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ABSTRACT 

Heat is a common stress, causing many changes in plant physiology and growth, leading to major 

economic losses in crops. There is growing evidence that heat stress also affects chromatin 

architecture. However, genome-wide patterns of these changes and its relationship with transcription 

of genes are poorly understood. Previously, it was shown that under heat stress nucleosomes are 

depleted prior to, and strongly enriched at the transcription start site (TSS) of heat shock protein 

coding genes in Arabidopsis thaliana. Aim of this work is the analysis of changes in nucleosome 

occupancy under ambient, heat stress and post-stressed (recovery) conditions in Arabidopsis 

thaliana. Therefore, a genome-wide map of nucleosome positions was generated using the approach 

of Micrococcal nuclease sequencing (MNase-seq). This revealed that unlike intergenic region, 

nucleosomes are abundantly present in genic regions and further, are more prominent in exons than 

introns. Some of these signals were very strong, indicating precise nucleosome positioning at 

specific genes over many plant tissues in Arabidopsis. Further observations, have shown substantial 

changes in the nucleosome occupancy including both nucleosome gain and loss in response to heat-

stress. In particular, loss of nucleosome occupancy has been observed around TSS region of genes, 

which were highly transcriptionally up-regulated during heat stress response. The opposite, but 

weaker, trend was observed in strongly down-regulated genes, showing gain in nucleosome 

occupancy. In conclusion, this study suggests a correlation between the nucleosome occupancy and 

expression of heat stress responsive genes. 
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ZUSAMMENFASSUNG 
 
Hitze ist eine häufige Belastung, die viele Veränderungen in der Pflanzenphysiologie 

verursacht und zu großen wirtschaftlichen Einbußen bei Pflanzen führt. Es gibt zunehmend 

Hinweise darauf, dass Hitzestress auch die Chromatinarchitektur beeinflusst. Genomweite 

Muster dieser Veränderung und ihre Beziehung zur Transkription von Genen sind jedoch 

kaum verstanden. Zuvor wurde gezeigt, dass unter Hitzestress Nukleosomen vor der 

Transkriptionsstartstelle (TSS) von Hitzeschockprotein-kodierenden Genen in Arabidopsis 

thaliana abgereichert und stark angereichert werden. Innerhalb dieser Arbeit sollten die 

Veränderungen der Nukleosomenbelegung im Genom von Arabidopsis thaliana unter 

Normalbedingungen, Hitzestress und Post-Stress Erholunguntersucht werden. Dabei 

wurden genomweite Karten von Nukleosomenpositionen mit Hilfe des Micrococcal 

Nuclease Sequencing (MNase-seq) Ansatzes generiert. Dies zeigte, dass Nukleosomen im 

Gegensatz zu Bereichen zwischen den Genen, in den genischen Regionen reichlich 

vorhanden sind und in Exons mehr hervortreten als in Introns. Einige dieser Signale waren 

sehr stark, was auf eine genaue Positionierung der Nukleosomen an spezifischen Genen 

gegenüber vielen Pflanzengeweben in Arabidopsis hinweist. Als Reaktion auf Hitzestress 

konnten wesentliche Veränderungen in der Nukleosomenbelegung, einschließlich der 

Verstärkung und des Verlusts von Nukleosomen beobachtet werden. Insbesondere wurde 

ein Verlust der Nukleosomenbelegung um die TSS-Region herum beobachtet, die den 

Genen entspricht die während Hitzestress stark transkriptionell hochreguliert waren. 

Eingegenteiliger, aber schwächere Trend wurde in stark herunterregulierten Genen 

beobachtet, was einen Anstieg der Nukleosombelegung zeigte. Zusammenfassend zeigt 

diese Studie eine Korrelation zwischen der Nukleosomenbelegung und der Expression 

entsprechender hochregulierter Gene. 
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1. INTRODUCTION 

Plants are sessile organisms, and as such are frequently subjected to variety of abiotic and 

biotic stresses without possibility for escape. For the reason that, unlike animals, plants do not 

have locomotion ability to escape from unfavorable condition. Most common natural stresses 

include high/low temperatures, high salinity, water deficit, and bacterial, fungal and animal 

pathogens [Mittler, 2006; Prasad et al,. 2011; Atkinson eat al., 2013; Narsai et al., 2013; 

Prasch et al., 2013; Suzuki et al., 2014; Mahalingam, 2015; Pandey et al., 2015; Ramegowda 

et al., 2015]. Exposure to these stresses provoke an impeding effect on physiological, 

morphologicaland molecular processes of plants, eventually leading to reduction in fitness 

and productivity [Hell et al., 2002; Swarbrick et al., 2006; Bolton et al., 2009; Massad et al., 

2012; Shao et al., 2008]. Abiotic stresses are one of the major concerns and have huge impact 

on growth and productions. It has been reported that abiotic stress alone can be collectively 

responsible for more than 50% growth reduction in most crops [Wang et al., 2003]. In 

addition, continuous increasing temperature after post-industrialization era causes major crop 

losses worldwide and the speed of this change seems to be still accelerating, often most 

severaly in developing countries. As a protection, plants have developed stress-specific 

response mechanisms, which ultimately help them to adapt morphologically, physiologically, 

and biochemically and thus survive and reproduce under many unfavorable conditions 

[Bohnert et al., 1995]. 

 

1.1. Effect of heat stress on plants 

Heat stress (HS) causes numerous effects on plants. Higher temperature often results in 

deformation in plant growth, primarily in areal parts, and interference with developmental and 

physiological processes [Hasanuzzaman et al., 2012, Hasanuzzaman et al., 2013]. The 

damages vary from mild, such as change in plant respiration rate to adverse at molecular and 

genetic level. Severity of damage depends upon exposure duration and intensity of 

temperature. Plant response to HS may vary with species, temperature and exposure time. 

During HS, cellular damage or cell death may occur very rapidly, which could lead to a 

dreadful collapse of cellular organizations [Ahuja et al., 2010]. At the molecular level, HS has 

initial effect on loss of membrane integrity, which eventually leads to disruption in 

maintaining water balance. Protein denaturation is also one of the most prominent initial 

changes under HS [Chang et al., 2007]. It has been reported that HS may affect all stages of 

plant development starting from germination, vegetative growth, organ development, 

reproduction and finally the yield [Hasanuzzaman et al., 2013, Mittler et al., 2010, Lobell et 

al., 2011, McClung et al., 2010]. HS has been reported to alter the structure of various proteins, 
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RNA species and cytoskeletons structures, and remolds the efficiency of various enzymes, 

which leads to metabolic imbalance [Ruelland et al., 2010, Suzuki et al., 2011, Suzuki et al., 

2012, Pagamas et al., 2008]. 

Most of the morphological, biochemical and physiological changes for adaption against HS 

conditions occur via modulation and coordination of specific genes linked with the heat 

sensing and adaptation pathways [Vinocur et al., 2005]. 

 

1.2. Heat shock proteins (HSPs): The wizards of heat stress tolerance 

Plants are equipped with various heat sensing and response specific genes commonly called 

“heat shock genes” (HSGs). These genes, encoding heat shock proteins (HSPs), are vital for 

the survival of plants under HS [Chang et al., 2007]. With rise in temperature, intracellular 

proteins start changes in the structure and conformations leading to the denaturation. To 

protect them, HSPs acts as chaperones and provide stability through the process known as 

protein folding [Baniwal et al., 2004]. There are five major families of HSPs in plants: 

HSP100, HSP90, HSP70, HSP60 and HSP20 [Swindell et al., 2007; Table-1]. Among them, 

HSP70 and HSP60 are the most conserved proteins in nature and considered to play a pivotal 

role in heat tolerance [Kültz et al., 2003]. On the other hand, small HSPs (HSP20), which 

have low molecular mass of 12-40 kDa have been shown to represent the highest diversity in 

the structure [Wang et al., 2004, Morrow et al., 2012]. 

 

Major HSPs Class Functions 

HSP100  ATP-dependent dissociation and degradation of aggregate 

protein 
HSP90  Co-regulator of heat stress linked signal transduction complexes 

and manages protein folding. Requires ATP for its function 

HSP70, HSP40  Primary stabilization of newly formed proteins, ATP-dependent 

binding and release 
HSP60, HSP10  ATP-dependent specialized folding machinery 

HSP20 or small HSP 
(sHSP) 

Formation of high molecular weight oligomeric complexes, 

which serve as cellular matrix for stabilization of unfolded 

proteins. HSP100, HSP70 and HSP40 are needed for its release 

 
Table 1. Molecular functions of the major classes of heat shock proteins (HSPs) for heat stress 
tolerance in plant system. 
 



INTRODUCTION 

 
3 

Promoter regions of most HSGs have specific motifs, which act as binding sites for specific 

transcription factors (TFs). These motifs are known as heat shock elements (HSEs) and the 

TFs are called heat shock factors (HSFs). It has been shown, that under HS condition, HSGs 

showed significantly higher gene expression in comparison to ambient condition [Nover et 

al., 2001]. Also, promoters of the genuine HSGs contain HSEs in one or more copies and 

present in the form of specific palindromic nucleotide sequence. HSFs recognize these 

specific elements and subsequently bind to the promoter of such genes which eventually 

contributes to its regulation [Nover et al., 2001]. Apart from the promoters of HSGs, HSEs 

are also present in promoters of several other genes and other genomic locations [Guo et al., 

2008, Storozhenko et al., 1998] or even in transposable elements (Pietzenuk et al., 2016). 

 

1.3. Chromatin classification, gene regulation and epigenetics 

Eukaryotic nuclear DNA is present in the form of chromatin, which is complex of mainly 

DNA and proteins. This chromatin structure is the result of step-by-step supercoiling of DNA, 

which requires the assistance of many structural organization and maintenance proteins [Rosa 

et al., 2013, Wilson, 2002]. Chromatin is present in two basic forms: euchromatin and 

heterochromatin based on the staining intensity [Heitz, 1928; Bennetzen et al., 2000]. 

Heterochromatin is dominated by repetitive sequences, repressed genes and silenced 

transposons and varies from moderate to high stain intensity, while euchromatin (also known 

as open chromatin) is less intense. High intensity of heterochromatin indicates its tightness of 

packing. Because heterochromatin is tightly packed, it was believed to be inaccessible to 

transcription proteins and therefore unable to transcribe the genes present in such region of 

the genome. Although, several studies showed that some of these genes are transcribed by 

Pol-IV [Volpe et al., 2002, Hediger et al., 2006, Värv et al., 2010]. Despite of this early 

classification, recent study also suggested that there more than two chromatin state [Roudier 

et al., 2011]. In Arabidopsis thaliana it is present in four different forms and each marked 

with different mixture of epigenetic markers [Roudier et al., 2011]. 

On the basis of helical organization, DNA can be classified in three different forms inside the 

cell; A, B and Z [Rosalind, 1953, Dickerson, 1992, Harvey, 2015]. They mainly differ in 

terms of rotation of their helix; A and B are right handedly helically twisted while Z is twisted 

left handedly [Mitsui et al., 1970]. B-form is the most common DNA form in eukaryotes 

[Leslie et al., 1980]. Recently, a new kind DNA was reported in human nuclei, known as I-

motif DNA [Zeraati et al., 2018]. They organized themselves in such a way by assembling 

two loops, which leads to formation DNA with four strands [Zeraati et al., 2018]. However, 

inside the cell A, B and Z DNA are present with histones in the form of nucleosome assembly, 
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and also without the histones in the form of linker DNA [Szerlong et al., 2011, Bradbury et 

al., 1989]. Despite the increase in complexity in eukaryotic transcription machinery, 

transcription of linker DNA is very much similar to prokaryotic DNA, [Hahn, 2004]. In the 

typical case, RNA polymerase II (RNA Pol II), one of the major components of transcription 

process, binds to the core promoter region, which activates the whole machinery of 

transcription. It binds to the defined region of promoter, specifically rich in alternate sequence 

of adenine and thymine and hence commonly known as TATA box. This activation facilitates 

the attachment of other important transcription factors (TFs) to the promoter with the 

assistance of RNA Pol II. The process starts with the binding of RNA Pol II to the core 

promoter in combination with transcription factor II A (TFIIA), transcription factor II B 

(TFIIB) and transcription factor II D (TFIID) to form pre-initiation complex [Hahn, 2004]. 

Transcription factor II H (TFIIH) then denatures about 11 to 15 base long DNA, double strand 

into two single strands to initiate the transcription at RNA Pol II attachment site. Carboxyl 

terminus of RNA Pol II is phosphorylated by TFIIH during 30 base elongation process. This 

leads to the detachment of RNA Pol II from other TFs before the elongation proceeds. After 

that, RNA Pol II accumulates other factors needed for elongation stage. Transcription process 

then ends with termination stage [Hahn, 2004]. 
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Figure 1. Organization of chromatin and nucleosomes in the cell nucleus. Scheme depicting 
different means of chromatin regulation. PTM, post-translational modification. Chromosome 
territories within the nucleus, shown in different colors, are composed of chromatin fibers, 
which, in turn, contain supercoiled DNA with nucleosomes beads. [Adapted from Rosa et al., 
2013] 

Epigenetics markers are the features which are not directly governed by DNA sequence 

[Dupont et al., 2009]. This broadly includes DNA (cytosine) methylation and modifications 

in histone proteins. Both of them are discussed in detail, later in separate sections. Here, 

nucleosome is explained first, which is important to understand the histone proteins. 

Nucleosomes are the basic structural packaging units of the eukaryotic chromatin. A 

nucleosome consists of eight histone proteins, which includes pair of each H2A, H2B, H3 and 

H4, generally denoted as octamer. This octamer is wrapped with a stretch of 147 bp 

(corresponding to 1.67 turn) of double stranded DNA [Rosa et al., 2013] (Figure 1). An 

additional protein H1, belts the whole nucleosome structure from outside to provide complete 
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stability to the nucleosome [Rosa et al., 2013] (Figure 2). Nucleosomes are present in 

repetitive manner throughout the genome, spaced by a linker or naked region of varied length. 

Length of the linker region varies depending upon the location on the genome (~30 bp) 

[Szerlong et al., 2011, Bradbury, 1989]. The positioning and maintaining occupancy of the 

nucleosomes are important for the proper functioning of biological processes through 

regulating the gene expression in the cell [Kornberg, 1974].  

 

Figure 2. Schematic structure of a nucleosome; consisting of histone octamer; a pair of H2A, 
H2B, H3 and H4, core DNA of length approx. 147 bp (wrapped around histone octamer) and 
one external histone H1. Linker DNA, also called naked DNA, lies outside the nucleosome 
structure. Histone tails are the extended amino acid sequence of histone proteins, which 
usually undergo different modification such as methylation (Me), acetylation (Ac) and 
ubiquitination (Ub). 

 

1.3.1. Post-translational modifications in histone proteins 

Histones contain flexible N-terminal tail of amino acids that lies outside from the histone core 

[Davey et al., 2002]. These tails are extensively modified post-translationally through the 

addition of methyl, acetyl, phosphoryl and ADP-ribose groups. Also, addition of small 

peptides, such as SUMO and ubiquitin, has been observed. Whole genome profiling of these 

modifications showed that they co-occur in the genome in different combination, and each of 

these modifications can be broadly classified as being associated with transcribed genes and 

transposons [Li et al., 2007; Rando and Chang, 2009; Berger, 2007]. Specifically, methylation 

and acetylation of H3 lysine (K) acts predominantly as the repressor or activator of gene 

expression, respectively, in plants. Apart from some exceptions, types of histone 
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modifications and their functions are generally conserved in both animals and plants [Fuchs 

et al., 2006]. 

Acetylation of histones revamps the structure of nucleosomes directly by loosening the bond 

between DNA and histones. While other PTMs, such as methylation, generally create biding 

sites for chromatin-based effect processing proteins. PTMs which are bound by specific 

effector proteins, are involved either in the repression of gene transcription essentially through 

compacting nucleosome array [Eskeland et al., 2010; Francis et al., 2004], or can induce 

transcription by engaging chromatin remodeling complexes, or complexes involved in 

splicing or elongation [Pray-Grant et al., 2005; Sims et al., 2007]. 

In Arabidopsis, methylation of histone protein is considered as one of the most influential 

epigenetic marks, which occur as mono-, di-, and tri-methylation [Liu et al., 2010].  The usual 

sites for its occurrence are e.g. Lys4 (K4), Lys9 (K9), Lys27 (K27), Lys36 (K36), and Arg17 

(R17) of histone H3, and Arg3 (R3) of histone H4 [Liu et al., 2010]. Trimethylation of H3 

lysine 4 (H3K4me3), dimethylation of H3 lysine 9 (H3K9me2) and trimethylation of H3 

lysine 27 (H3K27me3) are three the most studied H3 methyl modification, which associate 

with trancriptional activation, constitutive silencing and transient silencing, respectively.  

H3K4me3 is deployed at the 5’ end of highly transcribed genes by the enzyme trithorax group 

(trxG) protein complexes associated with the activation RNA polymerase [Santos-Rosa et al., 

2002]. In contract, H3K27me3 is associated with silencing of many developmental regulator 

genes in plants. It appears to be deposited by PRC2 (Polycomb Repressive 2) complex. 

H3K27me3 is generally present in promoters and gene bodies, and is found in about 15 to 

20% of genes in Arabidopsis [Zhang et al., 2007; Deal et al., 2010], and 30 to 40% in Maize 

[He et al., 2010; Wang et al., 2009]. Moreover, in Arabidopsis H3K27me3 is bound by LHP1 

(LIKE HETEROCHROMATIN PROTEIN 1) [Zhang et al., 2007; Turck et al., 2007], which 

with several other proteins forms PRC1 silencing complex [Xu et al., 2008]. Furthermore, 

EMF1 (EMBROYNIC FLOWER 1), a plant specific protein, also plays a PRC1 like role in 

silencing of floral developmental gene AGAMOUS (AG) [Calonje et al., 2008].   

 

1.3.2. Histone variants 

Beside of the canonical histones, which are incorporated during DNA replication, all 

eukaryotes have variant type H3 and H2A and can confer unique properties to the nucleosome 

they deposited [Talbert and Henikoff, 2010]. H3 and H2A variants act like on/off switch for 

the genes and have been shown to play other roles like DNA repair, meiotic recombination 

and chromosome segregation [Yelagandula et al., 2014; Coleman-Derr et al., 2012; Zilberman 

et al., 2008; Weber et al., 2014; Moggs et al., 2000; Kirik et al., 2006; Ravi et al., 2011; 
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Fukagawa et al., 2014]. H2AX and H2A.Z are the variants of H2A found in plants, along with 

their multiple isoforms [Gendler et al., 2008]. Furthermore, H2AX is phophorylated on its C-

terminal serine at sites of DNA damage and involved in recognition of the sites of DNA 

damage [van Attikum and Gasser, 2009]. While H2A.Z variant differs from H2A throughout 

the protein chain by many amino acid substitutions, especially at C-terminal α-helical region 

[Suto et al., 2000]. This variant has been extensively studies in yeast, animals, and plants, and 

found to be involved in several genomic processes such as transcriptional regulation, 

formation of heterochromatin boundaries and maintenance of genome integrity [Raisner and 

Madhani, 2006]. Genome-wide mapping of this variant by ChIP-chip (chromatin 

immunoprecipitation coupled to microarrays) revealed its extent of wide deposition through 

genome, especially flanking around TSS [Raisner et al., 2005; Zilberman et al., 2008; Mavrich 

et al., 2008], where it appears to contribute in transcriptional regulation, by aiding to prevent 

DNA methylation [Zilberman et al., 2008; Conerly et al., 2010]. Swr1 ATP-dependent 

nucleosome remodeling complex of plants and animals is responsible for incorporation of 

H2A.Z into nucleosome. During the process nucleosome is being partially unwrapped and an 

H2A/H2B dimer is replaced by an H2A.Z/H2B dimer [Mizuguchi et al., 2004]. Moreover, 

except H4, all of the core histones possess a number of variants, which probably have emerged 

by gene duplication event [Malik et al., 2003]. 

H3.3 and CenH3 are the two variants of H3 found in al eukaryotes. CenH3 variant is deposited 

at centromere and plays role in chromosome segregation [X et al]. H3.3 variant differ from 

H3 in only three to four amino acids [Malik and Henikoff, 2003] and is incorporated outside 

of DNA replication site through different histone chaperons, such as HirA and Daxx, 

depending upon genomic location [Tagami et al., 2004; Drane et al., 2010; Goldberg et al., 

2010]. H3.3 chaperone homolog HirA in Arabidopsis was showed to mediate silencing of 

KNOX genes during development of leaves [Phelps-Durr et al., 2005], apparently through 

H3.3 deposition. Its deposition occurs predominantly at promoters, gene regulatory elements, 

and at transcribed region of expressed genes, where nucleosomes are constantly being 

distorted and replaced [Mito et al., 2005; Deal et al., 2010]. Apart from above discussed 

variants, in Arabidopsis, H3 also have H3.1 and H3.2 variants, while H2A histone also have 

H2A.X and H2A.W [Ingouff et al., 2010; Kawashima et al., 2015].  

 

1.3.3. Methylation of DNA 

In plants, cytosine can be methylated at its fifth carbon position of the aromatic ring, and this 

can occur at any cytosines regardless of the DNA sequence context. Generally, 5-

methylcytosine is associated with transcriptional silencing by triggering chromatin 

compaction and thus directly blocking trancriptional factor binding and hence preventing 
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transcription [Zilberman et al., 2007, Hohn et al., 1996; Chawla et al., 2007]. Although DNA 

methylation affects the accessibility of underlying sequence towards the regulatory 

machinery, it does not alter the genetic code of the original genomic sequence [Bernatavichute 

et al., 2008; Law et al., 2010]. Cytosine is methylated in three functional contexts; CG, CHG 

and CHH, where H is A, C or T. CHHs are asymmetrically methylated sites, while CG and 

CHG are symmetrically methylated sites [Du et al., 2015; Matzke et al., 2014]. Arabidopsis 

genome is covered with 24% of CG sites, 6.7% of CHG and 1.7% of CHH [Cokus et al., 

2008]. Genome-wide studies showed that the preferred location of methylation is at repetitive 

DNA sequence, including two major tandem repeats centromere and 45S rDNA repeats 

[Pikaard, 2002]. DNA methylation in all contexts occurs also locally in transposons  located 

in otherwise euchomaticcontext [Lippman et al., 2004; Zhang et al., 2006; Zilberman et al., 

2007]. Individual genes also have considerable amount of methylated cytosine, exclusively in 

CG sequence context [Tran et al., 2005a; Zhang et al., 2006; Zilberman et al., 2007; Vaughn 

et al., 2007; Cokus et al., 2008]. 

Methyl group is added to cytosine is performed by DNA methyltransferases. All known 

cytosine 5-methyltransferases are from single large family (which three sub-families; 

DNMT1, CMT and DRM) [Rangwala and Richards, 2004; Chan et al., 2005; Goll and Bestor, 

2005]. Although, in Arabidopsis, there are three subfamilies of DNA methyltransferases: CG 

maintenance methyltransferases (METHYLTRANSFERASE1 (MET1)), chromomethylases 

(CHROMOMETHYLASE3 (CMT3)), and the de novo methyltransferases (DOMAINS 

REARRANGED METHYLTRANSFERASES (DRMs)) [Finnegan and Kovac, 2000; Kankel 

et al., 2003; Goll and Bestor, 2005].     

 

1.3.4. Nucleosome organizing proteins 

Replication, transcription, recombination and repair require brief and continuing modification 

in the nucleosome positioning and their alliance with DNA. Thus, chromatin related processes 

are not limited to DNA or protein modifications, but include also changes in occupancy and 

composition of nucleosomes, and DNA accessibility to other proteins. Nucleosome relocation 

and dissociation can be accompanied by chromatin-remodeling ATPases such as the 

SWI/SNF complex in plants (reviewed in Jerzmanowski 2007; Becker and Workman 2013). 

The first identified chromatin remodeler in Arabidopsis was DECREASE IN DNA 

METHYLATION 1 (DDM1) [Jeddeloh et al., 1999]. Loss of DDM1 function reduces DNA 

methylation and H3K9me2, dysregulates numerous genes and transcriptionally activates 

repetitive elements [Teixeira et al. 2009]. Like the SWI2/SNF2 ATPase protein, DDM1 shows 

ATP-dependent nucleosome repositioning activity in vitro [Brzeski and Jerzmanowski 2003].  
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1.3.5. Nucleosome variants, PTMs, DNA methylation and their correlation with 

gene expression 

Over the recent years, many studies elaborated the role of histone vraianst like H2A.Z and 

PTMs like H3K4me3 and H3K27me3 in plant gene regulation. Supposedly the best 

understood illustration for this phenomenon is of the Arabidopsis FLOWERING LOCUS C 

(FLC) gene, which is responsible for vernalization. The FLC gene is expressed in vegetative 

phase and act as repressor of flowering process through reducing the expression of 

FLOWERING LOCUS T (FT) that promotes flowering. During the vegetative phase FLC 

expression is promoted through the deposition of H3K4me3 [He et al., 2004; Oh et al., 2004; 

Tamada et al., 2009], and recruitment of H2A.Z by the SWR1-like complex [Deal et al., 2007; 

Lázaro ae al., 2008; March-Díaz ae al., 2007; March-Díaz et al., 2008]. Loss of H2A.Z with 

other deposition complexes leads to reduced expression of FLC. Moreover, other 

modifications to FLC chromatin, including acetylation of H3, ubiqutination of H2B, and 

methylation of H3K36 are also involved in maintaining expression of FLC, hence repressing 

flowering [He, 2009]. On attaining the maturity under optimal environmental condition, FLC 

must be silenced for flowering. This switch from active to silent requires incorporation of 

H3K4demethylase enzymes and a PRC2 complex that deposits H3K27me3, which leads to 

silencing of the gene. Additionally, arginine methylation of H3 and H4 along with methylation 

of H3K9 has also role in stable silencing of FLC [He, 2009]. Strikingly, H2A.Z remains 

present and showed increase in abundance in silenced FLC chromatin, suggesting that it is 

necessary but insufficient for FLC expression [Deal et al., 2007]. To resume the vegetative 

phase in next generation, FLC revertes to an active state during embryonic development 

[Sheldon et al., 2008; Choi et al., 2009]. 

Methylation has been shown for many roles in Arabidopsis, it is widely associated to regulate 

the development by regulating transposons and developmental genes. Methylation is the 

default state for the majority of the methylated sequences in Arabidopsis genome. Moreover, 

there is very few evidences that shows the status of methylated sequences changes in non-

imprinted genes during growth and development. Methylation surely has effects on genome 

repeats, such as centromeric and 45S rDNA repeats, as impacted when methylation is 

removed, but does not appear to regulate them. In addition to the location specific functions, 

DNA demethylation delivers a housekeeping function by deleting genic RNA-directed DNA 

methylation [Penterman et al., 2007a; Gong et al., 2002]. This keep transposable elements 

silent and genes are protected from silencing induced by methylation. CG methylation found 

in genic regions also show similar housekeeping activity. met1 mutant plants shows overall 

increase in expression of body-methylated genes in comparison to non-methylated genes in 
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wild type [Zilberman et al., 2007]. This indicates, methylation in gene body reduces their 

expression, but there is no proof of direct regulation. 

With the advent of high throughput sequencing, genome-wide nucleosome estimation helped 

to understand its behavior globally [Zaugg and Luscombe, 2012; Field et al., 2008; Wei et al., 

2012]. Genome-wide nucleosome profiles have been developed in several model species, 

including Saccharomyces cerevisiae; [Yuan et al., 2005; Lee et al., 2007], Arabidopsis 

thaliana [Chodavarapu et al., 2010; Li et al. 2014], rice, Oryza sativa [Wu et al. 2014], maize, 

Zea mays [Fincher et al. 2013; Vera et al. 2014], fruit fly, Drosophila melanogaster [Mavrich 

et al., 2008], Caenorhabditis elegans [Johnson et al., 2006; Valouev et al., 2008], and humans, 

Homo sapiens [Schones et al., 2008; Valouev et al., 2011].  

In plants, many of these studies showed the relationship between nucleosome location and 

DNA methylation, TF binding sites (TFBSs), and gene expression [Chodavarapu et al. 2010; 

Fincher et al. 2013; Li et al. 2014; Vera et al. 2014; Wu et al. 2014]. Specifically, it was shown 

that the nucleosome density around TSSs and in gene bodies correlates with gene expression 

in A. thaliana and maize [Li et al. 2014; Vera et al. 2014]. It has also been examined that at 

TFBSs and DNase I hypersensitive sites (DHSs) in rice nucleosome occupancy varies, which 

are likely bound to regulatory proteins [Wu et al., 2014]. Additionally, A. thaliana’s DHSs 

showed the relationships between chromatin accessibility and tissue-specific or 

environmental sensitive DNA elements [Zhang et al., 2012; Sullivan et al., 2014]. 

 

1.4. Effects of HS on the nuclear structure dynamics 

1.4.1. Transcription regulation by nucleosome change 

The transcription initiation and subsequent elongation are affected by presence of 

nucleosomes in the genomes of eukaryotes [Workman et al., 1998]. These nucleosomes have 

14 interaction points of DNA-protein (histone) interface [Luger, 2003; Muthurajan et al, 

2003]. The interactions are due to the presence of different charges in amino-acid and DNA 

molecules and represent one the most stable DNA-protein interaction in genome, which 

eventually facilitates a very efficient packaging unit [Davey et al, 2002].  

Previously, nucleosomes were believed to take part only in DNA packaging [Hagerman, 

1990; Widom, 1985; Travers et al., 1987]. But these nucleosomal structures obstruct the 

access to polymerases and transcriptional factors. To provide access to DNA, nucleosomes 

can be dislodged or evicted, histone variants can be incorporated by altering the its 

compositions, or histone proteins can be modified post-trancriptinally to loosen the histone-

DNA interactions. These processes require chromatin remodeling complexes, which are 
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implicated under stress responses, for instance ATCHR12, a SNF2/Brahma-type chromatin 

remodeling protein which facilitates growth responses in stressful condition [Mlynarova et 

al., 2007; Folta et al., 2014].  Mechanisms, such as intrigation of chromatin remodelers with 

stress signals remains to be understand. 

 

1.4.2. HS effect on chromatin and chromosomes 

Evidences of direct effect of abiotic stresses on nuclear organization has been reported in 

varied plant species, where decondensation of centromeric repeat, 5S rDNA and 45S rDNA 

loci under heat stress has been observed [Santos et al., 2011; Tomas et al., 2013; Pecinka et 

al., 2010]. At interphase, chromosomes of Arabidopsis form well defined chromocenters 

[Pecinka et al., 2004], from which several euchomatin loops emerge out [Fransz et al., 2002]. 

These chromatin organizational changes could either denote the effects of HS on its global 

arrangement or the result of change in expression of genes, which are involved in maintaning 

their structural organization. 

Reduction in the nucleosome density in response to long heat stress did not automatically 

trigger transcriptional activation [Pecinka et al., 2010]. However, heterochromatic genes 

activated by heat stress were silenced slower in the mutants of the CHROMATIN 

ASSEMBLY FACTOR 1 (CAF-1) subunits, providing indication that histones and their 

chaperones are involved in this process. CAF-1 is a type of histone chaperone, which 

facilitates histone storage, assembly, and eviction [Zhu et al., 2012; Otero et al., 2014]. Gene 

expressions of several histone chaperones in Arabidopsis are differentially regulated under 

abiotic stress [Zhu et al., 2012; Tripathi et al., 2015], suggesting their role in chromatin 

structural response to stress. Conversely, stress responsive genes are up-regulated in mutants 

of CAF-1 or ANTI-SILENCING FUNCTION 1 (ASF1) [Weng et al., 2014; Schönrock et al., 

2006]. Plants which express truncated NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1), 

an H2A-H2B chaperone, or lacking ASF1, a small histone chaperone protein show 

hypersentivity to stress [Liu et al., 2009; Weng et al., 2014]. ASF1s bind to certain heat shock 

genes under stress condition, where they may ease gene activation and simultaneous 

nucleosome dissociation [Weng et al., 2014].   

 

1.4.3. HS regulates gene expression through epigenetic mechanisms in plants? 

Most of the research till date has focused on adaptation of plants under temperature variability, 

such as heat and cold stress (reviewed in Penfield, 2008). In low temperature-sensitive plants, 

prolonged cold exposure can trigger metabolic adapation and signaling cascade that 

strengthen plant survival under subzero conditions. Stressful high temperature exposures can 
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intiate the HSPs synthesis that assist protection against denaturation of proteins and 

maintenance of celluar functions. Little fluctuations in ambient temperature can also have 

significant effects on development of plant. Delayed flowering and compact architecture have 

been observed when plants were grown at cooler temperature [Balasubramanian et al., 2006]. 

However, under high temperature, plants show axes elongation and increase in transition to 

reproductive development through expression of FLOWERING TIME (FT) [Balasubramanian 

et al., 2006].  

Kumar and Wigge (2010) showed that chromatin has an essential role in detecting the changes 

in ambient temperature. They exploited the thermal response of HSP70 gene expression 

through mutant screening to show its thermosensitivity. In this strategy, they isolated multiple 

alleles of arp6. ARP6 is the part of SWR1 chromatin-remodeling complex, which is deposits 

the histone variant H2A.Z in nucleosomes [Li et al., 2005]. Results showed that temperature 

directly modifies promoter accessibility and nucleosome composition. They also 

demonstrated that temperature-enhanced eviction of H2A.Z occurs independent of direction 

of the transcription response. Hence, they concluded that temperature-mediated responses in 

nucleosome composition are not merely consequences of higher gene expression. They 

proposed, at cooler temperature H2A.Z occupancy represses gene expression by hindering or 

prevention the binding of protein complex that activates transcription. Expulsion of H2A.Z 

under high temperature would hence facilitate transcription of the following genes. For the 

downregulated genes, it is suggested that H2A.Z expulsion may ease the binding of repressors, 

hence limiting transcription. Thus, occupancy of H2A.Z provides a mechanism to detect 

strategic changes in the ambient temperature and regulate gene expression accordingly. 

 
1.4.4. HS memory at transcriptional and protein level 

Plants have the ability to inherit stress at certain extent. Although, on account of allocation of 

large amount of energy and resources for stress tolerance function, stress adaptation is often 

coupled with growth reduction [Huot et al., 2014]. Most of the stress-related changes 

generally revert to intitial state shortly after stress exposure, which permits plants to forget 

stressful conditions and re-appoint resourses to growth and reproduction mechanisms. 

Intrestingly, certain changes persist long after removal of stressful environment and empower 

the formation of a “stress memory”, which equiped plants with a highly effective and specific 

defence to the future stress [Crisp et al., 2016]. 

Previous experiments suggest that plants have memory for heat stress, known as 

thermomemory. Pre-administration of plants to moderately high temeperature enable them to 

act more effectively upon futute HS, with the help of attained memory. Although, the 
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molecular mechanism that underlies in memory building under HS is largly not understood. 

Recent eveidenaces show that the transcripts of many genes and their protein amounts remain 

high even after removal of HS in plants [Banzet et al., 1998; Dat et al., 1998; Schett et al., 

1999; Lee et al., 2000]. Some genes maintain their very high expression levels even for days. 

Non-epigenetic mechanisms like RNA metabolism and maintanace of quality-stabilizing 

proteins are important for short-term memory regulation [Crisp et al., 2016; Crisp et al., 2017]. 

For example, elevated level of HSPs has been reported, which represents to play crutial role 

in memory formation, both in mutants and wild type [Charng et al., 2007; Charng et al., 2006; 

Lin et al., 2014; Sedaghatmehr et al., 2016; Weng et al., 2014; Wu et al., 2013]. Experimental 

evidences also suggest the involvement of epigenetic factors such as histone modification 

pattern [Lämke et al., 2016]. It was reported that prolonged induction of the memory genes 

was associated with sustained accumulation of H3K4me3 and H3K4me2, which persisted 

even after active transcription terminates [Ding et al., 2012; Sani et al., 2013]. Further, to 

understand the adaption against heat stress in plants, chromatin-based detailed mechanisms 

of HS memory has been extensively studied. [Bäurle, 2016; Bäurle, 2017; Lämke et al., 2017]. 

Nevertheless, there are several questions in connection to the relationships between 

nucleosome occupancy, TFBSs sequences, and gene expression under heat stress that are yet 

to be studied in plants and other model organisms. The first is, at what extent the 

understanding of nucleosome occupancy can explain the gene expression under heat stress. 

Second, however TFBSs and nucleosome occupancy have convulsion in certain extent in 

plants [Wu et al. 2014], it remains unclear if there are heat stress specific sequence motifs that 

tend to located in nucleosome-depleted around TSSs, how these motifs influence gene 

expression under heat stress condition, also at the location of these motif whether the 

nucleosome showing any depletion. Third, the extent of nucleosome dynamics under heat 

stress in plants remains to be determined. 
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2. AIMS OF THE PROJECT 
 

• Estimation of genome–wide nucleosome profile in control, heat stress and recovery 

conditions in Arabidopsis thaliana.  

• Comparison of individual nucleosome dynamics under heat stress and recovery with 

respect to control conditions. 

• Perform correlation analysis between gene expressions with corresponding nucleosome 

occupancies. 

• Estimation of HSEs distribution in genes differentially expressed under heat stress. 
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3. MATERIALS AND METHODS 
 

3.1. Plant materials and growth conditions 

Arabidopsis thaliana plants of Columbia (Col-0) accession were used. A. thaliana seeds were 

placed on wet standard soil and stratified for one week at 4°C before they were moved to the 

greenhouseand grown until plants reached a five-leaf rosette stage. Subsequently, plants were 

transferred to a growth chamber (Percival) maintained at 21°C during the day and 16°C during 

the night (16h light/8h dark with illumination by 100 µmol m-2 sec-1 white light). 

 

3.2. Heat stress treatment and post-stress recovery 

After two days of acclimation, part of the plants were placed in a growth chamber (Percival) 

pre-heated to 37°C for 6h. For nuclei extraction, plant samples were harvested at control and 

heat stressed (HS) conditions and frozen to -80°C after treatmentwith liquid nitrogen. The 

remaining stressed plants were re-transferred to growth chamber with control conditions and 

harvested after two days (48h) (Figure 3). 

 

3.3. RNA-Seq materials  

Our lab previously performed the identical experiment for extraction of RNA from control, 

heat and recovery stages [Pietzenuk et al., 2016]. Raw RNA-seq reads from this experiment 

is present at the public repository NCBI GEO archive with accession number GSE69077. So, 

the raw sequencing data from this work were used for studing gene expressions in this study. 

The reads were single ended form each condition with two biological replicates.  

 
3.4. Nuclei extraction and nucleosome preparation for MNase-Seq 

Nuclei extraction and MNase treatment was performed after Ricardi et al (2010) with minor 

adjustments. First, 3 g of tissue were harvested for each replicate and immediately frozen in 

liquid nitrogen and stored in -80°C until used. Tissues were grinded into fine powder in liquid 

nitrogen using mortar and pestle. Each sample powder was suspended in 30 – 40 ml of cold 

extraction buffer I (10 ml/g of tissue). Whole experiment was conducted in 0 – 4°C. 

 

 

Extraction buffer I (100 ml) 

Final      Stock  Volume 

0.44 M sucrose    2 M  22 ml 

10 mMTris (pH 8.0 adj by HCl)  1 M  1 ml 
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5 mM b-ME    14,3 M  35.7 µl 

 

1× protease inhibitor cocktail: 

1mM PMSF (in 96% ETOH)   100mM  1 ml 

5 tablets of EDTA Free Complete Mini Protease Inhibitor Cocktail tablets 

 

Subsequently, solutions were filtered using miracloth and spun for 20 min at 2,800 x ɡ. 

Supernatant was removed and the pellet was resuspended in 10 ml of extraction buffer II. 

 

 

Extraction buffer II (100 ml) 

Final      Stock  Volume 

0.25 M sucrose    2 M  12,5 ml 

10 mMTris (pH 8.0 adj by HCl)  1 M  1 ml 

10 mM MgCl2    1 M  1 ml 

1% Triton X-100    100%  1 ml 

5 mM b-ME    14,3 M  35.7 µl 

1× protease inhibitor cocktail:  

1mM PMSF (in 96% ETOH)   100mM  1 ml 

2 tablets of EDTA Free Complete Mini Protease Inhibitor Cocktail tablets 

 

 

Next, the solutions were incubated on ice for 10 min to lyse the chloroplasts. And the 

suspension was spun for 20 min at 2,100 x ɡ. Again, the supernatant was removed and pellet 

was resuspended in 4 ml of extraction buffer II without Triton X-100. Then, solutions were 

spun for 20 min at 2,100 x ɡ and the pellets were resuspended in 4 ml of Percoll extraction 

buffer. 

 

 

Percoll extraction buffer (50 ml) 

Final      Stock  Volume 

95% V/V Percoll    100%  45 ml 

0.25 M sucrose    2.5 M  5 ml 

10 mMTris (pH 8.0 adj by HCl)  1 M  0.5 ml 

10 mM MgCl2    1 M  0.5 ml 

5 mM b-ME    14.3 M  17.8 µl 
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1× protease inhibitor cocktail:  

1mM PMSF (in 96% ETOH)   100mM  0.5 ml 

2 tablets of EDTA Free Complete Mini Protease Inhibitor Cocktail tablets 

 

 

The solution was spun for 10 min at 12,000 x ɡand stopped without activated break to avoid 

rough shaking of the extract. Afterwards, ~300 µl of the upper phase (white-greenish 

flocks/cloud) were carefully extracted and diluted in 1,200 µl of nuclei extraction buffer. 

 

 

Nuclei extraction buffer (100 ml) 

Final      Stock  Volume 

10% Glycerol    100%  10 ml  

50 mMTris (pH 8.0 adj by HCl)  1 M  5 ml 

5 mM MgCl2    1 M  0.5 ml 

10 mM b-ME    14.3  70.1 µl 

1× protease inhibitor cocktail  

1mM PMSF (in 96% ETOH)   100mM  1 ml 

2 tablets of EDTA Free Complete Mini Protease Inhibitor Cocktail tablets 

 

 

Then, the solution was spun repeatedly for 10 min at 12,000 x ɡ. The supernatant was 

discarded and the pellet was resuspended into 1-1.5 ml of nuclei resuspension buffer. 

Now, the pellets were dissolvedin 500 µl of Micrococcal nuclease buffer. 

 

 

Micrococcal nuclease buffer (10 ml) 

Final      Stock  Volume 

50 mMTris-HCl, pH 8.5   1 M  0,5 ml 

5 mM Mg acetate    1 M  50 µl 

25% glycerol    100%  2,5 ml 

1 mM CaCl2    1M  10 µl 
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Aliquots of 100 µl were digested for 20 min at 37°C with 0, 2.5, 5, 10 and 20 U of MNaseI. 

Digestion were stopped immediately, by adding 10 μl of 0.5 M EDTA, 20 μl of 1 M Tris-HCl 

pH 6.8 and 1.5 μl of 14 mg/ml proteinase K to the eluate and incubated for 1 h at 45°C. 

Digested DNA was extracted with equal volume of phenol/chloroform (1:1). The solution was 

centrifuged for 5 min at 5,000 x ɡ to separate the phases. Then, the upper phase, containing 

DNA, was transferred into a new tube. To this, 0.1 volume of 3 M sodium acetate with pH 

5.3 (adjusted by glacial acetic acid) was added and precipitated with 0.7 volumes of 

isopropanol (-20°C) in the presence of yeast tRNA (1 μg/ml final concentration). 

Subsequently, the pellet was washed with 300 µl of 70% ethanol and centrifuged for 5 min in 

12,000 x ɡ. Then, the supernatant was removed dried under a fume hood. Afterwards, the 

DNA pellets were resuspended overnight at 4°C in 20 μl of Tris pH 8 with 10 μg/ml RNase 

A.  

Recovered DNA was analyzed on a 2.5 % Agarose-Gel (Bioline) for 2 h at 70 mA. Since I 

targeted on mononucleosomal DNA fragments only, bands at an approximate size of 150 bp 

were excised from the gel and cleaned up using DNA Gel Extraction Kit (Qiagen). 

 

 

 

 

 

 
 
 
 

 
 
 
 

 
 
 
Figure 3. Experimental setup scheme for HS treatment and recovery in A. thaliana. Control 
conditions were grown in 21°C for 21 days. Heat shock of 37°C were subjected to two third 
of the samples for 6 hours. From this two third HS treated one third has been re-subjected to 
initial control condition for 48 hours (3 days). Extracted chromatin has been run on agarose 
gel after digestion with MNase (Micrococcal Nuclease) enzyme. Around 150 bp fragments 
extracted from the gel for sequencing. (M.W.: Molecular weight, 0, 5, 10 are MNase enzyme 
Unit) 
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3.5. Library preparation and deep sequencing for MNase-seq 

Sequencing libraries of mono-nucleosomal DNA were constructed using the TruSeqTM DNA 

Sample Preparation v2 (Illumina Ltd.), starting with the “End repair”-step as DNA was 

already fragmented using MNase I. Library preparation was started by using at least 500 ng 

of mononucleosomal DNA with adjusted volumes of Resuspension Buffer (RSB) and 

AMPure XP Beads (Beckmann Coulter Inc.). Further library preparation was performed after 

protocol.  

Illumina Hiseq2100 sequencer (MPIPZ genome centre; Cologne, Germany) has been used to 

generate paired-end (PE) reads of 100 bp size. 

 

3.6. Mapping of RNA-Seq and differential expression analysis 

RNA-seq raw reads obtained fromPietzenuk et al., 2016. All single end fastq files were 

filtered for per base sequence quality above 25 (Phred score) using FastQC, a quality control 

tool for high throughput sequencing data [Andrews, 2010]. The single-end reads from control, 

HS and recovery (two replicate each) were mapped on A. thaliana TAIR10 genome using 

TopHat [Trapnell et al., 2009] with maximum mis-match of two per alignment. Differential 

gene expression analysis was performed usingCuffDiff [Trapnell et al., 2012], which 

estimates the expression value of each genein FPKM (Fragments per Kilobase per million). 

Subsequently, CuffDiff was used forstatistical testingthe comparison of the expression of each 

corresponding gene, performing the two-tailed hypothesis testing with t-test for each set of 

genes. For each such comparison, the p-value (probability of rejecting the null hypothesis) is 

calculatedand adjusted (q-value) by Benjamin Harrison multiple test correction method 

[Benjamini et al., 1995]. Further analyses were performed by custom made scripts written in 

python and R. Scripts are present in GitHub Gist repository online 

(https://gist.github.com/kashiff007). Over representation Analysis (ORA) of biological 

functions, pathway and locations of differentially expressed gene groups were performed by 

GOrilla: GO annotation tool [Eden et al., 2009].  

 
3.7. Mapping of MNase-Seq and peak calling 

For MNase-seqanalysis, three biological replicates from control, HS and recoverywere paired-

end reads sequenced with 100bp size. This has been done to get more precise location of each 

nucleosomes and reducing the error of single-end reads bias. The raw reads were filtered for 

per base sequence quality above 25 using FastQC tool [Andrews, 2010]. The paired-end reads 

from control, HS and recovery were then concordantly and uniquely mapped on A. thaliana 
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TAIR10 genome using Bowtie version 1.1.2 with maximum mis-match of two per alignment 

[Langmead et al., 2009]. 

Mapped reads (bam-file) were sorted andconverted into normalized nucleosome occupancy 

profile (bigwig file) using DANPOS2 [Chen et al., 2013]. DANPOS2 uses genome-wide 

normalization method to normalize the uniquely mapped reads. For this, a bin is created on 

the genome and mapped reads are calculated in the bin and divided by the total number of 

uniquely mapped reads in the genome. Then, the bin is run across the genome.  

 

 

Nucleosome	score	in	a	bin						 = 				
𝑁1

2
345

x	 78
349

 

 

 

𝑁1 = Number of uniquely mapped reads in a bin 

𝑁  = Number of uniquely mapped reads in the whole genome 

𝐿1 = Length of the bin 

 

After estimating the nucleosome score, DANPOS2 has smoothen the peaks for better 

visualization. It also performsthe determination of differential nucleosome occupancy among 

control, HS and recovery conditions, by using Poisson test by default to perform statistical 

comparison for each defined nucleosome. The criteria ofpval£ 10-5were used for calling each 

nucleosome, while qval£ 0.05 for differences in the nucleosome occupancy (Figure 4). 

Downstream analysis of DANPOS2 output has been performed by deepTools [Ramírez et al., 

2014] and various in-House scripts and R packages (AppendixIII). 
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Figure 4. Workflow of MNase-seq downstream analysis. Step 1: Determination of 
nucleosome position on genome with the help mapped reads and normalization. Step 2: 
Statistical differential nucleosome analysis for comparison between two or more condition. 
Step 3: Selection of differential nucleosome area after scanning the genome with a window 
(bin). 
 
3.8. Scanning for heat shock elements (HSEs) motifs in the promoter regions 

For searching the HSEs associated with genes, 1500bp upstream sequences from transcription 

start site (TSS) were selected as promoters for each protein-coding gene within Arabidopsis 

genome (n=27420). Previous publications suggest four major kinds of HSEs present in A. 

thaliana [Sakurai et al., 2010]. All four types of motifs are shown in table 5. FIMO [Grant et 

al., 2011], MEME suit [Bailey et al., 2009] were used for searching these four types of motifs 

in the promoter regions of all protein coding genes with pval <= 0.0001. 
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4. RESULTS 
 

4.1. Recovery of global transcript level to control 

Transcript expression of all protein coding genes in Arabidopsis thaliana (n=27,420, 

TAIR10) were analyzed for control, HS and recovery conditions with RNA-seq. Differential 

gene expression was performed for the HS and recovery with respect to control. I found that 

from the 27,420 protein-coding genes, 13,354 genes (48.70%) were expressed with FPKM > 

5 in at least one of the three conditions, and this group was considered as all expressed genes. 

While 14,066 genes having FPKM < 5 in all conditions were grouped as all non-expressed 

genes. From the all expressed genes category, 5,323 genes were significantly changing their 

expression under HS in comparison to control, with the difference in their FPKM greater than 

10 (padj£ 0.05). Hence, these genes were considered as heat responsive genes (Table 2). 

Among these heat responsive genes, 2,819 and 50 were up-regulated with log2FC > 1 in HS 

and recovery conditions, respectively, while 1,332 and 52 were down-regulated with log2FC 

< -1 in HS and recovery, respectively. Venn diagram of both these conditions are shown in 

Figure 5A (right). In order to get the global transcript change I estimated the expression 

density of all protein-coding genes, which shows that it change under HS (t test; pval = 5.286 

x 10-07) and then regain its original state under recovery condition (t test; pval = 0.07802) 

(Figure5B; left). This result was again confirmed by correlation plot, which was generated by 

distance calculation using Pearson method (Figure5C; left). Gene density and correlation plot 

showed the overall expressions of all protein coding genes in control and recovery were very 

much similar with pval = 0.07802, and with Pearson’s correlation score of more than 0.99, 

which suggest that the gene expressions were reverting to its original state after removal of 

heat for 48 hr. 

 

Genes Categories Definition Number 

Total Protein Coding 
Gene 

Total Protein coding genes from TAIR10 27,420 

All Expressed Genes Number of genes at least expressed in one of 

the conditions with minimum 5 FPKM 

expression value 

13,354 

All Non-Expressed 
Genes 

Number of genes with less than 5 FPKM in all 

three condition 

14,066 

Heat responsive 
Genes 

Genes which shows fold change significantly 

with padj£ 0.05 and FPKM difference > 10 

5,323 
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Table 2. Showing different categories of genes based on their expressions with their 
respective numbers. 

 

 

 

Figure 5. A: Bar plot on the right showing the significant number of up-regulated and down-
regulated genes in HS vs control and recovery vs control. Venn diagram on the right showing 
number of up-regulated (log2FC > 1) and down-regulated (log2FC < -1) genes with and padj £ 
0.05 under HS (pink) and recovery (blue) compare to control. B: Left side plot displaying 
gene density of all protein-coding genes from control (black), HS (red) and recovery (blue). 
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x-axis showing log10 FPKM for genes. Right plot is the density plot of all the nucleosome 
across the genome in all three conditions. x-axis showing log10 nucleosome occupancy score. 
C: Correlation values among the different conditions of genome wide gene expression (left) 
and nucleomse occupancy score (right) with dendrogram showing the hierarchical 
relationship.  
 

4.2. High temperature induces global changes in nucleosome occupancy 

For the comparison of nucleosome occupancy of HS and recovery with control, I performed 

the downstream analysis of MNase-seq reads. Reads from all replicates were mapped on 

TAIR10 genome of A. thaliana using Bowtie [Langmead et al., 2009]. Three mismatches were 

allowed per read and reads with multiple alignment possibilities were suppressed to one. The 

main purpose of supression of multiple alignment to single location is to mitigate the effects 

of PCR amplification bias introduced during library. These mapped read files had each read’s 

address and its abundance information on the genome. Table 3 is showing the sequenced and 

mapped reads summary from MNase-seq experiment. As suggested in many previous studies, 

I used mapped percentage of MNase-seq reads to the genome coverage at least more than 10-

fold [Flores et al., 2014].  

 

C   =    
7		×		2
<

 

 
Where C = Coverage (X), 
 
L = Read length (bp), 
 
G = Haploid genome size (bp), 
 
and N = Number of reads 

 

This information was used to predict the nucleosome occupancy in genome-wide level 

through DANPOS2 tool. First, DANPOS2 predicted all significant nucleosomes with a score 

and position in control, HS and recovery separately using all replicates. Then, it compared HS 

and recovery with control for the estimation of differential nucleosome. 

 
From the predicted nucleosomes score, I plotted density of the log10 value of nucleosome 

score of each nucleosome from every condition (Figure 5B; right). For verifying the 

significance of changes in nucleosome occupancy among control, HS and recovery, I 

performed paired-end Wilcoxon-Mann-Whitney-Test. I found that p-value in each 

comparison were highly significant (pval = 2.2e-16). To confirm it further, I also compared the 
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genome-wide nucleosome scores among the conditions and plotted the Pearson’s correlation 

heatmap with dendrogram (Figure 5C; right). 

 
Sample Replicates Reads Mapped Genome coverage 

(x) 

Control  Rep 1  21241326 6007581 

(28.28%) 

15.13 

 Rep 2 21129986 8399548 

(39.75%) 

21.15 

 Rep 3 99409816 43697810 

(43.96%) 

110.03 

HS Rep 1 132305458 47904312 

(36.21%) 

120.62 

 Rep 2 38483612 26025518 

(67.63%) 

65.53 

 Rep 3 115113942 7774222 

(6.75%) 

19.57 

Recovery Rep 1 71256582 32479789 

(45.58%) 

81.78 

 Rep 2 37721353 23300243 

(61.77%) 

58.67 

 Rep 3 123486970 17607094 

(14.26%) 

44.33 

 
Table 3.  Summary of MNase-seq read mapping from control, HS and recovery conditions 
with its replicated from A. thaliana. 

 
It is evident from the density plots, that under HS gene expression and nucleosome occupancy 

both changes, and after the heat removal for 48 h, the gene expression reverted back to control 

state but not the nucleosome occupancy in same extent. This suggests that nucleosomes may 

require more time to regain their original positions. 

To analyze the nucleosome size distribution, I plotted the density of the mononucleosomal 

fragment size (Figure 6A). As I intentionally extracted reads for mononucleosomes, fragment 

size was varying from 100 to 250 bp with the median as shown in Figure 6A for all three 
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conditions. There was a sharp increase in the number of fragments with size between 140 bp 

to 170 bp under HS, and further small decrease was observed in recovery after HS removal. 

Fragment size with more than 180 bp showed opposite trend i.e. a greater number of such 

reads were present in control, while comparably less in HS and recovery. Changes in fragment 

distributions were statistically supported by using paired-end Wilcoxon-Mann-Whitney-Test. 

I found the fragments distribution control was differing from HS with pval= 0.02328, and 

control from recovery with pval = 0.09208.  

However, differences in HS and recovery fragment distributions were not much significant, 

which was also supported by pval = 0.8402. To analyze it further, I first defined the significant 

genome-wide locations of all nucleosomes, and then calculated the finding possibility of each 

nucleosome in a defined position, or how well a nucleosome is positioned to its location. This 

possibility of finding a nucleosome at a position is termed as fuzziness, and it is reported as 

the standard deviation, calculated with the help of replicates. This means, more the fuzziness-

score higher the standard deviation and viceversa [Jiang et al., 2009] (Table 4; Figure 6B). 

Further, the fuzziness-score was statistically compared among all three conditions using 

paired-end Wilcoxon-Mann-Whitney-Test, and all comparison yield pval = 2.2e-16.  

 

 

 

Figure 6. A: Distance between beginning and end (width) of predicted nucleosomes in 
control, HS and recovery. X axis represents the distance in basepairs, and Y axis shows the 
normalized density. Nucleosome width reflects the length of the mononucleosomal DNA 
fragments used for sequencing. B: The deviation of nucleosome positions within each unit in 
a cell population is referred to as fuzziness. Boxplot showing fuzziness score in y axis from 
control, HS and recovery. 

Distance in base pairs 
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Sample Number of Nucleosomes 
predicted with pval ≤ 10-5 

Mean Fuzziness score of all 
predicted Nucleosomes 

Control  118378 40.46 
HS 118773 39.49 

Recovery 117923 39.70 

Table 4. Number and fuzziness-score of nucleosomes in each sample and calculated 
significantly with all three replicates using DANPOS2 with pval ≤ 10-4. Fuzziness is reported 
as the standard deviation, calculated by all three replicates. 

 
4.3. Transcription and chromatin modification-dependent nucleosome spacing 

I then analyzed how the nucleosome organization regionally affected by transcription and 

chromatin functions. For each temperature condition, I used deep RNA-seq data, previously 

generated by our lab [Pietzenuk et al., 2016]. Genes were pooled into groups according to 

their expression values. The average nucleosome spacing showed more or less the same 

pattern in all three conditions, and was smallest among silent genes (varying between 250-

275 bp in all three conditions, Figure 7A). It significantly increased by as much as 144 bp as 

the expression levels went up (t-test p-value 2.894×10-3) and reached to 500 bp at the 

expression of 10-30 FPKM. It starts decreasing with further increase in expression. This 

suggest that transcription-induced cycle of nucleosome eviction and reoccupation prompt 

rarer nucleosome packing and slight increment in nucleosome occupancy till certain extent of 

expression then the pattern reverts (Figure 7C). Based on these results, we postulate that 

higher-order chromatin organization as entailed by specific modifications of chromatin might 

be associated with specific pattern of spacing. Utilizing previous studies of ChIP-seq data of 

control condition, we characterized regions of enrichment for histone modification that are 

present within gene-body euchromatin (H3K27me3 and H3K4me1) [Veluchamy et al., 2016; 

Inagaki et al., 2017], euchromatin associated with promoters and enhancers (H3K9ac, 

H3K4me2 and H3K4me3) [Zhu et al., 2017; Inagaki et al., 2017], or heterochromatin 

(H3K9me2 and H3K27me1) [Inagaki et al., 2017; Roudier et al., 2015], and estimated 

nucleosome spacing for each of these epigenetic domains. I observed that heterochromatin 

associated domains contained the shortest spacing of 328- 363 bp, followed by a greater 

spacing of 393-597 bp within promoter-associated domains, while gene-body domain spacing 

was largest at 696-819 bp (Figure 7B). These findings unveiled remarkable heterogenicity in 
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nucleosome organization across the genome that depends on local gene activity, regional 

regulatory and metabolic state, and global cellular identity. 

 
Figure 7. A: Nucleosome spacing as a function of transcriptional activity. X axis represents 
gene expression values binned according to FPKM values. Internucleosome spacing is plotted 
along the Y axis. B: Nucleosome spacing within genomic regions marked by specific histone 
marks in control condition in plants. Bar height plots estimated nucleosome spacing for each 
histone modification. Bar colors differentiate chromatin types (euchromatin vs 
heterochromatin). C: Association between transcriptional levels and measured nucleosome 
occupancy. X axis represents gene expression values binned according to their RPKM values. 
Y axis represents normalized frequencies of observed nucleosome coverage within the regions 
occupied by genes in each bin. 

 
4.4. Sequence signals that drive nucleosome positioning 

To identify the DNA signals accountable for consistent nucleosome positions, I 

identified more than 0.1 million sites occupied by nucleosome in all three conditions 

at high stringency (p-value < 10-5, Methods). I observed region occupied by the 

nucleosome centre (dyad) exhibits a remarkable high G/C content in all three 
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conditions (p-value < 10-100, Figure 8A). To associate the dyad sequence composition 

with how well a nucleosome is positioned, I calculated the fuzziness score (Figure 

8B) for each nucleosome on the genome and found that in well positioned nucleosome 

the boundaries of the dyad are well protected with higher A/T as well as lower G/C 

frequency. While loosely positioned nucleosome does not have such protected 

boundaries (Figure 8B). Further, to associate the dyad sequence composition with 

change in nucleosome occupancy among different conditions (control, HS and 

recovery), I estimated the differential nucleosomes at genome wide level. I found ~ 

43,000 differential nucleosomes when compare HS condition to control with adjusted 

p-value < 0.05. Less differential nucleosome (0 to -1 fold and 1 to 0 fold) exhibits 

similar pattern of sequence distribution as in genome wide at dyad (Figure 8C). As 

the fold change increases to 2-fold, the sequence distributions getting distorted both, 

at boundary and core of the dyads. On the contrary, when fold change decreases to -2 

fold, the A/T content get higher both, at boundary and core, while G/C content get 

lower specifically at flanking region of the dyads. To further check the role of G/C 

and A/T sequence content at dyad, I grouped the sequences into subsets based on 

stringency cut-off. This revealed that decrease in G/C (Figure 8D) at the core region 

as the position strength increases. These change in terms of sequence content reveals 

the importance of flanking repelling elements for the positioning of nucleosome in all 

three conditions, and also in nucleosomes which are changing with hest stress. Such 

elements with strong G/C cores and A/T flanks are emphasized with proposed 

positioning mechanism (Figure 8E). Unlike 10 bp dinucleotide periodicity of 

nucleosomal population in various species [Satchwell et al., 1986; Segal et al., 2006], 

these positioning signals are proposed to be contributing factor in precise positioning 

and/or rotational topography of DNA over the nucleosomes [Segal et al., 2006] on a 

small but significant scale.  
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Figure 8. A: Sequence signals within sites containing moderately positioned nucleosomes. 
Distance from the dyad to a given dinucleotide are plotted along X-axis; Y-axis denotes 
frequency of a given k-mer divide by its genome-wide occurence. Orange band indicates the 
147 bp footprint of a nucleosome. B: Change in k-mer distribution with increasing fuzziness 
score of nucleosomes (top: well positioned, bottom: loosely positined). X and Y axes as in 
(a). C: Change in k-mer distribution within differential nucleosome occupancy; HS vs control. 
Top three plots showing k-mer distribution in loss in occupancy while bottom three showing 
for increase in occupancy. X and Y axes same as in (a). D: Changes in GC dinucleotide usage 
with increasing positioning stringency. X and Y axes same as in (a). Shown are curves of GC 
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B 

C
C 

E
E 
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usage within the sites of increasing occupancy of nucleosome dyads (Peak score subset of 0-
1, 1-3, 3-6, 6-9, 9-12 and 12-15). E: Schematic depiction of the nucleosome dyad site 
positioning mechanism. The C/G-rich core area (green) favors occupancy, but does not 
precisely position the nucleosome (top). Adding flanking A/T-rich repelling elements (purple, 
bottom) restricts the position of the nucleosome. 

DANPOS2 also yield a wig file which can be used to see the nucleosome profile across the 

genome. Figure 9 is showing the screenshot of nucleosome profile from genome browser of 

the first Mb region of chromosome 1. 
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Figure 9. Genome browser screenshot from chromosome 1 of A. thaliana. Upper part is 
showing from chr1:0 to 1 Mb and lower part is showing 520kb to 540 kb 
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4.5. Nucleosome enrichment at gene body and promoter under heat stress 

For analyzing the nucleosome occupancy around genes, I plotted the average nucleosome 

signal for all protein coding genes, all protein coding expressed genes (all expressed genes) 

and all protein coding non-expressed genes. I chose the range from 1 kb upstream of 

transcription start site (TSS) to 1 kb downstream of TSS and 1 kb upstream of transcription 

termination site (TTS) to 1 kb downstream of TTS. I found thatnucleosome occupancy of all 

protein-coding genesshowed difference in average plots under HS and recovery with respect 

to thecontrol condition (Figure 10A). The average plot showedoverall nucleosome enrichment 

throughout the genes, and in upstream (promoter) and downstream of genes. Around TSS, 

there is depletion or no nucleosome present in all three conditions and this region is called 

nucleosome free region (NFR). Under HS, once the nucleosome occupancy gained over the 

regions, it remained more or less same in recovery condition. In all expressed genes, there 

was enrichment in +1 nucleosome (first nucleosome after TSS) in all three conditions. Under 

HS, enrichment was observed in further nucleosomes after +1 also (Figure 10B). On the 

contrary, nucleosome occupancy appeared flatter in genes with less than 5 FPKM expression 

value (all non-expressed genes) in comparison to all expressed genes (Figure 10C). Average 

nucleosome occupancy of all heat responsive genes showed highest enrichment throughout 

the gene body. Specially, the first and last few nucleosomes showed sharp increment in the 

occupancy (Figure 10D). I performed the t-test for the significance of difference among 

control, HS and recovery for each category, and found pval were very close to zero for HS vs 

control and recovery vs control comparison. While pval was not significant for HS vs recovery. 

From this observation, it is clear that nucleosomes are showing enrichment under high 

temperature (37°C) and the change remains stable for at least 48 h during which the plants 

were subjected to ambient conditions (recovery). These enrichments are normally present 

throughout the genebodies, including upstream and downstream locations, but they are more 

prominent in starting and ending nucleosomes of genes. This also correlatesmy previous 

results (Figure 5 and6) where individual nucleosomelocations are less strictly associated with 

fixed position (high fuzziness-score), and has highernucleosome occupancy under HS and 

recovery. Observations from heat responsive genes suggest that change in nucleosomes are 

more associated the differentially expressed genes. Keeping this in mind, I moved further to 

analyze nucleosomes occupancy in differentially expressed genes.  
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Figure 10. Average nucleosome occupancy plot of control (black), Heat (red) and recovery 
(blue) in gene body. Left half showing region from 1000 bp downstream to transcript start site 
(TSS) to 1500 bp upstream, while right half showing region from 1500 bp downstream to 
transcript termination site (TTS) to 1000 bp upstream. Boxplot of average nucleosome 
occupancy from same region of control (black), Heat (red) and recovery (blue) with t-test pval. 
A: All 27420 protein coding genes from TAIR10; HS vs control pval< 2.2e-16, recovery vs 
control pval< 2.2e-16 and HS vs recovery pval = 0.0352. B: Protein coding genes with minimum 
5 FPKM transcript expression level in at least one of the samples (13354 genes); HS vs control 
pval< 2.2e-16, recovery vs control pval< 2.2e-16 and HS vs recovery pval = 0.09112. C: Protein 
coding genes with less than 5 FPKM transcript expression in all three samples (14066 genes); 
HS vs control pval< 2.2e-16, recovery vs control pval< 2.2e-16 and HS vs recovery pval = 
0.005515. D: Heat responsive genes with significantly differentially expressed (5312 genes); 
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HS vs control pval < 2.2e-16, recovery vs control pval < 2.2e-16 and HS vs recovery pval = 
0.2861. y-axis is normalized nucleosome occupancy of MNase-seq reads. 

 
 

4. 6. Categorization of the genes based on expression fold change 

To analyze the relation between gene expression and nucleosome change, I categorized the 

heat responsive genes into six groups based on the amplitude of the change in their 

transcription. These six groupswere, log2FC 1 to 2 (n = 1743), 2 to 4, n = 892, more than 4, n 

= 184 for up-regulated, from -2 to -1, n = 584, from -4 to -2, n = 554, less than-4, n = 194 for 

down-regulated (Table 5). 

 

log2FC Up-regulated Name Number of genes Number of genes 
with HSE 

1 to 2 Group I 1743 1050 (60.24%) 
2 to 4 Group II 892 572 (64.12%) 

Above 4 Group III 184 127 (69.02%) 

log2FC Down-regulated    

-2 to -1 Group IV 584 305 (52.22%) 

-4 to -2 Group V 554 296 (53.43%) 

Below -4 Group VI 194 97 (50%) 

Table 5. Heat responsive genes were subcategorized into six groups based on fold change. 
 

For all six groups, I performed GO term analysis using Gene Ontology enrichment analysis 

and visualization tool GOrilla (http://cbl-gorilla.cs.technion.ac.il/). The list of protein-coding 

expressed genes was used as a background list for the enrichment analysis. Background set is 

group of all the genes which is used as a reference for estimating the enrichments of user 

provided genes subset. Figure 11 is showing the overview of all six groups with their GO 

process and cellular locations (component). 

Group I (log2FC = 1 to 2, n = 1743) contain the genes that are enriched in common metabolic 

processes and located in all cellular components, which were likely to be over expreesed with 

lower degree under HS. Group II (log2FC = 2 to 4, n = 892) include genes which were majorly 

involved in RNA processing and their location was predominantly nuclear, suggesting the 

involvement directly in transcriptional dynamics or indirectly aiding the genes, which were 

extremely differential expressed. Group III (log2FC > 4, n = 184) had the genes which were 
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immensely up-regulated under HS. These genes were enriched in biological process GO terms 

of heat and light responses, and includedHSPs, HSFs, and protein folding chaperones. Group 

IV (log2FC = -2 to -1, n = 584) had slightly down-regulated genes with functional enrichment 

in cell death. It may be interpreted as at the time of HS; the cell needs to reduce their normal 

death process as a dosage compensation under stress. Group V (log2FC = -4 to -2, n = 554) 

contained the genes with moderately down-regulated expression and mainly involved in 

process of carbohydrate metabolism. Group VI (log2FC < -4, n = 194) has the genes which 

were extremely down-regulated, with function related to nucleosome assembly and chromatin 

organization. In addition, their locations were dominated in nucleosome, DNA packaging 

complex and chromosomal part, indicating that at high temperature, the DNA loosens or forms 

more open structure and also there may be reduction in nucleosome signal at some specific 

places. 
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Figure 11. GO enrichment of all six groups compare to background set, here the background 
is represented by all protein coding genes. Genes involved in cellular components and 
different process are shown in blue and red bars, respectively. 
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4.7. Heat shock element motif identification 

I found from my results that both nucleosome occupancy and gene expression are changing 

under HS. It has been extensively studied that the major protein groups, which were induced 

under HS, are heat shock proteins (HSPs). Along with HSPs, there are many genes which are 

also induced under HS. Heat shock elements (HSEs) are the most important motifsin 

promoters of such genes, where HSFs bind to activate the transcription process under HS. It 

has been shown in yeast that these HSEs region in promoter of heat-induced genes must 

expose to HSFs or in other words, these regions should be devoid of nucleosomes under HS. 

I found from literature that there are four major kinds of HSEs present in A. thaliana [Raxwal 

et al., 2012]. Therefore, for getting clear insight of HS effects, I searched HSEs in all genes 

from the six groups.  I used FIMO, Meme suit for searching these four motifs against 1500 

base upstream, promoter region (pval<= 0.00001). The number of genes with HSEs in each 

groupare enlisted in Table 5. Here, I am reporting gene with at least one HSEs in their 

promoter region. 

Apart from the six gene expression groups, I also searched for HSEs in all protein-coding 

genes. In addition, I found 15,846 genes had HSEs in their promoter. 

 

 

 
HSE 
Types 

 
Sequence 

 
Logo 

Number of 
protein-

coding genes 
with HSE 

4P 
type 

nTTCnnGAAnnTTCnnGAAn 

 

4227 

3P type nTTCnnGAAnnTTCn 

 

6983 

Gap 
type 

nTTCnnGAAnnnnnnnGAAn 

 

6632 

Step 
type 

nTTCnnnnnnnTTCnnnnnnnTTCn 

 

8353 

Table 6. Four major types Heat shock elements (HSEs) with sequence and logo. Number of 
occurrence in 1500 base of promoter of all protein-coding genes (Total number of protein coding 
genes with one or more HSE are 15846). 
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4.8. Nucleosome profiles of differentially expressed genes 

For analyzing the nucleosome profile around differentially expressed genes, I plotted the 

average nucleosome occupancy for all six groups (Figure 12). The analyzed regions were 

1000 bp upstream/downstream of TSS and TTS. From all these six plots, Group III (highly 

upregulated genes) showed very significant difference in nucleosome occupancy under HS (t-

test; pval < 6.109 X 10-6). While in other five groups (I, II, IV, V and VI), nucleosome 

occupancy was more or less similar to all expressed genes in control, HS and recovery. 

Group III plot suggested that there was clear relative difference in nucleosome occupancy in 

HS and recovery with respect to control. Itshowedthat for highly up-regulated genes (log2FC 

> 4) in high temperature, there is arelative loss in nucleosome occupancyunder HS and it 

remains the same in 48hr of recovery condition. This loss in nucleosome was observed at its 

maximum at the TSS region, suggesting that in control conditions, there is higher occupancy 

of nucleosomes at the start site of such genes. With the application of heat, these nucleosomes 

lose their occupancy and at the same time the expression of such genes gets up-regulated. This 

nucleosome architecture remains same in recovery condition. To analyze it further, we 

performed correlation between nucleosome occupancy and corresponding gene expression 

for each group. 

In order to get clearer image at the individual gene level, few of the examples from highly up-

regualted category (Group III) has been shown in figure 13. In all four examples the 

nucleosome occupancy is decresing around TSS under HS, and the same time there is increase 

in gene expression at very high degree. While, in the recovery condition, some nucleosome 

recovers very minutely or it might be the starting of the recovery. But, at the same time gene 

expression under recovery is fully reverted.  
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Figure 12. Nucleosome occupancy around gene body of six groups of genes; control (black), 
Heat (red) and recovery (blue) in gene body; A: Up-regulated genes from first three groups 
i.e. log2FC = 1 to 2, log2FC = 2 to 4 and log2FC >4. B: Down-regulated genes from last three 
groups i.e. log2FC = -2 to -1, log2FC = -4 to -2 and log2FC < -4. Control, HS and recovery 
from each group are shown in black, red and blue respectively. Dashed lines are shown from 
all expressed genes as control. 
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Figure 13. Nucleosome occupancy of few genes from highly up-regulated expression 
category (Group III) and their corresponding gene expressions in control, HS and recovery. 
Here, all belongs to heat shock family and showing loss in occupancy around TSS.  
 
 
4.9. Correlation of nucleosome occupancy and gene expression  

For analyzing the relationship between nucleosome occupancy with gene expression, I have 

selected the region around TSS (100 bp upstream and downstream) for each gene and 

averaged the nucleosome score from control, HS and recovery for this region. Although, there 

are several other regions of genes which shows change in nucleosome occupancy upon hest 

stress, I selected the TSS region because it shows maximum variability. Then I correlated the 

change in gene expression (HS vs control) with corresponding averaged nucleosome scores 

using Spearman method (Figure 14A). Each Spearman correlation score is denoted by a score 

“rho” with p-value. It was found that the p-values of correlation from Groups III and VI were 

significant (pval ≤ 0.05). Group III, which has highly HS up-regulated genes shows negative 

correleation score, while Group VI which has genes from highly HS down-regulated genes 

shows positive correlation in all three conditions. This suggests that highly up-regulated genes 
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under HS has lower nucleosome occupancy around TSS region. In contrast, highly down-

regulated genes bear higher nucleosome occupancy around TSS.  

In order to examine the extent of nucleosome occupancy changes from control to HS, and then 

to recovery condition among differentially expressed genes, I performed the regression 

analysis. This has been done by plotting a sctter plot of all the gene expression from a 

condition with averaged nucleomse occupancy score around TSS from the same condition, 

which predict the direction of pattern with a line of regression, and then p-value is estimated 

for these comparions. In figure 14B, top three plots are from correlation of gene expression 

with their corresponding nucleomse occupancy from control, HS and recovery respectively. 

It has been observed a negative correlation in all three conditions but moving from control to 

HS the extent of slope of regression line increases. Which suggests that in highly up-regulated 

genes, nucleosomes occupancy in HS condition tends to decrease with higher degree, and 

recoveres its occupancy in recovery stage. This might be the reason that in up-rulated genes 

under HS various transcription elements requires for elevation of transcription needs to occupy 

TSS region, resulting in lowering of nucleomse occupancy in order to allow these attachments. 

Further, as in the recovery stage when transcription acquires its original state the nucleosome 

occupancy also does so. 

While for highly down-regulated genes (Group VI), show a weak positive correlation in all 

three conditions but moving from control to HS the extent of slope of regression line decreases 

(figure 14B; bottom). This suggests that in highly down-regulated genes the nucleomse 

occupancy around TSS is control condition is lower, then under heat stress becomes further 

lower but in very minute degree, then regains its occupancy in recovery. There might be some 

transcription mechanism in down-regulated genes which requires much more time to adjust 

its transcription elements.  
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Figure 14. A: Spearman correlation score of nucleosome occupancy from 100bp upstream 
and downstream of TSS with corresponding genes expression from each of the six groups. B: 
Scatter plots of nucleosome occupancy against its corresponding gene expression in control, 
HS and recovery from Group III (highly up-regulated genes) and Group VI (highly down-
regulated genes). r: Spearman correlation value with pval. 
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5. DISCUSSION 

Genome wide identification of nucleosome positions has been reported under control 

condition in Arabidopsis thaliana in previous studies [Chodavarapu et al., 2010; Li et al. 

2014]. This study facilitates the initial characterization of determinats of genome-wide 

nucleosome organization under heat stress (HS; 37°C for 6 hours) and recovery (HS + 25°C 

for 48 hours) condition in areal tissues of A. thaliana. Under HS, many previous studies 

reported the analysis of change in gene expression, most of them reported the list of genes 

which changes [Yángüez et al., 2013; Rasmussen et al., 2013]. Here, I showed how these 

differentially expressed genes regained its original expression after the recovery condition 

(Figure 5).   

 

5.1. Nucleosome landscape enrichement under HS and recovery condition 

Here with the help of fragments size from each nucleosome, I reported global change as 

nuclesome density in terms of its fragment size under HS, which remains the same after 

recovery state (unlike gene expression) (Figure 5 and Figure 6A). Nucleosome-free region 

(NFR) (also called nucleosome-depleted region (NDR)) has been illustrated before 

[Zilberman et al., 2008], while here I showed the NFR in HS and recovery which are 

transcriptionally active gene promoter regions characterized by presence of NFR (Figure 10). 

Such comparison has not been reported before under HS and recovery conditions. This 

nucleosome depletion region in control ensures that DNA is accessible to proteins, which 

includes various chromatin regulators, and transcription and replication machineries.  The 

most well positioned and highly regulated nucleosomes in all three conditions (control, HS 

and recovery) are the first nucleosomes downstream of TSS, also known as +1 nucleosome 

(Figure 15). Before NFR or NDR, nucleosome -1 also shows high occupancy, but 

comparatively less than +1 nucleosomes. Moving downstream after +1 nucleosome into the 

gene body, nucleosome positioning starts dissipating (Figure 15a). This position and histone 

composition of +1 nucleosome are important to transcription, because these factors affect 

RNA polymerase passage via the gene body and also binding of TFs.  

Nucleosome dynamics can be explained as the interplay among nucleosome occupancy and 

positioning. Nucleosome occupancy is the average nucleosome number within a defined 

genome location in a cellular population. Hence, it is considered as probability of nucleosome 

being find at the analyzed site. On the other hand, nucleosome positioning is the probability 

of a nucleosome existing at a specific genomic location relative to being present at its 
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surroundings, in a given cell population. Thus, the nucleosome organization can be explained 

by the combination of occupancy and positioning (Figure 15b).   

 

 
Figure 15. A. Nucleosomes can be found before and after TSS. The plotted lines (control: 
black, HS: red and recovery: blue) represents the distinctive occupancy and positioning of 
nucleosomes in common genomic locations. The peaks correspond to variation in nucleosome 
occupancy. A nucleosome free region (NFR)/nucleosome depleted region (NDR) is found at 
TSS in all genes in control, HS and recovery. Just downstream of NFR, a well-positioned 
nucleosome, called ‘+1’ is situated. Before the NFR, -1 nucleosome is present, but the 
occupancy and positioning are less and poor, respectively in comparison to +1 nucleosome. 
This positioning dissipates with downstream region after +2 nucleosome and nucleosomes 
become fuzzier. B. Nucleosome occupancy is defined as probability of nucleosomes being 
present in a genomic region in a population of cells. It was estimated using MNase-seq reads 
mapping. Nucleosome positioning is the probability of nucleosome reference point being 
present at a specific genomic location relative to surrounding coordinates.  
 

5.2. Variation in nucleosome spacing and occupancy with transcription level 

Nucleosome has an active role in gene expression regulation through allowing the ability to 

TFs to access their cis elements in promoters [Lam et al., 2008, Workman et al., 1998; Kumar 

et al., 2010]. Access to the proteins to DNA wrapped with histone is facilitated with systemic 

un-wrapping and wrapping events [Chien and Heijden, 2014]. Spacing of nucleosomes 

remains same among different temperature conditions, but differs among different histone 

modification domains, and is influenced by the activity of transcription (Figure 7A and 7B). 

Unlike spacing, we reported negative correlation between gene expression and nucleosome 

occupancy (Figure 7C). With the increasing gene expression, there is drecrease in nucleosome 

ccupancy. At the same time, occupancy is always less under HS. To confirm it further, I 

divided the protein cooding genes to get differentially expressed gene categories (Figure 12), 

and found highly upregulated genes shows again negative correlation with expression (Figure 



DISCUSSION 

 
47 

14). This result contrasts with the global phenomenon, where nucleosome profile show gain 

in occupancy (Figure 6A), because there might be various intergic nucleosome which could 

have very high occupancy under HS and recovery conditions. This could be associated by 

previous work where it was shown that nucleosomes play crucial roles by controlling the 

genes under different stress conditions [Liu et al., 2015]. In addition, specific nucleosome 

modification domains are associated with different stress conditions [Wang et al., 2003]. 

Interestingly, all the HSPs are included in the highly up-regulated genes. Apart from HSPs 

the group also contain few other genes which were associated with heat acclimatization and 

other abiotic stress (Figure 11). From these 184 highly up-regulated genes 127 (70%) contains 

at least one HSE in their promoter regions (Table 5). On the other hand, most of highly down-

regulated genes belongs to categories of nucleosomal assembly and organizations (Figure 11). 

Here, 50% of the genes has at least one HSE in their promoter (Table 6).  

This can be explained as, for these highly up-regulated genes under HS, nucleosomes lose 

their occupancy by un-wrapping of the DNA around the TSS region, so that RNA polymerases 

and TFs can easily access the DNA around promoter region. Consequently, these genes get 

transcribed more profoundly under HS (Figure 16). At the same time, all these genes belong 

to heat response and acclimatization. In the recovery condition I found the gene expression of 

highly up-regulated genes were regained to their original state but nucleosome occupancy 

remains like HS condition. This could be explained in relation of epigenetic memory 

establishment under HS. Studies found that prolonged exposure of HS leads to accumulation 

of H3K4me3 and H3K4me2 that persisted even after active transcription [Ding et al., 2012; 

Sani et al., 2013]. Under recovery, this histone methylation may remain intact as an epigenetic 

memory stored in genome [Bäurle et al., 2017], for countering sudden re-exposure of HS in 

near future.  

For highly down-regulated genes, the situation may not be opposite. I found in my correlation 

analysis of these down-regulated genes, there is decrease in nucleosome occupancy at TSS 

region with decrease in gene expression under HS (Figure 14). This could be explained in 

context of repressor proteins. Repressors are DNA/RNA binding proteins that inhibits the 

gene expression of one of several genes through binding to the associated operators. This 

binding of repressor blocks the attachment of RNA polymerase with other transcription 

factors to the promoter region, results in preventing transcription of the genes into mRNA 

[Neidhardt et al., 1984]. In control, this highly down-regulated group has empty region 

(nucleosome free) around promoter where transcription machinery can attach and thus the 

normal transcription can happen. Under HS, the region called operator become devoid of 

nucleosome so that repressor protein can bind and hence the decreases the transcription 
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(Figure 16). Further, most of these highly down-regulated genes belongs to nucleosome 

assembly suggesting that under HS decrease in nucleosomes and its assembler, that could be 

associated with loss of nucleosome in highly up- and down-regulated genes. 

 

 

 

Figure 16. Model depiction of events occurring with nucleosome and gene expression under 
control (left) and HS (right) condition for highly up-regulated and down-regulated genes. 

 

5.3. Nucleosome positioning influenced by their sequence composition 

Apart from the nucleosome occupancy and positioning, there are several other factors, such 

as subnucleosomal structure, histone variants and modifications, which contribute to 

nucleosomal organization. Sequence pattern in the core and flanking region of the 

nucleosomes played a crucial role in nucleosomal organization, and have been shown in 

animal [Mavrich et al., 2008; Valouev et al., 2011] and plants [Zhang et al., 2015]. The 

influence of the sequence composition on positioning preferences of nucleosomes is self-

deprecating but detectable (Figure 8A). I confiremed from previous analyses how the A/T and 

G/C contents varied in core and boundaries of the nucleosome under control [Zhang et al., 

2015], and the pattern of its varation with function of nucleosome postioning (Figure 8B).  

This work also confirms the variation in nucleosome sequence in relation to change in 

nucleosome occupancy under HS (Figure 8C). Despite DNA sequence being a powerful driver 

of nucleosome organization on genome landscape, the external temperature conditions often 
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override sequence signals and can direct nucleosomes to occupy intrinsically unfavorable 

DNA elements or evict nucleosomes from intrinctically favorable locations.  
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6. SUMMARY: 

In conclusion, this study revealed that under HS, the average genome-wide nucleosome 

occupancy at its position was increased, and remained more or less the same in recovery 

conditions in A. thaliana. Probability of finding a nucleosome at a position also increased 

under HS and recovery. Average nucleosome occupancy in a gene body of all protein-coding 

genes was also enhanced under HS and recovery, but when occupancy was measured with 

increasing gene expression, it was found to be less in HS in each bin. In highly up-regulated 

genes, there was a relative decrease in nucleosome occupancy especially around TSS. Under 

HS, relative loss of nucleosomes around TSS was correlated with relatively higher gene 

expression. On the other hand, relative gain of nucleosomes around TSS correlated with 

relative lower gene expression. 
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APPENDIX 
 

APPENDIX I 
 
MNaseI sensitivity assay 
Based on protocol by Ricardi et al., Plant Methods, 2010, 6:11 
 
Chromatin isolation 
 
Important notes before: 
• Reducepipetting. Pipette the solutions just to get rid of the Pellets from the wall. Then 

resuspend pellets by shaking. 
• Keep solutions and samples on 4°C (ice)   
 
6- Harvest ~3g of tissue and shock freeze in liquid nitrogen. Store at -80°C until use. 
 
6- Grind the tissue to a fine powder in liquid N2 cooled 50ml falcon with 3 metal beads for 2x30 
sec (alternatively use mortar and pestle). 
 
7- Resuspend the powder in 30-40 ml of cold extraction buffer 1 (10 ml/1 g of tissue). Unless 
otherwise specified, all of the following steps should be done at 0-4°C. 
Extraction buffer 1 (100 ml) 
Final     Stock  Volume 
0.44 M sucrose   2 M  22 ml 
10 mMTris (pH 8.0 adj by HCl)  1 M  1 ml 
5 mM b-ME    14,3 M  35,7 µl 
1× protease inhibitor cocktail: 
1mM PMSF (in 96% ETOH)   100mM  1 ml 
5 tablets of EDTA Free Complete Mini Protease Inhibitor Cocktail tablets 
 
8- Filter sequentially through miracloth. 
 
9- Spin the filtered solution for 20 min at 2,880 × g. 
 
10- Remove the supernatant and resuspend the pellet in 10 ml of extraction buffer 2. 
Extraction buffer 2 (100 ml) 
Final     Stock  Volume 
0.25 M sucrose   2 M  12,5 ml 
10 mMTris (pH 8.0 adj by HCl)  1 M  1 ml 
10 mM MgCl2   1 M  1 ml 
1% Triton X-100   100%  1 ml 
5 mM b-ME    14,3 M  35,7 µl 
1× protease inhibitor cocktail  
1mM PMSF (in 96% ETOH)   100mM  1 ml 
2 tablets of EDTA Free Complete Mini Protease Inhibitor Cocktail tablets 
 
11- Incubate for 10 min on ice to lyse chloroplasts and spin for 20 min at 2,100 × g. 
 
12- Remove the supernatant and resuspend the pellet in 4 ml of extraction buffer 2 without Triton 
X-100. 
 
13- Spin for 20 min at 2,100 × g and resuspend the pellet in 4 ml of Percoll extraction buffer. 
Divide 4 ml per sample into two 2 ml Eppis 
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Percoll extraction buffer (50 ml) 
Final     Stock  Volume 
95% V/V Percoll   100%  45 ml 
0.25 M sucrose   2,5 M  5 ml 
10 mMTris (pH 8.0 adj by HCl)  1 M  0,5 ml 
10 mM MgCl2   1 M  0,5 ml 
5 mM b-ME    14,3 M  17,8 µl 
1× protease inhibitor cocktail  
1mM PMSF (in 96% ETOH)   100mM  0,5 ml 
2 tablets of EDTA Free Complete Mini Protease Inhibitor Cocktail tablets 
 
14- Spin for 10 min at 12,000 × g, without the breaks. SWITCH OF BREAKS FROM 
CENTRIFUGE! 
15- Carefully take 300 µl of the upper phase (looks like white-greenish (pale) flocks/cloud) into 
a fresh 1.5 ml eppi and dilute it by adding 1200 µl nuclei resuspension buffer. 
 
Nuclei resuspension buffer (100 ml) 
Final     Stock  Volume 
10% Glycerol    100%  10 ml  
50 mMTris (pH 8.0 adj by HCl)  1 M  5 ml 
5 mM MgCl2    1 M  0,5 ml 
10 mM b-ME    14,3  70,1 µl 
1× protease inhibitor cocktail  
1mM PMSF (in 96% ETOH)   100mM  1 ml 
2 tablets of EDTA Free Complete Mini Protease Inhibitor Cocktail tablets 
 
16- Spin for 10 min at 12,000 × g. 
 
17- Discard the supernatant and resuspend the pellet in 1 – 1,5 ml of nuclei resuspension buffer. 
(This step you can freeze the sample in liquid Nitrogen and store at -80°C) 
 
18- Spin for 10 min at 12,000 × g. 
 
Micrococcal nuclease digest 
 
Dissolve pellet in 500 µl Micrococcal nuclease buffer 
 
Micrococcal nuclease buffer (10 ml) 
Final     Stock  Volume 
50 mMTris-HCl, pH 8.5  1 M  0,5 ml 
5 mM Mg acetate   1 M  50 µl 
25% glycerol    100%  2,5 ml 
1 mM CaCl2    1M  10 µl 
 
Digest 100 µl aliquots for 20 min at 37°C with 0, 2.5, 5, 10 and 20 U of MNaseI 
 
35- Stop digestion by Adding 10 μl of 0.5 M EDTA, 20 μl of 1 M Tris-HCl pH 6.8 and 1.5 μl of 
14 mg/ml proteinase K to the eluate and incubate for 1 h at 45°C. 
 
 
DNA recovery 
 
36- Extract DNA with equal volume of phenol/chloroform (for making mix – take 1000 µl 
phenol/960 µl chlorophorm). Centrifuge 5 min at 5,000 g to separate the phases (commercial 
DNA clean-up columns may alternatively be used). Transfer the upper phase into a new tube. 
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37- Add 0.1 volume of 3 M sodium acetate pH 5.3 (adjusted by glacial acetic acid) to the aqueous 
phase and precipitate with 0.7 volumes of isopropanol (-20°C) in the presence of tRNA (1 μg/ml 
final concentration) (= recommended incubation overnight @ -20°C). Centrifuge 20 min at max 
speed. 
 
38- Wash pellet with 300 µl of 70% ethanol. Centrifuge 5 min at 12,000 g. Remove supernatant 
by pipette, dry by speedvac or under hood. Resuspend the DNA pellet overnight at 4°C in 20 μl 
of Tris pH 8 or TE supplemented with 10 μg/ml RNase A. 
 
39- DNA is now ready for analysis by PCR. 
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APPENDIX II 
 
## TopHat alignment Command for single end RNA-seq reads 

 
## CuffDiff gene expression calculation and different expression calculation of RNA-seq reads 

 
## Bowtie alignment command for nucleosome occupancy and location estimation of MNase-
seq paired-end. 

 
## SAM to sorted BAM 

 
## DANPOS script command line for nucleosome calling, normalization and differential 
nucleosome estimation. 

 
 
 
 
 
 
 
 
 
 
 
 

tophat --bowtie1 -o R1 -p 20 –G ../../../Genome_New_1/TAIR10_1_5.gtf 
../../../Genome_New_1/TAIR10_1_5.fas  
../../../RNA-seq_Reads/Recovery_1.fastq 

 

cuffdiff -p 40 -o DE_analysis/CvHvR/ -L Control,HS,Recovery 
../Genome_New_1/TAIR10_1_5.gtf 
Tophat/TopHat_output/C1/accepted_hits.bam,Tophat/TopHat_output/C2/acce
pted_hits.bam 
Tophat/TopHat_output/H1/accepted_hits.bam,Tophat/TopHat_output/H2/acce
pted_hits.bam 
Tophat/TopHat_output/R1/accepted_hits.bam,Tophat/TopHat_output/R2/acce
pted_hits.bam 

bowtie --fr -p 30 -v 3 TAIR10_1_5.fas  
-1 ../../MNase-seq_Reads/ambient_rep4_R1.fastq  
-2../../MNase-seq_Reads/ambient_rep4_R2.fastq  
-S ../Control_sam_bam/Control_4.sam 

samtools view -u unsorted.sam | samtools sort -o sorted.bam 

python ../../Documents/software/danpos-2.2.1/danpos.py dpos -t 0.00001 
-f 1 -p 0.00001 -n N -a 1 -z 25 -q 3 -jd 75 -o Heat-Control/ 
Heat_danpos/norm/:Control_danpos/norm/ -s 1 
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Supplemental Table 1. Spearman correlation value with p-value of nucleosome occupancy 
score with gene expression in all six groups. C: control, H: heat stress and R: recovery conditions 
 
GROUPS Spearman pval 
GROUP1_C 0.004518 0.8505 
GROUP1_H 0.020624 0.3895 
GROUP1_R 0.031557 0.1879 
GROUP2_C -0.04957 0.139 
GROUP2_H -0.07965 0.01735 
GROUP2_R -0.00537 0.8728 
GROUP3_C -0.26565 0.000268 
GROUP3_H -0.18931 0.01006 
GROUP3_R -0.25717 0.000425 
GROUP4_C 0.04872 0.2398 
GROUP4_H 0.052354 0.2065 
GROUP4_R 0.018563 0.6544 
GROUP5_C -0.03659 0.39 
GROUP5_H 0.010192 0.8108 
GROUP5_R 0.036937 0.3855 
GROUP6_C 0.197462 0.005784 
GROUP6_H 0.154704 0.03125 
GROUP6_R 0.272802 0.000119 
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