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“The pessimist complains about the wind; the optimist expects it to change; the realist adjusts
the sails.”

William Arthur Ward

“There is an urgent need to stop subsidizing the fossil fuel industry, dramatically reduce
wasted energy, and significantly shift our power supplies from oil, coal and natural gas to
wind, solar, geothermal, and other renewable energy sources.”

Bill McKibben
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generation

by Jan WOHLAND

Anthropogenic climate change represents a major risk for human civilization and its
mitigation requires reductions of greenhouse gas emissions. To stay consistent with
the long-term temperature targets of international climate policy, global greenhouse
gas emissions have to reach zero within a few decades. Such a dramatic transition
towards sustainability in all sectors of human activity requires the decarbonization
of power generation at an early stage. In absence of other viable technology choices
and given the significant cost declines, renewable power generation forms the back-
bone of the decarbonization. In contrast to thermal power plants, most renewables
are not dispatchable but their generation dynamics are governed by the weather.

This dissertation adds to the quantification of impacts of climate variability on
wind power generation on different time scales. In particular, it shows that inter-
annual wind power generation variability already today has a strong influence on
congestion management costs in Germany. Understanding this variability as a nor-
mal system feature helps to prevent short-sighted reactions in legislation and power
system design. Moreover, it is shown that relevant multi-decadal wind power gen-
eration variability exists. Owing to timescales of up to 50 years, these modes are
not sufficiently sampled in any modern reanalysis (e.g., MERRA2 or ERA-Interim),
which currently cover around 40 years. Consequently, power system assessments
based on modern reanalyses may be flawed and should be complemented by multi-
decadal assessments. In this context, I also show that 20th century reanalyses (ERA-
20C, CERA20C, 20CRv2c) disagree strongly and systematically with respect to long-
term wind speed trends. The discrepancy can be traced back to marine wind speed
observations which also feature strong upward wind trends that are likely due to an
evolving measurement technique. As a consequence, 20th century reanalyses should
be employed with care and cross-validation of results is recommended.

Due to their weather dependency, renewables are potentially vulnerable to cli-
mate change. Indeed, I show that the benefits of large-scale transmission infrastruc-
ture in Europe shrink under strong climate change (RCP8.5). The effect is robust
across a five member EUROCORDEX ensemble and can be solidified in a larger
CMIP5 ensemble. It is rooted in more homogeneous wind conditions over Europe
that lead to less smoothing effects via large scale spatial integration.

Lastly, the debate around negative emission technologies to enlarge the carbon
budget currently focuses on land-based approaches such as Bioenergy with Carbon
Capture and Storage. Based on a schematic integration of Direct Air Capture (DAC),
we show that its flexibility complements renewable generation variability and can
help to integrate large shares of renewables.

HTTP://WWW.PORTAL.UNI-KOELN.DE/9441.HTML?L=1
http://www.mathnat.uni-koeln.de/?&L=1
http://physik.uni-koeln.de/?L=1
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Zusammenfassung

Menschengemachter Klimawandel stellt ein substantielles Risiko für die mensch-
liche Zivilisation dar und seine Begrenzung erfordert eine Reduktion des Aussto-
ßes von Treibhausgasen. Um mit den langfristigen Temperaturzielen des Pariser
Klimaabkommens konsistent zu bleiben, müssen die globalen Treibhausgasemis-
sionen in den nächsten Jahrzehnten auf Null reduziert werden. Ein solch tiefgrei-
fender Übergang zu mehr Nachhaltigkeit in allen Sektoren menschlicher Aktivität
erfordert die Dekarbonisierung des Strombereiches als einen der ersten Schritte. An-
gesichts mangelnder vielversprechender alternativer Technologieoptionen und auf-
grund des starken Rückgangs der Kosten stellen erneuerbare Energien das Rückgrat
dieser Dekarbonisierung dar. Im Gegensatz zu den meisten konventionellen Kraft-
werken, sind Erneuerbare allerdings nicht direkt steuerbar. Stattdessen wird die Dy-
namik erneuerbarer Energieerzeugung vom Wetter diktiert.

Diese Dissertation trägt zur Quantifizierung von Einflüssen von Klimavariabili-
tät auf Windenergieerzeugung bei und berücksichtigt dabei unterschiedliche Zeits-
kalen. Insbesondere zeigt sie auf, dass interannuale Variabilität von Windenergieer-
zeugung bereits heute einen starken Einfluss auf die Kosten von Engpassmanage-
ment hat. Diese Variabilität als eine normale Eigenschaft des Systems zu verstehen
hilft dabei kurzsichtige Reaktionen im Bereich der Gesetzgebung und dem Design
des Stromssystems zu verhindern. Darüber hinaus wird gezeigt, dass es relevante
multi-dekadische Windenergieerzeugungsvariabilität gibt. Da diese Moden Zeits-
kalen von bis zu 50 Jahren aufweisen sind sie in allen modernen Reanalysen (z.B.
MERRA-2 oder ERA-interim) nicht ausreichend abgebildet, da moderne Reanalysen
nur etwa die letzten 40 Jahre umfassen. Daraus folgt, dass Stromsystemanalysen,
die auf modernen Reanalysen basieren, fehlerbehaftet sein können und mit multi-
dekadischen Analysen ergänzt werden sollten. In diesem Zusammenhang zeige ich
außerdem, dass Reanalysen des 20. Jahrhunderts (ERA20C, CERA20C, 20CRv2c)
sich hinsichtlich langfristiger Windtrends deutlich und systematisch widersprechen.
Der Widerspruch kann auf marine Windbeobachtungen, die ihrerseits bereits deut-
liche Aufwärtstrends beinhalten, zurückgeführt werden. Der Grund für die Trends
ist wahrscheinlich eine sich entwickelnde Messtechnik, insbesondere eine systema-
tische Verschiebung der Höhe des Messung. Es folgt, dass Reanalysen des 20. Jahr-
hunderts vorsichtig verwendet werden sollten und dass eine Validierung der Ergeb-
nisse durch Vergleich mehrerer Datenquellen zu empfehlen ist.

Aufgrund ihrer Wetterabhängigkeit sind Erneuerbare potentiell gefährdet durch
den Klimawandel. In der Tat zeigen wir, dass die Vorteile eines großskaligen Strom-
netzes unter starkem Klimawandel (RCP8.5) reduziert werden. Der Effekt ist robust
innerhalb eines EUROCORDEX Ensembles mit fünf Mitgliedern und kann weiter
untermauert werden in einem größeren CMIP5 Ensemble. Der Effekt hat seinen
Ursprung in gleichmäßigeren Windbedingungen über Europa, die weniger ausglei-
chende Effekte durch großskalige räumliche Integration ermöglichen.

Als letzter Themenbereich wird die Debatte um negative Emissionen aufgegrif-
fen, die benötigt werden um das geringe verbleibende CO2 Budget zu vergrößern.
Diese Debatte konzentriert sich zum Großteil auf Bioenergie mit CO2 Abscheidung
und Speicherung. Wir zeigen mittels eines schematischen Ansatzes zur Integration
von CO2 Abscheidung aus der Luft (DAC), dass die Flexibilität von DAC und die
Variabilität von Erneuerbaren sich ergänzen, sodass DAC helfen könnte große An-
teile von Erneuerbaren in das Stromsystem zu integrieren.
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Chapter 1

Introduction

This dissertation touches two of the central challenges of the early 21th century:
climate change and renewable energy. It also discusses the sometimes overlooked
aspect of climate variability which deserves equal attention. It aims to shed light on
their interactions in both expected and surprising ways using methods from time
series analysis and statistics. Prior to the discussion of the research results, a few
fundamentals are reviewed in the next sections to familiarize the reader with the
relevant concepts in a straightforward manner. I start with a brief discussion of cli-
mate change, which is both one of the main reasons for the increased deployment of
renewables and also a potential thread to highly renewable power systems. After a
short review of climate variability which governs the dynamics of renewable power
generation, I introduce the main tools and datasets that are used in the research sec-
tion of this dissertation. The following subsection on energy transitions covers main
aspects of renewable power generation and focuses on emissions and the property
of dispatchability. The Introduction ends with an overview of the publications pre-
sented in this thesis. It is complemented by a Methods section that introduces an
advanced spectral analysis tool that could only be briefly described in the corre-
sponding publication.

1.1 Climate change

Human activity since the onset of industrialization has added substantial amounts
of carbon dioxide (CO2) and other greenhouse gases (GHGs) to the atmosphere as
a byproduct of economic development. Current levels of atmospheric CO2 exceed
400 parts per million (ppm), representing a 40% increase from a pre-industrial level
of around 280 ppm. The current level of CO2 in the atmosphere is unprecedented
at least in the last 800 000 years (IPCC, 2013). This perturbation of atmospheric
composition leads to an increased amount of longwave outgoing radiation that does
not make its way to outer space but is absorbed and then partly re-emitted back
towards the earth surface. This is commonly referred to as the greenhouse effect. The
increase of atmospheric concentrations of GHGs induces a thermal disequilibrium of
the planet which currently absorbs more energy than it emits. As compared to pre-
industrial levels, global mean temperature has consequently risen by approximately
1 ◦C with a current rate of change of around 0.2◦C per decade (IPCC, 2018).

1.1.1 Observed climate change

The responses to the thermal disequilibrium are not restricted to higher tempera-
tures. Instead, they are many-fold and many of them pose a risk to human civiliza-
tion and are therefore reasons for concern. The climate system consists of complex
and interconnected components such as the atmosphere, the oceans, the cryosphere
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(ice) and the biosphere. In many of these subsystems, impacts of anthropogenic cli-
mate change can already be detected today.

For example, global mean sea-level has risen by around 20cm over the 20th cen-
tury mostly as a consequence of thermal expansion and shrinking glaciers (IPCC,
2013)1. Other contributions come from mass losses of the Antarctic and Greenland
ice sheet and land water storage. The rates of ice loss from Antarctica and Green-
land have both increased from 1992-2001 to 2002-2011. Moreover, there has been an
increasing number of extreme weather and climate events, such as more frequent
warm days and nights, an increased frequency of heat waves in Europe, Asia and
Australia and an increased area that is effected by heavy precipitation events. Even
though individual extreme events can not be directly attributed to climate change
for methodological reasons, their increased likelihood due to climate change can be
documented in some cases (e.g., Wergen and Krug, 2010; Coumou and Rahmstorf,
2012; Wergen, Hense, and Krug, 2014). Parts of the emitted CO2 are dissolved in the
ocean, leading to ocean acidification and putting some marine habitats such as reefs
at risk (Hoegh-Guldberg et al., 2007). Moreover, the climate systems features some
self-amplifying feedbacks that can lead to tipping point behaviour. Once a system is
perturbed sufficiently strongly (i.e., beyond its tipping point), it does not return to
its initial state but transitions to another state following its internal dynamics. The
transition to the new state may be accompanied by unusually high rates of change
and it can feature hysteresis or irreversibility. Some of these tipping points may
have already been crossed, as, for example, indicated by a weakening of the thermo-
haline circulation in the North Atlantic (Rahmstorf et al., 2015; Caesar et al., 2018) or
a potentially triggered Marine Ice Sheet Instability in West Antarctica (Favier et al.,
2014). Note that there is an ongoing debate about the stability of the thermohaline
circulation in the North Atlantic. In a modeling study that was based on a large
CMIP5 ensemble, Weaver et al. (2012) found a consistent reduction of the circulation
strength but no evidence of a complete shutdown. A complete shutdown, as seen
earlier in simpler models, might be prevented by stabilizing feedbacks between at-
mosphere and ocean processes that were not properly captured before (Buckley and
Marshall, 2016). However, there is also concern that the current generation of cli-
mate models does not represent ocean freshwater transports correctly which could
lead to an overestimation of stability. The question of whether or not the real circu-
lation could feature tipping point behaviour thus remains an open one (Buckley and
Marshall, 2016).

1.1.2 Future climate change

While some impacts of climate change can already be detected today, the bulk of it
will occur in the future owing to the inertia of the climate system. The number one
determinant of future climate change is the future evolution of GHG emissions and
the resulting concentrations in the atmosphere. There is a large body of literature
that investigates climate impacts under different GHG scenarios and the latest (and
the upcoming) report of the Intergovernmental Panel of Climate Change (IPCC) is
an excellent source to access this information (IPCC, 2013). This section does not
aim to deliver a holistic overview of climate impacts. Instead, a few sea-level related
examples are given in the following that shall illustrate the potential scale of climate
impacts in the long run.

Even if global mean temperature was kept at its current value, roughly 1% of
global land area will be below sea-level in 2000 years (Marzeion and Levermann,

1the entire paragraph is based on this source unless another source is explicitly given
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2014). While settlements may be easily relocated on this time scale, also 6% of world
heritage sites will be effected. Moving them will prove more complicated. The num-
bers increase if higher levels of warming are assumed. In a 3◦C warmer world, for
example, 25-36 countries will loose more than 10% of their territory and some of
them will see more than half of their land below sea level. Even in scenarios that
are compatible with the long-term temperature goals of the Paris Agreement (see
Sec. 1.1.3), sea-level rise in 2300 is expected to be at the order of one meter (Men-
gel et al., 2018). Critical infrastructure that is deliberately installed next to the coasts,
such as some power plants, is particularly prone to sea-level related risks (Bierkandt,
Auffhammer, and Levermann, 2015).

It has been mentioned earlier that parts of the West Antarctic Ice Sheet may have
already entered a process called the Marine Ice Sheet Instability. This process re-
quires a specific topography of the bedrock that the ice sheet rests upon. If looking
upstream (i.e., towards the center of the ice sheet), the bedrock needs to slope down-
wards over some area. It has been shown that the destabilization of a part of the West
Antarctic Ice Sheet is sufficient to trigger a process that culminates into its complete
collapse (Feldmann and Levermann, 2015). This would lock in irreversible sea-level
rise of around 3m in the next millenia. The same process could unfold in parts of
East Antarctica, which has long been thought to be significantly more stable. If an
ice volume that is equivalent to around 0.008m sea-level rise is melted via external
forcing, ice dynamics can induce the discharge of ice equivalent of 3-4m sea-level rise
(Mengel and Levermann, 2014). Sea-level rise in these orders of magnitude would
require a fundamental reorganisation of infrastructures as many humans live next
to the coasts.

Still more disastrous consequences are found if mankind was to use all fossil
fuel resources that are currently considered available. The resulting forcing would
trigger destabilization of the entire Antarctic ice sheet, ultimately releasing almost all
of the ice that currently rests on the Antarctic continent (Winkelmann et al., 2015).
The multi-millenia sea-level response would exceed 50m and the rate of change in
the first millennium would exceed 3m per century.

1.1.3 Safe climate change

In light of potentially disastrous impacts of unmitigated climate change, the United
Nations Framework Convention of Climate Change (UNFCCC) was founded in
1992. It’s "ultimate objective (...) is to achieve (...) stabilization of greenhouse gas
concentrations in the atmosphere at a level that would prevent dangerous anthro-
pogenic interference with the climate system" (UNFCCC, 1992). This sentence im-
plicitly assumes that there is a threshold separating non-dangerous and dangerous
interference with the climate system. What is this threshold? At which point does
climate change end being safe?

It is important to understand that the threshold can not be determined by science
alone because it depends on moral judgments. Whether or not a certain impact of cli-
mate change is acceptable has to be answered outside the world of science. However,
science can contribute to the debate by differentiating the expected climate impacts
at distinct levels of climate change. While the literature has focused on separating
impacts in a 2◦C to 5◦C warmer world in the earlier phase of this century (e.g., Bank,
2012; IPCC, 2013), the emphasis has shifted to compare impacts between 1.5◦C and
2◦C (e.g., Schleussner et al., 2016a; James et al., 2017; IPCC, 2018). This shift is rooted
in a large consensus that climate change beyond 2◦C can not be considered safe.
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The Paris Agreement and its carbon budgets

At the end of the 21st UNFCCC Conference of the Parties (COP), a multi-lateral cli-
mate change mitigation agreement was adopted (UNFCCC, 2015). Named after the
hosting city, the Paris Agreement contains ambitious goals for climate change miti-
gation and, at least in some sense, defines the threshold for dangerous interference.
In the second half of the 21st century, it aims for "a balance between anthropogenic
emissions by sources and removals by sinks" of GHG. This implies a net GHG neu-
tral world economy within a few decades and constitutes a tremendous challenge.
Regarding the long-term temperature goal, a compromise was found between coun-
tries that strongly argued in favour of limiting global warming to 1.5 ◦C and those
that wanted to stick to the more conservative 2 ◦C target. The agreement contains
both targets (“Holding the increase in the global average temperature to well be-
low 2◦C above pre-industrial levels and pursuing efforts to limit the temperature
increase to 1.5 ◦C above pre-industrial levels") and calls for a special report of the
IPCC on global warming of 1.5◦C that was published in late 2018. The choice of the
long-term temperature goal was welcomed by members of the scientific community
(Schellnhuber, Rahmstorf, and Winkelmann, 2016).

An intuitive concept to illustrate the challenges in achieving the Paris Agree-
ment’s goals is a carbon budget (Messner et al., 2010). It relies on the assumption
that climate impacts are determined by cumulative GHG emissions, irrespective of
the actual timing of emissions. This assumption has been shown to be a justified
simplification in many cases (Zickfeld et al., 2009) although it obviously collapses if
irreversible processes are triggered. A carbon budget B(T) is an amount of carbon
B that leads to exceedance of a temperature limit T if emitted into the atmosphere
(T is the global mean temperature averaged over a long time span of two or three
decades such that natural temperature variability can be neglected). After the bud-
get is depleted, net carbon emissions of all sectors need to equal zero. According to
the IPCC Special Report on 1.5◦C (IPCC, 2018), this budget is 550 GtCO2 for a two-
thirds chance to limit warming to 1.5◦C. The budget estimate has a large uncertainty
range of approximately ±250 GtCO2 dependent on non-CO2 GHG mitigation and
potentially −100 GtCO2 to account for permafrost thawing and potential methane
release plus another ±50% owing to a additional geophysical uncertainty due to
non-CO2 response. More details of the uncertainties of climate budgets are provided
in Millar et al. (2017). This budget compares to current rates of carbon emissions of
Ḃ ≈ 35 GtCO2/y (Rogelj et al., 2015). If emissions remain constant, the entire bud-
get of staying below 1.5 ◦C with a 66% chance will thus be used in the 2030s. The
budget is larger for the less ambitious 2 ◦ goal which translates into more time until
it is finally used up.

The small size of these budgets calls for fast and fundamental changes of all
sectors that emit carbon (Rockstroem et al., 2017) which includes, but is not limited
to, the energy sector (Rogelj et al., 2015). Current levels of ambitions are not sufficient
to reach the targets of the Paris Agreement (Schleussner et al., 2016b; Rogelj et al.,
2016).

1.2 Climate variability

Climate variability is often also referred to as natural or internal variability. It de-
scribes the dynamics of the climate system that would lead to climatic variations
even in the absence of anthropogenic forcing. There are many different modes of
climate variability with different temporal and spatial scales (e.g., Williams et al.,
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2017). Some modes are very slow and effect the entire planet such as the variations
in orbital parameters that have led to glaciation events in the past with periods of
approximately 23, 41 and 100 thousand years (Imbrie et al., 1992). They can be safely
ignored for the purpose of this thesis. However, some dominant modes of climate
variability feature multi-decadal variability that stems from interactions of the tro-
posphere with the ocean and the stratosphere (Keenlyside et al., 2015; Omrani et al.,
2016). We will see in publication #4 that multi-decadal variability is important for
wind power generation (Sec. 3.3.2). Some components of the climate system feature
variability on short timescales that is restricted to small spatial areas such as wind
gusts. Synoptic variability on timescales of a few days is one of the most important
modes for the integration of renewables as passing weather systems can lead to fun-
damentally different generation characteristics. The long-term evolution of synoptic
variability is thus highly relevant for power system design.

Climate variability generally prohibits the attribution of individual events to cli-
mate change and complicates the attribution of trends that are observed or modeled
over relatively short timespans. One reason is that low-frequency climate variability
(i.e, multi-decadal, centennial and beyond) can produce signals that feature statis-
tically highly significant trends over timespans that are substantially shorter than
their period. For example, if the available timeseries only samples parts of the nat-
ural variability, trends may be found in a period with an upward or downward
tendency. Such trends are not representative for the entire process but only capture
the dynamics over a short period. They can not be safely generalized.

There is a direct link between climate variability and renewable power genera-
tion because renewables depend on the weather. Wind parks remain idle without
wind and solar panels require sunshine. The dependence of wind power generation
on wind speeds is even non-linear, highlighting the importance of understanding
wind speed dynamics to quantify wind power generation.

1.3 Tools and Datasets for climate assessment

1.3.1 Climate Models

The assessment of future climate requires numerical models and scenario assump-
tions regarding GHG concentrations. To this end, different Global Climate Models
(GCMs) have been developed in climate modelling groups. They typically contain
the most important climate subsystems and solve the underlying differential equa-
tions in discretized space and time. Their global coverage comes with the advan-
tages that boundary effects are of minimum importance but also limits the obtain-
able resolution. For example, the GCM results from the Climate Modeling Intercom-
parison Phase 5 (CMIP5) that informed parts of the research reported in this study
(see Sec. 3.1.1), have a typical resolution of around 1◦, which is at the order of 100km
(Taylor, Stouffer, and Meehl, 2011).

If higher resolution is needed, as it is the case for local assessments, Regional
Climate Models (RCMs) can be used to downscale the GCM results (e.g., Giorgi and
Gutowski, 2015). A RCM is a climate model with a limited spatial domain (e.g.,
Europe) but significantly higher spatial resolution. Per design, a RCM always needs
boundary data such as heat and mass fluxes which are typically provided by a GCM.
The combination of a driving GCM and a nested RCM is often referred to as a mod-
eling chain and comes with some methodological weaknesses because uncertainties
can propagate through the different steps of the chain.
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Meaningful regional climate change assessments thus have to rely on ensembles
of RCM-GCM combinations which allow to investigate the robustness of changes
across models. An ensemble of different RCM-GCM combinations at high resolu-
tion is provided by the EUROCORDEX initiative (Jacob et al., 2014) and is used in
our analysis (Sec. 3.1.1). Agreement of multiple models is considered indicative
of the robustness of a result. Ideally, many GCMs should be used to drive many
RCMs such that the effects of both modeling steps can be studied. This particularly
includes an ensemble assessment of the GCM data which serves as an input to the
RCMs. However, as climate models rely on high performance computers that are
costly, sometimes compromises have to be made. For example, in our analysis of the
effectiveness of European transmission infrastructure under strong climate change,
we had to rely on a 5 member GCM-RCM ensemble in which the same RCM was
used in all cases because a larger set was simply not available.

Alternative approaches to derive higher resolution data also exist. Main ap-
proaches are empirical-statistical downscaling (e.g., Hewitson et al., 2014) and statis-
tical-dynamical downscaling (e.g., Reyers, Pinto, and Moemken, 2015). Both rely
on the assumption that a relevant share of local-scale variability can be explained
as a funtion of large-scale variability. In empirical-statistical downscaling, the map-
ping from large scale to local scale is established statistically. In statistical-dynamical
downscaling, the mapping is calculated by running a RCM for a small set of typi-
cal configurations. Both methods allow for a computationally cheap downscaling of
large datasets (e.g., GCM ensembles). In some cases, they are well suited to comple-
ment GCM-RCM modeling chains or to replace the usage of RCMs if computational
costs are prohibitive. Both methods, however, may face serious methodological is-
sues if the mapping is not stationary and/or if interannual to multi-decadal variabil-
ity is not properly accounted for (Hewitson et al., 2014).

Scenarios of atmospheric composition

Human behaviour is not modeled in GCMs. This means that the addition of green-
house gases to the atmosphere via combustion of fossil fuels is not captured by the
climate models but has to be provided exogenously. This is done in the form of
scenarios and the most recent set of those are called representative concentration
pathways (RCPs) (Vuuren et al., 2011). To be precise, RCPs prescribe the evolution
of greenhouse gases in the atmosphere rather than the fluxes of greenhouse gases
into the atmosphere. This approach has been taken to enhance comparability in
GCM ensembles. Owing to different parameterizations, for example, of the carbon
cycle, the same amount of GHGs emitted into the atmosphere leads to different GHG
concentrations and thus different radiative forcing in different GCMs.

In this thesis, the business as usual RCP8.5 scenario is investigated. It assumes
no mitigation efforts and has been chosen to test the vulnerability of transmission
infrastructure to climate change because it is a worst case scenario. The name stems
from the amount of additional radiative forcing through increased levels of green-
house gas concentrations which equals 8.5 W/m2 in 2100 (Riahi et al., 2011). RCP8.5
causes a global mean temperature increase of around 3.6◦C to 5.8◦C in 2100 as com-
pared to pre-industrial levels (IPCC, 2013). In studies other than sensitivity studies,
scenario uncertainty is one of the major sources of uncertainty of climate projections
in particular in the long run. For example, climate change impacts under the RCP2.6
scenario would be significantly different from those under RCP8.5 and nobody can
forecast with certainty which emission trajectory will become reality. RCP2.6 in-
cludes climate change mitigation and is likely in line with the 2◦C target. Other
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sources of uncertainty are model uncertainty (e.g., the choice of parameterizations
and numerical schemes) and internal variability (Hawkins and Sutton, 2009). A re-
duction of model uncertainty can be obtained through large ensembles of different
models as explained in Sec. 1.3.1.

1.3.2 Reanalyses

Climate information is needed in many applications. In addition to future scenarios
that are computed using climate models, data about the past is often needed. Such
data can be obtained directly from observations. For example, the German Weather
Service (DWD) operates a network of stations that measure climate variables. Simi-
lar services exist in most countries and the resulting station time series are typically
readily available, for example, via web portals (Hewitson et al., 2017). However,
the interpretation of station data is complicated. Among other reasons, this is due
to the irregular sampling of stations in space, small-scale effects in the immediate
vicinity of the stations, interruptions of operation, measurement errors and instru-
mental drifts. In many cases, reanalyses are a more suitable source of information
than observations are.

Reanalysis datasets are a mixture of observations and modeling outputs. They
provide gridded data that is internally consistent (i.e., respects fundamental laws of
physics such as the conservation of mass) and that has minimum deviation from the
observations. In contrast to observations, reanalyses typically have global coverage
and are provided on a regular grid. They thus come in a format that allows for
easy usage in many applications. They are particularly useful if observations are
not available, sparse and/or available only over a short time period. Reanalyses
are retrospective by design because they need observations as input. The reanalyses
used in this thesis cover approximately the last 40 years (modern reanalyses) or the
last 110 to 150 years (20th century reanalyses). The names of the reanalyses and their
respective benefits and shortfalls are extensively discussed in Sec 3.

There are three important and fundamental differences between reanalyses and
climate models that are relevant in the context of this thesis. First, climate mod-
els are generally not synchronized while reanalyses are. This means that it can not
be expected that two different GCMs are in phase with respect to any mode of cli-
mate variability. In other words, there is no reason to assume that, for example,
wind speeds in any location at any particular date are the same in two different
GCMs. The situation is different for reanalyses because the assimilated observations
are synchronized (or even identical). Consequently, the wind speeds at any given
date in reanalysis 1 can be meaningfully compared to those in reanalyses 2. Second,
reanalyses are generally more realistic because they are coupled to the real world
through the assimilation of observations. This is particularly important if relevant
processes are not captured in the models due to, for example, insufficient resolution
or missing components such as the stratosphere. Third, the maximum timespan that
can be covered by reanalyses is limited by the available observations while GCMs
can be run for infinite periods (given infinite computational resources).

1.4 Energy transitions

As noted earlier, delivering on the Paris Agreement and avoiding dangerous climate
change requires a zero emission world economy in a few decades. However, the
evolution of global CO2 emissions over the last decades points upwards rather than
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downwards. For example, the global emissions from electricity and heat generation
have risen from around 8 GtCO2 in 1990 to almost 14 GtCO2 in 2015 (IEA, 2017a).
After global emissions had plateaued between 2014 and 2016, they increased by 1.6%
(2%) in 2017 (2018) (Figueres et al., 2018). In other words, the peak of global emission
still has not been reached.

In 2015, the largest fraction of CO2 emissions originated from the generation of
electricity and heat (42%) followed by the transport sector (24%) and industry (19%)
(IEA, 2017a). These numbers illustrate that the decarbonization of power generation
is not sufficient. Instead, emissions have to fall to zero in all sectors or remaining
carbon emissions have to be offset by negative emission technologies. The prospects
of one particular negative emission technology are discussed in Sec. 3.4.1.

Even though the transition to a fully renewable power system is not enough, it
is a logical starting point. This is because renewable generation technologies (a) are
available at scale (Brown et al., 2018a), (b) have minimum lifecycle GHG emissions
(Pehl et al., 2017), and (c) electricity can be used to substitute fuels in transport and
industry (Welder et al., 2018). Moreover, onshore wind and solar photovoltaics are
least cost options for power generation already today (IEA and IRENA, 2017). On-
shore wind even outperforms all other available types of generation in some loca-
tions in terms of levelized costs of electricity. Further cost reductions are anticipated
(Creutzig et al., 2017). Technical renewable potentials are also significantly higher
than current primary energy and electricity demand. Wind power alone could pro-
vide enough electricity to meet the global demand for electricity and the potential
of solar power is even large enough to support multiples of the world’s current pri-
mary energy demand (IPCC, 2014).

1.4.1 Renewable power generation

Renewable power generation means the utilization of self-replenishing resources to
generate electricity. It includes these technologies: solar photovoltaics (PV), concen-
trating solar power (CSP), wind power, hydropower, bioenergy and a few others
that only play niche roles (IEA, 2017b). Renewables are in contrast to conventional
power generation that is based on burning fuels (e.g., coal, gas, oil, waste) or nuclear
fission. Nuclear fusion will not become available in time to relevantly contribute to
the initial decarbonization of power systems. Even the most optimistic scenarios re-
ported by pro-fusion groups argue that "fusion can start market penetration around
2050 with up to 30% of electricity production by 2100" (EFD, 2012). Given that fun-
damental questions of reactor design are still not answered, these estimates are to be
taken as highly speculative. However, even if fusion technology was available to be
deployed at scale in 2050, it would have to be incorporated into a highly renewable
system. This would require nuclear fusion to be operated flexibly, adding another
massive design challenge. On top of this, the economic case for nuclear fusions re-
mains unclear.

All types of power generation can be classified as either dispatchable or non-
dispatchable. Wind and PV are non-dispatchable meaning that they can not be
switched on when needed. Instead power generation from wind and PV is inter-
mittent as it follows the weather. Conventional power generation is generally dis-
patchable although there are ramping constraints that need to be respected. CSP
and hydropower are situated in between. While CSP generally is non-dispatchable,
the addition of thermal storage can make it dispatchable on timescales of up to a
few days (Pfenninger et al., 2014). Pumped hydropower is dispatchable as long
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FIGURE 1.1: Power generation in Germany in one example week in
early 2019. Different colors denote different generator technologies as
defined in the legend. The illustration is taken from energy-charts.
de on 26/03/2019 with kind permission from Bruno Burger (Fraun-

hofer ISE).

as constraints on its filling level are respected whereas run-off-river hydropower is
generally non-dispatchable.

The German power generation during one example week in early 2019 is illus-
trated in Fig. 1.1. It displays different types of power generators and their variability.
Solar photovoltaics only generates electricity during daytime. While it contributes
relevantly on the first four days as can be seen from the first four peaks, the con-
tribution on the remaining days is small. The pattern of wind generation is differ-
ent and partly complementary. Wind plays a minor role until the evening of the
third day when wind power generation strongly increases. Following a period of
medium contribution, feed-in from wind power is dominant over the last day. Hy-
dropower plays a minor role. Of the dispatchable generators, brown coal, uranium
and biomass are operated in baseload mode (i.e., constantly) for almost the entire
week. Hard coal and gas are used flexibly to respond to changes in wind and solar
generation.

The non-dispatchability of wind and PV constitutes the main challenge of build-
ing highly to fully renewable power systems because a stable and reliable power
supply is considered a necessity in many parts of the world. While it requires new
thinking and new infrastructures, there is evidence that this challenge can be solved.
The main strategies to integrate high shares of renewables are well understood. They
all share the idea of optimizing the energy system in light of renewable generation
variability and thus require accurate representations of climate variability. The main
strategies are:

1. Averaging over large areas using transmission infrastructure (e.g., Rodriguez
et al., 2014; Rodriguez, Becker, and Greiner, 2015; Rodriguez, 2014; Andresen
et al., 2012; Becker et al., 2014; Schlachtberger et al., 2017; Santos-Alamillos et
al., 2017; Grams et al., 2017)

energy-charts.de
energy-charts.de
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2. Averaging over time using storage infrastructure (e.g., Beaudin et al., 2010;
Díaz-González et al., 2012; Toledo, Oliveira Filho, and Diniz, 2010; Kittner,
Lill, and Kammen, 2017; Pleßmann et al., 2014; Luo et al., 2015; Reuß et al.,
2017)

3. Increased flexibility on the demand side and combination of different sectors,
such as heat and electricity (e.g., Brown et al., 2018b; Huber, Dimkova, and
Hamacher, 2014; Kondziella and Bruckner, 2016)

Flexible conventional power generation from backup infrastructure will be needed
during the transition. In fact, Schlachtberger et al. (2016) argue that even relatively
inflexible generators can contribute beneficially in the early steps towards fully re-
newable systems.

1.5 Overview of the publications and their research ques-
tions

All publications in Sec. 3 contribute to the research field outlined above. They all
use climate information to quantitatively assess energy related questions and make
use of time series analysis and statistics. The focus is always on wind energy even
though system wide effects are also studied in some cases.

In publication #1 (Wohland et al., 2017), we investigate the impact of climate
change on the smoothing effects of a continental transmission system in Europe. As
explained in Sec. 1.4.1, large scale transmission infrastructure smooths the genera-
tion timeseries. This is because large areas are rarely affected by the same weather
pattern simultaneously. Instead, below average wind generation in some coun-
tries often coincides with above average generation in others. In the paper, we ad-
dress whether the benefits of large scale transmission are affected by strong climate
change. We show that the effectiveness of transmission is robustly compromised un-
der strong climate change at the end of the 21st century. The effect is rooted in more
homogeneous wind conditions that imply higher synchrony of over generation and
generation shortfalls across Europe. Albeit robust, the effect has a maximum ampli-
tude of around 7% and is thus small enough not to prohibit highly renewable power
system even under strong climate change.

Publication #2 (Wohland et al., 2018) addresses congestion management and as-
sociated costs in the German electricity system. Due to transmission line constraints
and a spatial mismatch of power generation and consumption, regulatory interven-
tions to secure stable supply are sometimes needed. We focus on a measure called re-
dispatch that has been used more extensively over the last years. Redispatch comes
with annual costs at the order of a few hundred million Euros per year and is regu-
larly discussed in the media. We contextualize an unexpected cost drop from 2015
to 2016 by comparison with expected inter-annual variability. The results highlight
the importance of a proper inclusion of natural wind variability into energy policy
and energy system design.

Publications #3 and #4 (Wohland et al., 2019a; Wohland et al., 2019b) both deal
with multi-decadal wind assessments. They are based on 20th century reanalyses
and aim to quantify whether any important modes of wind variability are missed
in modern reanalysis. Owing to the methodological differences in approaches of
the two providing centers of 20th century reanalyses, massive discrepancies in wind
speed trends are reported in publication #3. Very strong upward trends are found
over a large fraction of the planet in one family of reanalyses. We can trace back the
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discrepancy to the assimilated wind speeds in the reanalyses that are provided by
the European Centre for Medium-Range Weather Forecasts (ECMWF). Furthermore,
based on a comparison with the literature and due to known issues with marine
wind observations, we conclude that the upward trends in one family of datasets is
likely spurious. After subtraction of the trends, agreement between the dataset is
good as shown in publication #4. The corrected datasets feature significant multi-
decadal modes of wind power generation averaged over the typical lifetime of a
wind park. In particular, the ratio of winter to summer generation varies strongly
(± 15 %) which has direct implications for optimum technology choices.

In the last publication #5 (Wohland, Witthaut, and Schleussner, 2018), we focus
on a negative emission technology called direct air capture (DAC). Almost all sce-
narios that are compatible with the Paris Agreement require negative emissions to
compensate exceedence of the carbon budget. In many models, negative emissions
are reached via Bio-energy with Carbon Capture and Storage (BECCS), even though
BECCS raises sustainability concerns owing to its large water and land footprint
and resource competition with food production. We argue that DAC is a promis-
ing candidate for negative emissions because it can be used flexibly and therefore
complements renewable generation variability. We run a simple European power
model to illustrate potentials of DAC for negative emissions and discuss co-benefits
of storage and DAC.

During my PhD I also contributed to Weber et al. (2018) which is not discussed
here. Moreover, another publication that I contributed to was accepted and pub-
lished during the course of my PhD (Hewitson et al., 2017).
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Chapter 2

Methods

The objective of this thesis is to distill robust information about impacts of climate
variability and climate change on renewable power generation with a focus on wind
energy. To this end, I use methods from time series analysis, statistics and uncer-
tainty estimation based on cross-validation of suitable datasets. In general, all meth-
ods are introduced and discussed in the respective publication. They will not be
repeated here for the sake of brevity. However, as the format of article #4 (Sec. 3.3.2)
did not allow to introduce the multi-taper method (MTM) in sufficient detail, ad-
ditional information about MTM is given below. It starts with an introduction of
spectral leakage which provides the motivation to use MTM.

2.1 Spectral leakage in finite length time series

In this section, we consider a univariate and discrete time series X(t) of finite length
t = 1, ..., N and time steps ∆T. Often, the underlying dynamics of the timeseries are
unknown (or too complex to be solved exactly). In such cases, a standard tool to
investigate the properties of the time series is spectral analysis. Its easiest form is a
discrete Fourier transform which is defined as

F{X}(ω) =
∞

∑
t=−∞

X(t)e−i2πwt, (2.1)

where ω is referred to as frequency (e.g., Storch and Zwiers, 1999).
As a trivial example, we know that the Fourier transform of a sinuisoid

Xexample(t) = cos(2πωexamplet), (2.2)

defined over an infinite period (t = −∞, ..., ∞), has a single peak at frequency
ωexample:

F{Xexample} = δ(ω = ωexample). (2.3)

In real applications, however, time series are never of infinite length and rarely
sufficiently long to justify the assumption of infinite length. For example in the cli-
mate context discussed in publication #4, we know that the length of the time series
(110 years) only poorly samples the multi-decadal mode of a climatic process known
as the North Atlantic Oscillation.

A finite length timeseries Xfinite
example(t) can be considered as a combination of an

infinite length timeseries Xexample(t) and a windowing function W(t):
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Xfinite
example(t) = Xexample(t) ·W(t). (2.4)

The windowing function could, again following the easiest case, be a box:

W(t) =

{
1, if t ∈ [ts, te]

0, otherwise
(2.5)

Such a box could represent measurements over a finite period of time from ts
to te of an infinite process. The Fourier transform of the finite length time series,
assuming the special case ωexample = 0 for illustration, is

F{Xfinite
example(t)} = F{Xexample(t) ·W(t)} = F{cos(2π0t)︸ ︷︷ ︸

=1

·W(t)} = F{W(t)}. (2.6)

The Fourier transform of the finite length timeseries is thus directly effected by
the window (cf. equations 2.3 and 2.6). While in this simple example, the Fourier
transform of the finite length timeseries is even identical to the Fourier transform of
the window, the exact influence of the windowing function on the spectra in more
realistic cases cannot be seen as simply. However, from eq. 2.6, it follows that

F{Xfinite
example(t)} 6= F{Xexample(t)} (2.7)

for most windows W(t). This effect of the windowing function on the spectrum
is called spectral leakage and the multi-taper method is one approach to minimize
the effects of spectral leakage in finite time series.

2.2 Multi-taper spectral analysis

The entire section is based on Ghil (2002) unless stated otherwise. MTM consists of
three steps.

First, a set of tapers (also referred to as windowing functions)

wk(t), (2.8)

is calculated, and the total number of tapers is set by the user: k = 1, ..., K. The
tapers are a discrete set of eigenfunctions that solve the variational problem to min-
imize spectral leakage outside a frequency band with half bandwidth p · fR, where
fR = 1

N·∆T is the Rayleigh frequency and p is another parameter. The definition of the
tapers via the minimization problem implies that it is less heuristic than traditional
techniques. The set of eigenfunctions is referred to as discrete prolate spheroidal
sequences [Slepian, 1992].

In a second step, the tapers are multiplied with the time series

Xk(t) = X(t)wk(t) (2.9)
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and the discrete Fourier transform Yk( f ) of Xk(t) is calculated. Consequently, the
spectral estimate for each taper is defined as

Ŝk( f ) = |Yk( f )|2. (2.10)

Lastly, the multi-taper spectrum Sr( f ) is defined as a weighted sum of the spectra
Ŝk:

Sr( f ) = ∑K
k=1 µkŜk

∑K
k=1 µk

, (2.11)

where µk denotes the weights that are deduced from the fractional leakage as-
sociated with the kth data taper. However, there is some flexibility regarding the
choice of the weights and alternative versions of eq. 2.11 have been developed (see
Appendix A1 of Mann and Lees (1996)). Through averaging over K different spectra,
the variance of the spectral estimate is reduced thereby enhancing the signal-to-noise
ratio. This happens at the cost of reduced spectral resolution.

2.2.1 Significance testing

Maxima in the spectrum Sr( f ) can occur by chance or due to a real process with an
oscillatory component. To allow meaningful usage of the MTM, both cases need to
distinguished. To this end, we adopt a method developed by Mann and Lees (1996).

They suggest a procedure that is referred to as robust background estimation. It
assumes that the background noise is red and is generated by a an auto-regressive
process of first order AR(1):

X(t) = ρX(t− 1) + w(t), (2.12)

where ρ is the lag-one autocorrelation that describes the memory of the process
and w(t) is a Gaussian white noise sequence with variance σ2. In the case ρ = 0, the
AR(1) process collapses to an AR(0) process. The assumption of an underlying AR(1)
or AR(0) process is plausible in climatic contexts because atmosphere dynamics is
to first order white (Wunsch, 1999) and ocean-atmosphere interactions have been
shown to add memory to the coupled system (Mecking, Keenlyside, and Greatbatch,
2015).

The power spectrum of an AR(1) process has two degrees of freedom and reads:

SAR1( f ) = S0
1− ρ2

1− 2ρ · cos(π f / fN) + ρ2 , (2.13)

where S0 is the average value of the power system and depends on the white
noise variance σ2 as S0 = σ2

(1−ρ2)
and the Nyquist frequency fN = 1

2∆T is the highest
frequency that can be resolved. The parameters in eq. 2.13 can be determined via
least squares fitting to an observed spectrum.

Instead of fitting eq. 2.13 to the observed spectrum immediately, Mann and Lees
(1996) suggest to apply a median smoothing to the raw spectrum first. As a con-
sequence, individual peaks that are considered signal rather than background have
less effect of the background spectrum and subsequent significance estimation. The
added value of the approach is documented in applications to synthetic and climate
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examples (Mann and Lees, 1996). It is particularly helpful in preventing unjustifiably
high background floors at low frequencies if low-frequency variability is present.
The smoothing width is chosen as

∆ f = min
(

fN

4
, 2p fR

)
, (2.14)

where p is the parameter defined above. Note that this choice is heuristic. It
combines two ideas and defines the smoothing frequency either as a function of the
highest frequency that can be resolved, or as a function of the MTM spectral resolu-
tion. More precisely, if fN

4 < 2p fR, the first expression fN
4 secures sufficient sampling

as the smoothing frequency is chosen to be one forth of the highest frequency that
can be resolved ( fN). If fN

4 > 2p fR, the second expression ensures that the smooth-
ing width equals the spectral resolution of the MTM (see also eq. 2.8 and subsequent
explanation).

The median smoothed spectrum Sms( f ) is then defined by replacing the initial
spectrum estimate at each frequency with the median value in a moving window
centered at this frequency. Near the edges, the window is truncated such that the
median smoothed spectrum is defined over the same frequency interval as the initial
spectrum.

Significance testing is performed by comparison of the MTM spectrum Sr( f )
with the median smoothed spectrum Sms( f ). The MTM spectrum has 2 degrees of
freedom per taper, that is 2K degrees of freedom in total. It is furthermore assumed
that the ratio of power

ROP( f ) =
|Sr( f )|2
|Sms( f )|2 (2.15)

is distributed as χ2/2K, following the argumentation and numerical validation
reported in Mann and Lees (1996). A peak in the spectrum Sr( f ) at frequency f ′ is
thus considered significant at a confidence level c if

ROP( f ′) ≥ χ2(c, 2K), (2.16)

where χ2(c, 2K) denotes the chi square distribution with 2K degrees of freedom
at confidence level c.
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Chapter 3

Publications

3.1 Climate change

3.1.1 #1: Impacts on spatial balancing of wind power generation
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Abstract. Limiting anthropogenic climate change requires the fast decarbonization of the electricity system.
Renewable electricity generation is determined by the weather and is hence subject to climate change. We sim-
ulate the operation of a coarse-scale fully renewable European electricity system based on downscaled high-
resolution climate data from EURO-CORDEX. Following a high-emission pathway (RCP8.5), we find a robust
but modest increase (up to 7 %) of backup energy in Europe through the end of the 21st century. The absolute
increase in the backup energy is almost independent of potential grid expansion, leading to the paradoxical ef-
fect that relative impacts of climate change increase in a highly interconnected European system. The increase
is rooted in more homogeneous wind conditions over Europe resulting in intensified simultaneous generation
shortfalls. Individual country contributions to European generation shortfall increase by up to 9 TWh yr−1, re-
flecting an increase of up to 4 %. Our results are strengthened by comparison with a large CMIP5 ensemble using
an approach based on circulation weather types.

1 Introduction

Massive reductions of greenhouse gas emissions are needed
in order to reach the temperature goals defined in the Paris
Agreement (UNFCCC, 2015; Schleussner et al., 2016b).
With a share of around 35 % of current emissions being
caused by the electricity system (Bruckner et al., 2014), its
decarbonization is the key to any mitigation strategy. How-
ever, today’s pledges are not yet sufficient to limit warming
to below 2 ◦C, not to mention 1.5 ◦C (Rogelj et al., 2016).

In addition to the need of mitigating carbon emissions,
a second interaction between the energy system and the
climate system exists and becomes increasingly important
with higher penetrations of renewable energies. Volatile re-
newable energy generation is driven by weather conditions
which are subject to climate change. Large backup facil-
ities are needed to guarantee a stable supply of electric-
ity during periods of low wind and solar power genera-

tion (Rodriguez et al., 2014). Furthermore, climate change
affects the demand for electric power (Auffhammer et al.,
2017) as well as the operation conditions for thermoelectric
and hydroelectric power plants which serve as backup (van
Vliet et al., 2016, 2012). However, feedback effects of large-
scale wind fleets on atmospheric flows are limited (Vautard
et al., 2014).

In line with the Paris Agreement, the scientific com-
munity is increasingly interested in differentiating cli-
mate impacts at 1.5 and 2 ◦C (Schleussner et al.,
2016a; James et al., 2017) and the IPCC is currently
preparing a special report on 1.5 ◦C. However, many
low-carbon pathways rely on negative emissions dur-
ing the second half of this century (Rogelj et al., 2015;
van Vuuren et al., 2016), although their feasibility at scale
remains debated (Anderson and Peters, 2016). Future emis-
sions from existing CO2-emitting infrastructure (Davis et al.,
2010) and current political developments in the US (Trump,
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2017), among other things, might impede fast decarboniza-
tion. Different climatic futures are hence plausible and miti-
gation strategies need to work in all of them. Therefore, we
are led to the question of how sensitive a fully renewable
electric power system is to climate change, and, in particu-
lar, how severely could strong climate change impact such a
system.

Anthropogenic climate change affects the large-scale at-
mospheric flow and thus the operation conditions for renew-
able power generation. State-of-the-art global climate mod-
els reveal that changes in zonal wind depend on the tem-
perature structure of the lower atmosphere (Haarsma et al.,
2013) and that zonal-mean zonal wind and eddy kinetic en-
ergy decline almost linearly in time due to polar amplifica-
tion (Coumou et al., 2015). There are also natural sources
of variability at up to decadal timescales. Some of them
originate from ocean–atmosphere interactions in the Atlantic
and are potentially predictable (Haekkinen et al., 2011; Pe-
ings and Magnusdottir, 2014). The North Atlantic Oscillation
has been shown to directly influence the operation of inter-
connected renewable electricity systems (Ely et al., 2013).
Predictability of such natural variations is of great interest
for system integration and efforts are undertaken to assess
and improve forecasting skills (Moemken et al., 2016).

To assess the impact of climate change on the operation of
renewable power systems, downscaled climate model output
is needed. It comes at a high temporal and spatial resolution
and is better suited than global model output to capture lo-
cal features such as land–sea transitions or mountains (Rum-
mukainen, 2016). Temporal resolutions at the sub-daily scale
are needed since electricity consumption varies strongly dur-
ing the day. Changes in wind energy yields and capacity fac-
tors have been assessed based on dynamical (Tobin et al.,
2015, 2016) and statistical–dynamical downscaling outputs
(Reyers et al., 2015, 2016). Tobin et al. (2016) evaluate the
EURO-CORDEX data archive and find that changes in the
annual wind energy yield across Europe are of the order of
5 % and models do not agree on the sign of change. Follow-
ing a different approach that allows for the inclusion of the
output of 22 global climate models, Reyers et al. (2016) re-
port an increasing intra-annual gradient between winter and
summer wind generation and different trends in northern and
central Europe as compared to southern Europe.

Assessing changes in solar power generation is arguably
more difficult due to, among other things, unresolved pro-
cesses in relatively coarse climate models and uncertain pa-
rameterizations (e.g., Chiacchio et al., 2015; Herwehe et al.,
2014). Acknowledging this difficulty and associated uncer-
tainties, an evaluation of the EURO-CORDEX data finds lim-
ited impacts of climate change on solar photovoltaic (PV)
potentials (Jerez et al., 2015). Southern Europe, having the
highest potential for PV, sees only small changes, as an in-
crease in downwelling irradiation is counteracted by a de-
creasing efficiency due to warming. In contrast, the output
of concentrated solar power systems (CSPs) is expected to

increase by around 10 % because the efficiency of CSP in-
creases with temperature (Crook et al., 2011).

While wind and solar power sources have shown remark-
able development in the last decades, system integration re-
mains a huge challenge (Huber et al., 2014). In a highly re-
newable power system the timing of generation events be-
comes crucial. Even in an European electricity system that
is on average fed by 100 % renewables, roughly one-quarter
of the energy is produced at the wrong time and has to be
curtailed (Rodriguez et al., 2014, 2015a).

It is thus necessary to consider indicators such as the vari-
ability and synchronicity of generation in addition to total
energy yields (Monforti et al., 2016; Bruckner et al., 2014;
Bloomfield et al., 2016). Several validated time series of re-
newable generation based on reanalysis data are available to
assess the power system operation (Pfenninger and Staffell,
2016; Staffell and Pfenninger, 2016; Gonzalez Aparcio et al.,
2016). However, these data sets are restricted to current cli-
matic conditions and might thus be misleading for long-term
planning of the electricity system.

In this article we study the impact of climate change on the
operation conditions for future fully renewable power sys-
tems. We combine the analysis and simulation of power sys-
tems with high-resolution regional climate modeling results
to quantify changes in wind power generation. We adopt a
coarse-scale view on the power system to uncover the large-
scale impacts of climate change. The coarse-scale perspec-
tive neglects details that are irrelevant for the balancing of de-
mand with wind generation such as supply of reactive power
or different voltage levels in the grid. The focus of this study
is to address the potential of transnational power transmis-
sion to cover local balancing needs.

Our results reveal the sensitivity of fully renewable power
systems to climate change. They should not be mistaken with
a forecast and rather be considered a thought experiment to
assess potential risks and to answer the following question:
what happens to a fully renewable electricity system if miti-
gation actions are ineffective or come too late?

2 Methods

Modeling the operation of a fully renewable power
system under climate change

To assess the impact of strong climate change, we simu-
late the operation of a fully renewable power system mak-
ing use of high-resolution climate projections. We use the
EURO-CORDEX ensemble containing output of global cir-
culation models (GCMs) which has been dynamically down-
scaled to a finer resolution (Jacob et al., 2014) to quan-
tify changes in wind power generation. The ensemble con-
tains five GCMs (HadGEM2-ES, CNRM-CM5, EC-EARTH,
CM5A-MR amd MPI-ESM-LR) which are all downscaled
by the regional climate model RCA4 (Strandberg et al.,
2015). The GCM output is part of the Climate Model In-
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tercomparison Project Phase 5 (CMIP5) and publicly avail-
able (Taylor et al., 2011). We use near-surface wind speeds at
0.11◦ spatial and 3 h temporal resolution and hence capture
intra-day effects. In the spirit of a sensitivity analysis, we
evaluate the representative concentration pathway RCP8.5.
It describes atmospheric greenhouse gas concentrations fol-
lowing a business-as-usual strategy and leads to approxi-
mately 4.3 ◦C warming at the end of the century as com-
pared to pre-industrial values (Stocker et al., 2013). In view
of inter-model spread and other uncertainties, a strong cli-
mate change scenario bears the advantage of high signal-to-
noise ratios.

The approach used in this study is illustrated in Fig. 1. The
climate data is used to calculate the aggregated wind power
generation time series for each country in the interconnected
European power grid (grey circles in Fig. 1a). Near-surface
wind speeds are scaled up to hub height (80 m) based on a
power law and a standard power curve is used to obtain the
power generation of the wind turbines, both as in Tobin et
al. (2016; see also Supplement S1). The power curve assumes
a cut-in velocity of 3.5 m s−1, a rated velocity of 12 m s−1

and a cut-out velocity of 25 m s−1. Wake losses are not ac-
counted for. The country-wise aggregated wind power is ob-
tained by summing the generation of 100 MW wind parks
until the system is fully renewable on average. The wind park
size was chosen as a compromise between increasing turbine
capacities (Wiser et al., 2016) and the need for a sufficient
amount of distinct parks. Wind parks are deployed semi-
randomly following the approach of Monforti et al. (2016). In
order to single out climate-change-induced alterations, we fix
the technological parameters such as hub heights or turbine
efficiencies, and we do not account for changes in the con-
sumption such as load shifting or sector coupling throughout
the 21st century. Tests including validated historical PV time
series (Pfenninger and Staffell, 2016) reveal that the inclu-
sion of PV does not change the overall results (see Supple-
ment S2). For the sake of simplicity, we thus decide to restrict
the analysis to wind-driven power systems in this paper.

Wind power generation strongly fluctuates over various
timescales as shown in Fig. 1c. In periods of scarcity, energy
has to be imported from other countries or generated from lo-
cal dispatchable power plants. We refer to the latter as backup
energy. In the situation depicted in Fig. 1a, scarcity in south-
ern Europe can mainly be compensated for by imports from
northern Europe. Transnational balancing of this kind often
requires large transmission capacities. Moreover, the import
of electric energy requires a respective exporter which has a
surplus at the same time. Backup energy in future renewable
power systems is thus essentially determined by the temporal
and spatial heterogeneity of wind and solar power throughout
the system.

In addition to enhanced spatial balancing via imports and
exports, an extension of storage facilities will reduce backup
energy (Rasmussen et al., 2012). However, storage assets are
more costly than grid expansion (Schlachtberger et al., 2017;

Brown et al., 2016). Since a cost-optimal solution will thus
favor grid expansion, we focus on spatial effects and transna-
tional balancing. An assessment of climate change effects on
storage following a similar approach is presented by Weber
et al. (2017).

To quantify backup energy, we adopt a coarse-scale view
of the transmission system (see, e.g., Rodriguez et al., 2015a,
2014). We consider each country i to be a node in the Euro-
pean transmission network and define a nodal mismatch for
each point in time t = 1, 2, . . . as

Mi(t)= Pi(t)−Di(t), (1)

where Pi(t) is intermittent renewable generation andDi(t) is
the load (here hourly data for 2015 averaged over 3 h time
steps from ENTSO-E; European Network of Transmission
System Operators for Electricity, 2015). The assumption of
a fully renewable system means that all countries generate as
much electricity as needed on average (

∫ te
ts
Mi(t)dt = 0). The

assumption of a fully renewable system means that all coun-
tries generate as much electricity as needed on average (inte-
gral), where ts and te are defined in Table 1. Furthermore, we
assume all countries to run a loss-free and unlimited trans-
mission network within their borders.

If a country has a negative mismatch (Mi < 0, red circles
in Fig. 1d), it tries to import energy. If it has a positive mis-
match (Mi > 0, green circles in Fig. 1d), it tries to export
energy. For each country i the power balance must be satis-
fied:

Mi(t)+Bi(t)+Fi(t)= Ci(t). (2)

The mismatchMi can be compensated for either by power
generation from conventional backup power plants (Bi ≥ 0),
the curtailment of renewable power generation (Ci ≥ 0) or
by imports (Fi > 0) or exports (Fi < 0). To utilize renewable
generation in an optimal way, countries will first try to bal-
ance power using imports and exports. However, a perfect
balancing of all nodes is impossible if there is a continent-
wise shortage or overproduction. Furthermore, cross-border
flows along lines are bound by the directional net transfer ca-
pacities (NTCs; see Supplement S1 for details), which may
also impede balancing for some nodes. Power balance must
then be satisfied by local means: in the case of a short-
age, power must be backed up by conventional generators
(Bi > 0). Similarly, if excess power can not be exported, it
has to be curtailed (Ci > 0). We recognize that the technical
details of backup generation often matter for implementation
(Schlachtberger et al., 2016), but we focus on gross electric-
ity needs in this study.

For each time step we determine the system operation
which minimizes backup power and thus macroeconomic
costs as well as greenhouse gas emissions. To assess the im-
pact of climate change, we compare future backup energy to
historical values. Time frames are chosen to contain 20 years
in order to capture natural variability of the climate system on
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Figure 1. Approach of the study. (a) Wind fields from high-resolution climate models and the 2010/2011 net transfer capacities are used
as input to the model. (b) The wind speeds are first translated into generation of individual wind parks using local wind fields and then
aggregated to a national level for each country. (c) In combination with country-specific load data, the nodal mismatch for every country and
time step is computed. If generation exceeds the load (green area), countries can export energy until lines reach their transmission capacity.
Remaining energy has to be curtailed (dumped). If generation is lower than load, electricity will be imported. If importing is not an option
due to transmission limits or lack of available excess energy in other countries, backup energy has to be provided by dispatchable power
plants. (d) A minimization of the total backup energy of all countries then yields a flow pattern in Europe.

a multi-year timescale while still ensuring that elapsed time
between periods is long enough to consider them distinctly
(see Table 1). Since GCMs do not reproduce natural varia-
tions synchronously (Farneti, 2017), robust signals found in
the ensemble are very unlikely to be rooted in natural vari-
ations with a recurrence time of a couple of decades (such
as the Atlantic Meridional Oscillation or the North Atlantic
Oscillation; see Peings and Magnusdottir, 2014, for a discus-
sion of their role in mediating atmospheric conditions). The
backup energy EB per period is defined as the sum over all
backup powers in a given period:

EB(period)=
∑

t∈period
min

∑

i

Bi(t), (3)

such that Eq. (2) is satisfied for all countries i and the line
limits are respected.

The European amount of backup energy is identical to the
amount of curtailment over a full period. This is a direct con-
sequence of the assumptions made and can be formally de-
rived by summing Eq. (2) over all countries and integrating
over an entire period. Since

∫ te
ts
Mi(t)dt = 0 (each country is

fully renewable on average) and
∑
iFi = 0 (all imports to

one country Fj = c are exports from another Fk =−c), it
follows that
te∫

ts

∑

i

Bi(t)dt =

te∫

ts

∑

i

Ci(t)dt. (4)

A change of the backup energy thus directly implies a change
in total curtailment.

We use climate model ensembles to account for model un-
certainties. Interpreting the ensemble output by means of the
ensemble mean can be misleading as a single model might
dominate the ensemble. In such cases, the model mean would
be in disarray with the majority of models and hence would
not be representative of the ensemble. We thus assess the
robustness of changes by means of inter-model agreement.
We label a signal “robust” if all models agree on the sign of
change and use “high agreement” if all but one model agree.
In the evaluation of the large CMIP5 ensemble we adopt lan-
guage defined for the latest IPCC report and label a change
“likely” if at least 66 % of models agree (Mastrandrea et al.,
2010).

A variety of studies have analyzed transmission and
backup energy in future renewable power systems and cost-
optimal transition pathways in a similar way (Rodriguez
et al., 2015a, 2014, 2015b; Becker et al., 2014; Rasmussen
et al., 2012; Schlachtberger et al., 2016; Hagspiel et al.,
2014). However, the potentially crucial role of changes in cli-
matic conditions have not yet been assessed in this context.
The remainder of this article focuses on the quantification of
impacts to the power system, a correlation analysis of wind
resources and an assessment of the larger CMIP5 ensemble
to contextualize our findings.
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Figure 2. The impact of climate change on backup energy under different grid expansion scenarios. Different realizations of the European
inter-state grid expansion are given by the grid expansion coefficient α. While α = 0 denotes the isolated case without an inter-country
transmission network, α = 1 reproduces the configuration as of today and α =∞ represents unlimited European transmission. Different
markers refer to distinct 20-year time periods (see Table 1), and colors denote different climate models. (a) Backup energy as a function of
grid expansion expressed in units of the total European load Dtot =

∫ ∑
iDi (t)dt . (b) Absolute change of backup energy by the end of the

century. (c) Relative change of backup energy by the end of the century.

Table 1. Periods used in this study. The reference period ref ends
before 2005 because GCMs in CMIP5 are driven by historic emis-
sions only until this date and follow different representative concen-
tration scenarios afterwards.

Period name tstart tend

ref 1985 2004
midc 2040 2059
endc 2080 2099

3 Results and discussion

3.1 Energy: increasing backup energy

A cost-efficient way of power balancing is given by transna-
tional imports and exports. Remarkably, we find that strong
climate change impedes the potential of this balancing mea-
sure in most of Europe (see Fig. 2). We report that backup en-
ergy in Europe increases under strong climate change by the
end of the century. This finding is robust across all EURO-
CORDEX ensemble members. Since we consider a scenario

where 100 % of electricity is generated from renewables on
average, an increase in backup energy is accompanied by an
increase in excess energy which has to be curtailed.

To uncover this effect we simulate backup energy for dif-
ferent scenarios of the development of the transnational grid
quantified by the NTCs. We allow for a homogeneous scaling
of transmission capacity by multiplying NTCs by a factor α.
Without any grid (α = 0), approximately 45 % of the wind-
energy is produced at the wrong time and thus has to be cur-
tailed and backed up later on. Strong grid extension (α� 1)
clearly reduces backup energy to about 27 % (see Fig. 2a).
However, all models report an increase in backup energy at
the end of the century. The effect of climate change is al-
most independent of a grid extension: the absolute increase
in backup energy until end of century is largely independent
of the expansion coefficient α for three out of five models
(see Fig. 2b). Hence, the relative increase in backup energy
paradoxically becomes even more pronounced for a strongly
interconnected Europe (see Fig. 2c). Highly connected sys-
tems can suffer from an increase in backup energy of up to
7 %. There is considerable inter-model spread regarding the
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magnitude of change which varies by up to 1 order of magni-
tude depending on the climate model (see Fig. 2b, α =∞).
In particular, changes for CNRM are generally weak and
HadGEM2 features only a slight overall increase with grid
expansion. However, remarkably, all models agree on the
sign of change at the end of the century such that we con-
sider the direction of change very likely.

In conclusion, we find that the effectiveness of transna-
tional balancing decreases due to climate change. This de-
crease is due to more homogeneous wind generation as we
will show in the climate section of this paper. Moreover, a
control simulation including PV generation from Pfenninger
and Staffell (2016) yields similar results although the magni-
tude of change is reduced by roughly a factor of 2 and only
four out of five models agree on the sign of change (see Sup-
plement S2). Results are barely sensitive to changes in the
load time series as an assessment using constant loads re-
veals (see Supplement S3).

Spatial distribution of mismatch contributions

To obtain a more detailed view, we evaluate transnational
balancing potentials separately for each country. We calcu-
late the likeliness that a given country has a local scarcity
(Mi < 0) while Europe as a whole suffers from a lack of
generation (

∑
iMi < 0). This corresponds to events where

a country would favor importing electricity but can not due
to a continent-wide scarcity. These events require conven-
tional backup even in the case of unlimited transmission in-
frastructure and thus give a lower bound for backup energy.
The approach allows us to identify those countries which are
most responsible for overall scarcity. Mathematically speak-
ing, we restrict our analysis to time steps Ti with local and
Europe-wide scarcity:

Ti =

{
t :

(∑

j

Mj (t)< 0 and Mi(t)< 0

)}
. (5)

The negative mismatch contribution occurrence νi corre-
sponds to the joint probability of country i and Europe ex-
periencing generation shortfall at the same time:

νi =

∑
t∈Ti

NT
, (6)

where NT is the number of time steps. We define the annual
energy that is lacking (i.e., generation shortfall) in country i
during European scarcity as

Li =

∑
t∈Ti
|Mi(t)|

20y
, (7)

where we chose the absolute value of Mi for convenience
of interpretation. Li is given in TWh yr−1. A high value

of Li characterizes a country which would favor import-
ing a large quantity of energy during European scarcity,
whereas a low value of Li indicates a country whose gen-
eration shortfall can often be balanced by imports. In or-
der to compare values of Li with loads, we provide country
values for Di in the Supplement S5. The European sum is∑
iDi ≈ 3100 TWh yr−1.
Values for ν and L during the reference period are shown

in Fig. 3a, b. Large consumers like Germany and France
are also the dominant contributors to European scarcity in
terms of missing energy (see Fig. 3a). The German contribu-
tion corresponds to approximately 8 % of the European an-
nual load of 3100 TWh. However, the role of these countries,
for example, in comparison to eastern Europe or Benelux, is
less pronounced if only the occurrence of negative mismatch
events ν is considered (see Fig. 3b). The reason for their
strong impact on L is thus primarily rooted in the high ab-
solute values of their mismatches rather than their frequency.
Moreover, a large consumer also has a bigger influence on
the Europe-wide mismatches which implies that the condi-
tions in Eq. (5) are not independent. For example, the Euro-
pean mismatch can be negative because of an elevated Ger-
man mismatch and in such a situation a high contribution
to L would be observed. Interestingly, there is considerable
spread regarding ν in different countries (Fig. 3b). Greece
and Norway contribute the least often to European scarcity
(less than 40 %) while central Europe contributes around 50–
60 % of the time.

Next, we focus on changes until the end of the 21st cen-
tury:

1νi = νi |endc− νi |ref and 1Li = Li |endc−Li |ref. (8)

In France, Benelux, Scandinavia, the UK, Ireland and most
countries in central Europe the negative mismatch contribu-
tion occurrence ν and the respective negative energy con-
tribution L increase (see Fig. 3c, d). In these countries it
becomes more likely that a Europe-wide scarcity coincides
with a local scarcity and the amount of required backup en-
ergy increases. In turn, these countries can not alleviate the
overall shortage by exporting excess generation. This points
to a stronger homogeneity of wind power generation in cen-
tral Europe which is discussed in more detail below. An in-
crease in the occurrence ν can also be observed for eastern
and southeastern Europe, excluding Greece, with high inter-
model agreement (see Fig. 3d). However, these increases are
weak in terms of energy contributions (see Fig. 3c).

An opposite trend is observed in Spain, where transna-
tional balancing is facilitated as negative mismatch contribu-
tions L become weaker (see Fig. 3c). At the same time, mod-
els generally disagree on the sign of change regarding 1ν
(see Fig. 3d). Combined, this indicates weaker but not less
frequent negative contributions of Spain. Moreover, Greece
shows favorable changes for the European system in terms
of energy contributions and occurrences with a high inter-
model agreement (see Fig. 3c, d). This finding is particularly
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Figure 3. Country contributions in times of overall and local generation shortfall and their change until end of century. Values denote the
inter-model mean. Shading indicates inter-model agreement as follows: no hatches indicate perfect agreement on sign of change; striped:
four out of five models agree; hatching: less than four agree. (a) Lacking energy Lref during local and overall scarcity in the reference period
(see Eq. 7). (b) Simultaneous occurrence of local and overall generation shortfall νref (see Eq. 6). (c, d) Changes of the quantities given in
(a, b) until end of century (see Eq. 8). Red colors denote unfavorable changes (stronger or more frequent contribution of a country to overall
scarcity) while blue colors denote favorable changes.

interesting as Grams et al. (2017) show that a combination
of wind parks allocated in the North Sea and the Balkans al-
lows for substantial reduction in volatility under current cli-
matic conditions. Based on our results, this positive effect
from incorporating the Balkans would further be enhanced
under strong climate change.

We stress that our findings do not refute the efficiency of
transmission grid expansions in general. In any case backup
energy decreases monotonously with the grid expansion, but
the magnitude of the decrease is subject to climatic condi-
tions. Furthermore, we assume a homogeneous expansion of
the grid, although an optimal system design will probably
lead to heterogeneous grid expansions and heterogeneous al-
locations of generation capacities. Our results suggest that
such an optimal system will include stronger interconnec-
tions to Spain and Greece to reduce backup energy. Also,
on a country level, certain extensions can be incentivized
while others are downgraded. For instance, for France it can
become more favorable to extend the connections to Spain
rather than to Germany (see Fig. 3c). Despite this, and in

light of regulatory and powerful social acceptance issues, re-
garding grid extensions (Battaglini et al., 2012), we consider
a future grid which resembles the current one in its funda-
mental characteristics a reasonable first guess.

3.2 Climate: increasing correlations of wind resources

As reported above, we find an increase in backup energy due
to strong climate change in a wind-powered electricity sys-
tem. This increase is solely rooted in changes of wind re-
sources since all other parameters are kept constant.

For the identification of changes in the spatial wind pat-
terns, we perform a correlation analysis over 20-year time
spans of wind speeds (see Table 1). We use Pearson corre-
lation on the highest spatial scale; i.e., we correlate every
grid point to all others instead of aggregating the wind fields
first. Hence, the full spatial detail of the downscaled climate
data is taken into consideration. In order to visualize results,
correlation values are averaged on country level in the next
step. To highlight long-term trends, we only show correlation
changes between 2080–2099 (endc) and 1985–2004 (ref):
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1Rendc(A,B)= Rendc(A,B)−Rref(A,B), (9)

where Rperiod(A,B) denotes the average of all point-to-point
correlations between country A and country B in a given
period. The computation is repeated for all possible combi-
nations (A,B). We calculate 1Rendc(A,B) for each climate
model separately and show the model mean if not stated oth-
erwise.

To reveal general patterns, we first consider the average
correlation change of a fixed country A by averaging Eq. (9)
over all countries B excluding A (see Fig. 4). There is a gen-
eral tendency towards higher correlations of wind speeds for
central Europe in the ensemble mean. This change is most
pronounced in Germany, Switzerland, Benelux and Ireland.
Decreasing correlations only occur at the fringes of the con-
tinent and they are strongest in Portugal and Greece. Positive
correlation changes occur in most countries and the maxi-
mum positive change is approximately 3 times larger in mag-
nitude than the maximum negative change. Interestingly, the
overall pattern is similar to the mismatch contribution anal-
ysis (see Fig. 3). This similarity is not a trivial finding since
the mismatch contribution analysis accounts for the nonlin-
ear turbine power curve and the collective behavior of the
entire electricity grid while the correlation analysis is solely
based on wind speeds. Summarizing, we find more homoge-
neous wind conditions over most of the continent while the
fringes decouple slightly. Results for mid-century are weaker
but clearly similar (see Supplement Fig. S5).

Assessing pairwise correlation changes between countries,
we find that the correlation increase over central Europe has
at least a high agreement in the EURO-CORDEX ensemble
(see Fig. 5). Some country combinations (e.g., DE–CZ, FR–
CZ, BE–UK, FR–NL) even show robust trends. For exam-
ple, in Germany the correlations to all neighboring countries
plus the UK, Ireland and eastern Europe increase with high
agreement. The importance of this finding is strengthened
by the fact that central Europe plays an important role for
the power system: Germany, France, the United Kingdom,
Poland and Benelux account for more than half of the Eu-
ropean load. Correlations between Germany and Greece de-
crease with high model agreement. In contrast, changes be-
tween Germany and the Iberian Peninsula, Italy and Norway
are uncertain.

The decoupling of Portugal and Greece which is found in
the aggregated plot (Fig. 4) is only robust in a few country
combinations and models disagree regarding some important
pairs (e.g., PT–DE, PT–FR, PT–UK; GR–IT, GR–UK; and
ES–FR, ES–DE). The uncertainty with respect to the corre-
lation changes between these countries is thus high.

However, a robust trend is found in Scandinavia, where
Norway, Finland and Sweden become more highly corre-
lated. This change also partly holds for the Baltic region.
At the same time Scandinavia decouples robustly from some
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Figure 4. Correlation changes of wind time series averaged over
all models (difference between end of century and reference corre-
lations). A more detailed assessment, which in particular addresses
inter-model spread, is shown in Fig. 5.

parts of southern Europe (e.g., SE–GR, NO–ES). In the con-
text of large-scale European grid expansions, these alter-
ations might enhance the value of high-voltage direct current
(HVDC) lines between these distinct regions.

Correlation increases in Scandinavia are also robust in the
middle of the century (see Supplement Fig. S6). However,
inter-model agreement for correlation increases in central
Europe is lower although the overall pattern is still conceiv-
able. The decoupling of Portugal and Greece can be seen in
the inter-model mean, while agreement across models is rare.

3.3 Climate: complementing EURO-CORDEX with
CMIP5 using circulation weather types

The EURO-CORDEX data set includes only a five-member
subset of all CMIP5 GCMs and might thus not be representa-
tive of the entire CMIP5 ensemble. Moreover, subgroups of
GCMs can be biased in the same way since they did not de-
velop separately, but along the same lines. The most drastic
example is the sharing of code by CNRM and EC-EARTH,
which are both part of the EURO-CORDEX ensemble and
run the same atmosphere module (Knutti et al., 2013).

Uncertainty in climate projections has been argued to stem
from three main sources: (1) natural variability, (2) model un-
certainty and (3) scenario uncertainty (Hawkins and Sutton,
2009). In some situations the choice of initial conditions also
contributes substantially (Hawkins et al., 2016). We neglect
scenario uncertainty by design of this study since we only fo-
cus on the sensitivity to strong climate change (RCP8.5). As
the importance of natural variability decreases with the time
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Figure 5. Country-specific change of wind speed correlations at the end of the 21st century including inter-model agreement. Colors denote
the model-average correlation change of a country to the reference country (highlighted in black and given in the respective heading). Shading
indicates inter-model agreement as follows: no hatches indicate perfect agreement on sign of change; striped: four out of five models agree;
hatching: less than four agree.

intervals averaged over, model uncertainty is likely to be the
dominant source of uncertainty here.

In order to rule out the possibility that our findings are
biased due to the (arbitrary) choice of GCMs that were
scaled down for EURO-CORDEX, we follow a statistical–
dynamical approach which was developed by Reyers et al.
(2015, 2016) to downscale a large CMIP5 ensemble for wind
energy applications. This approach is based on a circulation
weather type (CWT) classification methodology (Jones et al.,
1993). Daily mean sea level pressure (MSLP) values at 16
GCM grid points around a central point located in Germany
are used to assign the near-surface atmospheric flow over Eu-
rope to either a directional flow (north, northeast, east, etc.)
or a rotational flow (anticyclonic, cyclonic). Aside from the
direction of the atmospheric flow a f parameter is calculated,
which is representative of the instantaneous pressure gradient

and thus for the general wind speed conditions over Germany
and the surrounding countries:

f =

√
dP 2

z + dP 2
m, (10)

where dPz is the mean pressure gradient in east–west direc-
tion (zonal component) and dPm is the mean pressure gradi-
ent in north–south direction (meridional component). f pa-
rameter values from below 5 hPa per 1000 km (weak MSLP
gradient and thus low wind speed conditions) up to 45 hPa
per 1000 km (strong MSLP gradients and thus high wind
speed conditions) were found. Reyers et al. (2016) demon-
strated that such a CWT classification provides a suitable
and effective basis for wind energy applications on the re-
gional scale and therefore enables the consideration of a large
CMIP5 ensemble in future projections.
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Figure 6. Backup energy and change of occurrence as a function of the f parameter. (a) Backup energy versus f parameter for the entire
domain. Circles denote the mean over the three considered periods for each model and error bars indicate the standard deviation thereof.
Error bars are, however, most often smaller than the circle size. (b) Same as (a) but restricted to Germany and its neighbors. (c) Change of
occurrence of different f parameter values. The change of occurrence is computed as the difference between end of century and the reference
period and is given in units of the total number of time steps Ntot. Red diamonds denote the ensemble mean, red lines the ensemble median
and hatched boxes indicate the 33rd to 67th percentile. If a box lies completely above/below zero, the sign of the change can be considered
as likely.

Analyzing the five individual GCMs contributing to the
EURO-CORDEX ensemble reveals a link between the
CWTs and the backup energy derived from dynamically
downscaled data (see Eqs. 1, 2, 3). We find that backup en-
ergy decreases monotonously with increasing f parameter
values (see Fig. 6a, b). All models in the EURO-CORDEX
ensemble agree on this result which is also physically plau-
sible as the pressure gradient drives the atmospheric circula-
tion. This statement holds for Germany and its neighbors and
for Europe as a whole. We see this as evidence that the CWT
analyses in this particular case can be applied to the entire
continent in the sense that the f parameter is a reasonable
proxy for the European backup energy.

The majority of CMIP5 models (16 out of 22) predict
an increase in events with low f parameter values by the
end of the century (see Fig. 6c). Following the likelihood

classification developed for the latest IPCC report (Mas-
trandrea et al., 2010), it is thus likely that low f param-
eter values become more abundant. This trend originates
mainly from more frequent anticyclonic pressure configu-
rations (see Fig. 7). For this CWT, spatial homogeneity of
wind resources is higher as compared to all other CWTs (see
Supplement Fig. S7). In such a homogeneous situation, it is
plausible that backup energy is elevated since countries are
more likely to experience shortfall of generation simultane-
ously. In contrast, medium (10≤ f [hPa/1000 km] ≤ 15) and
high (15≤ f [hPa/1000 km] ≤ 20) f parameters are likely to
occur less frequently since 17 models agree on these signals.
We thus conclude that the majority of CMIP5 models agree
with the main finding of increasing backup energy.

The larger CMIP5 ensemble also allows for an assess-
ment of the EURO-CORDEX ensemble input data. We re-
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Figure 7. Changes of relative occurrence of primary CWTs with low f parameter values (f ≤ 5 hPa/1000 km). Changes are differences in
occurrence between end of century and the reference period and are given in units of the total number of time steps Ntot. Boxes indicate
the 33rd to 67th percentile and are only shown if changes are substantial. Red diamonds denote the ensemble mean and red lines denote the
ensemble median.

port that the GCMs contributing to EURO-CORDEX are
within the spread of the remaining CMIP5 ensemble (except
for HadGEM with very strong f parameters) and are thus
generally representative of the larger ensemble (see Fig. 6).
However, they also show comparably strong changes in the
occurrence of specific f parameters. The CMIP5 overall pro-
jection regarding backup energy might thus be lower than re-
sults reported in this paper. In order to test this speculative
hypothesis, a consistent downscaling of all CMIP5 models
would be necessary, which is far beyond the scope of this
article but should be tackled in future works.

4 Conclusions

A future highly renewable electricity system will be gov-
erned by weather conditions. If mankind fails to reduce car-
bon emissions fast, climate change will impede the operation
of a wind-driven system in Europe. This conclusion is based
on three separate lines of evidence.

1. A coarse-scale electricity model fed with EURO-
CORDEX climate data shows robust increases in
backup energy.

2. Spatial correlations in wind time series in EURO-
CORDEX data across central Europe are found to in-
crease. Countries are thus more likely to experience
generation shortfall simultaneously.

3. Building upon a statistical–dynamical downscaling
technique and a 22-member CMIP5 ensemble we find
a likely increase in circulation weather types with low

f parameters values. They are associated with low
Europe-wide wind generation.

It has to be stressed that results are for the end of the 21st cen-
tury and based on a strong climate change scenario (RCP8.5).
They should be thought of as a sensitivity test. While the in-
creases of backup energy are robust, they are also restricted
to relative increases of 7 % (see Fig. 2). A fully renewable
electricity system will hence not become unfeasible due to
catastrophic changes.

In the emerging field of linking energy and climate re-
search, many additional questions are to be addressed in or-
der to deliver a more holistic assessment. We simulated a
wind-driven electricity system and performed a control sim-
ulation with a fixed share of PV. Time series for the latter
were taken from a validated data set based on reanalysis data
(Pfenninger and Staffell, 2016). Ideally, future works would
assess the combined effects of climate change on wind and
solar generation. They could also include concentrated solar
power since this technology bears advantages for system in-
tegration (Pfenninger et al., 2014). Load shifting, sector cou-
pling and storage are further topics for more detailed assess-
ments.

In terms of climate modeling output, a larger high-
resolution ensemble which contains multiple regional cli-
mate models (RCMs) is particularly desirable. The next
generation of CORDEX is planned to deliver such data
(Gutowski Jr. et al., 2016) and will hence allow for an in-
clusion of RCM spread in future assessments. It will also fa-
cilitate similar assessment for other world regions as spatial
extent is expanded.
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Supplementary Material

S1) Detailed methodology655

Adopting the approach of Tobin et al. (2016), we use near-surface wind speeds 10 meters above the

ground. Assuming a power-law relationship for the vertical wind profile, the velocity at hub height

H is obtained as

vH = v10m ·
(
H

10

) 1
7

(S1)

and we chose H = 80m.660

The conversion of wind speeds into renewable generation is performed using a simple power curve

P (vH) = P0





0, if vH < vi or vH > v0

v3
H−v3

I

v3
R−v3

I
, if vI ≤ vH < vR

1, if vR ≤ vH < v0

(S2)

where vH denotes wind velocity at hub height and vI = 3.5 m/s, vR = 12 m/s, v0 = 25 m/s

denote the cut-in, rated and cut-out velocity of the wind turbine, respectively. We assume that every

wind park has a capacity P0 = 0.1 GW.665

If the number of wind parks per grid cell Nwind(x,y) is known, the renewable generation in a

country with area Ai is given by

Pi(t) =
∑

x,y ∈ Ai

Nwind(x,y) ·P (vH(x,y, t)). (S3)

Note that we assume a stationary configuration of wind parks throughout every 20 year period.

Moreover, we assume that each country generates as much energy from renewables as is needed in670

a 20 year period ranging from tstart to tend

tend∫

tstart

Pi(t)dt=

tend∫

tstart

Di(t)dt (S4)

Since all variables except from Nwind are used as input to the model, and hence are known, equa-

tions (S3) and (S4) can be used to determine Nwind. However, the solution is degenerate. In order to

single out one solution, we adopt the strategy of Monforti et al. (2016) who distribute wind parks675

randomly at those places where the temporal average of renewable generation P is above average.

Performing a Monte Carlo analysis for the deployment of wind parks, Monforti et al. found that

the sensitivity of this partially random allocation procedure to changes in the actual configuration of

Nwind is small.
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Transmission680

The imports/exports Fi of a country i (see Eq. (2)) depend on the incidence matrix

Ki,l =





1, if line l starts in country i

−1 if line l ends in country i

0 otherwise

(S5)

and the flows F̂l along a line l

Fi =−
∑

l

Ki,lF̂l, (S6)

where the minus sign stems from the (arbitrary) choice that Fi > 0 means imports. The flow along a685

line l is bound by

α ·NTCl− ≤ F̂l ≤ α ·NTCl+, (S7)

where α denotes grid expansion. The line limits NTCl+≥ 0 and NTCl−≤ 0 are direction dependent

and the former refers to the line limit in the direction of line l as defined via the incidence matrix (S5).

Line limits are directional winter Net Transfer Capacities published by ENTSO-E for 2010/2011690

(European Network of Transmission System Operators for Electricity, 2011).

Inclusion of PV generation

We use PV generation timeseries from Pfenninger and Staffell (2016) which is more complete than

other open source datasets like Open Power System Data1. The data set is bias corrected and vali-

dated at around 1000 locations. We favored to use the part of the dataset which is based on MERRA695

over SARAH because the latter is lacking data in the first years.

We average over 30 years of data to compute a representative PV generation timeseris PVi(t)

for every country i. Using a representative year is not an ideal approach since inter-year variations

are artificially muted. However, the PV generation timeseries only exists for the historical period. If

one was to combine PV generations from one year with wind generations from another, the result is700

likely to be unrealistic because the corresponding state of the climate system belonging to either the

PV or wind generation would be out of phase. We thus consider our approach to be the most suitable

one in this assessment.

In order to incorporate PV generation into the model, we replace the original loadDi(t) in Eq. (1)

with the residual load after PV generation is subtracted as705

1 http://www.open-power-system-data.org/
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Di(t)→Di(t)− γ ·PVi(t), (S8)

where γ is chosen such that 29% of the overall generation is contributed by PV. This share has

been found to be the European optimum in terms of minimizing backup energy in a similar setup

(Rodriguez et al., 2014). The load Di(t) now represents the residual load which has to be satisfied

by wind, im-/exports or dispatchable power plants. Results including PV are shown in Supplement710

B.

Sensitivity to load timeseries

We repeat our analysis assuming constant loads

Di(t)→ 〈D̂i(t)〉t, (S9)

where D̂i(t) denotes monthly load data from ENTSO-E and 〈·〉t denotes the temporal average. The715

goal of muting the time depency of the load is to test for the influence of the load timeseries on our

modelling outcomes. Results for constant loads are shown in Supplement C.
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S2) Energy results including PV
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Figure S1. Same as Fig. 2, but including PV from Pfenninger and Staffell (2016).
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Figure S2. Same as Fig. 3 but including PV from Pfenninger and Staffell (2016).
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S3) Energy results assuming constant loads
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Figure S3. Same as Fig. 2, but with constant load.
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Figure S4. Same as Fig. 3 but assuming constant load.
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S4) Correlations by mid century720
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Figure S5. Same as Fig. 4 but for mid century.
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Figure S6. Same as Fig. 5 but for mid century.
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S5) Spatial homogeneity and CWTs
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Figure S7. Mean spatial standard deviation of wind speeds over all 28 countries considered in the energy

assessment. The standard deviation is calculated for each grid point seperately. The weak anticyclonic CWT

has a distinctly smaller spatial standard deviation than all other situations considered together. Hence, it is

characterized by more homogeneous wind fields.
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S6) Annual load values on country level

Table S1. Annual sums of country electricity consumption based on hourly 2015 data provided by the European

Network of Transmission System Operators for Electricity (2015).

country country code Annual load [TWh]

Austria AT 69.62

Belgium BE 85.22

Bulgaria BG 38.62

Switzerland CH 62.06

Czech Republic CZ 63.53

Germany DE 505.27

Denmark DK 33.9

Estonia EE 7.93

Spain ES 248.5

Finland FI 82.5

France FR 471.26

Great Britain GB 282.19

Greece GR 51.4

Croatia HR 17.19

Hungary HU 40.75

Ireland IE 26.57

Italy IT 314.35

Lithuania LT 10.86

Latvia LV 7.07

Montenegro ME 3.42

Macedonia MK 7.84

Netherlands NL 113.25

Norway NO 128.65

Poland PL 149.96

Portugal PT 48.93

Romania RO 52.31

Sweden SE 135.93

Slovenia SI 13.65

Slovakia SK 28.21

Total 3100.94
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3.2 Inter-annual climate variability

3.2.1 #2: The impact of inter-annual wind variability on current German
congestion management



RESEARCH ARTICLENatural wind variability triggered drop inGerman redispatch volume and costs from2015 to 2016
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Abstract
Avoiding dangerous climate change necessitates the decarbonization of electricity systems

within the next few decades. In Germany, this decarbonization is based on an increased

exploitation of variable renewable electricity sources such as wind and solar power. While

system security has remained constantly high, the integration of renewables causes addi-

tional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion.

Despite the addition of renewable capacity, these costs dropped substantially in 2016. We

thus investigate the effect of natural climate variability on grid management costs in this

study. We show that the decline is triggered by natural wind variability focusing on redis-

patch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind

generation averages and the occurrence of westerly circulation weather types. Moreover,

we show that a simple model based on the wind generation time series is skillful in detecting

redispatch events on timescales of weeks and beyond. As a consequence, alterations in

annual redispatch costs in the order of hundreds of millions of euros need to be understood

and communicated as a normal feature of the current system due to natural wind variability.

Introduction

In the last years renewable generation capacity has grown strongly while costs have decreased

substantially [1]. Since 1990, electricity generation in the OECD from wind has increased by a

factor of 158 (to 600 TWh in 2016) and photovoltaic generation has increased by a factor of

11500 (to 218 TWh in 2016) [2]. The energy portfolio has thus changed substantially since the

first publication of evidence for anthropogenic climate change by the Intergovernmental Panel

of Climate Change [3].

In Germany, for example, the relative contribution of renewables to overall electricity gen-

eration reached roughly 33% in 2016 [4] and it is planned to increase further. Installed capacity

in the German wind sector alone totalled roughly 50 GW in 2016. To give an impression of

scale, this implies that electricity demand could theoretically be balanced by wind generation

on a windy Saturday. Since consumption is higher during the week, current installed wind
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capacities are not yet sufficient to cover weekday consumption entirely. However, this will

likely be the case in a few years time. Onshore wind energy is widely considered a least-cost

energy source and photovoltaic (PV) cells are about to enter this domain as well [5]. Addition-

ally, in April 2017, a major German offshore wind park won acceptance of its bid without any

subsidy at all which indicates the economic viability of the technology [6]. The relative attrac-

tiveness of wind and solar power plants in contrast to conventional power plants would still

increase if large pre-tax subsidies for coal were included in the economic assessment [7].

This development is promising in the sense that fast decarbonization of the electricity sys-

tem is economically feasible. A carbon-neutral electricity system is a fundamental ingredient

in restricting climate change in line with the Paris Agreement which aims to avoid dangerous

interference with the climate system [8, 9]. In order to reach the ambitious Paris goals, how-

ever, decarbonization needs to be accelerated and extended to sectors other than electricity

[10–12]. Recent research has revealed that sector coupling and the usage of flexible loads

allows the creation of functional and cost-efficient energy systems fueled by renewables only

[13–16].

However, non-dispatchable and intermittent renewable electricity generation poses a chal-

lenge for grid integration. This challenge expands as renewable penetration increases and reg-

ulatory means to ensure system stability are needed (e.g., [17]). In Germany, renewable

generation is given priority for grid feed-in. As the centers of, in particular, wind generation

and electricity demand are spatially separated, large amounts of electricity need to be transmit-

ted across the country. The north-south gradient of wind park allocations is presented in Fig 1.

Since the transmission system has not been initially designed to serve this purpose, overload-

ing and congestion in times of high renewable generation occurs (e.g., [18]). Adaption of the

grid via new or enlarged transmission lines is planned, yet involves timescales of multiple

years to decades.

According to the German Energy Act (‘Energiewirtschaftsgesetz’), Transmission System

Operators (TSOs) and Distribution System Operators (DSOs) are in charge of maintaining

energy system stability at all times [19]. In order to achieve this, four strategies can be applied:

redispatch (shifting conventional generation in space by increasing and decreasing generation

of conventional power plants in comparison to the initial market-based dispatch), usage of

reserve plants (ramping up conventional power plants from a specific pool of plants, ‘Netzre-

serve’), feed-in management (reducing renewable generation, ‘Einspeisemanagement’) and

lastly adaption measures (emergency measure to reduce generation, ‘Anpassungsmassnah-

men’). These measures increase overall system costs because plant operators are compensated

for having to reduce generation which is in addition to the costs of increasing generation else-

where. As an exception, the adaption measures are not paid for since they are used in emer-

gency cases only.

Germany saw a large increase in redispatch and feed-in management in 2015. Redispatch

(sum of reductions and increases) was used to control about 15.4 TWh of electricity at a total

cost of € 412 million, reflecting a threefold increase as compared to the previous year. Both the

usage of reserve plants and feed-in management increased substantially as well [20]. The fed-

eral network agency for electricity, gas, telecommunications, post and railway (Bundesnetza-

gentur) lists a couple of reasons for these sharp increases: Besides the strong increase in wind

capacity on land, the commissioning of two conventional power plants in the north and

decommissioning of one nuclear power plant in the south added to the spatial mismatch of

generation and load. This mismatch was exacerbated by substantial electricity exports to Aus-

tria. Moreover, grid extensions required temporal shutdown of grid elements and grid expan-

sion in general was lagging behind schedule. As an aside, there is disagreement as to whether
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the grid is currently limiting the progress of the energy transition or whether it just sets a limit

to exporting electricity from cheap coal-fired plants [21].

The issue of escalating grid management costs, including redispatch, even entered the pub-

lic debate, particularly in late 2015 and January 2016, as numerous newspaper articles show

(e.g., [22–25]). Since redispatch costs contribute to overall grid fees which accounted for

around one fifth of the electricity price in 2016, they directly influence the energy costs of con-

sumers [26]. This might have influenced the timing and content of modifications made to the

Renewable Energy Act (“Erneuerbare Energien Gesetz”, EEG) in July 2016 [27]. The main

goals of the modifications are to reduce subsidies via competition between investors and to

provide a steering mechanism which controls the siting of new projects and also limits

installed capacities. In particular, it includes a restriction for onshore wind parks in regions

with a high probability of congestion while system-friendly installations are incentivized [27].

In other words, the allocation of new parks is regulated in order to reduce future increases of

grid management costs. This part of the EEG reform can be seen as an attempt to reduce

Fig 1. Allocation of wind parks used in this study. Note that an upper bound of 500 MW is set for the colorbar to ensure visibility of smaller parks.

The biggest installed capacity per grid cell is around 1.4 GW. Wind park data is taken from the OPSD database for end of 2016 [53]. Offshore wind

parks are not georeferenced in the input data and they are equally distributed to the four biggest operational offshore wind parks (Bard, Borkum

Riffgrund, Amrumbank West, Sandbank).

https://doi.org/10.1371/journal.pone.0190707.g001
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redispatch costs by synchronizing the expansion of grids and renewable energy sources. Since

the reform only entered into force in early 2017, it cannot have influenced the 2016 figures.

Unexpectedly, redispatch and feed-in management substantially decreased in 2016. The

redispatch volume dropped to 11.5 TWh (25% reduction) at a cost of € 220 million (46%

reduction). Although there was a small increase in reserve plant usage from 0.6 TWh to 1.2

TWh at the same time, it cannot explain the stronger change in redispatch because of its small

magnitude.

What caused the substantial drop in redispatch costs? What does a likely evolution for the

years ahead look like? In this paper, we address these questions based on the hypothesis that

natural interannual variations of the wind resource caused the drop. There is a multitude of

other potential reasons for redispatch. For example, other volatile types of renewable genera-

tion, namely solar photovoltaics, could lead to redispatch during times of high generation.

Since the German electricity grid is currently being expanded in order to meet the changing

needs, temporal shutdown of grid elements during this expansion might also contribute to

redispatch. Moreover, electricity exports to neighboring countries can increase the loads and

thereby exacerbate congestion. Scheduled downtimes of conventional plants for maintenance

might have also played a role. All of these other reasons do not depend directly on the wind

resource and are hence not dominant if our hypothesis can be validated. In contrast, if natural

variability dominates the redispatch variability, it also has a strong impact on the technological

and economic aspects of the energy transition. It would follow that more attention should be

paid to assessing and dealing with climate-induced uncertainty. Therefore, the interplay of

energy and climate in general would need further investigation. This is especially true since

installed wind capacities will continue to increase.

Background

Wind fluctuates naturally on timescales from seconds to multiple years and so does wind

power generation (e.g., [28–32]). In addition to understanding the variations themselves, it is

important to quantify their impact on the power system and the associated costs. This is partly

because the costs for renewable power generation are intrinsically linked to system costs [33,

34]. Focusing on the US, [34] found that installation and maintenance costs are not sufficient

to characterize the actual costs of renewables if the renewable gross share exceeds around 30%.

Instead, system costs from balancing mismatches between volatile generation and load need to

be incorporated. Interestingly, 2015 was the first year during which renewables contributed

more than 30% to German electricity production.

In principle, there are well-known options to reduce the vulnerability of the power system

to wind variability. For example, wind fluctuations can be compensated by PV fluctuations

thus smoothing the renewable generation time series [35]. Storage and intercountry balancing

facilitate system stability [36–38]. Moreover, a multinational optimization of future wind park

allocations would allow for a substantial reduction of volatility [39]. This effect is amplified

under strong climate change due to changes in wind correlations [40]. In this context, it is also

important to study the co-evolution of renewable generation and electricity consumption. In

places where a substantial fraction of heating (or cooling) is provided by electricity, a strong

annual cycle of electricity consumption is expected. [41] found that wind generation generally

decreases synchronously with increasing consumption in winter in Great Britain, which

implies that wind power is not well suited to cover winter demands there. However, as an

exception to this tendency, they also report that the wind power generation partly recovers at

the highest consumption events. Moreover, [42] identified a spatial shift in electricity con-

sumption as a consequence of climate change. Its amplitude increases with the level of

Natural wind variability and redispatch

PLOS ONE | https://doi.org/10.1371/journal.pone.0190707 January 12, 2018 4 / 21



greenhouse gas concentrations in the atmosphere. If carbon emissions continue to rise in the

future, this effect will thus have to be accounted for in long-term energy system planning.

We expect wind generation to trigger redispatch events because it features a substantial spa-

tial mismatch between generation and consumption in Germany. This is in contrast to PV,

which is strongly deployed in the south and thus closer to major industries [18]. Moreover, the

diurnal cycle of solar generation resembles the daily load profile in principle and is thus rather

system friendly (at current levels of installed capacities). Wind power generation also varies

stronger with wind speeds (cubic dependency within a certain range) than PV generation var-

ies with incoming irradiance (linear dependency) [43]. We thus investigate the interrelation

between redispatch and wind generation here.

Methods and data

Generally speaking, we used high-resolution weather data to calculate wind generation and

investigate its relationship to the redispatch time series of 2015-2016. High-resolution weather

data, in contrast to ex post generation data, has the advantage that long time series of multiple

decades exist and thus natural climatic variability can be accounted for. Moreover, it isolates

the impact of weather, which is masked by increases in capacity in ex post data.

Wind generation based on ERAINT

More precisely, we calculate wind generation GWind(t) based on the ERAINT reanalysis on

0.11˚ angular resolution (roughly 12km) and 6 hour time steps [44]. ERAINT has a native grid

spacing of 0.75˚ and the increase in resolution to 0.11˚ is achieved via bilinear interpolation

done by the climate modelers. The dataset is available from 1979 and is regularly updated. In

particular, the years 2015 and 2016 are included. Reanalysis data combines the advantages of

model results and measurements in the sense that it (a) gives data on regular grids which (b) is

also based on observations. It is for this reason that reanalyses have already been widely used

for energy-related assessments [45–52].

The ERAINT reanalysis provides near-surface wind speeds. In order to calculate wind gen-

eration from near-surface wind speeds, a couple of assumptions are made. These assumptions

are later justified by comparison with measured wind generation data (see Fig 2). Following

the approach described in [40], we first assume a power-law vertical wind profile with a fixed

exponent (vðzÞ ¼ vðz ¼ 10mÞ � z
10m

� �1
7) and thereby neglect different stability regimes. Surface

roughness is also neglected such that land cover and land-sea differences are not incorporated

in the vertical scaling. They are, however, included in the derivation of the ERAINT dataset

itself. Second, all wind turbines are assumed to be of the same kind and have a constant hub

height of 80m. Third, wind park locations and sizes are assumed to be constant during the

two-year period and taken as the end-2016 values from the Open Power System Database [53],

see Fig 1. Keeping the installed wind capacities fixed allows us to isolate the effect of meteoro-

logical changes on wind power generation. Given that almost 10% new wind capacity was

added in Germany during each of the last two years, the assumption of a steady state may seem

crude. However, it is a well-accepted approach to assess non-stationary systems by studying

steady-state cases first and include perturbations in time in a second step. Nevertheless, this

approach can only be applied to relatively short periods of measured data. If the analysis was

extended from a two-year measured time series to, for example, a ten-year series, the evolution

of the wind parks became dominant and would have to be accounted for.

Natural wind variability and redispatch
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Again following [40], wind speeds at hub height are translated into wind generation using a

simple power curve:

PðvHÞ ¼ P0

0; if vH < vi or vH > v0

v3
H � v3

I

v3
R � v3

I

; if vI � vH < vR

1; if vR � vH < v0

8
>>>>><

>>>>>:

ð1Þ

where vH denotes wind velocity at hub height and vI = 3.5 m/s, vR = 12 m/s, v0 = 25 m/s denote

the cut-in, rated and cut-out velocity of the wind turbine, respectively. P0 is the installed capac-

ity in the grid cell.

Fig 2. Scatter plots of ERAINT-based wind generation derived in this study versus expost wind generation as reported by German TSOs. Gray

colors indicate ERAINT-based data that completely neglects capacity extension. Green denotes data that has been linearly adjusted for capacity

increases. The Pearson correlation is given in the upper left area of each subplot. Columns represent different temporal aggregation levels ranging from

daily (a,d) to weekly (b,e) and monthly (c,f) data. The upper line (a-c) shows mean values over the given interval while the lower line (d-f) represents

maxima. All values are Germany-wide aggregates.

https://doi.org/10.1371/journal.pone.0190707.g002
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Validation of generation timeseries

The validity of our approach is proven by comparison with measured data. In Fig 2, scatter

plots of our wind generation time series from ERAINT versus ex post wind generation as

reported by the four German TSOs are given. The ex post data was preprocessed by Open

Power System Data and is freely available online [54]. It contains hourly German wind genera-

tion starting in summer 2009. However, we only use 2015 and 2016 here as these years are the

focus of this investigation. We consider both different temporal sampling (from daily to

monthly) and different sampling methods (mean or max values during the sampling period).

Pearson correlations are always at least r = 0.9 and we hence conclude that our model captures

the behavior of the real system sufficiently well. A linear correction of the ERAINT wind gen-

eration time series to include the effect of added capacities (given in green) further increases

the correlations. For example, the correlation of daily means (Fig 2a) increases from r = 0.94 to

r = 0.95. As correlations are already high without this correction, the remainder of this study is

based on the uncorrected wind generation data. Furthermore, we observe a systematic devia-

tion for small values of the ERAINT wind generation, where ex post data is higher. The direc-

tion of this mismatch can be explained by the spatial and temporal averaging in ERAINT:

wind speeds within a 6-hour interval (or within a grid box) can well be above the cut-in veloc-

ity of the wind turbines even if the 6-hour (or grid box) average is lower. In fact, it is the very

task of wind park planners to identify locations with above-average yields due to small scale

effects (e.g. channeling or land-sea circulations). Wind turbines with a larger hub height and/

or lower cut-in velocity further add to this mismatch. In contrast, in the realm of high genera-

tion, our approach yields higher values than the ex post analysis. Given that the ex post data

accounts for curtailed generation that could not be fed into the grid (while our approach

neglects curtailment), we expect such a tendency. In conclusion, we consider our approach

well suited to capture system-wide effects and long-term developments while we also acknowl-

edge the existence of systematic deviations of limited magnitude.

Redispatch data

The redispatch time series is published by the German TSOs and it is available through a trans-

parency platform [55]. They have hourly resolution and we utilize the 2015 and 2016 data. We

refer to the redispatch timeseries as R(t). Although spatial information is included (such as the

grid region that is affected or the plant that had to ramp up/down its generation), we consider

the German aggregate only because we are interested in system-wide effects. In principle,

redispatch can be subdivided into voltage-induced and current-induced redispatch. The latter

is responsible for the majority of redispatch events. However, we found that our results are

largely insensitive to restriction to current-induced redispatch and hence decided to evaluate

all redispatch events. Moreover, the present analysis is based on redispatch reduction measures.

In order to maintain the energy balance, a redispatch reduction measure requires ramping up

plants elsewhere. Ramping up can be realized via redispatch increases or via reserve plants. As

the latter strategy proved to be more efficient, the relative contribution of reserve plants

increased during the period under investigation [56]. In focusing on reduction measures, we

circumvent these regulatory changes. Redispatch events are associated with the point in time

(day or week or month) when they were started.

Receiver operating characteristics (ROC)

The scope of this paper is to analyze the dependency of redispatch and wind generation on dif-

ferent time scales using both standard correlation measures and a binary performance mea-

sure. We employ the binary measure because it seems plausible that there is a threshold-like
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behavior of the redispatch. If no wind park generates electricity, no wind-induced redispatch

is expected. While wind speeds increase, parks ramp up their generation. As long as generation

is small, no congestion in the grid occurs and hence there is still no redispatch. But once a cer-

tain level of wind power generation is exceeded, system stability would be affected and redis-

patch measures begin.

In order to test this hypothesis, we define a binary classifier Rpred as

RpredðtÞ ¼
1; if GWindðtÞ � s

0; if GWindðtÞ < s

(

ð2Þ

where GWind(t) is ERAINT-based wind generation at time t (see above) and σ 2 [0, max

(GWind(t))] is a threshold value. Similarly, we define a binary redispatch time series Rbin(t) as

RbinðtÞ ¼
1; if RðtÞ � y

0; if RðtÞ < y

(

ð3Þ

where θ is another threshold value and R(t) denotes redispatch reduction at time t (see above).

We choose θ such that a given percentage of R(t) is considered an event in Rbin (i.e. Rbin = 1).

This formulation allows for an assessment of, for example, the 75th percentile (i.e. 25% stron-

gest redispatch events).

We assess the capability of the model (Eq 2) to reconstruct the binary redispatch time series

(Eq 3) using ROC analysis [57]. In a ROC curve, the true positive rate (TPR) is plotted against

the false positive rate (FPR). TPR is defined as the number of correctly identified redispatch

events (TP, true positives) divided by the number of redispatch events (P, positives):

TPR ¼
TP
P
; ð4Þ

where

TP ¼
X

t

1; if RpredðtÞ ¼ 1 and RbinðtÞ ¼ 1

0; otherwise

(

ð5Þ

and

P ¼
X

t

RbinðtÞ: ð6Þ

Similarly, FPR is defined as the number of erroneously predicted redispatch events (FP,

false positives) divided by the number of non-redispatch events (N, negatives):

TPR ¼
FP
N
; ð7Þ

where

FP ¼
X

t

1; if RpredðtÞ ¼ 1 and RbinðtÞ ¼ 0

0; otherwise

(

ð8Þ
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and

N ¼
X

t

1; if RbinðtÞ ¼ 0

0; otherwise

(

: ð9Þ

A random classifier would create values along the diagonal, whereas a perfect classifier is

given by a true positive rate of 1 and a false positive rate of 0. As a scalar performance measure,

we calculate the area under the curve (AUC) which can be identified with ‘the possibility that

the classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative instance’ [57]. The question we ask is: Given a certain redispatch threshold θ, how

much of the binary redispatch time series can be explained based on the wind time series?

Note that θ is predefined by us, while different values of σ are used to construct the ROC

curve.

Circulation weather types (CWTs)

This approach allows us to relate our findings to large-scale meteorologic conditions. In order

to study the connection of redispatch variability and wind generation variability, we investigate

the dependency of redispatch on different typical pressure regimes over Germany. The

approach is based on a CWT classification [58] of the ERAINT dataset. The classification is

centered over Germany, is representative for Central Europe and comes with a daily temporal

resolution. The method separates eight directional CWTs (North:N, Northeast:NE, East:E etc.)

and four non-directional ones (Cyclonic:C, Mixed Cyclonic:Mixed C, Anticyclonic:AC, Mixed

Anticyclonic:Mixed AC). Further explanations can be found in [59]. The methodology has

repeatedly been applied for energy-related purposes [31, 40, 60, 61].

Results

Natural variability of wind generation

Fig 3 shows the time series of annual wind generation based on ERAINT. For validation pur-

poses, it also includes version 1.1 wind generation data from renewables.ninja [45]. The renew-

ables.ninja dataset starts in 1980 such that 1979 is only covered in our calculations. In Fig 3,

renewables.ninja data is normalized such that its 2016 value coincides exactly with the

ERAINT-based 2016 relative wind generation. There is quasi-perfect agreement between both

time series in terms of the direction of changes between years. However, the magnitude of

interannual changes in renewables.ninja is generally smaller. This may be due to differences in

resolution. The underlying MERRA-2 reanalysis [62] has a fivefold coarser resolution than the

ERAINT output used here, resulting in 25 ERAINT grid boxes per MERRA-2 grid box and

thus a less realistic representation of spatial variability. This effect is, however, weakened or

compensated for since [45] interpolated wind speeds to the wind park locations. However, the

MERRA-2 reanalysis has a sixfold higher temporal resolution (hourly) such that a more realis-

tic representation of fast changes is expected. Other differences in the approaches include that

[45] accounted for different turbine types, interpolated vertically by fitting a logarithmic wind

profile, applied a bias correction and used the wind park configuration of 2015.

Based on a detailed representation of the end-2015 wind parks, [50] followed a different

approach to handle the coarse resolution of the MERRA reanalysis in deriving the EMHIRES

dataset. They applied statistical downscaling over land to account for small-scale effects like

complex topography and reported enhanced agreement with measured data. Over the ocean,

no downscaling was applied because ocean surface conditions are sufficiently homogeneous.
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The energy generated from the end-2016 German wind fleet fluctuates strongly in time (see

Fig 3). In comparison to the weakest years, an additional 40% wind energy can be generated in

the strongest years (30% based on renewables.ninja). In particular, there was substantially less

wind generation in 2016 compared to 2015. This agrees perfectly with elevated redispatch

costs in 2015: the ratio of 2015 to 2016 redispatch volume is given as a dashed brown line and

fits extremely well with the ratio of 2015 to 2016 wind generation. Although the closeness of

the agreement is likely a coincidence, it shows that both the direction of change and magnitude

of ERAINT-based wind generation and measured redispatch volumes are in agreement.

Moreover, it is evident that 2016 was at the lower edge of all years covered in both datasets.

If no regulatory changes were made to the system, an increase in redispatch would hence be

very likely in 2017 (yet not guaranteed) and the TSO TenneT has already reported an increase

of costs in spring 2017 [63]. Based on the historical record, the increase could even be higher

than the drop from 2015 to 2016. However, this obviously depends on the actual characteristics

of 2017 wind fields which we do not claim to forecast here.

Extent to which redispatch can be traced back to wind generation

In the following subsections, we quantify the dependency between redispatch energy and wind

generation based on correlations and receiver operator characteristics. Furthermore, we inves-

tigate the underlying meteorological variability by means of circulation weather types.

Correlation analysis. We compare the wind generation and redispatch time series by

evaluating three different correlation measures in Fig 4. They are the linear Pearson correla-

tion, the non-linear Spearman’s rank and Kendall’s rank correlation (e.g., [64]). We assess dif-

ferent levels of temporal aggregation from daily to monthly. Within the resampling window,

we either use the mean or the maximum value for both time series. This yields four possible

combinations of averaging procedures as presented in the subplots (Fig 4a–4d).

Fig 3. Natural variability of wind generation relative to 2016 in Germany. Time series of wind generation (a) and its distribution (b). Wind park

configuration is kept constant throughout the entire timespan such that variations are solely rooted in wind variability. Blue denotes our own

calculations and green indicates the renewables.ninja dataset [45]. The dashed brown line shows the ratio of 2015 to 2016 redispatch volume.

https://doi.org/10.1371/journal.pone.0190707.g003
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Generally, we report moderate to strong positive correlations. This statement holds for the

linear Pearson measure as well as for the non-linear Spearman’s and Kendall’s rank correla-

tions. The mean redispatch volume follows wind generation better if averaged over long peri-

ods (i.e. weeks or months) and reaches values of around 0.7 (Fig 4b and 4d). This tendency is

in agreement with the results of the receiver operating characteristics (cf. below). In contrast,

model performance for the redispatch maxima deteriorates on a monthly level (Fig 4a and 4c)

indicating that the maximum redispatch events within a month are not strongly connected to

the monthly wind generation. However, we want to highlight the monotonous increase in cor-

relations for the mean redispatch and mean wind (Fig 4d) because it shows that mean wind

generation can be translated into mean redispatch. Due to this monotony, we expect the sea-

sonal and annual values to be even higher than the monthly values. We are thus confident that

average wind generation has good predictive skill for average redispatch on a seasonal and

annual basis.

Receiver operating characteristic (ROC) analysis. Based on a ROC analysis (see

Methods and data), we report that the wind generation time series can partly explain redis-

patch as shown in Fig 5. Both the redispatch and the wind generation time series were resam-

pled using the mean over a time interval (day or weak) here. The analysis reveals that the

classifier performs reasonably for daily values (Fig 5a). Showing AUC of 0.75 ± 0.02, it is dis-

tinctly better than a random classification (AUC = 0.5) and hence there is clearly a signal of

the wind generation in the daily series. On a weekly basis, the model performance is distinctly

better (Fig 5b). This could be indicative of redispatch measures being scattered around the

meteorological events causing them. Sometimes a redispatch is scheduled prior to the strong

wind event, sometimes it lags behind. This scattering might be caused by uncertainties regard-

ing the timing of strong wind events and it could also be affected by inertia of the conventional

power system (such as long ramping times which require system operators to act well ahead of

Fig 4. Correlation measures between wind generation and redispatch timeseries. Different panels show different temporal sampling methods. The

upper line (a,b) uses maximum values of the wind generation time series, while the lower one (c,d) uses the mean. The left column (a,c) employs

maximum values for redispatch resampling, while the right (b,d) is based on the mean. Markers denote the correlation measure employed (Kendall’s τ,

Spearman’s ρ or the Pearson correlation coefficient r). Horizontal dashed lines are given for ease of interpretation.

https://doi.org/10.1371/journal.pone.0190707.g004
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the actual event). While a mis-association of events on a daily basis follows, the coarser consid-

eration based on weeks weakens this effect.

On the weekly basis, the classifier performs very well in separating the 10th percentile

(AUC = 0.88). This means that we can isolate low redispatch weeks well. Very high redispatch

weeks can also be separated well (AUC = 0.83 for the 90th percentile and AUC = 0.82 for the

75th percentile). Seperating the 50th percentile, however, is not quite as reliable (AUC = 0.78).

The ROC analysis was also performed for resampling methods other than the mean (see S1

File). The results are mostly insensitive to changes in the sampling method with one interest-

ing exception: the mean and max wind time series are skillful in determining the 90th percen-

tile of max redispatch events on a daily basis (AUC = 0.89 and AUC = 0.88). In other words,

the highest single redispatch event on a daily level can be attributed well to high wind genera-

tion, independent of the resampling method of the wind time series.

Variability of weather patterns. In the two preceeding subsections, we showed that redis-

patch is related to the natural variability of near-surface wind conditions. Wind patterns over

Europe in turn are associated with large-scale weather types. We therefore investigate the

dependency of redispatch on CWTs (see Methods and data) by calculating the relative contri-

butions of individual CWTs to overall redispatch.

CWTs of type southwest (SW), west (W) and northwest (NW) are characterized by high

levels of redispatch (see Fig 6) and we refer to them collectively as westerly CWTs. 27.7% of

redispatch happened during such westerly CWTs although they only occurred during 19.1%

of the time. From a meteorological point of view, this finding is plausible since westerly CWTs

are typically accompanied by relatively large pressure gradients and strong winds. The largest

contributors to redispatch in absolute terms are anticyclonic (AC, 24.6%) and mixed anticy-

clonic (Mixed AC, 24.6%) configurations but they also occur most often (27.9% and 20.5%,

respectively). Therefore, they are less redispatch-intense than westerly CWTs. Furthermore,

the 95th percentile is highest for the western (W) CWT, indicating that the strongest

Fig 5. Receiver operator characteristic curve testing the performance of wind generation as a binary classifier for redispatch. Both wind and

redispatch timeseries were resampled based on daily means (a) and weekly means (b).

https://doi.org/10.1371/journal.pone.0190707.g005
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redispatch events occur during this CWT. Weak redispatch is to be expected under CWTs of

type cyclonic (C), north (N), northeast (NE), east (E) and south (S). Interestingly, all distribu-

tions of redispatch reduction measures given a certain CWT have positive skewness since the

average is always greater than the median.

Having found that westerly CWTs are characterized by elevated levels of redispatch, an

assessment of their variability is insightful. Fig 7 shows that westerly CWTs prevail between

16% and 27% of the year in ERAINT, indicating a similar range of variability as for wind gen-

eration (cf. Fig 3). With respect to the last two years, it is clearly visible that 2015 had more

westerly CWTs than 2016 in line with the downward shift of redispatch volume. Moreover,

2016 is among the lowest years on record in terms of westerly CWT occurrence. Only 1996 lies

below and 1991 shows an almost identical value. The remaining 34 years on the record are

characterized by higher values. Hence, 2016 has an exceptionally low occurrence of westerly

CWTs.

Discussion

As outlined in the Results section, we assessed the variability of annual wind energy generation

due to natural climatic variability. We found annual variability to be substantial and argue that

it is an important characteristic of power systems with a high share of wind generation, in

agreement with the literature (e.g., [65–67]). Capturing this variability does not necessarily

introduce the need to use extensive time series of volatile renewable generation directly.

Instead, a high level of the fluctuations can be reproduced by representative days based on a

hierarchical clustering algorithm [68]. Representative days can reduce the computational costs

substantially, although the required number of representative days depends on the question to

be answered. [69] argued that benefits from more realistic time resolutions dominate over

Fig 6. Daily redispatch decomposition for different CWTs. Each boxplot shows the statistics of 2015 to 2016 daily redispatch data differentiating

between the CWT prevalent on the respective day. Blue boxes indicate the 25th to 75th percentile and error bars indicate the 5th to 95th percentile. A

red thin line denotes the median while the mean is given as a red thick line. Below the plot, the share of redispatch and the relative occurence of each

CWT are given. Abbreviations denote the different CWTs. In addition to the directional CWTs (e.g. southwest, SW), there are anticyclonic (AC) and

cyclonic (C) CWTs and also mixed versions of them.

https://doi.org/10.1371/journal.pone.0190707.g006
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benefits from the inclusion of techno-economic details. They thus advocate that model devel-

opers should aim at improving the temporal resolution.

In this context, it appears problematic that some state-of-the-art integrated assessment

models [70, 71] and policy-relevant studies on a national level (e.g., [72]) still use single or rep-

resentative weather years as input for their calculations. By ignoring interannual generation

variability in the analysis, results can be biased. For example, Elsner et al. [72] use 2008 weather

data although this particular year was above average in terms of mean wind generation (see

Fig 3).

Moreover, in a climate system away from equilibrium, interannual wind variability may

well change in the future. [31] showed that the climate change impact on interannual variabil-

ity is subject to large inter-model spread in a large climate model ensemble (CMIP 5) and is

hence substantially uncertain. However, the increase of inter-annual wind variability over Ger-

many in downscaled climate projections can be as high as 30% under strong climate change at

the end of the 21st century [73]. In a study aiming to establish a framework for economic

assessments of climate change impacts on electricity generation, [74] also covered potential

changes of inter-annual variability.

Supporting our results, a previous, non-peer-reviewed study, also found wind generation

and redispatch to be substantially correlated [75]. Based on daily ex post data, they reported a

Pearson correlation coefficient of 0.65 in the period April 2013 to March 2017. In comparison

to our values, their correlation coefficient is generally higher, although we obtain comparable

Pearson correlations for some sampling methods (see Fig 4a and 4c). This slight discrepancy is

not surprising as the considered time intervals differ.

The relatively high correlations motivate a linear model of the redispatch

RðtÞ ¼ a � GWindðtÞ þ b; ð10Þ

where R(t) is redispatch at time t, GWind(t) is wind generation, a and b are constants. Similar to

Fig 7. Variability of westerly CWTs. The occurrence is given in percent and is based on a daily CWT classification. The horizontal dashed line

indicates the 2016 value and is plotted for convenience.

https://doi.org/10.1371/journal.pone.0190707.g007
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the correlations themselves, the skill will increase with coarser resampling and we expect good

skill at monthly or even annual resampling.

In addition, Fig 3 shows that a 35% increase in annual wind generation translates into a

35% increase in the annual redispatch energy from 2016 to 2015:

Rð2015Þ

Rð2016Þ
¼

GWindð2015Þ

GWindð2016Þ
: ð11Þ

A combination of Eqs 10 and 11 yields b = 0. The ratio of redispatch between two weather

years y1 and y2 is hence identical to the ratio of wind generation

Rðy1Þ

Rðy2Þ
¼

a � GWindðy1Þ þ b
a � GWindðy2Þ þ b

¼
a � GWindðy1Þ

a � GWindðy2Þ
¼

GWindðy1Þ

GWindðy2Þ
: ð12Þ

As a consequence, the range of variability of wind generation is identical to the range of

redispatch variability. Fig 3 thus allows the latter to be quantified as between 95% and 145% of

the 2016 values for the entire period covered by ERAINT. Admittedly, a stringent test of this

statement would require freezing the electricity system as of today and studying its evolution

in different weather years forever. This is obviously not feasible, leaving us with incomplete

knowledge and leading to a standard verification dilemma of numerical models in the earth

sciences [76]. Despite this and in line with [76], we argue that our finding provides a useful

heuristic. It is furthermore obvious that this linear model is no longer valid after substantial

changes are made to the current system, for example via transmission line extension or modifi-

cations of the guiding principle of the dispatch.

The CWT analysis revealed that redispatch is particularly high during westerly flows in line

with meteorological intuition. In terms of planning, this finding could be employed benefi-

cially for the overall system performance. For example, the addition of wind parks that are

optimized to yield maximum output under non-westerly CWTs will have a substantially

smaller effect on redispatch energy. However, the challenge here lies in the identification of

suitable locations which still have sufficiently high capacity factors to prove economically

viable.

It is furthermore interesting to note that the stochasticity of the wind generation signal can

have a large influence on public perception. For example, the high redispatch costs in 2015 led

to extensive media coverage across the entire spectrum from tabloids [77], online-only [78]

and weekly magazines [23] to standard newspapers [22, 79, 80]. The language in the articles is

heated, for example, it is stressed repeatedly that wind park operators are paid for idleness [24,

25] and the word ‘battle’ (‘Kampf’) is used in some headlines [78, 80]. During this public

debate, the German minister for economics and energy, Sigmar Gabriel, is cited expecting a

further 50% increase in overall grid-management costs to € 1.5 billion in 2016 [79]. In light of

the lively public debate with respect to costs, it seems plausible that the strong wind year 2015

had an impact on policy making. In particular, it is questionable whether the 2016 EEG reform

[27] would have been the same, had 2015 been a rather calm wind year.

Conclusion and policy implications

The German power system is undergoing a fast and drastic transition towards renewables. As

an unpleasant side-effect, redispatch measures which aim at securing stability of the power

grid have been used more extensively and reached an annual cost of around € 400 million in

2015. The subsequent year was characterized by a sharp decline of these costs. We report that

much of this decline is rooted in natural climatic phenomena and is hence stochastic. Our
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confidence in this finding is very high since our argumentation is based on multiple lines of

evidence.

First, 2015 was a strong wind year in terms of annual wind power generation and 2016 was

a weak one compared to a 37-year reanalysis time series. Second, ROC analysis suggests that

mean wind generations are a suitable classifier to determine redispatch on long time scales (i.e.

weeks and beyond). On these time scales there is even a considerable linear and rank correla-

tion between the wind generation time series and the redispatch time series. Hence, a weak

wind year translates into a low redispatch year. Third, redispatch is found to be high during

westerly CWTs and those were more abundant in 2015 than in 2016.

Over the 37 years covered by the ERAINT dataset, we found annual wind generation vari-

ability ranging from 95% to 145% of the 2016 values. Following a simple linear model cali-

brated by the 2015 and 2016 redispatch energy, this also implies variability of redispatch

energy in the same range.

It should be noted that all these conclusions are bound to the current power system. This is

true both in terms of physical constraints and management aspects. While the physical con-

straints, such as transmission limits or locations of generators, are hard facts (i.e. evolve on

long time scales of multiple years to decades), system management is, amongst others, subject

to laws, regulations and economic incentives. Given political will, the latter can be adapted

faster than the physical system. For example, including limited transmission capacities in

deriving the dispatch would clearly be a game changer and may have the potential to reduce

redispatch dramatically. This is because the current guiding principle of the dispatch is based

on the assumption that its outcome is mostly compatible with transmission grid constraints.

Conflicts with these constraints are assumed to be minor. If they occur, the redispatch will

ensure system stability. However, given the continued addition of renewables, and the rela-

tively slow pace of transmission line extensions, this assumption is challenged as congestion

becomes more important. As a consequence, the minimization of power generation costs does

not necessarily coincide with optimum operation of the power system. Instead of solving dis-

patch problems via the redispatch, it thus may be favorable to include the physical constraints

into the dispatch as in optimal power flow algorithms (e.g., [81]). More generally, reducing the

time window of the dispatch may have a positive effect due to less uncertain forecasts. Also,

efficient carbon pricing may make gas plants economically superior to coal plants and hence

decrease average ramping times in the dispatch.

In order to understand redispatch more precisely, a possible next step would be to resolve

the national grid explicitly. This would allow congestion owing to renewable generation to be

simulated and subsequently compared to the redispatch energy reported by TSOs. It would

also be interesting to expand the assessment to the time series of the feed-in management and

the grid reserve. Moreover, the role of electricity exports could be assessed. As hypothesized

earlier, redispatch could be exacerbated by exports that introduce additional loads to the elec-

tricity grid in times of high renewable generation.

Independent of the exact design of the future power system, variability will be a fundamen-

tal property of it. This is true for any power system based on renewables and by no means lim-

ited to the German example studied here. Therefore, we suggest a stronger consideration of

uncertainty and natural variability in any assessment of the current energy system. As public

perception can be affected strongly by single events like the 2015 peak in redispatch costs,

short-sighted reactions might follow. They are to be avoided because hectic weakening of

renewable expansion in times of high redispatch years and strengthening of renewable expan-

sion during low redispatch years may substantially harm the energy transition. This is because

renewable energy companies need stable ground to build on [82]. There is hence a require-

ment for robust decision making [83] incorporating interannual variability of the wind
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resources. In order for science to be helpful in this, research should aim at better understand-

ing and quantifying climate-induced variability on different time scales including years and

decades. Additionally, closer collaboration between energy and climate modelers is urgently

needed.
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S1: ROC analyses under different resampling methods

Supporting information to ”Natural wind variability triggered drop in German
redispatch volume and costs from 2015 to 2016” by Wohland et al.
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Abstract Reanalysis data underpin much research in atmospheric and related sciences. While most
reanalysis only cover the last couple of decades, National Oceanic and Atmospheric Administration (20CR)
and European Centre for Medium-Range Weather Forecasts (ERA20C and CERA20C) also developed
reanalyses for the entire twentieth century that theoretically allow investigation of multidecadal variability.
However, the approaches adopted to handle the massively evolving number of observations can cause
spurious signals. Here we focus on wind speeds, as its assimilation is a key difference among these two
products. We show that ERA20C and CERA20C feature significant trends in the North Atlantic and North
Pacific wind speeds of up to 3 m/s per century. We show that there is a good relation between the trends in
the reanalysis and assimilated wind speeds. In contrast, 20CR and the European Centre for Medium-Range
Weather Forecasts free model run ERA20CM do not show positive trends in the same regions. As a
consequence, conclusions drawn from any single twentieth century reanalysis should be treated cautiously
in particular in sectors with a strong wind dependency (e.g., wind energy).

Plain Language Summary Many areas of human activity are directly influenced by the climate,
and an enhanced understanding of its variability is hence beneficial for the society. We need long-term
climate data sets in order to quantify and understand climate variability better. As of today, there are two
centers that provide gridded climate data sets for the last century (so called twentieth century reanalysis).
Deriving these data sets is intricate because the number and quality of observations has changed
dramatically during the period of interest. In our study, we show that the data sets disagree strongly with
respect to long-term wind speed trends. As the climate system is highly coupled, other climatic variables
are likely also affected. We analyze the underlying observational data, and we can show that the upward
trends in one data set also exist in the observations. Furthermore, we can rule out that the model itself
created the trends. By comparison with earlier studies, we argue that the trends are likely spurious (i.e.,
not real) but some uncertainty remains. We recommend that climate impact assessments should be
based on data from both centers. In future research projects, attempts must be made to resolve the strong
discrepancy between the data sets.

1. Introduction
The climate system shows variability on various time scales in many interconnected components, for exam-
ple, the atmosphere (Williams et al., 2017) and the oceans (Keenlyside et al., 2015). Improved understanding
of these variations is essential for climate assessment, in particular regarding the identification of dominant
modes of variability and for the separation of natural climate variability and anthropogenic climate change.
It is also highly relevant because of the impacts of climate variability on society. For example, the design and
management of energy infrastructure is directly affected by climate variability (e.g., Bloomfield et al., 2016;
Conway et al., 2017; Wohland et al., 2018) and climate change (Schlott et al., 2018; Wohland et al., 2017).
Incorporating climate variability into transmission system design (e.g., Kempton et al., 2010) and wind park
siting (e.g., Grams et al., 2017) facilitates integration of wind energy. Relevant temporal scales range from
subseconds (e.g., Schäfer et al., 2018), over diurnal, synoptic and interannual (e.g., Zubiate et al., 2017),
up to multidecadal and centennial timescales (Bett et al., 2017). The last two have received relatively little
attention and are therefore the focus of this study.
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A meaningful quantification of climate variability requires sufficiently long data sets. Reanalysis data sets
are often considered an ideal compromise between nongridded observations and gridded model output.
They typically provide climate variables on regular grids and time intervals, and that follow available obser-
vations (taking into account the uncertainties). An introduction to the concept of data assimilation is given
in Carrassi et al. (2018). Most reanalysis cover only a couple of decades as they rely on a large number
of observations that are not available for a longer time span. Driven by the demand from end users and
operational centers, the National Oceanic and Atmospheric Administration (NOAA) in the United States
and the European Centre for Medium-Range Weather Forecasts (ECMWF) developed centennial reanal-
yses based on the relatively sparse data coverage. However, discrepancies among reanalyses can be large
when data are scarce, because of the differences in models and data assimilation. Given the extensive usage
of these reanalyses across and beyond the geosciences, such discrepancies would have major impacts on
scientific results.

In this paper we address the issue of disagreeing wind speed trends in current twentieth century reanalyses.
Our aim is to investigate wind speed trends in the different reanalysis products, to understand these trends
in the context of the assimilated observations, and to comment on their trustworthiness. We show that the
disagreement is linked to the assimilation of marine surface winds, which is only performed in the ECMWF
reanalyses. Our results have implication beyond wind applications and may explain several issues identified
in previous analysis, such as reported drifts and discontinuities of ocean heat content (Laloyaux et al., 2016),
trends in Arctic mean sea level pressure (MSLP; Bloomfield et al., 2018), and disagreeing long-term trends in
cyclones and wind storms (Befort et al., 2016). Moreover, trends in wind speeds are expected to impact other
societally relevant fields such as energy, the water cycle (McVicar et al., 2012), and food chains in the oceans
(Kahru et al., 2010). We seek to raise awareness among users and provide feedback for the developers of the
data set since “reanalysis is an ongoing activity that should never be regarded as completed” (Laloyaux et
al., 2016).

2. Data and Methods
2.1. Ensemble of Twentieth Century Reanalyses
We base our assessment on the full set of currently available reanalyses that span at least the period from
1900–2010. The set consists of the NOAA 20CR data set (Compo et al., 2011) and three different prod-
ucts from ECMWF, namely, ERA20CM (Hersbach et al., 2015a), ERA20C (Poli et al., 2016), and CERA20C
(Laloyaux et al., 2018). All of them are widely used. Throughout the manuscript, we use (C)ERA20C to
refer to ERA20C and CERA20C. 20CR and ERA20C are atmospheric reanalyses that take ocean variables
as boundary conditions, whereas CERA20C is a coupled reanalysis that explicitly resolves the oceans (and
other components of the climate system such as sea ice). ERA20CM, in contrast, is a free model run of the
same atmospheric model used for ERA20C and constraint by the same boundary conditions. We include
ERA20CM even though it is not a reanalysis because a comparison between ERA20C and ERA20CM allows
to isolate the effects of data assimilation.

All reanalyses have been shown to be able to reproduce important modes of climate variability. 20CR agrees
well with ERA-Interim (Dee et al., 2011) in terms of representing the North Atlantic Oscillation (NAO) and
the Pacific Walker Circulation. It has also been shown that ERA20C has skill to reproduce, for example, NAO
in the recent past (Poli et al., 2016). Its successor CERA20C is reported to feature significant improvements
in the troposphere as compared to both ERA20C and 20CR (Laloyaux et al., 2018).

The assimilation strategy behind 20CR and (C)ERA20C differs substantially. While 20CR assimilates sur-
face pressures only, both ERA20C and CERA20C also assimilate marine wind measurements. The number
of pressure observations is capped in 20CR to minimize spurious effects of the increasing observation den-
sity. As a consequence of these main differences, Poli and National Center for Atmospheric Research Staff
(2017) argue that 20CR is better suited in scarcely sampled regions, while ERA20C is believed to be superior
in “well observed areas (… ) where the assimilation of winds also assists to better represent synoptic sys-
tems.” In addition, CERA20C includes subsurface ocean temperature measurements and salinity profiles.
The assimilated wind speeds are made available in an Observation Feedback Archive (OFA, Hersbach et al.,
2015b).

Another difference lies in the ensemble size, which is large for 20CR (58) and smaller for ERA20CM and
CERA20C (both 10). The smaller ensemble size for the ECMWF product could mean that the ensemble
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spread is not well suited to quantify uncertainty. In fact, Laloyaux et al. (2018) report that the CERA20C
ensemble spread for wind speeds is too low to quantify the uncertainty by a factor of 2 to 3. This issue is
exacerbated for ERA20C that is deterministic and hence has no ensemble.

All ECMWF products share the same resolution of roughly 1.125◦ · 1.125◦ (T159). The resolution of the older
20CR data set is coarser (roughly 1.875◦ · 1.875◦, T62). Local topographic features such as individual moun-
tains or the precise location of the coastline cannot be captured, potentially leading to massive uncertainties
over small continental regions. In large areas over the oceans, however, the negligence of spatial details is
likely of minor importance.

It is noteworthy that the ECMWF products are not independent and errors can hence propagate through the
modeling chain. Both ERA20C and CERA20C make use of the ECMWF Integrated Forecast System (IFS).
While ERA20C uses IFS CY38r1, CERA20C is based on the newer version IFS CY41R2, which allows for
bidirectional interactions between the atmosphere and the ocean and thereby enables to capture dynamic
feedbacks (Laloyaux et al., 2018; Poli et al., 2016). In both cases, a 24-hr assimilation window is applied.
In addition, ERA20C uses background errors that are based on the ERA20CM ensemble and the 10-year
CERA20C streams are in turn initialized from ERA20C data. All three ECMWF products are thus directly
and indirectly connected. Nevertheless, there are also substantial differences. For example, the CERA20C
background errors do not stem from the free model run ERA20CM as for ERA20C but are generated
internally and are better suited to adapt to an evolving observational density by assigning flow-dependent
background errors.

We base this study on the monthly mean 10-m wind speeds as the assimilation of wind speeds is one major
difference between the data sets. For ERA20CM, unfortunately, the monthly average wind speeds have not
been computed and archived (K. Hennermann, personal communication, March 2nd, 2018). We will there-
fore use the euclidean norm of the monthly mean wind components as a proxy for the wind speed. This
leads to lower values because positive and negative values during a month can cancel each other out. We
consider this approach justified because we focus on trends rather than absolute values.

2.2. Trend Assessment (1901–2010)
We perform linear least squares regressions for the annual and seasonal wind speed averages in Python based
on the scipy.stats.linregress function. We consider a trend significant if a Wald Test yields a p value of less
than 0.01 for the Null Hypothesis of no trend (i.e., 99% confidence level). For ERA20CM and CERA20C, we
report the ensemble mean trend if at least 9 out of 10 ensemble members show significant trends of the same
sign. Since ERA20C is deterministic, an ensemble assessment is not feasible. Although 20CR comes with
a large ensemble, we restrict the analysis to the ensemble mean here. There can be trends in the ensemble
mean that are not robust across the ensemble and such trends would be rejected if the full set of information
was considered. As a consequence, the trends reported for 20CR are to be considered an upper bound in the
sense that some of them could become nonsignificant if ensemble agreement in 20CR was accounted for.
However, as we will see later, the main difference between the reanalyses is that (C)ERA20C features upward
trends where 20CR either shows no or negative trends. This disparity can not be resolved by including the
full 20CR ensemble because the more stringent trend condition will neither make nonsignificant trends
significant nor will it flip signs of trends. Another reason to focus on the ensemble mean for 20CR is that
we did not intend to repeat the assessment of Bett et al. (2017). Focusing on Europe, they find weak to no
trends in the 20CR data set.

We define two focus regions in which the temporal evolution of the relationship between the observations
and (C)ERA20C is studied in detail. They are referred to as North Atlantic (25–55◦N, 50–20◦W) and North
Pacific (35–50◦N, 180–130◦W) and are displayed in Figure 1b. In a sensitivity test, we have also shifted the
North Atlantic box northeastward by 10◦ (35–65◦N, 40–10◦W). Boxes are defined to be of similar size while
capturing the most pronounced trends seen in the global maps. The trends are homogeneous inside the boxes
in ERA20C such that the averaging procedure does not average out distinct spatial features (see Figure 1b).
Within the boxes, annual time series of wind speed measurements are derived from the ship-based measure-
ments that are assimilated into (C)ERA20C. To ensure that the entire annual cycle is sufficiently sampled,
we only consider years with at least four measurements in all months. Without this constraint, increasing
annual values could be rooted in an expansion of shipping activities into the winter months, an effect that
has occurred over the twentieth century following technological innovations.
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Figure 1. Maps of 10-m annual wind speed trends calculated from 1901 to 2010 for the different datasets (a–d). Colors
denote trends that are statistically significant at the 99% level, and white-hatched regions mask out regions without
statistically significant trends. In the case of ERA20CM and CERA20C, the ensemble mean trend is plotted if there is
agreement across the ensemble with respect to the sign of change (9 out of 10). Focus regions for further assessment
are given as blue boxes in (b) and are denoted as North Pacific and North Atlantic.

Lastly, we provide a gridded version of the trends of annual wind speeds in the observations. The mea-
surements are projected onto the ERA20C grid by assigning each measurement to the nearest grid box. In
addition to a required significance level of 99%, we only report trends if data in a grid box covers at least 60
years, begins no later than 1920, and ends no earlier than 2000, allowing for interruptions. This approach
focuses on well-sampled regions and limits the effect of expanding shipping routes, while regions with occa-
sionally missing data (e.g., due to World War 2) are not excluded. To quantify the relation between trends
in the observations and the reanalysis, we compute four different measures. First, we calculate the pat-
tern correlation p between trends in the observations and the reanalysis, considering only grid boxes where
observations and model show significant trends: If trendOFA (trendREA) denotes the trend in the OFA (reanal-
ysis) and the index i samples all boxes that feature trends in OFA and the reanalysis, we define the pattern
correlation as

p = r(trendOFA, trendREA), (1)

where r() denotes the Pearson correlation. Second, we define a binary classifier that predicts the sign of a
trend in the reanalysis to be identical to the sign of the trend in the OFA for all boxes where the OFA shows
a significant trend. The true positive rate (TPR) of this classifier is then computed as the number of correct
predictions divided by the number of trends in OFA. Third, we quantify the fraction of grid boxes that feature
trends in OFA but not in the reanalysis (NANR). Fourth, the total error rate is computed as the fraction of
significant trends with opposing sign in OFA and the reanalysis.

3. Results
3.1. Disagreement of Wind Speed Trends in (C)ERA20C and 20CR (1901–2010)
In the ensemble mean of the 20CR reanalysis, we find decreasing centennial trends in the annual mean wind
speeds over the North Pacific and the Arctic and increasing trends in the Southern Ocean (see Figure 1a).
Over land, trends are largely absent. In particular, there are no trends in continental Europe and relatively
weak trends west of Great Britain; this is in agreement with two earlier studies (Bett et al., 2013, 2017).

In contrast to 20CR, ERA20C and CERA20C both show strong centennial upward trends in annual mean
wind speeds over much of the globe (see Figures 1b and 1c). They are most pronounced over the oceans,
particularly in the North Atlantic, the northern North Pacific, and the Southern Oceans. Albeit weaker,
trends are also found over large parts of all continents. A comparison between the CERA20C and ERA20C
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Figure 2. Wind speed trends over boxes in the North Atlantic and North
Pacific for the assimilated observations (Observation Feedback Archive,
OFA) and both European Centre for Medium-Range Weather Forecasts
twentieth century reanalyses. CERA20C shading represents the full
ensemble range while the line denotes the ensemble mean. The black
dashed line represents the number of observations displayed on a
logarithmic scale.

trends reveals that the magnitude of changes is reduced in the coupled
reanalysis. This might hint to a dampening effect of the ocean or could
be caused by the assimilation of subsurface ocean measurements. The
overall pattern, however, remains unchanged.

Trends are absent almost everywhere in the free model runs ERA20CM
(see Figure 1d), indicating that the trends are not a feature of the model
or stem from the boundary conditions. Instead, they likely originate from
the assimilation of wind speeds and/or sea level pressure data.

An assessment of the seasonal trends yields mostly the same results (see
supporting information Figures S1–S4) . In particular, (C)ERA20C fea-
ture upward trends in the North Atlantic and the North Pacific in all sea-
sons although the December, January, and February trend in CERA20C
is relatively weak. In 20CR, the North Pacific downward trend is seen in
all seasons except of December, January, and February and no season fea-
tures widespread trends in the North Atlantic, although there are a few
patches of upward and downward trends in June, July, and August. As
for the annual values, the free model run ERA20CM is almost completely
trend free for all seasons.

While 20CR and (C)ERA20C agree on the centennial trends of annual
means in the Southern Ocean and the El Niño–Southern Oscillation
region, there is considerable disagreement in most other areas. In partic-

ular, trends of opposite sign are reported for the Northern North Pacific. Similarly, in the North Atlantic
(C)ERA20C shows a very clear upward trend, while 20CR does not feature significant trends. We will
therefore investigate these two regions more closely. Since the assimilation of marine winds is one of the
most important differences between 20CR and ERA20C, we will focus on the assimilated wind speeds in
(C)ERA20C in the remainder of this paper.

3.2. Trends Also Present in Assimilated Wind Speeds
To test the hypothesis that wind assimilation is responsible for the disagreement between (C)ERA20C and
20CR over the North Atlantic and the North Pacific, we display time series of these two regions in Figure 2.
In addition to the reanalysis wind speeds, the assimilated wind speeds from the ERA20C OFA are reported.
For both regions, all three data sets show a significant upward trend between 1900 and 2010. The spread of
the CERA20C ensemble is small at the beginning of the twentieth century (≈ 0.2 m/s) and decays to prac-
tically zero from 1950 onward. In the highly sampled North Atlantic, CERA20C and ERA20C follow the
assimilated wind speeds very closely throughout the entire twentieth century. The results are large scale and
do not depend on the precise location of the grid box as very similar results are found using a northeasterly
shifted box (see supporting information Figure S6). In the North Pacific, the reanalyses deviate substantially
from the OFA in the early twentieth century and around World War II. During these periods of sparse mea-
surements, the observed wind speeds are distinctly lower than the reanalysis. This suggests that the wind
speed assimilation pulls the models toward lower wind speeds in the first half of the century if the number
of observations is high. If the data coverage in the early decades was higher, the reanalysis trends would
thus likely be as high as the OFA trends. After WW2 and approximately between 1920 and 1935, the reanal-
yses are close to the assimilated wind speed observations also in the North Pacific. No significant trends are
found in ERA20CM (not shown).

If the twentieth century is split in two parts, pre- and post-WW2, the trend assessment yields different results
(see supporting information Figure S1). No significant trends are found in the North Atlantic OFA for either
period. However, there is a substantial jump of wind speeds during WW2 and we are not aware of any phys-
ical justification of such a jump. Significant upward trends are still found for CERA20C (both periods) and
for ERA20C (after WW2). The observational record indicates significant upward trends in the North Pacific
for both periods. They are paralleled by the reanalyses after WW2. In the first decades of the twentieth cen-
tury, significant downward trends are found in the reanalyses. They are most likely rooted in the exponential
increase of observations between 1900 and 1930 (see Figure 2).
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Figure 3. Trends in ship-based wind speed measurements that are assimilated in (C)ERA20C (projected onto the
ERA20C grid). Trends are only displayed if significant at the 99% level and if the observations at each individual grid
box fulfill these criteria: first measurement no later than 1920, last measurement not earlier than 2000, and at least 60
years of data.

Moreover, the gridded OFA wind speed trends (see Figure 3) show remarkable similarity with the
(C)ERA20C trends (cf. Figure 1). In particular, there is a strong upward signal in the North Atlantic and the
North Pacific and a downward trend in the eastern equatorial Pacific. Compared to the large extent of these
areas, the error induced through gridding of the observations is negligible. The general dominance of pos-
itive over negative trends is supported by the OFA data. However, there are also some slight discrepancies,
for example, off the Somalian coast in Eastern Africa. A quantitative analysis (see Table 1) reveals that pos-
itive trends in an OFA grid box translate into a positive trend in ERA20C (CERA20C) in at least 73% (60%)
of the cases. More stringent data requirement in terms of minimum years of available observations lead to
higher True Positive Rates, reaching up to 86% (74%). This substantiates a very strong relationship between
the trends in OFA and the reanalysis output. The generally weaker agreement between OFA and CERA20C
is due to fewer significant trends in CERA20C. For example, for 80 years of observations, the share of grid
boxes that feature a trend in OFA but not in CERA20C (i.e., NANR) is 27% as compared to 12% in ERA20C.
The higher share in CERA20C as compared to ERA20C can stem from disagreement across the ensemble or
from the assimilation of ocean observations in CERA20C among others. The total error rate, interestingly,
never deviates by more than 2% between ERA20C and CERA20C, highlighting that the increased share of
grid boxes that feature a trend in OFA but not in CERA20C balances the decreased True Positive Rate. The
main difference is thus fewer significant trends in CERA20C. Note that the share of grid boxes that feature
a trend in OFA but not in the reanalyses decays with more stringent data requirements, which means that
the best sampled trends in OFA are more often mirrored by trends in the reanalyses.

While OFA is a good predictor for the sign of trends in the reanalysis, there is only a mediocre pattern
correlation between them (0.37 ≤ p ≤ 0.48) indicating a weak linear relationship. Since the models used

Table 1
Quantitative Assessment of Relationship Between OFA and Reanalysis Trends for Different
Minimum Years of Available Observations

Years of observations Pattern correlation p TPR (%) NANR (%) TER (%)
60 0.39/0.45 73/60 12/27 15/13
80 0.45/0.48 75/62 12/27 13/11
100 0.42/0.37 86/74 6/19 8/7

Note. TPR is the true positive rate of a simple binary classifier as defined in section 2, NANR is
the fraction of grid boxes with significant trends in the Observation Feedback Archive (OFA)
and without trends in the reanalysis, and TER is the total error rate. Data are given for both
reanalyses as ERA20C/CERA20C.
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in the reanalyses are based on nonlinear dynamics and ensure fundamental principles of physics, such as
the conservation of mass, reanalysis wind speeds cannot be expected to be a local linear function of OFA
wind speeds. Instead, the precise wind speed value in any box is affected by the atmospheric dynamics in a
larger region. The relatively small correlation values thus do not conflict with our basic argument that the
reanalysis trends stem from the OFA trends.

4. Discussion—Are These Trends Real?
In light of the strong disagreement between data sets, we list known issues and findings that might help to
judge the reanalyses' trustworthiness in the following paragraphs. To start with, there is a substantial amount
of literature about spurious trends in wind speed measurements that arise due to changes in measurement
techniques (e.g., Cardone et al., 1990; The WASA Group, 1998; Ward, 1992; Ward & Hoskins, 1996). Main
aspects are increasing anemometer heights and the transition from estimated to measured wind speeds.
Thomas et al. (2008) argue that trends in the ICOADS data set disappear if known biases are accounted
for. Unfortunately, their analysis does not cover the entire twentieth century and they also report remain-
ing trends in the period 1982–2002, which are still unexplained. Even though Cardone et al. (1990) report
weaker wind speeds prior to 1950 after correction, they are still critical about the credibility of these trends.
They argue that the changes may be due to a lack of standardization in measurements which is not cap-
tured by their correction. Apart from changes in the measurement technique, the sampling has also evolved
considerably (see Figure 2).

Moreover, focusing on the Arctic Oscillation, a recent study finds that the ERA20C Arctic MSLP disagrees
with the HadSLP2 observational data set (Bloomfield et al., 2018). While no trend is found in the observa-
tions, ERA20C features a significant downward trend in the Arctic, which increases the meridional pressure
gradient over large parts of the Atlantic and the northern North Pacific. In other words, ERA20C features a
MSLP trend that is consistent with the assimilated winds while being inconsistent with MSLP observations.
In conclusion, it seems that the assimilated wind speed and MSLP observation disagree with each other. In
order to reproduce the wind speed observations, unobserved MSLP trends are generated.

Over the Northern Hemisphere's continents, decreasing wind speeds are found since around 1980 with a
rate of change of −0.7 m/s in 50 years (McVicar et al., 2012). This decrease is termed stilling and has been
largely attributed to an increasing surface roughness (Vautard et al., 2010). It is likely that ECMWF has
decided not to assimilate land-based wind measurements to avoid spurious downward trends in its reanal-
yses. Marine wind speeds are not affected via this process due to a very limited number of infrastructure
projects at the ocean surface. Stilling seems to be inconsistent with the upward (C)ERA20C trends over land
(see Figures 1b and 1c). However, surface roughness is virtually unchanged in all twentieth century reanal-
yses and (C)ERA20C is therefore not expected to feature stilling. In the real world, the downward trends
due to surface roughness changes would be superimposed on the upward trend found in (C)ERA20C and
the above mentioned studies would report the net effect.

In light of potential impacts of climate change on the wind energy sector, a couple of studies have looked
into changing wind energy potentials over land. These studies are typically based on CMIP5 (Taylor et al.,
2011) or downscaled projects such as EUROCORDEX (Jacob et al., 2014) and generally find small signals
even under strong climate change scenarios. For example, Tobin et al. (2016) report changes of ±5% of
European wind farm yields under the RCP4.5 and RCP8.5 scenarios based on EUROCORDEX. Based on
statistical-dynamical downscaling of a large CMIP5 ensemble, Reyers et al. (2015) also report uncertain
signs of changes in wind energy yields. The strong (C)ERA20C trends are hence unrealistic if the CMIP5
ensemble is considered trustworthy.

However, there are also reasons not to reject the (C)ERA20C trends as unrealistic. While the wind speed
measurement technique has evolved dramatically over the last century, the method to estimate significant
wave heights has changed less. Gulev and Grigorieva (2004) find significant long-term trends in wave heights
in the North Pacific, which supports the wind speed trends reported here. In the North Atlantic they report
significant changes for the second half of the last century only. In an effort to combine wind and wave
height measurements, Tokinaga and Xie (2011) provide a corrected data set for the period 1950–2008. They
adjust for increasing anemometer heights, employ Lindau's equivalent wind scale, and correct for known
disparities in the daily cycle of visual observations. While these adjustments reduce the trends in wind speeds
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by roughly a factor of four as compared to the unadjusted ICOADS data set, a significant trend remains in
the globally averaged wind speeds.

Moreover, Torralba et al. (2017) compare wind speed trends in modern reanalyses in 1980–2015. They report
a few locations where significant trends occur in ERA-Interim, MERRA2, and JRA55. They are mostly
located over the oceans and dominantly show upward trends. Apart from a section of the Southern Ocean,
the trends generally do not agree with our results. In particular, they do not find a robust signal over the
North Atlantic or the Northern North Pacific. However, in light of multidecadal variability, the short con-
sidered time span might prohibit assessments of long-term trends. For example, Siegismund and Schrum
(2001) reported a strong upward trend in the North Sea based on the National Centers for Atmospheric
Prediction/National Center for Atmospheric Research reanalysis between 1958 and 1997, which largely dis-
appears if an extended period 1948 to 2014 is used as input (Stendel et al., 2016). The reason that these
two studies estimate different trends may well be connected to low-frequency variability of the NAO (e.g.,
Hurrell et al., 2001). The biggest positive NAO trends associated with its multidecadal fluctuations were
observed between 1960 and 1995 (Omrani et al., 2014), and the expansion of the period to 1948–2014 will
counteract the positive NAO trend due to the recent negative NAO trend since 1990s. The significance of
these NAO fluctuations is supported by studies showing that the decadal variations in seasonal forecast skill
are linked to it (Scaife et al., 2014; Weisheimer et al., 2017). The long-term trends in winds identified here
are not likely caused by the multidecadal variability: the trend has much larger amplitude than expected
from the muldtidecadal variations (see Figure 2). Furthermore, the 110-year period considered in this study
reduces the aliasing affect of multidecadal variability on the estimation of long-term trends.

Overall, aspects that challenge the trustworthiness of the (C)ERA20C trends dominate. They come from
independent lines of evidence including highly trusted sea level pressure measurements, an evolving mea-
surement technique of marine wind speeds, land-based wind speed measurements, and climate models.
Nevertheless, there is no strict proof that the trends are wrong and even some indications that they might
be right. The trends can thus not be refuted with certainty at the moment.

5. Conclusion
We report strong upward wind speed trends in the ERA20C and CERA20C reanalyses that generally do
not agree with trends in 20CR. Similar trends are not found in the free model runs ERA20CM. We show
that there is a close agreement between the presence of the wind speed trends and the assimilated wind
speed data in ERA20C and CERA20C. Therefore, the trends in the reanalyses most likely originate from the
assimilated wind speeds.

The trends may be spurious and due to evolving wind measurement techniques. Moreover, Bloomfield et al.
(2018) report a spurious MSLP trend over the Arctic, which hints to a disagreement between the assimilated
MSLP and wind speed data. The trends also disagree with land-based wind measurements, which feature
downward trends in the last couple of decades. However, visual wave height estimations independently
support some of the wind trends such that they cannot be fully ruled out as unrealistic.

Since the Earth system is interconnected in many ways, the trends in wind speeds will likely impact other
climatic variables. We thus conclude that assessments of historical long-term trends or low-frequency vari-
ability from any single twentieth century reanalysis may be boldly misleading. We stress that it is important
to recognize the great uncertainties in long-term wind trends and that more work is required to resolve
this issue. For the time being, we suggest that any long-term impact assessment ought to be based on an
ensemble of twentieth century reanalysis that at least consists of one member of 20CR and either ERA20C
or CERA20C.
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Figure S1: Same as Fig. 2, but trends calculated seperately for the periods before and after WW2.
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Figure S2: Same as Fig. 1 but MAM for only.

Figure S3: Same as Fig. 1 but for JJA only.
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Figure S4: Same as Fig. 1 but for SON only.

Figure S5: Same as Fig. 1 but for DJF only.
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Figure S6: Same as Fig. 2a, but with a North-Easterly shifted box (35◦N – 65◦N, 40◦W – 10◦ W) as given in the lower
subplot.
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Abstract. Wind energy has seen large deployment and substantial cost reductions over the last decades. Further ambitious

upscaling is urgently needed to keep the goals of the Paris Agreement within reach. While the variability of wind power

generation poses a challenge to grid integration, much progress in quantifying, understanding and managing it has been made

over the last years. Despite this progress, relevant modes of variability in energy generation have been overlooked. Based on

long-term reanalyses of the 20th century, we demonstrate that multi-decadal wind variability has significant impact on wind5

energy generation in Germany. These modes of variability can not be detected in modern reanalyses that are typically used

for energy applications due to their short covered timespan of around 40 years. We show that energy generation over a 20y

wind park lifetime varies by around ± 5% and the summer-to-winter ratio varies by around ± 15%. Moreover, ERA-interim

based annual and winter generations are biased high as the period 1979 - 2010 overlaps with a multi-decadal maximum of wind

energy generation. The induced variations of windpark lifetime revenues are at the order of 10% with direct implications for10

profitability. Our results suggest to rethink energy system design as a perpetual process. Revenues and seasonalities change on

a multi-decadal timescale, and so does the optimum energy system layout.

1 Introduction

Wind energy is on the rise. Following a period of high subsidies, drops in wind energy costs have been dramatic. In some places,15

onshore wind energy outperforms all other types of power generation in terms of levelized costs of electricity (IEA and IRENA,

2017). This economic development, in conjunction with the necessity to eliminate carbon emissions from the electricity sector

in the next decades (Schleussner et al., 2016; Rogelj et al., 2015), will most certainly lead to strong investments in wind energy.

Wind parks are costly long-term investments. Since 2000, almost bC 95 have been invested in wind parks in Germany

(BMWi, 2018). Compared to current stock exchange values, this figure is higher than the value of Volkswagen and only20
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marginally lower than that of Germany’s most valuable company SAP (PWC, 2018). While planning is typically based on 20

year lifetimes, real-world experiences suggest that turbines can be operated even longer (Ziegler et al., 2018).

Wind power generation is variable which complicates its integration into power systems. This fact is increasingly accounted

for in energy system models (a recent overview is provided by Ringkjøb et al., 2018). Underlying wind generation timeseries

are typically based on modern reanalysis (e.g., Gonzalez Aparcio et al., 2016; Staffell and Pfenninger, 2016; Moraes et al.,5

2018). These timeseries cover around 40 years as the observations that they rely on become available in the late 1970s. Many

characteristics of renewable generation variability, such as monthly, seasonal and even decadal variability can be investigated

using these datasets. But are 40 years sufficient to capture all relevant modes of wind variability?

Some components of the climate system vary on very long timescales and interactions can give rise to low-frequency vari-

ability of atmospheric processes. For example, the North Atlantic Oscillation (NAO) has a low-frequency component that is10

linked to ocean and stratospheric variability (Omrani et al., 2016). The NAO has also been shown to impact the British wind

sector (Brayshaw et al., 2011; Ely et al., 2013) and solar generation in Iberia (Jerez et al., 2013). These links suggest that

renewable power systems could be affected by low-frequency climate variability. While much attention has been given to the

impacts of climate change on renewable power systems (e.g., Pryor and Barthelmie, 2010; Reyers et al., 2016; Tobin et al.,

2016; Wohland et al., 2017; Weber et al., 2018; Schlott et al., 2018; Karnauskas et al., 2018; Jerez et al., 2019), little emphasis15

has been put on the natural low-frequency variability of wind energy (with the notable exception of Bett et al., 2013, 2017).

The fact that climate change assessments unanimously report relatively small to negligible impacts of climate change in Eu-

rope does not necessarily imply that natural variability is insignificant because climate models exhibit major discrepancies in

simulating low-frequency climate variability (e.g., Ba et al., 2014).

In this study, we investigate the long-term evolution of wind energy generation in Germany. We aim to verify if there are20

relevant modes of variability on timescales of multiple decades. If these modes exist, it is crucially important to incorporate

them in long-term decision making with regard to the design and operation of future power systems. Moreover, they would not

only matter on a system level but also affect individual investments.

2 Methods and data

Our focus is on the effect of long-term natural climate variability on wind power generation. To isolate the imprint of the25

climate, we neglect potential changes in technology and deployment of wind parks. Specifically, we freeze the current config-

uration of wind parks and compute their theoretical energy generation over the 20th century. This approach allows to quantify

the importance of climate driven multidecadal variability of wind energy in Germany.

We derive nationally aggregated wind generation timeseries for the period 1901-2010 following the procedure detailed in

Wohland et al. (2018a). In short, the method consists of: vertical extrapolation of 10m wind speeds to 80m hub height using30

a power law followed by the application of a standard turbine power curve at each grid point and finally a multiplication with

the installed capacities (from OPSD, 2017). Projections of the installed capacities onto the grids of the 20th century reanalyses

are shown in Fig. 1.
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Figure 1. Allocation of turbines based on the Open Power System Database for the end of 2016 (OPSD, 2017). Data is projected on the

ERA20CM/ERA20C/CERA20C grid (a) and the 20CR grid (b).

2.1 20th century reanalyses

Wind speeds come from the full set of current 20th century reanalyses and are provided by two different centers: the European

Centre for Medium-Range Weather Forecast (ECMWF) and the National Oceanic and Atmospheric Administration (NOAA)

from the USA. NOAA provided the first 20th century reanalysis named 20CR (Compo et al., 2011). 20CR is an atmospheric

reanalysis that assimilates sea-level pressure observations only. In this study, we use the ensemble mean wind speeds from5

the version 20CRv2c which has 58 ensemble members. ECMWF followed a different approach and assimilates both sea-level

pressure and marine wind observations. This difference in approaches yields substantial disagreement with respect to long-

term wind speed trends (Wohland et al., 2019) but, as we show, there is large agreement regarding seasonal to multi-decadal

variability after subtraction of the linear trends. ECMWF provides an atmosphere (ERA20C, Poli et al., 2016) and a coupled

atmosphere-ocean 20th century reanalysis (CERA20C, Laloyaux et al., 2018). ERA20C is deterministic (i.e., has only one10

member) and CERA20C comes with a ten member ensemble. Unless otherwise stated, we report the CERA20C ensemble

mean as the spread is usually very limited.

The longer temporal coverage comes at the cost of reduced spatial resolution as compared with modern reanalyses such

as ERAINT (Dee et al., 2011), MERRA/MERRA2 (Rienecker et al., 2011) or ERA5 (Hennermann, 2018). ERA20C and

CERA20C have a spatial resolution of 1.125◦ x 1.125◦ and the 20CR resolution is even coarser (1.875◦ x 1.875◦). While the15

datasets are thus clearly not well suited for site-specific assessments, they are sufficiently detailed for country-level assessments

(see also Fig. 1). Temporal resolution is 3h for all datasets and hence allows to capture intra-day effects.
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2.2 Trend removal and timescale of interest

There is demonstrated disagreement of the 20th century reanalyses in terms of wind speed trends which originates from the

assmimilation of marine winds by ECMWF (Wohland et al., 2019). We thus remove the long-term (1901 - 2010) trends by

subtraction of the zero-mean trend that is obtained via least-squares fitting of a linear fit function and subsequent subtraction

of the trends mean:5

G(t) =Graw(t)− (Gtrend(t)−〈Gtrend(t)〉) , (1)

where Graw(t) denotes the raw annual or seasonal timeseries, Gtrend(t) denotes the linear fit and 〈Gtrend(t)〉 is its mean value.

We focus on the long term evolution of 20 year generation averages because 20 years are a typical lifetime for wind parks.

Moreover, the averaging smooths the pronounced interannual variability which has already been extensively studied elsewhere.

Both energy system planning and wind park investment are forward procedures in the sense that infrastructure built today will10

be operated under the weather conditions of the future. We therefore decided to compute 20 year forward running means of

wind power generation G20 as

G20(t) =
1
20

t+20y∑

t′=t

G(t′), (2)

where G(t′) denotes the annual wind power generation in year t′. To study the evolution in different seasons (winter DJF,

spring MAM, summer JJA, autumn SON), we similarly compute the seasonal 20 year means as15

Gseason
20 (t) =

1
20

t+20y∑

t′=t

G(t′)season, (3)

where G(t′)season denotes the wind power generation in the respective season of year t′. Note that G20(t) and Gseason
20 (t) are

ill defined at the end of the dataset when 20 years are not available. We thus only compute them up to 1990. We generally

report normalized lifetime generation or normalized seasonal lifetime generation which is obtained by division of G20(t) or

Gseason
20 (t) with the 1901-2010 mean 〈G(t)〉 or 〈G(t)〉season, respectively.20

2.2.1 Seasonality

In addition to seasonal generation averages, we report the seasonality S, which we define as the ratio of normalized winter to

summer generation:

S(t) =
GDJF

20 (t)
〈G〉DJF

/
GJJA

20 (t)
〈G〉JJA

. (4)

Seasonality is an important metric for power system design and has a large influence on optimum technology mixes (e.g.,25

Heide et al., 2010). In Germany, wind power generation is generally higher in autumn and winter than in spring and summer.

4
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To ensure stable operation of the power system (i.e., a balance of generation and demand at all timesteps), seasonality has to be

accounted for in power system design. For example, the dimensioning of storage or backup infrastructure and optimum wind

to solar mixes depend on the seasonality. For completeness, we provide an extended definition of seasonality Ŝ, which also

includes autumn and spring as

ˆS(t) =
GSON+DJF

20 (t)
〈G〉SON+DJF

/
GMAM+JJA

20 (t)
〈G〉MAM+JJA

. (5)5

2.2.2 Bias

We use the term bias to assess whether the period covered by ERAINT is representative for the longer period covered by

the 20th century reanalyses. For example, if the seasonality over 1979 – 2010 is higher than over 1900 – 2010, we call the

seasonality estimates of modern reanalyses biased high.

2.3 Multi-taper spectral estimation10

We test significance of low-frequency components in the annual and seasonal wind generation timeseries using the multi-taper

method (MTM, Ghil, 2002). Classical approaches, such as Fourier spectral analysis suffer from spectral leakage when applied

to relatively short timeseries, hindering reliable assessments. MTM provides an alternative in that it calculates tapers that are

designed to minimize leakage. We use K = 3 tapers with a bandwidth of p= 2y as suggested by Ghil (2002) for a comparable

timeseries. Eigentapers are weighted based on their eigenvalues and the computation is performed via the Python package15

spectrum (Cokelaer and Hasch, 2017)

Significance testing is based on the null hypothesis of red noise. The underlying process that creates a red-noise spectrum

is referred to as a autoregressive model of first order or AR(1). The parameters of the red-noise spectrum SR(f) are fitted to

minimize the mismatch between the median smoothed real and the red-noise spectrum (as suggested by Ghil, 2002; Mann and

Lees, 1996). A peak in the real spectrum S(f) at frequency f ′ is considered significant at the 90% level if20

S(f ′)> SR(f ′) ·χ2(90%,2K), (6)

again following (Ghil, 2002). χ2(90%,2K) denotes the chi square distribution with 2K degrees of freedom at a 90%

confidence level. White noise is a special case of red noise and is characterized by a constant spectrum (i.e., SW(f) = S0,

where S0 is a real positive number). White noise is generated by an autoregressive model of 0th order, AR(0).

2.4 Impacts on investments25

In an investment decision, the installation and operational costs of an asset have to be compared with expected revenues. Taking

into account risks and alternative investments, an investment is made if the expected revenues exceed the total costs by some

amount. The expected revenue may be substantially flawed if it is based on only a couple of years of wind data. In contrast,

decision makers that are aware of all modes of wind variability gain an advantage through more reliable revenue estimates.

5
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To quantify this impact of low-frequency wind variability on wind park investments, we calculate the discounted lifetime

cash inflows as

Cin(t) = c ·
t+τ∑

t′=t

1
(1 + γ+ ∆η)t′−t

G(t′), (7)

where γ = 5.5%/y is the discount rate, ∆η ≈ 1.5%%/y accounts for the decline in turbine performance (Staffell and Green,

2014), τ = 20y is the conservatively assumed lifetime, c is the revenue per generated unit of electricity and G is wind power5

generation. We set c to be constant because the German system is still designed to guarantee prices for wind park operators.

Prior to the recent shift towards auctions, the price was determined politically. Since the latest reform of the renewable energy

act in 2017, the price is determined via auctions but is still guaranteed over 20 years (BMWi, 2017). Both for old and new wind

parks it is thus justified to use constant prices, albeit the price will differ dependent on the date of construction and the auction

outcome.10

2.5 North Atlantic Oscillation

To gain more insight into the co-evolution of wind generation variability and the general circulation of the atmosphere, we

include the North Atlantic Oscillation (NAO). The NAO is the leading pattern of climate variability in the North Atlantic

Sector affecting weather and climate over Europe, particularly in winter (Marshall et al., 2001). It is here defined as the first

principle component of sea-level pressure over the area 20◦N to 80◦N and 90◦W to 40◦E as detailed in Omrani et al. (2016).15

Our NAO index is computed from sea-level pressure data from the Hadley Center (Rayner, 2003) over the winter months

December, January, February.

3 Validation

In a recent study, we have shown that ERAINT has skill to reproduce reported wind power generation in Germany (Wohland

et al., 2018a). It thus appears logical to test the 20th century reanalyses by comparison with ERAINT over the overlapping20

period (1979-2009). We also add the widely used Renewables.Ninja wind energy dataset that is based on MERRA-2 (Staffell

and Pfenninger, 2016).

The evolution of the normalized lifetime mean generation is similar for all reanalyses under consideration (see Fig. 2a). All

start with a period of high values that is followed by roughly five years of low values. Towards the end, the normalized lifetime

generation recovers, but not to the same levels as in the first couple of years.25

On a finer temporal scale, there is good correlation between the daily generations based on ERAINT and 20CR, ERA20C

and CERA20C, respectively (see Fig. 2b–d). 20CR overestimates daily generation (slope < 1 in Fig. 2b). In contrast, ERA20C

and CERA20C underestimate daily generation (slopes > 1 in Fig. 2c&d). This systematic over/underestimation of daily wind

generations, however, is of minor importance in this study because it is reduced by normalization with the long-term mean. All

20th century reanalyses agree well with ERAINT for very high daily generations larger than around 40GW. Pearson correlation30

6
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is high for 20CR (r = 0.92) and even higher for the ECMWF products (r = 0.98). A similar result is found for the RMSE which

is 4.3 GW for 20CR and around 1.3 GW for ERA20C and CERA20C, again indicating larger agreement across the ECMWF

reanalyses. This larger agreement could be due to more similar spatial resolutions that allow to capture the same processes

in (C)ERA20C as in ERAINT. It may also reflect the common institutional origin as ERAINT and (C)ERA20C have been

developed at ECMWF and are based on different versions of the same model. In any case, the substantial agreement of the5

detrended timeseries on different timescales creates confidence in the 20th century reanalyses.

From visual inspection, there also seems to be a downward trend over the period (1979 - 1990). A trend analysis of the

ERAINT data indeed reveals a significant (at the 99% level) downward trend of the normalized lifetime generation, highlighting

the relevance of long-term assessments. However, this trend should be interpreted cautiously as it is calculated using only 11

(not independent) values of G20. The remainder of the paper is therefore based on longer timeseries to allow more robust10

assessments of multi-decadal variability.
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Figure 2. German wind power generation from modern reanalyses (ERAINT, MERRA2) and 20th century reanalyses (20CR,

ERA20C, CERA20C) for period of overlap. a) Normalized lifetime generation (i.e., the reported value for 1990 is the average wind

power generation of the years 1990-2009 normalized with the long-term mean). Renewables.Ninja is an openly available generation dataset

that is based on MERRA2. b-d) scatter plots of daily generation from ERAINT versus daily values from 20CR (b), ERA20C (c), CERA20C

(d) for the 30y period from 1979 to 2009. The Pearson correlation coefficient r between the daily data is given in the legends. The data is

shown prior to long-term trend removal which was performed for the centennial analysis (see Methods).
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Table 1. Trend characteristics. Slopes are rounded to integer values and the CERA20C slope corresponds to the mean of the slopes of the

individual ensemble members. Significance is tested against the null hypothesis of no trend and using a two-sided t-test. For CERA20C, all

streams feature significant trends individually.

dataset slope [%/100y] significant at 99.9% level?

20CR version 0 no

ERA20C 28 yes

CERA20C 16 yes

4 Results

4.1 Trends

We find ERA20C and CERA20C to feature statistically highly significant trends (see Table 1). In both datasets, the trends are

strong: ERA20C reports 28% higher wind power generation at the end of the 20th century as compared to its beginning. The

corresponding increase in CERA20C is substantial (16% increase in a hundred years) but roughly half as large. In contrast,5

there is no significant trend in 20CR.

The existence of these trends comes as no surprise given strong long-term trends in (C)ERA20C surface wind speeds over

large parts of the world (Wohland et al., 2019). In our previous publication, we showed that the trends originate from the

assimilated marine wind speeds that also feature very strong long-term trends. They are likely spurious and caused by the

evolving measurement technique. In addition to wind speed trends, ERA20C also features trends in marine sea level pressure10

gradients that are not in line with observations (Bloomfield et al., 2018). All following analyses are therefore based on detrended

timeseries.

4.2 Low-frequency variability in normalized lifetime wind generation

After subtraction of the trends, there is large agreement among the datasets regarding multi-decadal variability of normalized

lifetime generation (see Fig. 3). Maxima and minima of annual and seasonal timeseries coincide for ERA20C, CERA20C15

and 20CR. The amplitude of variability is also comparable among the datasets for all seasons and the annual values. Only in

September-October-November (SON), there is disagreement from 1960 onwards as 20CR reports values that are 5 to 10% off

the (C)ERA20C values. Generally, there is stronger variability of seasonal than annual generation, hinting at compensating

effects between seasons. In June-July-August (JJA), for example, the maximum to minimum difference is around 15%. This

compares to 5 to 10% maximum to minimum difference for the annual values.20

German annual generation is dominated by winter generation due to generally stronger winds in winter. This winter de-

pendence explains the high similarity between the annual and winter timeseries (compare Fig. 3 a with c) and also the high

correlation of r = 0.71 between them (see Fig. 3 b). On the timescales considered here, there is also a weak anti-correlation

between the annual and the summer values (r =−0.39) and between the summer and autumn values (r =−0.46).

9
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The ratio of winter to summer generation (i.e., seasonality) is characterized by strong multi-decadal variability. While the

maximum 20 year seasonality is between 110% and almost 120% (dependent on the dataset), the minimum lies between 80%

and 90% (see Fig. 3g). If an extended definition of seasonality is applied, the amplitude of the variability is reduced but the

maximum to minimum difference still ranges around 15% to 20% (see Fig. 3h).

In winter there is also a good connection between 20 year mean anomalies of the North Atlantic Oscillation (NAO) and5

normalized lifetime generation as highlighted by correlation coefficients between them that range from r = 0.7 to r = 0.76 for

the different datasets (see Fig. 4a). This relation is consistent with the NAO being the dominant pattern of winter time climate

variability in the North Atlantic sector (Marshall et al., 2001). The agreement is strongest on multidecadal timescales and it is

particularly high since 1960. However, a peak in normalized lifetime wind generation around mid century is not paralleled by

a similar feature in the NAO.10

Modern reanalyses, such as ERAINT, are too short to capture these modes of low-frequency variability (see blue arrows in

Fig. 3). Unfortunately, ERAINT does not only fail to capture these effects, but also provides biased high estimates in some

cases. For example, the seasonality reported by ERAINT, coincides with above average values of seasonality and is hence not

representative in general (see Fig. 3g). The same is true for annual and winter generation. Moreover, ERAINT begins at a time

of maximum normalized lifetime wind generation. ERAINT based trend assessments can thus misidentify the downward part15

of reoccurring cycles as trends (as discussed in Sec. 3). Similarly, the decline of autumn generation since the 1970s could be

falsely interpreted as a trend.
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Figure 3. Normalized lifetime generation from German wind parks. Timeseries are based on detrendeded 20th century reanalyses. The

subplots show annual (a) and seasonal (c-f) timeseries. Different versions of the seasonality are also displayed (g-h) and correlations between

seasons are reported for ERA20C (b). The data has been smoothed by application of a running mean 20y forward filter (i.e., the reported

value for 1900 is the average of the years 1900-1919). The blue arrow highlights the limited coverage of ERAINT.

11

Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-8
Manuscript under review for journal Wind Energ. Sci.
Discussion started: 19 March 2019
c© Author(s) 2019. CC BY 4.0 License.



1920 1940 1960 1980
80

85

90

95

100

105

110

115

120

G
D

J
F

20 〈 G〉 D
J
F
 [

%
]

a
ERA20C, r = 0.76
20CR, r = 0.71
CERA20C, r = 0.7

0.00 0.02 0.04 0.06 0.08 0.10

frequency [y−1]

10-1

100

101

p
o
w

e
r

b

1.0

0.5

0.0

0.5

1.0

2
0
 y

 m
e
a
n
 o

f 
N

A
O

 a
n
o
m

a
ly 0.0 0.1 0.2 0.3 0.4 0.5

10-1

100

101

Figure 4. Relation between normalized lifetime winter generation and the winter North Atlantic Oscillation. Timeseries of wind power

generation (in red, orange and grey) refer to the left y-axis while the NAO timeseries (in blue) refers to the right y-axis (a). Pearson correlation

coefficients r are calculated between the 20y mean NAO anomaly and the 20y mean DJF wind power generation. MTM spectrum of the

winter NAO (bullets in b), focusing on the low-frequency interval of the spectrum. Solid lines represent the fitted spectrum of an AR(1)

process that is used for significance testing and the dashed lines correspond to the 90% confidence level (see Methods for details).
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4.3 Spectral analysis

We perform multi-taper spectral analysis for detrended annual and seasonal German wind power generation for the period

1901-2010 (Fig 5). No prior smoothing or filtering is applied. A focus is given to the low frequency part of the spectrum with

frequencies of less than 0.1 y−1, which corresponds to at least 10 year periods. There are statistically significant low frequency

peaks in all seasons with different levels of agreement among reanalyses. All reanalyses feature a significant peak in MAM5

(f ≈ 0.04y−1 or f−1 ≈ 25y) and JJA (f ≈ 0.03y−1 or f−1 ≈ 33y) and the latter is also clearly visible in the timeseries (see

Fig. 3e). In SON, CERA20C and ERA20C report a clearly significant peak that is also almost significant in 20CR (f ≈ 0.02y−1

or f−1 ≈ 50y). In winter there is a spectral peak with period of around 50 years (f ≈ 0.02y−1) that is related to the NAO (see

Fig.4b). This connection to a physical pattern of climate variability suggests that the peak is not a statistical artifact, despite

its low statistical significance. The generally high agreement among the reanalyses adds confidence to the existence of multi-10

decadal periodicities during the historical period.

Interestingly, the AR(1) fit to the median-smoothed spectra does not reveal red noise but white noise (except for MAM), in

agreement with the understanding of atmospheric variability as a process that is white to first order (Wunsch, 1999). This can

be seen by the thin solid lines in Fig. 5, which display the fitted AR(1) spectra: They are virtually flat, i.e. virtually independent

of the frequency. For example, in JJA (Fig. 5d), the power of the AR(1) fit is 100 (GWh/GWh)2 for all frequencies. White noise15

implies that the system does not have relevant memory from one year to the next but rather behaves erratically on year-to-year

timescales.
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Figure 5. Spectral analysis of the wind generation timeseries using multi-taper method (MTM). Subplots report annual (a) and seasonal

spectra (b-e). Focus is given to the low-frequency component with frequencies of less than 0.1 y−1 while the full spectrum is shown in the

inset of each subplot. Solid lines represent the fitted spectrum of an AR(1) process that is used for significance testing and the dashed lines

correspond to the 90% confidence level for each dataset (see Methods for details).
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4.4 Relevance for investment decisions

In addition to the relevance of low-frequency variability for system design, the long lifetime of wind parks makes returns on

individual investment susceptible to low-frequency variability and not taking this susceptibility into account has substantial

economic implications. The effect is illustrated in Fig. 6, where the discounted lifetime cash inflow of a wind park that follows

the German mean wind generation is shown. The values are normalized such that 100% refers to the 1901-2010 mean. This5

graph shows variability of a wind park’s cash inflows between a maximum of 104% to 107% and a minimum of 95% to 97%

dependent on the phase of low-frequency climate variability at the commissioning date. In other words, a wind park created

in 1955 would produce 7-12% less revenue than one created in 1975. Recall that we abstract from technology innovations

throughout the entire manuscript. Dependent on the individual project characteristics, most notably the ratio of the investment

to the expected lifetime cash inflows, a few per cent more or less on the income side can turn an average project into a very10

profitable one or might leave a slightly profitable project unprofitable. Roughly between 1960 and 1975, there was a linear

increase of cash inflows which has been followed by a decrease since 1980. Assessments based on ERAINT may tend to

overestimate discounted lifetime cash inflows as ERAINT coincides with a period of high wind generation.
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Figure 6. Long-term evolution of normalized discounted lifetime cash inflows of a wind park whose generation follows the German

mean. A lifetime of 20y, ageing of 1.5%/y and a discount rate of 5.5%/y are assumed. The timeseries ends in 1990 because the underlying

reanalyses end in 2010.
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5 Discussion and concluding remarks

Based on the full set of current 20th century reanalyses (20CR, ERA20C, CERA20C), we have shown that multi-decadal

variability matters for wind energy in Germany. There are statistically significant modes of generation variability on timescales

of 25 to 50 years in spring, summer and autumn. In winter, there is a spectral peak with period of around 50 years that is related

to the NAO. This connection to a physical pattern of climate variability suggests that the peak is not a statistical artifact, despite5

its low statistical significance.

Our results imply that in addition to relatively intuitive timescales (diurnal, seasonal, annual), also slower and less intuitive

modes of variability ought to be included in energy assessments. While current modern reanalyses are too short to capture

multi-decadal wind generation variability, future products may be better suited due to extended temporal coverage (e.g., ERA5

will start in 1950 and is expected to be entirely published in early 2019).10

One of the most relevant results for power system design is the variability of seasonality (defined as the ratio of winter to

summer generation here). Far from being constant, 20 year mean seasonality varies by almost up to ±15%. As the seasonal

evolution of generation is one main factor to determine optimal contributions of wind and photovoltaics (Heide et al., 2010),

such optimum shares should also be considered as timeseries that vary on timescales of 50 years or so. This variability calls for

a perpetual redesign of power systems to follow climate variability. ERAINT samples a seasonality maximum and therefore15

reports biased high seasonality. This bias implies that lifetime wind power generation is most often more stable throughout the

year than would be expected from ERAINT, facilitating system integration. In the bigger picture, it may be relevant to rethink

whether changes in seasonality that were attributed to climate change in earlier studies (e.g., Reyers et al., 2016) may simply

reflect natural variability.

There are also implications for individual wind park projects as their profitability is strongly influenced by climate variability20

on long timescales. The same wind park commissioned in different phases of low-frequency generation variability, can have

discounted lifetime cash inflows anywhere between 95% and 107% of the mean value with potentially severe impacts on

profitability. To give an impression of scale: As the current German wind park fleet represents a bC 95 investment, this translates

into a lifetime revenue spread at the order of bC 10 in Germany alone.

The effect of wind variability on revenues obviously depends on the market design. Instead of guaranteeing a constant price25

for wind energy, adaptive prices that fall in times of high generation and decline in times of low generation could dampen the

economic effect of multi-decadal wind variability. We speculate that a higher price of CO2 emission allowances in combination

with an end to guaranteed renewable feed-in might be a possible route forward. The increased CO2 emission allowance price

would guarantee that renewables are favoured over fossils for mere economic reasons and it would also ensure sufficiently high

market prices. During decades of high (low) wind generation, the average market price would fall (increase) thereby smoothing30

the variability of revenues and reducing the risk for investors. However, this strategy would only constitute an interim solution

as it relies on a substantial share of non-renewable generation. In a future zero emission energy system, all variability from

wind generation needs to be balanced by other means, for example through sector coupling, flexible demands or large scale
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storage (Brown et al., 2018). It might become necessary to ponder decadal energy storage systems or to use the atmosphere as

a carbon storage (Wohland et al., 2018b).

Our study raises new questions. While Germany was chosen as an exemplary case due to its current high deployment of

wind turbines, other and larger areas should also be studied. Are there compensating effects across Europe? If yes, expansion

of the transmission network and optimized siting could help mitigate multi-decadal variability in the same fashion that it helps5

to smooth synoptic generation variability (e.g., Rodriguez et al., 2014; Grams et al., 2017; Santos-Alamillos et al., 2017).

This study is restricted to wind energy because we doubt the reanalyses’ skill to capture cloud dynamics sufficiently well.

Nevertheless, it would be of high interest to investigate low frequency variability of other types of renewable generation: Do

similar modes exist for photovoltaics and hydropower? Lastly, climate models are, in theory, an excellent tool to quantify and

study natural climate variability as timeseries of arbitrary length can be obtained. Multi-decadal variability can thus be sampled10

substantially better than in 20th century reanalyses. However, it remains to be shown whether climate models are capable to

reproduce multi-decadal variability that is relevant for the energy sector.
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Abstract The mitigation of climate change requires fast reductions in greenhouse gas emissions and
calls for fundamental transitions of energy systems. In most places, the increased exploitation of variable
renewable sources (wind and solar) forms the backbone of these transitions. To remain consistent with
the Paris Agreement temperature goals, negative emission technologies will likely be needed to achieve
net zero emissions in the second half of the century. In integrated assessment models, negative emissions
are typically realized through land-based approaches. However, due to their coarse temporal and spatial
resolution, such models might underestimate the potential of decentrally deployable and flexible
technologies such as Direct Air Capture (DAC). Based on validated high-resolution power generation time
series, we show that DAC can extract CO2 from the atmosphere and facilitate the integration of variable
renewables at the same time. It is a promising flexibility provider as it can be ramped within minutes. Our
results show that negative emissions of up to 500 Mt CO2/year in Europe may be achievable by using
renewable excess energy only. Electricity systems with high shares of volatile renewables will induce
excess generation events during which electricity is cheap thereby lowering the operational costs of DAC.
If investment costs can be sufficiently reduced, this may render very energy intensive but highly flexible
technologies such as DAC viable.

Plain Language Summary There is a finite amount of greenhouse gases that humankind can emit
into the atmosphere before the 1.5 and 2 ∘C climate targets are exceeded. This calls for emission reductions
in all sectors of human activity, in particular in the energy sector. In many countries, energy transitions have
already led to the expansion of variable renewable energy technologies that depend strongly on weather
such as wind and solar. In addition to the expansion of renewable energy, scenarios that achieve the 1.5
or 2 ∘C target require negative carbon emissions later in the century to make up for insufficient emission
reductions so far. In this study, we investigate the cobenefits of a negative emission technology called Direct
Air Capture (DAC) and a high share of wind and solar energy. The advantage of DAC is that it can in principle
be deployed decentrally and it can be switched on and off very quickly. It is thus possible to use DAC
to smooth the variability of renewable power generation while achieving negative emissions. Our study
focuses on the technical aspects of including DAC in the power system and does not provide a thorough
assessment of the economic viability of DAC deployment.

1. Introduction

The achievement of the Paris Agreement climate goals is difficult to impossible without the availability of
negative carbon emissions, as the reduction of greenhouse gas emissions to date is insufficient (Schleussner
et al., 2016). Halving global CO2 emissions every decade from 2020 onward as well as upscaling of negative
emission technologies is required to reach global net zero CO2 emissions by midcentury (Rockström et al.,
2017). The exact amount of required negative CO2 emissions depends on a range of scenario assumptions,
first and foremost the stringency of near-term emission reductions (van Vuuren et al., 2018). Implementing
negative emissions at the scale demanded by energy economic models requires large-scale investments (Fuss
et al., 2014). While substantial progress in the deployment of renewable energies has been seen over recent
years, progress on negative emission falls behind expectations (Peters et al., 2017).
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A multitude of negative emission technologies exists. Minx et al. (2018) provide an overview and distinguish
seven different technologies: afforestation and reforestation, soil carbon sequestration, biochar, bioenergy
in combination with carbon capture and storage (BECCS), enhanced weathering, ocean fertilization, and
Direct Air Capture (DAC). Among them, BECCS features most prominently (Minx et al., 2017). Along with
other land-based approaches, it requires substantial amounts of land and water raising sustainability con-
cerns (Smith et al., 2015). The focus on BECCS or afforestation and reforestation in energy economic models
may be partly linked to outdated assumptions about the development of renewable energy costs that lead
to overly conservative deployment (Creutzig et al., 2017). As recently argued by van Vuuren et al. (2017), an
open discussion of negative emission technologies is urgently needed. For completeness, this discussion has
to include DAC.

2. DAC May Complement Volatile Renewables

The availability of very cheap renewable energy, including occasional negative prices (Kyritsis et al., 2017),
provides an opportunity to implement negative emission technologies that were previously uneconomic.
For example, DAC has been assessed to be of limited applicability due to high costs (two-thirds capital and
one-third operational) and energy demand at least in the near term (Smith et al., 2015). However, substan-
tial amounts of excess energy are available in highly renewable power systems due to temporal and spatial
volatility of these energy sources (e.g., Rodriguez et al., 2014). To ensure system stability and to avoid wasting
electricity, flexibility options that harmonize generation and loads are needed (Kondziella & Bruckner, 2016;
Schäfer et al., 2018). Various technologies can provide this flexibility (e.g., power-to-gas/heat, dispatchable
renewables, and demand-side-management), and all of them will compete in a real-world market situa-
tion. Without touching the intricate and uncertain economic comparison between the different flexibility
providers, we want to expand this list by DAC that can also provide this system service, as it can be ramped
within minutes (Climeworks, 2017). Moreover, it can be deployed in decentral units, which may alleviate trans-
mission grid congestions and corresponding costs (Wohland et al., 2018). DAC could thus in principle be
complementary to the fast expansion of renewables.

Here we explore the potential of negative emissions by integrating DAC in a stylized simulation of the
European electricity system. We follow an optimistic scenario for European cooperation in assuming that
all benefits from interstate balancing are implemented. This scenario provides a lower bound for the usage
of DAC because grid limitations increase the amount of excess energy. Based on validated long-term time
series for photovoltaics and wind power generation in 28 states (Pfenninger & Staffell, 2016; Staffell &
Pfenninger, 2016), we run a simple energy balance model that accounts for storage but neglects other flexibil-
ity options (e.g., sector coupling and demand-side management). The storage strategy is based on the filling
level and a day-ahead forecast of residual loads (see the supporting information). DAC is assumed to become
available at scale and is modeled for different second-order efficiencies as proposed by House et al. (2011).
Unless explicitly stated, we conservatively assume that the heat needed for DAC is electricity based. During
shortfall in the generation of renewable energy, we assume open-cycle gas power plants will provide backup
energy. Although such a stylized experimental design does not allow for robust projections of technology
deployment, it yields interesting insights into fundamental cobenefits of DAC and highly renewable systems.

3. System Requirements for Net Negative Emissions

DAC contributes relevant amounts of negative emissions only if at least 80% of the electricity are renew-
able, independent on the installed DAC capacity (see Figure 1). DAC contributes significantly earlier in smaller
power systems but backup emissions are also higher (see Figure S2). This indicates potential for early deploy-
ment in conjunction with progressing grid extensions. Current national renewable contributions are still
substantially smaller. For example, in 2017 the German power system generated 28% from wind and solar
although some of its federal states already exceeded 100%. As expected, large negative emissions require
large DAC capacities and renewable penetrations. Net negative emissions at very high penetrations can
exceed 500 Mt CO2 although the viability of such high penetrations is unclear. For a DAC capacity of 300
GW, net emissions roughly become a linear function of the penetration. For comparison, the European net
generating capacity was about 1,000 GW in late 2015 (ENTSOE, 2018).

Storage technologies and DAC are not competing but complementary: Increases in storage size allow for
reductions of remaining carbon emissions and enable more efficient usage of DAC units. Their codependency
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Figure 1. European CO2 emissions versus renewable penetration for different DAC capacities at a storage size of one
average load day. Red bars denote emissions from open-cycle gas turbines that are used for backup. Blue indicates
negative emissions from DAC. Green circles denote net emissions. DAC = Direct Air Capture.

in order to reach a hypothetical negative emission target of 500 Mt CO2 is shown in Figure 2. Below a
DAC capacity of roughly 130 GW, the target is infeasible. Above that limit, necessary penetrations generally
decrease with increasing DAC capacities and storage sizes.

Our DAC energy estimates are based on the upper bounds provided by a producer named Climeworks
(Lozanovski et al., 2014). They are consistent with other reports (Keith et al., 2018; Socolow et al., 2011) and
the Climeworks second-order efficiency (5.5%) is slightly lower than in the two other studies (6.3% and 6.9%,
respectively). We refer to supporting information Text S1.4 for more details. Since we also assume that heat is
entirely generated from electricity, our estimates can be seen as conservative. Energy requirements could be
substantially lowered if the technology advances or if the heat partly comes from sources other than electric-
ity. For example, the second-order efficiency would increase from 𝜂 = 5.5% to 𝜂 = 9.7%, and energy needs
drop by more than 40%, if half the heat came from other sources (see Figure S3). Similarly, inclusion of dis-
patchable renewables such as bioenergy, hydro power and concentrated solar (Pfenninger et al., 2014) would
allow parts of the backup to be carbon neutral and thereby facilitating net negative emissions.

4. DAC Merits Thorough Assessments

Our results suggest that DAC has the potential to fully complement highly renewable power systems. This
is due to its flexibility and decentrality, which can be advantageous for system integration of high shares
of volatile renewables. DAC also requires less land and water resources than BECCS. We thus argue that

Figure 2. Codependency of storage size, DAC capacity, and renewable penetration to reach a negative emission target
of 500 Mt CO2/year. Colors and contours denote the necessary renewable penetration. Gray denotes infeasibility given
the combination of storage size and DAC capacity. The storage size is given in units of the average daily load. DAC =
Direct Air Capture.
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DAC should be intensively researched. In addition to the technological development of DAC, more realistic
energy system simulations that quantify cobenefits and competitions of different technologies are needed.
For instance, coupling the heating and transport sector to the electricity system can also provide flexibility
(Brown et al., 2018; Connolly et al., 2016) and power to hydrogen may help to decarbonize the industrial sector
(Welder et al., 2018). Present-day global energy economic integrated assessment models are not necessar-
ily well suited, because they do not resolve the high-frequency generation dynamics explicitly and hence
may underestimate the potential of DAC. Currently high investment costs for DAC are not prohibitive as
there will likely be massive potentials for cost reductions as the technology matures and is scaled up (Keith
et al., 2018; Lackner et al., 2012). Scenario studies should consider steep learning curves as highlighted by
the recent development in the photovoltaics sector (Creutzig et al., 2017). While the investment costs may
thus be brought down, potential revenues might increase substantially. For instance, Brown et al. (2018)
report CO2 shadow prices of at least 400 Euro/tCO2

to reach a 95% emission reduction in the electricity, heat-
ing, and land-based transport sector. Current prices of EU emission allowances are more than 1 order of
magnitude lower.

We have mapped out energy needs and system requirements of a 500 Mt CO2/year DAC contribution for
Europe. If extended globally, DAC could contribute substantially to required end of century negative emis-
sions of 7–22 Gt CO2/year under Paris Agreement compatible mitigation scenarios (Smith et al., 2015). The
system requirements to achieve such rates are very ambitious under our conservative estimates, but substan-
tial potential for increased DAC efficiency exists (see Figure S3). However, discussions of system integration
potential of negative emission technologies should not divert attention from the need of very stringent
emission reductions in the near term (Schleussner et al., 2016).
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1 Data1

1.1 Temporal and spatial coverage2

In order to capture the relevant dynamics of wind and solar generation, appropriate input data3

for the model is needed. In order to account for low-frequency generation variability, we cover4

the longest possible period. It is constrained by the PV data to start in 1985 and ends in 2016.5

To account for positive effects of European integration (Schlachtberger et al., 2017; Rodriguez6

et al., 2015, 2014; Andresen et al., 2012), we use a large set of European countries. Inclusion in7

our assessment, however, requires generation and load data to be available for any particular8

country. The included countries along with their respective annual electricity consumption are9

given in Table S1.10

1.2 Renewable generation11

We use the publicly available renewables.ninja datasets (version 1.1) as inputs to our model12

(Staffell and Pfenninger, 2016; Pfenninger and Staffell, 2016). The datasets are bias corrected13

and validated with measured generation timeseries. They come at hourly resolution and thus14

capture intra-day effects that are crucial for power system operation. The dataset is based on15

the MERRA2 reanalysis (Rienecker et al., 2011)16

1.3 Electricity consumption17

We use 2015 hourly load data from the European Network of Transmission System Operators for18

Electricity (2015) which is publicly available online. In order to construct a multi-year time19

series of the same length as the climate input data, the load data is looped. This allows to20

include the mismatch variability that stems from climate variability while it mutes variations21

in electricity consumption.22

1



Table S1: Annual sums of country electricity consumption based on hourly 2015 data provided
by the European Network of Transmission System Operators for Electricity (2015).

country country code Annual load [TWh]

Austria AT 69.62
Belgium BE 85.22
Bulgaria BG 38.62
Switzerland CH 62.06
Czech Republic CZ 63.53
Germany DE 505.27
Denmark DK 33.9
Estonia EE 7.93
Spain ES 248.5
Finland FI 82.5
France FR 471.26
Great Britain GB 282.19
Greece GR 51.4
Croatia HR 17.19
Hungary HU 40.75
Ireland IE 26.57
Italy IT 314.35
Lithuania LT 10.86
Latvia LV 7.07
Macedonia MK 7.84
Netherlands NL 113.25
Norway NO 128.65
Poland PL 149.96
Portugal PT 48.93
Romania RO 52.31
Sweden SE 135.93
Slovenia SI 13.65
Slovakia SK 28.21

Total 3097.52
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1.4 CO2 intensities23

Schematic decomposition of the DAC process24

In order to quantify how much carbon dioxide can be extracted from the atmosphere using25

a certain amount of energy, we follow the approach of House et al. (2011). They decompose26

the DAC process into two parts. The first part is an ideal, reversible thermodynamic process27

that separates a stream of 400 ppm CO2 into on stream of high purity (99%) CO2 and another28

stream of 200 ppm CO2. This process sets a lower bound for the energy requirement of any29

industrial process because real-world processes will never be ideal. The deviation from the ideal30

process is accounted for by including a second process.31

The carbon intensity IDAC, defined as32

IDAC =
dmCO2

dE
, (S1)

where mCO2 denotes the mass of CO2 extracted using the electric energy E, can thus be33

expressed in terms of the carbon intensity of the ideal process Iid and a second-order efficiency34

η35

IDAC = Iid · η. (S2)

House et al. report Iid = (20kJ/(mol CO2))−1 = 7920 tCO2
GWh . According to them, typical36

values for η in real-world seperation processes, lie in between 0.05 and 0.4.37

The Climeworks second order efficiency38

The company Climeworks reports heat requirements Q of 1500...2000 kWh/tCO2 and electricity39

requirements W of 200...300 kWh/tCO2 for their DAC modules (Lozanovski et al.). We use40

the upper values here to derive conservative estimates. The heat is needed at 105◦C and can be41

obtained from a multitude of different processes. In the worst case, the entire heat is generated42

from electricity such that the total electricity demand per ton CO2 is Eworst = W +Q = 230043

kWh/tCO2. In the best case, the heat comes as waste heat or is generated from solar radiation44

such that total electricty needs would be Ebest = W = 300 kWh/tCO2. We also consider45

intermediate cases where only a fraction α of the heat comes from electricity Eα = W + α ·Q,46

where 0 < α < 1. In the case where half of the heat comes from electricity, it follows that47

E0.5 = W + 0.5 ·Q = 1300 kWh/tCO2. The corresponding second order efficiencies are ηworst =48

0.06, ηbest = 0.42, η0.5 = 0.10.49

Comparison with other energy estimates50

In Table S2, we provide a comparison of the climeworks estimates with estimates reported in51

the scientific literature. We restrict the discussion to the upper-end estimates of the climeworks52

process, because they were used in our energy simulation.53

The reported work requirements show little variation indicating large agreement between the54

different studies. Socolow et al. (2011) and climeworks report the same work requirements,55

while Keith et al. (2018) report slightly higher values (around 20%). The heat requirements in56

the climeworks process are the highest reported and lie approximately 15% above the Socolow57

et al. (2011) and 35% above the Keith et al. (2018) estimates. As a consequence, the second58

order efficiency η is lowest for the climeworks process (5.5%) and slightly higher for the other59

two (6.3% and 6.9%). All second order efficiencies lie within the plausible range of second order60

efficiencies reported by House et al. (2011).61
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We conclude that the climeworks estimates are in agreement with the other studies. If62

anything, they overestimate the heat requirements and thus serve well as conservative estimates63

of a maturing technology.64

Table S2: Comparison of work and heat requirements for DAC processes as reported in different
studies. We also list the corresponding second order efficiencies as defined in Eq. S2.

climeworks Sokolov et al. Keith et al. House et al.

Work E 300 kWh
tCO2

1.08 GJ
tCO2

= 300 kWh
tCO2

366 kWh
tCO2

Heat Q 2000 kWh
tCO2

6.1 GJ
tCO2

= 1700 kWh
tCO2

5.25 GJ
tCO2

= 1460 kWh
tCO2

η [%] 5.5 6.3 6.9 5 .. 40

Open-cycle gas turbines65

We assume that backup energy is provided by open-cycle gas turbines with a carbon intensity66

of IGas = 469 tCO2
GWh (see 50th percentile value in Table A.II.4, Moomaw et al., 2011). Gas67

turbines have high ramping rates and are thus ideally suited to complement volatile renewables.68

Moreover, their carbon intensity is distinctly lower than the one of coal fired power plants69

allowing less interference with stringent emission reductions. A perfect DAC process coupled to70

one of these turbines would hence extract roughly 17 times the amount of CO2 that is emitted71

by burning gas. For real processes, net neutrality of the coupled system would be achieved72

at a second-order efficiency of η = 469
7920 ≈ 0.06 which is close to the reported efficiency of the73

Climeworks plants if heat is electricity based.74
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2 Methods75

We adopt a schematic modeling framework aiming to illustrate the fundamental co-benefits of76

flexible Direct Air Capture and volatile renewable generation. We include the major strategies77

to cope with variable renewable generation, namely transmission, storage and fast backup. At78

the same time, we neglect many other flexibility providers such as demand side management,79

power-to-X and sector coupling. We furthermore restrict our analysis to the power sector even80

though it is evident that all other sectors need to be included in more realistic assessments.81

Some sectors may alleviate issues of electricity system management (e.g., storage in batteries of82

future electric vehicle fleets) and others may continue to emit carbon long after the Paris goals83

urge us to reach net neutrality (e.g., aviation).84

2.1 Model equations85

Let PPV,i(t) and PWind,i(t) denote the photovoltaic (PV) and wind power generation timeseries86

of country i, respectively. Moreover, Li(t) is the load (i.e. electricity consumption) of country i.87

We construct a load time series of the same length as the PV and wind timeseries by repeating88

the measured 1-year time series of 2015. Following Rodriguez et al. (2014), we calculate the89

renewable generation as90

Pi(t) = q · (c1 · PPV,i(t) + (1− c1) · PWind,i(t)), (S3)

where q is a scaling parameter, c1 denotes the share of PV and (1 − c1) is the wind share.91

We choose c1 = 0.3 uniformly in all countries, which is close to the optimum value reported by92

Rodriguez et al. (2014). We scale the renewable generation P (t) as93

〈Pi(t)〉 !
= c · 〈Li(t)〉 (S4)

where 〈Li(t)〉 gives the average load of country i. c is the renewable penetration and describes94

which share of the load is met by renewables on average. Eqs. S4 and S3 allow to calculate q95

as a function of c.96

We define a nodal mismatch between generation and load as97

∆i(t) = Pi(t)− Li(t). (S5)

2.1.1 Copper plate98

We now assume that all countries are perfectly connected using lossless transmission lines (cop-99

per plate):100

∆(t) =
∑

i

∆i(t) (S6)

Summing over large areas is known to reduce volatility of renewable generation and the copper101

plate assumption provides an upper bound for the achievable benefits of large transmission102

systems. Systems on smaller spatial scales yield higher values of curtailment and hence still103

higher potential for DAC (see Fig. S2).104
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2.1.2 Balance equation105

For all timesteps there needs to be a balance between the European mismatch ∆(t), the conven-106

tional backup B(t), the power used for Direct Air Capture DAC(t), the energy fed into/taken107

from the storage ∆S and the curtailment C(t) as:108

∆(t) +B(t) = DAC(t) + ∆S(t) + C(t). (S7)

We assume that backup comes from open-cycle gas turbines without ramping constraints.109

There is a maximum amount of power the DAC system can handle DAC(t) ∈ [0, DACmax].110

When energy flows into the storage, it evolves according to S(t+ 1) = S(t) + ηS∆S(t), where111

S(t) is the storage filling level at time t and ηS = 0.9 is the storage efficiency. In turn, when112

energy is taken from the storage, it evolves as S(t+ 1) = S(t) + η−1
S ∆S(t). This translates into113

a round-trip efficiency of 0.81 which is typical for pumped hydro according to Schlachtberger114

et al. (2017). The storage is constrained: S(t) ∈ [0, Smax]. The storage strategy is explained115

in Sec. 2.1.3. We define the storage size Smax in units of the duration T that the average load116

〈∑i Li〉 could be met by storage:117

Smax = T ·
〈∑

i

Li

〉
. (S8)

Curtailment has to be non-negative and is avoided whenever possible.118

2.1.3 Storage strategy119

We choose a storage strategy that is based on the current filling level S(t) as well as the120

forecasted mismatch evolution for the 24 hours ahead (day ahead). In light of relatively high121

precision forecasts for such short time intervals, we use the real evolution as forecast.122

Excess generation (∆(t) > 0)123

We differentiate three different states of the storage:124

1. Low (S(t) ≤ 25% · Smax): Positive mismatches are used to fill the storage (∆S = ∆),125

regardless of expected future mismatch evolution. If this leads to an overfull storage (i.e.126

S(t) + ηS∆S > Smax), the storage is filled to its maximum and the remaining energy is127

used for DAC and is otherwise curtailed.128

2. Medium (25% ·Smax < S(t) ≤ 75% ·Smax): Decisions are based on the future mismatch129

evolution. If the expected positive mismatch of the next day allows to fill the storage130

beyond the desired 75% level, only the fraction that fills it to exactly 75% after 24 hours131

is stored. This maintains more flexibility as the storage less often hits is maximum limit132

and DAC is already used earlier in comparison to storage strategies that rely on the filling133

level only. Otherwise, if the expected mismatches do not suffice to reach a filling level134

beyond 75%, the energy is entirely stored.135

We also give the explicit formula for the sake of reproducibility. We calculate an ancilla
variable

χ(t) =

∫ t+w
t ηS∆pred(t′)dt′

0.75Smax − S(t)
, (S9)

where w denotes the forecast window (here: 24 hours) and ∆pred(t′) is the predicted136

mismatch at timestep t′. If χ ≤ 1, everything is stored (∆S = ∆). However, if χ > 1137
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only a fraction of the available energy is stored (∆S = 1
χ∆) and the rest goes to DAC138

(DAC = (1− 1
χ)∆).139

3. High (S(t) > 75% · Smax): Positive mismatches are used to drive DAC (DAC = ∆),140

regardless of the future mismatch evolution. If the DAC capacity limit is hit (∆ >141

DACmax), energy is stored (if possible) and otherwise curtailed.142

Generation shortfall (∆(t) < 0)143

In times of generation shortfall (∆(t) < 0), energy is firstly taken from the storage (∆S = ∆)144

in order to minimize usage of backup plants. If the storage filling level after subtraction of the145

mismatch is still higher than the desired filling level, energy is used for DAC:146

If

(
S +

∆

ηS
> 0.75Smax

)

then DAC =

{
ηS · (S + ∆

ηS
− 0.75Smax), if term < DACmax

DACmax, otherwise

and ∆S = ∆− DAC

ηS
.

2.2 Alternative approach: Minimizing carbon emissions147

Instead of running the model iteratively, the problem could have also been treated as an op-148

timization problem. We could have defined the time series of the storage, the DAC process149

and the backup such that net emissions are minimal. Although this alternative approach may150

seem appealing, we argue that it is not well suited here for a couple of reasons. First, such an151

optimization assumes that the evolution of both generation and load are perfectly known be-152

forehand (”perfect foresight”), which is not the case for fundamental reasons (complexity, chaos153

etc.). Second, a minimization can easily be misleading since carbon emissions are not the only154

reason for concern. For example, air quality issues and sustainable land use call for a minimum155

usage of fossil power plants, even if their carbon emissions were entirely compensated for by156

DAC. Since the absolute carbon intensities of open-cycle gas turbines and the DAC process are157

close, a small increase in DAC efficiency might turn the coupled gas-DAC system slightly CO2158

negative. A minimization of emissions would then potentially schedule the gas plants to run159

nonstop.160

Carbon transportation infrastructure and geological storage161

As this study aims to quantify the potential of DAC to net negative emissions in Europe, a162

couple of further simplifications are made. We neglect the entire post-capture aspect of DAC,163

namely the transportation and storage of high purity CO2. We consider this simplification164

appropriate since the transportation of CO2 in pipes comes with relatively little energy require-165

ments as compared to the separation from a low-purity stream. Nevertheless, future engineering166

assessments aiming to answer questions related to the actual system design, have to take these167

steps into account.168
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3 Additional results169
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Figure S1: European CO2 emissions versus renewable penetration for different DAC
capacities (columns) and storage sizes (rows) using a 24 hour forecast
window for storage dispatching. Red bars denote emissions from open-cycle
gas turbines that are used for backup. Blue indicates negative emissions from DAC.
Green circles denote total emissions.

8



France171

In addition to the scenario of unlimited transmission capacity in Europe, we also modeled a172

single individual country. We arbitrarily picked France as one country that contributes substan-173

tially to European electricity consumption. As expected, Fig. S2 reveals that backup energies174

and associated emissions decrease slower with renewable penetration as compared to the sce-175

nario with an extensive European grid. This is linked to more frequent and stronger phases of176

generation shortfall and can be compensated for by large storage assets. We furthermore report177

that DAC is substantially used at relatively low penetrations since overgeneration also occurs178

more frequently.179
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Figure S2: French CO2 emissions versus renewable penetration for different DAC
capacities (columns) and storage sizes (rows) using a 24 hour forecast
window for storage dispatching. Red bars denote emissions from open-cycle
gas turbines that are used for backup. Blue indicates negative emissions from DAC.
Green circles denote total emissions.
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Figure S3: DAC energy requirement to reach negative emission targets. Vertical
dashed lines correspond to today’s second order efficiency of the Climeworks DAC
unit for different shares of electrical heat. For an electrical share of less than 100%,
heat is supplied from other sources such as industrial waste or renewable heat.
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Chapter 4

Common discussion

This chapter provides a discussion of the results in a wider context. In the first part,
it addresses similarities, differences and links between the contributions and aims to
distill overarching topics. A repetition of the discussion sections of the individual
publications is avoided on purpose for the sake of conciseness. Later on, new publi-
cations by other authors that are relevant in the context of publications #1 to #5 are
presented and discussed.

Humankind has established remarkable independence of weather since the be-
ginning of the industrialization. While in the earlier days, many processes relied on
favourable weather conditions, progress in engineering has weakened or completely
erased this dependency. For example, the international cargo shipping system that
once relied on sailing vessels which required fair winds, is now fueled by fossil re-
sources and can go more or less everywhere regardless of the weather. Wind mills
used to grain cereals by transforming the kinetic energy of the air masses to rota-
tional kinetic energy of stones. Nowadays, grinding is powered by electricity and
has lost its wind dependence. Modern agriculture provides food to those who can af-
ford it, irrespective of the season in the country of consumption. In the International
Space Station, humans survive in an artificial atmosphere. While this list could be
extended a lot further, it is interesting to realize that renewable power generation
inverts this general tendency because it increases the weather dependency of energy
systems. After the energy sector had gained independence from weather conditions
with the invention of thermal power plants (ignoring some minor details such as
the availability of cooling water), this independence is now lost again as systems
are redesigned to more strongly rely on renewables. This u-turn in the overall de-
velopment requires new (or in fact old) thinking that incorporates the fluctuations
of the weather and the climate. It requires to understand and communicate vari-
ability as a normal feature that has to be taken care of in planning processes. We
therefore require reliable and accurate statistical information of societally relevant
climate variability.

4.1 The need for climate information in energy assessments

One main message of this dissertation is to substantiate the claim that renewable
power systems are affected by the weather and its long-term statistics. This has
been shown on different temporal and spatial scales and across different climate
data types. Inter-annual climate variability relevantly impacts current power system
operation in Germany (Sec. 3.2.1). On longer timescales, both multi-decadal climate
variability (Sec. 3.3) and anthropogenic climate change (Sec. 3.1.1) lead to modifica-
tions of the boundary conditions under which power systems are operated. Shorter-
term climate variability opens an opportunity space for flexible negative emission
technologies (Sec. 3.4.1). Consequently, understanding and quantification of climate
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variability and change is essential for planning, financing and operating renewable
power systems.

4.1.1 Uncertainties of climate data sources

The climate of the earth is an interconnected system of complex systems and our
information about it is incomplete. Uncertainty therefore is an integral part of any
climate assessment. Consideration of the uncertainty is of utmost importance in the
context of power systems where relationships are often non-linear. Different sources
of climate information exist and have been used in this dissertation. All of them
combine strengths and weaknesses and their appropriateness has to be verified for
each particular research question. Contrasting observations and model results, ob-
servations are generally considered as the ground truth. This assumption is often
correct and has proven its value numerously over the history of modern science.
However, systematic evolution of the measurement technique can induce incorrect
trends in the observations as was shown for marine wind speed measurements over
the last century (Sec. 3.3.1). Consequently, data sets that rely on marine wind ob-
servations, such as the ECMWF’s 20th century reanalyses have to be interpreted
carefully when it comes to trends. A similar effect is known for surface wind speeds
over land which feature decreases over the last decades (Vautard et al., 2010). This
decrease is largely attributed to increasing surface roughness and can not be mean-
ingfully extrapolated to heights that are relevant for wind energy without explicitly
accounting for the evolution of the vertical wind profile. Every data source, includ-
ing observations, therefore has to be checked for consistency.

Modern reanalyses have been the starting point of the assessments in Sec. 3.2.1
and 3.4.1. In Sec. 3.2.1, results based on two different reanalyses (ERA-interim and
MERRA2) were compared to quantify agreement. Given that they are calculated
by two different data centers, using different computer codes, their comparison is
a meaningful indicator for model uncertainty. We showed that results based on
both datasets largely agree in terms of inter-annual wind generation variability, thus
building trust in the findings. A second verification of the suitability of the approach
is that it reproduces measured wind generation over the years 2016 and 2017. While
modern reanalyses are thus well suited to quantify inter-annual wind generation
variability in Germany, their usefulness for long-term assessments seems less. The
chosen start date in 1979 is due to pragmatic considerations (good data availability
thereafter) and does not necessarily lead to representative estimates for renewable
energy generation. For example, the lifetime wind energy generation of an average
wind park in Germany shows a statistically significant downward trend in ERA-
interim (see Sec. 3.3.2). Extrapolation of this trend into the future would, however,
be misleading as closer inspection reveals that 1979 coincides with a maximum of
multi-decadal wind generation variability (again Sec. 3.3.2). The trend thus only
represents the downward sloping fraction of longer-term variability. This exempli-
fies that modern reanalyses, such as ERA-interim, are sufficiently short to only sam-
ple parts of multi-decadal climate variability. Any estimate and trend assessment
can thus be compromised by the start date, which has been chosen fairly randomly.
A high stakes, huge investments project like the energy transition thus has to be
complemented by long-term assessments.

Such long-term assessments were performed in this dissertation for the histor-
ical period that is likely mainly affected by climate variability (Sec. 3.3.2) and for
a high emissions climate change scenario in the future in which forced changes are
expected to dominate (Sec. 3.1.1). Assessments of climate change impacts add an
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additional layer of uncertainty, namely future atmospheric greenhouse gas concen-
trations. As human activity is not captured in climate models, the GHG emissions
are not modeled. Instead, the evolution of GHG concentration is prescribed follow-
ing different scenarios. The uncertainty that stems from choosing the ’wrong’ sce-
nario is named scenario uncertainty. In choosing the representative concentration
pathway 8.5, which is currently the highest emission scenario, the scenario uncer-
tainty is circumvented here as we aim for a sensitivity analysis rather than a pre-
diction. However, instead of addressing likely wind energy changes due to climate
change, we thereby restrict the analysis to a particular climate change scenario. In
focusing on the most extreme scenario, forced changes are expected to be larger in
magnitude than internal variability. Confidence in the results stems from agreement
across a five member climate model ensemble that unanimously reports changes of
the same sign in backup energy. Moreover, a large fraction of the CMIP5 ensem-
ble also supports the underlying effect of more homogeneous winds in Europe. The
agreement across the climate model ensemble weighs even more than the agreement
between different reanalyses. This is because the reanalyses are synchronized owing
to the assimilation of observations while climate models are not synchronized. This
means that natural variability in the climate models is out of phase. Agreement of
the climate model ensemble with respect to the sign of change therefore implies that
the forced changes plus a randomly offset component of natural variability yields
changes in the same direction in all cases.

4.1.2 Suitable metrics depend on context

In a discussion about the impacts of climate variability and change on renewable
power generation, it should be mentioned that many metrics are of potential rele-
vance. This is because different sectors and stakeholders are interested in different
aspects. A wind park planner in Germany, for example, may be mostly interested
in the discounted lifetime revenues of an asset. Given guaranteed feed-in tariffs,
this translates into an interest in weighted wind energy yields (see Sec. 3.3.2). A
Transmission System Operator, in contrast, cares less for the returns/energy yields
of individual parks over 20 years, but needs information on generation variability on
shorter timescales as his/her job is to ensure a balance of electricity generation and
demand at all time steps. A civil engineer in charge of dimensioning large storage
infrastructure may care most about seasonal differences. This multitude of perspec-
tives is reflected in this dissertation by focusing on different metrics.

For instance, inspired by a public debate about seemingly escalating grid man-
agement costs, we investigated redispatch. Redispatch is a short-term measure im-
plemented by a Transmission System Operator to mitigate congestion in the trans-
mission grid. Redispatch is scheduled to last a few hours up to a couple of days
and depends on the combined generation of all technologies, the demand pattern
and ex-/imports. The multi-decadal assessment, in contrast, focused entirely on the
generation side and did not take grid integration into account. However, the results
found are relevant for the sizing of infrastructure components that are needed to
integrate wind energy (e.g., storage and other types of power generation). Our con-
tribution to the field of climate change impacts on power systems highlighted the
vulnerability of spatial balancing via continental transmission. We put the emphasis
on changes in the spatial co-variability of wind energy generation rather than wind
energy yields as mitigating this variability is a key challenge in building renewable
power systems. These results are therefore relevant for robust transmission system
design in Europe.
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4.1.3 The relative importance of forced changes versus multi-decadal cli-
mate variability for wind energy

The separation of climate variability and climate change is a simple task from a con-
ceptual point of view. Climate variability happens without anthropogenic forcing,
climate change is a response to the forcing. In practice, however, this separation
proves much more difficult. The climate has been subject to forced changes over
the course of the 20th century, implying that 20th century reanalyses do not only
contain climate variability but also climate change. Similarly, climate models feature
both forced changes and climate variability in transient model runs. Owing to the
large interest in understanding risk from climate change, most effort, for example in
the EUROCORDEX downscaling initiative, has been put in providing transient runs.
Runs with prescribed and unaltered GHG concentrations could be used to study cli-
mate variability in the absence of climate change. However, such simulations could
then not necessarily be meaningfully compared with 20th century reanalyses or ob-
servations.

In the context of disentangling change and variability of wind and wind energy,
a couple of aspects are worth to be highlighted. The range of 20y average wind
power generation variability estimated from 20th century reanalysis (Sec. 3.3.2) and
the impact of climate change on European wind energy yields (Tobin et al., 2016)
are both around ±5%. This similarity in magnitude could imply that both findings
reflect the same mechanism. If climate models capture multi-decadal wind variabil-
ity, the alterations reported by Tobin et al. (2016) could be independent of climate
change. However, it remains to be shown whether climate models capture multi-
decadal wind variability and it would be a huge coincidence if the models reported
the same variation synchronously. If they are unable to capture multi-decadal vari-
ability, their results are independent of climate variability on this timescale. The real
climate system will feature a compound effect (multi-decadal as inferred from 20th
century reanalyses plus climate change as inferred from climate models). The com-
bined change can be substantially more important than the individual contributors.
A similar argument can be made for the changes in seasonality that are found both
in the 20th century reanalysis and in climate change assessments (Reyers, Moemken,
and Pinto, 2016). It is thus a key question for future investigations to test the ability
of climate models to capture multi-decadal variability of climatic variables that are
relevant for the energy sector, such as wind.

4.2 Beyond wind

Most parts of this dissertation focus on wind energy even though it is obvious that
the diversity of renewables can help to mitigate generation variability. The reason
for the focus is simple. It is reliability of the data as already discussed, for exam-
ple, in the Introduction of publication #1 in the context of climate models. Given
the large uncertainties that are already present in long-term wind trends (see Sec.
3.3.2), it is equally unclear whether radiation and precipitation data from 20th cen-
tury reanalyses is any good. While winds are directly constrained by the assimilated
pressure and marine wind observations, radiation is fairly independent of these ob-
servations. Based on the standard assumption that the assimilation of observations
adds realism, it appears thus justified to question the reliability of radiation esti-
mates. However, this assumption has been proven wrong for marine winds and it
may well be that the model provides useful radiation and precipitation estimates.
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Given the importance of technology diversification and the fact that others use cli-
mate models for PV and CSP assessments (e.g., Jerez et al., 2015; Patt, Pfenninger,
and Lilliestam, 2013; Müller et al., 2019), the skill of 20th century reanalysis to pro-
vide radiation and precipitation estimates should be tackled in the future.

4.3 Multi-disciplinary approaches

In addition to more holistic approaches in terms of technologies, cross-disciplinarity
is needed to grasp all relevant dimensions. In Sec. 3.2.1, the public and political
debate around redispatch motivated our statistical analysis and we have comple-
mented our work with a review of public uptake and changes in jurisdiction. While
this is a first step towards more holistic energy system assessments, the study still
clearly stems from a physics background (e.g., regarding its methods). The inclusion
of social and societal aspects is of high importance in understanding energy transi-
tions. It is not only about proper resource assessments as cultural norms, biases and
public perception play vital roles. The ethical dimension is reflected, for example, in
a study that assesses justice in energy efficiency (Snell, Bevan, and Gillard, 2018).

Connections between different sectors, such as the interconnections between en-
ergy and water (Konadu et al., 2017), are increasingly accounted for. In a study about
the governance of the coupled food-energy-water system, Märker, Venghaus, and
Hake (2018) investigate the neccessary changes in policy structures and processes.
They investigate multiple approaches that differ in the extent to which the coupling
between the sectors is included and the level of interaction between the actors ac-
tive in each sector. In addition to these system-level assessments, also the individual
scale is investigated. Roberts, Hope, and Skelton (2017) built a typologogy of regret-
ted consumption because understanding the reasons why people make such pur-
chases bears the potential to avoid them. Avoiding regretted consumption would
mean personal and ecological benefits as the usage of scarce resources is reduced.

The fact that the current academic system is still strictly subdivided into differ-
ent disciplines enforces, or at least incentivizes, disciplinary approaches. In light
of large-scale challenges such as sustainability, old boundaries between disciplines
may have to be revised. Physics alone will not sufficiently inform the transition to
a sustainable society, nor will any other discipline, including engineering and the
social sciences.

4.4 Generation variability and the likely need for negative
emissions

Net zero emissions from all sectors of human activity is an ambitious goal that di-
rectly follows the adoption of a long-term temperature target in international climate
policy. Reaching exactly zero will be cumbersome and the results of publications #1 -
#4 underline this statement in highlighting the variability on unexpected timescales
and the vulnerability of wind energy. Unless the variability, including on very long
timescales of multiple decades, and vulnerability is perfectly accounted for in en-
ergy system design, dispatchable power generation will always be needed. More-
over, dispatchable power generation may still be associated with GHG emissions in
the near-to-medium future as dispatchable renewables face deployment limitations.
In theory, storage of electricity could solve this issue. In light of the timescales in-
volved (at least up to multi-decadal), however, energy storage alone will likely not
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solve the problem owing to size limitations and losses. In such a situation, it might
be relevant to consider the atmosphere as a giant quasi-battery.

While a battery allows to store electricity, the atmosphere can be filled with CO2
while generating electricity in a gas-fired power station. At a later stage, the CO2
can theoretically be removed again using renewable excess electricity for DAC. As
the current efficiency of open cycle gas turbines and DAC units is comparable (see
Sec. 3.4.1), the entire process is neutral in terms of electricity and CO2. As long as
the stored amount of CO2 is small in comparison to the total net emissions since pre-
industrial times, for example the equivalent of one year of current GHG emissions,
the effect on the planet’s energy balance is limited. However, both the economic
viability and the technological readiness for deployment at scale remain to be shown
for DAC.

4.5 New literature

The scientific literature around the topics addressed in this thesis evolves rapidly.
Albeit only around one year has elapsed since the publication of paper #1, some
important additions have been made to the body of literature in the fields of climate
change impacts on the power system, redispatch and DAC. They are reviewed and
discussed in the following.

4.5.1 Climate change impacts on the power system

Karnauskas, Lundquist, and Zhang (2018)

A general decrease of wind energy potentials in Northern hemisphere mid-latitudes,
including most of Europe, is found by Karnauskas, Lundquist, and Zhang (2018) us-
ing a 10 member GCM ensemble and two emission scenarios (RCP4.5 and RCP8.5).
This decrease is accompanied by increases in the tropics and the Southern Hemi-
sphere, such that the authors refer to the changes as a southward shift of the wind
energy resource. GCM performance is validated by comparison with wind speed
measurements at a tower in Boulder, USA. The change is explained by means of arc-
tic amplification that reduces the meridional temperature gradient in the Northern
Hemisphere and enhanced land-sea gradients in the tropics and Southern Hemi-
sphere. The magnitude of the changes varies by region and can be as high as +41%
in Northern Australia and -15% in Central USA.

The authors use monthly mean wind speeds from CMIP5 to compute monthly
mean wind power generation. However, due to the non-linear dependence of wind
power generation on wind speeds (see eq. S2 in Sec. 3.1.1), the computed value of
wind power generation depends on the time resolution of the input data. In partic-
ular, the wind power generation of monthly mean wind speed is not the same as the
monthly mean wind power generation because

〈v3〉 6= 〈v〉3.

The authors are aware of this potential weakness of their approach and use mea-
sured mast data to justify it. Comparing monthly wind power generation computed
from hourly measured wind speeds and wind power generation from monthly mean
wind speeds, they report a very high correlation (r = 0.94). Based on this high cor-
relation, they argue that monthly mean wind speeds are a suitable input parameter
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for their analysis. However, one should note that this line of reasoning depends on
the specifics of the wind distribution that (i) need not be the same everywhere on
the planet and (ii) could be altered in a changing climate.

To illustrate this argument, let v be the wind speed at a certain grid point. We
can rewrite it as

v = 〈v〉 − 〈v〉+ v = 〈v〉+ ∆v, (4.1)

where 〈v〉 denotes the mean of v and ∆v = v− 〈v〉 denotes the deviation from
its mean which is often referred to as anomaly in the climate sciences.

It follows that

〈v3〉 = 〈(〈v〉+ ∆v)3〉
= 〈〈v〉3 + 3〈v〉(∆v)2 + 3〈v〉2∆v + (∆v)3〉
= 〈v〉3 + 3〈v〉〈(∆v)2〉+ 3〈v〉2 〈∆v〉︸︷︷︸

=0 by definition

+〈(∆v)3〉

= 〈v〉3 + 3〈v〉〈(∆v)2〉+ 〈(∆v)3〉,

(4.2)

which can be rewritten as

〈v3〉 − 〈v〉3 = 3〈v〉〈(∆v)2〉+ 〈(∆v)3〉. (4.3)

Recall that the wind energy density WED is proportional to the cube of wind
speeds (WED ∝ v3) and that the wind energy density sets an upper limit to wind
power generation (see Sec. 3.1.1). Eq. 4.3 thus implies that the error in the wind
energy density that is introduced by substituting the high resolution wind speed
data v with the mean wind speeds 〈v〉 depends on multiple factors. To be precise,
it depends on the mean wind speed 〈v〉 itself, the mean of the squared wind speed
anomaly 〈(∆v)2〉 and the mean of the cubed wind speed anomaly 〈(∆v)3〉.

The potential issue with the approach is that there is no apriori reason for the
right hand side of eq. 4.3 not to change. One could even suspect that changes in
〈(∆v)2〉 and 〈(∆v)3〉 are likely if the mean wind speed changes. In fact, in publi-
cation #1, we demonstrated that the spatial co-variability of wind power generation
across Europe changes under strong climate change. This might be pointing towards
changes in other statistical properties of wind speeds. Moreover, just because the
right hand side is proportional to 〈v〉 in one particular location in the past does not
safely imply that this relationship holds everywhere and at any time (as assumed by
Karnauskas, Lundquist, and Zhang (2018)).

In any case, the main finding is neither in contrast to publication #1 nor does
it support it. This is because we focus on the spatial co-variability of wind power
generation to assess the vulnerability of transmission infrastructure. To do so, we
mute all changes in wind power generation potentials by the assumption of a fully
renewable power system. If wind power potentials in a country decrease in the
future, this would be compensated by a larger number of wind parks in our article.

Schlott et al. (2018)

Schlott et al. (2018) aim at a more holistic assessment of climate change impacts on
the power system. Also drawing from EUROCORDEX (3 members), they include
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different renewable technologies (PV, wind and hydro) and they optimize generation
technology deployment and transmission infrastructure. To this end, they use 6
(sometimes 8) year intervals over the 21st century during which an optimum system
is computed. They find that climate change has an impact on power system costs
which generally increase over the course of the 21st century by around 5%. This can
be largely attributed to an increased share of PV following increasing correlation
lengths of wind power generation.

Increasing correlation lengths are in line with our result of more homogeneous
winds and dominantly increasing correlations (see also paper #1). However, the
concept of a correlation length might be somewhat misleading because correlation
decay does not necessarily feature rotational symmetry due to, for example, complex
topography such as mountains or land-sea transitions.

Peter (2019)

Peter (2019) tests whether strategies that anticipate climate change can help to re-
duce power system vulnerability. The analysis is based on a single GCM-RCM com-
bination, thereby neglecting model uncertainty. His modeling approach follows a
two-step procedure. First, he runs the model with perfect foresight to determine
the cost optimum system design. In a second step, this system is operated without
any further modification of infrastructures under perturbed conditions. Peter dis-
tinguishes a set of scenarios in which climate change is anticipated (i.e., included in
the optimum design in step one) or ignored. Moreover, he disentangles the effect
of individual components (wind and solar, cooling water for conventional power
generation, hydropower, electricity demand) on the overall change. The combined
effect of climate change on the non-anticipation system is be24, which is a 12% cost
increase. Anticipation of climate change reduces the economic damages by around
be4. This is achieved by more offshore wind and reduced onshore wind and so-
lar. As climate change impacts on the offshore wind resource are found to be posi-
tive, more offshore wind parks allow higher capacity factors and consequently less
fuel and CO2 allowance costs. While this study adds many layers of realism and
thereby contributes relevantly to the literature, its results may be compromised by
two methodological weaknesses. A single GCM-RCM combination does not allow
to draw robust conclusions and the approach is based on individual representative
weather years, which implies that interannual variability and climate change are not
effectively separated.

Jerez et al. (2019)

In continuation of their previous isolated works on climate change impacts on wind
(Tobin et al., 2016) and solar (Jerez et al., 2015), Jerez et al. (2019) study the combined
effect on a system that contains both wind and solar power generation. Through
changes in their co-variability, the reaction of the combined system can be differ-
ent from the individual components. Based on an EUROCORDEX ensemble and
RCP8.5, the authors find that projected changes by the end of the century are at
the order of 5%. Even though they are mostly negative, the limited magnitude
leads Jerez et al. to conclude that the effects can be neglected. Confirming earlier
results, mean power generation from wind, solar and wind + solar is reduced by
only around 2% at the continental scale. Nevertheless, the standard deviation of the
combined timeseries and the wind or solar timeseries individually increases almost
everywhere. The increase of the standard deviation of the combined system is found
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to be smaller than the increase of the individual components in some regions (e.g.,
Benelux-Germany and France). The authors argue that this hints to increased com-
plementarity between wind and solar which weakens the effect on the combined
system. It remains to be shown, however, if the standard deviation is a useful in-
dicator for power system operation. This might not be necessarily the case as, for
example, dispatching storage infrastructure critically depends on the sequencing of
generation events while the standard deviation does not.

Tobin et al. (2018)

While most studies that tackle climate change impacts on renewables use strong cli-
mate change scenarios and focus on long-term changes at the end of the 21st century,
Tobin et al. (2018) follow a different approach. They adopt a framing that is often
used in the climate impact community and investigate impacts at different warming
levels, namely 1.5◦C, 2◦C and 3◦C. The climate state associated with these thresholds
is defined as the first 30 year interval that features an average global mean tempera-
ture increase higher than the threshold. The period studied consequently varies from
model to model owing to different reactions to external forcing (i.e., climate sensi-
tivity). Data is taken from EUROCORDEX and the ensemble consists of 3 different
GCMs and RCMs, respectively. In most cases RCP8.5 is used, which implies that
none of the temperature thresholds is close to the thermodynamic equilibrium and
transient effects are expected to play a considerable role. Tobin et al. find negative
impacts of climate change on electricity production in most locations and for most
technologies (wind, solar, hydro and conventional). The magnitude of the changes
is small for 1.5◦C and roughly doubles with a doubling of the temperature thresh-
old to 3◦C. Moreover, impacts are distributed unevenly across Europe and Southern
Europe is a hot spot, implying inequity within the EU. As in our paper #1, Greece
shows a different evolution, here indicated by an increase of wind power potential.
By also including risks for conventional generation due to lacking cooling water,
they report that the overall system becomes more resilient with an increasing share
of renewables.

Behrens et al. (2017)

In a spatially detailed analysis, Behrens et al. (2017) assess the impact of insufficient
and too warm cooling water availability on the operation of conventional power
plants in greater detail. They include a sophisticated database of power plants, in-
cluding additions and retirements over time. The authors conclude that more basins
are affected by water stresses that enforce a reduction of power generation in 2030
(54 basins) as compared to 2014 (47 basins). The impacts are strongest in the Mediter-
ranean but are also visible in highly used basins in Central Europe.

From a climatic point of view, however, the interpretation of the results is not
convincing. The main methodological issue is that the temporal offset between the
years studied (2014, 2020, 2030) is likely insufficient to yield a meaningful signal-to-
noise ratio such that the changes can not be safely attributed to climate change rather
than climate variability (or other reasons such as consumption changes and capacity
additions). It is known that precipitation changes are often uncertain and agreement
in the CMIP5 ensemble is sparse. For example, the latest IPCC report documents
that the change in 20 year mean precipitation averaged over 1986-2005 and 2081-
2100 is small compared to natural internal variability over the Mediterranean using
RCP2.6 and a 32 member GCM ensemble (see Fig. SPM.8 b in IPCC, 2013). Only in
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the stronger RCP8.5 a consistent large scale decrease in the Mediterranean develops.
Even though the authors use relatively strong climate change scenarios (RCP4.5 and
RCP 8.5), the expected impact over a timespan as short as around 15 years is small.
In particular, it is a lot smaller than the impacts over a 100 year period as reported by
the IPCC. Moreover, the authors seem to intermingle also interannual variability as
individual years are compared. In such a situation, the attribution of any alteration
to a forced change is speculative. The negligible relevance of the climatic forcing
is even documented by the authors who report that there is "very little variation
between scenarios by 2030".

Kozarcanin, Liu, and Andresen (2018)

In contrast to most other studies, Kozarcanin, Liu, and Andresen (2018) argue that
the effects of climate change on power system design can likely be ignored. They
compare the effect of changes in the solar-to-wind ratio with climate change impacts
and conclude that the former outweigh the latter. Using the solar-to-wind ratio effect
as a benchmark for the comparison appears interesting, but also fairly random. This
is because the authors want to investigate whether climate change has a discernible
effect on major power system metrics. It would appear more straightforward to
keep the system parameters fixed or optimize the system following the same logic
in all cases. Moreover, the impact of climate change on a solar dominated power
system, interestingly, is close to non-existent. While this could imply that solar-
powered systems are indeed less vulnerable, it could also reflect the climate model’s
incapability to capture changes in cloud formation and atmospheric chemistry. In
conclusion, there does not seem to be sufficient evidence for the author’s claim that
climate change impacts on the power system can be neglected.

4.5.2 Redispatch

As argued in publication #2, redispatch is partially rooted in the design of the power
market: The working hypothesis of the German market is that all feed-in patterns are
generally consistent with the physical limitations of the transmission network. Fol-
lowing this hypothesis, a cost optimum overall solution is derived by dispatching a
set of generators that minimize the operational costs. The validity of the assumption
is under pressure given frequent interventions of Transmission System Operators
via, for example, redispatch. Moreover, the potential to forecast redispatch with
high accuracy opens a possibility for power plant operators to try to take advantage
of the redispatch mechanism as explained in the following.

Using a conceptual two node model that can be solved graphically, Hirth and
Schlecht (2018) investigate the effect of strategic bidding of agents who anticipate
redispatch. This means that a power plant operator could underbid to ensure that
his plant is dispatched if he/she knows that the plant will be redispatched down
eventually. Underbidding here signifies that the bid is less than the operational cost
of running the power plant. Similarly, a plant operator who knows that his/her
plant will be needed to increase generation in the redispatch and who anticipates
higher prices in the redispatch, could increase its bid to the price that is expected
to be the outcome of the redispatch. Both strategies maximize profits of individual
agents and lead to higher system costs. More specifically, Hirth and Schlecht focus
on a two step procedure that sequentially (1) dispatches power plants following the
merit order and (2) redispatches based on a redispatch market. They argue that a
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redispatch market yields incentives that deteriorate overall performance as reflected
in higher than necessary total costs and aggravated congestion.

Staudt et al. (2018) show that redispatch on a power plant level can be predicted
with high precision one day ahead. They use forecasts of load, solar generation,
wind generation, total generation and electricity price as inputs to an extra-tree and
an artificial neural network. Focusing on the 25 member subset of plants that were
redispatched most frequently in Germany in 2015 - 2017, they calculate the average
precision

p =
TP

TP + FP
(4.4)

where TP is the number of true positives (i.e., plant is correctly predicted to be
redispatched) and FP is the number of false positives (i.e., plant is not redispatched
in disarray with the prediction). Using the extra-tree method, an average precision
p = 0.72 is obtained, which can be further increased to p = 0.94 if regional input
data is used. The latter comes at a relatively high computational cost. Given that
large electric utilities companies such as Innogy, Vattenfall and EnBW, have access to
additional information that is not available for research purposes (most importantly
the bids of their various plants), it appears highly likely that such players can predict
redispatch with an even higher precision. Staudt et al. conclude that the low risk of
strategic bidding that comes with the chance to realize extra-profits for individual
companies leads to non-optimum system wide decisions. Thereby, system costs and
carbon emissions are increased.

It appears worthwile to contemplate the implications of these results. Let πm be
the marginal price of electricity generation of a plant, πbid be its bid into the spot
market and πcl be the market clearance price. For simplicity, we assume that all
bids have the same volume (e.g., 1 MWh of electricity). The plant operator could
underbid to ensure that his/her plant is dispatched if he/she assumes that it is re-
dispatched eventually. Such behaviour induces gains if the anticipated redispatch
occurs (case 1) and creates losses if it doesn’t (case 2). In case 1, the price difference
is positive

∆π1 = πcl − πbid ≥ 0, (4.5)

because the market clearance price is determined via the merit order1 and can
not be smaller than any individual bid that is dispatched. In contrast, in case 2, the
price difference will generally be negative

∆π2 = πcl − πm < 0, (4.6)

because of the underbidding (∆π2 ≥ 0 is also conceivable if the clearance price
is high enough. However, this case is trivial as both cases would be beneficial for
the plant operator. It will thus not be further discussed here). The total effect of
both cases depends on the frequency of their occurrence. That is, it depends on the

1The merit order is simply a sorted list of all bids that starts with the cheapest and ends with the
most expensive one. In the dispatch, power plants are activated following the merit order until there
is a balance between electricity consumption and electricity generation. The price of the last unit that
is dispatched is referred to as the market clearance price. All power plants that are dispatched receive
the market clearance price, irrespective of their own bid.
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precision p with which redispatch can be predicted on a power plant level and also
on the number of redispatch predictions N. The total effect reads

∆πtot = N · [p∆π1 + (1− p)∆π2] . (4.7)

Using the high precision p = 0.94 reported in (Staudt et al., 2018), this means
that ∆πtot ≥ 0 if ∆π1 ≥ −0.06 · ∆π2. Note that ∆π2 is negative. In other words,
strategic bidding pays off for the plant operator if the per case-1 event gain is at least
6% of the case-2 event loss. It appears very plausible that this is the case. However,
the bids are not made public such that further verification of this plausibility would
require indirect reasoning and is beyond the scope of this discussion. Nevertheless,
this simple calculation in conjunction with the results of Hirth and Schlecht (2018)
and Staudt et al. (2018) indicates that the design of the redispatch system deserves
further attention.

Following a more general approach, Niet et al. (2018) model the effect of explic-
itly accounting for curtailment related costs. Based on the poor temporal resolution
of models used for long-term planning, curtailment is often overlooked, leading to
an underestimation of the benefits of infrastructure that reduces curtailment. They
quantify the effect to be highly significant: the value of storage and dispatchable
loads is increased by up to 60% if curtailment is included in the model. This find-
ing highlights that economically reasonable, or even optimum, systems need to be
specifically designed to cope with renewable generation variability.

4.5.3 DAC

Breyer, Fasihi, and Aghahosseini (2019) assess Direct Air Capture with the techno-
economic Lappeenranta-Lahti University of Technology (LUT) Energy System model.
They focus on the Maghreb region which features high potential for solar energy and
large unused areas and report relatively low levelized costs of DAC of around e55
per ton CO2 in 2050 with additional potential for cost reduction. Their assessment is
similar to publication #5 in that it explicitly includes the sub-daily renewable genera-
tion variability. However, there are also major differences, for example, the different
region of interest, the cost analysis and the methodology. As a consequence of high
DAC investment cost and their cost-minimizing modeling approach, Breyer, Fasihi,
and Aghahosseini report that DAC units are used in near baseload mode and thus
do not provide much flexibility.

4.5.4 Multi-decadal aspects

Owing to the short timespan between the time of writing and publication of articles
#4 and #5, no additions to the relevant literature were made in this field (to the best
knowledge of the author). That said, I intend to deepen the analysis of multi-decadal
effects on renewable power systems in future work. This will include studying a
larger geographical domain and multiple renewable technologies.

Moreover, new datasets are about to become available. ECMWF has already pub-
lished parts of the new ERA-5 reanalysis that covers the years 1979 to 2019 (Henner-
mann, 2018). In contrast to ERA-Interim, ERA-5 will include wind speeds at 100m
height which fits better to the needs of renewable energy modeling. An extended
version of ERA-5 that dates back until 1950 is scheduled to be published in late 2019.
Future work will reveal whether it features discontinuities and/or spurious trends
prior to the satellite era as were found in ERA20C and CERA20C (see Sec. 3.3.1).
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In addition, a new round of global climate model results is currently underway for
CMIP6 (Eyring et al., 2016). Some of the model outputs are tailored to the needs of
the renewable energy community, for example, the contribution from the PRIMAV-
ERA project.

4.6 Conclusion

The publications presented in this dissertation add to our knowledge about climate-
energy interactions. The research field evolves rapidly which is evidenced by a large
number of publications and a widening of the research focus through the integra-
tion of other sectors and disciplines. My publications emphasize the need for tar-
geted and robust climatic information in order to built future zero emission power
and energy systems. Relevant metrics depend on the stakeholder and evolve in
time, thereby requiring sound understanding of the context. While climate vari-
ability already has a distinct impact on operational costs in the German power sys-
tem, stronger impacts are to be expected in the future as the share of renewables
increases. The impacts of anthropogenic climate change as well as multi-decadal
climate variability ought to be included in designing future power systems. Strong
climate change reduces the efficacy of a European transmission system due to more
homogeneous winds by a few per cent. Multi-decadal wind variability impacts in-
vestment decisions and system design, for example, through time-varying winter-
to-summer generation ratios with considerable amplitude.
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