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Abstract

In this thesis, general theoretical tools are constructed which can be applied to develop ma-
chine learning algorithms which are consistent, with fast convergence and which minimize
the generalization error by asymptotically controlling the rate of false discoveries (FDR) of
features, especially for high dimensional datasets. Even though the main inspiration of this
work comes from biological applications, where the data is extremely high dimensional and
often hard to obtain, the developed methods are applicable to any general statistical learning
problem.

In this work, the various machine learning tasks like hypothesis testing, classification,
regression, etc are formulated as risk minimization algorithms. This allows such learning tasks
to be viewed as optimization problems, which can be solved using first order optimization
techniques in case of large data scenarios, while one could use faster converging second order
techniques for small to moderately sized data sets. Further, such a formulation allows us
to estimate the first order convergence rates of an empirical risk estimator for any arbitrary
learning problem, using techniques from large deviation theory.

In many scientific applications, robust discovery of factors affecting an outcome or a phe-
notype, is more important than the accuracy of predictions. Hence, it is essential to find
an appropriate approach to regularize an under-determined estimation problem and thereby
control the generalization error. In this work, the use of local probability of false discovery
is explored as such a regularization parameter, which forces the optimized solution towards
functions with a lower probability to be a false discovery. Again, techniques from large devi-
ation theory and the Gibbs principle allow the derivation of an appropriately regularized cost
function.

These two theoretical results are then used to develop concrete applications. First, the
problem of multi-classification is analyzed, which classifies a sample from an arbitrary proba-
bility measure into a finite number of categories, based on a given training data set. A general
risk functional is derived, which can be used to learn Bayes optimal classifiers controlling the
false discovery rate.

Secondly, the problem of model selection in the regression context is considered, aiming to
select a subset of given regressors which explains most of the observed variation i.e. perform
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ANOVA. Again, using techniques mentioned above, a risk function is derived which when
optimized, controls the rate of false discoveries. This technique is shown to outperform the
popular LASSO algorithm, which can be proven to not control the FDR, but only the FWER.

Finally, the problem of inferring under-sampled and partially observed non-negative dis-
crete random variables is addressed, which has applications to analyzing RNA sequencing
data. By assuming infinite divisibility of the underlying random variable, its characterization
as being a discrete Compound Poisson Measure (DCP), is derived. This allows construction
of a non-parametric Bayesian model of DCPs with a Pitman-Yor Mixture process prior, which
is shown to allow for consistent inference under Kullback-Liebler and Renyi divergences even
in the under-sampled regime.



Abstract

In dieser Arbeit werden allgemeine theoretische Methoden entwickelt, die angewendet wer-
den können um maschinelle Lernalgorithmen zu generieren die konsistent sind, schnelle Kon-
vergenz zeigen und den Generalisierungsfehler minimieren, indem die False Discovery Rate
(FDR) insbesondere für hochdimensionale Datensätze gesteuert wird. Obwohl die Hauptin-
spiration dieser Arbeit von biologischen Anwendungen herrührt, bei denen die Daten extrem
hochdimensional und oft schwer zu erhalten sind, sind die entwickelten Methoden auf alle
allgemeinen statistischen Lernprobleme anwendbar.

In dieser Arbeit werden die verschiedenen maschinellen Lernaufgaben wie Hypothesen-
test, Klassifizierung, Regression usw. als Risikominimierungsalgorithmen formuliert. Auf
diese Weise können solche Lernaufgaben als Optimierungsprobleme angesehen werden, die
im Fall von großen Datenmengen mit Optimierungstechniken erster Ordnung gelöst werden
können, während für kleine bis mittelgroße Datenmengen Techniken zweiter Ordnung mit
schnellerer Konvergenz verwendet werden könnten. Darüber hinaus ermöglicht eine solche
Formulierung die Schätzung der Konvergenzraten erster Ordnung eines empirischen Risiko-
schätzers für jedes beliebige Lernproblem unter Verwendung von Techniken aus der Theorie
der großen Abweichungen.

In wissenschaftlichen Anwendungen ist eine robuste Detektion von Faktoren, die das
Ergebnis beeinflussen, wichtiger als die Genauigkeit von Vorhersagen. Daher ist es wichtig,
einen geeigneten Ansatz zu finden, um ein unterbestimmtes Schätzproblem zu regulieren und
dadurch den Generalisierungsfehler zu kontrollieren. In dieser Arbeit wird die Verwendung
der lokalen Wahrscheinlichkeit einer False Discovery als ein solcher Regularisierungsparam-
eter untersucht, der die optimierte Lösung in Richtung von Funktionen mit einer geringeren
Wahrscheinlichkeit einer False Discovery zwingt. Auch hier erlauben Techniken der Theorie
der großen Abweichungen und des Gibbs-Prinzips die Ableitung einer angemessen regulierten
Kostenfunktion.

Diese beiden theoretischen Ergebnisse werden anschließend verwendet, um konkrete An-
wendungen zu entwickeln. Zunächst wird das Problem der Multi-Klassifikation analysiert,
das basierend auf einem gegebenen Trainingsdatensatz eine Stichprobe aus einem beliebi-
gen Wahrscheinlichkeitsmaß in eine endliche Anzahl von Kategorien einordnet. Es wird ein
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allgemeines Risikofunktional abgeleitet, das verwendet werden kann, um optimale Bayes-
Klassifikatoren zu lernen, die die False Discovery Rate steuern.

Zweitens wird das Problem der Modellauswahl im Regressionskontext betrachtet, das
darauf abzielt, eine Untergruppe gegebener Regressoren auszuwählen, die den Großteil der
beobachteten Variation erklärt, d. H. ANOVA durchführt. Unter Verwendung der oben er-
wähnten Techniken wird wiederum eine Risikofunktion abgeleitet, die, wenn sie optimiert ist,
die False Discovery Rate steuert. Diese Methode ermöglicht den Nachweis, dass der häufig
verwendete LASSO-Algorithmus nicht FDR sondern nur FWER steuert.

Schließlich wird das Problem der Ableitung von unterabgetasteten und teilweise beobachteten
nicht-negativen diskreten Zufallsvariablen behandelt, die Anwendungen zur Analyse von RNA-
Sequenzierungsdaten haben. Durch Annahme einer unendlichen Teilbarkeit der zugrundeliegen-
den Zufallsvariablen wird ihre Charakterisierung als diskretes zusammengesetztes Poisson-
Maß (DCP) abgeleitet. Dies ermöglicht die Konstruktion eines nicht-parametrischen Bayes-
Modells von DCPs mit einem Pitman-Yor-Mixture-Prozess, der gezeigt hat, dass konsistente
Inferenz unter Kullback-Leibler- und Renyi-Divergenzen möglich ist, selbst wenn der Träger
unterabgetastet ist.
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Chapter 1

Design and Analysis of Statistical
Algorithms

1.1 Introduction

With increasing generation and access to large amounts of data in the last decades, statisti-
cal learning theory has become an imperative in providing a general principled framework
for automating the process of gaining knowledge, making decisions and constructing mod-
els to make predictions from a given set of data. Unlike artificial intelligence, the idea is
not to explain or generate “intelligent behavior”, its goal is more modest: it just wants to dis-
cover mechanisms for statistically consistent inductive inference with the ability to generalize.
These principles allow us to precisely define what can and cannot be learned under different
situations, whether the algorithm is stable, how much data is necessary to achieve certain
performance targets, as well as to automate the design of such learning algorithms [120].

Such a theory starts by characterizing the space of all finitely approximable mathematical
objects, which one can actually describe in the real world. Such objects turn out to be char-
acterized by having the Polish topology, i.e. being a complete separable metric space [77].
This result indicates that in order to build a learning algorithm about an object they neces-
sarily need to have this property. Functions on these spaces can then be defined which could
represent certain probability measures on it or even the class of possible algorithms under con-
sideration, which we call the Hypothesis space. These functions can range from the space of
indicator functions, which are useful for classification tasks and linear models for regression
and prediction tasks at one end, to the state of the art deep learning models (like convolutional
neural networks) at the other, which have been applied to a wide variety of learning problems
recently.
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The performance of elements of the Hypothesis space is described using integrable non-
negative real valued functions, known as loss functions. They are characteristic of the pop-
ulation distribution of the observed data and the specific learning problem like classification,
hypothesis testing, regression, etc. Recently algorithms like GAN [12, 13, 116], VB Gen-
erative Models [88, 97, 100], Inverse Autoregressive Flow [73, 74, 117, 119] etc have been
introduced wherein the loss functions are directly learned from the data thereby providing
state of the art performance in sampling algorithms from extremely complicated distributions
like images, audio, etc.

In the risk minimization framework of statistical learning theory, the goal is to find a
function which minimizes the Risk i.e.

f ⇤ = arg inf
f2H

R( f )

where risk is defined to be the expected loss function. When such an expected value exists and
an optimal solution exists, then the problem is said to be learnable. A “learning algorithm”
therefore can then be defined as the iterative optimization algorithm which constructs a se-
quence of functions f1, f2, ... which converges to the optimal solution f ⇤ = limm!• fm. The
performance of different learning algorithms can then be characterized in terms of their rate
of convergence and run-time complexity.

In the case of convex loss functions, there exists many of the shelf convex optimization al-
gorithms which can be applied in an essentially black-box manner to solve the required learn-
ing problem. Choice among these algorithms depends on the required accuracy of solutions,
run-time complexity of algorithms among other considerations [8, 44, 45, 48][8, 44, 45, 48].
For example for low dimensional problems when even with higher computational complexity
we get acceptable run times, the second order Newton and Quasi-Newton methods [44, 45, 47,
61, 67] provides a provably quadratic convergence to the correct solution. However for high
dimensional problems however, one usually settles for the class of first order gradient descent
methods [64, 68, 69, 80], including their accelerated versions.

For a finite number of training examples it is always possible to build a function which
fits the data exactly, i.e. have essentially zero risk. However such a function may not perform
as well for unseen instances especially in the presence of noise (i.e. have the problem of
overfitting). Therefore one not only needs to find a function which minimizes risk within the
hypothesis space, but at the same time the difference between the estimated risk based on the
observed data to the true population risk, a quantity known as the Generalization error, needs
to minimized. Then one can say that the function overfits/underfits iff the generalization error
is significantly negative/positive.
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The generalization error itself can be decomposed into two familiar components [58, 64,
72]. The first term is called the approximation error, which measures how well functions in
the Hypothesis space can approach the target. The second term known as the estimation error,
is a random quantity which depends on the sampling process but is independent of the target.
It measures how close the estimated function is to the best possible choice in the Hypothesis
space. These terms are analogous to the classical concepts of bias and variance respectively
which are usually associated to the problem of regression with a square error loss.

This allows us to define a learning algorithm to be consistent if and only if the estimation
error converges to zero as the number of observed instances increases. The conditions which
characterizes the consistency of an algorithm is independent of the target function and are
of central interest in machine learning theory. However, estimating the approximation error
requires specific assumptions about the target, such as having certain regularities, degrees of
differentiability, etc as otherwise even a consistent learning algorithm might have an arbitrarily
slow rate of convergence.

Clearly, enforcing more assumptions on a class of functions reduces its “capacity” [15, 57,
58, 72, 125] to represent different functions which inevitably would lead to higher approxima-
tion error for an arbitrary target function. This is the well known dichotomy between control-
ling the trade-off between approximation (bias) and estimation (variance) error. The Approxi-
mation error is determined purely by the choice of the Hypothesis space of functions H and is
independent of the population measure. However, the complexity of H in terms of its degrees
of differentiability, types of singularities, Group invariance and equivariance, etc effects the
rate of convergence of the optimization algorithms. Higher the complexity/regularity/capacity
of H , slower the rate of convergence one might expect, independent of the learning problem.

In the context of simple hypothesis testing, this tradeoff is analogous to Neyman Pearson
Optimality where one wants to minimize Type II error while controlling Type I error. Here
one can see Type II error as the risk associated with the choice of a test and we want to choose
the one which minimizes it. While the Type I error in analogous to the generalization error of
a test which we want to control at a certain level.

Therefore Hypothesis spaces with higher capacity can represent target functions of higher
complexity. However, rather unintuitively, there is no universal way of measuring the com-
plexity of the elements in the Hypothesis space, a fact which has been formalized in what
is known as the No Free Lunch theorem [120]. It is one of the most important theorem in
the theory of statistical learning and essentially says that if there is no a priori restriction on
the possible phenomena that are expected, it is impossible to generalize and no admissible
estimator exists (i.e. one which outperforms others, under all situations). It simply tells us
that in order to be able to learn successfully with guarantees on the behavior of the learning
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algorithm, we need to make assumptions on the underlying distribution under consideration.

In this work we are interested in the relation of False Discoveries in controlling the gener-
alization error. The probability of False Discovery is defined to be the posterior probability of
the chosen label being wrong (for classification) or the chosen element in the dictionary being
wrong (for regression) to represent a certain function, given the observed data.

Therefore certain reasonable assumptions are absolutely necessary to construct non vacu-
ous results for a particular learning problem. Usually one assumes that the observed samples
are independent and identically distributed, which is reasonable in many cases, though not all.
Further, since at the time of training the underlying distribution is not known, one might need
to assume that the training data was sampled from a certain family of distributions (e.g. expo-
nential family) or more generally the distribution has a certain tail behavior (e.g. exponential
or polynomial decay). One could also consider that the function of interest is not deterministic
but the results are a sample from a conditional distribution. This relaxation is important in the
case of noisy labels in a classification problem.

Based on the framework described here, the following questions and applications were
considered as a part of the thesis. Firstly one is interested in determining the necessary and
sufficient conditions for uniform consistency of an algorithm, i.e. the conditions under which

Pr( sup
f2H

| R̂emp( f )�R( f ) |> e)

the probability of estimation error going to zero increases with the number of observations,
independent of the probability measure the data was sampled from. In this work, by modeling
the distribution of the non-negative real valued losses using a Levy process, we derived the
necessary and sufficient conditions for a finite risk functional to exist. This representation also
allowed us to model the distribution of losses using gamma and stable family of distributions
which lead to efficient estimators of risk, especially useful when one does not have access to
a large amount of data, which is common in biological applications.

Secondly by applying the Cramer’s theorem, the exact asymptotic tail behavior was also
calculated which allows us to answer the question about the consistency of a machine learning
algorithm for an extremely large class of data distributions. This allows us to construct a
universal compound Hypothesis tests which optimize for the the posterior analogues of Type
I and Type II error, i.e the local probability of false discovery and the local probability of false
non-discovery.

Thirdly we apply this result to the regularization problem of controlling the bias-variance
tradeoff. Since any statistical learning problem can then be formulated as risk minimization
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which controls the generalization error by controlling the tail error probabilities i.e.

U( f ) = bR( f )+ gReg( f )

where g > 0, then
f ⇤ = arg min

f2H

U( f )

However the optimization of such a risk functional leads to a sequence of functions f1, f2, ...

which converges to the optimal solution f ⇤ = limm!• fm, hence the convergence is point-wise
or strong convergence which may lead to instabilities. In this work we instead consider weak
convergence, which is more robust and exhibits faster rates of convergence. We start by show-
ing that the conditional distribution of the risk given the probability of false discoveries is
given by a Gibbs type measure. This provides a general framework for constructing objec-
tives, once one decides on the loss function. Then any statistical learning algorithm can be
constructed in terms of a sequence of measures r1,r2, ... 2 M

1
+(H ) such that

Erm [ f ]! Er⇤ [ f ]

where r⇤ 2 M
1
+(H ) is given by the Gibbs Measure i.e.

r⇤ = arg min
r2M 1

+(H )
Fb [r]

where
Fb [r] = Er [U( f )]+b�1H(r)

is known as the Free Energy functional with b > 0 (temperature) and H(r) the entropy of
r . Under Laplacian prior over the parameter space we show that this formulation reduces to
the SLOPE regression, which was recently shown to control FDR at a given rate [34]. In this
thesis, we apply this framework to a GWAS dataset and compare its FDR performance over
LASSO regression.

Fourthly we look at the problem of multi-classification which control False Discoveries.
We construct a general family of loss functions which can be used to construct Bayes optimal
classifiers and showcase its performance on Diabetic Retinopathy Detection dataset, in which
the task was to classify retinal image from patients into five categories which range from no
signs of diabetes to proliferate levels. In this case we also employ the use of Convolutional
Neural Networks to extract features from the images.

Finally we look at the problem of inferring the distribution of non-negative discrete random
variables which are applied to the study of RNA-Seq data. By assuming infinite divisibility
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of the underlying random variable, its characterization as being a discrete Compound Poisson
Measure (DCP), is derived. This allows construction of a non-parametric Bayesian model of
DCPs with a Pitman-Yor Mixture process prior, which is shown to allow for consistent infer-
ence under Kullback-Liebler and Renyi divergences especially in the under-sampled regime.

1.2 Metric Measure Spaces

1.2.1 Polish Space

Axiomatically defined mathematical objects like real numbers, functions, probability mea-
sures, etc may have an infinite length representation, like in the case of irrational numbers.
However, when implementing an algorithm in practice, one can represent and manipulate only
a finite number of operations in a finite amount of time. Hence when designing machine learn-
ing algorithms we need to restrict ourselves to the study of only those topological spaces, like
those consisting of real numbers, probability measures, functions, etc that can be arbitrarily
well approximated by finite representations i.e. be computable.

The concept of finite approximability or computability can be defined [2, 16, 65, 101, 123]
in terms of the existence of a computational model, which is a directed sequence of partially
ordered sets which are consistent, continuous and observable using a dense subset. To get an
intuitive idea, lets consider the case of real numbers.

Since there exists a dense subset of real numbers, the set of rationals Q, each real number
x 2R can be identified as a collection of intervals, say {[pi,qi]}•

i=1 where pi,qi 2Q, such that
x = limsup pi and x = liminfqi. When such a sequence of intervals of decreasing length exist,
then it is said that the elements of the real number line are observable. Now, if the intersection
of these intervals defines the required real number {x}= \•

i=1 [pi,qi], then they are said to be
consistent. Further in such a representation, smaller intervals contain more information about
the number, one is trying to approximate. So if Ii := [pi,qi]� I j :=

⇥
p j,q j

⇤
, then the interval

I j carries more information than the interval Ii, and we represent it by writing Ii  I j. If for the
sequence I1, I2, ... we have I1  I2  · · · then the sequence of intervals is said to continuous.
When all these conditions are satisfied by the sequence of intervals {[pi,qi]}•

i=1, it is said to
be a computational model for the real number x.

Generalizing these concepts to an abstract topological space, it turns out that that there
exists a directed sequence of partially ordered sets which are consistent, continuous and ob-
servable using a dense subset, i.e. a computational model on a topological space if and only if
it is a Polish space [77] i.e. a completely separable metrizable space. In this work we denote
X := (X ,r) as a Polish space, where X is a complete separable metric space along with the
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associated metric, which is a bivariate function r : X ⇥X ! R+ such that for all x,y 2 X ,
it vanishes if and only if x = y, is symmetric and satisfies the triangle inequality. Common
examples of Polish spaces are Zn, Rn, Cn, any separable Banach Space, Hilbert space of func-
tions, etc along with their natural metric (like the Hamming distance, Euclidean metric, etc),
and encompass practically all examples one encounters in real world data sets.

Thus the first step in designing machine learning algorithms is to define an appropriate
metric on the sample space of interest. It is important to note that, if the data set to be analyzed
cannot be modeled as a Polish space, i.e. a metric can not be defined which induces a Polish
topology. Then an appropriate computational model does not exist to approximate elements
of that space and consequently a learning algorithm can not be defined which can approximate
statistics, measures, functions, etc, a fact which is important to keep in mind while designing
learning algorithms.

Example 1.1. In Natural Language Processing, conceptually it is hard to define a quanti-
tive distance between words. However recent word vector embedding approaches have been
extremely successful, as they approximate the words in a natural language in terms of embed-
dings in vector space, which is a Polish space. [90, 112]

1.2.2 Radon Measures

A measure is a non-negative function which is a generalization of the concept of size, like
length or volume, for elements of the topology tX

1 of some topological space X , such that
the size or measure of the union of disjoint sets in tX is the sum of their individual measures.
Even though one would like to assign a measure to every element of the topology, in general
this is not possible. For example consider length as the measure of subsets of the real line,
then using the axiom of choice one can show there exist sets for which no size exists [52, 54].
The subsets whose length or size can be measured, are known as the measurable sets.

For a Polish metric space X , this collection of measurable subsets are defined by the Borel
s -algebra BX , which is the smallest family of subsets from tX which contains the empty
set, contains all closed sets and is closed under countable unions, as well as their countable
intersections and their relative complements. A non-negative measure µ : BX !R+ can then
be defined on BX to satisfy certain conditions, necessary for the application at hand.

While designing learning algorithms we need to deal with measures that are either discrete
or continuous or both within the same framework. This is possible by relying on the set of

1A topology tX , is a family of subsets of some set X such that both the empty set and X are elements of tX ,
any union of elements of tX is an element of tX and any intersection of finitely many elements of tX is an element
of tX .
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non-negative Radon measures M+(X ) on the space X . A Radon measure is a measure on
BX , which is inner regular (i.e. tight) 2, outer regular 3 and locally finite 4.

Examples of non-negative Radon measures include, all Borel Probability measures on a
Polish spaces, Dirac measures on any topological space, Haar measure on any locally compact
topological group, etc. Unlike the Lebesgue measure, a Radon measure on a single point is
not necessarily of measure 0. This is particularly useful when working with Lévy processes
which we use extensively in this work to construct a non-parametric Bayesian risk estimator
in a later section.

Radon measures are also finitely approximable, and next we discuss how to construct a
directed sequence of partially ordered sets which are consistent, continuous and observable
using a dense subset. Inner and Outer regularity of Radon measures imply that the measure of
any Borel set A 2BX can be lower and upper bounded via sequences of compact K1,K2, ...⇢
A 2 BX and open A ⇢ U1,U2, ... 2 BX sets respectively. Let the limit supremum and limit
infimum be defined as

limsup
n!•

Kn =
•\

n=1

•[

m=n
Km

= {x : x 2 Km infinitely often}= {Km i.o.}

liminf
n!•

Un =
•[

n=1

•\

m=n
Um

= {x : x 2Um for all but finitely many m’s}

then clearly both of these sequences are continuous. Further, Fatou’s lemma implies that for
some measure µ 2 M+(X )

lim
n!•

inf µ(Un)� µ(liminf
n!•

Un)� µ(A)� µ(limsup
n!•

Kn)� lim
n!•

sup µ(Kn)

then due to inner and outer regularity, both the outer and inner measures are equal, and hence
we have

liminf
n!•

µ(Un) = limsup
n!•

µ(Kn)

Therefore the sequence of compact and open sets are consistent and we can define the measure

2for any Borel set B 2 BX , µ(B) is the supremum of µ(K) over all compact subsets K of B
3for any Borel set B 2 BX , µ(B) is the infimum of µ(U) over all open sets U containing B
4if every point of X has a neighborhood U for which µ(U) is finite
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of A as the limit of these sequence of sets as

µ(A) a.s.
= lim

n!•
µ(Un) = lim

n!•
µ(Kn)

Finally since X is Polish, there exists a countable dense subset D = {x1,x2, ...}⇢ A such
that

K :=
•\

m=1

nm[

k=1
B(xk,1/m)

where B(x,d ) is a ball of radius d at x. Note that µ(B(x,d ))< • due to local finiteness. Then
K is closed and for each d > 0 and m > 1/d ,

K ⇢
nm[

k=1
B(xk,1/m)⇢

nm[

k=1
B(xk,d )

This means that K is covered by finitely many balls of radius less than or equal to d > 0. Then
for any sequence in K, whose limit is in A (always true if A ⇢X is complete), one can always
construct a Cauchy subsequence with limit in K. Now since K is also closed, K is therefore
compact. Then for any e > 0 and each m � 1, there exists an nm such that

µ(A\K) = µ

 
•[

m=1

 
A\

nm[

k=1
B(xk,1/m)

!!


•

Â
m=1

µ

 
A\

nm[

k=1
B(xk,1/m)

!

=
•

Â
m=1

 
µ(A)�µ

 
nm[

k=1
B(xk,1/m)

!!
<

•

Â
m=1

2�me = e

This means that for any e > 0 and every l � 1, there exists an n(l ,e)< •, such that

Kl ,e =
n(l ,e)[

k=1
B
✓

xk,
1

logl

◆
=) µ(Kl ,e)> µ(A)�l�1e

for some x1,x2, ...,xn(l ,e)
i.i.d.⇠ µ(A). Thus there exists a dense subset of balls which can be used

to define the required directed sequence of partially ordered sets and therefore a computational
model exists. As we saw previously, this means that Radon measures on a Polish space are
finitely approximable and we can define a metric on M+(X ) which makes it as well into a
Polish space.
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1.2.2.1 Integral Probability Metrics

Let µ,n 2 M+(X ) be a pair of non-negative Radon measures, then the integral probability
metrics (IPMs) [109, 110], are distances between measures that have a variational form and
can be written as a supremum over the mean discrepancies of functions restricted to a specific
function class i.e.

rF (µ,n) := sup
h2F

| D(h,µ,n) |

where F is a class of real-valued bounded measurable functions on X and D : F ! R is the
mean discrepancy.

Intuitively an IPM between two measures, looks for a witness function h, called the critic,
which maximally discriminates between the two measures according to a certain mean dis-
crepancy D. By defining different classes of functions F , from which the critic comes from
and different mean discrepancies one defines different IPMs and in certain cases the above
variational formulation has a closed form expression.

The reason we are interested in studying a wide variety of distances, as we shall soon see
that this family generates, is so as to study different notions of convergence of sequences of
measures. A sequence of measures {µn}n2N converges if and only if there is a distribution
µ• such that rF (µn,µ•) tends to zero. The topology of associated convergence depends on
the metric r and in specific cases one might require a weaker or a stronger topology so that it
easier or harder, respectively for a sequence of distribution to converge.

In a learning algorithm these sequences of measures are usually parameterized, say by the
corresponding sequence of parameters {qn}n2N. Then the mapping qn ! µqn is said to be
continuous if when qn ! q then µqn ! µq which is clearly a desirable property for any learn-
ing algorithm. Now since the notion of convergence of the sequences of measures depends
on the metric considered between them, weaker the metric, easier it is to define a continuous
map between the parameters and the sequences of measures. Thus for the machine learning
problem of interest we would like to choose such families of measures which are continuous
with respect to the parameters for the particular metric of interest.

j-Divergences Csiszár’s j-Divergences [25, 37, 71, 75, 83, 86, 127] are one of the most
common families of distances/divergences between probability measures. In this case the
class of critics or witness functions is given by

F =
�

f : X ! R, f 2 domj⇤
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and mean discrepancy is given by

D(h,n ,µ) =
Z

X

hdµ �
Z

X

j⇤ �hdn

where j⇤ is the Fenchel conjugate of j . In this case the divergence has a closed form repre-
sentation as

rF (µ,n) :=

8
<

:

R
X

j
⇣

dn
dµ

⌘
dµ n ⌧ µ

+• otherwise

where dn
dµ is the Radon-Nikodym derivative which is defined for both continuous and discrete

measures. Well-known distance/divergence measures obtained by appropriately choosing j ,
for example

1. Kullback-Liebler (KL) divergence:

j(t) = t log t

2. Hellinger distance:
j(t) =

�p
t �1

�2

3. Total Variation Distance:
j(t) =| t �1 |

4. c2-divergence:
j(t) = (t �1)2

Wasserstein-p Metric In this case [12, 22, 43, 53] the class of critics or witness functions
is given by the space of all functions with bounded Lipschitz constants

F =
�

f : X ! R,k f kLip 1
 

and mean discrepancy is given by

D(h,n ,µ) =
Z

X

hdµ �
Z

X

hdn

In this case the distance has a closed form representation in terms of a Wasserstein-1 metric

W1 (µ,n) := inf
p2P(µ,n)

Z

X

k x� y k1 dp(x,y)
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Figure 1.1: Wasserstein Metric

where P(µ,n) is the space of all joint measures defined on X ⇥X with µ and n as marginals.
However, in general a Wasserstein-p metric for p � 1 can be defined as

Wp (µ,n) := inf
p2P(µ,n)

Z

X

k x� y kp
p dp(x,y)

MMD Maximum Mean Discrepancy [59] is a metric between measures defined using kernel
mean map in a Reproducing Kernel Hilbert Space (RKHS). In this case the class of critics or
witness functions is given by the space of all functions with bounded norm in the RKHS
generated by a characteristic kernel K,

F = { f : X ! R,k f kHK 1}

and mean discrepancy is given by

D(h,n ,µ) =
Z

X

hdµ �
Z

X

hdn

= hh,
Z

X

K(·,x)dµiHK �hh,
Z

X

K(·,x)dniHK

In this case the distance has a closed form representation in terms of mean kernel maps

MMD(µ,n) :=k Eµ [Kx]�En [Kx] kHK

Depending on the Kernel map K used, MMD defines a very general class of L2 losses.

Stein Discrepancy In this case the class [20, 22] of critics or witness functions is given by
smooth functions which vanish at the boundary

F =
n

f : X ! Rd, f 2 C (X ),∂ f = 0
o



1.3 Hypothesis Space 13

and mean discrepancy is given by

D(h,n ,µ) =
Z

X

T (dµ)hdn

where
T (dµ) = (—x log(dµ))T +—x

and µ and n are continuous differentiable measures. In this case the distance does not have a
closed form solution. Add the closed form solution in case of a RKHS.

1.3 Hypothesis Space

In any machine learning problem we are given a sample space (X ,µ) where µ 2M+(X ) and
an associated target space (Y ,n) with n 2M+(Y ), containing the possible decisions, predic-
tions, etc that we are interested in making. For example, in a binary classification problem we
might have samples from (X =

�
Rd,Euc

�
,µ) for some probability measure µ 2 M

1
+(X )

and we would like to find a map which chooses one of the elements of the binary space
(Y = (H0 = µ0,H1 = µ1),n = Bin(p,1� p)) depending on its distance to µ . In a Regression
problem, we usually have paired samples from (X =

�
Rd,Euc

�
,µ) and (Y = (R,Euc) ,n)

where µ,n 2 M
1
+(X ), and the learning task is to find a function which transforms µ ! n .

In both examples, we see that the learning task can be defined in terms of a map from one
space to the other. In this work we define the space of all such functions of the type f : X !Y

which map elements from the measurable space of X to that of Y as the Hypothesis space,
H . Such functions induce a push-forward operator f] transforming an entire measure on X

to a new Radon measure on Y i.e.

f] : (X ,µ) 7! (Y ,n)

where n = f]µ 2 M+(Y ) is called the push-forward measure for every µ 2 M+(X ).
A push forward measure can be defined as a Radon measure n 2 M+(Y ) which satisfies

Z

f�1(B)
h� f dµ =

Z

B
hdn (1.1)

for any B 2 BY and for all h 2 L1(Y ), the space of Lebesgue integrable functions on Y .
Representing complicated functions as superpositions of basic transforms of simpler func-

tions has been a subject of study in Harmonic analysis since the introduction of the Fourier
transform, centuries ago. Such a representation allows us to extract information from observed
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Figure 1.2: Push-Forward Measures

signals or functions by transforming the function from its original domain into a new domain,
with the purpose of extracting the characteristic information which is otherwise not readily
observable in its original form.

Formally this means that we define a Hypothesis space as a space of functions where for
any element say f 2 H , we can extract a series of coefficients, based on the inner product
between the function f (x) and a set called the dictionary, consisting of template functions
F(x) := {fl (x)}l2L as

ql = h f ,yl i :=
Z

X

f (x)f⇤
l (x)dx

where (·)⇤ stands for the complex conjugate. The inner product in essence describes the “sim-
ilarity” between f (x) and the dictionary {fl (x)}l2L, where a higher inner product signifies
a higher similarity between the function and that particular element of the dictionary. These
coefficients represent features, that can be extracted from the given data using the template
functions.

Such representations under certain assumptions on the template functions F(x), also admit
a Calderon-type reproducing [41] formula given by

f (x) =
Z

L
ql fl (x)dl =: hq ,F(x)i (1.2)

where L is the parameter space spanning the dictionary.

Thus by studying properties of these template functions we can construct a variety of new
representations and push-forward maps for our machine learning application. However before
we do that, we introduce an alternate approach to modeling the push-forward measure, which
is useful especially in probabilistic modeling approaches.

Consider the definition of a push-forward measure from a different perspective. For any
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µ 2 M+(X ) we have n 2 M+(Y ) such that for some f 2 H

n(B) = µ ({x 2 X : f (x) 2 B}) = µ
�

f�1(B)
�

for any Borel set B 2 BY where f�1(B) ⇢ BX . It is easy to see that f] preserves positivity
and total mass of the measure, so that if µ 2 M

1
+(X ) is a Borel probability measure, then so

is f]µ 2 M
1
+(Y ).

Now the push-forward measure n is absolutely continuous with respect to µ , since for any
B 2 BY

µ
�

f�1(B)
�
= 0 =) n(B) = 0

which by the Radon-Nikodym theorem means that a measurable function g : X !R+ exists,
such that

n(B) =
Z

B
dn =

Z

f�1(B)
gdµ

where g := dn
dµ is known as the Radon-Nikodym derivative of n w.r.t. µ .

The Radon-Nikodym derivative is defined for both continuous and discrete Radon mea-
sures, and can therefore either represent a measure density or a discrete measure respectively.
Therefore defining classes of push-forward maps is equivalent to considering families of in-
duced Radon-Nikodym densities on X , which are independent of the base measure µ .

Now naturally we want our Radon-Nikodym densities to be finitely approximable, which
means that it should be a function of either bounded or slowly (logarithmic or polynomially
slow) increasing number of features, as the sample size increases. The set of features or more
formally statistics, calculated from the observed data is said to be sufficient if the conditional
expectation given these statistics, is independent of the observed data. Thus intuitively, suffi-
cient statistics capture all the necessary statistical information from observed data in order to
define the conditional density.

According to the Pitman–Koopman–Darmois theorem [9, 49, 87, 102], the Exponential
family of distributions is exactly that family for which the dimension of the sufficient statistic
(or features) remains bounded as the sample size increases, while the domain remaining fixed
for the parameters being estimated. The Exponential family in addition is also the family of
distributions with maximum-entropy, under given constraints on the expected values of these
sufficient statistics (or features).

Thus if we assume that only a bounded number of features from the sample effects the the
target measure, then the relative Radon-Nikodym density of the push-forward measure can be
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defined as a member of the Exponential family by

dn
dµ

:= ehq ,F(x)i�A(q) (1.3)

where
A(q) = log

✓Z

X

exp(hq ,F(x)i)dµ
◆
< •

and f (x) = hq ,F(x)i 2 H as before (1.2).
The space of values of q 2 H for which A(q) < •, is known as the natural parameter

space and is always convex. The finiteness of A(q) represents the first assumption that we
make on the elements in the Hypothesis space. The function A(q) is the known as the log-
moment or cumulant generating function and all the moments of the push-forward measure
can be derived simply by differentiating A(q).

To summarize we have shown there two different approaches to use a defined Hypothesis
space. In the first case we use the elements in the space to model possible push-forward maps
that we are interested in, while in the other case we use these elements to define an exponential
family of relative push-forward densities. In either case the Hypothesis space is defined based
on a sequence of template functions which extracts features or sufficient statistics from the
sample data. Therefore while designing new Hypothesis spaces, the only freedom remaining
from the users perspective is to design such template s or data representations which in dif-
ferent contexts generates features, sufficient statistics or in the infinite dimensional case, the
basis for functional spaces.

1.3.1 Data Representations

Choice of the set of template functions or the data representation is extremely important in
the performance of the developed machine learning algorithm. Hence for complex data sets,
much effort needs to be put into designing preprocessing pipelines and templates which can
extract relevant features for a specific application.

However, with the advent of complex large data sets like in Natural Language Processing,
Image Processing, Genetics, etc extracting new novel features has become extremely impor-
tant in order to perform complicated tasks. However, this aspect is rather labor-intensive and
highlights the weakness of fixed basis functions: their inability to extract and organize the
discriminative information from the data. Therefore in many cases handmade features using
prior expert knowledge has proven to be useful in many cases.

Historically in the development of most learning algorithms, fixed template functions like
Linear, Fourier, Wavelet and Kernel basis were used with much success. However, with in-
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creasing access large amounts of different data sets, it has become an imperative to expand the
flexibility of these feature extractors by learning them directly from the data itself. The newest
class of such representations are known as the deep learning methods which are formed by the
composition of multiple non-linear transformations, with the goal of yielding more abstract
– and ultimately more useful – representations. This allows the algorithm to become less
dependent on human input and biases, thereby allowing novel applications.

Therefore it is extremely important to learn representations of the data that allow easier
extraction of useful information while building Hypothesis spaces as described earlier. In
the case of probabilistic models, which in our case is modeled by conditional exponential
family of densities, good representations captures the posterior distribution of the underlying
explanatory factors for the observed input.

While designing or learning Hypothesis spaces we still need to make certain basic assump-
tions which allow us to define a plausible model for these spaces of functions. In general all
function spaces considered in this work consist of vector valued square integrable functions
L2(X ). However this space is quite big and further assumptions are necessary in order to
design a subset of well behaved functions. We enumerate some of these assumptions and the
models they lead to in the next subsections.

1.3.1.1 Smoothness

Degree of smoothness is to do with the degree of differentiability that can be assumed for the
functions in the Hypothesis space. The most non-trivial model of a Hypothesis space with
smoothness as the main characteristic is the Reproducing Kernel Hilbert Space.

Let (X ,r,µ) be a Polish metric measure space of negative type. Polish spaces of negative
type characterize those metric spaces which can be isometrically imbedded into a Hilbert
space. In [5, 14] metric induced kernels were introduced, where for every r 2 L1(X ⇥X ,µ ⇥
µ;R+), and any x0 2 X , the symmetric integrable function j 2 L1(X ⇥X ,µ ⇥µ;R+) defined
as

j(x,y) = 1
2
(r(x,x0)+r(y,x0)�r(x,y))

is positive definite if and only if r is negative definite. Then from Moore-Aronszajn’s theorem,
for every such positive definite function j , there exists a unique Hilbert space Hj of functions
on X for which j is a reproducing kernel. This means that the mapping x 7! jx from X to Hj

is injective and defines the inner product

j(x,y) = hjx,jyiHj =
Z

X
jx(z)jy(z)dz for all x,y 2 X
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Figure 1.3: Reproducing Kernel Hilbert Space Classification

on Hj using the Reisz representation theorem. Further for all f 2 Hj , we have

h f ,jxiHj = f (x)

which is known as the reproducing property. The Hilbert space Hj , by the reproducing prop-
erty consists of real valued functions of the form

f (x) = hÂ
i

qijxi ,jxi= Â
i

qij(xi,x) for qi 2 R, i 2 N

where Xn = {x1, ...,xn}
i.i.d.⇠ µ such that Âi q 2

i j(xi,xi)< •. Thus in this case the feature map
is given by F(x) = [{j(xi,x)}n

i=1]
T .

By choosing different metrics on the Polish space or equivalently different kernel func-
tions j we get different models of RKHS. For example for j(x,y) = hx,yi, we get the lin-
ear kernel and the Hypothesis space corresponds to all linear models. Note that in this case
the associated metric on the Polish space is simply the Euclidean metric. In the case when
j(x,y) = exp� (x�y)2

2 , we have the popular Gaussian Kernel and the functions defined in the
corresponding Hypothesis space are infinitely differentiable.

In the RKHS model of Hypothesis space, generalization is achieved via local interpola-
tion between neighboring training examples. Although smoothness is an useful assumption, it
is insufficient to deal with the curse of dimensionality, especially when there are discontinu-
ities in the target function. Since in that case the number of non-zero coefficients may grow
quadratically with the number of samples. Therefore learning algorithms based only on the
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smoothness assumption exploit the principle of local generalization and rely only on examples
to explicitly map out the discontinuities of the target function.

For complicated target functions with many discontinuities, such RKHS models cannot
capture enough of the complexity of interest, unless provided with the appropriate feature
space. Therefore there is a need for flexible and non-parametric models of Hypothesis spaces
which do not rely exclusively on the smoothness assumption.

However the smoothness-based models are still useful on top of features learned from
more complicated models. They provide a modular approach to applying well established
algorithms using novel feature learning algorithms. For example a combination of using a
deep neural network to learn features and applying RKHS based algorithms in this feature
space is equivalent to learning the kernel j .

1.3.1.2 Distributed representations

We would also like the a reasonably sized set of features extracted to be expressive, that is
explain a sizable portion of the variation. These features should also generalize to a huge
number of possible input configurations. For example in a clustering application, a counting
argument helps us assess the expressiveness of the learned features. Traditional clustering
algorithms like Gaussian mixtures, nearest-neighbor algorithms, decision trees, or Gaussian
Support Vector Machines all require O(N) parameters (and/or O(N) examples) to distinguish
O(N) input configurations and naively it seems like a reasonably tight result.

Figure 1.4: Restricted Boltzman Machines

However, up to O(2k) input regions (k is the sparsity parameter) can be represented by
Restricted Boltzmann Machines (RBMs) [51], sparse coding [4], auto-encoders or multi-layer
neural networks using only O(N) parameters. These are all distributed or sparse represen-
tations. The generalization of clustering to distributed representations is known as multi-
clustering, where either several clusterings take place in parallel or the same clustering is
applied on different parts of the input.
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The exponential gain comes about because each feature can be re-used in multiple exam-
ples that are not necessarily neighbors of each other, which is the case with local general-
ization. In all the classical single layer approaches different regions of the input space are
essentially independent with their own private set of parameters, e.g., as in decision trees,
nearest-neighbors, Gaussian SVMs, k-means, etc.

Figure 1.5: Neuron

1.3.1.3 Depth and abstraction

We saw how distributed representations provide an exponential increase in the capacity for
representation of features. In deep representations the explanatory factors or features are in
addition hierarchically organized, i.e. more abstract features are constructed using less ab-
stract ones. This architecture promotes the re-use of features and leads to the construction of
progressively more abstract features at higher layers of representation.

The notion of feature re-use, the main explanation behind the power of distributed repre-
sentations, also explains the advantages behind deep learning, i.e., constructing multiple levels
of representation or learning a hierarchy of features. Crucially deep representations have ex-
ponentially large number of paths from the data to the final feature, with respect to its depth.

Typically deep representations consist of a sequence of nodes which typically consist
of computations like weighted sum, product, affine transforms, monotonic point wise non-
linearity, computation of a kernel, or logic gates. Theoretically families of functions defined
using a deep representation can be exponentially more efficient than one that is insufficiently
deep [82, 85, 91].

Clearly when the same family of functions can be represented using fewer features, we
should expect to be able to learn the parameters using fewer examples, yielding improvements
in both computational and statistical efficiency (less parameters to learn, and re-use of these
parameters over many different kinds of inputs). One of the most common and successful
examples of deep representations is known as the Convolutional Neural Network (CNNs).
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Figure 1.6: Convolutional and Pooling Layers

CNNs consist of a sequence of nodes which are made up of a convolution by a tensor (3
dimensional for color images) filter, followed by a point wise non-linearity, like ReLU which
simply filters out all non-positive values. In these networks one builds abstractions explicitly,
via a pooling mechanism. More abstract concepts are generally invariant to most local changes
of the input. That makes the representations that capture these concepts generally highly non-
linear functions of the raw input.

1.3.1.4 Invariance and Disentangling Factors of Variation

When constructing deep representations we would like the features generated to define ex-
planatory factors towards the variation seen in the data. Since many complex real world data
sets arise from complex interactions of essentially independent sources of variation, we would
like our features also to be as disentangled as possible. This goal is different from a related
distinct goal of learning invariant features which reduce sensitivity in the direction of invari-
ance. Thus invariant features remove uninformative information from the data set, i.e. which
do not contribute significantly to the observed variation.

Clearly it is often difficult to determine a priori which set of features and variations will
ultimately be relevant to the task at hand. Further, as is often the case in the context of deep
learning methods, the feature set being trained may be destined to be used in multiple tasks
that may have distinct subsets of relevant features.

However, in many real world high dimensional data sets, the probability mass concentrates
on a manifold of much lower dimensionality. The Johnson–Lindenstrauss lemma [70] states
that a small set of points in a high-dimensional space can be embedded into a space of much
lower dimension in such a way that distances between the points are nearly preserved. The
map used is at least Lipschitz, and could even be taken to be an orthogonal projection. This
fact is explicitly exploited in some of the auto-encoder algorithms [28, 73] and other manifold-
inspired algorithms.

Lower dimensional embeddings imply that local variations in these manifolds tend to pre-
serve the categorical variables associated to them in a classification problem and regions be-
tween different classes tend to be well separated and not overlap much. This fact is exploited
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in high dimensional data visualization algorithms like the t-SNE.
Considerations such as these lead us to the conclusion that the most robust approach to

feature learning should be perform some form of dimensionality reduction, especially for high
dimensional data sets so that the local directions of variation least represented in the training
data should be first to be pruned out. Then the aim should be to disentangle as many factors
as possible, discarding as little information about the data as is practical.

1.4 Risk Minimization Framework

In the previous section we saw the properties which depend on the application, we need to
take into consideration, while designing the Hypothesis space. In this section we want to
establish a framework for defining performance objectives which we could use to define a
learning algorithm. In general we quantify the performance of an element in the Hypothesis
space using a non-negative real valued functional, known as the Risk functional

R : H ⇥ ((X ,µ),(Y ,n))! R+

In general the risk can be defined in terms of the distances between the push-forward and the
target measure as we shall see both in the supervised and unsupervised learning scenarios. This
allows us to then define a learning problem in terms of the following optimization problem

f ⇤ = arg min
f2H

R( f ,µ,n)

If a solution exists then we can say the required task is learnable in the given Hypothesis
space and the optimization algorithm which solves the problem is then known as the learning
algorithm. A “learning algorithm” therefore is the iterative optimization algorithm which
constructs a sequence of functions f1, f2, ... which converges to the optimal solution f ⇤ =
limm!• fm. One can then quantify the performance of such a learning algorithm in terms of
its rate of convergence, complexity, etc.

When the risk functional is a convex function, there exists many of the shelf convex op-
timization algorithms which can be applied in an essentially black-box manner to solve the
required learning problem. For example in the case of low dimensional problems, the second
order Newton and Quasi-Newton methods provides a provably quadratic convergence to the
correct solution, with acceptable runtimes even with polynomial computational complexity.
In the case of high dimensional problems however, one usually settles for the class of first or-
der gradient descent methods, which usually have first order convergence but also linear time
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complexity.

1.4.1 Supervised Learning

In a supervised learning framework we have access to paired samples from both (X ,µ) as
well as (Y ,n). Then the aim of the algorithm is to find a push-forward map f , whose action
on µ induces a push-forward measure closest to n . Previously we defined a class of inte-
gral probability metrics which include a wide variety of commonly known metrics between
measures, and therefore can be used to define a general class of risk functionals between the
push-forward measure f]µ and the target measure n

R( f ,µ,n) := rF

�
f]µ,n

�
:= sup

h2F

| D(h, f]µ,n) |

As we saw before, different choices of the functional classes F and mean discrepancy D, lead
to different risk functionals. For example consider the j-Divergences which defines the risk
functional by

R( f ,µ,n) = rj
�

f]µ,n
�

:=

8
<

:

R
X

j
⇣

dn
d f]µ

⌘
d f]µ n ⌧ f]µ

+• otherwise

for different choices of the function j .

These divergences are especially appropriate in the case where we have a model for the
target distribution, for example in the case of binary classification. In this case, the target space
(Y = {0,1},n) is binary and the task is to construct a map based on the training data, which
assigns a category to each new observation in (X ,µ). In this case the target measure n , is
simply the Bernoulli distribution conditional on the measure µ in the sample space (X ,µ)
i.e.

dn = p(x)dµ

where p(x) represents the observed conditional distribution. Then by defining the Hypothesis
space H such that it induces a Bernoulli conditional density, we have

d f]µ =
1

1+ e�hq ,F(x)idµ
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When we choose j(t) = t log t, i.e. the KL divergence as the Risk functional we get

KL( f]µ,n) =�
Z

X

p(x) log
1

1+ e�hq ,F(x)idµ(x)

�
Z

X

(1� p(x)) log
✓

1� 1
1+ e�hq ,F(x)i

◆
dµ(x)

+
Z

X

p(x) log p(x)dµ(x)

which is the traditional risk functional for binary classification used in many modern appli-
cations like for image classification, where the data representation F is constructed using
Convolutional Neural Networks [79, 91]. It is important to note that the integrals clearly need
to be estimate based on samples from µ .

Alternatively, if we are looking at the regression problem, then the general class of Wasser-
stein distances might be preferable, where the risk functional is given by

R( f ,µ,n) =Wp
�

f]µ,n
�

:= inf
p2P( f]µ,n)

Z

X ⇥Y

k y� f (x) kp
p dp( f (x),y)

where P( f]µ,n) is the space of all joint measures defined on Y ⇥Y with f]µ and n as
marginals. For example the case of p = 2 gives us the common mean squared loss. In the case
of p = 1 if we apply a strong entropy regularizer on the joint distribution, then the distance
can be shown to converge to the energy distance. Further, if we define the inner product using
of a positive definite kernel, then we end up with the MMD distance, allowing us to perform
even kernel regression in the same framework.

1.4.2 Unsupervised Learning

1.4.2.1 Auto-Encoder Framework

A large class of unsupervised learning algorithm can be described in terms of the Auto-
Encoder framework [7, 28]. These algorithms only have access to samples Xn from (X ,µ)
and we are interested in a push-forward map f , whose action on µ induces a push-forward
measure with a relative density d f]µ

dµ , in either the Exponential family or their mixtures, which
is closest to µ based on an appropriate metric. This formulation is simply a projection of the
arbitrary measure µ onto the Exponential Family of distributions. Such a push-forward map
in known as the encoder.

From the encoded distribution, there is a pull-back map, say g which pulls the measure f]µ
back to µ , i.e. g] f]µ ! µ . However the functions are parameterized such that they are not
invertible, which is achieved by regularizing the parameters of the functions to be for example
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have lower dimension or be sparse. When these functions are linear but not invertible, we get
the Principle Components Analysis algorithm, which if they are further forced to be sparse
we get what is known as sparse coding. In general the class of j-Divergences are particularly
useful in deriving many popular algorithms as special cases in this framework.

1.4.2.2 Generative Models

Generative models are a new class of unsupervised algorithms [11, 18, 46] which can be
defined in terms of a latent variable formulation. Let h be a fixed measure on some continuous
latent space Z , then the aim of the algorithm is to learn a push-forward map f , whose action
on h induces a push-forward measure closest to µ i.e.

f]h ! µ

These class of models are known as Generative Adversarial models when the distance between
them is defined in terms of a discriminator network which is also learned from the data. They
have proven to be extremely successful in sampling from rather complicated distributions like
images, audio, etc.

Figure 1.7: Generative Adversarial Network

Variational Auto-Encoders (VAEs) [73] and Generative Adversarial Networks (GANs)
[103] are well known examples of this approach. Because VAEs focus on the approximate
likelihood of the examples, they share the limitation of the standard models and need to fiddle
with additional noise terms. GANs offer much more flexibility in the definition of the ob-
jective function, including j-Divergences, and the Wasserstein Divergences as well as some
exotic combinations. On the other hand, training GANs is well known for being delicate and
unstable, for reasons theoretically investigated in [15].
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1.5 Risk Estimation

Till now we saw how to define a learning problem, where start by constructing a Hypothesis
space which is suitable for our application, either based on prior knowledge or theoretical un-
derstanding of the problem. In some cases a simple linear model is enough while for others
even the cutting edge Convolutional Neural Networks struggles to achieve acceptable perfor-
mance. We also saw that generative adversarial models, use families of metrics and choose
the one which maximizes the discriminative power between functions in the Hypothesis space.
This approach has achieved great sampling performance for extremely complicated distribu-
tions, like images, audio, etc.

However, in all these cases, from the classical linear regression to the state of the art
generative adversarial networks, the risk functional always needs to be estimated based on
the observed samples Xn and Yn from (X ,µ) and (Y ,n) respectively, whose estimator we
denote by bR( f ).

Since in general our risk is defined in terms of the mean discrepancy function D, which
itself can be written in terms of being the expected value of a certain loss function L

D = Eµ,n [L( f ,x,y)]

whose push-forward measure is defined for each f 2 H as

L]( f ) : (X ,µ)⇥ (Y ,n)!
�
R+,l f

�

where l f 2 M+(R+). Then assuming that we have observed i.i.d. samples Xn and Yn, we
can construct i.i.d. samples from the push-forward measure h f

Ln( f ) := {li = L( f ,xi,yi)}n
i=1

i.i.d.⇠ (R+,l f )

where l = L( f ,x,y) and the risk associated with the function f 2 H can then be defined as
the first moment of the push-forward measure l f

R( f ) :=
Z

X

L( f ,x,y)d (µ ⇥n) =
Z

R+

ll f (dl)< •

If no functions exist in the space of Hypothesis functions with finite risk, then either the Loss
function, the Hypothesis space H or the problem itself is ill posed.
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1.5.1 Generalization Error

Consider a learning algorithm which generates a sequence of functions f1, f2, ... 2 H in the
Hypothesis space which converges to f ⇤ = limm!• fm where f ⇤ = arg inf f2H R( f ). Further
let R⇤ = inf f2B(X ,Y )R( f ) be the inestimable/abstract “true” minimal risk calculated among
all Borel measurable functions B(X )! B (Y ), which is known as the Bayes risk.

The generalization error of the learning algorithm is a random variable (stochastic process)
defined by h

bR( fm)�R⇤
i

Generalization Error

= [R( f ⇤)�R⇤]
Approximation Error

+
h
bR( fm)�R( f ⇤)

i

Estimation Error

and a learning algorithm is said to generalize well if it has a low generalization error which
can be decomposed into two parts known as the Approximation error and the Estimation error.

Approximation error [95, 120, 121, 130] is the measure of how close the risk of functions
in the Hypothesis space can get to the risk of the target function. Clearly R( f ⇤) � R⇤ as the
Hypothesis space may not contain the Borel measurable function which has the globally min-
imal risk. Thus the Approximation error is determined purely by the choice of the Hypothesis
space of functions H and is independent of the population measure. However, the complex-
ity of H in terms of its degrees of differentiability, types of singularities, Group invariance
and equivariance, etc effects the rate of convergence of the optimization algorithms. Higher
the complexity/regularity/capacity of H , slower the rate of convergence one might expect,
independent of the learning problem.

Estimation error on the other hand is a random variable which is dependent on the sampling
process and the properties of the estimator but is independent of the target function. In practice
the estimation error can be easily calculated based on the properties of the estimator used,
however the approximation error is harder to determine as it depends on the assumptions one
can make on the target function and the Hypothesis space of functions that one chooses. If the
size of the expected generalization error i.e. the bias of the risk estimator, is positive then the
learned function corresponding to the minimal risk is said to underfit, while if it is negative it
is said to overfit.

A concept which is closely related to the generalization is the one of consistency which
is only dependent on the estimation error. A statistical learning algorithm thus is said to be
consistent if and only if the estimation error converges to zero as the number of observations
increase. That is the learning algorithm generating a sequence of solutions f1, f2, ... is consis-
tent with respect to (X ,µ) and (Y ,n) given H , if for all e > 0

Pr(R( fm)�R( f ⇤)> e)! 0 as m ! •
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it is Bayes consistent with respect to (X ,µ) and (Y ,n) if for all e > 0

Pr(R( fm)�R⇤ > e)! 0 as m ! •

and Universally consistent with respect to H if it is consistent independent of (X ,µ) and
(Y ,n).

There is one important fact to note about these definitions do not depend on the estimator
of risk and are only concerned with the true risk R( fm). Clearly the measure of quality of an
element of the Hypothesis space is the true risk, and we want the true risk to become as good as
possible. The difficulty of this task stems from the fact that the quantity we want to minimize
actually cannot be evaluated, as the associated measures µ and n are unknown. However we
do have access to samples Xn and Yn from which we can try to infer a function f whose risk
is close to the best possible risk. Thus if we can construct a good efficient estimator of risk
R̂( fm), then its consistency would imply consistency of the true risk, which is known as the
induction principle.

1.5.2 Empirical Risk Estimator

Clearly the most straightforward way to proceed is to approximate the true risk by the em-
pirical risk computed on the training data. Instead of looking for a function which minimizes
the true risk R( f ), given some training data (Xn,Yn), the Hypothesis space H and a loss
function L, we have i.i.d. samples from the push-forward loss measure l f

Ln( f ) := {li = L( f ,xi,yi)}n
i=1

i.i.d.⇠ (R+,l f )

which allows us to write the empirical risk as

R̂emp( f ) :=
1
n

n

Â
i=1

li

Then if the optimal solution given by

f ⇤ := arg min
f2H

R̂emp( f )

is uniformly consistent i.e.

Pr

 
sup
f2H

| R̂emp( f )�R( f ) |> e

!
! 0
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as the number of observations increase, then this approach is called the empirical risk mini-
mization induction principle, abbreviated by ERM [120]. Now we will not only calculate this
probability for each given element of the Hypothesis space, but as well calculate its rate of
convergence.

Now given l1, l2, . . . i.i.d. real-valued random variables with finite expectation, which we
have assumed to be true for the problem to be learnable, let

Sn :=
n

Â
i=1

li

and ln be the law of Sn, then the Weak Law of Large Numbers [92, 93] asserts that the empir-
ical sum Sn converges in distribution to nE [l1] i.e. we can say that for all e > 0

lim
n!•

P(1
n

Sn � E [l1]+ e) = 0

In fact, if E
⇥
l2
1
⇤
< •, we have the Central Limit Theorem [Ref], and a consequence is that

lim
n!•

P(1
n

Sn � E [l1]+n1�a) = 0

whenever a > 1
2 .

In the above statement we are considering only certain sets [a,•), a > E [l1], though we
could equally well have considered (�•,a], a < E [l1]. Then we can also consider intervals
of type [a,b], E [l1]< a < b, in which case ln([a,b]) = ln([a,•))�ln((b,•)), and we might
as well assume that ln is sufficiently continuous, at least in the limit, that we can replace the
open interval bound with a closed one. Then another way of stating the Central Limit Theorem
would be to say for any closed set F ⇢ R such that E [l1] /2 F then

lim
n!•

ln(F) = 0

Example 1.2. In a concrete example, if we toss a coin some suitably large number of times,
the probability that the proportion of heads will be substantially greater or smaller than 1

2 tends
to zero. So the probability that at least 3

4 of the results are heads tends to zero. But the question
is, how fast? Consider first four tosses, then eight. A quick addition of the relevant terms in
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the binomial distribution gives:

P
�
At least 3

4 out of four tosses are heads
�
=

1
16

+
4
16

=
5

16

P
�
At least 3

4 out of twelve tosses are heads
�
=

1
212 +

12
212 +

66
212 +

220
212 =

299
212

There are two observations to be made. The first is that the probability of the second case
is substantially smaller than the first – the decay appears to be relatively fast. The second
observation is that 220

212 is substantially larger than the rest of the sum. So by far the most likely
way for at least 3

4 out of twelve tosses to be heads is if exactly 3
4 are heads. Cramer’s theorem

applies to a general i.i.d. sequence of random variables, provided the tail is not too heavy. It
shows that the probability of any such large deviation event decays exponentially with n, and
identifies the exponent.

In order to state the Cramer’s theorem we need the logarithmic moment generating func-
tion, which for the random variable l1 is defined as

L f (h) := logE
h
eh l1

i

and its convex conjugate defined via the Legendre-Fenchel transform of L f (h):

L⇤
f (x) := sup

h2R

�
hx�L f (h)

 

Let DL :=
�

h : L f (h)< •
 

and DL⇤ :=
n

x : L⇤
f (x)< •

o
then the Cramer’s theorem is stated

as follows.

Theorem 1.1. Cramer’s Theorem [55]: Let li 2 R be i.i.d. real-valued random variables
which satisfy E

h
el l1

i
< • for every h 2 R. Then L⇤

f is called the rate function and

1. For any closed set F ⇢ R

lim sup
n!•

1
n

logln(F)� inf
y2F

L⇤
f (y)

(a) For any open set G ⇢ R

lim inf
n!•

1
n

logln(G)�� inf
y2G

L⇤
f (y)

Theorem 1.2. Here µn is the law of Sn.
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The proof of Cramer’s theorem splits into an upper bound and a lower bound. The former
is relatively straightforward, applying Markov’s inequality to ehSn , then optimizing over the
choice of h . This idea is referred to by various sources as the exponential Chebyshev inequal-
ity or a Chernoff bound [87, 99]. The lower bound is more challenging. We re-weight the
distribution function F(x) of l1 by a factor eh l , then choose h so that the large deviation event
is in fact now within the treatment of the central limit theorem, from which suitable bounds
are obtained.

Therefore we that for Sn with some law, i.e. a measure ln on R. The law of large numbers
asserts that as n ! •, these measures are increasingly concentrated at a single point in R,
which in this case is E [l1]. Cramer’s theorem then asserts that the measure of certain sets not
containing this point of concentration decays exponentially in n, and quantifies the exponent,
by a so-called rate function, which is obtained via a Legendre transform of the log moment
generating function of the underlying distribution. Then informally Cramer’s theorem asserts
that

ln([a,•))⇠ e�nL⇤(a)

which also gives us an universal estimate for sample size dependent p-values. Such a principle
is extremely useful in deriving asymptotic rates of convergence in various situations, however
in this work we apply it to prove consistency of the empirical risk estimator.

Corollary 1.1. The performance of the empirical estimator for all f 2 H is given by

lim sup
n!•

1
n

logln

 
sup
f2H

| R̂emp( f )�R( f ) |> e

!
�2 sup

f2H

L⇤
f (e)

In the following we will show how to model the push-forward loss measure and estimate
the rate function L⇤

f necessary to calculate the above defined rate of convergence.

1.5.2.1 Subordinators and Levy processes

In this section we introduce a technique to calculate the rate function that we discussed with
respect to the Cramer’s theorem which we can use to calculate the tail probabilities of the
empirical risk estimator.

As before we are given some training data (Xn,Yn), a Hypothesis space H and a loss
function L, we have i.i.d. samples from the push-forward loss measure l f

Ln( f ) := {li = L( f ,xi,yi)}n
i=1

i.i.d.⇠ (R+,l f )

Now it is not necessary that that the push forward measure l f for each element f of the Hy-
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pothesis space, is a probability measure. Hence we need to make the following assumptions.
Let l f be a general measure on ]0,•[ such that

Z

]0,•[
min(d ,x)dl f (x)< •

for some d > 0 and
l f (]0,•[) = •

The fact that for every x > 0 the tail-intensity L(]x,•[) is finite implies that there are only
finitely many atoms in ]x,•[. On the other hand, there are infinitely many atoms in ]0,•[ since
L(]0,•[) = •. We may thus rank these atoms is decreasing order, and denote them

l⇤1 � l⇤2 � · · ·� 0

as the ranked sequence.
Next, we point out that the integral condition above ensures the summability of the series

Â•
1 li. Indeed, by the first-moment formula, we see that the series Â•

1 liI{lid} converges almost
surely and since there are only finitely many atoms in ]d ,•[, we have

z (1) :=
•

Â
1

li < •

almost surely. Conversely, it can also be checked that the series Â•
1 li diverges almost surely

whenever the integral condition fails. This means that the above integral condition provides
the necessary and sufficient condition for the Risk functional to be finite for each function f
and thereby characterizes learnability.

Now we consider certain increasing processes which is known as a Subordinator [23, 104].
Introduce an independent sequence U1,U2... of i.i.d. uniform variables on [0,1], and then
define the increasing process

z (t) :=
•

Â
i=1

liI{Uit} = Â
Uit

li, t 2 [0,1] (1.4)

In other words, the collection of jump times and jump sizes of purely discontinuous increasing
process z is {(Ui, li), i 2 N}.

Now increasing process (z (t),0  t  1) has independent and stationary increments. This
means that for every 0 = t0 < t1 < · · ·< tn < tn+1 = 1, the variables z (t1)�z (t0), ...,z (tn+1)�
z (tn) are independent, and z (ti+1)� z (ti) has the same law as z (ti+1 � ti). Then the process
(z (t),0  t  1) is known as a subordinator on the time interval [0,1]. The Levy-Khintchine
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formula (1.5) shows that z (t) is a subordinator if and only if n f , the push-forward measure
defined on R+ is a completely random measure i.e. a Levy measure. Which allows us to define
the function L f as the Laplace exponent and the representation of the subordinator itself (1.4)
as the Levy-Ito decomposition.

Theorem 1.3. Levy–Khintchine formula [23]: The Laplace-Stieltjes transform of a subordi-
nator on R+ has a unique representation of the form

logE [exp(�ez (t))] =�etq � t
Z

R+

h
1� e�el

i
l f (dl) =�tL f (e) (1.5)

for all e,q 2 R+ and where the push-forward measure l f on R+ satisfies, for some d > 0

Z

R+

min(d , l)l f (dl)< •

This means that under the very weak integrability condition of the push forward measure
l f , which essentially means that if the points as sampled from it are concentrated in a compact
subset, then l f is a Levy measure. Many of the well studied measures belong to the family
of Levy measures, including Compound Poisson Processes , Gaussian Processes , Gamma
Processes, Stable Processes, etc. Here we use Gamma and Stable sub-families to get model
our push-forward loss measure and thereby estimate the rate function corresponding each
element of the Hypothesis space.

Gamma subordinators The Gamma subordinator [23] is suitable when the tail of the push-
forward loss measure decreases exponentially fast. Let q ,c> 0 be two fixed real numbers. The
subordinators (z (t),0  t  1) corresponding to the Levy measure

dl f (x) = qx�1e�cxdx, x > 0

is called a gamma subordinator with parameter (q ,c). Its Laplace exponent is given by

L f (e) = q
Z •

0
(1� e�ex)x�1e�cxdx = q log(1+ e/c), q � 0

note that z (t) has the gamma distribution with parameter (q t,c). Here again, the parameter
c will have a very minor role, due to the easy fact that cg(·) is a gamma subordinator with
parameter (q ,1). In this direction, it might be also interesting to point out that for every
a 2]0,1[, (g(at),0  t  1) is a gamma subordinator with parameter (aq ,c).

Then the rate function corresponding to a Gamma subordinator if given by the Legendre-
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Fenchel transform of L f (e):

L⇤
f (x) = sup

e2R

�
ex�L f (e)

 

= sup
e2R

{ex�q log(1+ e/c)}

= q �q logq � cx+q log(cx)

Stable Subordinators The Stable subordinator [23] is suitable when the tail of the push-
forward loss measure decreases polynomially fast. Let a 2]0,1[ and c > 0 are fixed parame-
ters. Then subordinators (z (t),0  t  1) corresponding to the Stable Levy measure

dl f (x) =
ca

G(1�a)
x�1�a , x > 0

has a Laplace exponent given by

L f (e) = cea =
ca

G(1�a)

Z •

0
(1� e�ex)x�1�adx

It is known as a stable subordinator with index a . The parameter c > 0 has a very minor
role, as changing z into kz merely amounts to change c into kac. In particular, the following
definition does not depend on c.

Similarly using the rate function corresponding to a Gamma subordinator if given by the
Legendre-Fenchel transform of L f (e):

L⇤
f (x) = sup

e2R

�
ex�L f (e)

 

= sup
e2R

{ex� cea}

=
⇣ x

ac

⌘ 1
a�1

Thus using the observed samples from the push-forward loss measure Ln( f ), we should
be able to estimate the parameters of either the Gamma or the Stable distribution, which would
then allow us to write the estimate of the rate function corresponding to each element of the
hypothesis space.
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1.5.3 Bias-Variance Tradeoff

Now we know how to calculate the performance of each element of the Hypothesis space using
an empirical estimator. However as a whole the performance of the Hypothesis space, in terms
of the rate of convergence to the true solution depends on the assumptions on it, which reduces
its “capacity” to represent different functions thereby increasing the approximation error for
an arbitrary target function, however leads to faster convergence.

Originally coined in the case of least squared regression, this is the well known dichotomy
between controlling the trade-off between approximation (bias) and estimation (variance) er-
ror. In statistics, estimation error is also called the variance which measures the variation of
the risk of the function fn estimated on the sample, and the approximation error measures the
“bias” introduced in the model by choosing too small a function class.

Intuitively speaking, Hypothesis spaces with higher capacity can represent target functions
of higher complexity. However, rather unintuitively, there is no universal way of measuring
the complexity of the elements in the Hypothesis space, a fact which has been formalized in
what is known as the No Free Lunch theorem [126].

For example in the context of simple hypothesis testing this tradeoff is analogous to Ney-
man Pearson Optimality where one wants to minimize Type II error while controlling Type I
error. Here one can see Type II error as the risk associated with the choice of a test and we want
to choose the one which minimizes it. While the Type I error characterizes the generalization
error of the test which we want to control at a certain level.

Here we see that Type I error is one possible way of controlling the generalization error
which results in the notion of Neyman Pearson optimality of hypothesis tests. An associated
concept is the probability of False Discovery, which is defined to be the posterior probability
of the chosen label being wrong (for classification) or the chosen element in the dictionary
being wrong (for regression) to represent a certain function, given the observed data. In the
context of generalization error, we want to control the rate of false discoveries while searching
through the Hypothesis space for the optimal solution. We develop this concept in the next
section.

1.5.3.1 Probability of False Discovery

In order to control the generalization error, for each function present in the Hypothesis space,
we would like to construct a Hypothesis test of whether it belongs to a reasonable subclass
of functions which could be the plausible solution. This is a common approach especially
for regression, where a normally distributed prior on the parameters leads to ridge regression
[5, 60, 84], while a Laplacian prior leads to Lasso [27, 34, 118, 124] in the case of square
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error loss. In this section we would like to generalize this strategy to any arbitrary family of
measures and any machine learning application.

This problem can be seen as a compound hypothesis testing problem, where only partial
information about the null hypothesis is known a priori. One possible way to model the sit-
uation is by a composite null hypothesis H0 := µ0 2 [q2Qµq for µq 2 P(H ) with q 2 Q
represents the family of measures that is independent of n (the number of observations). Then
the testing problem can be stated as

H0 = µ0 2 [q2Qµq vs H1 = µ1 2 P(H )\[q2Q µq (1.6)

This case is also known as the Detection problem in literature, where one would be interested
in determining whether some phenomena is present or not based on the given observations.

We start by constructing a model which can be characterized by a binary random variable
S 2 {0,1} called the hypothesis random variable which corresponds to

S =

8
<

:
0 if H0

1 if H1

along with the samples from the push-forward loss measure Ln( f ). Then a statistical de-
cision test Ŝn(Ln( f )) is a sequence of Borel measurable (w.r.t. the product s -field) maps
Ŝn : Ln( f )! S, with the interpretation that when Ln( f ) is observed

Ŝn(Ln( f )) = S

maps Ln( f ) to the hypothesis random variable S, i.e. makes a decision whether the function
under consideration f should be accepted or rejected.

The probability P(S) of hypothesis S is referred to as the a priori probability of the hy-
pothesis S. This a priori probability is not known in most circumstances and usually classical
results in testing theory can be deduced by assigning a probability of 1/2 to each hypothesis.
However in many real world phenomena, such an assumption is not reasonable. For example
in the case of rare events, P(S = 0)� P(S = 1), i.e. a priori we know that the probability of
the alternate hypothesis being true is very small compared to the null hypothesis, even if we
don’t actually know their values. Thus by studying various models of this prior probability,
we gain insight into constructing better testing algorithms especially in such situations.
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1.5.3.2 Testing Criteria

The performance of a statistical decision test Ŝn(Ln( f )) can be determined using a variety of
error criteria and subsequently can be optimized with respect to them to construct different
algorithms.

First we consider maximizing the probability of making the correct decision. Thus we
want to maximize the following posterior probability

P(S | Ln( f )) =
P(Ln( f ) | S)P(S)

P(Ln( f ))

which gives us the MAP rule

Ŝn(Ln( f )) = argmax
S

P(Ln( f ) | S)P(S) (1.7)

The MAP rules reduces to the classical maximum likelihood test when P(S = 0) = 1/2.
Then we can define the classical errors i.e. the pair of Type I and II errors which can be
described as follows. Type I error is defined as the probability of the statistical decision test
rejecting the null hypothesis, when the null is actually true i.e.

an(Ŝn(Ln( f ))) := P(Ŝn(Ln( f )) = 1 | S = 0) (1.8)

and the Type II error is the probability of the statistical decision test accepting the null hypoth-
esis when the alternate is true

bn(Ŝn(Ln( f ))) := P(Ŝn(Ln( f )) = 0 | S = 1) (1.9)

Now bn(Ŝn(Ln( f ))) may always be minimized by choosing Ŝn(Ln( f ))⌘ 1 at the expense of
an(Ŝn(Ln( f ))) = 1.

The Neyman Pearson criterion for optimality involves looking for a test Ŝn(Ln( f )) that
minimizes bn(Ŝn(Ln( f ))) subject to the constraint an(Ŝn(Ln( f )))  h for some 0 < h < 1.
This criterion is satisfied by the MAP rule and can be reformulated in terms of a log-likelihood
ratio test as defined in the next section. However, such a criterion can only be met in case of a
Simple Hypothesis test, when both the alternative measures are known.

The Hoeffding criterion [19, 26, 96, 105, 108, 122, 129] for optimality for a test Ŝn , is
defined as: if among all tests that satisfy

lim sup
n!•

1
n

logan(Ŝn)�h
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the test Ŝn has the maximal exponential rate of error, i.e. uniformly over all possible alternate
laws,

� lim sup
n!•

1
n

logbn(Ŝn)

is maximal, then Ŝn is called optimal. This criterion applies to a more general situation when
only the null measure is known, or even only partially known and is optimized by the gen-
eralized log-likelihood ratio test. This optimality criterion can also be modified and stated in
terms of controlling the analogous posterior errors, the FDR and FNR, as defined below.

Then the probability of False Discovery [19, 34, 40, 98, 124] can be defined as the posterior
error rate analogous to Type I error,

FDR(Ŝn(Ln( f ))) = P(S = 0 | Ŝn(Ln( f )) = 1)

=

✓
1+

1�bn(Ŝn(Ln( f )))
an(Ŝn(Ln( f )))

P(S = 1)
P(S = 0)

◆�1

(1.10)

while the probability of False Non-discovery, the posterior error analogous to the Type II error,

FNR(Ŝn(Ln( f ))) = P(S = 1 | Ŝn(Ln( f )) = 0)

=

✓
1+

1�an(Ŝn(Ln( f )))
bn(Ŝn(Ln( f )))

P(S = 0)
P(S = 1)

◆�1

(1.11)

Clearly these error rates depend on the prior probabilities of the two Hypothesis, which is
usually not known for a given application and hence needs to be inferred from data. Usually
in literature these error rates are defined in the context of multiple testing problem, since
in that case one has access to multiple p-values which can be used to estimate these prior
probabilities. In this work by defining them as posterior error rates, we are able to define a
generalized likelihood ratio test with data adaptive threshold which is able to control the FDR
probability.

1.5.3.3 Generalized Likelihood Ratio Test

The major deficiency of the likelihood ratio test lies in the fact that it requires perfect knowl-
edge of the measures µ0 and µ1, both in forming the likelihood ratio and in computing the
threshold g . Thus, it is not applicable in situations where the alternative hypotheses consist
of a family of probability measures, for example when only partial information about the null
probability measure is given, which might be that it belongs to a certain family of measures

H0 = µ0 2 [q2Qµq vs H1 6= µ0 2 [q2Qµq
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To overcome these difficulties, the error criterion has to be modified, since the requirement
of uniformly small bn over a large class of plausible laws µ1 may be too strong and it may be
that no test can satisfy such a condition. It is reasonable therefore to search for a criterion that
involves asymptotic limits.

Then the optimality condition (due to Hoeffding) under both scenarios for a test Ŝn (for a
given threshold g > 0) could be considered as, if among all tests that satisfy

lim sup
n!•

1
n

logan(Ŝn)�g

the test Ŝn has the maximal exponential rate of error, i.e. uniformly over all possible alternate
laws,

� lim sup
n!•

1
n

logbn(Ŝn)

is maximal. To present the optimal test, we need certain definitions. Let (Ŝ0
n, Ŝ1

n) be partitions
induced on H by the test Ŝn such that

Ŝ0
n :=

�
Ln( f )⇠ P(H ) : Ŝn(Ln( f )) = 0

 
and Ŝ1

n = H \Ŝ0
n

Since in the general framework discussed here, point-wise bounds on error probabilities are
not available, smooth versions of the maps Ŝn are considered. Specifically, for each d > 0, let
Ŝd

n denote the d -smoothing of the map Ŝn defined via

Ŝ0,d
n :=

�
Ln( f )⇠ P(H ) : d(Ln( f ), Ŝ0

n)< d
 

and Ŝ1,d
n = H \Ŝ0,d

n

i.e., the original partition is smoothed by using Ŝ0,d
n , the open d -blowup of the set Ŝ0

n. Finally
we can define the d -smoothed rate function as

Jd (y) := inf
x2B2d ,y

L⇤(x) (1.12)

where B2d ,z(x) = {x 2 Xn : d(z,x) 2d}. For the d -smoothed version of the rate function for
the partially known null hypothesis we have a natural candidate as

Jd (y) := inf
q2Q

inf
x2B2d ,y

L⇤
q (x) (1.13)

Then the optimal tests under both scenarios is given by the following theorem.

Theorem 1.4. Dembo-Zetouni Theorem [55]: For any d > 0, any g � 0 and for all q 2 Q if
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applicable let

Ŝ⇤,dn (g) =

8
<

:
0 if Jd (Ln( f ))< g

1 otherwise

such that
lim sup

n!•

1
n

logan(Ŝ⇤,dn (g))�g

then for any other test Ŝd
n (h) where

lim sup
n!•

1
n

logan(Ŝcd
n (g))�g

where c > 0 is an arbitrary constant, then we have

� lim sup
n!•

1
n

logbn(Ŝ⇤d
n (h))�� lim sup

n!•

1
n

logbn(Ŝd
n (h))

This theorem provides an extremely general way of constructing a statistical test which
would be true even if the i.i.d. assumption on the data made above is relaxed, a case which
however we do not study in this work. Finally applying the Cramer’s theorem we can calculate
the p-value corresponding to the test Ŝ⇤,dn quite easily by

lim sup
n!•

1
n

log(p-value(Ln( f ))) = lim
n!•

1
n

logPµ0 ((Jd (Ln( f )),•)) =�Jd (Ln( f ))

1.5.3.4 FDR Control

Till now we used the Type I and II errors to develop our notion of optimality and corresponding
tests. Now instead, consider the problem of constructing an analogous optimal test based on
controlling the pair FDR and FNR. As we have seen previously that both quantities do not go
to zero together for a fixed threshold level. However, if we fix FDR or FNR at a certain level,
then one can calculate the other quantity. In practice therefore it is necessary to choose which
error is more important to control, in a given real world application.

Hence for a given FDR [1.10], by using some basic algebra we can calculate FNR as

FNR(an,bn,g) =
✓

1+
eg

bn
� FDR(an,bn,g)

1�FDR(an,bn,g)
1�bn

bn

◆�1

or equivalently for a given value of FNR [1.11], we can calculate the corresponding value of
FDR as

FDR(an,bn,g) =
✓

1+
e�g

an
� FNR(an,bn,g)

1�FNR(an,bn,g)
1�an

an

◆�1



1.5 Risk Estimation 41

Following the idea of Hoeffding, we develop a criterion for an optimal test Ŝn, as to select
an adaptive threshold, which fixes either one of FDR or FNR while minimizing the other,
among all other tests asymptotically. For example, in this work we call Ŝn optimal if among
all tests that satisfy

lim sup
n!•

1
n

logFDR(Ŝn)�h

the test Ŝn has the maximal exponential rate of error, i.e. uniformly over all possible alternate
measures

� lim sup
n!•

1
n

logFNR(Ŝn)

is maximal. Then the following theorem describes a way to build such a statistical test.

Theorem 1.5. For every Ln( f ) and any d > 0, if the statistical test is given by

Ŝ⇤,dn (Ln( f )) =

8
<

:
0 if Jd (Ln( f ))< Eµ0 [Jd (Ln( f ))]+h

1 otherwise

where Jd is given by [1.12 or 1.13], then the FDR rate is controlled at

lim sup
n!•

1
n

logFDR(Ŝ⇤,dn )�h

while having the maximal exponential rate of error, i.e. uniformly over all possible alternate
measures

� lim sup
n!•

1
n

logFNR(Ŝ⇤,dn )

Proof. In order to prove the theorem we start from the formulation of the Dembo-Zetouni
theorem, i.e. for any d > 0, any g � 0 and for all q 2 Q if applicable

Ŝ⇤,dn (g) =

8
<

:
0 if Jd (Ln( f ))< g

1 otherwise

since it asymptotically has the maximum power. Now for such a test, the FDR is defined by
[1.10], which allows us to setup the optimality condition, for any h � 0 as

lim sup
n!•

1
n

logFDR(Ŝ⇤,dn (Ln( f )))�h
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then we have

�h � lim sup
n!•

1
n

logFDR(Ŝ⇤,dn (Ln( f )))

=� lim sup
n!•

1
n

log

 
1+

1�bn(Ŝ
⇤,d
n (Ln( f )))

an(Ŝ
⇤,d
n (Ln( f )))

e�g

!

=� lim sup
n!•

1
n

log

 
1�bn(Ŝ

⇤,d
n (Ln( f )))

an(Ŝ
⇤,d
n (Ln( f )))

!
:= G(Ŝ⇤,dn )

For any arbitrary µ1 2 P(X)\µ0, we want to select the threshold g such that

sup
µ12P(X)\µ0

G(Ŝ⇤,dn ) = sup
µ12P(X)\µ0

lim sup
n!•

1
n

log
✓

Pµ1 (Jd (Ln( f )) 2 (g,•))

Pµ0 (Jd (Ln( f )) 2 (g,•))

◆

= lim sup
n!•

1
n

logEµ0

⇣
enJd (Ln( f ))1Jd (x)2(g,•)

⌘

� lim sup
n!•

1
n

logPµ0 (Jd (Ln( f )) 2 (g,•))

Since the test rejects the null hypothesis in the case of FDR, we have g < Jd (Ln( f )), and
hence

sup
µ12P(X)\µ0

G(Ŝ⇤,dn )  lim
n!•

1
n

logEµ0

⇥
Pµ0 ((Jd (Ln( f )),•))

⇤

� lim
n!•

1
n

logPµ0 ((Jd (Ln( f )),•))

= lim inf
n!•

1
n

logE [p-value(Ln( f ))]� lim inf
n!•

1
n

log(p-value(Ln( f )))

Since the p-value corresponding to the test Ŝ⇤,dn is given by

lim inf
n!•

1
n

log(p-value(Ln( f ))) = lim
n!•

1
n

logPµ0 ((Jd (Ln( f )),•)) =�Jd (Ln( f ))

using the Jensen’s Inequality, we can estimate an upper bound on the expected p-value as

lim inf
n!•

1
n

logE [p-value(Ln( f ))] E


lim inf
n!•

1
n

log(p-value(Ln( f )))
�
=�E [Jd (Ln( f ))]

This means that the optimal threshold g corresponds to satisfying

lim sup
n!•

1
n

logFDR(Ln( f ))� lim inf
n!•

1
n

log(p-value(Ln( f )))�lim inf
n!•

1
n

logEµ0 [p-value(Ln( f ))]
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in other words
lim sup

n!•

1
n

logFDR ��Jd (Ln( f ))+Eµ0 [Jd (Ln( f ))]

which means for any x, we reject null hypothesis if

Jd (Ln( f ))�Eµ0 [Jd (Ln( f ))]�h � 0 (1.14)

then the FDR is controlled at the level e�nh .

Example 1.3. Benjamini-Hochberg Procedure: Let X denote the orthogonal design matrix
with unit norm, whose columns are perpendicular to each other (note that this implies p  n).
Further let the errors be i.i.d. N (0, 1), then

ỹ = X 0y ⇠ N(b , Ip)

where Ip is the p ⇥ p identity matrix. For testing the p hypotheses i.e. Hi : bi = 0, the
Benjamini-Hochberg Procedure (BHq) step-up procedure proceeds as follows:

1. Sort the entries of ỹ in decreasing order of magnitude, | ỹ |(1)�| ỹ |(2)� · · · | ỹ |(p) (this
yields corresponding ordered hypotheses H(1), ...,H(p)).

(a) Find the largest index i such that

| ỹ |(i)> F�1(1�qi), qi = q
i

2p

where F�1(a) is the ath quantile of the standard normal distribution and q is a
parameter in [0,1]. Call this index iSU. (For completeness, the BHq procedure
is traditionally expressed via the inequality | ỹ |(i)� F�1(1� qi) but this does not
change anything since ỹ is a continuous random variable.)

(b) Reject all H(i)’s for which i  i SU (if there is no i then make no rejection).

Example 1.4. This procedure is adaptive in the sense that a hypothesis is rejected if and only
if its z-value is above a data-dependent threshold. In their seminal paper [29], Benjamini and
Hochberg proved that this procedure controls the FDR. Letting V (resp. R) be the total number
of false rejections (resp. total number of rejections), we have

FDR = E


V
R_1

�
= q

p0

p
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where p0 is the number of true null hypothesis, p0 =| {i : bi = 0} |, so that p = p0+ k b kl0 .
This always true, no matter the value of the mean vector b . In the general case the ỹ are given
exactly by Jd (·).

Therefore we see that by modeling the samples from the push-forward loss measure, using
the subordinator formulation, we were able to not only estimate convergence rates for the
empirical risk estimator under a large class of machine learning problems, but also associate
to each element of the Hypothesis space a probability of False discovery which allows us to
construct an alternative approach to control the generalization error.



Chapter 2

Model Selection by Adapting to unknown
Sparsity

2.1 Introduction

Representing complicated functions as superpositions of basic transforms of simpler functions
has been a subject of study in Harmonic analysis since the introduction of the Fourier trans-
form, centuries ago [31, 32, 42]. Such a representation allows us to extract information from
observed signals or functions by transforming the function from its original domain into a new
domain, with the purpose of extracting the characteristic information which is otherwise not
readily observable in its original form.

Consider a sequence of paired i.i.d. random variables (X1,Y1) , ...,(Xn,Yn) on a Polish
space (X ,µ)⇥ (Y ,n) with a Borel probability measures, µ 2 M

1
+(X ) and n 2 M

1
+(Y ).

Let f 2 L2(X ) be a square integrable function f : X ! Y , then the synthesis problem is the
process of building a representation

y = f (x) = hq ,F(x)i+ e

where F(x) = {fl (x)}l2L is a set of template functions called the dictionary. The dictionary
provides an over-complete representation, i.e. represents way more “features” than necessary
to represent the function. Then the aim of any learning algorithm is to find a sparse parameter
vector q 2 R#(L) which minimizes the norm of the error e 2 Y i.e.

argmin
q

Eµ⇥n k y�hq ,F(x)i k2
2 +Reg(q)

where Reg(q) is a regularizer and is a function of the parameter q .
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When the regularizer is equal to the L1 norm, we get the standard risk functional corre-
sponding to the LASSO algorithm, while for the L2 norm we get the one corresponding to
ridge regression. In this work, we want to find a regularizer, which controls the sparsity of q
by controlling the asymptotic FDR rate of elements in the dictionary F(x).

In order to derive the regularizer, we start by using the Gibbs principle to define the joint
distribution of the empirical risk and the probability of false discovery for each element of the
dictionary which we calculated earlier using the compound Hypothesis rate function denoted
by Jd (q). This provides a general framework for constructing regularized objectives once one
chooses the loss function. Thus learning algorithm would construct a sequence of measures
r1,r2, ... 2 M

1
+(H ) on the parameter space, such that

Erm [ f ]! Er⇤ [ f ]

where r⇤ 2 M
1
+(H ) is given by the Gibbs Measure i.e.

r⇤ = arg min
r2M 1

+(H )
Fb [r]

where
Fb [r] = Er

⇥
Eµ⇥n k y�hq ,F(x)i k2

2 +gq Jd (q)
⇤
+b�1H(r)

is known as the Free Energy functional with b > 0 (temperature) and H(r) the entropy of r .
This allows us to show that if gq in proportional on the first order statistic distribution, then r⇤

controls the rate of False Discoveries. Therefore it is possible that 9r such that

Er⇤ [F( f )]> F
�
Er⇤ [ f ]

�

Jensen’s Inequality
> F

�
Er [ f ]

�

but then r would have a higher rate of False Discovery.

We confirm the rather theoretical result by deriving the regularizer under a Laplacian prior
on the parameter vector. This allows us to derive that

Reg(q) = Â
l

gl | q(l ) |

where g1 � g2 � · · · and | q(1) |�| q(2) |� · · · are the order statistics of the magnitudes of the
coefficients is the recently derived SLOPE regularizer [27, 34, 106, 111] which was shown to
control FDR at a given level by choosing gi’s appropriately.
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2.1.1 Loss Functions which control FDR

As discussed earlier, the risk for a general machine learning problem is defined in terms of the
mean discrepancy function D, which itself can be written in terms of being the expected value
of a certain loss function L

D = Eµ,n [L( f ,x,y)]

whose allows us to write the push-forward measure for each f 2 H as

L]( f ) : (X ,µ)⇥ (Y ,n)!
�
R+,l f

�

where l f 2 M+(R+). Then assuming that we have observed i.i.d. samples Xn and Yn, we
can construct i.i.d. samples from the push-forward measure l f

Ln( f ) := {li = L( f ,xi,yi)}n
i=1

i.i.d.⇠ (R+,l f )

where l = L( f ,x,y) and let Ln 2M+(R+) denote the empirical measure associated with these
variables.

Given a functional F : M+(R+) ! R (the energy functional), we are interested in com-
puting the law of l1 under the constraint F(Ln) 2 D, where D is some Borel subset of R repre-
senting the partition of the non-negative real line corresponding to the compound hypothesis
test controlling the FDR at a predefined level.

For every measurable set A ⇢ M+(R+) such that {Ln 2 A} is of positive probability, and
every bounded measurable function g : R+ ! R, due to exchangeability of the li’s

E [g(l1) | Ln 2 A] = E [ f (li) | Ln 2 A]

= E
"

1
n Â

i
g(li) | Ln 2 A

#

= E [hg,Lni | Ln 2 A]

Thus for A := {n : F(n) 2 D}, computing the conditional law of l1 under the conditioning
{F(Ln)2 D}= {Ln 2 A} is equivalent to the computation of the conditional expectation of Ln

under the same constraint.

2.1.2 Existence of a Conditional Measure

First we want to show that we can define a push-forward loss measure conditional on the Hy-
pothesis that it has a certain prior distribution. Let M+(R+) be equipped with the t-topology
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and the cylinder s -field B
cy (define). For any l 2 M+(R+), let l n 2 M+(Rn

+) denote the
induced product measure on Rn

+ and let Qn be the measure induced by l n in (M+(R+),Bcy)

through Ln. Let Ad 2 B
cy, d > 0 be nested measurable sets, i.e. Ad ✓ Ad 0 if d < d 0. Let Fd be

nested closed sets such that Ad ✓ Fd . Define F0 = \d>0Fd and A0 = \d>0Ad so that A0 ✓ F0.

Assumption 2.1. There exists a r⇤ 2 A0 (not necessarily unique) satisfying

KL(n⇤ | l ) = inf
n2F0

KL(r | l ) := IF < •

and for all d > 0
lim
n!•

rn
⇤ ({Ln 2 Ad}) = 1

where KL represents the KL-divergence.

Think of the following situation as representative: Ad = {r :| F(r) | d}, where F :
M+(R+) ! [�•,•] is only lower semicontinuous, and thus Ad is neither open or closed.
The nested, closed sets Fd are then chosen a Fd = {r : F(r) d} with F0 = {r : F(r) 0},
while A0 = {r : F(r) = 0}. We are then interested in the conditional distribution of l1 under
a constraint of the form F(Ln) = 0 (for example a specified average energy).

Theorem 2.1. [55]Under Assumption 2.1: M := {r 2 F0 : KL(r | l ) = IF} is a non-empty,
compact set. Further, for any G 2 B

cy with M ⇢ G�,

lim sup
d!0

lim sup
n!•

1
n

logl n (Ln /2 G | Ln 2 Ad )< 0

Proof. Note that A0 ✓ F0, so r⇤ 2 M by assumption 2.1. Moreover, IF < • implies that
M being the intersection of the closed set F0 and the compact set {r : H(r | l )  IF}, is a
compact set. Clearly,

lim sup
d!0

lim sup
n!•

1
n

logl n (Ln /2 G | Ln 2 Ad )

 lim
d!0

lim sup
n!•

1
n

logQn (Gc \Ad )� lim
d!0

lim inf
n!•

1
n

logQn (Ad )

Let G := G�. Then, since Gc \Ad ⇢ Gc \Fd , with Gc \Fd being closed set, the upper bound
of Sanov’s theorem [Ref] yields

lim
d!0

lim sup
n!•

1
n

logQn (Gc \Ad )

 lim
d!0

⇢
� inf

r2Gc\Fd
KL(r | l )

�
=� inf

r2Gc\F0
H(r | l )<�IF
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where the equality follows from the nested, closed sets Gc \Fd , and the strict inequality fol-
lows from the closedness of Gc \F0 and the definition of M .

Lemma 2.1. Under assumption 2.1, for all d > 0

lim inf
n!•

1
n

logQn(Ad )��IF

Proof. Since Ad in general may contain no neighborhood of points from M , the lower bound
of Sanov’s theorem cannot be used directly. Instead, a direct computation of the lower bound
via the change of measure argument will be used in conjunction with the fact that for all d > 0

lim
n!•

rn
⇤ ({Ln 2 Ad}) = 1

Let n⇤ be as in Assumption 2.1. Since H(r⇤ | l ) < •, the Radon-Nikodym derivative
f = dr⇤/dl exists. Fix d > 0 and define the sets

Gn :=

(
l 2 Rn

+ : gn(l) :=
n

’
i=1

f (li)> 0,Ln 2 Ad

)

Which implies that limn!• rn
⇤ (Gn)! 1. Hence,

lim inf
n!•

1
n

logQn(Ad )� lim inf
n!•

1
n

log
Z

Gn

1
gn(l)

rn
⇤ (dl)

= lim inf
n!•

1
n

log
✓

1
nn
⇤ (Gn)

Z

Gn

1
gn(l)

rn
⇤ (dl)

◆

Therefore, by Jensen’s inequality

lim inf
n!•

1
n

logQn(Ad )�� lim sup
n!•

1
nnn

⇤ (Gn)

Z

Gn
log(gn(l))rn

⇤ (dl)

=�H(r⇤ | l )+ lim inf
n!•

1
n

Z

(Gn)
c
log( fn(l))rn

⇤ (dl)

Note that Z

(Gn)
c
log( fn(l))rn

⇤ (dl) =
Z

(Gn)
c

fn(l) log( fn(l))l n(dl)�C

where C = infx�0 {x logx}>�•. Since H(r⇤ | l ) = IF , the proof is complete.

The following corollary shows that if r⇤ of assumption 2.1 is unique, then l n
Lk( f )|Ad

, the
law of Lk( f ) conditional upon the event {Ln 2 Ad}, is approximately a product measure.
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Corollary 2.1. If M = {r⇤} then l n
Lk( f )|Ad

! (r⇤)
k weakly in M

1
+(Rk

+) for n ! • followed
by d ! 0.

Proof. Assume M = {r⇤} and fix f j 2Cb(S), j = 1, ...,k. By the invariance of l n
Ln( f )|Ad

with
respect to permutations of {l1, ..., ln},

h
k

’
j=1

f j,µn
Lk( f )|Ad

i= (n� k)!
n! Â

i1 6=··· 6=ik

Z

Sn

k

’
j=1

f j(li j)l
n
Lk( f )|Ad

(dl)

Since,

E
"

k

’
j=1

hf j,Lni | Ln 2 Ad

#
=

1
nk Â

i1,...,ik

Z

Rn
+

k

’
j=1

f j(li j)l
n
Lk( f )|Ad

(dl)

and f j are bounded functions, it follows that

| h
k

’
j=1

f j,l n
Lk( f )|Ad

i�E
"

k

’
j=1

hf j,Lni | Ln 2 Ad

#
|C

✓
1� n!

nk(n� k)!

◆
n!•! 0

For M = {n⇤}, Theorem 2.1 implies that for any h > 0

µn �| hf j,Lni�hf j,r⇤i |> h | Ln 2 Ad
�
! 0

as n ! • followed by d ! 0. Since hf j,Lni are bounded

E
"

k

’
j=1

hf j,Lni | Ln 2 Ad

#
! h

k

’
j=1

f j,(r⇤)
ki

so that

lim sup
d!0

lim sup
n!•

h
k

’
j=1

f j,µn
Lk( f )|Ad

� (r⇤)
ki= 0

Recall that Cb(R+)k is convergence determining for M
1
+(Rk

+), hence it follows that µn
Lk( f )|Ad

!
(r⇤)k weakly in M

1
+(Rk

+).

2.1.3 Free Energy Functional

Define the functional F : M
1
+(R+)! [�1,•] by

F(r) = hU,ri�1
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and consider the constraint

n
LY

n 2 Ad

o
:=

n
| F(LY

n ) | d
o
=

(
| 1

n

n

Â
i=1

U(Yi)�1 | d

)

By formally solving the optimization problem

inf
{n :hU,ri=1}

H(r | l )

one is led to conjecture that n⇤ of assumption 1 should be a Gibbs measure, namely one of the
measures gb , where

dgb
dµ

=
e�bU( f )

Zb

and Zb the partition function, is the normalizing constant

Zb =
Z

S
e�bU( f )l f (d f )

Throughout this section, b 2 (b•,•) where b• := inf
�

b : Zb < •
 

.

Lemma 2.2. [55] Assume that µ ({x : U(x)> 1})> 0, µ ({x : U(x)< 1})> 0 and either b• =

�• or
lim

b&b•
hU,gb i> 1

Then there exists a unique b ⇤ 2 (b•,•) such that hU,gb ⇤i= 1.

Theorem 2.2. [55] Let U,µ and b ⇤ be as in the previous lemma. If either U is bounded or
b ⇤ � 0, then 2.1 applies, with M consisting of a unique Gibbs measure gb ⇤ .

Proof. Note that by the monotone convergence theorem, hU, ·i = supnhU ^ n, ·i. Since U ^
n 2 B(S), it follows that F(·) = hU, ·i � 1 is a t-lower semicontinuous functional. Hence,
Fd := {n : hU,ni  1+d} ,d > 0, are nested closed sets, whereas F0 = {n : hU,ni  1} is
convex, closed set. By the previous lemma, gb ⇤ 2 F0, and by a direct computation

H(gb ⇤ | µ) =�b ⇤hU,gb ⇤i� logZb ⇤ < •

implying that IF < •. Since H(· | µ) is strictly convex within its IF level set, it follows that
M contains precisely one probability measure, denoted n0. A direct computation, using the
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equivalence of µ and gb ⇤ , yields that

�H(n0 | gb ⇤)��H(n0 | gb ⇤)+
⇥
H(n0 | µ)�H(gb ⇤ | µ)

⇤

= b ⇤ �hU,gb ⇤i�hU,n0i
�
= b ⇤ (1�hU,n0i)

where the preceding inequality is implied by n0 2 M and gb ⇤ 2 F0. For b ⇤ � 0, it follows
that H(n0 | gb ⇤) 0, since hU,n0i  1. Hence, n0 = gb ⇤ and consequently, M = {gb ⇤}. Now,
Assumption 1 holds for n⇤ = gb ⇤ 2 A0 as the limit for all d > 0

lim
n!•

nn
⇤

⇣n
LY

n 2 Ad

o⌘
= 1

follows from the weak law of large numbers. Consequently Theorem 2.1 holds. When U is
bounded, then Ad are closed sets. Therefore, in this case Fd = Ad can be chosen to start with,
yielding hU,n0i= 1. Consequently, when U is bounded, n0 = gb ⇤ = n⇤ even for b ⇤ < 0.

Proof. Lemma 2.2:logZb is a C• function in (b•,•). By dominated convergence,

hU,gb i=� d
db

logZb

and is finite for all b > b•. Then

d
db

hU,gb i=�
Z

S

�
U �hU,gb i

�2 dgb < 0

where the strict inequality follows, since by our assumptions, U cannot be constant µ a.e.
Hence, hU,gb i is strictly decreasing and continuous as a function of b 2 (b•,•). Thus, it
suffices to show that

lim
b!•

hU,gb i< 1

and that when b• =�•,
lim

b!�•
hU,gb i> 1

To see this, note that by assumption, there exists a 0 < u0 < 1 such that µ ({x : U(x)< u0})>
0. Now for b > 0

Z

S
e�bU(x)µ(dx)� e�bu0 µ ({x : U(x) 2 [0,u0)})
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and
Z

S
(U(x)�u0)e�bU(x)µ(dx)

e�bu0

Z

S
(U(x)�u0)1{U(x)>u0}e�b (U(x)�u0)µ(dx)

e�bu0

b
sup
y�0

�
ye�y 

Hence, for some C < •

hU,gb i= u0 +

R
S (U(x)�u0)e�bU(x)µ(dx)

R
S e�bU(x)µ(dx)

 u0 +
C
b

which implies
lim

b!•
hU,gb i< 1

For the other case, when b• =�•, choose u2 > u1 > 1 such that µ ({x : U(x) 2 [u2,•)})>
0. Note that for all b  0

1
gb ({x : U(x) 2 [u1,•)}) = 1+

R
S 1{x:U(x)2[0,u1)}e�bU(x)µ(dx)
R

S 1{x:U(x)2[u1,•)}e�bU(x)µ(dx)

 1+
eb (u2�u1)

µ ({x : U(x) 2 [u2,•)})

implying that

lim inf
b!�•

hU,gb i � u1 lim inf
b!�•

gb ({x : U(x) 2 [u1,•)})� u1

and consequently
lim

b!�•
hU,gb i> 1

Corollary 2.2. The Free Energy functional is then given by where

Fb [r] = Er
⇥
Eµ⇥n k y�hq ,F(x)i k2

2 +gq Jd (q)
⇤
+b�1H(r)

where H is the entropy functional and the optimal measure

r⇤ = arg min
r2M 1

+(H )
Fb [r]
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is called the Gibbs Measure.

2.2 Nonlinear Approximations

In the last section we studied how to construct an appropriate cost function which when op-
timized controls the rate of False Discovery. This is equivalent to studying nonlinear approx-
imations of functions using dictionaries which are over-complete or redundant. In this case
these decompositions are not unique, because not all elements of the dictionary are indepen-
dent. However the non-uniqueness gives the possibility of adaptation, i.e. choosing among
the various alternatives the one which minimizes some error for a particular machine learning
problem.

In an adaptive representation the aim is to simultaneously achieve sparsity (i.e. fewest
significant coefficients) and supper-resolution (i.e. smaller error than nonadaptive methods)
using an efficient (i.e. essentially linear time) algorithm. In a practical application one is
only able to store finitely many coefficients to represent a function and hence we are usually
interested in a m-term approximation. There are two ways of attaining this approximation,
Synthesis and Analysis.

2.2.1 Synthesis

The operation of building up a function by superposing elements of the dictionary is called
Synthesis [31, 33, 35, 39]. Let Sm be the manifold consisting of all functions of the form

Sm :=

(
f D
m (x) = Â

yl2D

ql fl (x) =: hq ,F(x)i : x 2 Rd,k q k0= m

)
(2.1)

where the dictionary is defined by

F(x) := {fl (x) : l i.i.d.⇠ L}

where the parameter l is uniformly and independently sampled from L, which is the pa-
rameter space of the dictionary. Many traditional basis learning algorithms like PCA, Kernel
Regression, Basis Pursuit, etc can be formulated as a synthesis problem.

Then the synthesis error for the function f 2 Lp(Rd) using an element from Sm is given
by

em( f )Lp = inf
f F
m 2Sm

k f � f F
m kLp (2.2)
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Here f F
m is the approximation obtained by keeping only those elements of the dictionary cor-

responding to the m largest coefficients. Now such a m-term approximation to a function f
is clearly a nonlinear approximation. Since if f has the best m-term approximation f F

m and g
has gF

m, then f F
m +gF

m is not in general made up of m distinct elements of the dictionary, but a
subset of S2m.

2.2.2 Analysis

Alternatively the operation of associating with each function f , a vector of coefficients at-
tached to the elements of the dictionary is called Analysis and the coefficients are given by

q = {h f ,yl i}yl2D
(2.3)

which is possibly an infinite dimensional vector, depending on the cardinality of the dictionary.
A continuous and differentiable dictionary lends itself well to the back-propagation algorithm
in learning the set of coefficients and their corresponding dictionary elements. For a m-term
approximation, one starts from an arbitrary collection of m-terms from the dictionary and then
using a gradient descent type algorithm, one can optimize a certain cost function correspond-
ing to the machine learning problem at hand. Thus the analysis approach allows us to generate
a new class of algorithms which have become popular recently, like in deep convolutional
networks, recurrent neural networks, etc.

Synthesis and Analysis are very different operations and care must be taken to distinguish
them. One should avoid assuming that the analysis operation gives us coefficients that can be
used to synthesize f . One does not uniquely and automatically solve the synthesis problem
by applying the analysis operator and analysis is in general clearly not sparsity preserving as
every non zero inner product is potentially a member of the solution. Hence care must be
taken in defining appropriate regularizers to enforce sparsity.

2.2.3 Fourier Basis

The Fourier transform is probably still the most widely applied linear transform for the repre-
sentation of functions in various machine learning and signal processing applications [62]. In
one dimensions, it reveals the frequency composition of a function, say a time series by trans-
forming it from the time domain into the frequency domain. Using the inner product notation,
the function f (x) x 2 Rd is decomposed into inner products on the template functions given
by {ei2phl ,xi}l2Rd

ql = h f ,ei2phl ,xii=
Z

x2Rd
f (x)e�i2phl ,xidx
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Now under the condition that Z

x2Rd
| f (x) |2 dx < •

we can write the reproducing formula as

f (x) =
Z

l2Rd
h f ,ei2phl ,xiiei2phl ,xidw

This means the coefficients preserve the norm of the function,
Z

l2Rd
| f (x) |2 dx =

Z

l2Rd
| ql |2 dl

a result which is known as the Plancheral theorem.

2.2.3.1 m-term Approximation

We can then use the Fourier transform to construct the best m-term approximation. Consider
the space of functions

B(C) :=
⇢

f 2 L2([0,1]d) :
Z

Rd
| l || f̂ (l ) | dl C

�

then we are interested in the best m-term approximation of the elements of B(C) using the dic-
tionary DF =

n
ei2phk,xi

o

k2Zd
which forms an orthonormal basis. Then we have the following

minimax bound on the synthesis error

sup
f2B(C)

inf
f F
m2Sm

k f � f F
m kL2C ·m�1/2�1/d (2.4)

where Sm is the nonlinear manifold of m-term approximations [2.1]. Roughly this follows
from the equivalence (since f is compactly supported)

Z

Rd
| l || f̂ (l ) | dl ⇡ Â

k2Zd

| k || f̂ (2pk) |

which is a simple consequence of a famous theorem about the sampling of band-limited func-
tions due to Polya and Plancherel. Therefore, f 2 B(C) implies that the Fourier coefficients
qk( f ) of f obey

Â
k2Zd

| k || qk( f ) |C
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Which means that there is bound on the decay of the coefficient sequence of f . Skipping
technical details and letting | q(k)( f ) | be the kth largest entry in the sequence we have

Â
k>m

| q(k)( f ) |2C ·m�(1+2/d)

which implies [2.4].

2.2.3.2 Limitations of the Fourier Basis

However there are certain limitations with the use of Fourier transforms. First, the Fourier
coefficients of a function are essentially associated to the moments of the function with respect
to the sampling measure. Even though extremely useful as an aggregate information of the
function, it does not reveal its local behavior.

Secondly, for functions on compact domains, one needs to extend the functions periodi-
cally to calculate its discrete Fourier transform. This however leads to discontinuities in the
function and effects the Fourier coefficients. This effect is called the Leakage. Applying a
window to the function to force it to contain a full period can prevent leakage from happening.
However, the window itself may contribute frequency information to the function.

Thirdly, violations of the Shannon’s sampling theorem causes the actual frequency com-
ponent to appear at different locations in the frequency spectrum, and is called Aliasing. This
can be solved by ensuring the sampling frequency to be at least twice as large as the maxi-
mum frequency component contained in the function. However, this requires that the maximal
frequency component be known a priori.

Finally, even though the Fourier transform modulus | bf | is translation invariant 1, defor-
mations lead to well-known instabilities at high frequencies. This is illustrated with a small
scaling operator, Lt f (x) = f (x� t(x)) = f ((1� s)x) for t(x) = sx and k —t k•=| s |< 1. If
f (x) = ei2phl ,xij(x), then scaling by 1� s translates the central frequency l to (1� s)l . If j
is regular with a fast decay, then

k| dLt f |� | bf |k⇠| s || l |k j k=k —t k•| l |k f k

Since | l | can be arbitrarily large, F( f ) =| bf | is not Lipschitz continuous with respect to
scaling at high frequencies.

The frequency displacement from l to (1� s)l has a smaller impact if sinusoidal waves
are replaced by localized functions having a Fourier support that is wider at high frequencies.
Such localized functions can also reveal local behavior of the function, as well as solve the

1(for c 2Rd , the translation Lc f (x) = f (x�c) satisfies dLc f (w) = e�i2phc,wi f̂ (w) and hence |dLc f (w) |=| bf |)
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problem of leaking since they can be applied on compact intervals. The wavelet basis provides
such a set of localized functions.

2.2.4 Wavelet Basis

A straightforward solution to overcoming the limitations of the Fourier transform is to in-
troduce an analysis ball of a certain radius that glides though the domain of the function to
perform a localized Fourier transform. In one dimension such an algorithm is called the Short
Time Fourier Transform. It solves many of the problems discussed earlier, but still requires
the ball to be of constant radius and by Balian-Low Theorem [30, 33] there is no good local
orthogonal Fourier basis.

A wavelet basis on the other hand enables windows of variable radius, and is constructed
by scaling (i.e. dilation and contraction) and shift (or any other group action g 2 G, where G
is a group defined on the domain like translation, reflection, rotation 2, etc or combinations
thereof) of a mother wavelet y 2 L1(Rd)\L2(Rd) under the condition that y satisfies

Ky =
Z

Rd

k ŷ(w) k2

wd dw < • (2.5)

where ŷ is the Fourier transform of y . This condition says that the function y is oscillatory
and has vanishing moments up to about d/2. Then the dictionary of wavelets can be written as

DW =
n

yl := ajd/2y
�
a j ·g�1 · x

�
: l 2 L = {a > 1, j 2 Z,g 2 G}

o
(2.6)

which is known as a semi-discrete frame, due to the discrete nature of the scaling exponent.
The Fourier transform of the elements of the dictionary have a fairly simple form given by

byl (w) = by(a� jg�1w)

which allows us to model the mother wavelet in the Fourier domain where many of the asso-
ciated operations like convolutions, differential calculus, etc become simple linear algebraic
equations.

Using the inner product notation, we can now calculate the coefficients of the wavelet
transform of the function f 2 L2(Rd) as

ql = h f ,yl i= a� jd
Z

Rd
f (x)y⇤ �a j ·g�1 · x

�
dx (2.7)

2If d is even, then G is a subgroup of SO(d); if d is odd, then G is a finite subgroup of O(d).
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and as before we have Calderon’s reproducing formula as 3

f (x) =
Z

L
ql yl (x)dl

along with the Plancheral theorem
Z

Rd
| f (x) |2 dx =

Z

L
| ql |2 dl

which essentially means that the wavelet transform is a norm preserving linear transform.

Example 2.1. Let d = 1 and G = {�1,1} which represents the reflection group. To build a
complex wavelet y concentrated on a single frequency band, let

y(x) = eih ·xq(x)

where bq(w) is a real function concentrated in a low frequency ball at w = 0 whose radius is
of the order p . Then the Fourier transform of y is given by

by(w) = bq(w �h)

where we set
by(w) = 0 for w < 0

As a result, by(w) is real and concentrated in a frequency ball of the same radius but centered
at w = h satisfying [2.5]. To simplify notation, we denote l = a jg 2 aZ⇥G, with | l |= a j.
After dilation and reflection,

byl (w) = bq(l�1w �h)

covers a ball centered at l jh with a radius proportional to | l |= a j. The index l thus speci-
fies the frequency localization and spread of byl . For example when q̂(w) = exp(�w2/2) the
wavelet generated y is known as the Morlet wavelet.

2.2.4.1 m-term Approximation

As before like for the Fourier series, we can construct the best n-term approximation using the
dictionary of wavelet bases DW . The importance of wavelets is not so much that they provide
a simultaneous (approximate) time and frequency localization which yields a description of
many spaces, such as Sobolev, Besov and Triebel-Lizorkin spaces, etc [24, 30, 31]in terms

3Here an integral over integers is simply defined as the summation, to keep the notation clean.
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of the coefficients in wavelet decompositions and a description of important classes of oper-
ators, such as the Calderon-Zygmund operators, in terms of almost diagonal matrices. This
means the space of functions under consideration go beyond just the Hilbert space of square
integrable functions but to practically any Lp(Rd) function for 0 < p < •.

Let Sm be the nonlinear manifold of m-term approximations [2.1] then we can approximate
functions f 2 Lp(Rd) by elements from Sm with the synthesis error

em( f )Lp = inf
fW
m 2Sm

k f � fW
m kLp

Then for each 0 < p < • and for a certain range of a ,

•

Â
m=1

h
ma/dem( f )Lp

it 1
m

< • () f 2 Ba
t

where Ba
t are the Besov spaces with t := (a/d + 1/p)�1 with the norm given by

k f kBa
t =

 
k

^
(1+ | w |2)

bac
2 f̂

�
kt

Lp(Rd) +
Z •

0
|

c2
p( f (bac), t)

ta | 1
t

dt

!

where f̃ is the inverse Fourier transform of f and

c2
p( f (bac), t) = sup

|h|t
k D2

h f kp

with Dh f (x) = f (x� h)� f (x). The Besov norm implies that the Besov space consists of
Lp(Rd) functions whose derivates upto bac degree have a finite norm, along with having only
finitely valued jumps. Therefore Besov space covers a wider variety of functions observable
in a real world application.

A consequence of the above result implies the following inequalities hold for some b > a

em( f )Lp Cm�b/d k f k
Bb

t
, f 2 Bb

t (2.8)

and
k fW

m k
Bb

t
Cmb/d k fW

m kLp(Rd), fW
m 2 Sm (2.9)

The estimate [2.8] is called the Jackson Estimate, while [2.9] is called the Bernstein estimate.
From the Jackson estimate we can derive the direct comparison to the minimax synthesis error
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estimate for Fourier transforms on compact domain as

sup
f2Lp(Rd)

inf
fW
m 2Sn

k f � fW
m kLpCm�1�a/d

Which means that using the wavelets as defined here, the m-term approximation provides
a faster rate of convergence to a bigger class of target functions than a Fourier series approxi-
mation.

2.2.4.2 Limitations of Wavelet Bases

Wavelet bases as we saw above are optimal for point like singularities like jumps and point like
noise. However higher dimensional singularities like boundaries cannot be well represented
and leads to higher number of coefficients. Further, in both Fourier as well as Wavelet bases
we have discussed till now are orthogonal bases and in which case synthesis and analysis
coefficients can be used interchangeably. However, since we are interested in an adaptive
representation which simultaneously achieves sparsity and super-resolution, it is necessary to
introduce a redundant basis, like the Littlewood Paley wavelets.

2.3 GWAS Data

Genome-wide association studies (GWAS) can be used to map an entire species genome for
association of a trait of interest and millions of SNPs [81, 94, 107, 114]. By using the genotype
of each SNP as predictor of the trait of interest, GWAS fits p independent univariate linear
models from p SNPs and n samples. The coefficient estimate b of the corresponding SNP is
used to determine the significance of association (P-value) in each of the p tests. The resulting
values are adjusted using multiple hypothesis testing methods such as Bonferroni, Benjamini-
Hochberg to control for FDR [40, 81].

It is essential to distinguish between association and linkage mapping, or quantitative trait
loci (QTL) mapping. Association mapping uses high-density SNP genotyping of unrelated
individuals, the output of this experiment are point mutations in the genome. Linkage mapping
requires controlled breeding experiments and relies on the segregation of fewer markers, here
the output are chromosomal regions.

In a GWAS study usually there are three types of datasets generated, which together pro-
vide the necessary information. The .raw file contains all the SNPs, the .fam file contains in-
formation about the observations including the phenotype and usually consists of six columns.
The .map file on the other hand contains the mapping information about the SNPs but is not
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necessary even though recommended, as their exclusion leads to less informative plots and
summaries.

Figure 2.1: Clump Distribution

For large datasets SNPs are usually filtered with their marginal test p-values. All SNPs
with p-values over a certain threshold are truncated. Among these filtered SNPs one performs
clumping which for a given parameter r 2 (0,1) is as follows:

1. Each SNP corresponds to a feature and when performing regression, we get the tail-error
probability for the corresponding sequence of coefficients.

2. Fit an infinite mixture model which is a non-parametric Bayesian clustering with respect
to the correlation coefficient between the different SNPs. Here the distance is defined to
be inverse of the strength of its correlation (say Pearson correlation).

3. The clusters obtained are called clumps.

Finally one performs LASSO or in our case SLOPE regression on these clustered SNPs to
identify the important clumps or clusters of SNPs which have an effect on the phenotype,
while controlling the False Discovery Rate.

Figure 2.2: Selection of Different Centers of Influence



Chapter 3

Optimal Classification by Controlling rate
of False Discovery

3.1 Introduction

In the previous chapter we studied the tools necessary to design and develop arbitrary machine
learning algorithms from a theoretical point of view. Now we consider a practical application
in which the multi-classification problem is tackled. The problem of classification or discrim-
ination arises whenever one wants to associate a given sample from an arbitrary probability
measure to one of a finite number of categories, based on a given training data set.

More precisely, let µ1, ...,µK 2 M
1
+(Rd) be Borel Probability measures defined on the

Euclidean space, Rd . Then any observation is assumed to have been sampled in the following
way: randomly select one of k = 1, ...,K with probability pk, then the take a sample from
Rd , according to the measure µk. For notational convenience, let µ̄ = (µ1, ...,µK) and p =

(p1, ...,pK)2SK , which is the unit simplex in RK whose elements are nonnegative and sum to
1. We assume that the underlying measures corresponding to the various classes are unknown
but a paired training samples of size n is available, which we denote by (Xn,Yn). Further we
also assume that these K sets of samples are independent of each other.

In this setting, the Hypothesis space H , consists of measurable functions which define
the classification rule for each new data point. These functions, thus depending on the prior
probability vector p and the set of class measures µ̄ , map a given data point x 2 Rd to a label
between {1, ...,K} i.e.

f 2 H : Rd ⇥SK ⇥
⇣
M

1
+(Rd)

⌘K
! Y = {1, ...,K}

Clearly in a real world application we do not have access to the measures corresponding to
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each class, and the classification problem is then to estimate the function f̂ using observations
X

k
n from each µk. If the prior probability vector p is assumed to be known, the parametrized

form of the Hypothesis space used for classification depends purely on the class measures µ̄ .
Recently, for complex data sets like images, audio, etc Convolutional Neural Networks have
had much success in modeling these class measures and thereby estimating the corresponding
classification rule.

In order to define loss functions on the Hypothesis space which characterize the perfor-
mance of its elements, it is useful to consider the problem from a decision theoretic point of
view. An arbitrary loss function L is a non-negative real valued function

L : Y ⇥Y ! R+

where L(i, j) denotes the loss when for a given data point, one guesses i, but the classification
rule maps to j.

These L(i, j) are allowed to be different to quantify any feelings the experimenter may
have about one type of mistake being worse than another. For example, in the diagnosis of
disease, it can be worse to classify a sick person as healthy, than to make the opposite error.
The only assumption needed regarding the loss L is

max
i

L(i, i)< min
i6= j

L(i, j)

and it is convenient to define

L = min
i 6= j

L(i, j)�max
i

L(i, i)> 0 and L̄ = max
i, j

| L(i, j) |

Now for any observation x 2 Rd and p 2 SK , the posterior probability of the class i 2
{1, ...,K}, is given by

Pr( f (x,p, µ̄) = i | X = x) = piri(x)
Â j p jr j(x)

(3.1)

where ri =
dµi
dl represents the Radon-Nikodym density of the ith class with respect to some

common base measure l . We can then write the corresponding risk functional as a conditional
expectation with respect to the event X = x, for any decision rule f 2 H as

R( f = k,p,x) = Â
i

L(k, i)Pr( f = i | X = x) (3.2)
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where R( f (x,p, µ̄) = k,p,x) is denoted by R( f = k,p,x). The Bayes optimal risk can then be
defined for each x 2 Rd and each p 2 SK , as:

R
�

f̂Bayes,x,p
�
= min

k=1,...,K
R(k,x,p) (3.3)

When the minimum is not unique, the manner in which ties are broken is irrelevant. The
loss function appearing most often in the literature is 0� 1 loss, which is suitable for Binary
Hypothesis testing and classification and is defined as

L(i, j) =

8
<

:
0 i = j

1 i 6= j

In this case the Bayes optimal classifier is given by

f̂Bayes = argmin
k Â

i 6=k
Pr( f = i | X = x)

= argmin
k

Pr( f 6= k | X = x)

= argmax
k

Pr( f = k | X = x)

which is the classical MAP (Maximum A Posteriori) rule for binary decisions or testing. In
the rest of the work we show that the consistency of the Bayes optimal classifier depends on
the consistency of the relative density estimator for each class. Subsequently we review the
Gaussian Mixture Model, the Reproducing Kernel Hilbert Space and the Convolutional Neural
Network as density estimators, each of which can be used to build a classifier depending on
the complexity of the given data set. Then we look at a family of performance measures and
show how to generate loss functions from them which encompass a huge class of examples
studied in the literature which may be suitable under different situations. Finally we provide
an algorithm to learn the Bayes Optimal Classifier in all these scenarios and apply it to xyz
data set.

3.2 Hypothesis Space

Clearly when both p and µ̄ are known, then it is simple to compute the Bayes classification
rule. In this work we assume that p is known, however µ̄ is unknown. This is not such a
restrictive assumption, since when p is unknown, its estimators converge much faster than
the estimators of µ̄ . This assumption however tells us that a Bayes Optimal Classifier is only
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dependent on the estimator of µ̄ and thus the Hypothesis space essentially only needs to model
these class measures.

Since we only have paired samples (Xn,Yn) from these class measures µ̄ , we need to
ensure any classifier f̂n which is defined as

f̂n 2 H : Rd ⇥SK ⇥Xn ! Y 2 Yn

at least asymptotically converges to f̂Bayes, i.e.

lim
n!•

R
�

f̂n,p,x
�
= R( f̂Bayes,p,x)

in a certain mode of convergence. Such classifiers are said to be Bayes Risk Consistent [38,
56, 78].

To define the mode of convergence, first fix a compact set C ⇢ Rd , which has nonempty
interior. Then the estimator f̂n is said to be Bayes Risk Consistent if

lim
n!•

Z

SK

Z

C

⇥
R
�

f̂n,p,x
�
�R( f̂Bayes,p,x)

⇤
dxdp = 0 (3.4)

Absolute values are not required because, for k = 1, ...,K and for each x2Rd and each p 2SK

R
�

f̂n,p,x
�
� R( f̂Bayes,p,x)

Here integrating with respect to p and x removes the effect of local irregularities to the con-
vergence rate.

Further if we expand the consistency condition (3.4) above we see that it is equivalent to

lim
n!•

Z

SK

Z

C

"
min

k

K

Â
i=1

L(k, i)


pir̂i(x)
Â j p jr̂ j(x)

� piri(x)
Â j p jr j(x)

�#
dxdp = 0

which means that the rate of convergence of this quantity is exclusively dependent on the
rate of convergence of the density estimate r̂i ! ri as n ! •. Therefore comparing different
classifiers, is equivalent to comparing the rate of convergence of the corresponding probability
density estimators [Ref]. There is a constant c3 > 0 and a density estimator f̂N(x,X1, ...,XN)

so that, when r = 2p/(2p+d)

lim
N!•

sup
f2F1

Pr
Z

C

⇥
f̂N(x)� f (x)

⇤2 dx > c3N�r
�
= 0

The performance of density estimators depend on the assumptions on the target distribution
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and the properties of the Hypothesis space. In the previous chapter we showed that the relative
densities of the form ri =

dµi
dl , which are dependent on the data only through bounded number

of features, belong to the exponential family i.e. are of the form

dµi(x) = ehqi,F(x)i�A(qi)dl

We also discussed the nature of the feature extraction map F(x), which can be chosen
depending up on the data set under consideration. For simple low dimensional data sets, if
class densities can be modeled as Gaussian distribution, then

F(x) = (h1,xi,hx,xi)T

and we get the Gaussian mixture model for classification. Other formulations of sufficient
statistics, lead to a different mixture models with each component being in the exponential
family.

We might also consider a Reproducing Kernel Hilbert space embedding approach where
for xi 2 X

k
n ,

F(x) = (K(x1,x), ...,K(xn,x))T

is the kernel map corresponding to some characteristic kernel K, like the Gaussian kernel
K(x,y) = exp

⇣
�1

2 (x�y)T (x�y)
⌘

. In this case as the number of parameters increases with
the number of data points, the classification algorithm derived is known as a non-parametric
method. However, due to the properties of the Kernel, points which are far away from each
other do not influence one another and hence the number of non-zero parameters in the end is
not unbounded.

Since 2012 [79] Convolutional Neural Networks have provided state of the art results for
classification of complicated data sets, like images, audio, etc which provide a deep distributed
representation of features. Distributed representations allow an exponential increase in the
capacity for representation of features by re-using multiple examples that are not necessarily
neighbors of each other, which is the case for example in the RKHS model mentioned above.

In deep models the features in addition are hierarchically organized, i.e. more abstract
features are constructed using less abstract ones. This architecture further promotes the re-
use of features and leads to the construction of progressively more abstract features at higher
layers of representation. Crucially deep representations have exponentially large number of
paths from the data to the final feature, with respect to its depth. Clearly when the same family
of functions can be represented using fewer features, we should expect to be able to learn the
parameters using fewer examples, yielding improvements in both computational and statistical
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Figure 3.1: Convolutional Neural Network Classifier

efficiency (less parameters to learn, and re-use of these parameters over many different kinds
of inputs).

3.3 Loss Functions

Consider the confusion matrix corresponding to any arbitrary classifier f , denoted by C [ f ] 2
[0,1]K⇥K , with entries defined by

Ci j[ f ] = Pr( f (x) = i,y = j)

for all (x,y) 2 (Xn,Yn) where Âi, j Ci j[ f ] = 1. One can then define a general performance
measure of a classifier as a non-negative valued differentiable function

y : C [ f ]! R+

of the confusion matrix, which is monotonically increasing along the diagonal and monotoni-
cally non-increasing along the off-diagonal elements.

In this case higher values of the y correspond to better performance. Then the optimal y-
performance over all feasible confusion matrices, which is a convex set is given by its gradient,
which when normalized into [0,1]K⇥K is defined as the necessary loss function

L :=�—̂y(C)

Clearly the classifier for which the loss is minimized, also maximizes the the performance
measure y . This formulation captures both common loss-based performance measures, which
are effectively linear functions of the entries of the confusion matrix as well as the more
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complicated performance measures like the G-mean, micro F1 measure, etc.

Binary Classification Consider binary classification, where K = 2 and the labels are in-
dexed as Y = {0,1}. Then the confusion matrix of a binary classifier can be defined as

C =

"
C0,0 = True Negative C0,1 = False Positive
C1,0 = False Negative C1,1 = True Positive

#

Then a large class of existing binary performance measures can be written as

y(C) =
hA,Ci
hB,Ci

for some A,B 2 RK⇥K with hB,Ci> 0. Then the corresponding loss function is given by

L =�—̂y(C) =�
⇣

Â� tB
⌘

where t 2 R+ is a non-negative scalar quantity.

In this framework many of the traditional loss functions and performance measures can
be defined. For example consider y0�1(C) = ÂiiCii, then L = �—̂y(C) =

⇥
di6= j

⇤
i, j which is

the standard 0� 1 loss for classical classification accuracy. The ‘balanced accuracy’ or AM
measure [56] given by

yAM(C) =
1
2

✓
TP

TP+FN
+

TN
TN+FP

◆

or the Fb measure (b > 0) [66, 78] given by

yFb (C) =

✓
(1+b 2)TP

(1+b 2)TP+b 2FN+FP

◆

can all be expressed. Further the case of ordinal regression [Ref] can also be expressed simi-
larly

yord(C) = Â
i j
(1� 1

n�1
| i� j |)Ci j

where the corresponding loss is given by Lord
i j = 1

n�1 | i� j |.
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Multi-classification The G-mean measure [66, 78] is used to evaluate both binary and multi-
class classifiers in settings with class imbalance and is given by

yGM(C) =

 
K

’
i=1

Cii

ÂK
j=1Ci j

!1/K

The micro F1-measure [66, 78] is also a widely used measure to evaluate multi-class clas-
sifiers in information retrieval and information extraction applications and is given by

ymicro-F1(C) =
2Ân

i=2Cii

2�Ân
i=1C1i �Ân

i=1Ci1

3.4 Diabetic Retinopathy Dataset

Diabetes can lead to an eye disease called diabetic retinopathy (DR), which causes high blood
sugar levels leading to damage to blood vessels in the retina. Vision can be impaired by growth
of abnormal new blood vessels, or swelling, leaking and closing of existing ones.

The public Diabetic Retinopathy dataset provided by Kaggle.com consists of high-resolution
retina images taken under a variety of imaging conditions. Each subject is assigned an ID, and
a left and right field image is provided for every subject. A scale of 0 to 4 (0 - No DR, 1 –
Mild, 2 – Moderate, 3 – Severe, 4 - Proliferative DR) was defined by a clinician, rating the
presence of diabetic retinopathy of the images.
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Figure 3.2: Gold Standard Classification of Diabetic Retinopathy

The task given by Kaggle was to create an automated analysis system, which can be used
to assign a score to the provided images based on this scale. The images provided can differ
in visual appearance, as they were recorded with different models of cameras. Some images
can be displayed anatomically, e.g. for the right eye with the macula on the left and the optic
nerve on the right. Other images can be inverted, as they would be seen in a live eye exam.

There are two characteristics to identify the inverted images: either the macula is slightly
higher than the midline through the optic nerve, or there is no notch on the side of the image
(square, triangle, or circle). Both, the images and their labels might show noise. In addition,
the images can contain artifacts, be out of focus, underexposed, or overexposed. Thus, it is
essential that the chosen algorithm is robust and not sensitive to noise and variation.

Preprocessing Images To remove unnecessary variation among the images, preprocessing
is necessary. We resize, crop and normalize all the images so that the eye is always in the
center of the image.
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Figure 3.3: Augmented and Preprocessed Images

Data Augmentation Since deep learning models are very flexible, we need large datasets to
avoid overfitting. In this example, we randomly rotate, flip and scale the images, and create
extra images virtually. This data augmentation technique allows the model to learn invariance
to these random transformations.

Convolutional Neural Network We use a 7 layer convolutional neural network, with archi-
tecture as shown in the figure which is followed by a dense layer which performs the classifi-
cation. We use

y(C) =
hA,Ci
hB,Ci

as the classification performance measure where C is the confusion matrix.
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Figure 3.4: Convolutional Neural Network Architecture
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Stochastic Gradient Descent Learning We optimize the risk functional based on the con-
volutional network and the above defined cost function using the standard stochastic gradient
descent algorithm with periodically decreasing learning rates.

Figure 3.5: Accuracy and Loss

Result We see from the normalized confusion matrix that not all classes perform equally
well, as some types of images are harder to extract features from than others. For example the
neural network is not able to distinguish well between no diabetic retinopathy and mild levels
however is able to distinguish fairly well among well separated categories.

Figure 3.6: Normalized Confusion Matrix



Chapter 4

Non-parametric Bayesian Inference of
Count Data

4.1 Introduction

RNA is a key intermediate between the genome and the proteome and has proven to be useful
in providing a means to study gene expression. Typically 90% of the RNA is of the type ribo-
somal RNA (rRNA) which is essential for protein synthesis, while messenger RNA (mRNA)
which is only 1-2% conveys the genetic information which directs synthesis of specific pro-
teins. Therefore usually in a RNA-seq experiment only mRNAs are studied [50].

In the experiment mRNA is isolated, reverse transcribed into complementary (cDNA) and
then shattered into small pieces. These are then sequenced, giving a list of short sequences
called reads which are subsequently mapped back (using an appropriate algorithm) onto the
reference genome. Finally, for a set of regions of interest on the genome, such as genes, exons,
or junctions, we count the number of reads mapped unambiguously to each of them, and use
this count as a measure of expression for the region. The number of reads observed however
also depends on the sequencing depth, which is the total number of reads sequenced and may
vary with the experiment. Thus two technical replicates would have different counts if the
sequencing depth is different, and hence needs to be corrected for while analyzing the data
[50].

In this work we propose a novel nonparametric Bayesian approach to modeling RNA-
seq data. We want to model the process of generating the expression level for each gene
corresponding to every sample in the experiment as follows:

1. Assume that Ni cells were sampled from the tissue of interest, where Ni ⇠ Poisson(li)

for the ith sample.
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2. The contribution of a single cell to the read counts mapped unambiguously to a partic-
ular gene is an arbitrary discrete random variable X ( j) ⇠ (a1,a2, ...)

( j) 2 [0,1)• where
P(X ( j) = k) = ak, and Â•

l=1 al = 1 which we want to estimate.

3. Then the observed count data for each gene j and sample i is Yi j = ÂNi
l=1 X ( j)

l

Usually in the literature Yi j’s are modeled as either Poisson or Negative Binomial distribution
[3, 21, 22, 36]. In our approach we make the least necessary assumption, which is that the
observed counts are from an infinitely divisible non-negative discrete measure, in the under-
sampled regime, where we do not expect to observe all possible outcomes of the discrete
random variables. Infinitely divisible measures are characterized as those that can be expressed
as a sum of an arbitrary number of independent and identically distributed random variables,
which is a reasonable description of the data generating process.

Clearly the main inference problem in such a scenario, would be to ensure consistency
of any derived estimator with reasonably fast convergence rates, i.e. low sample complexity
(the number of samples necessary to achieve an e error with high probability). Further, as the
number of dimensions are in the order ⇠ 105 to 106, any proposed inference algorithm needs
to be scalable.

In the under-sampled regime, it would be unreasonable to expect strong (i.e. point-wise)
consistency of the inferred marginal distributions, however here we show that provable con-
vergence can be achieved in the topologies defined by Kullback-Liebler and Renyi type diver-
gences. This means that the inferred marginal distributions provide the same information as
the true marginal distributions, with arbitrary accuracy. In these topologies the sample com-
plexity [1] can be shown to be O(k/logk) for Kullback-Liebler divergence and O(k1�1/a) for
Renyi divergence of order 1 < a 2N, where k is the size of the support. Therefore for certain
topologies, even sub-linear observation of the support of the random variable is enough for
consistent inference.

Our work on modeling the marginal distributions starts from a characterization due to
Feller [6], that every infinitely divisible non-negative discrete random variable belongs to the
family of discrete Compound Poisson Measures. One could see this family of measures as
the discrete analogue of the stable family of measures in the continuous case, which includes
for example the Normal distribution. Since we only partially observe each high dimensional
sample, we cannot assume independence of the marginal observations, however we can as-
sume their exchangeability. By applying the de-Finetti theorem, we can express the marginal
distribution from such a sample, as a mixture of discrete Compound Poisson Measures with a
certain mixing measure, which we model here by the Pitman-Yor Mixture process.

The Pitman-Yor process provides an attractive family of priors in this setting, since not
only are the induced posterior distributions of functionals have analytically tractable moments,
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but also that the induced posterior distributions have power-law tails, a common feature in
many real world data sets. However, for fixed hyper-parameters it imposes a narrow prior,
leading to bias and overly narrow confidence intervals especially in the under-sampled regime.

A continuous mixing over the hyper-parameters flattens the prior and helps ensure positive
probability over the true discrete measure, thereby providing a consistent posterior distribu-
tion. Using similar arguments, the parameter of the Poisson distribution is modeled by a con-
tinuous mixing of Gamma priors. We show that such a model achieves the optimal Bayesian
rate of convergence in the topologies under consideration, in the under-sampled regime.

4.2 Discrete Compound Poisson measures

Let Z1,Z2, ...,Zn be non-negative integer valued random variables then we are interested in the
law of their sum i.e. the random variable

Sn =
n

Â
i=1

Zi

It is convenient to write each Zi = BiXi of two independent random variables, where Bi ⇠
Bernoulli(pi) and Xi is an arbitrary random variable which takes values in N. This can be done
uniquely and without loss of generality, by taking pi = Pr(Zi 6= 0) and Xi having distribution
Qi(k) = Pr(Zi=k)/pi for k � 1, so that Qi is simply the conditional distribution of Zi given that
{Zi � 1}.

The simplest example, which is in a sense, the very definition of the compound Poisson dis-
tribution, is when the {Zi} are i.i.d. with each Zi = BiXi being the product of a Bernoulli(l/n)

random variable Bi and Xi with an arbitrary distribution Q on N. Then,

Sn =
n

Â
i=1

BiXi
d
=

N(n)

Â
i=1

Xi

where N(n) = Ân
i=1 Bi has a Binomial(n,l/n) distribution, and d

= denotes equality in distribu-
tion. Since N(n) converges to Po(l ) as n ! •, it is easily seen that PSn will converge to the
distribution of,

N

Â
i=1

Xi

where N ⇠ Po(l ) is independent of the {Xi}. This expression is precisely the definition of the
Discrete Compound Poisson distribution [6] with parameters l and Q, denoted by DCP(l ,Q).
The probability generating functions for random sums of random variables is given by their
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composition, hence in this case we have

GSn(z) = GN(GX(z))

= exp

 
l

•

Â
k=0

Q(k)(zk �1)

!
, (| z | 1)

from which we can write

Pr(Sn = k) =
G(k)

Sn
(0)

k!
=: Cl ,Q(k)

where G(k)
Sn
(0) is the kth derivative of the probability generating function at z = 0.

Example 4.1. Negative Binomial distribution is a DCP. Let P(Xl = k)= �1
log(1�p)

pk

k ,k= 0,1,2, ...
i.e. have the logarithmic distribution with p 2 (0,1), and N ⇠ Poisson(l ) with l =�r log(1�
p). Then the random sum

SN =
N

Â
i=1

Xi

is Negative Binomial(r, p) distributed. This result can be easily proved. Since moment gener-
ating function of Poisson distribution is GN(z)= exp(l (z�1)) and for logarithmic distribution
it is GX(z) =

log(1�pz)
log(1�z) , | z |< 1

p . Hence we obtain the distribution of the sum as

GY (z) = GN(GX(z))

= exp(�r(log(1� pz)� log(1� p)))

=

✓
1� p
1� pz

◆r
, | z |< 1

p

which is the probability generating function for Negative Binomial(r, p) distributed random
variable.

4.2.1 Convergence of General Sums

Now in the general case even if the summands {Zi}n
i=1 are not i.i.d., it is often the case that

the distribution PSn of Sn can be accurately approximated by a discrete Compound Poisson
distribution. Intuitively, the minimal requirements for such an approximation is if none of the
{Zi} dominate the sum, i.e. the parameters pi = Pr(Zi 6= 0) are all appropriately small and if
the {Zi} are only weakly dependent.

We will measure the closeness between PSN and an appropriately chosen compound Pois-
son measure DCP(l , Q̄) in terms of the Kullback-Liebler divergence KL(PSN | DCP(l , Q̄)),
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defined as usual by

KL(P | Q) = Â
s2S

P(s) log


P(s)
Q(s)

�

for any pair of probability distributions P and Q, on the same countably infinite set S. Although
not a proper metric, relative entropy is an important measure of closeness between probability
distribution and it can be used to obtain total variation bounds via Pinsker’s inequality

k P�Q k2
TV 2KL(P | Q)

Figure 4.1: Behavior of KL Divergence

Mutual Information Bound Now we see how to bound the KL(PSN | DCP(l , Q̄)). Sup-
pose SN is the sum ÂN

i=1 Xi of N possibly dependent random variables Xi with values in
{0,1,2, ...}. Then if Z1, ...,ZN are independent compound Poisson random variables with
each Zi ⇠ CPD(pi,Qi) where pi = P [Xi 6= 0] by the basic infinite divisibility property of the
compound Poisson law, the distribution of TN = ÂN

i=1 Zi is CPD(l , Q̄) where l = ÂN
i=1 pi,

Qi(k) = P[Xi=k]/pi, k � 1 and

Q̄ =
N

Â
i=1

pi

l
Qi

is a mixture distribution. By the data processing inequality for relative entropy we have

KL(PSN | DCP(l , Q̄)) =KL(PSN | PTN )

KL(PX1,...,XN | PZ1,...,Zn)
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where PX1,...,XN denotes the joint distribution of the Xi’s and similarly for Zi’s. Applying the
chain rule for relative entropy gives,

KL(PSN | DCP(l , Q̄))
N

Â
i=1

KL(PXi | PZi)+
N

Â
i=1

H(Xi)�H(X1, ...,XN)

where H(X) =�ÂZP(i) logP(i). Finally we need to bound the term

KL(PXi | PZi) =
•

Â
j=0

PXi( j) log
PXi( j)
PZi( j)

Let Q⇤k
i be the k-fold convolution of Qi, i.e. the law of the sum of i.i.d. random variables with

common distribution Qi. Then

PXi( j) =
•

Â
k=1

e�pi
pk

i
k!

Q⇤k
i ( j)� e�pi piQi( j)

which implies that

PXi( j) log
PXi( j)
PZi( j)

 [piQi( j)] log
piQi( j)

e�pi piQi( j)
= Qi( j)p2

i

and hence by summing over all j, we get

KL(PXi | PZi) p2
i

and therefore we can say

KL(PSN | DCP(l , Q̄))
N

Â
i=1

p2
i +

"
N

Â
i=1

H(Xi)�H(X1, ...,XN)

#
(4.1)

Note that second term is the Mutual Information among the random variables {Xi}N
i=1.

Log-Sobolev Bound The bound obtained above (4.1) in terms of its mutual information
are enough to prove convergence, but the rate of convergence is sub-optimal and not easily
estimable based on partially observed data. In order to build bounds with faster convergence
rates, we need to look at a notion of information bounds which are more locally defined, which
allow us to exploit parts of the distribution which are well observed.

Consider the notion of size-biased sampling [6], which is a type of nonrandom sampling
in which the probability of sampling an object is proportional to the size of the object. Then
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it can be shown for any distribution P on Z+ with mean l , the corresponding size-biased
distribution P# is given by

P#(y) =
(y+1)P(y+1)

l
, y � 0

Recall that a distribution P on Z+ satisfies the recursion,

(k+1)P(k+1) := lP(k)

iff P = Po(l ), it is immediate that P = Po(l ) if and only if P = P#. Building in this way, we
can say that PSN ⇠ DCP(l ,Q) if and only if N ⇠ Po(l ), i.e. PSN ⇠ DCP(l ,Q) if and only if
P = P#.

Consider the logarithmic Sobolev inequality [76] for a Poisson distribution, which is given
by

KL(P | Po(l )) lE
"✓

(X +1)P(X +1)
lP(X)

�1
◆2
#

for any distribution P on Z+ and any l > 0. Also note that using the characteristic function
for DCP(l , Q̄), and same notion as before, there exists an alternate representation [3, 128]
given by

•

Â
j=1

jZ j

where the Z j are independent Poisson random variables with each Z j ⇠ Po(l Q̄( j)). Then
applying the log-Sobolev inequality on the distribution of the above sum yields

KL(PSN | DCP(l , Q̄)) Jl ,Q̄(X)

where

Jl ,Q(X) = l
•

Â
j=1

Q̄( j)EX

2

4
 

PSN (X + j)
PSN (X)

Cl ,Q̄(X)

Cl ,Q̄(X + j)
�1

!2
3

5

is known as the DCP-Fisher information or the Log-Sobolev Bound [6]. Here Cl ,Q̄ denotes
the probability measure from the DCP(l , Q̄) distribution. For any random variable X , then it
is clear that

Jl ,Q(X) = 0 iff X ⇠ DCP(l , Q̄)

.
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4.3 Bayesian Nonparametric Inference

In the previous section we studied properties of the DCP measure and constructed a loss
function given by the Log-Sobolev bound which we want to use to infer the unknown discrete
distribution Q from which the RNA-seq data was generated according to the data generating
model discussed in the introduction.

Consider samples x :=
�

x j
 N

j=1 drawn i.i.d. from an unknown discrete distribution p :=
{pi}•

i=1 where
p(x j = i) = pi and Â

i
pi = 1

then the aim of our inference algorithm would be to estimate the discrete distribution Q and
the parameter l > 0 which satisfies

l̂ , Q̂ = argmin
l ,Q

Jl ,Q(p)

where

Jl ,Q(p) = l
•

Â
j=1

Q( j)EX

"✓
pk+ j

pk

Cl ,Q(k)
Cl ,Q(k+ j)

�1
◆2
#

is the Log-Sobolev bound of the random variable X .
Here we are interested in the under sampled regime, as with finite samples most of the

number line remains unobserved. A naive approach would be to use empirical estimates of
p and then optimizing the Log-Sobolev bound to get the required quantities. However in
this regime, such an approach results in severely biased estimators, which leads us to the
application of non-parametric Bayesian techniques.

4.3.1 Plugin Estimator

The simplest approach would be to estimate the distribution p and then plugin to the Log-
Sobolev bound and optimize for l and Q, using a gradient descent or a MCMC based opti-
mizer. The empirical distribution p̂ = (p̂1, ..., p̂A ) is computed by normalizing the observed
counts n := (n1, ...,nA ) of each symbol

p̂k = nk/N, nk =
N

Â
i=1

1{xi=k}

for each k 2 X . Plugging this estimate for p , we obtain the so-called “plugin” estimator

Ĵplugin
l ,Q = Jl ,Q(p̂)
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which is also the maximum likelihood estimator under the categorical (or multinomial) likeli-
hood. Then

l̂ plugin, Q̂plugin = argmin
l ,Q

Ĵplugin
l ,Q (p̂)

can be calculated.
However as appealing its simplicity may be, the performance of such an estimator is highly

unstable especially due to the under-sampled regime. As there are many unobserved locations,
an empirical estimate of p , has many gaps and therefore most terms in the Log-Sobolev bound
cannot be calculated. Further if the mutual information bound (4.1) is used, estimates behave
like entropy estimators, in which case it is well known that the empirical estimator is substan-
tially negatively biased [63, 89, 113, 115]. The biased estimates of the information bounds
therefore lead to unstable optimization of the underlying measure Q that we are interested in.

Even though some results exist, which attempt to remove bias for the mutual information
estimator, when the support of the discrete measure is finite and known, for example using
series expansions of the entropy functional in (Panzeri and Treves, 1996; Grassberger, 2008),
or by minimizing an upper bound over a class of linear estimators (Paninski, 2003), and a
James-Stein estimator (Hausser and Strimmer, 2009). The performance of these results are
hampered by the under-sampled regime.

4.3.2 Bayesian Estimation of Log-Sobolev Bound

The Bayesian approach to estimation involves formulating a prior over distributions p , and
constructing the posterior distribution of Jl ,Q using the Bayes theorem. Then Bayes’ least
squares (BLS) estimators take the form

ˆJl ,Q(x) = E
⇥
Jl ,Q | x

⇤
=
Z

Jl ,Q(p)p(p | x)dp

where p(p | x) is the posterior over p under some prior p(p) and discrete likelihood p(x |
p). To the extent that p(p) expresses our true uncertainty over the unknown distribution that
generated the data, this estimate is optimal (in a least squares sense) and the corresponding
credible intervals capture our uncertainty about Jl ,Q given the data.

4.3.2.1 Pitman-Yor Process Priors

A very general class of priors over unknown or countably infinite discrete distributions have
been defined in terms of stochastic processes called the Dirichlet Process (DP) and Pitman-Yor
process (PYP) whose samples are countably infinite discrete distributions (Ferguson, 1973;
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Pitman and Yor, 1997). Such a sample may be written as

•

Â
i=1

pidfi

where p := {pi}•
i=1 denotes a countably infinite set of ‘weights’ on a set of atoms {fi} drawn

from some base probability measure, where dfi is a delta function on the atom fi
1. The DP

and PYP defines a prior distribution on the infinite-dimensional simplex representing the space
of all discrete probability measures.

Figure 4.2: Pitman-Yor Process

For distributions with known finite alphabet size K, the Dirichlet distribution provides an
obvious choice of prior due to its conjugacy with the categorical distribution. It takes the form

pDir(p) µ
K

’
i=1

pa�1
i

1Here, we will assume the base measure is non-atomic, so that the atoms fi’s are distinct with probability
one.
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for p on the A -dimensional simplex (pi � 1,Âpi = 1), where a > 0 is a “concentration”
parameter.

The Dirichlet Process distribution over p results from a limit of the Dirichlet distribution
where alphabet size grows and concentration parameter shrinks: K ! • and a ! 0 s.t. aK !
a . The PYP distribution over p generalizes the DP to allow power-law tails, and includes
DP as a special case (Kingman, 1975; Pitman and Yor, 1997). For PY(d,a) with discount
parameter d 2 [0,1) and concentration parameter a > �d, the tails approximately follow a
power-law:

pi µ i�1/d

When d = 0, this reduces to the Dirichlet process, DP(a) which on the other hand have
exponentially small tails.

To gain intuition for the DP and PYP, it is useful to consider typical samples p with weights
{pi} sorted in decreasing order of probability, so that p(1) > p(2) > · · · . The concentration pa-
rameter a controls how much of the probability mass is concentrated in the first few samples,
that is, in the head instead of the tail of the sorted distribution. For small a the first few
weights carry most of the probability mass whereas, for large a , the probability mass is more
spread out so that p is more uniform. As noted above the discount parameter d controls the
shape of the tail. Larger d gives heavier power-law tails, while d = 0 yields exponential tails.

We can draw samples p ⇠ PY(d,a) using an infinite sequence of independent Beta random
variables in a process known as “stick-breaking” (Ishwaran and James, 2001)

bi ⇠ Beta(1�d,a + id), p̃i = bi

i�1

’
j=1

(1�b j) (4.2)

where p̃i is known as the i’th size biased permutation from p (Pitman, 96). The p̃i sampled
in this manner are not strictly decreasing, but decreases on average such that Â•

i=1 p̃i = 1 with
probability 1 (Pitman and Yor, 1997).

Posterior Distribution A useful property of PYP priors (for multinomial observations) is
that the posterior p(p | x,d,a) takes the form of a mixture of a Dirichlet distribution (over
the observed symbols) and a Pitman-Yor process (over the unobserved symbols) (Ishwaran
and James, 2003). Let K be the number of unique symbols observed in N samples, i.e.,
K = Âi 1{ni>0}. Further, let ai = ni�d, N = Âi ni, and A = Âi ai = Âi ni�Kd = N�Kd. Now,
following Ishwaran and colleagues (Ishwaran and Zarepour, 2002), we write the posterior
distribution of p as an infinite random vector p | x,d,a = (p1, p2, ..., pK, p⇤p 0), where

(p1, p2, ..., pK, p⇤p 0)⇠ Dir(n1 �d, ...,nK �d,a +Kd) (4.3)
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p 0 := (p1,p2,p3, ...)⇠ PY(d,a +Kd)

4.3.2.2 Expectations over Pitman-Yor Process Priors and Posteriors

A key virtue of Pitman-Yor process priors is invariance under size-biased sampling, a property
which we exploited earlier to derive the information bound Jl ,Q. Here this property allows us
to convert expectations over p on the infinite-dimensional simplex (which are required for
computing the mean of Jl ,Q from the given data) into one or two-dimensional integrals with
respect to the distribution of the first two size-biased samples (Perman et al., 1992; Pitman,
1996).

Proposition 4.1. (Expectations with first two sized-biased samples [Pitman and Yor, 1997])
For p ⇠ PY(d,a)

E(p|d,a)

"
•

Â
i=1

f (pi)

#
= E(p̃1|d,a)


f (p̃1)

p̃1

�

E(p|d,a)

"

Â
i, j 6=i

g(pi,p j)

#
= E(p̃1,p̃2|d,a)


g(p̃1, p̃2)

p̃1p̃2
(1� p̃1)

�

where p̃1 and p̃2 are the first two sized biased samples from p .

The direct consequence of this proposition is that the integrals over the infinite-dimensional
simplex becomes tractable and, as a result, we obtain closed-form solutions for expected value
of Jl ,Q(p) under both prior and posterior distributions

Jl ,Q(p) = l
•

Â
j=1

•

Â
k=1

pkQ( j)
✓

pk+ j

pk

Cl ,Q(k)
Cl ,Q(k+ j)

�1
◆2

E
⇥
Jl ,Q | d,a

⇤
= y0(a +1)�y0(1�d) (4.4)

E
⇥
Jl ,Q | x,d,a

⇤
= y0(a +N +1)� a +Kd

a +N
y0(1�d)� 1

a +N

"
K

Â
i=1

(ni �d)y0(ni �d +1)

#

(4.5)

4.3.2.3 Pitman-Yor Mixture Process priors

The prior and posterior expectations computed earlier provide a class of estimators for the
information bound Jl ,Q for distributions with possibly countably infinite support. However
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Dirichlet and Pitman-Yor Process priors for a fixed (d,a), are highly informative in the under-
sampled regime and induces a rather narrow prior distribution over Jl ,Q. This inevitably leads
to undesirably narrow posterior credible intervals [1, 10, 17, 21], reflecting the narrow prior
uncertainty rather than strong evidence from the data, thereby giving incorrect answers with
high confidence!

We address this problem by introducing a mixture prior p(d,a) on PY(d,a) under which
the implied prior on Jl ,Q is flat. One way of constructing a flat mixture prior is by setting
p(d,a) proportional to the derivative of the expected entropy [10]. We use the entropy to
define this prior as it regularizes the class of measures that we learn, to have finite entropy.
The two parameters (d,a) are explicitly controlled by re-parameterizing Pitman-Yor Process
prior as follows

h = y0(a +1)�y0(1�d), g =
y0(1)�y0(1�d)

y0(a +1)�y0(1�d)

where h > 0 is equal to the expected prior entropy, and g 2 [0,•) captures prior beliefs about
the tail behavior.

For g = 0, we have the DP (i.e. d = 0, giving p with exponential tails), while for g = 1
we have a PY(d,0) process (i.e., a = 0, yielding p with power-law tails). In the limit where
a !�1 and d ! 1, g ! •. Where required, the inverse transformation to standard Pitman-
Yor Process parameters is given by:

a = y�1
0 (h(1� g)+y0(1))�1, d = 1�y�1

0 (y0(1)�hg)

where y�1
0 (·) denotes the inverse digamma function.

We can then construct an approximately flat improper distribution on [0,•] by setting
p(h,g) = q(g) for all h, where q is any density on [0,•). We call this the Pitman-Yor process
mixture (PYM) prior. The induced prior on Jl ,Q is thus

p(Jl ,Q) =
Z Z

p(Jl ,Q | p)p(p | g,h)p(g,h)dgdh

where p(p | g,h) denotes a Pitman-Yor Process prior on p with parameters g,h.
In this work we compare only two choices for q(g), the gamma family which has ex-

ponential tails and the stable family which has power law tails thereby providing different
prior beliefs one might have regarding the data set at hand. PYM mixture priors resulting
from different choices of q(g) are all approximately flat on Jl ,Q, but each favors distributions
with different tail behavior; the ability to select q(g) greatly enhances the flexibility of PYM,
allowing the practitioner to adapt it to there own data.
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The Pitman-Yor Mixture Estimator Now that we have determined a prior on the infinite
simplex, we turn to the problem of inference given observations x. The Bayes least squares
entropy estimator under the mixture prior p(d,a), the Pitman-Yor Mixture (PYM) estimator,
takes the form

ĴPYM
l ,Q = E

⇥
Jl ,Q | x

⇤
=
Z

E
⇥
Jl ,Q | x,d,a

⇤ p(x | d,a)p(d,a)

p(x)
d(d,a) (4.6)

where E
⇥
Jl ,Q | x,d,a

⇤
is the expected posterior entropy for a fixed (d,a). The quantity p(x |

d,a) is the evidence, given by

p(x | d,a) =

�
’K�1

l=1 (a + ld)
��

’K
i=1 G(ni �d)

�
G(1+a)

G(1�d)KG(a +N)

4.3.3 Optimizing the Log-Sobolev Bound

Because of the improper prior p(d,a), and because by [4.6] it must be integrated over all
a > 0, it is not obvious that the PYM estimate ĴPYM

l ,Q is computationally tractable. In principle
the PYM integral over a is supported on the range [0,•). In practice, however, the posterior
concentrates on a relatively small region of parameter space. It is generally unnecessary to
consider the full integral over a semi-infinite domain. Instead, we select a subregion of [0,1]⇥
[0,•) which supports the posterior up to e probability mass.

The posterior is usually unimodal in each variable a and d separately, however if there
are multiple modes, they must lie on a strictly decreasing line of d as a function of a and,
in practice, we find the posterior to be unimodal. We compute the hessian at the MAP pa-
rameter value, (dMAP,aMAP). Using the inverse hessian as the covariance of a Gaussian ap-
proximation to the posterior, we select a grid spanning ±6 std. We use numerical integration
(Gauss-Legendre quadrature) on this region to compute the integral. When the hessian is rank-
deficient (which may occur, for instance, when the aMAP = 0 or dMAP = 0), we use Gauss-
Legendre quadrature to perform the integral in d over [0,1), but employ a Fourier-Chebyshev
numerical quadrature routine to integrate a over [0,•) (Boyd, 1987).

Thereby allowing us to estimate ĴPYM
l ,Q for each value of l and Q. Here again we choose a

Pitman-Yor Process model on the distribution Q

Q := (Q(1),Q(2),Q(2), ...)⇠ PY(a,b)

and then the aim of the learning algorithm is to optimize for the value of a,b which minimize
the expected value of ĴPYM

l ,Q . Since by stick breaking process, as described by [4.2] we have
a straightforward algorithm for sampling distributions p ⇠ PY(d,a) and Q ⇠ PY(a,b). With
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enough stick-breaking samples, it is always possible to approximate p and Q to arbitrary
accuracy which then allows us to finally get the required

l̂ PYM, Q̂PYM = argmin
l ,Q

ĴPYM
l ,Q (p)

via a simple gradient descent algorithm on the parameters (a,b).





Appendix A

Polish Spaces

In this section we expound these properties so as to get a deeper understanding, however they
are not critical to the rest of the work. We start with an example. Consider the case of real
numbers, and identify each real number x 2 R as a collection of intervals, say {[pi,qi]}•

i=1
where pi,qi 2 Q are rational numbers, such that x = limsup pi and x = liminfqi. Then there
intersection defines the real number {x} = \•

i=1 [pi,qi]. In such a representation, smaller an
interval more information one has about the number, one is trying to approximate. So if
x := [pi,qi] � y :=

⇥
p j,q j

⇤
, then the interval y carries more information than the interval x,

and we represent it by writing x  y.
The aim is to generalize this idea of a system of approximating intervals to arbitrary topo-

logical spaces. A topological space is an ordered pair (X ,tX), where X is some set and tX is a
collection of subsets of X , satisfying the following axioms

1. The empty set /0 and X are closed (i.e. contains all its limit points)

2. The intersection of any (finite or infinite) number of members of tX , is closed

3. The union of finitely many elements of tX , is also closed

The elements of tX are called closed sets and the collection tX is a called a topology on X .
Now consider, partially ordered sets (PtX ,) or posets, as a sequence of compact (i.e. closed
and bounded) subsets, which are elements of the topology tX , equipped with a transitive,
reflexive, and antisymmetric partial order , defined by the reverse set inclusion, ◆. Here
antisymmetry means that if x  y and y  x then x = y. This choice of partial order implies
smaller sets provide more information than larger sets. We can then use these posets as a
model for the topological space (X ,tX), provided a few more properties are satisfied, which
we study now.
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Firstly, we need to ensure consistency, i.e. the sequence of compact subsets should con-
verge to an unique object. One way to interpret consistency would be using the idea of a
“knowledge closed” topology. A set C ✓ PtX is knowledge closed, or closed in the Scott
topology [Scott, 1970] if

1. C is a lower set: if p 2 C and q  p then q 2 C i.e. if we know that x 2 p ✓ q then we
know that x 2 q.

2. If D ✓ C is directed, then _D 2 C i.e. if we know that x 2 p for each p 2 D , then we
know that x 2 _D .

To ensure Scott topology on the poset PtX , it is enough to assume that PtX is a directed com-
plete poset (dcpo), that is if D ✓ PtX is a directed subset and bounded above, then D has a
supremum, denoted as _D . Thus the notion of dcpo ensures that increasingly smaller subsets
indeed approximates an unique object.

Secondly, from the poset it should be possible to “observe” the possible approximations of
the object under consideration. For example, for the dcpo (PtR ,), if r is an endpoint of the
interval x 2 PtR , no magnification of the real line would make it possible to see whether r is
actually in x or not. Similarly, for another interval y 2 PtR , if either the left or right endpoints
of x and y are identical, it will not be possible under any magnification of the real line to see
whether one of the intervals contains the other.

Lemma A.1. One can determine for x,y 2 PtX , that x � y (a relationship denoted by x ⌧ y and
read as x is way below y) if and only if whenever y _D , where D ✓ PtX is a directed subset,
then for some r 2 D , x  r.

Proof. Assuming x� y, let y◆_D , where D ✓PtX is a directed subset. Then (X\int(x))\y=
/0 implies (X\int(x))\_D = /0, so by the compactness of elements of D , (X\int(x))\_F = /0
for some finite set F ✓ D . Since D is directed, there is an r 2 D such that r ✓ _F , whence
(X\int(x))\ r = /0; that is int(x)◆ r, so in particular x  r.

Conversely, for x,y 2 PtX such that x,y  _D , where D ✓ PtX is some directed subset.
Now since x  r for some r 2D , this means that by the compactness of elements of D there is
some finite set F ✓D such that r ✓_F . Now since y ◆_D and _D ◆_F , we have x  r  y.
In other words int(x)◆ y. This is exactly when one can determine for x,y2PtX , that x� y.

Thus we can observe the possible approximations only when for a sequence of approxi-
mations x1,x2, ... 2 PtX such that

x1 ⌧ x2 ⌧ · · ·
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Thirdly, we need to ensure that sufficient information needed to compute any object is
available in the objects way below it. This property is described by the concept of continuity.
A continuous dcpo is a dcpo PtX such that for every x 2 PtX , + x is directed and x = _(+ x)
where

+ x = {a 2 PtX : y ⌧ a for some y 2 {x}}

For example, clearly for [p,q] 2 PtR we have

_(+ [p,q]) = \{[r,s] : r < p  q < s}= [p,q]

so PtR is a continuous dcpo.
Note that ⌧ satisfies a transitivity condition and it is stronger than , since if x ⌧ y then

x  y and if w  x ⌧ y  z then w ⌧ z. These properties imply that + (+ x) =+ x for every
x 2 PX , where PX is a continuous dcpo. This fact can be reinterpreted as an interpolation
property, i.e. if x ⌧ y then there exists a z 2 PtX such that x ⌧ z ⌧ y. In the case of PtR the
interpolation property is obvious.

Finally, we need a countable dense subset, called a basis, whose elements could be used
to recursively approximate the elements of X . Assuming PtX has the interpolation property,
then D is a basis for PtX if and only if D is ⌧-dense in PtX in the sense that if x ⌧ y then there
exists a d 2 D such that x ⌧ d ⌧ y. A poset PtX is w-continuous provided it is a bounded
continuous dcpo and has a countable basis. Notice that if D is a basis for dcpo PtX then

x = _(D\ + x) for every x 2 PtX

Clearly the family of all intervals with rational endpoints form a countable ⌧-dense subset of
PtR .

The property that x = _(D\ + x) means that x is uniquely determined by Fx = D\ + x
which is a filter in D. This means that for every object x 2 max(PX), where

max(PX) = {_D : 8D , the directed subsets of PtX}

one could define a “continuous learning process” if the poset is w-continuous by encoding the
incoming information using the elements from the countable set D which is ⌧-dense in PtX .

Definition A.1. A bounded complete computational model of a topological space (X ,tX) is a
w-continuous dcpo (PtX ,) together with a bijection f : X ! max(PtX ), such that

1. f is a homeomorphism between (X ,tX) and max(PtX ) considered with the subspace
Scott topology inherited from PtX .
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(a) For every x 2 PtX the set f�1 ({y 2 max(PtX ) : x  y}) is tX -closed.

Now we state a theorem without proof, since it is beyond the scope of the current work, but it
provides the basis for restricting ourselves to only the study of Polish spaces when designing
learning algorithms.

Theorem A.1. [Lawson, 1996] A topological space (X ,tX) has a bounded complete compu-
tational model if and only if it is Polish, i.e. is a completely separable metrizable space.



Appendix B

Discrete Gibbs Principle

Let Y1,Y2, ...,Yn be a sequence of i.i.d. random variables with strictly positive law µ on the
finite alphabet S. Let Xk = f (Yk) for some deterministic f : S ! R. Given a set A ⇢ R and
a constraint of the type Ŝn 2 A, what is the conditional law of Y1 when n is large? In other
words, what are the limit points, as n ! • of the conditional probability vector

µ⇤
n (ai) := Prµ

�
Y1 = a1 | Ŝn 2 A

�
, i = 1, ..., | S |

Recall that Ŝn := 1
n Ân

j=1 Xj = hf,LY
n i, where f =

�
f (a1), · · · , f (a|S|)

�
, and note that under

the conditioning Ŝn 2 A, Yj are identically distributed, although not independent. Therefore,
for every function f : S ! R

hf ,µ⇤
n i= E

⇥
f(Y1) | Ŝn 2 A

⇤

= E
"

1
n

n

Â
j=1

f(Yj) | Ŝn 2 A

#
= E

h
hf ,LY

n i | hf,LY
n i 2 A

i

where f =
�
f(a1), · · · ,f(a|S|)

�
. Hence, with G := {n : hf,ni 2 A}

µ⇤
n = E

h
LY

n | LY
n 2 G

i

Using this identity, the following characterization of the limit points of {µ⇤
n} applies to any

non-empty set G for which

IG := inf
n2G�

H(n | µ) = inf
n2Ḡ

H(n | µ)
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Theorem B.1. Gibb’s Principle [55]: Let

M :=
�

n 2 Ḡ : H(n | µ) = IG
 

1. All the limit points of {µn}⇤ belong to c̄o(M ), the closure of the convex hull of M .

(a) When G is a convex set of non-empty interior, the set M consists of a single point
to which µ⇤

n converge as n ! •.

Proof. Since | S |< •, Ḡ is a compact set and thus M is non-empty. For every U ⇢ M1(S)

E
h
LY

n | LY
n 2 G

i
�E

h
LY

n | LY
n 2U \G

i

= Pr
⇣

LY
n 2Uc | LY

n 2 G
⌘

n
E
h
LY

n | LY
n 2Uc \G

i
�E

h
LY

n | LY
n 2U \G

io

Since E
⇥
LY

n | LY
n 2U \G

⇤
belongs to co(U), while µ⇤

n = E
⇥
LY

n | LY
n 2 G

⇤
, it follows that

dV (µ⇤
n ,co(U))

Pr
⇣

LY
n 2Uc | LY

n 2 G
⌘

dV

⇣
E
h
LY

n | LY
n 2Uc \G

i
,E
h
LY

n | LY
n 2U \G

i⌘

Pr
⇣

LY
n 2Uc | LY

n 2 G
⌘

where the last inequality is due to the bound dV (·, ·)  1. With M
d := {n : dV (n ,M )< d},

it is proved shortly that for every d > 0,

lim
n!•

Pr
⇣

LY
n 2 M

d | LY
n 2 G

⌘
= 1

with an exponential (in n) rate of convergence. Consequently for U =M
d results in dV (µ⇤

n ,co(M d ))!
0. Since dV is a convex function on M1(S)⇥M1(S), each point in co(M d ) is within varia-
tional distance d of some point in co(M ). With d > 0 being arbitrarily small, limit points of
µ⇤

n are necessarily in the closure of co(M ).

Using Sanov’s theorem we have

IG =� lim
n!•

1
n

logPr
⇣

LY
n 2 G

⌘
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and

lim sup
n!•

1
n

logPr
⇣

LY
n 2

⇣
M

d
⌘c

\G
⌘
� inf

n2(M d)c\G
H(n | µ)

� inf
n2(M d)c\Ḡ

H(n | µ)

Observe that M
d are open sets and, therefore

⇣
M

d
⌘c

\ Ḡ are compact sets. Thus for some

ñ 2
⇣
M

d
⌘c

\ Ḡ,
inf

n2(M d)c\Ḡ
H(n | µ) = H(ñ | µ)> IG

hence

lim sup
n!•

Pr
⇣

LY
n 2

⇣
M

d
⌘c

| LY
n 2 G

⌘

= lim sup
n!•

⇢
1
n

logPr
⇣

LY
n 2

⇣
M

d
⌘c

\G
⌘
� 1

n
logPr

⇣
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n 2 G
⌘�

< 0
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