should only 

consist of one word. Terms that consist of multiple words are not permitted and will not 

be evaluated.  

 You may only illustrate each word once.  

 Your illustrations may not include any symbol that is depicted on the keyboard (for 

example, illustrations that include “”, “8”, “b”, “@”, “>” or “+” are not permitted). 

 

Time. - You have a total of 20 minutes for this task. After this time has expired, we ask you to 

answer the questionnaire before the end of the experiment. 

Payment. - [This part is different with regard to the four treatments of the experiment] 

Baseline: You are paid €10 for this task. In addition, you receive a show-up payment of €2.50. 

You will receive your payment two weeks after the experiment takes place. You can choose 

whether you would like to receive an electronic transfer or pick up the payment in cash.  

SAVED 

Your picture  

 will appear here 

Take picture  illustrated word Save 

ii. 

iii. 

iv

.. 
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Unweighted piece-rate: You are paid €0.60 for each admissible word that you illustrate. You also 

receive a show-up fee of €2.50. You can choose whether you would like to receive an electronic 

transfer or pick up the payment in cash. 

Usefulness-weighted piece-rate: After this experiment, we will show the pictures of all of the 

admissible words you illustrated to other people. These other persons have not participated in this 

experiment or similar experiments. The task assigned to them is to identify the illustrated words 

using the pictures taken in the experiment. These other persons only receive a positive payout if 

they enter exactly the word that you saved along with the respective picture. 

Each word will be presented to ten other people. We measure how many of these ten people 

correctly identify the respective word. For each illustrated word, you are paid €0.10 for each 

person who correctly identifies it. That means you can earn up to €1 for each illustrated word, 

assuming it is correctly identified by each of the ten people. In addition, you receive a show-up 

payment of €2.50. You will receive your payment two weeks after the experiment takes place. 

You can choose whether you would like to receive an electronic transfer or pick up the payment 

in cash. 

Originality-weighted piece-rate: After this experiment, you will be randomly assigned to a group 

of four people who participated in the same experiment. For each admissible word that you alone 

in the group illustrated, you are paid €0.85. If at least one other person in the group illustrated the 

same word, then you receive €0 for illustrating this word. In addition, you receive a show-up 

payment of €2.50. You will receive your payment two weeks after the experiment takes place. 

You can choose whether you would like to receive an electronic transfer or pick up the payment 

in cash. 
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C  Instructions for Online Survey to Assess Quality  

Instructions 

(Translation from German) 

Please carefully read the following instructions. If you have any questions about these instructions 

or if you have any trouble with the experiment, please contact us by e-mail at 

internetexperimente@wiso.uni-koeln.de. Please note that you are not allowed to go back to a 

previous page at any time during the experiment. Next, you will see 50 consecutive pictures on 

your screen. These pictures were taken by participants in a prior experiment. These participants’ 

task was to illustrate words using the materials provided. The words could be chosen freely and 

had to consist of only one word. 

Your Task. - Your task is to identify the illustrated words. In order to receive payment for a 

picture, you must enter the exact word that the other participant assigned to that picture. If you do 

not make an entry for a picture, or if the word you enter does not exactly correspond to the 

respective word assigned by the other participant, then you do not receive any payment for this 

picture. Please take note of the fact that each of the illustrated terms consists of only one word. 

Your entries may also only consist of one word each. If you enter more than one word for a picture, 

it will be classified as ‘not identified.’  

Please also note that the words were illustrated by different participants. This means that it is 

possible to see more than one illustration of the same term. 

 

Payment. - You will receive your payment only if you complete the entire experiment. You receive 

€2.00 for participating in the experiment. In addition, you receive €0.10 for each picture that you 

correctly identify. At the end of the experiment, you can choose whether you would like to receive 

an electronic transfer or pick up the payment in cash. 

 

 

FIGURE 2.5: SCREEN OF QUESTIONNAIRE TO ASSESS QUALITY 

What word is illustrated above? (You may enter one word) 

NECKLACE 
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Chapter 3 

Creative Solutions: Expertise versus 

Crowd Sourcing  

3.1 Introduction 

Imagine you want to publish a book and need to find a title. You have a given budget to hire 

help with finding a good title. With this budget, you can either hire one expert (e.g., a copywriter) 

in the field, or a few non-experts. Your only interest is to have the best possible title for your book. 

Who is more likely to produce this: the expert or the non-experts? 

Firms spend enormous amounts of money on R&D in which new technologies, products and 

services are created.1 For many of these new developments, expertise and deep understanding of 

science and technology is a necessary condition. However, companies also expend large sums of 

money in areas such as marketing (like the title example), to acquire creative expertise from 

external providers such as advertising agencies or consultants. For instance, the ten world’s biggest 

advertising agencies had a combined gross income of more than $25 billion in in 2017.2 Such 

creative domains require little technical knowledge. Would experts produce a better creative 

output than non-experts in such situations, and relatedly, would employing expensive experts be 

efficient in terms of cost-benefit calculations? 

Two possible effects of expertise on creativity may play a role. On the one hand, creativity may 

need knowledge as a source of ideas that can be used to generate novel products (Cropley 2006). 

                                                 
1

 The top 10 countries R&D spending was approximately 1.7 trillion dollars in 2018 (IRI, Statista, 2018). 

2
 https://co.agencyspotter.com/50-largest-marketing-companies-in-the-world/ 
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Amabile (1998) notes that domain-specific expertise is the “raw material” for creative ideas and 

people who are familiar with the focal field will be more successful in finding good solutions. On 

the other hand, however, experts may rely on accustomed habits and think in familiar patterns. 

Proponents of this view argue, that experts are more likely to be bound to the current thinking in 

their field, which blocks divergent thinking and reduce the potential for generating creative ideas 

(Wiley 1998). Thus, it is unclear whether experts will produce higher quality creative output than 

non-experts and whether employing experts in a domain such as marketing is efficient in terms of 

cost-benefit calculations. Even if, on average, experts produce a more creative outcome, average 

outcome is not the right measure. In many creative tasks, only the best ideas—the positive 

outliers—matter. Thus, having more solutions might be better, even if the average quality is lower.  

We conduct a field experiment using a new real-effort task that allows us to derive an objective 

measure for the quality of ideas in a marketing context. Experts consist of members from the 

platform upwork and non-experts from MTurk. The platform upwork is the largest freelancer 

platform globally with specializations such as marketing, website designing or translation 

services, with about 12 million freelancers offering their expertise to potential customers. In 

contrast, MTurk is a crowdsourcing webpage by Amazon’ Mechanical Turk without any 

specialization opportunities that allow companies and researchers to post tasks that require a 

human to accomplish including writing contents for websites, researching data details or 

transcribing audio recordings. 

The task for all hired workers was to come up with a creative title for a given short video clip 

(70 seconds). To measure quality, we recruited students from the lab. We showed each participant, 

four randomly selected titles from those created by the experts and non-experts and asked them to 

choose one title and watch the corresponding video afterwards. Thus, participants take real 

decisions involving opportunity cost of time. This design allows us to quantify the quality of a 

creative title by measuring the click rate.  

Our key result is that experts invest significantly more effort, as measured by time, but that this 

endeavor does not translate into better performance. For example, seven out of the best ten ideas 

in our experiment were generated by non-experts. Taking into account that non-expert are cheaper 

to recruit, we observe that in our setting it is more efficient to hire few non-experts to generate the 

best creative solutions, rather than the more expensive experts. Our finding is in line with prior 

research that quantity breeds quality - meaning that the more ideas are generated, the higher the 

probability that some of them will be very creative (e.g., Laske and Schröder 2018).  
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Our paper is related to the growing literature in economics about creativity and incentives, i.e. 

the comparison of different incentive schemes (Eckartz, Kirchkamp, and Schunk 2012, Erat and 

Gneezy 2016, Bradler, Neckermann, and Warnke forthcoming), the dimensions that should be 

incentivized (Kachelmeier, Reichert, and Williamson 2008, Laske and Schröder 2018), how 

incentives interact with the type of the ideation task (Charness and Grieco forthcoming), how the 

magnitude of the incentive effects the creative outcome (Ariely, Gneezy, Loewenstein, and Mazar 

2009) or how the time horizon of the incentive - short-term vs. long-term - influences individuals 

ideation performance (Azoulay, Zivin, and Manso 2011, Ederer and Manso 2013). Two studies 

are most relevant to our work, studying the role of expertise in a context where profound 

knowledge is indispensable. Jespersen and Lakhani (2010) examine successful solution in science 

problem-solving contests, finding that the provision of a winning solution is positively related to 

increasing distance between the solver’s field of technical expertise and the focal field of the 

problem. Franke, Poetz and Schreier (2014) experimentally study whether individuals with 

expertise in the focal area provide better ideas for new product development compared to 

individuals with expertise in a different but similar market. They observe that the latter come up 

with product ideas with lower potential for immediate use, however, they demonstrate 

substantially higher levels of novelty. Similar to Jespersen and Lakhani (2010), the authors find 

that this effect is particularly pronounced when the distance between the two similar markets 

increases. 

Building on this literature, we study the efficiency of experts in the creative domain. Our results 

provide a rational for why an increasing number of firms have chosen to utilize crowdsourcing for 

idea generation purposes. Forbes, for examples, states on its website that 85% of the 2014 Best 

Global Brands have used crowdsourcing in the last ten years3.The underlying concept is to 

outsource the ideation phase to a large population of non-professionals in order to use the 

“wisdom” of the crowd.  

 

3.2 Experimental Design and Procedure 

3.2.1 Procedural Details 

In October 2015, we recruited 30 experts on the platform upwork. In order to register on 

upwork.com as an expert, people need to create a profile which is thoroughly reviewed by the 

                                                 
3

 https://www.forbes.com/sites/steveolenski/2015/12/04/the-state-of-crowdsourcing/#2071416c55ee 
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platform. Once the information and professional credentials are verified (e.g., by entering codes 

for test results such as the Cambridge Certificate) the profile gets approved. People can take 

different test such as PHP Test, English Spelling Test or HTML. Upwork is the world’s largest 

freelancing website, where independent professionals from all over the world can offer their 

expertise to potential customers. Upwork has 12 million registered freelancers providing 

companies with over 3,500 different skills.45 By serving five million clients each year, freelancers 

are earning more than $1 billion.6 The advantage of such platforms is that workers enjoy freedom 

and flexibility by working remotely, while business or private customers can benefit from the 

access to a large talent pool. As non-experts, we recruited 90 workers on Amazon’s Mechanical 

Turk marketplace (Mturk), which became a standard source of participants for experiments. 

Previous studies show that the findings of studies run by Mturk are similar to the result in a more 

standard lab or field setting (Horton, Rand, Zeckhauser 2011, Amir, Rand, and Gal 2012, 

Goodman, Cryder, and Cheema forthcoming).  

In treatment expert, after we had created the job post, we sent selected experts a message to their 

upwork account in which we invited them to apply for the job post. In that message we informed 

workers that the job will take less than an hour and has to get done within 24 hours after receiving 

the briefing. We also informed freelancers that they will be compensated with a fixed amount of 

$60 plus bonus opportunities for doing this job. For those who sent us a proposal, we send them a 

personalized link to the task.  

Similarly, we posted the job on Mturk to recruit non-experts and announced it the same way as 

we did on upwork, with a description stating that participants would earn $1.5 plus bonus 

opportunities. Except of the payment, the instructions were identical between the treatments (see 

Appendix A for the instructions). As soon as workers had submitted a title, they were asked to fill 

out a questionnaire with some demographic questions. 

The money was paid out within two days after workers had submitted a title. For the quality 

elicitation of the titles, we recruited 600 student raters via ORSEE (Greiner, 2004). The quality 

elicitation lasted about 3 minutes and student raters received €2 fixed pay. 

 

                                                 
4

 https://www.techlist.pk/pakistan-upwork-social-impact-program/ 

5
 https://www.upwork.com/about/ 

6
 https://www.upwork.com/about/ 
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3.2.2 Treatments 

The experts in our study are freelancers on the online platform upwork with a specialization in 

copywriting. To restrict the definition even further, we only recruited freelancers with an hourly 

wage of at least $60, assuming that the hourly wage signals the degree of expertise in the 

specialized area.7 To minimize heterogeneity between the two treatment samples we only recruited 

US residents. In treatment expert, workers received a fixed amount of $60 per created title, 

independent of their performance.  

In the corresponding treatment non-expert, participants were Mturk workers with US residency. 

All non-experts received a $1.5 fixed payment.8 

To incentivize both experts and non-experts to do their best, we offered a $400 bonus for the 

worker who comes up with the best title. Table 3.1 summarizes the treatments in our experiment 

and the number of participants in each treatment. 

 

TABLE 3.1: EXPERIMENTAL TREATMENTS 

Treatment Recruitment pool Payoff N 

expert Freelancers from the online platform upwork.com 

specialized in copywriting with an hourly wage of at least 

$60 with US residency 

$60 30 

non-expert 
Mturkers with US residency 

$1.50 90 

 

3.2.3  The Task 

We use a novel task to quantify the quality of creative performance. We asked participants to 

come up with a creative title for a 70-second video clip9 on various forms of cheating. We 

informed participants that we would collect titles from different people and that the creator of the 

best title would be additionally rewarded a bonus of $400. Participants were informed that the 

quality of the title would be evaluated according to the number of clicks the title would generate 

among laboratory participants. See Appendix A for the instructions. For the quality measure, we 

recruited 600 raters via ORSEE (Greiner 2004). The student raters were blind to the source of the 

                                                 
7

 For each job category, upwork provides price ranges for hiring freelancers on entry, intermediate and expert level. For hiring 

people on expert level in the job category copywriting the platform suggests a payment of more than $46.50/hour.  
8

 The size of the fixed payment for Mturkers was calibrated to data published by Horton and Chilton (2010), according to which 

fifty per cent of workers are willing to perform tasks for approximately $1.38 per hour. Since we only recruited US located Mturkers 

we increased this amount to $1.5. 
9

 see https://www.youtube.com/watch?v=GwgtwY3oL4g&feature=youtu.be for the video 
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title ideas (experts vs. non-experts) and did not take part in any previous related experiments. We 

provided each rater with four randomly drawn titles and asked them to first click on the title of the 

video they wanted to watch and then watch the video. Thus, raters made real decisions involving 

opportunity cost of time.  

On average, each title was seen by 20 raters, each time in a different combination with three 

other randomly selected titles. We derive the quality of each title as the fraction of raters who 

clicked on it such that quality ranges from 0 to 1. For example, if a title was clicked by 8 out of 

20 raters, it received a quality score of 0.4. The entire list of titles and their score can be found at 

Appendix B. See Table 3.2 for examples of the three best and the three worst created titles in our 

experiment.  

 

TABLE 3.2: EXAMPLES OF THE THREE BEST AND WORST TITLES 

Best three titles 
Quality 

score 
 Worst three titles 

Quality 

score 

1. Liars, Cheats & Thieves: The 

Truth about Human Character 
0.61 

 1. ALL KINDS OF 

CHEATERS 
0.05 

2. Immoral Statistics: Breaking 

Society's Rules 
0.60 

 
2. We know you cheat! 0.05 

3. Cheating, the new social norm? 0.55 
 3. Video infographic on 

cheating 
0.05 

 

3.3 Results 

Do experts perform better than non-experts in a task for which prior knowledge is not 

necessarily required and only the best entries are important? As explained above, we define quality 

by the fraction of raters who clicked on a particular title in order to watch the related video. By 

design, the average overall quality was 0.25. The minimum quality in our experiment was 0.05 

and the maximum quality was 0.61. We observe slightly higher average quality in expert (0.268) 

than in non-expert (0.244) titles.10 This difference, however, is not statistically significant at any 

conventional level (U-Test, p=0.28; we report two-sided p-values in the entire paper). Figure 3.1 

illustrates the results, with the vertical lines representing the means.  

 

                                                 
10

 Descriptive statistics on socioeconomic background data for experts and non-experts can be found in Appendix C. The share of 

woman, the mean age, the share of white people, and the average education level are significantly higher in the expert group. As 

expected, the self-rated expertise level of experts is higher than that of the non-experts. 
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FIGURE 3.1: CLICK RATES BY TREATMENT  

 

Table 3.3 reports the results of an OLS regression analysis with average quality in columns (1) 

and (2) as dependent variables. In line with the non-parametric analysis, we observe a slight but 

insignificant increase in performance of experts.  

Interestingly, although experts do not seem to perform better on average, they do spend much 

more time on the task. On average, non-experts took 4.5 minutes to complete the task, whereas 

experts took 105 minutes. This difference is highly significant (pairwise U-test, p<0.001). Because 

this result regarding average time is driven in part by outliers, we conduct a median regression 

analysis to remove this outlier bias. Columns (3) and (4) of Table 3.3 display the results of a 

median regression analysis with submission time in minutes as the dependent variable. In line with 

the results from the non-parametric analysis column (3) reveals a significant increase in the median 

submission time whenever an expert created a title. Putting this finding into perspective, on a scale 

from 0 to 1380, the median submission time for a title increases by about 14 minutes when an 

expert versus a non-expert created a title. Adding sociodemographic controls in column (4) 

qualitatively does not alter the results. We conclude that experts try much harder to come up with 

a creative title, as measured by time, but that this endeavor does not translate into better 

performance. This finding is consistent with Amabile’s (1996) premise that creativity does not 

emerge from simply trying harder. The platform upwork provides proxies for a worker’s expertise. 

In addition to workers’ self-reported field of expertise and hourly wage, we also collected 

information on the number of projects completed and hours worked. However, we observe no 
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significant differences for any of these additional measures (i.e., they were not a more powerful 

predictor of performance). 

 

TABLE 3.3: REGRESSION ANALYSIS OF EXPERTISE ON QUALITY, TIME AND PRODUCTIVITY 

 
Average quality 

(in percent) 

 Average submission 

time (in min) 

 Average productivity  

per time unit  

 (1) (2)  (3) (4)  (5) (6) 

Expert 0.024 0.020  13.950** 14.287**  -0.060*** -0.063*** 

 (0.025) (0.034)  (6.138) (6.751)  (0.011) (0.016) 

Female  -0.005   0.195   -0.011 

  (0.020)   (0.913)   (0.011) 

Age  0.000   0.027   -0.001 

  (0.001)   (0.085)   (0.001) 

Expertise 

(self-rated) 
 0.006 

 
 -0.513 

 
 0.006 

  (0.010)   (0.325)   (0.005) 

Education  yes   yes   yes 

Ethnicity  yes   yes   yes 

Constant 0.244*** 0.202***  2.800*** 3.760  0.092*** 0.087*** 

 (0.011) (0.055)  (0.392) (2.931)  (0.007) (0.025) 

Observations 120 119  120 119  120 119 

R2 0.009 0.080     0.157 0.243 

Notes: Estimates in col. (1-2) and (5-6) are based on OLS regression. Estimates in col. (3-4) are based on LAD regression. Robust 

standard errors in parentheses Dependent variables: col. (1 and2): title quality in percent; col. (3 and 4) time between reading the task 

and submitting a title in minutes; col. (5 and 6): productivity per worker. The dummy Expert is equal to 1 if a worker was recruited 

on the freelancer platform upwork.com and 0 if a worker was recruited on Mturk. Self-rated expertise is a variable ranging from 1 

(very low) to 5 (very high). Education is a variable indicating the highest degree of education differentiating between high school 

diploma, bachelor’s degree, master’s degree or higher and other. Ethnicity differentiates between White, Black, Asian, Hispanic and 
mixed race. The stars indicate significance levels: * p-value<0.1, ** p-value<0.05, *** p-value<0.01. 

In a competitive economic environment, such as the advertising market, companies must 

generate creative ideas while not taking too long for one idea in order to be able to process the 

next task. Therefore, we now focus on a joint analysis of quality and submission time. That is, we 

consider the quotient of quality and submission time to receive a measure for productivity 

(productivity =
quality

submission time 
 ). We find that productivity is significantly higher in the non-

expert compared to the expert treatment (pairwise U-test, p=0.000). This result is confirmed by 

columns (5) and (6) of the OLS regression analysis in Table 3.3.11 In particular, experts on average 

are 0.061 units less productive compared to non-experts. Given, that the mean productivity is 

                                                 
11

 The significance level remains unchained if we conduct the regression analysis without the outliers. Table upon request. 
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0.093 this means a productivity decrease of 66 percent. Adding sociodemographic controls does 

not affect the main qualitative results. 

Next, we investigate whether it is more efficient to hire few experts or many non-experts to 

work on a creative task. To that aim we take into account the different amounts of fixed payment 

and calculate the cost per click as another productivity measure. While experts earned $60, non-

experts earned $1.5 each without considering the bonus. The cost per click for a title created by 

an expert was, on average, $11.39, whereas the cost per click for a title created by a non-expert 

was $0.31. This difference is highly significant (pairwise U-test, p=0.000). To account for the fact, 

that this result depends on the parametrization of the payments we calculate the break-even point 

at which it gets more efficient to hire experts. If non-experts costed more than $55.95 it would be 

more efficient to hire experts in our experiment.  

As discussed above, only the best creative ideas are relevant for the innovational process. We 

find that out of the best ten titles from this experiment, only three were generated by experts. For 

the sake of our analysis, we consider ideas with quality above the 90th percentile as excellent. We 

find the likelihood that an expert creates an excellent creative idea is equal to 0.132 and that of a 

non-expert is equal to 0.089. This difference is not significant (p=0.64). 

 

3.4 Discussion and Conclusion 

We study the efficiency of expertise in finding creative solutions in an area in which prior 

knowledge is not necessary. In our setting, we observe that for a given budget, hiring many non-

experts instead of a few experts is more efficient. We also find that although experts put 

significantly more effort into the task, as measured by time, this effort does not translate into better 

performance. This finding is consistent with the literature on creativity suggesting that creative 

performance is likely a probabilistic function of quantity (Simonton 2003; Laske and Schröder 

2018).  

Our results are in line with the trend of using the creative potential of the population to fuel new 

product development, adopted by many firms. One prominent example is McDonalds, which 

instead of contracting food or industry experts in 2014, invited the public to submit ideas for the 

types of burgers they wanted to be offered in store. People could create their individual burgers 

online and the rest of the country could vote for the best ones, which were ultimately sold in the 

branches. Similarly, Threadless, a t-shirt company based in Chicago, has relied on the creative 

potential of the crowd since it was founded in 2000. Instead of employing professional designers, 
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the company has asked people to submit designs via their crowdsourcing platform. Once an idea 

is posted, people start voting for it and leaving comments. Based on the average score and user 

feedback, about ten designs are selected each week, printed on clothes and other products and sold 

worldwide. 

We acknowledge two important limitations to our study. In this experiment we had to rely on 

self-reported measures such as the domain of expertise and hourly wage to recruit experts from 

the platform upwork. Bradler (2016), however, observes in her study substantial misjudgments in 

agent’s self-assessment for creative performance such that many agents held wrong beliefs about 

their relative ability in creative tasks. In line, we observe in our data only a small positive and 

insignificant correlation between self-rated level of creativity and the quality of the submitted 

ideas (ρ=0.117). Future research could expand the current study by recruiting employees from a 

real marketing agency in which employees have already proven their creative thinking skills and 

face real-world incentives such as reputation or promotion concerns. Moreover, a decisive success 

factor is the company’s ability to identify the top ideas among all submitted ideas. The process 

used in our experiment might not be applicable to companies in all situations as it requires a 

representative sample of its customers for idea evaluation. In cases where the target population is 

rather small, this might constitute a challenge. Examining efficient procedures of how to select the 

best ideas including who should ideally be involved (experts vs. consumers) could be a fruitful 

line for future research.  
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3.5  Appendix to Chapter 3 

A Instructions (for Experts)  
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B  List with all titles and their scores  

TABLE 3.4: ALL TITLES WITH SCORES 

Rank Quality Expert Title 
1 0.61 1 Liars, Cheats & Theives: The Truth about Human Character 

2 0.60 0 Immoral Statistics: Breaking Society's Rules 

3 0.55 0 Cheating, the new social norm? 

4 0.52 0 Frappuccinos, fraud, and fucking. 

5 0.45 0 See How Society is Stealing Your Hard-earned Money 

5 0.45 0 HAND IS QUICKER THEN THE EYE 

7 0.43 1 People Suck -- Facts about Liars, Cheats, and Fraud 

7 0.43 0 You won't believe these shocking facts about cheaters! 

9 0.40 1 REVEALED: The Uncomfortable Truth About People you TRUST 

9 0.40 0 Cheating scandals that will SHOCK you! 

9 0.40 1 Fraud, Lies, Deception! - The Hidden Costs of Cheating 

9 0.40 0 Living in a Society of Liars: Do You Really Know the Truth? 

13 0.38 0 Flirting with Danger 

14 0.38 0 Cheaters Among Us and The Stunning Statistics-Don't Get Fooled Again 

14 0.38 0 Four facts about cheating and fraud, number two will surprise you 

14 0.38 0 Hidden truths in american society. 

14 0.38 1 
Character - what you do when no one is looking. Which side of the fence 

are you on? 

18 0.35 1 Con-Science: The Math of Bad Behavior 

18 0.35 1 Cheating: Human Nature or Cultural Phenomenon? 

18 0.35 1 Cheaters Think Everyone Cheats 

18 0.35 0 A Cheat Sheet 

22 0.33 1 Is cheating a natural human instinct? 

22 0.33 0 Cheaters everywhere among us 

22 0.33 0 Sick Sad World 

22 0.33 0 Is cheating the norm? 

22 0.33 0 Mass Deception and Fraud 

22 0.33 1 Humans lie. Use protection. 

22 0.33 0 Cheats Rule The World 

22 0.33 1 Caught!! These Statistics on Cheating Will Blow Your Mind... 

30 0.32 1 First You See It, Then You Don't! 

30 0.32 1 Don't Get Swindled Or Cheated On. Catch Them In The Act. 

32 0.30 1 Do cheaters ever prosper? 

32 0.30 0 Lying, Cheating, & Stealing: The Fabric of Humanity. 

32 0.30 0 The lie in my pocket 

32 0.30 0 Liars, Cheats, and Deceits 

32 0.30 0 Can You See Yourself in This Video? 

32 0.30 1 Think People Are Honest? Think again... 

32 0.30 0 Everyone's a Fraud 

39 0.29 0 Cheating Analytics 

39 0.29 0 
Fake It 'Til You Make It - Everyone Else Does! The Truth About Liers, 

Cheaters and Thieves. 

39 0.29 0 The Fraud of Human 

39 0.29 0 Society of Cheaters 

39 0.29 0 Cheaters Gonna Cheat: The New Epidemic 

44 0.28 0 Circle of Lies: To Cheat or Not to Cheat? 

44 0.28 0 
What do students, baristas and cheating husbands have in common? The 

answer may surprise you. 

44 0.28 1 4 Proven Reasons You Should Trust No One 
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47 0.26 0 Facts about CHEATING! 

47 0.26 0 Can you spot the cheats and the lies all around? 

47 0.26 0 Sugar Plums or Cheating Liars: Who Can You Trust? 

47 0.26 0 Cheating - Believe it or Not..A lot of us do it. 

51 0.25 0 Den of Thieves: The Cheaters, Frauds and Liars You Should Beware 

51 0.25 0 Cheaters Bar & Lounge: We always look the other way! 

51 0.25 0 Is He Cheating? 

51 0.25 0 Who's afraid of fraud? 

51 0.25 1 IT'S HAPPENING RIGHT UNDER YOUR NOSE 

51 0.25 0 Dirty Cheaters 

51 0.25 0 Cheating makes the world go round 

58 0.24 0 Some who seem sweet may also cheat 

58 0.24 0 The world of cheating 

58 0.24 0 A mountain of deception 

58 0.24 1 The Data-Backed Truth About Cheating In Our Society 

58 0.24 0 Surrounded by Deception 

58 0.24 0 A Fraud-Ean world. 

58 0.24 0 Cheaters beware! You will be caught in the act 

58 0.24 0 
Cheating: A one way ticket to ruining your life, losing your wife, and 

living in strife 

58 0.24 0 Morals Down the Drain: a Digital Ballet 

67 0.22 0 Go ahead, Cheat you'll get caught. 

67 0.22 0 Dishonest Drinkers 

69 0.21 0 Cheating: A Part of Human Nature? 

69 0.21 0 Cheaters Never Prosper (Unless They Get Away With It) 

69 0.21 0 Just another day cheating and stealing. 

69 0.21 0 Do cheaters and thieves really win? 

73 0.20 0 What are the odds the people in your life are cheating? Come find out! 

73 0.20 0 Cheating: a highly indulgent activity 

73 0.20 0 Cheating Facts Set to Upbeat Christmas Music 

73 0.20 0 Creepy Cheaters. 

73 0.20 0 
Find Out 5 Things About Cheating You Didn't Already Know and Have 

Your Mind Blown. 

73 0.20 0 Do you have a favorite thief in your life? 

73 0.20 0 Everybody cheats... That makes it okay, right? 

73 0.20 1 Is Someone Lying to You Right Now? Probably. 

73 0.20 1 Cheats & Deceits 

82 0.19 0 Lie, Cheat and Steal 

82 0.19 0 People in your life are probably cheaters. 

82 0.19 1 
Dishonest Workers: You won't believe how much they're costing 

businesses 

82 0.19 0 Cheating Statistics 

82 0.19 0 Cheating- is it worth the cost? 

82 0.19 0 Cheating: Who Is Doing It? 

82 0.19 0 greatest crimes 

82 0.19 0 Fraud is ruining corporate profits 

90 0.16 0 Decepticons among us 

90 0.16 0 The wide world of cheats and frauds 

90 0.16 1 Life's a cheat:The illusion of honesty 

90 0.16 1 A Society of Cheaters 

90 0.16 1 $2.9 Trillion Made By CHEATING Every Single Year! 

90 0.16 1 that Add Up Big 

90 0.16 0 Ethically Unbound: The Numbers Behind Bad Behaviors 
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97 0.15 0 Quick Facts about Integrity 

97 0.15 0 
Beg, Borrow or Steal: The Big Lie & What You Should Know About 

Everyone Close To You. 

97 0.15 1 Fraud: Who pays the cost? 

97 0.15 0 Deception All Around Us: Who Can You Trust? 

97 0.15 0 Cheating and you: Be the person, not a worseon. 

102 0.14 0 
Deceptively educational: Think you know all there is to know about 

cheating? 

102 0.14 0 Watch This If You Wanna Know How Many 

102 0.14 0 Fraud and Cheating, what is the cost? 

102 0.14 0 Cheater Cheater, Deceitful Meter 

102 0.14 0 cheating and its relevance 

102 0.14 0 
Learn Cheating and Fraud Statisitcs While Listening to a Techno 

Version of Dance of the Sugar Plum Fairies! 

108 0.11 0 You too may be contributing to a world of uncertainty 

108 0.11 0 Waiting for luck? Just Cheat. If you got away, it's because of hard work. 

110 0.10 0 Is cheating the new normal? 

110 0.10 1 A Cheat Sheet to Cheat 

110 0.10 0 Cheating, Fraud and your spouse. Why it's affecting YOU 

110 0.10 1 If Someone's Calling Your Bluff, the Joke May Be on You 

110 0.10 1 Thieves, Liars & Cheats All Around Us 

110 0.10 1 Visit a pub and witness the darker side of human nature! 

110 0.10 0 So Many Suckers 

117 0.06 0 Find out if you are one of these cheaters 

118 0.05 0 ALL KINDS OF CHEATERS 

118 0.05 0 We know you cheat! 

118 0.05 0 Video infographic on cheating 
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C Descriptive Statistics 

 

TABLE 3.5: SAMPLE CHARACTERISTICS 

 Non-experts  Experts  Difference 

 Mean S.D. Min Max  Mean S.D. Min Max  p-value 

Female 0.36 0.48 0 1  0.57 0.50 0 1  0.047 

Age  33.06 8.73 26.34 70  40.57 11.39 26 67  0.001 

White  0.69 0.47 0 1  0.90 0.31 0 1  0.021 

Educationa 1.53 0.71 0 3  2.27 0.64 0 3  0.000 

Expertise 

(self-rated) 
3.11 1.14 1 5  4.63 0.56 3 5  0.000 

Notes: The sample size is 89 for non-experts as one worker did not respond to the questions and 30 for experts. The p-values are 

based on two-sided Mann-Whitney test statistics. a We transferred questionnaire data on education into qualitative ascending 
categories that are in accordance with years of education no school diploma=0, 1=high school diploma, 2=bachelor’s degree; 

3=master’s degree or higher. 
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Chapter 4 

Do Fines Deter Unethical Behavior? 

The Effect of Systematically Varying 

the Size and Probability of 

Punishment 

4.1  Introduction 

Unethical behavior is prevalent in many economic transactions, and understanding how to deter 

it is important. Even when the unethical behavior occurs on a small scale, the aggregate effect on 

the economy could be large. Consider, for example, illegal downloads of music. According to the 

RIAA report (www.riaa.com/faq.php), from 2004 through 2009, approximately 30 billion songs 

were illegally downloaded from file-sharing networks. An Institute for Policy Innovation 

(www.ipi.org) report concludes global music piracy causes $12.5 billion in economic losses every 

year, 71,060 US jobs lost, and a loss of $2.7 billion in workers' earnings. Or consider the case of 

employee theft in the workplace, which has been estimated to result in up to $200 billion in losses 

per year for US companies (Murphy 1993), with $15.9 billion in the retail industry alone (2008 

National Retail Security Survey). Although in both of these examples each offender may only 

steal a small amount of money, due to the number of people engaging in such behavior, the 

collective damage to the industry is huge.  

The standard economic model of deterring criminal behavior (Becker 1968) assumes the 

decision of whether to commit a crime is based on expected utility. Three outcomes are possible: 

the decision maker can choose not to engage in crime. If she chooses to commit a crime, either 

file:///M:/Users/wmc549/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/DBHFI8OY/www.riaa.com/faq.php
http://www.ipi.org/
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she is successful or she is audited and punished. In this model, the decision maker weighs the 

utility of each outcome and the associated probabilities, and commits the crime if the expected 

utility of doing so is higher than that of not committing the crime. A policy aimed at deterring 

decision makers from committing a crime could then be based on increasing the probability of 

catching the criminal or on changing the gains and losses associated with the outcomes. In this 

paper, we experimentally test how such policies affect unethical behavior.  

The question of how the size and likelihood of punishment affect deterrence originated in the 

law and criminology literature. This work dates back to Beccaria (1764), who advanced the idea 

that “crimes are more effectively prevented by the certainty than the severity of punishment.” 

Since then, a large empirical work in different fields has tried to estimate the effects of the certainty 

and severity of punishment on “real” crimes, for example, by studying the effect of changes in 

police force or changes in penalties. Overall, this work predominantly finds that increases in police 

manpower are correlated with reductions in crime, whereas the effect of the harshness of sanctions 

is smaller.1 Chalfin and McCrary (2017) discuss such results in their review of this literature, and 

point out the challenges in identifying causal effects, for example, because changes in police force 

or sanctions are typically not random. Another challenge in this literature is the proxies used to 

identify the probability of being detected, which is inferred from past data. 

In this paper, we experimentally study choices of a smaller scale than the empirical literature on 

crime. In particular, we are interested in how the probability of punishment and its size affect 

ethical decision-making. Most of us do not commit large-scale crimes, but face ethical decisions, 

such as whether to download music illegally or to lie to achieve an advantage. On a smaller scale, 

these decisions are very common. For example, DePaulo and Kashy (1998) estimate that, on 

average, people lie twice a day.  

To study deterrence of small-scale unethical behavior, we have our experimental participants 

play a deception game (Gneezy 2005) in which they receive private information regarding 

payments, and are asked to send a message to another player. In the game, participants know that 

sending a false message increases the chance of a higher payoff to the Sender at the expense of 

the other participant. To identify what kind of policy would most effectively deter deception in 

this game, we use a systematic approach based on Becker’s model. In 20 different treatments, we 

                                                 
1

 See Levitt (1997, 2002), Evans and Owens (2007), Lin (2009), and Chalfin and McCrary (2013) for results on the effect of police 

manpower on crime. For sanctions, the results are mixed. The early literature investigating the effects of sentence enhancement on 
specific crimes, such as gun crimes, found few deterrence effects (see, e.g., Loftin and McDowall 1981, McDowall, Loftin, and 

Wiersma 1992). However, more recent work focusing on the effect of changes in the sanction regime found some impact of harsher 

penalties (see, e.g., Drago, Galbiati, and Vertova 2009, Helland and Tabarrok 2007), though these effects are small in magnitude. 
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vary the probability of and the fine associated with being audited. We also investigate the effect 

of making the probability and the fines ambiguous in this one-shot game.  

As explained above, the standard model of deterrence predicts individuals to be sensitive to 

decreases in the expected payoffs that arise both from an increased likelihood of being audited and 

from higher penalties if detected. Under expected utility, for small payoffs such as the ones used 

in our experiment, the utility function is almost linear, and the expected value is a good 

approximation of behavior (Rabin 2000). These predictions can be generalized to other models of 

decision under uncertainty, such as prospect theory (Kahneman and Tversky 1979). However, in 

prospect theory, small probabilities, such as 0.05, are overweighted relative to medium 

probabilities, such as 0.50. Hence, under prospect theory, participants are still predicted to be 

sensitive to changes in probabilities, but less sensitive relative to expected utility.  

In the one-shot experiments, when presented with only one set of parameters, we find that 

participants are sensitive to the size of the fine, but are insensitive to changes in the probability of 

being fined. This result suggests that, in our data, the decision to lie is not based on calculations 

of the expected utility of a given sanction, potentially due to the complexity of making such 

calculations. Instead, individuals seem to base their choices to lie on simple decision heuristics 

that depend on the magnitude of fines, which may be more salient and easier to understand than 

detection probabilities.2  

This result is in contrast to experimental findings in the tax evasion literature, which, starting 

with Friedland, Maital, and Rutenberg (1978), investigates how the probability and size of 

punishment affect the decision to evade taxes in laboratory simulations testing the deterrence 

model proposed by Allingham and Sandmo (1972). Much of the subsequent work finds tax-

evasion decisions are sensitive to changes in expected costs determined by increases in detection 

probabilities (Friedland 1982, Spicer and Thomas 1982, Webley 1987, Alm, McClelland, and 

Schulze 1992, Beck, Davis, and Jung 1991, Bott 2016). Similar results have been found outside 

of the domain of tax evasion, in experiments designed to test deterrence in allocation decisions 

(Schildberg-Hörisch and Strassmair 2012, Khadjavi 2015, Harbaugh, Mocan, and Visser 2013), 

public goods games (Anderson and Stafford 2003), or studying other types of incentivized choices 

in the lab (DeAngelo and Charness 2012).  

                                                 
2

 This result is related to the broader literature on bounded rationality, which shows that, in complex environments, decisions are 

often not based on calculations of expected utility, for example due to cognitive limitations or limited attention, but rather rely on 
heuristics or cognitive shortcuts (see Simon 1955). For empirical and theoretical work on these biases see e.g., Tversky and Kahneman, 

1973, Chetty, Looney and Kroft 2009, Bordalo, Gennaioli and Shleifer 2012, 2013, Schwartzstein 2014, Enke and Zimmermann 

forthcoming, Gabaix 2017. 
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These experiments, however, used either a within-participant design in which individuals 

evaluated the magnitude of detection probabilities by comparing different detection likelihoods, 

and/or a repeated-game design in which participants made repeated decisions with feedback.3 In 

such designs, incorporating detection probabilities into the decision process may be easier. Yet, 

these settings are profoundly different from settings in which individuals only face one given 

detection probability where feedback is rare as captured by our one-shot between-participant 

design.  

To better understand whether complexity associated with evaluating probabilities in isolation 

can explain why participants were not responsive to changes in probabilities in our experiment 

and understand the discrepancy with previous results, we conduct two additional experiments. 

First, we have participants play a variation of the one-shot experiment in which they indicate their 

decision to lie for all four possible detection likelihoods. We find that, on top of being sensitive to 

fines, in a setting where individuals can directly compare different probability levels to each other, 

participants become sensitive to changes in detection probabilities. We conjecture this sensitivity 

arises from the fact that presenting individuals with several probabilities reduces complexity by 

providing them with a reference point against which they can compare and contrast their decisions. 

As a result, the magnitude of different probability levels becomes more salient.      

Second, we examine data from an additional experiment built on a growing literature contrasting 

risky choices under descriptions versus experience of probabilities (see, e.g., Barron and Erev 

2003, Hertwig, Barron, Weber, and Erev 2004, Hertwig and Erev 2009). We examine the 

dynamics of lying behavior in a repeated setting where individuals can experience being monitored 

after every round and receive immediate feedback regarding punishment. In each round, they face 

the same detection probability. In such a setting, even if decision makers have limited 

computational abilities and do not rely on calculations of expected utility, they can directly 

experience what a given detection probability means in terms of audit frequencies. As in the one-

shot experiment, we find that in the first round, individuals are completely insensitive to 

probabilities but are sensitive to the size of the penalty. However, over time, lying behavior 

becomes responsive to increases in the detection probability as well.  

Taken together, the results of our two additional experiments reconcile our findings with the 

previous literature. Even though participants do not use all the information available but rather use 

                                                 
3

 In Table 4.6 in Appendix A we summarize this work and classify it according to the experimental methods adopted (repeated vs. 

one-shot experiment; between- vs. within-participant design).  
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cognitive shortcuts based on the size of the fine when evaluating probabilities is complex, they 

become responsive to probabilities when they can directly compare probabilities to each other or 

directly experience audit frequencies over time. Our findings suggest that policy interventions that 

introduce harsher fines are likely to be a successful means of deterrence. Further, policies designed 

to target detection probabilities may be effective when feedback is frequent, such as in the domain 

of fare evasion in public transportation. However, for unethical behavior in which individuals 

receive only rare feedback, such as small-scale tax evasion, presenting individuals with 

descriptions of detection probabilities is likely to be ineffective unless changes in the magnitude 

of such probabilities are made easy to evaluate.  

The remainder of the paper is organized as it follows. Section 4.2 presents the experimental 

design, section 4.3 the predictions, and section 4.4 discusses the results of the one-shot data. In 

section 4. 5, we present the design and results of the experiment in which lying occurs over several 

rounds. Section 4.6 concludes.    

 

4.2 Experimental Design 

4.2.1  The Game 

Unlike previous work, where the decision to “misbehave” does not capture ethical 

considerations, we design our experiment to capture unethical behavior in a setting where 

maximizing profit requires individuals to lie, rather than to make choices over monetary 

allocations, and involves harming another participant. We use a version of the deception game 

(Gneezy 2005, Dreber and Johannesson 2008, Sutter 2009, Erat and Gneezy 2012, van de Ven and 

Villeval 2015) in which participants can lie to increase their earnings at the expense of another 

participant. The experiment involves two players, a Sender and a Receiver. The Sender starts the 

experiment with a $10 participation fee and is privately informed about the outcome of a 10-sided 

die roll. The Sender is then asked to send a message regarding the die roll result to the Receiver. 

She can choose one of 10 possible messages that state, “The outcome of the die roll is x”, where 

x is a number between 1 and 10.  

After observing the message, the Receiver is asked to choose a number between 1 and 10. The 

Sender’s message is the only information the Receiver has about the outcome of the die roll; that 

is, the Receiver does not know the actual number that came up in the die roll. The Receiver’s 

choice determines the payoffs of both players. Importantly, the Sender is informed about the 
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payoffs associated with the Receiver’s choice, whereas the Receiver is not. The Receiver only 

knows the Sender has private information about the actual die roll result and that the payment for 

both players depends on whether her choice corresponded to the actual outcome of the die roll. 

Our implementation of the game has two different payment options. If the Receiver chooses the 

number corresponding to the actual outcome of the die roll, the Sender earns $5 (on top of the 

participation fee) and the Receiver earns $15. If the Receiver chooses a number other than the 

actual die roll, the Sender earns $15 (on top of the participation fee) and the Receiver earns $5. 

These payoffs are in addition to a $0.25 base payment for taking part in the experiment. Therefore, 

in this game, the Sender has an incentive to lie by sending a false message to the Receiver. Note 

the Receiver does not know hers and the Sender’s incentives - not even that they are not aligned. 

 

4.2.2 Treatments 

The baseline treatment does not include monitoring. In the remaining treatments, the Sender is 

informed that some messages will be audited. If audited and the Sender’s message does not 

correspond to the actual outcome of the die roll (i.e., if the Sender lies), the Sender is fined, losing 

a fraction of the total earnings. We systematically vary the size of the fine and the probability of 

being audited. We cross two known fine levels with four different probabilities of being audited, 

both between participants (section 4.2.2.1) and within participants (section 4.2.2.2). In Appendix 

C, we also extend our investigation to unknown fines levels and/or probabilities to study how 

ambiguity affects responses to auditing in a between-participant design.  

 

4.2.2.1  Varying Fines and Probabilities: Between-Participant Treatments 

In the first eight treatments, we use a between-participant design in which we vary the size of 

the fine to be either high or low, and cross it with four different probabilities of being audited.  
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TABLE 4.1: EXPERIMENTAL TREATMENTS 

Treatment Size of the fine 
 

 
Probability of being audited N 

PANEL A (between participants)  (between participants)  

NO AUDITING     

Baseline -  - 151 

     

AUDITING     

LowF_0.05 Low  0.05 149 

LowF_0.10 Low  0.10 151 

LowF_0.25 Low  0.25 156 

LowF_0.50 Low  0.50 149 

HighF_0.05 High  0.05 154 

HighF_0.10 High  0.10 149 

HighF_0.25 High  0.25 149 

HighF_0.50 High  0.50 152 

PANEL B (between participants)  (within participants)  

LowF_pWithin Low  
0.05 0.10 0.25 0.50 

95 

HighF_pWithin High  96 

PANEL C (within participants)  (between participants)  

Fwithin_0.05 Low High  0.05 108 

Fwithin_0.10 Low High  0.10 104 

Fwithin_0.25 Low High  0.25 105 

Fwithin_0.05 Low High  0.05 108 

   Total 1976 

 

Size of the Fine—We vary the size of the fine to either $12.50 (Low Fine) or $25 (High Fine). 

In the Low Fine treatments, the Sender is informed that if audited and the message she sent to the 

Receiver does not correspond to the actual outcome of the die roll, she will lose half her earnings. 

In particular, she will lose half the $10 participation fee and half the payment associated with the 

die roll experiment, ending up with a payment of $12.50 for the experiment (on top of the $0.25 

base fee). In the High Fine treatments, the Sender is informed that if audited and the message does 

not correspond to the actual die roll result, she will lose all her earnings and only receive the $0.25 

base fee. 

Probability of Being Audited—We vary the probability of being audited p to be equal to 0.05, 

0.10, 0.25, or 0.50 between participants. The eight resulting treatments are displayed in Panel A 

of Table 4.1.  
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An important policy question concerns the relative effectiveness of changes in expected costs 

that come from changes in penalties as opposed to changes in detection probabilities. To 

investigate this question, we need to exogenously vary both fines and probabilities while keeping 

constant the expected costs of deterrence. Only a few studies vary fines and probabilities in the 

realm of a single experiment. Previous experimental work has found mixed results, with some 

findings suggesting a greater deterrent effect of sanctions than detection probabilities (Friedland, 

Maital, and Rutenberg 1978, Anderson and Stafford 2003, Friesen 2012), other research 

suggesting the opposite pattern (Friedland 1982, Webley 1987), and additional work suggesting 

that different combinations of fines and probabilities are equally effective and can therefore be 

considered substitutes (Schildberg-Hörisch and Strassmair 2012, Khadjavi 2015)4.  

Our experimental setup provides us with an opportunity to cleanly investigate the relative 

effectiveness of fines and auditing probabilities in a between-participant design, by comparing the 

behavior of participants that face identical expected payoffs from lying but are exposed to different 

combinations of fines and probabilities (treatments HighF_0.05 and LowF_0.10; and HighF_0.25 

and LowF_0.50 in Table 4.1).  

 

4.2.2.1  Varying Fines and Probabilities: Within-Participant Treatments 

Changing the Probability of Being Audited within Participants—In the next two treatments, we 

fix the size of the fine and vary the probability of being audited within participants. The Sender 

indicates the message she wants to send to the Receiver for each possible probability level of being 

audited (p=0.05, p=0.10, p=0.25, and p=0.50). In the LowF_pWithin, the fine is $12.50, and in 

HighF_pWithin it is $25. Participants are informed that one of their choices will be selected at 

random and used for payment. Panel B of Table 4.1 describes the LowF_pWithin and 

HighF_pWithin treatments. 

Changing the Size of the Fine within Participants—In four additional treatments, we fix the 

probability of being audited and vary the size of the fine within participants to either $12.50 or 

$25. In these treatments, the Sender is asked to indicate the message she wants to send for both 

possible fine levels. The probability of being audited is 0.05 in Fwithin_0.05, 0.10 in 

Fwithin_0.10, 0.25 in Fwithin_025, and 0.50 in Fwithin_0.50. Again, participants are informed 

                                                 
4

Most of this work adopts within-participant designs, which may lead to misleading interpretation of the relative effectiveness of 

fines and detection probabilities.  
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that one of their choices will be selected at random and used for payment. Panel C in Table 4.1 

illustrates these treatments.   

 

4.2.3 Procedure 

We conducted the experiment on Amazon’s Mechanical Turk (mTurk), one of the largest online 

marketplaces for task-based work. mTurk is a growing online platform that has been widely used 

to conduct experiments in the social sciences (see Horton, Rand, and Zeckhauser 2011, and 

Paolacci, Chandler, and Ipeirotis 2010) and it has been recently used in economics, for example, 

to study redistribution preferences (Kuziemko, Norton, Saez, and Stantcheva 2015) or the effect 

of monetary and non-monetary incentives on effort provision (DellaVigna and Pope 2018). We 

recruited 2,731 workers who were randomly assigned to the different treatments reported in the 

main text and the Appendix. The task was posted on mTurk as a study on decision-making, with 

a description stating that participants would earn $0.25 plus bonus opportunities that would last 

about 5-10 minutes. Participants could take up to one hour to finish the experiment. All 

instructions are posted in Appendix F. We took precautionary measures to prevent participants 

from taking part in this experiment multiple times. Specifically, before the participants could see 

the instructions, they had to type in their worker ID.5 Additionally, we took several standard mTurk 

measures to ensure quality. First, we restricted the sample of workers to those with US residency; 

that is, the task was only shown to workers with a US address. Second, to exclude automatic 

robots, only workers with a past approval rate of 95% could take part in the study, and we asked 

participants to enter an individual completion code at the end of the task to be eligible for payment.  

After reading the consent form, participants learned that on top of their $0.25 fixed payment, 1 

out of 20 participants would be selected randomly and paid a monetary bonus according to the 

instructions. We informed participants in the role of Sender that, if selected, they would receive a 

$10 participation fee and would be matched randomly with another mTurk worker, the Receiver, 

who would receive a $0.25 fixed payment. Then, participants in the role of Sender were randomly 

assigned to one of the 20 treatments. The instructions were presented on one screen that included 

the description of the task and the payoff for both the Sender and the Receiver. On this page, they 

were asked to choose the message for the Receiver. In the baseline treatment, the instructions did 

not mention auditing. We informed the Sender that the number the Receiver chose would 

                                                 
5

 Six workers, however, circumvented these precautionary measures and were able to participate in the experiment twice. We only 

look at the first participation. Excluding these workers altogether does not change the results. 
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determine her payment in the experiment. In the remaining treatments, participants learned about 

the chance of being audited. We informed them we would randomly select one participant out of 

x, where x was 20, 10, 4, or 2, depending on the treatment, and check their message. If the message 

did not correspond to the actual outcome of the die roll, participants would be fined either half or 

all their earnings from sending a false message, depending on the treatment. We also had 

ambiguity treatments in which fines and probabilities were ambiguous (see Table 4.7 in Appendix 

C). In these treatments, we informed them that some participants would be randomly audited 

and/or that if fined, they would lose some of their earnings.  

Once the Sender clicked on the message she chose to send, she was directed to another screen 

where we asked her to fill out a survey and report some demographics such as gender, age, 

nationality, and field of study. She was then provided with a unique code to be entered on mTurk 

for payment purposes.  

After collecting all the data for the Sender, we separately recruited 136 mTurk workers (46% 

women) who participated in the experiment in the role of Receiver in exchange for a $0.25 fixed 

payment and the opportunity to receive additional earnings. After reading the instructions, the 

Receiver learned about the message from the Sender and had to make a choice. 65% of Receivers 

followed the message, which suggests sending a false message in this context had a high chance 

of penalizing the Receiver.6 

 

4.3 Predictions 

We follow Becker (1957) and the standard assumptions he made (in particular, no moral costs 

of lying). The agent’s decision depends on the costs and benefits associated with deception. The 

expected utility from lying is  

EUj = pjUj (Yj – fj) + (1- pj)Uj(Yj) 

where Yj is the payoff from lying and fj is the fine if audited and caught lying. In the model, an 

increase in pj or fj will reduce the expected utility of deception. Depending on the agents’ risk 

preferences, an increase in pj would either result in higher, identical, or lower expected utility from 

lying, as compared to an equivalent percentage increase in fj. According to Rabin (2000), for small 

stakes, such as the ones in our experiment, the utility function is close to linear. Therefore, under 

expected utility, deceptive behavior is predicted to approximately reflect changes in expected 

                                                 
6

 The men followed the message in 60% of the cases; the women did in 73%. This difference is not significant (2=2.26, p<.133). 
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payoff as compared to the sure payoff when telling the truth.  

For the predictions of Prospect Theory, we assume the reference point to correspond to the 

decision maker’s participation fee plus his/her earnings from telling the truth. This way, if the 

decision maker lies and is (not) caught, he/she would end up in the domain of losses (gains). Under 

these assumptions and the standard parameters in the literature, for a high fine, decision makers 

would be sensitive to changes in probabilities that range between 0.05 and 0.5, and would switch 

from lying to telling the truth when p is equal to 0.25 (HighF_0.25). For a low fine, individuals 

would always choose to lie regardless of the detection probabilities. See Appendix B for the 

calculations. 

 

TABLE 4.2: EXPECTED PAYOFFS FROM LYING 

 Probability of being audited 

 0.05 0.1 0.25 0.50 

Low Fine  $24.38 $23.75 $21.88 $18.75 

High Fine $23.75 $22.50 $18.75 $12.50 

 

Table 4.2 reports the expected payoffs of lying for all possible combinations of fines and 

probabilities. The Sender’s expected payoff from lying decreases with increases in both the 

probability of being audited and the size of the fine. In two of the cases we study, the expected 

payoffs from lying are identical but determined by a different combination of fines and 

probabilities (HighF_0.05 and LowF_0.10; HighF_0.25 and LowF_0.50). These two 

combinations allow us to test whether our participants are more sensitive to the probability of 

being audited or to the size of the fine. The null hypothesis under the predictions discussed above 

is that we would find no difference in lying behavior when the expected payoff is the same and 

agents are risk neutral. Under Cumulative Prospect Theory (CPT), individuals tend to over-weight 

small probabilities. They would therefore be less sensitive to changes in expected value that come 

from variations in detection probabilities than to changes that come from variations in the size of 

the fine. For the parameters of our experiment, CPT predicts equal lying rates in HighF_0.05 and 

Low_0.10, but not in HighF_0.25 and LowF_0.50.  

The above predictions are based on the assumption that participants would be indifferent 

between outcomes that requires them to lie and identical outcomes that are reached by telling the 

truth. However, recent work finds people have lying costs (e.g., Gneezy 2005, Charness and 

Dufwenberg 2006, Belot, Bhaskar, and van de Ven 2012, Battigalli, Charness, and Dufwenberg 
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2013, Cappelen, Sørensen, and Tungodden 2013). Some choose to tell the truth and lose potential 

earnings even in the absence of monitoring. Based on this fact, lying rates throughout our 

treatments may be smaller than predicted by expected utility or CPT under the assumption of no 

lying costs.  

 

4.4 Results 

A total of 2,731 (53.1% female) participants completed the experiment, including those who 

participated in the treatments reported in Appendix C (N=755). The average age was 36 

(SD=11.69, Median=33). In term of ethnicity, 76.6% of the participants indicated being 

Caucasian, 7.03% indicated being African-American, 6.31% reported being Asian, and 4.51% 

reported being Hispanic. The remaining participants either indicated a mixed ethnicity or did not 

report their ethnicity. The wide majority of participants (97.47%) indicated English was their first 

language. We asked the remaining participants to report their English proficiency level on a scale 

from 1 to 7; the average score was 6.71 (SD=.72). In this section, we first present the results of 

the between-participant treatments and then move to the within-participant treatments. In 

Appendix C, we also explore how ambiguity in the deterrence parameters affects lying behavior.  

 

4.4.1 Varying Fines and Probabilities: Between-Participant Data 

Table 4.3 displays the fraction of lies by probability of being audited across treatments. In the 

baseline with no auditing, 51.7% of the participants (N=151) sent a false message to the Receiver.  

Result 1 Introducing auditing decreases the frequency of lies. 

Our first result is evident from the Figure 4.1: when we introduced auditing, participants reacted 

by lying significantly less often (p.002 for all treatments, chi-squared test). This result is in line 

with work showing that introducing monitoring and punishment works in deterring behaviors that 

negatively affect others (e.g., Khadjavi 2018). 
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FIGURE 4.1: FRACTION OF LIES BY PROBABILITY OF BEING AUDITED AND BY FINE SIZE  

(BETWEEN-PARTICIPANT TREATMENTS) 

 

As predicted, we find participants were sensitive to fines. For any given probability, when the 

fine was high, participants lied significantly less than when the fine was low (p<.001, chi-squared 

test). Hence, we conclude that in our data participants are sensitive to increases in the size of a 

penalty associated with deceiving.  

Result 2 Deception rates decrease when the size of the fine increases. 

We further find participants did not react to substantial increases in the probability of being 

audited. As Table 4.3 shows, when the fine for being audited was low, the fraction of participants 

who lied when the probability of being audited was 5% was .315. This fraction was .342 when the 

probability increased to 50%; this difference is not statistically significant (2=.243 p=.622, chi-

squared tests, p≤.622 for all other pairwise comparisons). We find a similar pattern for the high 

fine: a fraction of .24 participants lied when the probability was 5%, and this fraction was not 

significantly lower when the probability was 50% (.23, (2=.114, p=.735), all pairwise 

comparisons for the high-fine treatments are not significant (p≤.274, chi-squared test).  

Result 3 Participants are not sensitive to the probability of being audited.  
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TABLE 4.3: DESCRIPTIVE STATISTICS OF LYING RATES  

 PANEL A                          Probability between participants – Fine between participants 

NO AUDITING    

Treatment Mean N 
 

Baseline .5166 151 

AUDITING Low Fine  High Fine  

Probability Treatment Mean N  Treatment Mean N p-value 

(2-test) 

0.05 LowF_0.05 .315 149  HighF_0.05 .247 154 0.184 

0.10 LowF_0.10 .331 151  HighF_0.10 .195 149 0.007 

0.25 LowF_0.25 .340 156  HighF_0.25 .228 149 0.031 

0.50 LowF_0.50 .342 149  HighF_0.50 .230 152 0.032 

Overall 
All Low Fine 

treatments 
.332 605 

 
All High Fine 

treatments, 
.225 604 

 

0.000 

 

PANEL B                            Probability within participants – Fine between participants 

0.05 LowF_pWithin .442 95  HighF_pWithin .198 96 0.000 

0.10 LowF_pWithin .379 95  HighF_pWithin .146 96 0.000 

0.25 LowF_pWithin .274 95  HighF_pWithin .094 96 0.000 

0.50 LowF_pWithin .274 95  HighF_pWithin .031 96 0.000 

Overall LowF_pWithin .318 95 
 

 
HighF_pWithin .117 96 0.000 

PANEL C                           Probability between participants – Fine within participants 

0.05 Fwithin_0.05 .324 108  Fwithin_0.05 .194 108 0.002 

0.10 Fwithin_0.10 .317 104  Fwithin_0.10 .163 104 0.000 

0.25 Fwithin_025 .343 105  Fwithin_025 .171 105 0.000 

0.50 Fwithin_0.50 .426 108  Fwithin_0.50 .194 108 0.000 

Overall 
Fwithin_0.05 

Fwithin_0.50 
.353 425 

 

 

 

Fwithin_0.05 

Fwithin_0.50 
.181 425 0.000 

 

Table 4.4 reports this result using an OLS regression analysis exploring the effects of the size 

of the fine and of different probabilities of being audited on lying. Column 1 shows an increase in 

the size of the fine decreased the probability of lying by 9.9 percentage points (p=.020). Increasing 

the probability of being audited had no effect on lying. We also find no significant interaction 

between fine and probability, suggesting the effect of fines on lying did not depend on the 

probability of being audited. In the control condition with no auditing, participants lied 

significantly more often than in all other treatments in which auditing was introduced (p<.001 for 

all comparisons). Column 2 shows that controlling for gender does not change the results. We also 

find women lied significantly less often than men (p<.001). This result is in line with previous 

findings on gender differences in the propensity to tell selfish black lies (Dreber and Johannesson 
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2008, Erat and Gneezy 2012). We observe no evidence that women react differently than men to 

fines and probabilities (see Table 4.9 in Appendix D).  

Further, we find these results are robust to controls such as age (column 3) and ethnicity (column 

4). Excluding participants who said they had difficulty understanding the instructions (N=152, 

11.2%) or excluding those who did not answer the post-experimental comprehension check 

correctly (N=326, 23.8%) strengthens the results (see Table 4.10 and 4.11 in Appendix D). Finally, 

in Table 4.12 in Appendix D we report the results of an OLS regression in which we include 

dummy variables for each of the between-participant treatments, and find similar results.  

 

TABLE 4.4: EFFECT OF FINE AND PROBABILITY ON LYING 

Dependent variable: Lied (1=Yes) 

 (1) (2) (3) (4) 

High Fine -0.099** -0.098** -0.101** -0.100** 

 (0.042) (0.041) (0.041) (0.041) 

Probability  0.049 0.053 0.065 0.064 

 (0.110) (0.109) (0.108) (0.108) 

High Fine*Probability -0.038 -0.054 -0.061 -0.072 

 (0.147) (0.146) (0.146) (0.147) 

No monitoring 0.195*** 0.199*** 0.199*** 0.201*** 

 (0.051) (0.051) (0.050) (0.050) 

Female  -0.106*** -0.089*** -0.091*** 

  (0.025) (0.025) (0.025) 

Age   -0.004*** -0.004*** 

   (0.001) (0.001) 

Ethnicity No No No Yes 

Constant 0.321*** 0.377*** 0.515*** 0.503*** 

 (0.031) (0.034) (0.049) (0.051) 

Treatments 
LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

Fine Between Between Between Between 

Probability Between Between Between Between 

Observations 1,360 1,360 1,360 1,352 

R2 0.039 0.052 0.062 0.069 

Notes: OLS regressions with robust standard errors in parentheses. The dependent variable is dummy coded as 1 if a participant lied, 

and zero otherwise. High Fine is a dummy variable that is coded as 1 for the treatments in which participants lost all their earnings if 
audited, and zero for the treatments in which participants lost half their earnings if audited. Probability is a continuous variable 

indicating the chance of being audited (either 0.05, 0.10, 0.25, or 0.50). Female is a dummy variable coded as 1 if the participant was 

a woman, and zero otherwise. Age is a continuous variable indicating participants’ age. Ethnicity differentiates between White, Black, 
Asian, Hispanic and mixed race. Between refers to between-participant data. The stars indicate significance levels: * p-value<0.1, ** 

p-value<0.05, *** p-value<0.01. 
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In Appendix C, we report the results of the treatments in which participants faced unknown 

fines and/or probabilities. The results show that when the detection probability was unknown, 

participants reacted to fines similarly to the treatments in which the probabilities were known. 

Furthermore, we find that making the penalty ambiguous (with known or unknown probabilities) 

did not further decrease lying. These results show the robustness of our findings on the deterring 

effects of variations in the size of fines and in the probability of being audited.   

Figure 4.2 displays the fraction of lies by the expected payoff from sending a false message, 

assuming the Receiver followed the message. The figure shows participants were not sensitive to 

decreases in expected earnings that arose from an increase in the chance of being audited, but were 

sensitive to a decrease in expected earnings that arose from a higher fine. For any given fine level, 

we find no difference in lying rates across different probabilities. When the penalty for lying was 

low, the fraction of lies was .315 when the probability of being audited was the smallest (5%, 

expected payoff: $24.38), and it did not decrease when the probability was the highest (50%, 

expected payoff: $18.75, .342). Even when the expected payoff decreased by almost half in the 

high-fine scenario (from $23.75 to $12.50), the fraction of lies did not change (.246 vs. .230). We 

only observed a decrease in lying when the decrease in expected payoff arose from an increase in 

the size of the fine. Note this result has a one-to-one relation to Results 2 and 3 above.   

 

 

FIGURE 4.2: FRACTION OF LIES BY EXPECTED PAYOFF FROM LYING  

(BETWEEN-PARTICIPANT TREATMENTS) 
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As mentioned earlier, in two cases, the expected value from lying was identical but was 

determined by different combinations of fines and probabilities. In both treatment HighF_0.05 and 

LowF_0.10, the expected payoff was $23.75. In HighF_0.05, the probability of being audited was 

5% with a high fine, whereas in LowF_0.10, this probability was 10% with a low fine. We observe 

a smaller fraction of lies when the fine was high (.247 and .331 in treatments HighF_0.05 and 

LowF_0.10, respectively), though the difference is not statistically significant (p=.104).  

In both treatments, HighF_0.25 and LowF_0.50, the expected payoff from lying conditional on 

the Receiver following the message was $18.75. In HighF_0.25 (LowF_0.50), the probability of 

being audited was 25% (50%) when the fine was high (low). The fraction of lies was significantly 

smaller when the fine was high (HighF_0.25: .228 vs. LowF_0.50: .342, p=.029). The above 

findings from the equal-expected-value cases support Results 2 and 3: our participants are more 

sensitive to changes in the fine than to changes in the probability of being audited.  

Our results are not in line with the predictions of expected utility. Non-expected utility models 

also cannot explain these results. For example, given the parameters estimated in the literature, 

Cumulative Prospect Theory does not predict that individuals will be completely insensitive to an 

increase in probability from 0.05 to 0.5. The complete insensitivity to probabilities we document 

in our data suggests that participants’ decision to lie were based on decision heuristics that largely 

depended on the size of the fine, potentially because they are more salient or easy to evaluate. This 

result is in line with a larger literature on bounded rationality, which shows that individuals often 

use cognitive shortcuts to make their decisions, rather than relying on computations of expected 

utility (Simon 1955, Kahneman 2003).  

The finding that lying behavior does not depend on the likelihood of being audited is in contrast 

with the empirical findings of a large literature in experimental economics that, in the domain of 

tax evasion (e.g., Friedland 1982) or in other games devised to test Becker’s theory (e.g., 

Schildberg-Hörisch and Strassmair 2012), find individuals are sensitive to variations of detection 

probabilities, even small ones. A closer look at this work, however, reveals that none of this 

research investigated reaction to probabilities in a one-shot setting using a between-participant 

design as we do. Instead, several experiments use within-participant designs in which individuals 

are confronted with several probability parameters at the same time, which they can compare and 

contrast. In addition, many other experiments also investigate this question in repeated settings, 

where individuals can learn how to react to probabilities, especially when presented with different 

parameters. We review this research in Table 4.6 in Appendix A. We conjecture that in such 
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settings, incorporating detection probabilities is much easier than doing so in settings where 

participants only face one given chance of being audited, presented in isolation.   

In the remainder of the paper, we examine whether the insensitivity to probabilities that we 

detect in the one-shot and between-participant setting vanishes when individuals can directly 

compare different probabilities (within-participant design, section 4.4.2) or when they experience 

the same probability parameter over time (repeated setting, section 5).  

  

4.4.2 Varying Fines and Probabilities: Within-Participant Data 

In this section, we present the results of treatments LowF_pWithin and HighF_pWithin, where 

we investigate the effects of fines and probabilities using a within-participant design.  

Fines between Participants and Probabilities within Participants—As Figure 4.3 shows, 

participants in these treatments were sensitive to the size of the fine. On average, the fraction of 

lies was .318 in treatment LowF_pWithin, where the fine was low, and decreased to .117 in 

treatment HighF_pWithin, where the fine was high (2=45.48, p<.001, chi-squared test). As in the 

data where all parameters were presented between participants (LowF_0.05 to HighF_0.50), our 

results show that, conditional on a given detection probability, the difference in the fraction of lies 

between high and low fines is statistically significant (p<.001 for all pairwise comparisons, chi-

squared test). This finding shows the robustness of our results with respect to fines, because in 

these treatments the fine parameters were again presented between participants.  
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FIGURE 4.3: FRACTION OF LIES BY PROBABILITY OF BEING AUDITED AND BY FINE SIZE 

(WITHIN-PROBABILITY TREATMENTS) 

 

Unlike in the between-participant data, individuals reacted to probabilities in both treatments 

when probability parameters were presented within participants. Lying rates were the highest 

when the probability of being audited was the smallest, and subsequently decreased when this 

probability increased. When the fine was low, the lying fraction was .442 in the former case, and 

it decreased to .170 in the latter (p<.001). When the fine was high, this fraction was .198 in the 

former case, and it decreased to .031 in the latter (p<.001). 

 

Result 4 When detection probabilities are presented within participants, individuals  

a. deceive less when the fine increases, and 

b. deceive less when the probability of detection increases. 

 

A different way to look at this result is to consider how participants responded to increases in 

expected earnings. We observe that, as the model predicts, increases in the expected value 

corresponded to increases in the propensity to deceive; see Figure 4.4.  
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FIGURE 4.4: FRACTION OF LIES BY EXPECTED PAYOFF IF LIED 

(WITHIN-PROBABILITY TREATMENTS) 

 

When comparing the cases in which the expected payoffs from lying were the same but were 

determined by different combinations of fines and probabilities, we still find that for a given 

expected payoff, participants’ behavior was more strongly affected by fines. When the expected 

payoff was $23.75 and the fine was low, the fraction of lies was .379, whereas it was .198 when 

the fine was high (2=7.51, p=.006). When the expected payoff was $18.75, the fraction of 

participants who lied when the fine was low was .179, whereas it was only .094 when the fine was 

high (2=2.89, p=.089). This result provides further evidence that the decision to lie is more 

strongly affected by the size of fines than by the magnitude of detection probabilities. OLS 

regressions, investigating how the probability of lying changes as a function of fines, probabilities, 

and their interaction confirm the results (see Table 4.13 in Appendix D).  

Overall, these results provide further support for the effectiveness of increasing the size of fines 

as a way to deter unethical behavior. In addition, they show that lying behavior is affected by 

increases in the detection probabilities when different probabilities are evaluated jointly. These 

results are consistent with experimental studies that, using within-participant designs, find 

individuals respond to detection probabilities (e.g., Webley 1987, Alm, McClelland, and Schulze 

1992, Frank and Schulze 2000, Friesen 2012, Rizzolli and Stanca 2012, Bott 2016, see the 

methodological discussion in Charness, Gneezy, and Kuhn 2012).  
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Fixed probability and varying fine within participants—In treatments Fwithin_0.05 and 

Fwithin_0.50, we varied the probability of being audited between participants and the size of the 

fine within participants. That is, for a given probability of being audited (either 0.05, 0.10, .025, 

or 0.50), participants decided whether to lie in both a high-fine and a low-fine scenario. Figure 4.5 

depicts the results. As in all the other treatments, we find that individuals’ sensitivity to fines is 

robust when parameters are introduced within participants. Further, similarly to treatments 

LowF_0.05 to HighF_0.50 and differently from LowF_pWithin and HighF_pWithin, lying 

behavior was insensitive to probabilities. This finding clearly shows that the insensitivity to 

probabilities when individuals evaluate them in isolation is a robust finding. When the penalty 

was low, the fraction of participants who lied was .324 when the chance of being audited was 0.05, 

.317 when the chance was 0.10, .343 when the chance was 0.25, and .42 when the chance was the 

highest (0.50). When the fine was high, we observe a similar pattern, with similar lying rates when 

the probability was 0.05 and when it was 0.50 (.194).  

 

 

FIGURE 4.5: FRACTION OF LIES BY PROBABILITY OF BEING AUDITED AND BY FINE SIZE 

(WITHIN-FINE TREATMENTS) 
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Result 5 When evaluating fines within participants and probabilities between participants, 

individuals  

a. deceive less when the fine increases, and 

b. do not react to increases in the probability of being audited.  

 

As above, when the expected payoff was the same, participants were responsive to fines and not 

to probabilities. Both when the expected payoff was $23.75 and when it was $18.75, participants 

lied significantly less often when the fine was high (.194 vs. .317, 2=4.19, p=.041 in the former 

case; .171 vs. .250, 2=16.25, p<.001 in the latter case). Table 4.14 in Appendix D explores the 

results using OLS regression. 

 

4.5 Decisions from Experience 

In the experiments reported above, decisions were based on a one-shot decision, with 

individuals relying on a description of probabilities. Our surprising finding that participants were 

not sensitive to changes in probabilities might be a result of them having no experience in the task. 

Would participants learn to react to detection probabilities over time, in the presence of immediate 

feedback on their behavior?  

An emerging literature in psychology has documented a difference in decision-making when 

individuals make decisions relying on descriptions of probabilities and outcomes, as opposed to 

decisions based on experiencing probabilities and outcomes by directly receiving feedback on the 

consequences of their choices (see, e.g., Barron and Erev 2003, Hertwig, Barron, Weber, and Erev 

2004, Hertwig and Erev 2009). Traditionally, many of the studies on decision under uncertainty 

have examined situations in which responders make only one choice per problem and rarely 

receive feedback on their decisions. However, the above literature argues that in the real world, 

people often rely on their personal experiences when making choices, rather than on a description 

of probabilities. This work typically compares risky choices in settings in which probabilities are 

described to individuals with choices in which identical probabilities are sampled over time. The 

findings in the literature on the description-experience gap suggest individuals tend to overweight 

the probability of rare events when relying on one-shot descriptions, but are less likely to do so 

and more likely to underweight them when making feedback-based decisions.   

Based on this literature, we hypothesize that lying behavior may become more sensitive to 

detection probabilities in situations in which individuals have a chance to experience the auditing 
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process and get experiential information (i.e., feedback) on the likelihood of being audited. By 

experiencing being audited, individuals may start putting less weight on a 5% chance of being 

audited, because they rarely actually experience being audited. Conversely, individuals may put 

more weight on the 50% chance of being audited when they experience it frequently, and thus lie 

less in those treatments. 

We investigate this hypothesis in an additional experiment in which participants make repeated 

decisions with feedback after each stage. Importantly, in our design, participants receive both 

sources of information: the description of probabilities and the experience of auditing, as in 

Lejarraga and Gonzalez (2011) and Hagmann, Harman, and Gonzalez (2015).   

We predicted that lying rates would increase for the 5% probability treatments, because 

participants would rarely experience being auditing, and would decrease for the 50% probability 

treatments, because participants would experience being audited frequently.  

 

4.5.1 Experimental Design 

We used a similar design as in the one-shot game, but asked participants to repeat the decision 

for 20 rounds, with feedback after each one. Participants started with a $10 participation fee. At 

the beginning of the experiment, they were presented with a description of the probability of being 

audited as well as of the size of the fine. In every round, the procedure for Senders was the same 

as in the one-shot game. Senders were informed that at the end of the experiment, the message of 

a randomly selected round would be sent to the Receiver, and her choice would determine the 

payoffs for both players, with the same payoffs as in the one-shot design. 

At the end of each round, individuals received feedback on whether they were audited. If 

audited, participants who lied lost half (low-fine treatments) or all (high-fine treatments) of their 

earnings if that round was selected for payment. 49 participants took part in the experiment in the 

role of Receivers. Of these, 76% followed the message.7 Importantly, in this context, feedback 

does not provide instrumental information, given the detection probability was clearly stated at 

the beginning of the experiment. Providing participants with immediate feedback on whether they 

were audited may facilitate the incorporation of detection probabilities in their decisions.  

Participants were randomly assigned to five treatments. In Baseline, Senders were not audited. 

This treatment allowed us to see how, in the absence of auditing, the decision to lie evolves over 

                                                 
7

 73% of the men followed the message, whereas 83% of the women did. This difference is not significant (2=0.64, p<.425). 
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time. In four additional treatments, we introduced auditing and varied the size of the fine and the 

probability of being detected. As in the one-shot game, we varied the size of the fine to be either 

high or low. Further, we varied the probability of being detected to be either 0.05 or 0.50, focusing 

on the two extreme probabilities we explored in the first set of experiments. The resulting 

treatments are displayed in Table 4.5. 

 

TABLE 4.5: DESCRIPTIVE STATISTICS OF LYING RATES –TREATMENTS DECISIONS FROM EXPERIENCE 

 Low Fine  High Fine 

Probability Treatment Mean N  Treatment Mean N 

Round 1        

No auditing Baseline .397 146     

0.05 LowF_0.05 .329 213  HighF_0.05 .167 198 

0.50 LowF_0.50 .311 190  HighF_0.50 .192 182 

Round 2-20        

No auditing Baseline .413 146     

0.05 LowF_0.05 .297 213  HighF_0.05 .163 198 

0.50 LowF_0.50 .194 190  HighF_0.50 .119 182 

Overall 
LowF_0.05, 

LowF_0.50, 
.332 605  

HighF_0.05, 

HighF_0.50, 
.225 604 

 

4.5.2 Results 

Overall, 929 (60.6% females) participants took part in the experiment. On average, participants 

were 33.54 years old (SD=12.84, Median=31). In terms of ethnicity, 73.6% of the participants 

reported being Caucasian, 8.8% reported being African-American, 6.0% reported being Asian, 

4.5% reported being Hispanic, and the remaining participants either indicated a mixed ethnicity 

or did not report their ethnicity. The wide majority of participants (97.81%) indicated English to 

be their first language. We asked the remaining participants to report their English proficiency 

level on a scale from 1 to 7; the average score was 6.8 (SD=.51).  
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FIGURE 4.6: LYING OVER TIME – FRACTION OF LIES BY ROUNDS 

 

Figure 4.6 displays the fraction of lies over time for all treatments. The graph shows the fraction 

of lies in the baseline was higher than in all the other treatments in which participants were audited, 

starting with round 1; see the round 1 statistics in Table 4.5.8 When focusing on the first round, 

the results of the four treatments in which participants were audited replicate the ones we observed 

in the one-shot experiment. Lying behavior was sensitive to the size of the fine. As in the one-shot 

experiment, participants were not sensitive to the detection probabilities. However, starting in the 

second round, participants began to incorporate detection probabilities in the decision to lie. Both 

when the fine was high and when the fine was low, the fraction of lies dropped in the treatments 

with high detection probabilities. Overall, in the low-fine treatments, the average lying rate across 

rounds 2-20 was .297 when the detection probability was 0.05, and dropped to .194 when the 

detection probability was 0.50 (2=108.50, p<.001).  

In the high-fine treatments, the average lying rate across rounds 2-20 was .163 when the 

detection probability was 0.05, and dropped to .114 when the detection probability was 0.50 

(2=26.33, p<.001).  
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 Figure 4.9 in Appendix E shows a round-by-round graph. 
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Result 6 In a repeated game with feedback, after round 1, participants are sensitive to the 

probability of being audited. 

 

In contrast to what we conjectured, lying rates in the low-probability treatments did not increase 

once participants experienced the low probability of being audited. Overall, the fraction of lies in 

these treatments was similar to the fraction of lies observed in the one-shot game. As hypothesized, 

participants lied less in the high-detection treatments. The effect was more pronounced for the low 

fine treatment, most likely because lying rates in the high-fine treatments were already very low. 

 

Result 7 Experience  

a. reduces deception when the detection probability is high. 

b. does not affect deception when the detection probability is low. 

 

We confirm further explore these results using regression analysis in Table 4.15 in Appendix D. 

 

4.6 Discussion 

What “works” in deterring unethical behavior? A large literature is devoted to trying to back up 

the effectiveness of detecting and punishing of major crimes, using field data on, for example, 

increases in the presence of police force. In this paper, we consider small-scale unethical behavior, 

and use experiments as a tool to better identify causality. In our one-shot between-participant 

setup, for a given expected value of penalty, increasing the size of the fine was effective in 

reducing unethical behavior. Instead, participants were insensitive to changes in probabilities of 

being audited. By contrast, in the within-participant design in which participants were able to 

directly compare different probability levels, increases in the detection probability did affect 

behavior. This sensitivity to detection probabilities in the (less realistic) within-participant design 

implies participants knew they should react to such changes. So why did they not react to them in 

the between-participant design?  

One potential reason is that when evaluating detection probabilities in isolation and without 

experience, individuals have difficulty assessing how an objective likelihood parameter should 

affect their decision. Whereas behavior is responsive to the presence versus absence of monitoring, 

and individuals can size the magnitude of fines, they have a hard time quantifying whether a given 

detection probability is small or large. As a consequence, conditional on the presence of 
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monitoring, individuals’ perceived chance of being audited does not seem to change with 

variations in the actual chance of being audited. Therefore, individuals end up making the same 

decision under a wide range of probability levels, and seem to follow decision heuristics based on 

the size of fines. 

This explanation implies that providing people with a reference point could potentially increase 

the sensitivity to probabilities. For example, instead of simply announcing a given detection 

probability, informing people that their chance of being audited has increased may provide them 

with a reference point that helps them incorporating detection likelihoods into their decision. An 

alternative approach could be to manipulate individuals’ perceived chance of being detected 

directly, without presenting them with an objective likelihood parameter (see, e.g., Bott, Cappelen, 

Sørensen, and Tungodden 2014).  

Our findings also illustrate that when we allowed participants to make a series of decisions with 

feedback (facing the same detection parameter multiple times) instead of only making one isolated 

decision, they became sensitive to the likelihood of being audited and lied less when the detection 

probability was high. This result suggests deterrence policies that rely on changes in the detection 

probability should take into account the key distinction between description versus experience of 

probabilities, and their differential effect on behavior. For example, such policies are likely to be 

effective for unethical behavior in which individuals receive frequent feedback on the outcome 

and likelihood of being audited, as in the case of fare evasion in public transportation (Dai, 

Galeotti, and Villeval forthcoming). However, they may be less effective in deterring unethical 

behavior when detection probabilities can only be presented via a description and feedback is rare, 

such as small-scale tax evasion.  

Our results provide a novel contribution to the literature on deterrence, by showing individuals 

are largely insensitive to detection probabilities when such probabilities are presented in isolation. 

Although at first sight this finding is in contrast to other results in the literature, we reconcile it 

with previous work by showing that individuals become sensitive to detection probabilities in joint 

evaluation settings where probabilities can be directly compared or after having experienced a 

given detection likelihood over time. This result is important, because in many situations in which 

individuals make one-time choices under uncertainty, the lack of opportunities to make 

comparisons or learn from experience may affect the quality of their decision-making. Future work 

could further explore the insensitivity to detection probabilities that we document in this paper, 

and develop interventions to overcome it.   
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Overall, across all settings, we consistently find that for a given expected value, people are 

sensitive to increases in the size of the penalty. The magnitude of fines seems to be salient to 

individuals regardless of the nature of the decision environment: individuals seem to use it as a 

decision rule for determining whether to engage in unethical behavior. Based on these results, we 

conclude that harsher fines are likely to be a more successful means of deterrence of small-scale 

unethical behavior than increasing the probability of detection.   
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4.7 Appendix to Chapter 4 

A Literature Review of Work on Deterrence 

TABLE 4.6: REVIEW OF EXPERIMENTAL WORK ON DETERRENCE 

 Within-

participant 

design 

Repeated 

Game? 

Probability 

levels 

Fine 

levels 
Comments on Design Key Results 

 

Friedland, Maital, 

and Rutenberg 

(1978),  

Journal of Public 

Economics 

 

 

✓ 

 

 

✓ 

4 rounds 

 

 

1 out of 15  

or 5 out 15  

 

3 times or 

15 times the 

amount 

evaded. 

 

N=15 

Tax-evasion framing. 

Instructions tell participants to 

“maximize their net gains.” 

 

Participants were more sensitive to 

increases in fines than in increases in 

probability. Results are not statistically 

significant. 

Friedland (1982), 

Journal of Applied 

Social Psychology  

✓ 

 

✓ 

16 rounds 

7 out of 13 

     or 

3 out of 13  

3 or 7 times 

the sum of 

tax evaded 

N=13 

Instructions ask subjects to 

“maximize their net gains.” 

Participants also receive 

imprecise information about the 

audit chances in some rounds. 

Varying probability is effective. Fines 

are effective only when audit 

probabilities are low. 

Problem: participants play 16 round 

and the observations across all rounds 

are treated as independent in the 

analyses. 

 

Spicer and 

Thomas (1982), 

Journal of 

Economic 

Psychology 

✓ 

 

✓ 

3 rounds 

1 in 20 chance 

of being 

audited (round 

1), 5 in 20 

(round 2), 3 in 

20 (round 3) 

7 times the 

amount of 

tax evaded 

N=54 

18 participants get precise 

information about probabilities, 

18 participants receive 

imprecise information about 

probabilities, and 18 

participants get no information. 

Uses Friedland design (1982) 

and asks participants to 

“maximize their net gains.” 

 

With precise information about 

probabilities, participants tend to cheat 

less than in a case in which they get 

imprecise or no information. The 

results group observations across 

rounds and do not  

look at sensitivity to a given 

probability level. 
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Webley (1987), 

Economics Letters 
✓ 

Fines varied 

between 

participants, 

probabilities 

within 

 

✓ 

 

2 rounds  

One in 6 or 3 

in 6.  

2 or 6 times 

the amount 

evaded.  

N=46 

Business simulation where 

participants imagined making 

decisions in a hypothetical 

situation. 

 

Probabilities affected percentage of 

income declared. The size of the fine 

had no effect. 

 

Alm, McClelland, 

and Schulze 

(1992), Journal of 

Public Economics 

 

✓ ✓ 

45 rounds  

0, 0.02, 0.10 15 times the 

amount 

evaded 

N=72 

3 treatments that vary 

probabilities within subject (in 

random order). 

Tax-evasion framing. 

 

Sensitive to probabilities. Compliance 

increases with increases in 

probabilities. 

 

Beck, Davis, and 

Jung (1991), The 

Accounting 

Review 

(Experiment 1) 

 

  ✓ 50%, 40%, 

90% 

0.2 or 2 

times of 

amount 

evaded. 

N=14 

Participants report income 

level and can be audited and 

receive a fine. 

Both changes in fines and probabilities 

increase compliance. 

Bott, (2016), 

Working paper 
✓ 

 

 

✓ 

3 rounds 

0% in round 1, 

and either 5% 

or 25% in 

round 2 

50% of 

amount 

evaded 

N=96 per treatment 

Tax-evasion framing. 

Participants are sensitive to increases in 

detection probabilities. 

Schildberg-

Hörisch and 

Strassmair (2012), 

The Journal of 

Law, Economics, 

and Organization 

 

 

 

 

 

 

 

 

✓ 

 

(and 

between-

participant 

design) 

✓ 

 

2 rounds 

 

Varies 

between 0, 0.5 

0.6, 0.7, and 

0.8 

Varies 

between 0 

and 40 

points, each 

point = 0.15 

cents 

Stealing game in which a 

decision maker can take money 

from a passive participant. 

Participants play over two 

rounds facing two different 

treatments. 

 

Small/intermediate fines backfire and 

participants steal more the larger the 

incentive to do so. Large fines deter 

participants. 

Interchangeability of detection 

probability and fine. 
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Khadjavi (2015), 

The Journal of 

Law, Economics 

and Organization 

 ✓ 

10 rounds 

 

 

Treatment 1 

p=0.5. 

Treatment 2 p 

increases with 

the amount 

stolen 

Treatment 1 

increases 

with the 

amount 

stolen. 

Treatment 2 

f=€2.5 

 

N=408 across 3 treatment. 

Control treatment (no 

deterrence) plus two treatments 

in which the expected returns to 

stealing are the same, but 

determined by a different 

combination of p and f. 

 

Deterrence works. 

Combinations of low probabilities/high 

fines and high probabilities/low fines 

are equally effective. 

Harbaugh, Mocan, 

and Visser (2013), 

Journal of Labor 

Research 

✓ 

 

✓ 

13 rounds 

Varies 

between 5% 

and 75% 

Varies 

between 

$0.1 and 

$5.7. Initial 

endowment 

varies from 

$8, $12 and 

$16  

N=82 high school students and 

N=34 college students 

Participants make 13 choices 

from a choice set containing 8 

options. Each alternative choice 

involves different combinations 

of stolen money, probability, 

and fine. 

 

Deterrence works. Fines hold a 

stronger relative effectiveness 

compared to probabilities. 

p and f are measured on different scales 

and without holding expected value 

constant. 

 

Anderson and 

Stafford (2003), 

Journal of 

Regulatory 

Economics 

✓ 

(and 

between- 

participant 

design) 

 

✓  

for 

within- 

subject 

design  

Varies 

between 10% 

and 90%. 

Varies 

from 1 to 4 

times the 

amount 

taken.  

N=unknown 

Public good game where 

individuals can free-ride and the 

expected penalty is contingent 

on the extent of free riding. 

Compliance increases in expected 

punishment cost. Fines have a larger 

effect than probabilities. 

DeAngelo and 

Charness (2012), 

Journal of Risk 

and Uncertainty  

✓ 

 

✓ 

30 

periods 

Regime #1 

p=1/3  

Regime #2 

p=2/3 

Regime #3 

p=3/5 

Regime #4 

p=4/5 

Regime #1 

f=$0.90 

Regime #2 

f=$0.45 

Regime #3 

f=$0.833 

Regime #4 

f=$0.625 

N=125  

Roadway-speeding framing. 

Given information about 2 

regimes (high fine, low p; low 

p, high fine) and are told that 

one of them is implemented 

with 50% chance. Round 11-

onwards: participants vote for 

one of the 2 regimes, find out 

which one is implemented, and 

decide whether to speed. Round 

21-30: they face two different 

regimes. 

 

Violations decrease in the expected 

cost of speeding. When the costs are 

high, violations are lower when the 

probability of punishment is higher. 
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Friesen (2012), 

Southern 

Economic Journal  

 

✓ 

 

✓ 

30 

rounds 

 

Varies 

between 0 and 

1 in 

increments of 

0.1 

f ranged 

from AU 

$4 to $20 

N=139 

In each round, participants 

receive a fixed amount of 

revenue and choose between 

“Complying” and “Not 

complying.” Different detection 

parameters in each round and 

feedback after every round.  

Before starting the experiment, 

risk preferences are elicited 

using Holt and Laury (2002).   

Fines have a stronger deterrence effect 

than probabilities. 

Notes: This review focuses on experimental papers that directly manipulate probability parameters and study their effect on decision-making. It does not claim to be a comprehensive review of the 

work on deterrence.    
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B Cumulative Prospect Theory Predictions 

 

In Prospect Theory (Kahneman and Tversky 1979) and Cumulative Prospect Theory (CPT; 

Tversky and Kahneman 1992) the decision maker (DM) derives utility from gains and losses 

relative to a reference point rather than deriving utility from total earnings. Following standard 

assumptions of CPT, we take the value function that is kinked at the reference point such that 

losses loom larger than gains.  

 

V(x|r) = {
(𝑥 − 𝑟)𝛼                if  𝑥 ≥ 𝑟

−𝜆(−(𝑥 − 𝑟))𝛼    if   𝑥 < 𝑟
 

 

The kink at the reference point is captured by the parameter λ > 1, where greater λ imply greater 

loss aversion. Furthermore, the value function is concave over gains and convex over losses, as 

captured by the parameter 𝛼 ≤ 1.  

Under CPT, the DM evaluates risky prospects using a probability-weighting function w(p) that 

transforms objective probabilities into decision weights i assigned to each possible outcome xi. 

The weighting function is strictly increasing, w(0)=0 and w(1)=1, and the function is strictly 

differentiable on (0, 1). We follow Tversky and Kahneman (1992) and use the S-shaped functional 

form that overweights small probabilities and underweights large probabilities. The function is the 

same for gains and losses: 

 

𝑤(𝑝) =  
𝑝𝛿

(𝑝𝛿 + (1 − 𝑝)𝛿)
1
𝛿

 

 

We examine the differential effect of monitoring on lying behavior using CPT for the parameters 

of our experiment. In the experiment, participant start with a $10 participation fee, P. If they decide 

to tell the truth, they earn an additional $5, xT. If they choose to lie, they can either earn or lose 

money as compared to the final amount they would make by telling the truth. Hence, we assume 

the $15 earnings from P plus the payoff from telling the truth xT to be the reference point r: 

r = P + xT 

If a DM chooses to lie and is not audited, she will end the experiment with additional earnings 

xL. Her final payoff will be y= r + xL. That is, she will end the experiment in the gain domain. If, 
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instead, a DM chooses to lie and is audited, a fee fi is deducted from her final earnings, and she 

will end the experiment in the loss domain. Her final payoff will be y = r + xL – fi. The fee 

corresponds to either half or all of the DM’s earnings from lying xL, and either half or all of the 

participation fee P.  

In the high-fine treatments, the fine is fH = r + xL, such that the DM ends the experiment with 

no earnings. Her final earnings are y = r + $10 - $25 = r- $15, that is, $0. In the low-fine treatments, 

the fine is fL = 
1

2
 * (r + xL), such that the DM ends the experiment with positive earnings that are 

yet below the reference point r. In particular, her final earnings are y = r + $10 - 
1

2
 * ($15 + $10) 

= r - $2.50, that is, $12.50.   

For our estimation, we use λ = 2.25, which is the loss aversion parameter estimated by Tversky 

and Kahneman (1992). We also assume a parameter 𝛼 = 0.88, given the small stakes involved in 

the experiment. Using different 𝛼 parameters yields similar results.  

To understand whether individuals are sensitive to changes in probabilities under CPT, we 

examine lying behavior for different detection-probability levels at different 𝛿 parameters. The 

goal of the analysis is to understand whether our results can be explained by a particularly 

pronounced S-shaped probability-weighting function, which would imply insensitivity to the 

detection probabilities given the parameters adopted in our experiment. In the model, DMs choose 

to lie whenever their utility from lying is greater than the utility from telling the truth, which we 

assume to be their reference point.  

Our analysis shows that, for the low-fine treatments, DMs always lie regardless of the detection 

probability. The analysis for the high-fine treatments is displayed in Figure 4.7 below. The figure 

illustrates the DM’s strategies, which imply their valuation of a risky prospect that comes from 

lying as compared to a sure prospect from telling the truth, for different p and 𝛿 levels. From the 

plot, we can see that for 𝛿 between 1 and 0.4, the DM prefers to lie when the detection probability 

is below approximately 0.20. However, the DM switches to telling the truth for probabilities of 

approximately 0.20 or higher. Hence, for these 𝛿 parameters, the DM always tells the truth when 

the detection probability is 0.25, which is the probability level we used in the experiment. The 

graph shows that for p=0.5, DMs tell the truth for 𝛿>0.30. Only for 𝛿<0.30 do individuals become 

insensitive to detection probabilities and lie at the same rate in all treatments. Note the median 𝛿 

estimated in the literature is much larger than 0.30. For example, Kahneman and Tversky (1992) 

estimate a 𝛿 parameter of 0.61, Camerer and Ho (1994) estimate 𝛿=0.56, and Wu and Gonzalez 

(1996) estimate an aggregate parameter of 0.71. Hence, only if the probability weighting function 
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has a very pronounced S-shape, which is much more pronounced than what has been estimated in 

the literature so far, are the DM’s insensitive to changes in detection probabilities that range from 

0.05 to 0.50.  

 

 

FIGURE 4.7: DECISION MAKER’S STRATEGIES BY P AND 𝛿 – HIGH-FINE TREATMENTS 
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C Unknown Fines and Probabilities: The Role of Ambiguity 

A large body of research has demonstrated individuals are averse to ambiguous probability 

(Ellsberg 1961, Fox and Tversky 1995), suggesting individuals may be less likely to lie under 

ambiguity. We investigate the effect of introducing ambiguity about the consequences and 

likelihood of being audited on unethical behavior. In particular, we ran five between-participant 

treatments in which the size of the fine and/or the probability of being audited were ambiguous. 

First, we fixed the size of the fine to be either low or high (Low_pAmb and High_pAmb, 

respectively), and made the probability of being audited unknown. In particular, we informed the 

Sender that we would randomly select some participants and verify that their message 

corresponded to the actual outcome of the die roll. In these treatments, we did not specify the 

actual number of participants. Second, we fixed the probability of being audited to be either low 

(p=0.05) or high (p=0.50), and made the size of the fine ambiguous (AmbF_0.05 and AmbF_0.50). 

In particular, we informed the Sender that if audited, she would lose some of her earnings, without 

specifying how much, if the message did not correspond to the actual die roll result. Third, in 

AmbF_pAmb, we made both the probability of being audited and the size of the fine ambiguous. 

We informed the Sender that we would randomly select some participants to be audited, and, if 

audited, sending the wrong message would result in her losing some of her earnings. Table 4.7 

below summarizes the five treatments.  
 

 

TABLE 4.7: EXPERIMENTAL TREATMENTS WITH AMBIGUOUS FINES AND/OR PROBABILITIES 

Treatment Size of the Fine  Probability of being audited N 
 (between participants)  (between participants)  

Low_pAmb Low  Ambiguous 156 

High_pAmb High  Ambiguous 150 

AmbF_0.05 Ambiguous  0.05 151 

AmbF_0.50 Ambiguous  0.50 146 

AmbF_pAmb Ambiguous  Ambiguous 152 

   Total 755 

 

Figure 4.8 below depicts the results of these treatments. The results of treatment Low_pAmb 

and High_pAmb show that when the detection probability was unknown, participants reacted to 

fines, as we show in the treatments where the probability was known. The fraction of lies in 

Low_pAmb was .308, whereas it was .187 in High_pAmb (chi-squared test, 2=6.00, p=.014).  
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FIGURE 4.8: FRACTION OF LIES BY AMBIGUOUS PROBABILITY OF BEING AUDITED AND BY 

AMBIGIOUS FINE SIZE (BETWEEN-PARTICIPANT TREATMENTS) 

 

Furthermore, we find that making the penalty ambiguous did not have a strong effect on 

behavior. The results of treatments AmbF_0.05 and AmbF_0.50 reveal participants lied slightly 

less often when the detection probability was 0.5 than when it was 0.05, but the treatment 

difference was not statistically significant (.30 vs .23, chi-squared test, 2=1.895 p=.169).  

Finally, the results of treatment Amb_Amb show that when both the probability of being audited 

and the penalty were ambiguous, the fraction of participants who lied was 0.27. This fraction is 

larger than the fraction of lies when the probability of being audited was ambiguous and the fine 

was high (2=2.95, p<.01). This fraction does not significantly differ from any of the other 

ambiguity treatments (all p-values are above p=.463). The regression reported in Table 4.8 

confirms these results (see also Table 4.12 in Appendix D). 
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TABLE 4.8: EFFECT OF FINE AND PROBABILITY ON LYING WITH ABIGUITY TREATMENTS 

 

 

  

Dependent variable: Lied (1=Yes) 

 (1) (2) (3) (4) 

High Fine -0.12*** -0.12*** -0.13*** -0.13*** 

 (0.031) (0.030) (0.030) (0.030) 

Probability -0.04 -0.05 -0.03 -0.04 

 (0.074) (0.074) (0.073) (0.073) 

High Fine*Probability 0.06 0.05 0.04 0.04 

 (0.114) (0.114) (0.113) (0.113) 

Ambiguity Fine -0.06* -0.06** -0.07** -0.07** 

 (0.031) (0.031) (0.031) (0.031) 

Ambiguity Probability -0.04 -0.03 -0.03 -0.03 

 (0.032) (0.032) (0.031) (0.031) 

Ambiguity 

Fine*Probability 

0.02 0.01 0.01 0.01 

(0.055) (0.054) (0.054) (0.054) 

Female  -0.10*** -0.09*** -0.08*** 

  (0.020) (0.020) (0.020) 

Age   -0.00*** -0.00*** 

   (0.001) (0.001) 

Ethnicity No No No Yes 

Constant 0.34*** 0.40*** 0.54*** 0.52*** 

 (0.023) (0.025) (0.039) (0.040) 

Treatments 

Between-

participant 

treatments 

Between-

participant 

treatments 

Between-

participant  

treatments 

Between- 

participant 

treatments 

Fine Between Between Between Between 

Probability Between Between Between Between 

Observations 1961 1961 1961 1950 

R2 .010 .022 .033 0.036 

Notes: OLS regression with robust standard errors in parentheses. The dependent variable is dummy coded as 1 if a participant lied, 

and zero otherwise. High Fine is a dummy variable coded as 1 for the treatments in which participants lost all their earnings if 

audited, and zero for the treatments in which participants lost half of their earnings if audited. Probability is a continuous variable 
indicating the chance of being audited (either 0.05, 0.10, 0.25, or 0.50). Female is a dummy variable coded as 1 if the participant 

was a woman, and zero otherwise. Age is a continuous variable indicating participants’ age.  Ethnicity differentiates between White, 

Black, Asian, Hispanic and mixed race. Between refers to between-participant data. The stars indicate significance levels: * p-
value<0.1, ** p-value<0.05, *** p-value<0.01. 
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D Regression Analyses 

TABLE 4.9: EFFECT OF FINE AND PROBABILITY ON LYING WITH FEMALE INTERACTION TERMS 

Dependent variable: Lied (1=Yes) 

 (1) (2) 

High Fine -0.119* -0.120** 

 (0.061) (0.061) 

Probability  0.091 0.080 

 (0.160) (0.161) 

High Fine*Probability -0.151 -0.153 

 (0.220) (0.221) 

No auditing 0.200*** 0.203*** 

 (0.051) (0.050) 

Female -0.130*** -0.119** 

 (0.050) (0.050) 

Female*High Fine 0.039 0.039 

 (0.075) (0.074) 

Female*Probability -0.066 -0.027 

 (0.194) (0.193) 

Female*High Fine*Probability 0.193 0.165 

 (0.276) (0.276) 

Age  -0.004*** 

  (0.001) 

Ethnicity No Yes 

Constant 0.33*** 0.38*** 

 (0.034) (0.036) 

Treatments 
LowF_0.05- 

HighF_0.50 

LowF_0.05- 

HighF_0.50 

Fine Between Between 

Probability Between Between 

Observations 1,360 1,352 

R2 0.054 0.071 
   

Notes: OLS regression with robust standard errors in parentheses. The dependent variable is a dummy coded as 1 if a participant lied, 

and zero otherwise. High Fine is a dummy variable coded as 1 for the treatments in which participants lost all their earnings if audited, 

and zero for the treatments in which participants lost half their earnings if audited. Probability is a continuous variable indicating the 
chance of being audited (either 0.05, 0.10, 0.25, or 0.50). Female is a dummy variable coded as 1 if the participant was a woman, and 

zero otherwise. Age is a continuous variable indicating participants’ age. Ethnicity differentiates between White, Black, Asian, 

Hispanic and mixed race. Between refers to between-participant data. The stars indicate significance levels: * p-value<0.1, ** p-
value<0.05, *** p-value<0.01. 
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TABLE 4.10: EFFECT OF FINE AND PROBABILITY ON LYING – RESTRICTED SAMPLE I 

(ONLY THOSE WHO HAD NO DIFFICULTIES UNDERSTANDING THE TASK) 

Dependent variable: Lied (1=Yes) 

 (1) (2) (3) (4) 

High Fine -0.10** -0.10** -0.10** -0.10** 

 (0.045) (0.044) (0.044) (0.044) 

Probability  0.05 0.05 0.06 0.06 

 (0.119) (0.117) (0.116) (0.117) 

High Fine*Probability  -0.09 -0.10 -0.10 -0.12 

 (0.156) (0.154) (0.153) (0.155) 

No auditing 0.20*** 0.21*** 0.21*** 0.21*** 

 (0.054) (0.053) (0.053) (0.053) 

Female  -0.11*** -0.09*** -0.09*** 

  (0.026) (0.026) (0.027) 

Age   -0.00*** -0.00*** 

   (0.001) (0.001) 

Ethnicity No No No Yes 

Constant 0.33*** 0.38*** 0.52*** 0.51*** 

 (0.034) (0.036) (0.053) (0.054) 

Treatments 
LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

Fine Between Between Between Between 

Probability Between Between Between Between 

Observations 1,208 1,208 1,208 1,200 

R2 0.046 0.059 0.069 0.075 

Notes: OLS regression with robust standard errors in parentheses Restricted to those participants who indicated in the 

questionnaire that they did not have any difficulties in understanding the task. The dependent variable is a dummy coded as 1 if 
a participant lied, and zero otherwise. High Fine is a dummy variable coded as 1 for the treatments in which participants lost all 

their earnings if audited, and zero for the treatments in which participants lost half their earnings if audited. Probability is a 

continuous variable indicating the chance of being audited (either 0.05, 0.10, 0.25, or 0.50). Female is a dummy variable coded 
as 1 if the participant was a woman, and zero otherwise. Age is a continuous variable indicating participants’ age. Ethnicity 

differentiates between White, Black, Asian, Hispanic and mixed race. Between refers to between-participant data. The stars 

indicate significance levels: * p-value<0.1, ** p-value<0.05, *** p-value<0.01. 
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TABLE 4.11: EFFECT OF FINE AND PROBABILITY ON LYING – RESTRICTED SAMPLE II 

(ONLY THOSE WHO ANSWERED THE CONTROL QUESTION CORRECTLY) 

Dependent variable: Lied (1=Yes) 

 (1) (2) (3) (4) 

High Fine -0.11** -0.10** -0.11** -0.10** 

 (0.048) (0.048) (0.048) (0.048) 

Probability -0.00 0.01 0.02 0.02 

 (0.128) (0.126) (0.125) (0.125) 

High Fine*Probability  -0.10 -0.12 -0.13 -0.15 

 (0.166) (0.164) (0.164) (0.165) 

No auditing 0.23*** 0.23*** 0.23*** 0.23*** 

 (0.059) (0.059) (0.059) (0.059) 

Female  -0.09*** -0.08*** -0.08*** 

  (0.028) (0.028) (0.028) 

Age   -0.00** -0.00** 

   (0.001) (0.001) 

Ethnicity No No No Yes 

Constant 0.35*** 0.39*** 0.49*** 0.49*** 

 (0.037) (0.039) (0.057) (0.059) 

Treatments 
LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

Fine Between Between Between Between 

Probability Between Between Between Between 

Observations 1,034 1,034 1,034 1,028 

R2 0.058 0.068 0.074 0.078 

Notes: OLS regression with robust standard errors in parentheses. The dependent variable is a dummy coded as 1 if a participant 

lied, and zero otherwise. High Fine is a dummy variable coded as 1 for the treatments in which participants lost all their earnings 

if audited, and zero for the treatments in which participants lost half their earnings if audited. Probability is a continuous variable 
indicating the chance of being audited (either 0.05, 0.10, 0.25, or 0.50). Female is a dummy variable coded as 1 if the participant 

was a woman, and zero otherwise. Age is a continuous variable indicating participants’ age. Ethnicity differentiates between 

White, Black, Asian, Hispanic and mixed race. Between refers to between-participant data. The stars indicate significance levels: 
* p-value<0.1, ** p-value<0.05, *** p-value<0.01. 
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TABLE 4.12: EFFECT OF FINE AND PROBABILITY ON LYING WITH TREATMENT DUMMIES 

Dependent variable: Lied (1=Yes) 

 (1) (2) (3) (4) 

LowF_0.10 0.02 0.01 0.02 0.02 

 (0.052) (0.051) (0.051) (0.051) 

LowF_0.25 0.02 0.02 0.03 0.03 

 (0.051) (0.051) (0.051) (0.051) 

LowF_0.50 0.03 0.03 0.03 0.03 

 (0.052) (0.052) (0.051) (0.051) 

HighF_0.05 -0.07 -0.07 -0.06 -0.06 

 (0.051) (0.051) (0.051) (0.051) 

HighF_0.10 -0.12** -0.13** -0.13*** -0.14*** 

 (0.052) (0.052) (0.051) (0.051) 

HighF_0.25 -0.09* -0.10* -0.10* -0.10* 

 (0.052) (0.052) (0.051) (0.051) 

HighF_0.50 -0.09* -0.09* -0.09* -0.09* 

 (0.052) (0.051) (0.051) (0.051) 

High_pAmb -0.13** -0.12** -0.13** -0.13** 

 (0.052) (0.051) (0.051) (0.051) 

Low_pAmb -0.01 -0.01 0.00 0.01 

 (0.051) (0.051) (0.051) (0.051) 

AmbF_0.50 -0.08 -0.09* -0.08 -0.08 

 (0.052) (0.052) (0.052) (0.052) 

AmbF_0.05 -0.01 -0.01 -0.01 -0.01 

 (0.052) (0.052) (0.051) (0.051) 

AmbF_pAmb -0.05 -0.05 -0.05 -0.06 

 (0.052) (0.051) (0.051) (0.051) 

No auditing 0.20*** 0.20*** 0.20*** 0.21*** 

 (0.052) (0.051) (0.051) (0.051) 

Female  -0.10*** -0.08*** -0.09*** 

  (0.019) (0.020) (0.020) 

Age   -0.00*** -0.00*** 

   (0.001) (0.001) 

Ethnicity No No No Yes 

Constant 0.32*** 0.37*** 0.52*** 0.50*** 

 (0.037) (0.038) (0.047) (0.048) 

Treatments 
LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

LowF_0.05-

HighF_0.50 

Fine Between Between Between Between 

Probability Between Between Between Between 

Observations 2,112 2,112 2,112 2,100 

R2 0.032 0.044 0.056 0.056 

Notes: OLS regression with robust standard errors reported in parentheses. The dependent variable is a dummy coded as 1 if a 

participant lied, and zero otherwise. HighF_0.05 to LowF_0.50 are dummies indicating the treatments. Female is a dummy 

variable coded as 1 if the participant was a woman, and zero otherwise. Age is a continuous variable indicating participants’ age. 
Ethnicity differentiates between White, Black, Asian, Hispanic and mixed race. Between refers to between-participant data. The 

stars indicate significance levels: * p-value<0.1, ** p-value<0.05, *** p-value<0.01. 
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TABLE 4.13: EFFECT OF FINE AND PROBABILITY ON LYING – WITHIN-PROBABILITY TREATMENTS 

Dependent variable: Lied (1=Yes) 

 (1) (2) (3) (4) 

High Fine -0.25*** -0.25*** -0.25*** -0.26*** 

 (0.067) (0.067) (0.066) (0.066) 

Probability  -0.56*** -0.56*** -0.56*** -0.56*** 

 (0.113) (0.113) (0.114) (0.114) 

High Fine*Probability 0.22 0.22 0.22 0.22 

 (0.146) (0.146) (0.146) (0.146) 

Female  -0.07 -0.06 -0.05 

  (0.046) (0.046) (0.046) 

Age   -0.00 -0.00 

   (0.002) (0.002) 

Ethnicity No No No Yes 

Constant 0.44*** 0.48*** 0.57*** 0.55*** 

 (0.053) (0.061) (0.093) (0.094) 

Treatments 
LowF_pWithin, 

HighF_pWithin 

LowF_pWithin, 

HighF_pWithin 

LowF_pWithin, 

HighF_pWithin 

LowF_pWithin, 

HighF_pWithin 

Fine Between Between Between Between 

Probability Within Within Within Within 

Observations 764 764 764 764 

Clusters 191 191 191 191 

R2 0.098 0.105 0.110 0.130 

Notes: OLS regression with robust standard errors clustered on individual level in parentheses. The dependent variable is a 
dummy coded as 1 if a participant lied, and zero otherwise. High Fine is a dummy variable that is coded as 1 for the treatments 

in which participants lost all their earnings if audited, and zero for the treatments in which participants lost half their earnings if 

audited. Probability is a continuous variable indicating the chance of being audited (either 0.05, 0.10, 0.25, or 0.50). Female is 
a dummy variable coded as 1 if the participant was a woman, and zero otherwise. Age is a continuous variable indicating 

participants’ age. Ethnicity differentiates between White, Black, Asian, Hispanic and mixed race. Between refers to between-

participant data. Within refers to within-participant data. The stars indicate significance levels: * p-value<0.1, ** p-value<0.05, 
*** p-value<0.01. 

We investigate how the probability of lying changes as a function of fines, probabilities, and 

their interaction. Standard errors are clustered at the individual level. Column 1 confirms that 

participants’ tendency to lie decreased both with an increase in the size of the fine and with 

increases in the probability of being audited. We find no significant interaction, which suggests 

a given probability of being audited did not affect behavior differently depending on the size 

of the fine. Columns 2-4 confirm this result is robust to demographic controls. Unlike the data 

in which all parameters were presented between participants, we find no gender and age effects 

in these treatments.  
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TABLE 4.14: EFFECT OF FINE PROBABILITY OF LYING – WITHIN-FINE TREATMENTS 

Dependent variable: Lied (1=Yes) 

 (1) (2) (3) (4) 

High Fine -0.12*** -0.12*** -0.12*** -0.13*** 

 (0.034) (0.034) (0.034) (0.035) 

Probability  0.24* 0.24* 0.25* 0.24* 

 (0.134) (0.134) (0.133) (0.134) 

High Fine*Probability -0.21 -0.21 -0.21 -0.21 

 (0.131) (0.131) (0.131) (0.132) 

Female  -0.04 -0.02 -0.03 

  (0.037) (0.036) (0.037) 

Age   -0.00** -0.00** 

   (0.002) (0.002) 

Ethnicity No No No Yes 

Constant 0.30*** 0.32*** 0.44*** 0.45*** 

 (0.037) (0.042) (0.070) (0.073) 

Treatments 
Fwithin_0.05-

Fwithin_0.50 

Fwithin_0.05-

Fwithin_0.50 

Fwithin_0.05-

Fwithin_0.50 

Fwithin_0.05-

Fwithin_0.50 

Fine Within Within Within Within 

Probability Between Between Between Between 

Observations 850 850 848 844 

 Clusters 425 425 424 422 

R2 .042 .044 .051 .056 

Notes: OLS regressions with robust standard errors clustered on individual level in parentheses. The dependent variable is 

dummy coded as 1 if a participant lied, and zero otherwise. High Fine is a dummy variable coded as 1 for the treatments in which 

participants lost all their earnings if audited, and zero for the treatments in which participants lost half their earnings if audited. 
Probability is a continuous variable indicating the chance of being audited (either 0.05, 0.10, 0.25, or 0.50). Female is a dummy 

variable coded as 1 if the participant was a woman, and zero otherwise. Age is a continuous variable indicating participants’ age. 

Ethnicity differentiates between White, Black, Asian, Hispanic and mixed race. Between refers to between-participant data. 
Within refers to within-participant data. The stars indicate significance levels: * p-value<0.1, ** p-value<0.05, *** p-value<0.01. 

As column 1 shows, participants were sensitive to increases in the size of the fine. 

Unexpectedly, they lied more rather than less often when the probability of being audited 

increased, though the effect was only marginally significant and driven by a larger fraction of 

participants lying when the probability was 0.50. The effect of fine and probabilities is robust 

to demographic controls (columns 2-4). In these data, we find no gender differences in the 

propensity to lie.  
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TABLE 4.15: LYING OVER TIME - EFFECT OF FINE AND PROBABILITYY ON LYING 

Dependent variable: Lied (1=Yes) 

 (1) (2) (3) (4) (5) (6) 

High Fine -0.16*** -0.14*** -0.13*** -0.13*** -0.13*** -0.14*** 

 (0.043) (0.032) (0.032) (0.032) (0.032) (0.032) 

High Probability -0.02 -0.10*** -0.10*** -0.09*** -0.07** -0.08** 

 (0.044) (0.032) (0.032) (0.033) (0.035) (0.035) 

High Fine*Probability 0.04 0.06 0.06 0.06 0.06 0.07 

 (0.063) (0.042) (0.042) (0.042) (0.042) (0.042) 

No auditing 0.07 0.11*** 0.11*** 0.12*** 0.12*** 0.11*** 

 (0.047) (0.041) (0.041) (0.041) (0.041) (0.041) 

Audited in previous round   -0.01** 0.03** 0.03** 0.03** 

   (0.006) (0.015) (0.015) (0.016) 

Audited in previous 

round*High Probability 
   

-0.06*** -0.06*** -0.06*** 

(0.016) (0.016) (0.017) 

Audited in round 1     -0.05* -0.05* 

     (0.025) (0.024) 

Number of times audited     0.00 0.00 

     (0.002) (0.002) 

Female      -0.06*** 

      (0.022) 

Age      -0.00 

      (0.001) 

Ethnicity No No No No No Yes 

Round Dummy No Yes Yes Yes Yes Yes 

Constant 0.33*** 0.34*** 0.33*** 0.33*** 0.33*** 0.33*** 

 (0.030) (0.026) (0.027) (0.027) (0.027) (0.027) 

Round 
First 

Round 

All 

Rounds 

Rounds 

2-20 

Rounds 

2-20 

Rounds 

2-20 

Rounds 

2-20 

Fine Between Between Between Between Between Between 

Probability Between Between Between Between Between Between 

Observations 929 18,580 17,651 17,651 17,651 17,651 

Clusters  929 929 929 929 929 

Notes: Column 1 reports OLS regression with robust standard errors reported in parentheses. Columns 2-6 report estimates from a 

random-effects regression model with robust standard errors clustered on individual level in parentheses. The dependent variable is 
dummy coded as 1 if a participant lied, and zero otherwise. High Fine is a dummy variable coded as 1 for the treatments in which 

participants lost all their earnings if audited, and zero for the treatments in which participants lost half their earnings if audited. 

Probability is a continuous variable indicating the chance of being audited (either 0.05, 0.10, 0.25, or 0.50). Audited in previous round 
is a lagged variable that indicates whether a given individual was audited in the previous round. Fined in previous round is a lagged 

variable indicating whether a given individual was fined in the previous round. Number of times audited is a continuous variable that 

indicates the total number of times a participant was audited. Female is a dummy variable coded as 1 if the participant was a woman, 
and zero otherwise. Age is a continuous variable indicating participants’ age. Ethnicity differentiates between White, Black, Asian, 

Hispanic and mixed race. Between refers to between-participant data. The stars indicate significance levels: * p-value<0.1, ** p-

value<0.05, *** p-value<0.01. 

In Table 4.15, we regress lying on a dummy variable coded as 1 when the fine was high and 

zero otherwise, a dummy variable coded as 1 when the detection probability was high (50%) 

and zero otherwise, and their interaction. The model also includes a dummy variable coded as 

1 in the absence of auditing. Column 1 reports the results of an OLS regression that examines 
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the data of round 1 only. As in the one-shot experiment, we observe that lying behavior is 

sensitive to the size of the fine but does not respond to a large change in the detection 

probability (5% vs. 50%).  

In the remaining columns, we estimate a random-effects regression model using the data of 

all rounds and clustering the standard error at the individual level. The results in column 2 

confirm that in presence of auditing, increasing the size of the fine from low to high decreased 

the likelihood of lying by 14 percentage points. However, in contrast to the analysis of the first 

round only, we see individuals also responded to increases in the detection probability. In 

particular, subjects were 10 percentage points less likely to lie when the detection probability 

was high. The coefficient of the interaction term is small and not significant, suggesting the 

effectiveness of a high fine did not depend on the detection probability. Conversely, we 

observe that in the absence of auditing (control treatment), participants were 11 percentage 

points more likely to lie. In column 3, we include a lagged variable to take into account how 

being audited in a previous round affected lying behavior in the subsequent round. The 

coefficient shows that being audited in the previous round decreased the lying probability by 

1 percentage point. However, allowing this coefficient to vary according to the detection 

probability by interacting this variable with the high probability dummy (column 4) shows that 

when the detection probability was 5%, being audited in the previous round slightly increased 

subsequent lying behavior. By contrast, when the detection probability was high, being audited 

in the previous round significantly decreased lying. These results imply that unlike in the high-

probability treatments, being audited in the low-probability treatments did not deter but rather 

increased subsequent lying, perhaps because individuals anticipate that being caught was a 

rare event. Importantly, when including these variables in the model, the coefficient of the 

high-probability dummy does not change, suggesting the effect was not driven only by 

individuals who were audited. In column 5, we add control variables for whether participants 

were audited in round 1 and for the number of times they were audited in all previous rounds. 

We find that being audited in round 1 decreased lying, though all other effects stay significant. 

These effects are robust to demographic controls (column 6). As in the one-shot game, in this 

experiment, women lied less often than men. In Table 4.16 we show the regression analysis 

with treatment dummies and in Table 4.17 we show results for the round-by-round analysis. 
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TABLE 4.16: LYING OVER TIME – EFFECT OF FINE AND PROBABILITYY ON LYING WITH 

TREATMENT DUMMIES 

Dependent variable: Lied (1=Yes) 

 (1) (2) (3) (4) (5) (6) (7) 

HighF_0.05 -0.16*** -0.14*** -0.13*** -0.13*** -0.13*** -0.13*** -0.14*** 

 (0.042) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032) 

HighF_0.50 -0.14*** -0.18*** -0.17*** -0.17*** -0.17*** -0.15*** -0.16*** 

 (0.044) (0.031) (0.031) (0.032) (0.032) (0.036) (0.035) 

LowF_0.50 -0.02 -0.10*** -0.10*** -0.08** -0.08** -0.07* -0.08** 

 (0.047) (0.032) (0.032) (0.033) (0.033) (0.036) (0.035) 

No auditing 0.07 0.11*** 0.11*** 0.12*** 0.12*** 0.12*** 0.11*** 

 (0.052) (0.041) (0.041) (0.041) (0.041) (0.041) (0.041) 

Audited in previous round   -0.01** 0.05** 0.05** 0.05** 0.05** 

   (0.006) (0.022) (0.024) (0.024) (0.024) 

Audited in previous 

round*High Probability 
   

-0.09*** -0.09*** -0.09*** -0.09*** 

(0.024) (0.026) (0.026) (0.027) 

Audited in previous 

round*High Fine 
   

-0.03 -0.03 -0.03 -0.03 

(0.030) (0.031) (0.031) (0.032) 

Audited in previous 

round*High Fine*High 

Probability 

   
0.05 0.06 0.06 0.06 

(0.033) (0.034) (0.034) (0.035) 

Audited*Fined in previous 

round 
    

0.01 0.01 0.00 

(0.045) (0.045) (0.046) 

Audited*Fined in previous 

round*High Probability 
    

0.05 0.05 0.05 

(0.052) 0.052) (0.053) 

Audited in round 1      -0.05* -0.05* 

      (0.024) (0.024) 

Number of times audited      0.00 0.00 

      (0.002) (0.002) 

Female       -0.06*** 

       (0.022) 

Age       -0.00 

       (0.001) 

Ethnicity No No No No No No Yes 

Round Dummy Yes Yes Yes Yes Yes Yes Yes 

Constant 0.33*** 0.34*** 0.33*** 0.33*** 0.33*** 0.33*** 0.36*** 

 (0.032) (0.026) (0.027) (0.027) (0.027) (0.027) (0.046) 

Round 
First 

Round 

All 

Rounds 

All 

Rounds 

All 

Rounds 

All 

Rounds 

All 

Rounds 

All 

Rounds 

Fine Between Between Between Between Between Between Between 

Probability Between Between Between Between Between Between Between 

Observations 929 18,580 17,651 17,651 17,651 17,651 17,290 

Clusters  929 929 929 929 929 910 

Notes: OLS regression with robust standard errors clustered on individual in parentheses. The dependent variable is a dummy coded as 1 if a 

participant lied, and zero otherwise. High Fine is a dummy variable coded as 1 for the treatments in which participants lost all their earnings if 

audited, and zero for the treatments in which participants lost half their earnings if audited. Audited in previous round is a lagged variable that 
indicates whether a given individual was audited in the previous round. Fined in previous round is a lagged variable indicating whether a given 

individual was fined in the previous round. Ethnicity differentiates between White, Black, Asian, Hispanic and mixed race. Between refers to 

between-participant data. The stars indicate significance levels: * p-value<0.1, ** p-value<0.05, *** p-value<0.01. 
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In Table 4.16 we investigate lying over time using dummy variables for each treatment. We 

see that in round one, as in the one-shot game and the analysis reported in Table 4.6 in the 

main text, participants in the high fine treatments lied significantly less than those in the low 

fine treatments. Higher detection probabilities did not deter lying in either treatment. When 

the fine was low, lying behavior only decreased by 2 percentage points (p=.698) when the 

detection probability was high; when the fine was high, lying increased by 2 percentage points 

(p=.517) when the detection probability was high. To investigate lying behavior across all 

rounds, columns 2-7 present the results of a random-effects regression model with standard 

errors clustered at the individual level. These regressions show participants became sensitive 

to probabilities over time. For example, Column 2 shows that in the low-fine treatment, lying 

decreased by 10 percentage points (p=.002) when the probability moved from low (0.05) to 

high (0.5). When the fine was high, lying behavior in the high-probability treatment decreased 

by 4 percentage points, though this decrease did not reach statistical significance (p=.153), 

possibly due to a floor effect. 
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TABLE 4.17: LYING OVER TIME – EFFECT OF FINE AND PROBABILITYY ON LYING BY ROUND 

Dependent variable: Lied (1=Yes) 

 

(1) 

Round 1 

(2) 

Round 2 

(3) 

Round 3 

(4) 

Round 4 

(5) 

Round 5 

(6) 

Round 

6-10 

(7) 

Round 11-15 

(8) 

Round 16-20 

High Fine -0.16*** -0.13*** -0.17*** -0.12*** -0.17*** -0.11*** -0.14*** -0.15*** 

 (0.042) (0.043) (0.043) (0.041) (0.043) (0.035) (0.035) (0.033) 

High Probability -0.02 -0.08* -0.13*** -0.11*** -0.14*** -0.09** -0.11*** -0.10*** 

 (0.047) (0.045) (0.045) (0.041) (0.044) (0.034) (0.035) (0.034) 

High Fine*Probability 0.04 0.04 0.09 0.08 0.10* 0.03 0.05 0.09* 

 (0.061) (0.060) (0.059) (0.055) (0.059) (0.046) (0.046) (0.044) 

No auditing 0.07 0.11** 0.09 0.14*** 0.07 0.13*** 0.10** 0.12*** 

 (0.052) (0.052) (0.053) (0.051) (0.053) (0.043) (0.044) (0.043) 

Constant 0.33*** 0.32*** 0.35*** 0.28*** 0.36*** 0.29*** 0.31*** 0.27*** 

 (0.032) (0.032) (0.033) (0.031) (0.033) (0.026) (0.026) (0.026) 

Fine Between Between Between Between Between Between Between Between 

Probability Between Between Between Between Between Between Between Between 

Observations 929 929 929 929 929 4,645 4,645 4,645 

Clusters - - - - - 929 929 929 

Adj. R2 .439 .433 .430 .408 .428    

Notes: Columns 1-5 report OLS regressions with robust standard errors reported in parentheses for the first five rounds separately. Data are clustered at the individual level. Columns 6 to 8 report estimates 

of a random-effects regression model for rounds 6-10, 11-15, and 16-20, respectively with robust standard errors reported in parentheses and data are clustered on individual level. The dependent variable is 

a dummy coded as 1 if a participant lied, and zero otherwise. High Fine is a dummy variable coded as 1 for the treatments in which participants lost all their earnings if audited, and zero for the treatments in 
which participants lost half their earnings if audited. Probability is a continuous variable indicating the chance of being audited (either 0.05, 0.10, 0.25, or 0.50. Between refers to between-participant data. 

The stars indicate significance levels: * p-value<0.1, ** p-value<0.05, *** p-value<0.01. 
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In Table 4.17 we report OLS estimates for the first five rounds separately, and then we report 

the estimates of a random-effects regression model for rounds 6-10, 11-15, and 16-20. We 

observe that whereas individuals were not sensitive to detection probabilities in round one 

(p=.698), they immediately became sensitive to probabilities in round 2 (p=.068), and the 

effect of probabilities slightly increased in size and became significant at the 1% level over 

subsequent rounds. 
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E Graphical Analysis  

 

FIGURE 4.9: LYING OVER TIME – ROUND-BY-ROUND 
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F Instructions for Participants in the Role of Sender 

(Translation from German)  

Welcome to our short experiment!  
You will receive $0.25 for your time. On top of that, we will randomly choose 1 participant 

out of 20 and pay them a monetary bonus on Mturk according to the instruction that follows.  

Please read these instructions carefully. You may earn a considerable sum of money, 

depending on the decisions you make in the experiment. The rest of the instructions describe 

the procedure of the experiment. 

 

----- next screen ------ 

 

If selected at random, you will receive a $10 participation fee and you will be matched 

randomly with another participant (another MTurk worker), who will receive a $0.25 

participation fee. Neither of you will know the worker ID of the other. 

Before starting this experiment, we have rolled a 10-sided die, and obtained the outcome 6. 

The other participant will not be informed that the outcome of the die roll was 6. However, he 

or she will be told that you have been informed about the outcome of the die roll. 

Your Task 

We now ask you to send a message to the other participant. The message will correspond to a 

number from 1 to 10. There are ten possible messages: 

Message 1: “The outcome from the roll of the 10-sided die is 1.” 

Message 2: “The outcome from the roll of the 10-sided die is 2.” 

Message 3: “The outcome from the roll of the 10-sided die is 3.” 

Message 4: “The outcome from the roll of the 10-sided die is 4.” 

Message 5: “The outcome from the roll of the 10-sided die is 5.” 

Message 6: “The outcome from the roll of the 10-sided die is 6.” 

Message 7: “The outcome from the roll of the 10-sided die is 7.” 

Message 8: “The outcome from the roll of the 10-sided die is 8.” 

Message 9: “The outcome from the roll of the 10-sided die is 9.” 

Message 10: “The outcome from the roll of the 10-sided die is 10.” 

 

Your message will be shown to the other participant, and then he or she will be asked to choose 

a number between 1 and 10. The message you send is the only information he or she will have 

regarding the roll of the die. 

Payments 

Importantly, the number chosen by the other participant will determine the payments in the 

experiment, which you will receive on top of the $10 participation fee. The two possible 

monetary payments are: 

Option A:  If the other participant chooses the actual outcome of the roll of the 

dice, 6, then you will receive $5 and he or she will receive $15. 
 

Option B:  If the other participant chooses a number different than the actual 

outtcome, you will receive a $15 and he or she will receive $5.  
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The other participant will never know the actual payments associated with each message. All 

he or she will know is the amount of money they will be paid and that you know the payments 

connected to each message. 

[Treatments: see below the variations of this message] 

There is a chance that we will audit your message: We will randomly select 1 participant out 

of __(PROBABILITY) and verify that the number indicated in their message corresponds to 

the actual outcome of the die roll.  

If you are randomly selected and your message does not correspond to the actual outcome of 

the die roll, you will be fined. In particular, you will lose both the $10 participation fee and 

the payment from the die roll experiment, leaving you with $0.25 earnings for this task 

(FINE).] 

Please choose the message you would like to send to the other participant. 

o “The outcome from the roll of the 10-sided die is 1.” 

o “The outcome from the roll of the 10-sided die is 2.” 

o “The outcome from the roll of the 10-sided die is 3.” 

o “The outcome from the roll of the 10-sided die is 4.” 

o “The outcome from the roll of the 10-sided die is 5.” 

o “The outcome from the roll of the 10-sided die is 6.” 

o “The outcome from the roll of the 10-sided die is 7.” 

o “The outcome from the roll of the 10-sided die is 8.” 

o “The outcome from the roll of the 10-sided die is 9.” 

o “The outcome from the roll of the 10-sided die is 10.” 

 

Treatment variations.  

 

Treatment 0: Control: regular deception game (without mentioning that there is a zero chance 

of being audited) 

Treatment 1-8: We cross probability and fine (4x2) 

 

PROBABILITY 

 
There is a chance that we will audit your message. We will randomly select 1 participant out 

of __ and verify that the number indicated in their message corresponds to the actual outcome 

of the die roll (6).  

1. 1 out of 20 (p=.05) 

2. 1 out of 10 (p=.10) 

3. 1 out of 4 (p=.25) 

4. 1 out of 2 (p=0.5) 

FINE 

 
High: If you are randomly selected and your message does not correspond to the actual 

outcome of the die roll, you will be fined. In particular, you will lose both the $10 

participation fee and the payment from the die roll experiment, leaving you with $0.25 

earnings for this task. 
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Low: If you are randomly selected and your message does not correspond to the actual 

outcome of the die roll, you will be fined. In particular, you will lose half of the $10 

participation fee and half of the payment from the die roll experiment, leaving you with 

$12.75 earnings for this task. 

Treatment 9: Ambiguity about probability of getting a low fine 

 

There is a chance that we will audit your message: We will randomly select some participants 

and verify that the number indicated in their message corresponds to the actual outcome of the 

die roll (6).  

If you are randomly selected and your message does not correspond to the actual outcome of 

the die roll, you will be fined. In particular, you will lose both the $10 participation fee and 

the payment from the die roll experiment, leaving you with $12.75 earnings for this task. 

  

Treatment 10: Ambiguity about probability of getting a high fine 

 

There is a chance that we will audit your message: We will randomly select some participants 

and verify that the number indicated in their message corresponds to the actual outcome of the 

die roll (6).  

If you are randomly selected and your message does not correspond to the actual outcome of 

the die roll, you will be fined. In particular, you will lose both the $10 participation fee and 

the payment from the die roll experiment, leaving you with $0.25 earnings for this task. 

 

Treatment 11: Ambiguity about fine -Low probability 

 

There is a chance that we will audit your message: We will randomly select 1 participant out 

of 20 and verify that the number indicated in their message corresponds to the actual outcome 

of the die roll (6).  

If you are randomly selected and your message does not correspond to the actual outcome of 

the die roll, you will be fined. In particular, you will lose some of your earnings for this task. 

 

Treatment 12: Ambiguity about fine -High probability 

 

There is a chance that we will audit your message: We will randomly select 1 participant out 

of 2 and verify that the number indicated in their message corresponds to the actual outcome 

of the die roll (6).  

If you are randomly selected and your message does not correspond to the actual outcome of 

the die roll, you will be fined. In particular, you will lose some of your earnings for this task. 

 

Treatment 13: Ambiguity about both 

 

There is a chance that we will audit your message: We will randomly select some participants 

and verify that the number indicated in their message corresponds to the actual outcome of the 

die roll (6).  

If you are randomly selected and your message does not correspond to the actual outcome of 

the die roll, you will be fined. In particular, you will lose some of your earnings for this task 

(FINE). 
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Treatment 14: Strategy method with low fine 

 

There is a chance that we will audit your message. We will randomly select some participants 

and verify that the number indicated in their message corresponds to the actual outcome of the 

die roll (6).  

In particular we will audit 1 out of either 20 participants, 10 participants, 4 participants or 2 

participants.  

We now ask you to choose the message you would like to send for each of the possible chance 

of being audited. At the end of the experiment, you will be notified about what the chance is 

and the corresponding message will be implemented.  

If you are randomly selected and your message does not correspond to the actual outcome of 

the die roll, you will be fined. In particular, you will lose both the $10 participation fee and 

the payment from the die roll experiment, leaving you with $0.25 earnings for this task. 

 

Please choose the message you would like to send to the other participant for each of the 

possible options.  

1. 1 participant out of 20, High fine 

2. 1 participant out of 10, High fine 

3. 1 participant out of 4, High fine 

4. 1 participant out of 2, High fine 

Treatment 15: Strategy method with high fine 

 

There is a chance that we will audit your message. We will randomly select some participants 

and verify that the number indicated in their message corresponds to the actual outcome of the 

die roll (6).  

In particular we will audit 1 out of X participants, where X could correspond to either 20, 10, 

4, or 2 participants.  

We now ask you to choose the message you would like to send for each of the possible Xs. At 

the end of the experiment, you will be notified about what X is and the corresponding message 

will be implemented.  

If you are randomly selected and your message does not correspond to the actual outcome of 

the die roll, you will be fined. In particular, you will lose half of the $10 participation fee 

and half of the payment associated to with the message you sent, leaving you with $12.75 

earnings for this task. 

 

Please choose the message you would like to send to the other participant for each of the 

possible options.  

1. 1 participant out of 20, Low fine 

2. 1 participant out of 10, Low fine 

3. 1 participant out of 4, Low fine 

4. 1 participant out of 2, Low fine 
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Treatment 16-19: Strategy method for the fine (with probability between subjects) 

There is a chance that we will audit your message. We will randomly select 1 out of 20 

participants and verify that the number indicated in their message corresponds to the actual 

outcome of the die roll (6).  

If you are randomly selected and your message does not correspond to the actual outcome of 

the die roll, you will be fined. In particular, you will either lose all or half of your earnings. 

 

We now ask you to choose the message you would like to send for both the possible cases. At 

the end of the experiment, you will be notified about what the actual fine is, and the 

corresponding message will be implemented.  

Once you are ready, please choose the message you would like to send to the other participant 

for both the possible fines. 

 

1. If you are randomly selected to be audited and your message does not correspond to the 

actual outcome of the die roll, you will be fined. In particular, you will lose all of the $10 

participation fee and all of the payment associated to with the message you sent, leaving 

you with $0.25 earnings for this task. 

 

2. If are randomly selected to be audited and your message does not correspond to the actual 

outcome of the die roll, you will be fined. In particular, you will lose half of the $10 

participation fee and half of the payment associated to with the message you sent, 

leaving you with $12.75 earnings for this task. 
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