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Zusammenfassung

Ende des letzten Jahrhunderts lieferten Catlin und Zelditch eine vollständige Be-
schreibung des folgenden Phänomens: Betrachtet man die Bergman-Kern-Funktion
Bk des k-ten Tensorproduktes eines positiven holomorphen Geradenbündels L über
einer kompakten, geschlossenen, komplexen Mannigfaltigkeit M , so hat diese Funk-
tion eine asymptotische Entwicklung in k, d.h. Bk lässt sich als formale Summe

Bk ∼ a0k
n + a1k

n−1 + a2k
n−2 + a3k

n−3 . . . , für k →∞

schreiben. Hierbei kodieren die Funktionen a0, a1, . . . lokale geometrische Eigen-
schaften der zugrundeliegenden Objekte M und L. In diesem Sinne untersuchen
wir sowohl das asymptotische Verhalten der Bergman-Kern-Funktion als auch das
Verhalten des zugehörigen Bergman-Kerns für den Fall, dass die Mannigfaltigkeit
nicht notwendigerweise kompakt, die Metrik nur teilweise positiv, und die zugrun-
deliegende Geometrie nicht beliebig regulär ist.
Im ersten Teil der Arbeit nehmen wir an, dass M ein beschränktes Gebiet des
euklidischen Raums ist und konstruieren einen asymptotisch reproduzierenden In-
tegralkern für quadratintegrable holomorphe Funktionen bezüglich eines beliebigen
gewichteten inneren Produkts. Wir zeigen, dass zu jeder natürlichen Zahl N eine
offene Teilmenge MN existiert, auf welcher sowohl der Bergman-Kern als auch die
Bergman-Kern-Funktion eine asymptotische Entwicklung bis hin zur Ordnung N

besitzen, abhängig von der Regularität der zugrundeliegenden geometrischen Ob-
jekte. Es stellt sich heraus, dass die Krümmung der Metrik außerhalb von MN

beliebig seien kann. Unsere Methode liefert außerdem eine explizite Darstellung der
Koeffizienten dieser asymptotischen Entwicklung für jede Wahl von Koordinaten.
Im zweiten Teil der Arbeit nehmen wir an, dass M ein Gebiet einer vollständigen
Kähler-Mannigfaltigkeit X ist und dass sich L zu einem holomorphen Geradenbün-
del L0 über X fortsetzen lässt. Wir beginnen mit einer oberhalbstetigen Metrik
auf L und betrachten die Menge M∞ bestehend aus Punkten, an denen diese Me-
trik durch positive Metriken auf L0 niedergehalten wird. Unter Verwendung der
Resultate des ersten Teils beweisen wir, dass der Bergman-Kern und die Bergman-
Kern-Funktion eine asymptotische Entwicklung auf M∞ haben, wobei die Ordnung
dieser Entwicklung nur durch die Regularität der Geometrie begeschränkt wird.



Abstract

A famous result of Catlin and Zelditch developed in the end of the last century gives a
complete description for the following phenomena: Given a positive holomorphic line
bundle L over a closed compact complex manifold M the Bergman kernel function
Bk for the k-th tensor power of L has a full asymptotic expansion. More precisely,
Bk can be written as a formal sum

Bk ∼ a0k
n + a1k

n−1 + a2k
n−2 + a3k

n−3 . . . , for k →∞

where the coefficients a0, a1, . . . purely depend on the local geometric data of X
and L. In that sense, we study the asymptotic behavior of the Bergman kernel
function and the related Bergman kernel when M is not necessarily compact, L is
only partially positive and the geometric data fail to be smooth.
In the first part of this thesis we considerM to be a bounded domain in the Euclidean
space and establish a local asymptotically reproducing kernel for square integrable
holomorphic functions with respect to a weighted inner product. From this method
we deduce that for any non-negative integer N the Bergman kernel and the Bergman
kernel function have an asymptotic expansion on some set MN up to some order
less than or equal to N depending on the regularity of the geometric data. It turns
out that the curvature of the metric can be arbitrary in the complement of MN .
In addition, our method provides an explicit formula for the coefficients in this
expansion which holds for any choice of coordinates.
In the second part we assume that M is a domain contained in a complete Kähler
manifold X and that L can be holomorphically extended to a holomorphic line
bundle L0 over X. We start with an upper semi-continuous metric on L and consider
the set M∞ consisting of points where the metric of L can be suppressed by positive
metrics defined on L0. Using the results obtained in the first part, we prove that
the Bergman kernel and the Bergman kernel function have an asymptotic expansion
on M∞ where the order of the expansion is just limited by the regularity of the
geometric data.
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Chapter 1
Introduction and Statement of the Results

1.1 Introduction
Let E be a holomorphic line bundle over a complex manifold M and let O(M,E)
be the space of global holomorphic sections. The choice of a Hermitian metric on
E and a volume form dVM on M defines the space L2(M,E), which is the space of
L2-integrable sections in E with respect to the norm ‖ · ‖h coming from the inner
product

(u, v)h :=
∫
M
h(u, v)dVM , for u, v ∈ L2(M,E).

For simplicity we will assume that h and dVM are smooth objects. Let

H0
2 (M,E) = L2(M,E) ∩ O(M,E)

denote the space of holomorphic sections with finite L2-norm. One can check that
this is a closed d-dimensional subspace of L2(M,E) where d ∈ N0 ∪ {∞} strongly
depends on the choice of the inner product whenM is non-compact. SinceH0

2 (M,E)
is closed there exists a unique orthogonal projection L2(M,E) → H0

2 (M,E). It
turns out that this projection can be represented by an integral kernel Ph,dVM called
Bergman kernel which is a smooth section M ×M → E � E∗ and by restricting
Ph,dVM along the diagonal inM×M we obtain the so called Bergman kernel function
Bh,dVM ∈ C∞(M,R). Given an orthonormal basis {sj}dj=1 of H0

2 (M,E) we have the
following representations

Ph,dVM (x, y) =
d∑
j=1

sj(x)⊗ sj(y)∗ ∈ Ex ⊗ E∗y ,

Bh,dVM (x) =
d∑
j=1
|sj(x)|2h ∈ R, x, y ∈M.

(1.1)

From the construction it is already clear that (1.1) does not depend on the choice
of the orthonormal basis. Furthermore, we have

∫
M Bh,dVMdVM = d, so Bh,dVM

should be seen as a dimension density of H0
2 (M,E). The Bergman kernel was

first introduced by Stefan Bergman in 1922 for domains in Cn [1]. Because of its
strong connection to many subjects in complex geometry, complex analysis and
quantum physics it has attracted a lot of attention during the last century till now
(see [30], [11]). The Bergman kernel and the Bergman kernel function appear for
example in the context of pseudoconvex boundaries [7], [19], [28] and extensions
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of holomorphic maps [18], holomorphic embeddings [21], distribution of zeros of
random holomorphic sections [35], existence and approximation of Kähler metrics
[36], vanishing theorems [14] as well as in quantization theory [34], [25], [18], [9], [32]
and the computation of path integrals [15]. For a complete reference see the book
of Ma–Marinescu [30]. A very important subject is to study the Bergman kernel
for the line bundle Lk = Lk ⊗ E, k ∈ N, where Lk is the k-th tensor power of a
holomorphic Hermitian line bundle L over M . The metrics of L and E induce a
metric hk on Lk and one tries to understand the asymptotic behavior of Phk,dVM and
Bhk,dVM for k →∞. When L is positive, i.e. its metric has a positive curvature, M
is compact and hk and dVM are smooth it follows from a result of Catlin [10] and
Zelditch [38] that Bhk,dVM has an asymptotic expansion that is

Bhk,dVM ∼ a0k
n + a1k

n−1 + a2k
n−2 + . . . (1.2)

where a0, a1, . . . are smooth functions with a0 > 0. More precisely, for any N, r ∈ N0

there exists a constant C = CN,r > 0 such that∥∥∥∥∥∥Bhk,dVM −
N∑
j=0

ajk
n−j

∥∥∥∥∥∥
Cr(M)

≤ CN,rk
−N−1+n

holds for all k ∈ N. Furthermore, they calculated a0. Note that the computation
of the coefficients aj in terms of local geometric data is an interesting but difficult
subject (see Section 1.3 and the discussion therein).

In general, the asymptotic behavior of Phk,dVM and Bhk,dVM in the case when L
is globally positive or semi-positive and M possess a complete Kähler metric is well
understood due to Dai-Lu-Ma [13] and Ma-Marinescu [30]. Their results even hold
for symplectic manifolds and orbifolds and can be generalized to the case where hk
is singular in some specific cases (see [31], [12], [20]).

When L fails to be globally semi-positive there are - compared to the wide
range of literature for the globally positive case - only a few results known. The
most general results for that case are due to Berman [5] and Hsiao–Marinescu [20].
In [4] and [5] Berman studies big line bundles over compact projective manifolds.
He established criteria on the existence of an asymptotic expansion in terms of
equilibrium weights. Hsiao–Marinescu proved in [20] the existence of an asymptotic
expansion under the assumption that the Kodaira-Laplacian has a small (local)
spectral gap. Given a point p ∈ M where the curvature of L fails to be positive it
follows from a result of Berman [2] (see also [20]) that

lim sup
k→∞

k−nBhk,dVM (p) = 0.

This shows that one should consider the set of points where L is positive in order
to get an asymptotic expansion as in (1.2).
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In this thesis we consider the case when the metric of L is arbitrary and study
the asymptotic behavior of Phk,dVM and Bhk,dVM at points where the curvature of L is
positive. Starting with bounded domains D in Cn and globally trivial line bundles,
assuming that the metric and the volume form is continuous up to the boundary,
we give a self contained proof for Bergman kernel expansion based on elementary
methods from complex analysis in combination with the asymptotic expansion of
oscillatory integrals in a version proven by Hörmander [24] which allows us to weaken
the regularity assumptions on the metric hk. It turns out that for any N ∈ N0 we
have an expansion up to orderN on a setDN (see Definition 1.1) where the curvature
is positive, sufficiently regular and the metric satisfies some growth condition on D
but is not necessarily semi-positive in the complement of DN . Furthermore, thanks
to Hörmander’s method of stationary phase, our approach leads also to an explicit
formula for all coefficients aj in the asymptotic expansion (1.2) (see Definition 1.12).
The main result in this part of the thesis is the construction of a reproducing kernel
which asymptotically recovers the value of any holomorphic function at any given
point in DN up to some error which is an O(k−N−1+n+ε) (see Theorem 1.3). The set
DN can be very small or even empty strongly depending on D and N . However, by
shrinking D we can always ensure that DN is non-empty. In this sense our results
provide a local reproducing kernel which can be used to study the Bergman kernel
in a more general case which leads to the second part of the thesis.

In the second part we will combine our results of local reproducing kernels with
the L2 estimates of Hörmander [22] given in a generalized version by Demailly [14].
We study the Bergman kernel for a domain M contained in a complete Kähler ma-
nifold X for line bundles which can be globally extended to X. Given a continuous
volume form dVM on M and an upper semi-continuous Hermitian metric h on L we
obtain quite general results on Bergman kernel expansion for some set Mh which
consists of points where the metric h is suppressed by a semi-positive metric h0 of
a holomorphic line bundle L0 over X with L0|M = L (see Definition 1.14, Theo-
rem 1.15 and Theorem 1.16). An important feature of this method is that we can
assume very weak regularity conditions on h and dVM in the complement ofMh (see
Example 1.19).

The thesis is organized as follows: this chapter provides an overview on our re-
sults (Section 1.2 and Section 1.3) as well as a discussion of their relation to previous
results (Section 1.4). Furthermore, we give a sketch of the proofs in Section 1.5 poin-
ting out the main ideas. Chapter 2 contains a detailed study of Bergman kernels
and their asymptotics on domains in Cn. In Chapter 3 we will prove the results
announced in Section 1.2 and Section 1.3.
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1.2 Local Expansion
Let D ⊂ Cn be a bounded domain ϕ, ρ ∈ C0(D) such that ρ > 0 on D. We will
consider the setting (D × C, h)→ (D, dVD) where the projection of the line bundle
is given by (z, λ) 7→ z, dVD = ρdVCn and h is defined by |(z, λ)|2h = |λ|2e−ϕ(z). We
identify holomorphic sections with holomorphic functions on D via the trivialization
z 7→ (z, 1), that is we consider the space H0

kϕ,ρ(D) = {f ∈ O(D) | ‖f‖kϕ,ρ < ∞}
where the norm ‖ · ‖kϕ,ρ is induced by the inner product

(f, g)kϕ,ρ =
∫
D
fge−kϕdVD, f, g ∈ H0

kϕ,ρ(D).

Assume ϕ ∈ CN+2(D) ∩ C0(D) for some non-negative integer N ∈ N0. We define
the functions γN , ϕ̃N : D ×D → C ,

γN(z, w) = ϕ(z)
2 +

∑
1≤|α|≤N+2

1
α!
∂|α|ϕ(z)
∂αz

(w − z)α,

ϕ̃N(z, w) = ϕ(w)− γN(z, w)− γN(z, w).

The complex Hessian of ϕ in z ∈ D is the Hermitian n× n matrix given by

Hϕ(z) =
(
∂2ϕ(z)
∂zj∂zl

)
1≤l,j≤n

.

Let Dϕ,+ denote the set of points in D where Hϕ(z) is positive definite.

Definition 1.1
We say that z0 ∈ D has the N -th localization property (for ϕ) if the following two
conditions are satisfied

(i) z0 ∈ Dϕ,+

(ii) ϕ̃N(z0, z) > 0 for all z ∈ D \ {z0}.

The set of all points which satisfy this condition is denoted by Dϕ,N .

Example 1.2
Let D ⊂ Cn be a domain and ϕ ∈ C∞(D,R, ϕ(z) = ∑n

j=1 λj|zj|2, where λ1, . . . , λn

are positive real numbers. We have Hϕ(z) = diag(λ1, . . . , λn) and hence Dϕ,+ = D.
Furthermore, Dϕ,N = D holds for all N ∈ N0.

We have z0 ∈ Dϕ,+ if and only if the transformed weight ϕ̃N(z0, ·) is positive
on D \ {0} (see Figure 2.1 in Section 2.5). Note that it does not need to be pluri-
subharmonic away from z0. The N -th localization property is carefully studied in
Section 2.5. For example, if D is bounded, we have that Dϕ,N is open.
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We will show that under certain regularity conditions on ϕ and ρ we have that
Bkϕ,ρ and Pkϕ,ρ have asymptotic expansions up to order N and N/2 on Dϕ,N and
Dϕ,N × D. Our first main result is the construction of some reproducing kernel
function which recovers the value of any holomorphic function f ∈ H0

kϕ,ρ(D) at a
point z ∈ Dϕ,N up to some error of order N + 1− n+ ε where ε > 0 can be chosen
arbitrarily small.

Theorem 1.3
Let D ⊂ Cn be a bounded domain, l ∈ N0 a non-negative integer and

ϕ ∈ C6N+3n+4+l(D,R) ∩ C0(D) and ρ ∈ C4N+2n+2+l(D,R) ∩ C0(D)

be two functions such that ρ > 0 on D and dVD(z) = ρ(z)dVCn. For any α ∈ Nn
0

and j ∈ N, |α|, j ≤ N , there exist functions λ(j)
N,α ∈ C l(Dϕ,+) where λ(j)

N,α(z0) only
depend on ϕ, ρ and their derivatives at z0 ∈ Dϕ,+, such that Kkϕ,N : Dϕ,+ ×D → C
defined by

Kkϕ,N(z, w) = knek(γN (z,z)+γN (z,w))
N∑
j=0

k−j
∑
|α|≤N

λ
(j)
N,α(z)(w − z)α

satisfies the following: For any compact set K ⊂ Dϕ,N and any ε > 0 there exists a
constant C > 0 such that

|f(z)− (f,Kkϕ,N(z, ·))kϕ,ρ|2 e−kϕ(z) ≤ Ck−(N+1)+n+ε‖f‖2
kϕ,ρ

holds for all k ∈ [1,∞), z ∈ K and f ∈ H0
kϕ,ρ(D).

Here C is bounded when ϕ stays in a bounded set in C6N+3n+4(D,R) ∩ C0(D) such
that inf(z,w)∈K×D ϕ̃N(z, w)/|w − z|2 has a positive lower bound and ρ stays in a
bounded set in C4N+2n+2(D,R) ∩ C0(D) such that infw∈D ρ(w) has a positive lower
bound.

We have an explicit formula for λ(j)
N,α(z0), j, |α| ≤ N , j ≤ N − |α|

2 (see Theo-
rem 3.17 and Remark 3.18) in terms of ρ, ϕ and their derivatives. In the smooth
setting we can show that this formula also holds for j > N − |α|

2 with some im-
provements (see Lemma 3.23). Note that for the expansion of the Bergman kernel
function Bkϕ,ρ we just need to know λ

(j)
N,0.

Definition 1.4
For ϕ ∈ C6j+3n+4(D,R) and ρ ∈ C4j+2n+2(D,R), ρ > 0, define bj = bϕ,ρj : Dϕ,+ → R
by b0 = 1 and for j ≥ 1, z ∈ Dϕ,+ set

bj(z) =
2j∑
d=1

∑
α∈Nd
|α|=2j

∑
(β(1),...,β(d))∈(Nn0 )d−1

|β(1)|,...,|β(d−1)|≤j

(−1)dν(α1)
τ,β(1)ν

(α2)
β(1),β(2) · . . . · ν(αd)

β(d−1),0
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where

ν
(r)
α,β = λβ

β!
χ

(r)
|α|,|β|

ρ(z)

r+|α|+|β|∑
l=0

∑
|η|=l+ r+|α|+|β|

2
η≥max{α,β}

(−1)l η!
l!ληµ

(l)
η−α,η−β

χ(r)
p,q =

1 , if 2 | (r + p+ q) and r ≥ |p− q| ,
0 , else,

and
µ

(l)
α,β =

∑
(α(0),...,α(l))∈(Nn0 )l+1

|α(0)
m |+...+|α

(l)
m |=αm

∑
(β(0),...,β(l))∈(Nn0 )l+1

|β(0)
m |+...+|β

(l)
m |=βm

ρα(0),β(0)(z)
α(0)!β(0)! ·

l∏
j=1

ϕα(j),β(j)(z)
α(j)!β(j)!

ρα,β(z) = (Xw)α(Xw)βρ(z) and

ϕα,β(z) =


(
Xα
wX

β
wϕ
)

(z) , if max{|α|, |β|} ≥ 2,min{|α|, |β|} ≥ 1,
0 , else,

with
(Xw)α =

n∏
m=1

Xαm
w,m, Xw,m = Fm1

∂

∂w1
+ . . .+ Fmn

∂

∂wn

where F = (Flm)1≤l,m≤n is an invertible complex matrix such that F ∗Hϕ(z)F =
diag(λ1, . . . , λn) for some λ1, . . . , λn ∈ R+ and we set λη = λη1

1 · · ·ληnn .

Note that in Definition 1.4 we have Xα
w = ∂αw when F = Id and that λ1, . . . , λn

strongly depend on the choice of F . From the definition it is not clear that bj(z) is
real valued, independent of F and continuous. This has to be proven.

Lemma 1.5
We have that bj(z) is well defined and independent of the choice of F . Furthermore,
given ϕ ∈ C6j+3n+4+l(D) and ρ ∈ C4j+2n+2+l(D,R) for some l ∈ N0 we have bj ∈
C l(Dϕ,+).

We will show now that the bjs , bj = bϕ,ρj , defined above are precisely the coeffi-
cients in the asymptotic expansion of the Bergman kernel function. See Section 2.1
for the notations we use in Theorem 1.6.

Theorem 1.6
Let D ⊂ Cn be a bounded domain and

ϕ ∈ C6N+3n+4+l(D,R) ∩ C0(D), ρ ∈ C4N+2n+2+l(D,R) ∩ C0(D)

be two functions such that ρ > 0 on D and dVD(z) = ρ(z)dVCn. For any ε > 0 and
any 0 ≤ r ≤ l we have

Bkϕ,ρ −
det(Hϕ)
πnρ

kn
N∑
j=0

k−jbϕ,ρj = O(k−cr(N+1)+n+r+ε) in Cr(Dϕ,N)
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with cr = 1 − r
l+1 . More precisely, for any compact set K ⊂ Dϕ,N , any 0 ≤ r ≤ l

and any ε > 0 there exists a constant C = CK,ε,l > 0 such that∥∥∥∥∥∥Bkϕ,ρ −
det(Hϕ)
πnρ

kn
N∑
j=0

k−jbϕ,ρj

∥∥∥∥∥∥
Cr(K)

≤ CK,ε,lk
−cr(N+1)+n+r+ε

holds for all k ∈ [1,∞). Here C is bounded when ϕ stays in a bounded set in
C6N+3n+4+l(D,R) ∩ C0(D) such that inf(z,w)∈K×D ϕ̃N(z, w)/|w − z|2 has a uniform
positive lower bound and ρ stays in a bounded set in C4N+2n+2+l(D,R)∩C0(D) such
that infw∈D ρ(w) has a uniform positive lower bound.

We have the following theorem for the off-diagonal expansion.

Theorem 1.7
Let D ⊂ Cn be a bounded domain and

ϕ ∈ C6N+3n+4+l(D,R) ∩ C0(D), ρ ∈ C4N+2n+2+l(D,R) ∩ C0(D)

be two functions such that ρ > 0 on D and dVD(z) = ρ(z)dVCn. Given N ∈ N0

define Pkϕ,N : Dϕ,N ×D → C by

Pkϕ,ρ,N(z, w) = kne−k(ϕ(w)
2 −γN (z,w))

N∑
j=0

k−j
∑
|α|≤N

λ
(j)
N,α(z)(w − z)α

satisfies with λ(j)
N,α as in Theorem 1.3. For any ε > 0 and r ≤ l we have

Pkϕ,ρ − Pkϕ,ρ,N = O(k−
cr
2 (N+1)+n+r+ε) in Cr(Dϕ,N ×D)

with cr = 1 − r
l+1 . More precisely, for any compact set K ⊂ Dϕ,N ×D, any r ≤ l,

and any ε > 0 there exists a constant C = CK,l,ε > 0 such that

‖Pkϕ,ρ − Pkϕ,ρ,N‖Cr(K) ≤ CK,l,εk
− cr2 (N+1)+n+r+ε

holds for all k ∈ [1,∞). Here C is bounded when ϕ stays in a bounded set in
C6N+3n+4+l(D,R) ∩ C0(D) such that inf(z,w)∈K×D |w − z|2/ϕ̃N(z, w) has a uniform
positive lower bound and ρ in a bounded set in C4N+2n+2+l(D,R)∩C0(D) such that
infw∈D ρ(w) has a uniform positive lower bound.

Corollary 1.8
Let K ⊂ Dϕ,N × D be compact. Given ε > 0 there exist constants C, δ > 0 such
that |Pkϕ,ρ(z, w)| ≤ C

(
kne−δk|w−z|

2 + k−
N+1

2 +n+ε
)
holds for all (z, w) ∈ K, k ∈

[1,∞). Here C and δ−1 stay bounded under the same conditions on ϕ and ρ as in
Theorem 1.7.
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Definition 1.9
Given ϕ, ρ ∈ C∞D ∩ C0(D), α ∈ Nn

0 , j ∈ N0 define bj,α ∈ C∞(Dϕ,+)

bj,α = α!πnρ
det(Hϕ)λ

(j)
2j+2|α|,α

with λ(j)
N,α as in Theorem 1.3, and set

P̂kϕ,ρ,N(z, w) = kn det(Hϕ(z))
πnρ(z) e−k(ϕ(w)

2 −γN (z,w))
bN2 c∑
j=0

k−j
∑

|α|≤bN2 c−j

bj,α(z)
α! (w − z)α

for (z, w) ∈ Dϕ,+.

Corollary 1.10
With the notations in Theorem 1.7 and Definition 1.4 assuming that ϕ and ρ are
smooth and continuous up to the boundary, i.e. ϕ, ρ ∈ C∞(D,R) ∩ C0(D), we have

Pkϕ,ρ − P̂kϕ,ρ,4N = O(k−N+n+r−ε) in Cr(Dϕ,4N ×D),

Bkϕ,ρ −
det(Hϕ)
πnρ

kn
N∑
j=0

k−jbj = O(k−(N+1)+n+r+ε) in Cr(Dϕ,N)

for any N, r ∈ N0 and any 0 < ε < 1
2 .

Note that we do not assume thatDϕ,+ = D, that is ϕ does not need to be positive
definite (or positive semi-definite) everywhere on D. In a geometric sense this means
that the fiber metric induced by ϕ is only partially positive. In general the set Dϕ,N

is small or even empty depending strongly on N . On the other hand we have that
given any N ∈ N0 and any point in z0 ∈ Dϕ,+ there exists an open neighborhood U
of z0 such that z0 ∈ Uϕ,N holds. Therefore, our results should be considered as local
expansion results. However, using some deep result of Hörmander [22] and Demailly
[14] we can apply our local computations to a more general setting. We are going
to describe the results obtained for such a setting in the next section. Let us finish
this section with the following example.

Example 1.11
Let D ⊂ Cn be a bounded domain. Let U ⊂ D be some open set ψ ∈ C∞0 (U,R) a
smooth non-negative function supported in U . Consider the weight ϕ ∈ C∞(D,R)∩
C0(D), ϕ(z) = ∑n

j=1 λj|zj|2 + ψ(z), λ1, . . . , λn > 0. As in Example 1.2 we find
V := D \ U ⊂ Dϕ,+. Given ρ ∈ C∞(D) ∩ C0(D), ρ > 0 on D, any N, r ∈ N0 and
any 0 < ε < 1

2 we have

Pkϕ,ρ − P̂kϕ,ρ,4N = O(k−N+n+r−ε) in Cr(V ×D),

Bkϕ,ρ −
det(Hϕ)
πnρ

kn
N∑
j=0

k−jbj,0 = O(k−(N+1)+n+r+ε) in Cr(V )
(1.3)
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with

Pkϕ,ρ,2N(z, w) = kn

πnρ(z)e
− k2

(∑n

j=1 λj(|wj−zj |
2−zjwj+zjwj)

)
N∑
j=0

k−j
∑

|α|≤N−j

bj,α(z)
α! (w − z)α.

An explicit formula for bj,α is obtained in Theorem 3.17 and Lemma 3.23. We will
state this formula here for the case n = 1 and λ1 = 1. We find

bj,α =
2j+|α|∑
d=1

∑
τ∈Nd

|τ |=2j+|α|

∑
β∈Nd−1

0
β1,...,βd−1≤2j+2|α|

(−1)d
β!ρd ν

(τ1)
α,β1ν

(τ2)
β1,β2 · . . . · ν

(τd)
βd−1,0

where

ν(r)
p,q = χ(r)

p,q

∂
r+q−p

2
z ∂

r+p−q
2

z ρ

( r+q−p2 )!( r+p−q2 )!

with χ(r)
p,q as in Definition 1.4. Note that bj,0 = bj holds which implies that the sum

for bj,0 just need to be considered for β1, . . . , βd−1 ≤ j.

1.3 Global Expansion
Let (L, h) → (M,dVM) be a holomorphic Hermitian line bundle over a complex
manifold M with volume form dVM . Given complex coordinates (U, z) around a
point p ∈ M and a local holomorphic frame s we can identify h ∼ e−ϕ with ϕ =
− log(h(s, s)), dVM = ρ̃dVCn for some positive function ρ̃, and holomorphic sections
on U with holomorphic functions in the complex variable z. We say that h is upper
semi-continuous or has upper semi-continuous weight if − log(h(s, s)) is upper semi-
continuous for any local holomorphic frame s. Let Mh,+ denote the set of points in
M which have a neighborhood where h is of class C2 and has positive curvature. Let
(E, hE) be another holomorphic line bundle with smooth Hermitian metric. We are
interested in studying the Bergman kernel Pk = Phk⊗hE ,dVM and its Bergman kernel
function Bk = Bhk⊗hE ,dVM for the space H0

2 (M,Lk⊗E) consisting of all holomorphic
sections with finite L2-norm as mentioned in Section 1.1. We define the following
invariants for our setting.

Definition 1.12
Assume that h is of class C6j+3n+4 and dVM is of class C4j+2n+2. Define

bj = bh,hE ,dVMj : Mh,+ → R, bh,dVM ,hEj (p) = bϕ,ρj (z(p))

where bϕ,ρj is given by the formula in Definition 1.4 with respect to a choice of local
trivializations s of L and e of E and local coordinates (U, z) with ϕ = − log(h(s, s)),
ρ = hE(e, e)ρ̃, dVM = ρ̃dVC .
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Lemma 1.13
The function bj = bh,hE ,dVMj is well defined, that is bj is independent of the choice of
coordinates and trivializations. Furthermore, we have that bh,hE ,dVMj ∈ C l(Mh,+,R)
if h is of class C6j+3n+4+l and dVM is of class C4j+2n+2+l.

Definition 1.12 together with Lemma 1.13 give us globally defined quantities
which decode information of h, hE and dVM and are explicitly given in local coordi-
nates. Note that it follows from the definition that bj does not depend on any choice
of a Hermitian metric on M . Since the bjs are our candidates for the coefficients
in the expansion of the Bergman kernel function that observation becomes obvious
because the definition of Bk only depends on the choice of volume form and line
bundle metric.

One of the most important cases where the Bergman kernel and its Bergman
kernel function has an asymptotic expansion is when L→M is a positive holomor-
phic line bundle over a compact Hermitian manifold M . The Hermitian metric on
M induces a volume form dVM . As mentioned in Section 1.1 a theorem of Catlin
[10] and Zelditch [38] (see also [30]) implies that Bk has an asymptotic expansion,
that is

Bk ∼ a0k
n + a1k

n−1 + a2k
n−2 + . . . . (1.4)

A very difficult task is to calculate the coefficients aj in terms of local geometric
data. It is well-known that the Bergman kernel localizes in that setting (see [30,
Section 4.1.2]). Hence we have aj = bj. In other words we established an explicit
formula (in local coordinates, see Definition 1.4 and 1.12) for the coefficients aj.
But this formula does not give a direct link between the coefficients and geometric
objects. As mentioned before the coefficients aj should not depend on the choice of
the Hermitian metric onM but on its volume form. However, under the assumption
that L is positive the curvature induces a unique Kähler metric ω on M . So it is
natural to express the aj = bh,hE ,dVMj in terms of the geometry with respect to that
specific Kähler metric. Since the construction of bh,hE ,dVMj given in Definition 1.12
holds for any choice of local coordinates, we can choose Kähler normal coordinates
(see [6]) and some "good" local frame of E and find that the derivatives of ϕ and ρ
in Definition 1.4 are directly linked to the curvature tensor and the Ricci tensor of
ω, the curvature of hE and their covariant derivatives (see also [37] and Section 1.4).

We will now introduce the setting where we want to prove an asymptotic ex-
pansion. In order to get a full asymptotic expansion one has to assume the metric
h and the volume form to be smooth, i.e. to be of class C∞, at least at points one
wants to prove the expansion. Let L0 and E0 be two holomorphic line bundles over
a complete Kähler manifold X with metric ω and let M ⊂ X be a domain. Fix
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a smooth Hermitian metric hE on E0 and consider the holomorphic line bundles
L = L0|M and E = E0|M over M . Let h be a Hermitian metric on L with upper
semi-continuous weight. We will use the notation c1(L, h) to denote the curvature of
the Hermitian line bundle (L, h) at points where the metric h is of class C2. Locally
we can write c1(L, h) = − i

2∂∂ log(h(s, s)) for any local holomorphic frame s of L.

Definition 1.14
We define the set Mh,∞ ⊂ M by saying p ∈ Mh,∞ if and only if p has an open
neighborhood U where h is smooth with positive curvature and there exists a smooth
semi-positive metric h0 on L0 → X and k0 with h ≤ h0 on M and h = h0 on U and
kc1(L0, h0) + c1(E, hE) ≥ 0 for all k ≥ k0.

We will study the Bergman kernel and the Bergman kernel function for the line
bundle Lk = Lk⊗E⊗ΛnT ∗(1,0)M where the metric hω on ΛnT ∗(1,0)M is induced by
the metric ω and the volume form is given by dVM = ρω

n

n! , where ρ ∈ C
0(M,R) is

positive and bounded. In local coordinates (U, z) we will use the holomorphic frame
dz := dz1 ∧ . . . ∧ dzn for ΛnT ∗(1,0)M and find dVM = ρρ̃dVCn , hω(dz, dz) = 1/ρ̃.
Hence we find that bj is independent of ω, so we set bh,hE ,ρj := bh,hE⊗hω ,dVMj in this
setting. Putting hk := hk ⊗ hE ⊗ hω to denote the metric of Lk we write Phk,dVM
for the Bergman kernel and Bhk,dVM for the Bergman kernel function of the space
H0

2 (M,Lk). We have the following results.

Theorem 1.15 (On-Diagonal Expansion)
Let L0 and E0 be two holomorphic line bundles over a complete Kähler manifold
(X,ω) and let hE be a smooth Hermitian metric on E0. Let (M,dVM) be a domain
inside X with volume form dVM := ρωn for some bounded, positive function ρ ∈
C0(M,R) and consider the holomorphic line bundles L = L0|M and E = E0|M
over M . For any upper semi-continuous metric h on L and k ∈ N consider the
holomorphic Hermitian line bundle

(Lk, hk) = (Lk ⊗ E ⊗ ΛnT ∗(1,0)M,hk ⊗ hE ⊗ hω)

and let Bhk,dVM denote the Bergman kernel function for the space H0
2 (M,Lk).

Given any N, r ∈ N0 assuming ρ ∈ C4m+2n+2(Mh,∞) with m = Nr+N+r2+r+2,
we have

Bhk,dVM −
kn

πn
c1(L, h)n
n!dVM

N∑
j=0

bh,hE ,ρj k−j = O(k−N−1+n) in Cr(Mh,∞).

More precisely, given any compact set K ⊂Mh,∞ and any partial differential opera-
tor F of order ≤ r there exists a constant C = CK,F such that∣∣∣∣∣∣F

Bhk,dVM −
kn

πn
c1(L, h)n
n!dVM

N∑
j=0

bh,hE ,ρj k−j

 (p)

∣∣∣∣∣∣ ≤ Ck−N−1+n
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holds for all p ∈ K and all k ∈ N. Here C is bounded when ρ stays in a bounded
in C4m+2n+2(Mh,∞,R) ∩ C0(M) such that infp∈M ρ(p) has a uniform positive lower
bound and supp∈M ρ(p) has a uniform upper bound.

Given local coordinates (U, z) around a point p ∈M and local holomorphic fra-
mes s and e of L and E, we denote by (U×U, (z, w)) the induced coordinates around
(p, p) ∈M ×M and choose ŝk(z, w) := e

k
2 (ϕ(z)+ϕ(w))sk(z)e(z)dz(sk(w)e(w)dw)∗ as a

trivialization of Lk � L∗k|U×U with ϕ = − log(h(s, s)).

Theorem 1.16 (Near-Diagonal Expansion)
Under the assumptions of Theorem 1.15 given N, r ∈ N0, 0 < ε < 1

2 and any point
p ∈ Mh,∞ such that ρ is smooth in an open neighborhood around p, there exist
coordinates (U, z) around p and local holomorphic frames s and e of L and E such
that

Phk,dVM − P̂kϕ,ρ̃,4N(z, w)ŝk(z, w) = O(k−N+n+r−ε) in Cr(U × U)

where P̂kϕ,ρ̃,4N : U × U → C is defined in Definition 1.9 and ρ̃ = ρhE(e, e).

Corollary 1.17
For any point p ∈Mh,∞ there exist coordinates (U, z) around p and constants C, δ >
0 such that |Phk,dVM | ≤ knCe−δk|z−w|

2 +R(k) with R(k) = O(k−∞) in Cr(U × U).

Theorem 1.18 (Off-Diagonal Asymptotics)
Let D ⊂Mh,∞ be an open subset such that ρ is smooth on D. One has

Phk,dVM = O(k−∞) in Cr(D × (M \D)).

We will now use these results to generalize the setting in Example 1.11.

Example 1.19
Let D ⊂ Cn be any domain. Let U ⊂ D be some open set, ψ an upper semi-
continuous non-negative function supported in U . Consider the weight ϕ defined
by ϕ(z) = ∑n

j=1 λj|zj|2 + ψ(z), λ1, . . . , λn > 0. As in Example 1.11 we find V :=
D \ U ⊂ Me−ϕ,∞. Given a bounded function ρ ∈ C∞(V ) ∩ C0(D), ρ > 0 on D, we
have that (1.3) is still valid.

Example 1.20
Let (L, h) be a holomorphic line bundle with smooth positive Hermitian metric over
a compact complex manifold X and let M ⊂ X be a domain with volume form
dVM := c1(L, h)n|M . We denote the restriction of the Hermitian line bundle to M
again by (L, h) and consider the Bergman kernel Pk and the Bergman kernel function
Bk for the spaceH0

2 (M,Lk). Note that in general the spaceH0
2 (M,Lk) contains more

sections than H0
2 (X,Lk) and can be infinite dimensional while H0

2 (X,Lk) is always
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finite dimensional since X is compact. We find Mh,∞ = M and hence deduce from
Theorem 1.15 and Theorem 1.16 that Pk and Bk admit asymptotic expansions on
M . Furthermore, given an open set U ⊂ M and a perturbation of h in M \ U of
the form he−ψ for some non-negative upper semi-continuous function ψ supported
in M \ U , we find that Pk and Bk for the perturbed metric still have the same
expansion on U .

1.4 Relation to Previous Results

The subject of Bergman kernel expansion has a long history started by Tian [36]
in 1990. We start by giving an overview about the most famous results in this
context and the results which are directly linked to this thesis. For a complete
reference on Bergman kernel expansion we refer to the book of Ma–Marinescu [30].
In the following let (M,ω) denote a complex Hermitian manifold, L a Hermitian
line bundle and E a Hermitian vector bundle over X. Let H0

2 (M,Lk ⊗ E) be the
space of holomorphic sections in Lk ⊗ E with finite L2-norm. We denote by Pk

the Bergman kernel and by Bk, Bk(x) = Pk(x, x), the Bergman kernel function for
H0

2 (M,Lk ⊗E). Note that if E has rank > 1 we have that Bk becomes a section in
the endomorphism bundle of E. Bergman kernel expansion contains the following
subdisciplines:

• On-diagonal expansion, that is the expansion of the Bergman kernel function.

• Near-diagonal expansion, that is the expansion of the Bergman kernel in a
small neighborhood around the diagonal of M ×M .

• Off-diagonal expansion, that is the behaviour of the Bergman kernel away from
the diagonal.

• Computations of the coefficients in the expansions.

In [36] Tian uses a so called peak section method to establish an on-diagonal ex-
pansion up to order 2 under the assumption that L is positive, ω is the curvature of
L, E = C is trivial and M is compact. He also shows that - modulo some technical
assumptions - this method works when (M,ω) is a complete Kähler manifold.
Catlin [9] and Zelditch [38] study the case when L is positive and M is compact,
and prove a full asymptotic expansion for the Bergman kernel function using a deep
result on Szegö kernel expansion on pseudoconvex boundaries due to Sjöstrand and
Boutet de Monvel [7]. Furthermore, they calculate the coefficient a0. Note that the
work of Catlin [9] also contains a result on near-diagonal expansion.
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In [27] Lu generalizes the methods of Tian in order to prove a full asymptotic on-
diagonal expansion, calculated the first three coefficients and described an algorithm
for computing all coefficients. Lu assumes that M is compact and L is positive.
Under the assumption that M is a bounded pseudoconvex domain in Cn, L,E ' C
are trivial, L is semi-positive and ω is the curvature of L, Englis proves in [17] a full
on-diagonal and near-diagonal expansion on sets where L is positive using results of
Fefferman [18] and asymptotic expansion for Laplace integrals. Since the coefficients
in the expansion of Laplace integrals are explicitly given he computed the first four
coefficients for the on-diagonal expansion in [16] .
In [13] Dai–Liu–Ma (cf. Ma–Marinescu [30]) prove an asymptotic expansion for ge-
neralized Bergman kernels for spinc Dirac operators on symplectic orbifolds using
a heat kernel approach. As a consequence they obtain a strong result on Bergman
kernel expansion on complex manifolds under the assumption that M is compact
and L is positive. Furthermore, Ma–Marinescu [30] give an algorithm for compu-
ting the coefficients for the Bergman kernel expansion (see also their work [29] for
computations of the coefficients in the near-diagonal expansion). Their result also
works - modulo some technical details - when (M,ω) is complete and L is positive
(see [30]).
In [3] Berman-Brendtsson-Sjöstrand give a proof for Bergman kernel expansion using
L2 estimates and the construction of local reproducing kernels up to an asympto-
tically small error. The local kernel is obtained using techniques from microlocal
analysis. They assume that L is positive and M is compact. In [37] Xu give an
explicit formula for the coefficients in the expansion of the Bergman kernel function
in terms of graphs and combinatorial functions.

All the results mentioned above use the assumption that the metric is smooth and
has positive (or at least semi-positive) curvature. Furthermore, (M,ω) is assumed to
be compact or complete. General results for smooth metrics with arbitrary curvature
are due to Berman [5] and Hsiao–Marinescu [20]. Note that the results of Hsiao–
Marinescu also work for (0, q)-forms. In [5] (cf. [4]) Berman considers M to be
compact and L to be a big line bundle with a smooth metric of arbitrary curvature.
As a consequence of his results it turns out that Bergman kernel expansion holds
(in the sense of Ma–Marinescu [30]) exactly on the set of points where the metric
coincides with its equilibrium metric (modulo some base locus). Hsiao–Marinescu
considered in [20] the Bergman kernel for lower energy forms and prove that this
object always admits an asymptotic expansion. It follows that for arbitrary M and
arbitrary smooth Hermitian metric on L the Bergman kernel Pk and Bergman kernel
function Bk has an asymptotic expansion on subsets D ⊂ M where the Kodaira
laplacian has a small (local) spectral gap.
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Our approach is related to methods due to Tian, Berman-Berendtsson–Sjöstrand,
Berman and Englis and uses an expansion result on oscillatory integrals as proven
by Hörmander in [24] (see also Theorem 2.51). Note that in this thesis we restrict
ourselves to the case where E has rank one. We will now explain the relation of our
results from Section 1.2 and their proofs to other results and methods in detail.

Recall that Theorem 1.3 provides a reproducing kernel for a bounded domain D
which reproduces the value of any holomorphic function at any point of Dϕ,N (see
Definition 1.1) up to some error which is an O(k−N−1+n+ε). Note that we do not
assume the weight ϕ and the volume form ρdVCn to be smooth, that ϕ does not
need to be plurisubharmonic everywhere on D and that the estimates are uniform
in ϕ, ρ up to some technical conditions. Furthermore, we give an explicit formula
for the coefficients for the on-diagonal expansion (see Definition 1.4).
In [3] Berman-Brendtsson–Sjöstrand construct a reproducing kernel with error which
is an O(k−N−1+n) (see [3, Proposition 2.7]) using techniques from microlocal analy-
sis - which is different from our approach - in the following setting. They consider
the domain D to be a ball in Cn around the origin, fixed a smooth weight ϕ and a
smooth volume form ρdVCn and assume the weight ϕ to be strictly plurisubharmonic
on D. From their method they obtained an algorithm for computing the coefficients
for the on-diagonal expansion but do not give an explicit formula in general.
Englis proved a result on Bergman kernel expansion in the following setting (see
[17, Corollary 1]). He considered a bounded pseudoconvex domain D ⊂ Cn and
assumed the fixed data ϕ and ρ := det(Hϕ) to be smooth and bounded and ϕ to be
plurisubharmonic. Under some further technical assumption he proved a full expan-
sion of the Bergman kernel on the set of points where ϕ is strictly plurisubharmonic
using an asymptotic expansion for Laplace integrals. Since the coefficients in the
expansion of Laplace integrals are well-known (see [16]) he could calculate the first
four coefficients. Although his method is different from ours we have that the ex-
pansion for Laplace integrals (see [16, Corollary 2]) is similar to Theorem 2.50 under
the assumptions that ϕ is smooth and ϕ̃N can be replaced by the almost analytic
extension of ϕ which actually means to put N =∞. Note that in Theorem 2.50 we
also have uniformity in ϕ and its derivatives thanks to the Hörmander’s method of
stationary phase.
In [26] Liu-Lu develop an abstract version of the peak section method introduced by
Tian [36] and generalized by Lu [27]. As a consequence of their result they obtain an
on-diagonal expansion for the Bergman kernel for compact manifolds with positive
line bundles under the assumption that the metric is fixed, smooth and has positive
curvature. This setting seems to be quite different to our local setting considered
in Section 1.2. However, we establish a local version of their abstract peak section
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method to prove Theorem 1.3. Note that they need Hörmander’s L2 estimates which
we can avoid here. Since on a compact manifold the space of holomorphic sections is
finite dimensional it is much easier to prove that the Bergman kernel function can be
approximated by their peak section method. In our case the space of holomorphic
functions is always infinite dimensional. That leads to the problem that we do not
see immediately that our computations approximate the Bergman kernel function.
We overcome this difficulty by introducing the local reproducing kernel with small
error (see Theorem 1.3). It turns out that this is actually an improvement of the
method of Liu–Lu since we also obtain results for the off-diagonal expansion (see
Theorem 1.7). We refer to Section 1.5.1 and Remark 1.21 for more information
about the relation between our method and the method of Liu–Lu. Note that the
results of Dai–Liu–Ma and Ma–Marinescu also provides uniformity in the geometric
data. On a compact manifold this implies that the expansion holds under weaker
regularity assumptions on the metric, that is the metric does not need to be of class
C∞.
In [37] Xu gives a closed formula for the coefficients in the expansion of the Berg-
man kernel functions. More precisely, he proves that any coefficient is the weighted
sum over a set of special graphs which correspond to geometric objects of the ma-
nifold, that is the curvature and its covariant derivatives, with weights given by
combinatorial functions which are recursively defined. Although our formula for the
coefficients (see Definition 1.4) is less aesthetic those combinatorial functions are
contained in an explicit way. However, our formula is in local coordinates and hence
the connection to geometric quantities is not obvious. Choosing Kähler coordinates
(see [6]) will immediately lead to an expression in terms of geometric quantities.

Let us explain now how the results from Section 1.3 and their proofs are related
to previous results. In [3] Berman-Brendtsson-Sjöstrand used L2 estimates of Hör-
mander [23] (cf. [14]) to extend their local reproducing kernel to the entire manifold.
We follow their procedure with some slight modifications to extend our local repro-
ducing kernel (see Theorem 1.3) to the global setting (see Section 1.5.2 for an outline
of the idea). As a consequence we obtain the results from Sections 1.3. Note that we
assume very weak regularity conditions on the metric and the volume form outside
the set we want to prove asymptotic expansion (see Example 1.19). Furthermore,
our results for the on-diagonal expansions provides uniformity in the volume form
which does not need to be smooth (see Theorem 1.15). In Section 1.3 assuming that
the manifold M is compact and the metric and volume form are smooth and fixed,
our result follows from the results of Berman in [5]. If the surrounding manifold X
is complete and the metric is the restriction of a smooth positive metric on L0 to L
our results follow from Hsiao–Marinescu [20].
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1.5 Sketch of the Proofs
In this section we give a sketch of the proof of the results announced in Section 1.2
and Section 1.3. In Section 1.5.1 we give a description of the proof of Theorem 1.3
in a simple case and explain how Theorem 1.7 and Theorem 1.6 follows from The-
orem 1.3 as a simple consequence. Furthermore, we explain how to get the for-
mula (see Definition 1.4) for the coefficients in the expansion of the Bergman kernel
function. In Section 1.5.2 we show how the results from Section 1.3 can be deduced
from Theorem 1.3 and the L2 estimates due to Hörmander.

1.5.1 Reproducing Kernels with Asymptotically Small Errors

We will start with the proof of Theorem 1.3 and then explain how Theorem 1.7 and
Theorem 1.6 follow. We start by sketching the proof while pointing out the main
ideas. Note that the fundamental idea of this proof is due to Tian [36] and was
generalized by Lu [27] and Liu–Lu [26] (see Remark 1.21).

For making the idea clear we consider the case n = 1, that is D is a bounded
domain in C and we assume 0 ∈ D. Assume that ϕ, ρ ∈ C∞(D,R) ∩ C0(D) be two
smooth real valued functions which are continuous up to the boundary of D with
ρ > 0. Let H0

kϕ,ρ(D) be the space of holomorphic functions with finite L2-norm
‖ · ‖kϕ,ρ and let Kkϕ,ρ, Pkϕ,ρ and Bkϕ,ρ be the reproducing function, the Bergman
kernel and Bergman kernel function for that space (see Section 2.4 for the definition
and construction of these objects). We then want to show how to get a pointwise
asymptotic expansion of Bkϕ,ρ(0) up to order N ∈ N assuming that ϕ has the N -th
localization property in z0 = 0 (see Section 2.5). For any 0 ≤ α ≤ N consider the
function vα,k(z) = (z−z0)αe−kγN (z0,z) = zαe−kγN (0,z) and set VN,k = spanC{vα,k} (see
Section 2.5 for the definition of γN and ϕ̃N). Our assumptions ensures that VN,k is
an (N+1)-dimensional subspace of H0

kϕ,ρ(D). We can split the proof into two steps:

(i) Calculate the Bergman kernel function BN,k(0) at z0 = 0 for the space VN,k
and show that BN,k(0) admits an asymptotic expansion up to order N , that is

|BN,k(0)− a0k + a1k
0 + a2k

−1 + . . .+ aNk
−N+1| ≤ C0k

−N

for real numbers a0, . . . , aN ∈ R and a constant C0 > 0 independent of k ∈
[1,∞).

(ii) Show that for any 0 < ε < 1 there exists a constant C > 0 such that for all
k ∈ [1,∞) we have |BN,k(0)−Bkϕ,ρ(0)| ≤ Ck−N−1+n+ε.

Step (i): We have BN,k(0) = e−kϕ(0)∑N
j=0 |sj(0)|2 where {sj}Nj=0 is any orthonormal

basis for VN,k with respect to the inner product on VN,k given by the restriction
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of the inner product on H0
kϕ,ρ(D). We observe vα,k(0) = 0 for all 1 ≤ α ≤ N . If

we choose an orthonormal basis {sj}Nj=0 with {sj}Nj=1 ⊂ spanC{vα,k}Nα=1 we have
BN,k(0) = e−kϕ(0)|s0(0)|2. Then the ansatz is to find uk = ∑N

α=0 λα,kvα,k ∈ H0
kϕ,ρ(D)

such that (uk, vα,k)kϕ = 0 for all 1 ≤ α ≤ N and (uk, v0,k) = 1. So we are seeking
for the solution of the linear equation

Akλk = (1, 0, 0, . . . , 0)T

where Ak = ((vβ,k, vα,k)kϕ)0≤α,β≤N and λk = (λ0,k, . . . , λN,k). By Cramer’s rule we
get λα,k = (−1)α detAα,k

detAk
where Aα,k is the N × N submatrix of Ak obtained by

eliminating the first row and the αth column from Ak. We write

(vα,k, vβ,k)kϕ =
∫
D
χ(z)zαzβe−kϕ̃N (0,z)dVD(z) +

∫
D

(1− χ(z))zαzβe−kϕ̃N (0,z)dVD(z)

for some cutoff function χ supported in D such that χ ≡ 1 in a neighborhood of 0.
TheN -th localization property ensures that the second term on the right-hand side is
an O(k−∞). For the first term on the right-hand side we use the method of stationary
phase due to Hörmander (see Section 2.6) to show that this term has an asymptotic
expansion with an explicit formula for the coefficients. Expanding the determinants
we get as a conclusion an asymptotic expansion for BN,k(0) = λ0,k = detA0,k

detAk
. In order

to get an explicit formula for the coefficients in that expansion we do some rescaling
of the entries of Ak. More precisely, we set Ãk = S−1

k AkSk for some diagonal matrix
Sk to get Ãk = Id +C1k

−1 + . . .+CNk
−N +O(k−N+1) for some matrices C1, . . . , CN

independent of k. Using the ansatz Ã−1
k = Id +B1k

−1 + . . .+BNk
−N +O(k−N−1) we

could uniquely determine the k-independent matrices B1, . . . , BN from C1, . . . , CN

using ÃkÃ−1
k = Id. Since we know C1, . . . , CN ,Sk explicitly and BN,k(0) = λ0,k is the

first entry of the vector SkÃ−1
k S−1

k (1, 0, 0, . . . , 0)T we end up with an explicit formula
for the coefficients in the expansion of BN,k(0). A detailed proof of that formula is
given in Section 3.2.
Step (ii): Here we show that uk satisfies some reproducing property up to order
N , that is

|f(0)− (f, uk)kϕ|2e−kϕ(0) ≤ Ck−N−1+n+ε‖f‖2
kϕ, f ∈ H0

kϕ,ρ(D) (1.5)

for some 0 < ε < 1 and some constant C > 0 independent of k. LetWN,k be the space
of all elements in H0

kϕ,ρ(D) which vanish up to order N in 0. We have the decomposi-
tion H0

kϕ,ρ(D) = VN,k⊕WN,k. By construction (1.5) is true for all f ∈ VN,k. Proving
an L2-norm estimate for the stationary phase formula in Section 2.7 and using the
information about λα,k, 0 ≤ α ≤ N we find that (1.5) holds for the elements in
WN,k. To proof that (1.5) is true for all f ∈ H0

kϕ,ρ(D) we need to establish a relation
between the orthogonal complement V ⊥N,k of VN,k in H0

kϕ,ρ(D) and WN,k. More pre-
cisely, we prove that the restriction of some projection Id−TN,k : H0

kϕ,ρ(D)→ WN,k
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coming from some modified Taylor expansion in 0 is uniformly bounded in k (see
Section 2.8, Theorem 2.66). From (1.5) and the reproducing property of the kernel
Kκϕ,ρ(0, z) (see Definition 2.34) a direct calculation shows

|Bkϕ,ρ(0)−BN,k(0)| ≤ ‖Kkϕ,ρ(0, ·)− uk‖2
kϕ ≤ Ck−N−1+n+ε.

We just showed a pointwise expansion in z0 = 0 here. However, in this thesis we
will show that the estimate is uniform in z0, ρ and ϕ staying in some bounded sets
which satisfy certain conditions (see Theorem 1.7 and 1.6).

Using similar arguments as above and basic L2-norm estimates from Section 2.3
we get the estimates for |Pkϕ,ρ,N − Pkϕ,ρ| in Theorem 1.7. To get an estimate in the
C l-norm we use Hörmander’s trick (see Lemma 3.11) and an apriori estimate for the
Bergman kernel (see Corollary 2.39).

Remark 1.21
Our approach is related to the generalization due to Liu–Lu [26] of the methods
used in [36] and [27]. In [26] Liu–Lu proved a result on the asymptotic expansion
in k of the Bergman kernel function for sections in the k-th tensor power of a
positive holomorphic line bundle twisted with some holomorphic vector bundle over
a compact manifold. The main difference compared to our setting is that the space
of holomorphic sections on a compact manifold is finite dimensional. Hence they
worked with matrices Ak as above of increasing size but which contains all the
information of the space of holomorphic sections. This makes it easier to prove that
an inverse of a submatrix of sufficiently large but fixed size approximates already
the Bergman kernel function. In our setting the space of holomorphic functions has
always infinite dimension. In order to prove that our computations approximate the
Bergman kernel function we construct a reproducing kernel modulo sum error in
(1.5). Using this kernel we are able to deduce a result on the off-diagonal expansion
from our method.

1.5.2 Approximation of Bergman Kernels on Manifolds

In this section we will outline the idea for the proofs of Theorem 1.15 and Theo-
rem 1.16. For the proof of Lemma 1.13 see Lemma 3.29. The idea is basically to
extend the reproducing kernel from Theorem 1.3 as a holomorphic section in the
second argument to the entire manifold. Note that the extension of locally repro-
ducing kernels to global settings via L2 estimates by Hörmander was also used by
Berman–Brendtsson–Sjöstrand in [3] and Berman in [5]. In principle we follow the
prove of [3, Theorem 3.1]. For making the idea clear we will just proof the expansion
at one point and consider the following simplified setting. Let (X,ω) be a complete
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Kähler manifold of complex dimension n = 1 and M ⊂ X a domain. Let (L0, h0)
be a positive holomorphic line bundle over X and let h be a Hermitian metric on
L = L0|M such that h ≤ h0 on M and h = h0 on some open set U ⊂ M . Choose
dVM = ρω to be the volume form for some positive function ρ ∈ C∞(M,R) such that
ρ is bounded by a constant C0 > 0. Set Lk = Lk⊗T ∗(1,0)X. We are interested in the
Bergman kernel Pk and its Bergman kernel function Bk for the space H0

2 (M,Lk),
k ∈ N at a point p ∈ U . Choose coordinates (D, z) around p with z(p) = 0 and hence
identify D with a subset of C around 0. Assume that s is a local holomorphic frame
of L defined on D, define ϕ = − log(|s|2h) and set sk = sk⊗ dz. We have that sk is a
local holomorphic frame of Lk. By shrinking D we can ensure that 0 has the N -th
localization property for ϕ. Given a holomorphic section f̃ ∈ H0

2 (M,Lk) we have
f̃ = fksk onD for some holomorphic function fk ∈ H0

kϕ,ρ(D). Setting ũk = uksk with
uk as in Section 1.5.1 and using (1.5) we find since hk(f̃ , ũk)dVM = fkuke

−kϕρdVC

that
|f̃ − sk(f̃ , ũk)k,D|hk ≤ Ck−N−1+n+ε‖f̃‖2

hk,dVM
, f̃ ∈ H0

2 (M,Lk)

where (·, ·)k,D indicates the inner product obtained by integration over D. We
showed that ũk has locally also a reproducing property up to some error. But we
cannot proceed as in Section 1.5.1 to show that uk(0) approximates Bk(p) since ũk
fails to be holomorphic on M . To overcome this difficulty we multiply ũk with a
cutoff function supported and D and equal to one in an open neighborhood V of 0
and consider ∂(χũk) = (∂χ)ũk ∈ Ω(0,1)(X,Lk0⊗T ∗(1,0)X). Thanks to the L2 estimates
of Hörmander [23] in Demailly [14] we find by our assumptions a smooth section v
on X with values in Lk0 ⊗ T ∗(1,0)X such that ∂vk = (∂χ)ũk and∫

X
|vk|2h0,ωdVX ≤

∫
M
|(∂χ)|2|ũk|2hkdVX .

Since |∂χ|2 is supported in an annulus around 0, properties of uk and h ≤ h0 it follows
‖vk‖2

hk,dVM
≤ C0

∫
X |vk|2h0,ωdVX = O(k−∞). Furthermore, we have that χũk − vk is

holomorphic on M and v is holomorphic on V . We conclude that

|f̃ − sk(f̃ , ũk)hk,dVM |hk ≤ Ck−N−1+n+ε‖f̃‖2
hk,dVM

, f̃ ∈ H0
2 (M,Lk) (1.6)

and can proceed as in Section 1.5.1 to prove that |Bk(p) − uk(0)| ≤ Ck−N−1+n+ε.
An approximation for the Bergman kernel Pk can also be obtained from (1.6) using
similar arguments as in Section 1.5.1.



Chapter 2

Bergman Kernels in Cn

This chapter contains the fundamental framework for the proofs of the results an-
nounced in Section 1.2 and Section 1.3. More precisely, we present a careful study
of the space of holomorphic sections with weighted finite L2-norm. The chapter is
organized as follows. In Section 2.1 we state basic definitions from analysis and in-
troduce the notations which are used during this thesis. Section 2.2 and Section 2.3
contain the notion of holomorphic functions, basic properties and basic asymptotic
L2-norm estimates for them. In Section 2.4 we introduce the Bergman kernel and
proof some apriori estimates. Sections 2.5 - 2.8 contain the partial steps for the
proof of Theorem 1.3 (see Section 1.5 for more explanations).

2.1 Analysis and Basic Notations

2.1.1 Analysis in Rn

We use the following notations: N = {1, 2, . . .}, N0 = N∪{0}, R (resp. C) is the set
of real (resp. complex) numbers. Given a complex number z = a + ib ∈ C, where
a, b ∈ R and i denotes the complex unit (i2 = −1), we write Re(z) = a, Im(z) = b,
z = a− ib and set

|z|2 = zz = a2 + b2, |z| =
√
|z|2.

A subset X ⊂ Rn is called domain if it is open and connected. For U ⊂ X we
write U ⊂⊂ X if U is relatively compact in X, that is the closure of U is a compact
subset of X. Given an open set X ⊂ Rn and a non-negative integer l ∈ N0 the set
of l-times continuously differentiable complex valued functions is denoted by C l(X)
and we set C∞(X) = ⋂

l∈NC
l(X). Furthermore, for l = 0 we denote by C0(X) the

continuous functions from X to C, where X is the closure of X. The set C l
0(X),

l ∈ N0 ∪{∞}, indicates the subspace of C l(X) which consists of all functions which
vanish outside a compact subset of X. Given a function f : X → C, the support of
f , denoted by supp(f), is the closure of the set of points where f is non-vanishing.
The space C l(X,R) consists of all real valued function in C l(X) and hence we define
C∞(X,R), C l

0(X,R), C0(X,R) as above. Furthermore, we set C l(X,Cn) = C l(X)n,
C l(X,Rn) = C l(X,R)n.
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An element α ∈ Nn
0 is called a multi-index. We set

|α| = α1 + . . .+ αn, α! = α1! . . . αn!.

Given another multi-index β ∈ Nn
0 we further set

α + β = (α1 + β1, . . . , αn + βn),
α ≥ β ⇔ αj ≥ βj for all 1 ≤ j ≤ n,

α− β = (α1 − β1, . . . , αn − βn), if α ≥ β,

max{α, β} = (max{α1, β1}, . . . ,max{αn, βn}),(
α

β

)
=
(
α1

β1

)
· · ·

(
αn
βn

)
.

Let x = (x1, . . . , xn) the canonical coordinate map of Rn. We will use the notations

xα = xα1
1 . . . xαnn , dαx =

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn
.

If there is no reason for confusion x = (x1, . . . , xn) will sometimes denote a point or
vector in Rn. The Euclidean norm of x is given by |x| =

√
|x1|2 + . . .+ |xn|2 and

given r > 0 and x0 ∈ Rn the open ball of radius r around x0 is Br(x0) = {x ∈ Rn |
|x− x0| < r}. The differential of a function f ∈ C1(X) is denoted by

df = ∂f

∂x1
dx1 + . . .+ ∂f

∂xn
dxn

and we set |dxf | =
√
| ∂f
∂x1
|2 + . . .+ | ∂f

∂xn
|2. Given a measurable function f : X → C

(measurable in the sense of the Borel σ-algebra on Rn) its integral with respect to
the Lebesgue measure on Rn is denoted by∫

X
fdVRn =

∫
X
f(x)dVRn(x)

whenever it exists and we identify dVRn with the standard volume form on Rn, that
is dVRn = dx1 ∧ . . . ∧ dxn. Given a map F : X → Y ⊂ Rm, F ∈ C1(X,Rm), we
denote its Jacobi matrix at a point x ∈ X by DxF = (∂Fj(x)

∂xl
)1≤j,l≤n and write DF

to describe the map DF ∈ C0(X,Rn·m), x 7→ DxF .
For any subset U ⊂ X and f ∈ C l(X) we define ‖f‖Cl(U) ∈ R≥0 ∪ {∞} by

‖f‖Cl(U) =
∑
|α|≤l

sup
x∈U
|dαx(f)(x)|.

Note that if U ⊂ X is compact or relatively compact we have that ‖f‖Cl(U) is finite
and f 7→ ‖f‖Cl(U) defines a seminorm on C l(X). We define a topology on C l(X) in
the following way:
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Definition 2.1
A subset A ⊂ C l(X) is closed if and only if for every sequence {fk}k∈N ⊂ A and
f ∈ C l(X) which satisfy

lim
k→∞
‖f − fk‖Cl(K) = 0

for any compact subset K ⊂ X one has f ∈ A.

This gives rise for a topology on C∞(X) = ⋂
l∈NC

l(X) by saying a subset A ⊂
C∞(X) is closed if A is a closed set in C l-topology for any l ∈ N. A subset S ⊂ C l(X)
is said to be bounded in C l(X) if for any compact set K ⊂ X there exists a constant
C > 0 such that ‖f‖Cl(K) ≤ C holds for all f ∈ S. Moreover, assuming that
D ⊂⊂ X is an open relatively compact subset of X we say that S ⊂ C l(D)∩C0(D)
is bounded if S is bounded as a subset of C l(D) and there exists a constant C > 0
such that ‖f‖C0(D) ≤ C holds for all f ∈ S. The topology on C l(X) induces a
topology on C l(X,R) and a subset of C l(X,R) or C l(D,R)∩C0(D) is bounded if it
is bounded considered as a subset of C l(X) or C l(D)∩C0(D), respectively. A subset
of C l(X,Rn) or C l(X,Cn) is bounded the image of its projection to any component
is a bounded set in C l(X).

Now we are going to introduce the Landau symbols.

Definition 2.2
Given a set A, a function g : A→ R, a family of functions {fa}a∈A ⊂ C l(X) and an
open set D ⊂ X we say fa = O(g(a)) in C l(D) if for any compact subset K ⊂ D

there exists a constant CK > 0 such that ‖fa‖Cl(K) ≤ CKg(a) holds for any a ∈ A.
We say fa = O(g(a)) in C∞(D) if fa = O(g(a)) in C l(D) holds for all l ∈ N.
Given a function h : X → R we write fa(x) = O(h(x)) on D, uniformly in a ∈ A if
for any compact subset K ⊂ D there exists a constant CK > 0 such that |fa(x)| ≤
CKh(x) holds for all x ∈ K and a ∈ A.

Usually we use the Landau symbols for the setting A = [1,∞)×B and g(k, b) =
ks where B is a parameter set and s ∈ R is a real number. We say fk = O(ks) in
C l(D) uniformly in b ∈ B instead of fk = fk,b = O(ks) in C l(D) if the parameter
dependence is not explicitly written in the index. Given B = B1 × · · · ×Bd we also
write “uniformly in b1 ∈ B1, . . . , bd ∈ Bd” instead of “uniformly in b ∈ B” where
b = (b1, . . . , bd). We further write fk = O(k−∞) if fk = O(ks) holds for all s ∈ R.

Definition 2.3
Let A be a set, {fk,a}(k,a)∈[1,∞)×A ⊂ C l(X) a family of functions and D ⊂ X. We say
that fk,a has an asymptotic expansion of order N ∈ N0 in C l(D) topology uniformly
in a ∈ A if there exist s ∈ R and functions (called coefficients) f (0)

a , . . . , f (N)
a ∈ C l(D)
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such that f (0)
a 6= 0 for all a ∈ A and {f (j)

a }a∈A is a bounded subset of C l(D) for
1 ≤ j ≤ N with

k−sfk,a −
N∑
j=0

f (j)
a k−j = O(g(k)) in C l(D)

(uniformly in a ∈ A) for some function g : [1,∞)→ R with lim supk→∞ k−Ng(k) ≤ 0.
The function f (0)

a is called leading coefficient.

Remark 2.4
A simple induction shows that the coefficients in an asymptotic expansion are uni-
que.

Lemma 2.5
Assume that fa,k ∈ C l(D), (k, a) ∈ [1,∞)×A has an asymptotic expansion of order
N in C l(D)-topology uniformly in a ∈ A such that |fa,k| and the modulus of the
leading coefficient is locally bounded and locally positively bounded from below, that is
for any compact set there exists a constant C > 0 with 1/C ≤ |fa,k(x)|, |f (0)

a (x)| ≤ C

for all k ∈ [1,∞), a ∈ A and x ∈ K. Then 1/fa,k has an asymptotic expansion of
order N in C l(D)-topology uniformly in a ∈ A. Furthermore, the coefficients in the
expansion of 1/fa,k at a point x ∈ D only depend on the coefficients in the expansion
of fa,k in that point x.

Proof. The assumptions on the leading coefficient f (0)
a in the expansion of fa,k imply

that fa,k/f (0)
a ∈ C l(D) has an asymptotic expansion of order N in C l(D)-topology

uniformly in a ∈ A. Hence it is enough to prove the statement for f (0)
a = 1. We define

{g(j)
a }Nj=0 ⊂ C l(D) as follows: g(0)

a = 1 and recursively −g(j)
a = ∑j

m=1 g
(j−m)
a f (m)

a ,
where f (j)

a , 0 ≤ j ≤ N are the coefficients in the expansion of fk,a . It follows
from induction that {g(j)

a }a∈A is a bounded subset of C l(D) for 1 ≤ j ≤ N and the
construction ensures R1,a,k := 1 − (∑N

j=0 k
−jg(j)

a )(∑N
j=0 k

−jf (j)
a ) = O(k−N−1). Since

fk,a has an asymptotic expansion we have

R2,a,k := fk,a −
N∑
j=0

k−jf (j)
a = O(h1(k)) in C l(D)

for some function h1 : [1,∞) → R with lim supk→∞ k−Nh1(k) = 0, which immedia-
tely implies fk,a = O(1) in C l(D). We calculate

fa,k
N∑
j=0

k−jg(j)
a − 1 = R1,a,k +R2,a,k

N∑
j=0

k−jg(j)
a = O(h(k)) in C l(D)

with h2(k) := max{h1(k), k−N−1}. Since |fa,k| is locally bounded and locally positi-
vely bounded from below, we find 1

fk,a
= O(1) in C l(D). Hence we find

N∑
j=0

k−jg(j)
a −

1
fk,a

= O(h2(k)) in C l(D)
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with lim supk→∞ k−Nh(k) ≤ 0. From the construction of g(j)
a the second part of the

statement follows immediately.

We end this section by stating a modified version of the well-known theorem
about local diffeomorphisms.

Theorem 2.6
Let X ⊂ Rn be open, x0 ∈ X a point, l ∈ N0 a non-negative integer and S ⊂
C l+2(X,Rn) a bounded set. Assume that there exists a constant C0 > 0 such that
|Dx0(F )v| ≥ C0|v| holds for all F ∈ S and v ∈ Rn. Then there exists an open
neighborhood U ⊂ X around x0 such that for any F ∈ S we have that F |U : U →
F (U) is a C l+2-diffeomorphism. Furthermore, there exist constants C, ε > 0 with
‖F−1|U‖Cl+2(F (U)) ≤ C and Bε(F (x0)) ⊂ F (U) for all F ∈ S.

Proof. If S has only one element the statement is in fact the well-known theorem
about the existence of local diffeomorphisms around the point x0. To prove the
modified version we will repeat the first part of the prove of the standard version
given in [8, Theorem 2.1] to show that we can choose a fixed U where the restrictions
of all F are invertible at the same time. The remaining claims follow then from the
standard version, the chain rule and Taylor expansion.
Put Xx0 = {x − x0 | x ∈ X}. Given F ∈ S we find that F̃ : Xx0 → Rn, F̃ (x) =
Dx0(F )−1F (x)−F (x0) satisfies F̃ (0) = 0 and D0(F̃ ) = Id. Setting S̃ = {F̃ | F ∈ S}
we find that S̃ is bounded in the C l+2-norm. The assumption |Dx0(F )v| ≥ C0|v|
and the construction of F̃ ensures that proof of the original statement follows from
proving the statement for S̃. Hence without loss of generality we can assume x0 = 0
and F (0) = 0, D0(F ) = Id for all F ∈ S. Since S is bounded in C2-norm and
D0(F ) = Id there exists for any open set X ′ ⊂⊂ X a constant C1 > 0 such that
‖ Id−DxF‖ ≤ C1|x| holds for all F ∈ S and x ∈ X ′, so we can choose r > 0 such
that ‖ Id−DxF‖ ≤ 1

2 holds for all F ∈ S and x ∈ B2r(0) ⊂ X. For any y ∈ Rn

and any F ∈ S consider the map gy,F : B2r(0)→ Rn, gy,F (x) = y+ x−F (x). Given
x, x1, x2 ∈ B2r(0) and y ∈ Br(0) we find |gy,F (x1) − gy,F (x1)| ≤ 1

2 |x1 − x2| and
|gy,F (x)| ≤ |gy,F (x) − gy,F (0)| + |y| ≤ 2r. We conclude that gy,F is a contraction
which maps B2r(0) into itself. Applying the Banach fixed-point theorem shows
that the equation gy,F (x) = x has a unique solution xy,F for any y ∈ Br(0) and
F ∈ S. For F ∈ S set VF = F−1(Br(0)) ∩ B2r(0). We find that the restriction of F ,
F |VF : → Br(0) has an inverse given by GF := F |−1

VF
(y) = xy,F . Since F is a C1 map

and by assumption we have that DxF is invertible for all x ∈ B2r(0) we deduce that
F̃ := F |V : → Br(0) is a C1-diffeomorphism with

D(F̃−1) = (DF̃ )−1 ◦ F̃−1. (2.1)
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Using |Dx(F )v| ≥ 1
2 |v| for all x ∈ B2r(0), F ∈ S and v ∈ Rn we find that | det(DF )|

has a uniform positive lower bound. We conclude that {(DF )−1 | F ∈ S} ⊂
C l+1(B2r(0)) is bounded and deduce from (2.1) using induction that S̃ = {GF | F ∈
S} ⊂ C l+2(Br(0)) is bounded. It remains to show that 0 is an interior point of⋂
F∈S F

−1(Br(0)). By the assumptions on r we find that |F (x)−F (0)| ≤ 3
2 |x| holds

for all x ∈ B2r(0) and F ∈ S. Hence, we have that F (U) ⊂ Br(0) for all F ∈ S with
U = Br/2(0). Since S̃ satisfies the same properties as S we have |GF (y)− 0| ≤ C2|y|
for some constant C2 > 0 independent of F ∈ S and y ∈ Br(0). Choosing ε > 0
sufficiently small leads to GF (y) ∈ U for all F ∈ S and y ∈ Bε(0). The complete
claim follows from F |−1

U = GF |F (U).

2.1.2 Analysis in Cn

Identify (Cn, z = (z1, . . . , zn)) with (R2n, x = (x1, . . . , x2n)) via zj = xj + ixj+n for
j ∈ {1, . . . , n} and set zj = zj = xj − ixj+n, j = 1, . . . , n. From this identification
we get that an open set X ⊂ Cn can be treated as an open set in R2n and therefore
integration of measurable functions over X, the space C l(X) with its topology, the
notion of Landau symbols for families in this space and its subspaces (like C l

0(X),
C l(X,R), etc.) are defined as in Section 2.1.1. We set

∂

∂zj
= 1

2

(
∂

∂xj
− i ∂

∂xj+n

)
, dzj = dxj + idxj+n

∂

∂zj
= 1

2

(
∂

∂xj
+ i

∂

∂xj+n

)
, dzj = dxj − idxj+n.

Given a function f ∈ C1(X) we have

df =
2n∑
j=1

∂f

∂xj
dxj = ∂f + ∂f

where ∂ and ∂ are defined by

∂f =
n∑
j=1

∂f

∂zj
dzj and ∂f =

n∑
j=1

∂f

∂zj
dzj.

Furthermore, we will use the notations

zα = zα1
1 · . . . · zαnn , ∂αz =

(
∂

∂z1

)α1

. . .

(
∂

∂zn

)αn
,

zα = zα1
1 · . . . · zαnn , ∂

α

z =
(
∂

∂z1

)α1

. . .

(
∂

∂zn

)αn

where α ∈ Nn is a multi-index and set |z| =
√
|z1|2 + . . .+ |zn|2. Usually, the

variables z or w will denote complex coordinates, points or vectors in Cn where
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their real counterparts with respect to the identification of Cn and R2n are denoted
by x or y, respectively. Therefore we also write dαz := dαx or dαw := dαy for α ∈ N2n

0

and |dzf | := |dxf | or |dwf | := |dyf | for f ∈ C1(X). Furthermore, the volume form
on Cn, which is identified with the volume form on R2n, is denoted by dVCn and we
have dVCn =

(
i
2

)n
dz1 ∧ . . . ∧ dzn ∧ dz1 ∧ . . . ∧ dzn = dx1 ∧ . . . ∧ dx2n = dVR2n .

Example 2.7
Let γ = (γ1, . . . , γn) : (0, 1)→ Cn be a C1 map and f ∈ C1(Cn). We have

∂

∂t
f ◦ γ(t) =

n∑
j=1

∂f

∂xj
(γ(t))∂ Re γj

∂t
(t) +

n∑
j=1

∂f

∂xj+n
(γ(t))∂ Im γj

∂t
(t)

=
n∑
j=1

∂f

∂zj
(γ(t))∂γj

∂t
(t) +

n∑
j=1

∂f

∂zj
(γ(t))∂γj

∂t
(t).

Given a point a ∈ C and a real number r > 0 the open disc of radius r around a is
denoted by Dr(a) = {z ∈ C | |z−a| < r} and we write Dn

r (z) = Dr(z1)× . . .×Dr(zn)
to denote the polydisc of radius r around z ∈ Cn. An open ball in Cn of radius
r > 0 around z ∈ Cn is denoted by Br(z) with Br(z) = {w ∈ Cn | |w − z| < r}. We
further set Dn

r = Dn
r (0) and Br = Br(0).

Let us start with the following theorem about Taylor expansion which is just a
reformulation of Taylor’s formula well-known in the real case.

Theorem 2.8 (Taylor’s Formula)
Given a function f ∈ C l+1(X) we have

f(w) =
∑
|α+β|≤l

1
α!β!

(
∂αz ∂

β

zf(z)
)

(w − z)α(w − z)β +O(|w − z|l+1).

More precisely, for any compact set K ⊂ X ×X there exists a constant C > 0 such
that ∣∣∣∣∣∣f(w)−

∑
|α+β|≤l

1
α!β!

(
∂αz ∂

β

zf(z)
)

(w − z)α(w − z)β
∣∣∣∣∣∣ ≤ C|w − z|l+1

where C is bounded when f stays in a bounded set in C l+1(X).

Proof. First, we prove the statement on an open ball B ⊂⊂ X which is relatively
compact in X. Given z, w ∈ B define f̃ : [0, 1] → C, f̃(t) = f(t(w − z) + z). By
using induction and Example 2.7 we find(

∂

∂t

)m
f̃(t) =

∑
|α|+|β|=m

m!
α!β! (∂

α
z ∂

β

zf)(t(w − z) + z)(w − z)α(w − z)β

for any 0 ≤ m ≤ l + 1. Taylor’s Formula in one real variable together with an
estimate for its remainder (see [8, Theorem 3.4]) implies∣∣∣∣∣f̃(1)−

l∑
m=0

1
m!

(
∂

∂t

)m
f̃(0)

∣∣∣∣∣ ≤ 1
(l + 1)! sup

t∈[0,1]

∣∣∣∣∣∣
(
∂

∂t

)l+1

f̃(t)

∣∣∣∣∣∣ .
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As a conclusion we find a constant C > 0 such that

A :=

∣∣∣∣∣∣f(w)−
∑
|α+β|≤l

1
α!β!

(
∂αz ∂

β

zf(z)
)

(w − z)α(w − z)β
∣∣∣∣∣∣ ≤ C‖f‖Cl+1(B)|w − z|l+1

holds for all z, w ∈ B and f ∈ C l+1(X).
Now let K ⊂ X be a compact set and consider a smaller open ball B′ ⊂⊂ B

contained in B. There exists an ε > 0 such that for all z ∈ B′ and w ∈ K \ B
we have |w − z| ≥ ε. Furthermore, we find a constant C ′ > 0 such that A ≤
C ′‖f‖Cl+1(B) holds for all z ∈ B′, w ∈ K and f ∈ C l+1(X) and hence we find
A ≤ max{ε−nC ′, C}‖f‖Cl+1(B)|w − z|l+1. As a conclusion, we get that the claim of
Theorem 2.8 holds on B′×K ⊂ X×X. We finish the proof, using the fact that any
compact subset of X×X is contained in a compact set K1×K2, where K1, K2 ⊂ X

are compact.

Lemma 2.9
Given f, g ∈ C l(X) and α ∈ Nn

0 , |α| ≤ l, we have

dαz (f · g) =
∑
β≤α

(
α

β

)
dα−βz fdβz g, ∂αz ∂

β

z (f · g) =
∑
α′≤α

∑
β′≤β

(
α

α′

)(
β

β′

)
∂α−α

′

z ∂
β−β′
z f∂α

′

z ∂
β′

z g.

Lemma 2.10
Let f ∈ C l(X ×X) be a function and define f̃ ∈ C l(X) by f̃(z) = f(z, z). For any
α ∈ Nn

0 , |α| ≤ l, we have

dαz f̃(z) =
∑
β≤α

(
α

β

)
dα−βz dβwf(z, w) |z=w .

Lemma 2.9 and Lemma 2.10 follow from a straightforward induction.

2.1.3 Real and Complex Hessians

Given a function f ∈ C2(X) we consider its (real) Hessian Hessf (z) at a point
z ∈ X, which is a 2n × 2n-matrix defined by Hessf (z) =

(
∂2f

∂xj∂xl
(z)
)

1≤j,l≤2n
. Its

complex analogue is defined as follows.

Definition 2.11
The complex Hessian of a function f ∈ C2(X) at the point z ∈ X is defined by

Hf (z) =
(

∂2f

∂zl∂zj
(z)
)

1≤l,j≤n
.

The following lemma gives a relation between the real and the complex Hessian.
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Lemma 2.12
Given f ∈ C2(X) and z ∈ X one has

 Idn −i Idn
Idn i Idn

Hessf (z)
 Idn Idn
i Idn −i Idn

 = 4
 Hf (z) Gf (z)
Gf (z) Hf (z)


where we set Gf (z) =

(
∂2f
∂zj∂zl

(z)
)

1≤j,l≤n
.

Proof. A direct calculation shows that the entry alj, 1 ≤ l, j ≤ 2n of the matrix on
the left-hand side is given by

alj =



(
∂2

∂xl∂xj
+ i ∂2

∂xl∂xj+n
− i ∂2

∂xl+n∂xj
+ ∂2

∂xl+n∂xj+n

)
f(z) , if l, j ≤ n,(

∂2

∂xl−n∂xj−n
− i ∂2

∂xl−n∂xj
+ i ∂2

∂xl∂xj−n
+ ∂2

∂xl∂xj

)
f(z) , if l, j ≥ n,(

∂2

∂xl∂xj−n
− i ∂2

∂xl∂xj
− i ∂2

∂xl+n∂xj−n
− ∂2

∂xl+n∂xj

)
f(z) , if l ≤ n, j ≥ n,(

∂2

∂xl−n∂xj
+ i ∂2

∂xl−n∂xj+n
+ i ∂2

∂xl∂xj
− ∂2

∂xl∂xj+n

)
f(z) , if l ≥ n, j ≤ n.

The claim follows from ∂
∂xj
−i ∂

∂xj+n
= 2 ∂

∂zj
and ∂

∂xj
+i ∂

∂xj+n
= 2 ∂

∂zj
for 1 ≤ j ≤ n.

Corollary 2.13
Let z0 ∈ X be a point. Assume that f ∈ C2(X,R) satisfies ∂αz f(z0) = 0 for all
α ∈ Nn

0 , |α| = 2. One has det
(

1
2 Hessf (z0)

)
= | detHf (z)|2.

Proof. Using the same notations as in Lemma 2.12, the assumptions on f imply
Gf (z) = Gf (z) = 0. Furthermore, one has

 Idn −i Idn
Idn i Idn

 Idn Idn
i Idn −i Idn

 = 2 Id2n .

Then the claim follows from Lemma 2.12 and basic properties of the determinant.

In real analysis the real Hessian matrix plays in important role with respect to
the notion of convexity or convex functions. The analogue in complex analysis is
called pseudoconvexity and is related to so called plurisubharmonic functions.

Definition 2.14
A function f ∈ C2(X,R) is called strictly plurisubharmonic (spsh) in z0 ∈ X if
Hϕ(z0) is positive definite. We say f is spsh on D ⊂ X if it is spsh in any point
z0 ∈ D. We denote by Df,+ (or sometimes D+) the largest subset of X where f is
spsh.
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Example 2.15
Let z0 ∈ X be a point and f ∈ C2(X,R) a real valued function. If Hessf (z0) is
positive definite (i.e. f is convex in a neighborhood of z0) then f is spsh in z0.
Assuming that ∂αz f(z0) = 0 holds for all α ∈ Nn

0 , |α| = 2 we find that Hessf (z0) is
positive definite if and only if f is spsh in z0.

In order to describe coefficients which appear in the expansion of some integrals
(see Section 2.6) we are interested in second order differential operators of the form

〈Adx, dx〉 :=
∑

1≤l,j≤2n
alj

∂2

∂xl∂xl
and 〈B∂z, ∂z〉 :=

∑
1≤l,j≤n

bjl
∂2

∂zl∂zj

where A = (alj)1≤l,j≤2n and B = (blj)1≤l,j≤n are matrices with complex entries of
size 2n× 2n and n× n, respectively. We need the following relation between these
objects.

Lemma 2.16
Let z0 ∈ X be a point. Assume that f ∈ C2(X,R) is strictly plurisubharmonic in z0

and satisfies ∂αz f(z0) = 0 for all α ∈ Nn
0 , |α| = 2. One has

〈(Hessf (z0))−1dx, dx〉 = 2〈H−1
f (z0)∂z, ∂z〉.

Proof. Using Example 2.15 we find that the inverse of Hessf (z0) exists. From Lemma
2.12, the proof of Corollary 2.13 and the assumptions on f we have

1
4

 Idn Idn
i Idn −i Idn

 H−1
f (z) 0
0 H−1

f (z)

 Idn −i Idn
Idn i Idn

 = Hess−1
f (z). (2.2)

We write Hess−1
f (z) = (alj)1≤l,j≤2n andH−1

f (z) = (blj)1≤l,j≤n. Given x = (x1, . . . , x2n) ∈
R2n we deduce the following identity from (2.2):

4
∑

1≤l,j≤2n
aljxlxj =

∑
1≤l,j≤n

blj(xl+ixn+l)(xj−ixn+j)+
∑

1≤l,j≤n
blj(xl−ixn+l)(xj+ixn+j).

Since blj = bjl, ∂
∂zj

= 1
2

(
∂
∂xj
− i ∂

∂xj+n

)
for 1 ≤ l, j ≤ n and by replacing xj with ∂

∂xj

we find ∑
1≤l,j≤2n

alj
∂

∂xl

∂

∂xj
= 2

∑
1≤l,j≤n

bjl
∂

∂zl

∂

∂zj

and the claim follows.

2.2 Basic Properties of Holomorphic Functions
Definition 2.17
A function f ∈ C1(X) is called holomorphic if ∂f = 0, that is

∂

∂zj
f = 0, for j = 1, 2, . . . , n.
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The set of all holomorphic functions on X is denoted by O(X).

A map F = (F1, . . . , Fm) : X → Cm is holomorphic if each of its components
is a holomorphic function. The property of being holomorphic is preserved under
holomorphic maps.

Lemma 2.18
Let Y ⊂ Cm be an open set, F = (F1, . . . , Fm) : X → Y a holomorphic map and
f ∈ O(Y ) a holomorphic function. We have f ◦ F ∈ O(X).

Proof. Since f is holomorphic we find by Example 2.7 that ∂
∂xj
f ◦ F = ∑n

l=1
∂f
∂wl

∂Fl
∂xj

holds for all j = 1, . . . , 2n. Thus, we conclude ∂
∂zj
f ◦ F = ∑n

l=1
∂f
∂wl

∂Fl
∂zj

= 0 for all
j = 1, . . . , n.

A map F =: X → Y between two open sets X, Y ⊂ Cn is called biholomorphic
if it is bijective with holomorphic inverse.

Lemma 2.19
Let X, Y ⊂ Cn be two open sets and F = (F1, . . . , Fn) : X → Y a C1-diffeomorphism
which is holomorphic. We have that F−1 : Y → X is holomorphic, that is F is
biholomorphic.

Proof. Let D(F ) be the real Jacobi matrix of F seen as a map between two open sets
in R2n using the identification Cn ' Rn as before, that isD(F ) is the Jacobi matrix of
the map (x1, . . . , xn, y1, . . . , yn) 7→ (ReF1(z), . . . ,ReFn(z), ImF1(z), . . . , ImFn(z))
with z = (z1, . . . , zn), zj = xj + iyj, 1 ≤ j ≤ n. We findIdn i Idn

Idn −i Idn

D(F )
 Idn Idn
−i Idn i Idn

 = 2
G(F ) G(F )
G(F ) G(F )

 , G(F ) =
(
∂Fl
∂zj

)
1≤l,j≤n

.

Since F is holomorphic we find G(F ) = G(F ) = 0. Furthermore, D(F ) is invertible
at any point z ∈ X. This implies that G(F ) is an invertible complex n× n-matrix
at any point z ∈ X. Doing the same procedure for the inverse map F−1 and using
D(F )D(F−1) = Id2n we end up with

Id2n =
G(F ) 0

0 G(F )

G(F−1) G(F−1)
G(F−1) G(F−1)

 =
G(F )G(F−1) G(F )G(F−1)
G(F )G(F−1) G(F )G(F−1)

 .
Since G(F ) is invertible at any point z ∈ X we conclude G(F−1) = G(F−1) = 0
which shows that F−1 is holomorphic.

The boundary of a disc Dr(a) ⊂ C is given by ∂Dr(a) = {z ∈ C | |z − a| = r}.
Given a polydisc Dn

r (z) = Dr(z1) × . . . × Dr(zn) of radius r > 0 around z ∈ Cn its
distinct boundary ∂0Dn

r (z) is defined by ∂0Dn
r (z) = ∂Dr(z1)× . . .× ∂Dr(zn).
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We start with a fundamental theorem of Cauchy for holomorphic functions in
one complex variable.

Theorem 2.20 (Cauchy’s Integral Theorem)
Let X be an open subset of C and f ∈ O(X) a holomorphic function. Given an
open set D ⊂⊂ X with piecewise C1-boundary ∂D one has

2πif(z) =
∫
∂D

f(ζ)
ζ − z

dζ

for any z ∈ D.

Proof. Choose ε0 > 0 such that Dε(z) ⊂⊂ D holds for all ε < ε0. We have that
D \ Dε(z) has a piecewise C1-boundary. We then apply Stokes’ formula (see [14,
(1.18)]) and find∫

∂D

f(ζ)
ζ − z

dζ −
∫
∂Dε(z)

f(ζ)
ζ − z

dζ =
∫
D\Dε(z)

d

(
f(ζ)
ζ − z

)
dζ

=
∫
D\Dε(z)

∂

∂ζ

(
f(ζ)
ζ − z

)
dζ ∧ dζ = 0

since ζ 7→ (ζ − z)−1f(ζ) is holomorphic on D \Dε(z) and dζ ∧ dζ = 0. Thus, we can
write∣∣∣∣∣2πif(z)−

∫
∂D

f(ζ)
ζ − z

dζ

∣∣∣∣∣ =
∣∣∣∣∣
∫
∂Dε(z)

f(ζ)− f(z)
ζ − z

dζ

∣∣∣∣∣ ≤ 2π sup
ζ∈Dε(z)

|f(ζ)− f(z)|

for all ε < ε0. The statement then follows from the continuity of f .

From Theorem 2.20 all the basic properties for holomorphic functions in several
complex variables follow.

Corollary 2.21 (Cauchy’s Integral Theorem in Several Complex Variables)
Let Dn

r (z) ⊂⊂ X be a polydisc. Given a holomorphic function f ∈ O(X) one has

(2πi)nf(z) =
∫
∂0Dnr (w)

f(ζ1, . . . , ζn)
(ζ1 − z1) · . . . · (ζn − zn)dζ1 . . . dζn

for all z ∈ Dn
r (z).

Proof. See [33, Theorem 1.3].

Corollary 2.22
We have O(X) ⊂ C∞(X) and therefore ∂αz (O(X)) ⊂ O(X) with

∂αz f(z) = α!
(2πi)n

∫
∂0Dnr (w)

f(ζ1, . . . , ζn)
(ζ1 − z1)α1+1 · . . . · (ζn − zn)αn+1dζ1 . . . dζn

for any polydisc, Dn
r (w) ⊂⊂ X, and any f ∈ O(X).
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Proof. Using the fact that f is continuous we can differentiate under the integral
sign in Corollary 2.21 to prove the statement.

Corollary 2.23 (Taylor Expansion)
Fix w ∈ X. Given Dn

r (w) ⊂⊂ X and f ∈ O(X) we have

f(z) =
∑
α∈Nn

(∂αz f)(w)
α! (z − w)α for all z ∈ Dn

r (w)

where the power series on the right-hand side converges absolutely for all z ∈ Dn
r (w).

Proof. See [33, Theorem 1.18].

Corollary 2.24
We have that O(X) is closed in the C0-topology. More precisely, given a sequence
{fm}m∈N ⊂ O(X) of holomorphic functions which converges locally uniformly to
some function g : X → C, we have g ∈ O(X) and the sequence converges in C∞-
topology.

Proof. See [33, Theorem 1.9].

Corollary 2.25 (Identity Theorem)
Let f ∈ O(X) be a holomorphic function and let z ∈ X be a point such that
(∂αz f)(z) = 0 for all α ∈ Nn. If X is connected one has f = 0.

Proof. See [33, Theorem 1.19].

Corollary 2.26 (Maximum Principle)
Let f ∈ O(X) be a holomorphic function such that |f |2 has a local maximum in X.
If X is connected one has that f is constant.

Proof. See [33, Corollary 1.22].

From the definition of holomorphic function it follows immediately that f is
holomorphic in each variable zj when the other variables are kept fix. The converse
is also true.

Theorem 2.27 (Hartogs 1906)
Let X1 ⊂ Cn and X2 ⊂ Cm be two open sets and f : X1 × X2 → C a function
satisfying f(·, w) ∈ O(X1) for all w ∈ X2 and f(z, ·) ∈ O(X2) for all z ∈ X1. Then
one has f ∈ O(X1 ×X2).

Proof. See [23, Theorem 2.2.8].
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2.3 L2-Norm Estimates for Holomorphic Functions
Lemma 2.28
Let K ⊂ Cn be a compact set, X ⊂ Cn an open neighborhood of K, ϕ : X → R an
upper semi-continuous function and α ∈ Nn

0 a multi-index. There exist a constant
C > 0 such that

|∂αz f(z)|2 ≤ C
∫
X
|f(w)|2e−ϕ(w)dVCn(w)

holds for all z ∈ K and all f ∈ O(X).

Proof. Let z0 ∈ K be a point, δ > 0 such that D3δ(z0) ⊂ X. Given a holomorphic
function f ∈ O(X) and r = (r1, . . . , rn), 0 < rj < δ, j = 1, . . . , n, we find

(2πi)n∂αz f(z) = α!
∫ 2π

0
. . .
∫ 2π

0

f(z + reiθ)
(reiθ)α dθ

for any z ∈ Dδ(z0) where reiθ = (r1e
iθ1 , . . . , rne

iθ1) and dθ = dθ1 . . . dθn. Applying
the standard estimate for integrals and the Cauchy–Schwarz inequality one gets

(2π)nrα
α! |∂αz f(z)| ≤

∫ 2π

0
. . .
∫ 2π

0
|f(z + reiθ)|dθ

≤ (2π)n2
√∫ 2π

0
. . .
∫ 2π

0
|f(z + reiθ)|2dθ.

Squaring both sides, integrating with respect to r1dr1 . . . rndrn and using polar coor-
dinates leads to

πn

α! e
−M |∂αz f(z)|2

∫ δ2

0
rα1

1 dr1 · . . . ·
∫ δ2

0
rαnn drn ≤

∫
Dδ(z)
|f(w)|2e−ϕ(w)dVCn(w)

where M = supz∈D2δ(z0) ϕ(z). Let C > 0 be the constant defined by

C = α!eM
(
πn
∫ δ2

0
rα1

1 dr1 · . . . ·
∫ δ2

0
rαnn drn

)−1

.

Then |∂αz f(z)|2 ≤ C
∫
X |f(w)|2e−ϕ(w)dVCn(w) holds for all z ∈ Dδ(z0) and all f ∈

O(X). By compactness, K can be covered by a finite number of polydiscs contained
in X and hence the lemma follows.

Lemma 2.29
Let K ⊂ Cn be a compact set, X ⊂ Cn an open neighborhood of K, ϕ ∈ C3(X,R),
ρ ∈ C0(X,R), ρ > 0 two real valued functions and α ∈ Nn

0 a multi-index. There
exists a constant C > 0 such that

|∂αz f(z)|2 e−kϕ(z) ≤ Ckn+2|α|
∫
X
|f(w)|2e−kϕ(w)ρ(w)dVCn(w)

holds for all z ∈ K, k ∈ [1,∞) and f ∈ O(X). Here C is bounded when ϕ stays in
a bounded set in C3(X,R) and ρ stays in a subset of C0(X,R) such that infz∈X ρ(z)
has a positive lower bound.
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Proof. Let z0 ∈ K be a point, δ > 0 such that Dn
3δ(z0) ⊂ X and S1 ⊂ C3(X,R),

S2 ⊂ C0(X,R) some sets such that S1 is bounded and infz∈X ρ(z) ≥ C1 holds for
all ρ ∈ S2 where C1 > 0 is some constant. Given a holomorphic function f ∈ O(X)
and a point z ∈ Dn

δ (z0) we define gk,z ∈ O(X) by gk,z(w) = f(w)e−kγ(z,w) where

γ(z, w) = ϕ(z)
2 +

∑
1≤|α|≤2

1
α! (∂αz ϕ) (z)(w − z)α.

Using Taylor expansion (see Theorem 2.8) we find

|ϕ(w)− γ(z, w)− γ(z, w)| ≤M |w − z|2

and hence ϕ(w) ≤ γ(z, w) + γ(z, w) + M |w − z|2 for all (z, w) ∈ Dn
δ (z0) × Dn

2δ(z0)
and all ϕ ∈ S1 where M > 0 is some constant. Similar to the proof of Lemma 2.28
we find
πn

α! |(∂
α
wgk,z)(z)|2

∫ δ2

0
rα1e−kMr1dr1·. . .·

∫ δ2

0
rαne−kMrndrn ≤

∫
Dn
δ

(z)
|f(w)|2e−kϕ(w)dVCn(w).

One has
∫∞

0 rle−kMrdr = l!(Mk)−l−1 and∫ ∞
δ2

rle−kMrdr ≤ (l + 1)!k−1(1 +M−1−l)(1 + δ2l)e−δ2Mk

so that we find a constant C2 > 0 such that
πn

α!

∫ δ2

0
rα1e−kMr1dr1 · . . . ·

∫ δ2

0
rαne−kMrndrn ≥ C−1

2 k−|α|−n

holds for all k ∈ (1,∞). Furthermore, we have that ρ ≥ C1 on Dn
2δ(z0) holds for all

ρ ∈ S2 and hence

|(∂αwgk,z)(z)|2 ≤ C2C
−1
1 kn+|α|

∫
Dn
δ

(z)
|f(w)|2e−kϕ(w)ρ(w)dVCn(w). (2.3)

We prove the original statement by induction with respect to |α|. Given α = 0
we have |(∂αwgk,z)(z)|2 = |f(z)|2e−kγ(z,z) = |f(z)|2e−kϕ(z). Now assume that the
statement holds for all β ∈ Nn

0 , |β| < N ∈ N. Given α ∈ Nn
0 , |α| = N we find

(∂αwgk,z)(z) = e−kγz(z)(∂αwf)(z) + α!
∑
β<α

1
β!(α− β)!(∂

β
wf)(z)(∂α−βw e−kγz)(z).

Using the induction hypothesis, (2.3) and |(∂βwe−kγz)(z)| ≤ C3k
|β|e−kϕ(z)/2 for some

constant C3 > 0 independent of k ∈ [1,∞), z ∈ Dn
δ (z0), ϕ ∈ S1 and ρ ∈ S2 we

conclude

|(∂αwf)(z)|2e−kϕ(z) ≤ Ck2|α|+n
∫
Dδ(z)
|f(w)|2e−kϕ(w)ρ(w)dVCn(w)

for all k ∈ [1,∞) and z ∈ Dδ(z0) where C > 0 is a constant independent of k ∈
[1,∞), z ∈ Dn

δ (z0), ϕ ∈ S1 and ρ ∈ S2. We have that K can be covered by a
finite number of polydiscs contained in X and hence the conclusion of the lemma
follows.
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Lemma 2.30
Let Dn

3δ ⊂ Cn be a polydisc of radius 3δ around 0 for some δ > 0, ϕ ∈ C3(Dn
3δ,R),

ρ ∈ C0(Dn
3δ,R), ρ > 0 two real valued functions. For any ε > 0 and α ∈ Nn

0 there
exists a constant C > 0 such that

|f(z)|2e−kϕ(z) ≤ Ck|α|+n+ε
∫
Dn2δ
|wαf(w)|2e−kϕ(w)ρ(w)dVCn(w)

holds for all z ∈ Dn
δ , k ∈ [1,∞) and f ∈ O(Dn

3δ). Here C is bounded when ϕ stays
in a bounded set in C3(Dn

3δ,R) and ρ stays in a bounded set in C0(Dn
3δ,R) such that

infz∈Dn3δ ρ(z) has a positive lower bound.

Proof. Let S1 ⊂ C3(Dn
3δ,R) and S2 ⊂ C0(Dn

3δ,R) be bounded subsets such that
infz∈Dn3δ ρ(z) ≥ C0 holds for all ρ ∈ S2 where C0 > 0 is some constant. We will prove
the claim via induction with respect to n. Consider the case n = 1 and set

Ak(f) :=
∫
D2δ
|wαf(w)|2e−kϕ(w)ρ(w)dVC(w),

where α ∈ N0. Then for any τ ≤ δ one finds

Ak(f) ≥
∫
D2δ\Dτ

|wαf(w)|2e−kϕ(w)ρ(w)dVC(w)

≥ τ 2|α|
∫
D2δ\Dτ

|f(w)|2e−kϕ(w)ρ(w)dVC(w)

= τ 2|α|
(∫

D2δ
|f(w)|2e−kϕ(w)ρ(w)dVC(w)−

∫
Dτ
|f(w)|2e−kϕ(w)ρ(w)dVC(w)

)
.

Applying Lemma 2.29, there exists a constant C1 > 0 independent of k ∈ [1,∞),
f ∈ O(Dn

3δ), ϕ ∈ S1 and ρ ∈ S2 such that

sup
a∈Dδ
|f(a)|2e−kϕ(a) ≤ C1k

∫
D2δ
|f(w)|2e−kϕ(w)ρ(w)dVC(w)

holds. Using this, the standard estimate for integrals, ρ ≤ C2 > 0 on D2δ for all
ρ ∈ S2 and Dτ ⊂ Dδ we get

Ak(f) ≥ τ 2|α|
(

sup
a∈Dδ
|f(a)|2e−kϕ(a)C−1

1 k−1 − sup
a∈Dτ
|f(a)|2e−kϕ(a)

∫
Dτ

1ρ(w)dVC(w)
)

≥ k−1τ 2|α| sup
a∈Dδ
|f(a)|2e−kϕ(a)

(
C−1

1 − C2k
∫
Dτ

1dVC
)

= k−1τ 2|α| sup
a∈Dδ
|f(a)|2e−kϕ(a)

(
C−1

1 − C2kπτ
2
)

(2.4)

and the calculation above is true for any τ ≤ δ. Then set τ = δk−
1
2−

ε
2|α| for some

ε > 0. One has

Ak(f) ≥ δ2|α|k−(|α|+1)−ε sup
a∈Dδ
|f(a)|2e−kϕ(a)

(
C−1

1 − C2δ
2k−

ε
|α|π

)
.
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For k large enough one can achieve that δ2|α|(C−1
1 − C2δ

2k−
ε
|α|π) ≥ C3 for some

constant C3 > 0. As a conclusion one finds C > 0 and k0 ∈ (1,∞) such that

sup
a∈Dδ
|f(a)|2e−kϕ(a) ≤Ck|α|+1+ε

∫
D2δ
|wαf(w)|2e−kϕ(w)ρ(w)dVC(w) (2.5)

holds for all k ∈ (k0,∞), f ∈ O(D3δ), ϕ ∈ S1 and ρ ∈ S2. For k ≤ k0 we can choose
τ in (2.4) sufficiently small and conclude that C > 0 can be chosen large enough
such that (2.5) holds for all k ∈ [1,∞).

Now assume the statement holds for n − 1. Let α ∈ Nn
0 be a multi-index and

write α = (α′, αn) where α′ ∈ Nn−1
0 . Given f ∈ O(Dn

3δ) one has (w′ 7→ f(w′, a)) ∈
O(Dn−1

3δ ) for any a ∈ D2δ. Furthermore, the sets {ϕ(·, a) | a ∈ D2δ, ϕ ∈ S1} and
{ρ(·, a) | a ∈ D2δ, ρ ∈ S2} are bounded subsets of C3(Dn−1

3δ ,R) and C0(Dn−1
3δ ,R),

respectively. Using the induction hypothesis one finds a constant C ′ > 0 such that

|f(z′, a)|2e−kϕ(z′,a) ≤ C ′k|α
′|+n−1+ε

∫
Dn−1

2δ

|w′α′f(w′, a)|2e−kϕ(w′,a)ρ(w′, a)dVCn−1(w′)

for all z′ ∈ Dn−1
δ , k ∈ [1,∞), f ∈ O(Dn

3δ), ϕ ∈ S1, ρ ∈ S2 and a ∈ D2δ. Because
both sides are continuous and bounded in a, we can integrate them with respect to
|a|2αndVC on D2δ and get∫

D2δ
|a|2αn|f(z′, a)|2e−kϕ(z′,a)dVC ≤ C ′k|α

′|+n−1+ε
∫
Dn2δ
|wαf(w)|2e−kϕ(w)ρ(w)dVCn(w).

Since {ϕ(z′, ·) | z′ ∈ Dn−1
δ , ϕ ∈ S1} is a bounded set in C3(D3δ,R) and (a 7→

f(z′, a)) ∈ O(D3δ) for any z′ ∈ Dn−1
δ , we can apply the case n = 1, that is (2.5), on

the left-hand side. Thus, for any ε′ > 0 there exists a constant C ′′ > 0 such that

sup
a∈Dδ
|f(z′, a)|2e−kϕ(z′,a) ≤ C ′′k|α|+n+ε+ε′

∫
Dn2δ
|wαf(w)|2e−kϕ(w)ρ(w)dVCn(w)

holds for all z′ ∈ Dn−1
δ , k ∈ [1,∞), f ∈ O(Dn

3δ), ϕ ∈ S1, ρ ∈ S2.

Remark 2.31
In Lemma 2.30, choosing δ sufficiently small depending on ϕ and ρ, we observe by
some slight modification in the proof that the constant C can be replaced by δ2|α|C ′

where C ′ > 0 is a constant which is independent of α ∈ Nn
0 .

2.4 Reproducing Kernels and Bergman Kernel Functions

Let D ⊂ Cn be a domain and ρ ∈ C0(D,R) a continuous function such that ρ > 0
on D holds. We choose the volume form on D to be dVD = ρdVCn . Given a weight,
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i.e. an upper semi-continuous function ϕ : D → R which is bounded from below, we
consider the space

H0
ϕ(D) = H0

ϕ,ρ(D) = {f ∈ O(D) |
∫
D
|f(w)|2e−ϕ(w)dVD(w) <∞}

together with an L2- inner product defined by

(f, g)ϕ,ρ =
∫
D
f(w)g(w)e−ϕ(w)dVD(w)

and set ‖f‖ϕ,ρ =
√

(f, f)ϕ,ρ.

Lemma 2.32
The pair (H0

ϕ,ρ(D), (·, ·)ϕ,ρ) is a separable complex Hilbert space.

Proof. We have that L2(D,ϕ) = C∞0 (D)‖·‖ϕ,ρ together with (·, ·)ϕ,ρ is a separable
complex Hilbert space. Thus, it lasts out to show that H0

ϕ,ρ(D) = O(D)∩L2(D,ϕ)
is closed. Let {fl}l∈N ⊂ H0

ϕ,ρ(D) be a Cauchy sequence with respect to the L2-norm
‖ · ‖ϕ,ρ. We find that ϕ − ln(ρ) defines an upper semi-continuous function on D

which is bounded from below. Then, using Lemma 2.28 with respect to the weight
ϕ− ln(ρ), we find that for any compact subset K ⊂ D there exists a constant C > 0
such that supz∈K |fl(z)−fm(z)| ≤ C‖fl−fm‖ϕ,ρ holds for all l,m ∈ N. We conclude
that {fl}l∈N converges locally uniformly to some function g ∈ C0(D) ∩ L2(D,ϕ)
which implies g ∈ O(D) by Corollary 2.24.

Lemma 2.33
Given z ∈ D there exists an unique function gz ∈ H0

ϕ,ρ(D) such that (f, gz)ϕ,ρ = f(z)
holds for all f ∈ H0

ϕ,ρ(D).

Proof. Let z ∈ D be a point. We apply Lemma 2.28 with respect to the weight
ϕ − ln(ρ) to find that the map f 7→ f(z) defines a C-linear continuous map on
H0
ϕ,ρ(D). Since H0

ϕ,ρ(D) is a complex Hilbert space we can apply the representation
theorem of Riezs and find a unique function gz ∈ H0

ϕ,ρ(D) such that (f, gz)ϕ,ρ = f(z)
holds for all f ∈ H0

ϕ,ρ(D).

Lemma 2.33 gives rise for the following definition.

Definition 2.34
We denote by Kϕ = Kϕ,ρ : D × D → C the function which satisfies Kϕ(z, ·) ∈
H0
ϕ,ρ(D) and (f,Kϕ,ρ(z, ·)) = f(z) for any f ∈ H0

ϕ,ρ(D) and z ∈ D. Furthermore,
set Pϕ,ρ(z, w) = e−

1
2 (ϕ(z)+ϕ(w))Kϕ,ρ(z, w) and Bϕ,ρ(z) = Pϕ,ρ(z, z). The function

Pϕ = Pϕ,ρ : D × D → C is called reproducing kernel for the space H0
ϕ,ρ(D) or

just Bergman kernel. The function Bϕ = Bϕ,ρ : D → R is called Bergman kernel
function.
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The following two lemmata describe basic properties for the Bergman kernel or
the Bergman kernel function.

Lemma 2.35
One has Kϕ,ρ ∈ C∞(D ×D). Furthermore, given any orthonormal basis {sj}j≥1 of
H0
ϕ,ρ(D) one has Kϕ,ρ(z, w) = ∑

j≥1 sj(z)sj(w) where the sum on the right hand side
converges with respect to the topology on C∞(D ×D).

Proof (cf. [11, Theorem 6.3.2] for the case ϕ ≡ 0 and ρ ≡ 1). Let {sj}j≥1 be an ort-
honormal basis of H0

ϕ,ρ(D) which always exists since H0
ϕ,ρ(D) is separable. By de-

finition one has Kϕ,ρ(z, ·) = ∑
j≥1 sj(z)sj(·) where the sum on the right-hand side

converges with respect to ‖·‖ϕ,ρ. Using the same argument as in the proof of Lemma
2.32 we find that Kϕ,ρ(z, w) = ∑

j≥1 sj(z)sj(w) where the sum on the right-hand side
converges pointwise. From this fact we observe that Kϕ,ρ(z, w) = Kϕ,ρ(w, z) holds.
Set D̃ = {z | z ∈ D}. Since Kϕ,ρ(z, ·) is a holomorphic function on D we conclude
that (z, w) 7→ Kϕ,ρ(z, w) defines a function on D̃ ×D which is holomorphic in the
variable z and w separately and hence, using Theorem 2.27, it defines a holomorphic
function on D̃ ×D. As a conclusion we get Kϕ,ρ ∈ C∞(D ×D).

We still have to prove the second part of the statement. Considering Kϕ,ρ(z, z)
for z ∈ D we find that z 7→ ∑∞

j=1 |sj(z)|2 defines a smooth function on D. Ap-
plying a theorem of Dini we get that the sum converges locally uniformly. Since
|sj(z)sj(w)| ≤ |sj(z)|2 + |sj(w)|2 for any j ∈ N we have that on any compact subset
K ⊂ D̃ ×D,

0 = lim
N→∞

sup
(z,w)∈K

∞∑
j=N
|sj(z)|2 + |sj(w)|2

≥ lim
N→∞

sup
(z,w)∈K

|
∞∑
j=N

sj(z)sj(w)|

holds. Thus,
(
(z, w) 7→ ∑N

j=1 sj(z)sj(z)
)
N∈N

is a sequence of holomorphic functions
which converges locally uniformly. By Corollary 2.24 all its derivatives converges
locally uniformly too which proves the second part of the statement.

Lemma 2.36
For any z ∈ D one has

Bϕ,ρ(z) = sup
f∈H0

ϕ,ρ(D)\{0}

|f(z)|2e−ϕ(z)

‖f‖2
ϕ,ρ

.

Proof. Given z ∈ D one has e−ϕ(z)‖Kϕ,ρ(z, ·)‖2
ϕ,ρ = Bϕ,ρ(z). Let f ∈ H0

ϕ,ρ(D) be
arbitrary. Applying the Cauchy-Schwarz inequality to (f,Kϕ,ρ(z, ·))ϕ,ρ = f(z) we
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deduce e−ϕ(z)|f(z)|2 ≤ Bϕ,ρ(z)‖f‖2
ϕ,ρ and get

Bϕ,ρ(z) ≥ sup
f∈H0

ϕ,ρ(D)\0

|f(z)|2e−ϕ(z)

‖f‖2
ϕ,ρ

.

On the other hand one has Kϕ,ρ(z, ·) ∈ H0
ϕ,ρ(D) and Kϕ,ρ(z, z) = ‖Kϕ,ρ(z, ·)‖2

ϕ,ρ

which leads to

Bϕ,ρ(z) = |Kϕ,ρ(z, z)|2e−ϕ(z)

‖Kϕ,ρ(z, ·)‖2
ϕ,ρ

≤ sup
f∈H0

ϕ,ρ(D)\0

|f(z)|2e−ϕ(z)

‖f‖2
ϕ,ρ

.

Replacing the weight ϕ by the weight kϕ, k ∈ [1,∞), we would like to study the
asymptotic behavior of Pkϕ,ρ and Bkϕ,ρ when k goes to infinity. We should consider
some examples for such quantities to get an idea how this behavior could look like.

Example 2.37
Let D = Cn be the complex Euclidean space. Consider the weight ϕ ∈ C∞(D),
ϕ(z) = ∑n

j=1 λj|zj|2 where λj ∈ R, j = 1, . . . , n and set ρ = 1. For any k ∈ [1,∞)
one has

dimH0
kϕ,ρ(Cn) =

∞ , if λ1, . . . , λn > 0 ,
0 , else,

and the Bergman kernel and the Bergman kernel function for the case λ1, . . . , λn > 0
are given by

Pkϕ,ρ(z, w) = kn

πn
λ1 · . . . · λne−

k
2
∑n

j=0 λj(|wj−zj |
2+wjzj−wjzj), Bkϕ,ρ(z) = kn

πn
λ1 · . . . · λn.

Consider the weight ϕ ∈ C∞(C), ϕ(z) = ln(1+ |z|2) and assume that the volume
form is given by ρdVCn , where ρ ∈ C∞(Cn), ρ(z) = (1 + |z|2)−2. For any k ∈ [1,∞)
one has dimH0

kϕ,ρ(Cn) = k and one has

Pkϕ,ρ(z, w) = k

π

 1 + zw√
(1 + |z|2)(1 + |w|2)

k , Bkϕ,ρ(z) = k

π
.

Let D = Dn
r (0) be the polydisc in Cn with radius r > 0 around 0. Set ρ = ϕ = 1.

For any k ∈ [1,∞) one has dimH0
kϕ,ρ(Dn

r (0)) =∞ with

Pkϕ,ρ(z, w) = 1
πn

n∏
j=1

r2

(r2 − zjwj)2 , Bkϕ,ρ(z) = 1
πn

n∏
j=1

r2

(r2 − |zj|2)2 .

The precise formulas in Example 2.37 can be verified by a direct computation
since the monomials {zα|α ∈ Nn

0} are already orthogonal with respect to the inner
products.



2.4. Reproducing Kernels and Bergman Kernel Functions 41

The next lemma together with its consequences give upper bounds for the k-
dependent Bergman kernel Pkϕ,ρ and its kernel function Bkϕ,ρ and their derivatives
when k goes to infinity.

Lemma 2.38
Assume ϕ ∈ C3(D,R). Given α, β ∈ N2n

0 one has e− k2hdαz dβwKkϕ,ρ = O(kn+|α|+|β|) on
D×D, where h(z, w) = ϕ(z)+ϕ(w). More precisely, for any compact set K ⊂ D×D
there exists a constant C > 0 such that

e−
k
2 (ϕ(z)+ϕ(w))|dαz dβwKkϕ,ρ(z, w)| ≤ Ckn+|α|+|β|

holds for all (z, w) ∈ K and C is bounded when ϕ stays in a bounded set in C3(D,R)
and ρ stays in a subset of C0(D,R) such that ρ > 0 holds and infz∈V ρ(z) has a
positive lower bound where V ⊂ D is some open set satisfying K ⊂ V × V .

Proof. Let α′, β′ ∈ N2n
0 be two multi-indices. Lemma 2.35 implies that (z, w) 7→

Kkϕ,ρ(z, w) is antiholomorphic in the first argument and holomorphic in the second
argument and hence dα′z dβ

′
wKkϕ,ρ = c∂αz ∂

β
wKkϕ,ρ for some complex number c ∈ C \ 0

and multi-indices α, β ∈ Nn defined by αj = α′j+α′n+j and βj = β′j+β′n+j, 1 ≤ j ≤ n.
Because of |α| = |α′| and |β| = |β′| it just lasts out to estimate ∂αz ∂βwKkϕ,ρ.

From Lemma 2.28 we get that f 7→ (∂αwf)(z) defines a C-linear continuous map
on H0

kϕ,ρ(D). As in the proofs of Lemma 2.33 and Lemma 2.35 we find that there
exists a unique element gk,z ∈ H0

kϕ,ρ(D) such that (∂αwf)(z) = (f, gk,z)kϕ,ρ holds for all
f ∈ H0

kϕ,ρ(D) and that one has the identity gk,z(w) = ∑
j≥1 (∂αws

(k)
j )(z)s(k)

j (w) where
{s(k)

j }j≥1 is an orthonormal basis of H0
kϕ,ρ(D). Let K1, K2 ⊂ D be two compact sets

and let S1 ⊂ C3(D,R) and S2 ⊂ C0(D,R) be two sets such that S1 is bounded and
ρ > 0, infz∈V ρ(z) ≥ C0 holds for all ρ ∈ S2 where C0 > 0 is some constant and V
is an open neighborhood of K1 ∪ K2. We apply Lemma 2.29 and find a constant
C1 > 0 such that

e−kϕ(z)|(∂αwgk,z)(z)|2 ≤ C1k
n+2|α|‖gk,z‖2

kϕ,ρ

holds for all z ∈ K1, k ∈ [1,∞), ϕ ∈ S1 and ρ ∈ S2 which leads to ‖gk,z‖2
kϕ,ρe

−kϕ(z) ≤
C1k

n+2|α| where we use the identity (∂αwgk,z)(z) = ‖gk,z‖2
kϕ,ρ. Applying Lemma 2.29

again we find a constant C2 > 0 such that

e−kϕ(w)−kϕ(z)|(∂βwgk,z)(w)|2 ≤ C2k
n+2|β|‖gk,z‖2

kϕ,ρe
−kϕ(z) ≤ C1C2k

2n+2|α|+2|β|

holds for all (z, w) ∈ K1×K2, k ∈ [1,∞), ϕ ∈ S1 and ρ ∈ S2. Since
∑
j≥1 s

(k)
j (w)s(k)

j (z)
converges in C∞ topology, we have

(∂βwgk,z)(w) =
∑
j≥1

(∂αz s
(k)
j )(z)(∂αws

(k)
j )(w) = ∂αz ∂

β
wKkϕ,ρ(z, w).
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Thus, we conclude that |e− k2 (ϕ(w)−kϕ(z))(∂αz ∂βwKkϕ,ρ)(z, w)| ≤ Ckn+|α|+|β| holds for all
(z, w) ∈ K1 × K2, k ∈ [1,∞), ϕ ∈ S1 and ρ ∈ S2 with C =

√
C1C2. Since any

compact set K ⊂ D × D is contained in a compact set of the form K1 × K2, the
claim follows.

Corollary 2.39
Let ϕ ∈ CN(D,R) be arbitrary. Given α, β ∈ N2n

0 , |α|, |β| ≤ N , one has dαz dβwPkϕ,ρ =
O(kn+|α|+|β|) on D×D and dαzBkϕ,ρ = O(kn+|α|) on D. More precisely, given compact
sets K1, K2 ⊂ D there exist constants C1, C2 > 0 such that

|dαz dβwPkϕ,ρ(z, w)| ≤ C1k
n+|α|+|β| , |dαzBkϕ,ρ(z)| ≤ C2k

n+|α|

hold for all z ∈ K1, w ∈ K2, k ∈ [1,∞) and C1, C2 are bounded when ϕ stays in a
bounded set CN(D,R) and ρ stays in a subset of C0(D,R) with ρ > 0 and infz∈V ρ(z)
has a positive lower bound where V ⊂ D is an open neighborhood of K1 ∪K2.

Proof. Let S1 ⊂ CN(D,R) be a bounded set and S2 ⊂ C0(D,R) a subset such that
ρ > 0 and infz∈V ρ(z) ≥ C ′ hold for all ρ ∈ S2 where C ′ > 0 is a constant. Define a
function gkϕ : D×D → R by gkϕ(z, w) = e−

k
2 (ϕ(z)+ϕ(w)). Let α′β′ ∈ N2n

0 be two multi-
indices satisfying α′ ≤ α and β′ ≤ β. One has (gkϕ)−1(dα′z dβ

′
w gkϕ) = O(k|α′|+|β′|) on

D ×D where the underlying estimates are uniform in ϕ ∈ S1. Set

Aα′,β′(z, w) = (dα−α′z dβ−β
′

w Kkϕ,ρ)(z, w)(dα′z dβ
′

w gk)(z, w)

and observe, using Lemma 2.38, that Aα′,β′ = O(kn+|α|+|β|) on D ×D holds. More
precisely, for any compact sets K1, K2 ⊂ D there exists a constant C > 0 such that

|Aα′,β′(z, w)| ≤ Ckn+|α|+|β|

holds for all z ∈ K1, w ∈ K2, k ∈ [1,∞), ϕ ∈ S1 and ρ ∈ S2. Then the estimates
for the derivatives of Pkϕ,ρ follow from the identity

dαz d
β
wPkϕ,ρ = β!α!

∑
β′≤β

∑
α′≤α

(α′!(α− α′)!β′!(β − β′)!)−1Aα′,β′ .

The estimates for the derivatives of Bkϕ,ρ follow from the fact that we can write

(dαzBkϕ,ρ)(z) = α!
∑
β≤α

((α− β)!β!)−1(dα−βz dβwPkϕ,ρ)(z, z).

For the rest of this section we are going to study some transformation behavior
of the Bergman kernel. Therefore, let D ⊂ Cn be a domain, ρ ∈ C0(D,R) a positive
function and ϕ : D → R upper semi-continuous and bounded from below.
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Lemma 2.40
Let f ∈ O(D) be a holomorphic function and set ψ = ϕ + 2f + 2f . We have
Pψ,ρ(z, w) = ef(z)−f(w)+f(w)−f(z)Pϕ,ρ(z, w), z, w ∈ D, and hence Bϕ,ρ = Bψ,ρ.

Proof. Given an orthonormal basis {sj}dj=1 of H0
kϕ,ρ(D), d = dimH0

kϕ,ρ(D), we find
that {sje2f}dj=1 is an orthonormal basis of H0

kψ,ρ(D). We calculate

Pψ,ρ(z, w) = e−
ψ(z)+ψ(w)

2

d∑
j=1

e2f(z)+2f(w)sj(z)sj(w) = ef(z)−f(w)+f(w)−f(z)Pϕ,ρ(z, w).

Lemma 2.41
Let U ⊂ Cn be a domain and G = (G1, . . . , Gn) : U → D ⊂ Cn be a biholomorphic
map. Set ϕ′ = ϕ ◦ G and ρ′ = | det(F )|2ρ ◦ G with F = (Gj

∂zl
)1≤j,l≤n. We have

Pϕ′,ρ′(z, w) = Pϕ,ρ(G(z), G(w)), z, w ∈ D, and hence Bϕ′,ρ′ = Bϕ,ρ ◦G.

Proof. Given an orthonormal basis {sj}dj=1 of H0
ϕ,ρ(D), d = dimH0

ϕ,ρ(D), we find
that {sj ◦G}dj=1 is an orthonormal basis of H0

ϕ′,ρ′(U) since

(f, g)ϕ,ρ =
∫
U
f ◦Gg ◦Ge−ϕ′| det(F )|2ρ′dVCn

by the standard transformations for integrals.

2.5 The Localization Property

Throughout this section we consider the following setting: LetD ⊂ Cn be a bounded
domain and ϕ ∈ CM+3(D,R)∩C0(D) be a real valued function which is continuous
up to the boundary, where M ∈ N ∪ {∞}. The volume form of D is denoted by
dVD = ρdVCn where ρ ∈ C0(D), ρ > 0, is continuous and positive on D.

For N ∈ N0, N ≤M , let γN , ϕ̃N : D ×D → C be defined by

γN(z, w) = ϕ(z)
2 +

∑
1≤|α|≤N+2

1
α!
∂|α|ϕ(z)
∂αz

(w − z)α

and ϕ̃N(z, w) = ϕ(w)− γN(z, w)− γN(z, w).
Recall that Dϕ,+ denotes the set of all points z in D where the complex Hessian

Hϕ(z) of ϕ is positive definite (see Definition 2.14). The localization property is
defined as follows.



44 Bergman Kernels in Cn

Cn

R

z0
( )

D

ϕ(·)

Cn

R

z0

ϕ̃N(z0, ·)

( )

D

3

Cn

R

z0
( )

D

ϕ(·)

Cn

R

z0

ϕ̃N(z0, ·)

( )

D

7

As illustrated in the two upper pictures z0 has the N -th localization property for ϕ because
the transformation ϕ̃N (z0, ·) is positive on D \ {z0}. In the two pictures below, z0 does
not have the N -th localization property since there exists at least one point z ∈ D with
ϕ̃N (z0, z) < 0.

Figure 2.1: Illustration of the N -th localization property

Definition 2.42
Let N ∈ N0 be a non-negative integer. A point z ∈ D has the N -th localization
property (for ϕ) if the following two conditions are satisfied,

(i) z ∈ Dϕ,+,

(ii) ϕ̃N(z, w) > 0 for all w ∈ D \ {z}.

The set of all points which have the N -th localization property is denoted by Dϕ,N

(or sometimes DN) and given N > M we set Dϕ,N = ∅.

Example 2.43
Let ϕ ∈ C∞(D,R) ∩ C0(D) be defined by ϕ(z) = ∑n

j=1 λj|zj|2 for λj ∈ R+, j =
1, . . . , n. Then any point z ∈ D has the N -th localization property for arbitrary
N ∈ N0. In other words, Dϕ,N = D for all N ∈ N0.

Proof. Let z ∈ D be a point. Since the complex Hessian Hϕ(z) in z is a diagonal
matrix diag(λ1, . . . , λn) with λj > 0, 1 ≤ j ≤ n we find z ∈ Dϕ,+. Furthermore, one
has

|wj − zj|2 = |wj|2 + |zj|2 − wjzj − zjwj = |wj|2 − |zj|2 − zj(wj − zj)− zj(wj − zj),
∂ϕ
∂wj

(z) = λjzj and ∂αwϕ = 0 for |α| > 1. Hence, for any N ∈ N0 one finds
n∑
j=1

λj|wj − zj|2 = ϕ(w)− γN(z, w)− γN(z, w) = ϕ̃N(z, w).
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Lemma 2.44
Given any N ∈ N0 the set Dϕ,N is open. Moreover, for any compact set K ⊂ Dϕ,N

there exists a constant C > 0 such that ϕ̃N(z, w) ≥ C|w − z|2 holds for all z ∈ K
and w ∈ D.

Proof. Let N ∈ N0 be a non-negative integer. If Dϕ,N = ∅ there is nothing to show.
Otherwise take z0 ∈ Dϕ,N . We will show that there exists an open neighborhood
D′ ⊂ D around z0 such that any z ∈ D′ has the N -th localization property and that
ϕ̃N(z, w) ≥ C|w− z|2 holds for all z ∈ D′ and w ∈ D for some constant C > 0. The
complete statement follows from the fact that K can be covered by finitely many
open sets.

By Taylor expansion in w at some point z ∈ D we find

ϕ̃N(z, w) = (w − z)Hϕ(z)(w − z)T +R(z, w)

and for any relative compact sets V, V ′ ⊂⊂ D there exists a constant C1 such that
|R(z, w)| ≤ C1|w − z|3 holds for all (z, w) ∈ V × V ′ (see Theorem 2.8). Since the
eigenvalues of Hϕ(z) depend continuously on z one has that Dϕ,+ is open and there
exist an open neighborhood U ⊂ Dϕ,+ around z0 and a constant C2 > 0 such that
(w − z)Hϕ(z)(w − z)T ≥ C2|w − z|2 for all (z, w) ∈ U × D. Thus, choosing a ball
Bε(z0) ⊂ U of radius ε > 0 around z0 we find that

ϕ̃N(z, w) ≥ C2|w − z|2 − C1|w − z|3 ≥ |w − z|2(C2 − 2εC1)

holds for all w, z ∈ Bε(z0). For ε sufficiently small there exists a constant C3 > 0
such that ϕ̃N(z, w) ≥ C3|w − z|2 holds for all w, z ∈ Bε(z0). By the assumption
on ϕ we find δ > 0 such that ϕ̃N(z0, w) ≥ 2δ for all w ∈ D \ Bε(z0). Since ϕ̃N
is continuous on D × D there exists 0 < ε′ < ε such that ϕ̃N(z, w) ≥ δ for all
z ∈ Bε′(z0) and w ∈ D \ Bε(z0) and hence ϕ̃N(z, w) > 0 for all z ∈ Bε′(z0) and
w ∈ D \ {z}. Set t = sup(z,w)∈Bε′ (z0)×D |w − z| then for C = min{C3, δ/t

2} we have
ϕ̃N(z, w) ≥ C|w − z|2 for all z ∈ Bε′(z0) and w ∈ D.

Example 2.45
Let N ∈ N0 be a non-negative integer K ⊂ Dϕ,N a compact set and α ∈ Nn

0 a
multi-index. There exists a constant C > 0 such that

|
∫
D
|(w − z)α|2e−kϕ̃N (z,w)dVD(w)| ≤ Ck−n−|α|

holds for all z ∈ K and k ∈ [1,∞). Here C is bounded when ϕ stays in a bounded
set S ⊂ CN+3(D,R) such that inf(z,w)∈K×D ϕ̃N(z, w)/|w−z|2 has a uniform positive
lower bound.
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Proof. Let z0 ∈ K be a point. Using Lemma 2.44 we find an open neighborhood
D′ ⊂⊂ DN around z0 and a constant C1 > 0 such that ϕ̃N(z, w) ≥ C1|w − z|2

holds for all z ∈ D′ and w ∈ D. For example, choose C1 > 0 such that C1 ≤
inf(z,w)∈K×D |w − z|2/ϕ̃N(z, w) holds for all ϕ ∈ S to obtain the second part of the
statement. Furthermore, there exists a constant C2 > 0 such that ρ ≤ C2. Thus,
one has

|
∫
D
|(w − z)α|2e−kϕ̃N (z,w)dVD(w)| ≤ C2

∫
D
|(w − z)α|2e−kC1|w−z|2dVCn(w).

We set
Aj(z) =

∫
Uj
|(w − z)α|2e−kC1|w−z|2dVCn(w) , j = 1, 2

where U1 = Cn and U2 = Cn \D and write∫
D
|(w − z)α|2e−kC1|w−z|2dVCn(w) = A1(z)− A2(z).

Let δ = dist(D′, ∂D) > 0 be the distance between D′ and the boundary of D. Since∫
U2
|(w− z)α|2e−C1(|w−z|2−δ2)dV n

C (w) ≤ C3 holds for all z ∈ D′ where C3 > 0 is some
constant and |w−z|2−δ2 ≥ 0 for all z ∈ D′ and w ∈ U2 one finds A2(z) ≤ C3e

−δ2C1k.
One has

2
∫ ∞

0
r2m+1e−tr

2
dr =

∫ ∞
0

rme−trdr = m!
tm+1

for m ∈ N0 and t > 0. Then, using polar coordinates leads to

A1(z) = πn
n∏
j=1

∫ ∞
0

rαje−C1krdr = k−n−|α|
πnα!
C
|α|+n
1

and hence there exists a constant C4 > 0 such that

A1(z)− A2(z) ≤ C4k
−n−|α|

for all z ∈ D′ and all sufficiently large k ∈ [1,∞). We conclude that there exists a
constant C > 0 such that

|
∫
D
|(w − z)α|2e−kϕ̃N (z,w)dVD(w)| ≤ Ck−n−|α|

holds for all z ∈ D′ and all k ∈ [1,∞).

The localization property ensures that the asymptotic behavior of some integrals
considered in the following sections comes from integrals with compactly supported
integrands. More precisely, one has has the following.

Lemma 2.46
Let N ∈ N0 be a non-negative integer and K ⊂ DN a compact set. Given any cutoff
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function χ ∈ C∞0 (D), 0 ≤ χ ≤ 1, χ ≡ 1 in an open neighborhood of K, there exist
constants δ, C > 0 such that∣∣∣∣∫

D
(1− χ(w))h(z, w)e−kϕ̃N (z,w)dVD(w)

∣∣∣∣ ≤ e−kδ Vol(D)‖ρ‖C0(D) sup
(z,w)∈K×D

|h(z, w)|

holds for all z ∈ K, k ∈ [1,∞) and h ∈ C0(D ×D). Here δ can be chosen as

δ = C ′ inf
(z,w)∈K×D

ϕ̃N(z, w)/|w − z|2

where C ′ > 0 is a constant which only depends on K and χ.

Proof. Choose an open neighborhood D′ ⊂ D around K such that χ ≡ 1 on D′

holds. By Lemma 2.44 there is a constant C1 > 0 such that ϕ̃N(z, w) ≥ C1|w − z|2

holds for all (z, w) ∈ K ×D and C1 can be chosen to be

C1 = inf
(z,w)∈K×D

ϕ̃N(z, w)/|w − z|2.

Hence we find ϕ̃N(z, w) ≥ C1dist(K, ∂D′)2 for all (z, w) ∈ K ×D \D′ which leads
to ∣∣∣∣∫

D
(1− χ(w))h(z, w)e−kϕ̃N (z,w)dVD(w)

∣∣∣∣ ≤ e−kδ
∫
D\D′
|h(z, w)ρ(w)|dVCn(w)

for any z ∈ K, k ∈ [1,∞) and h ∈ C0(D ×D). Applying the standard estimate for
integrals finishes the proof.

The following lemma is important for applying the results obtained in Section 3.1
to the manifold setting. It shows that under some conditions we can always assume
that the localization property holds in a local sense.

Lemma 2.47
Let N ∈ N0 be a non-negative integer, S ⊂ CN+3(D,R) a bounded set, D′ ⊂ D open
and C ′ > 0 a constant such that Hϕ(z)−C ′Id is positive definite for all z ∈ D′ and
ϕ ∈ S. Given z0 ∈ D′ there exists an open neighborhood V ⊂ D′ around z0 such
that for any z ∈ V , ϕ ∈ S we have that z satisfies the N-th localization property for
ϕ |V . More precisely, there exists a constant C > 0 such that ϕ̃N(z, w) ≥ C|w − z|2

and |dwϕ̃N(z, w)| ≥ C|w − z| holds for all (z, w) ∈ V × V and all ϕ ∈ S.

Proof. By Taylor expansion in w at some point z ∈ D′ we find

ϕ̃N(z, w) = (w − z)Hϕ(z)(w − z)T +R(z, w).

Choose a ball Bε(z0) ⊂⊂ D′ of radius ε > 0 around z0. There exists a constant
C1 such that |R(z, w)| ≤ C1|w − z|3 for all z, w ∈ Bε(z0) and ϕ ∈ S by The-
orem 2.8. By the assumptions on S there exists a constant C ′ > 0 such that
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(w − z)Hϕ(z)(w − z)T ≥ C ′|w − z|2 for all (z, w) ∈ Bε(z0) × D and ϕ ∈ S. Thus,
we find that

ϕ̃N(z, w) ≥ C ′|w − z|2 − C1|w − z|3 ≥ |w − z|2(C ′ − 2εC1)

holds for all z, w ∈ Bε(z0) and ϕ ∈ S. Similar, we find a constant C2 > 0 such that
|dwϕ̃N(z, w)| ≥ |w− z|(2C ′− 2εC2) holds for all z, w ∈ Bε(z0) and ϕ ∈ S. Choosing
ε > 0 sufficiently small there exists a constant C > 0 such that ϕ̃N(z, w) ≥ C|w−z|2

and |(∂w + ∂w)ϕ̃N(z, w)| ≥ C|w − z| hold for all w, z ∈ Bε(z0) and ϕ ∈ S. Putting
V = Bε/2(z0), the claim follows.

Remark 2.48
Choosing S ⊂ CN+3(D,R) compact in Lemma 2.47 it is sufficient to assume that
Hϕ(z) is positive definite in a neighborhood of D′. Since the eigenvalues of Hϕ(z)
depend continuously on (z, ϕ) ∈ D × CN+3(D,R) there exists a constant C ′ such
that Hϕ(z)− C ′Id is positive definite for all z ∈ D′ and all ϕ ∈ S.

2.6 The Method of Stationary Phase
As before, we assume that D ⊂ Cn is a bounded domain with volume form dVD =
ρdVCn where ρ ∈ C0(D), ρ > 0 on D.

Definition 2.49
Given z ∈ D, α, β ∈ Nn

0 , k ∈ [1,∞) and ϕ ∈ CN+3(D,R) ∩ C0(D) set

aα,β,kϕ(z) =
∫
D

(w − a)α(w − z)βe−kϕ̃N (z,w)dVD(w),

where ϕ̃N is defined as in Section 2.5.

We like to study the asymptotic behavior of aα,β,kϕ(z) when k goes to infinity.
Recall thatDϕ,N ⊂ D is the set of points which satisfy theN -th localization property
for ϕ ∈ CN+3(D,R) ∩ C0(D) (see Definition 2.42). We have the following theorem.

Theorem 2.50
LetM,N ∈ N0 be two non-negative integers, N ≤ 3M+1, ϕ ∈ C3M+4(D,R)∩C0(D)
and ρ ∈ C2M+2(D) ∩ C0(D). Given α, β ∈ Nn

0 , |α|, |β| ≤ M , one has aα,β,kϕ =
O(k−max{|α|,|β|}−n) in C0(Dϕ,N) and in particular

aα,β,kϕ −
πn

det(Hϕ)

M∑
j=max{|α|,|β|}

k−j−na
(j)
α,β = O(k−M−1) in C0(Dϕ,N)

where

a
(j)
α,β(z) =

2j∑
µ=0

(−1)µ
µ!(µ+ j)!〈Hϕ(z)−1∂w, ∂w〉µ+j(hN,z(w)µρ(w)(w − z)α(w − z)β)|w=z
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and hN,z(w) = ϕ̃N(z, w) − (w − z)THϕ(z)(w − z). More precisely, given a compact
set K ⊂ Dϕ,N and an open neighborhood D′ ⊂⊂ Dϕ,N of K there exists a constant
C > 0 such that∣∣∣∣∣∣aα,β,kϕ(z)− πn

det(Hϕ(z))

M∑
j=max{|α|,|β|}

k−j−na
(j)
α,β(z)

∣∣∣∣∣∣ ≤ Ck−M−1

holds for all z ∈ K and k ∈ [1,∞). Here C is bounded when ϕ stays in a bounded set
in C3M+4(D,R)∩C0(D) such that inf(z,w)∈D′×D ϕ̃N(z, w)/|z−w|2 has a positive lower
bound and ρ stays in a bounded set in C2M+2(D,R) ∩ C0(D) such that infz∈D ρ(z)
has a positive lower bound.

Furthermore, if |α| = |β| we have a(|α|)
α,β (z) = 〈Hϕ(z)−1∂w, ∂w〉|α|(wαwβ)ρ(z)/|α|!.

We will prove Theorem 2.50 by adapting the stationary phase formula of Hör-
mander to our setting.

Theorem 2.51 (Method of Stationary Phase [24, Theorem 7.7.5])
Let K ⊂ Rn be a compact set, X an open neighborhood ofK andM a positive integer.
If u ∈ C2M

0 (K), f ∈ C3M+1(X) and Im f ≥ 0 in X, Im f(x0) = 0, det f ′′(x0) 6= 0,
f ′ 6= 0 in K \ {x0} then

|
∫
u(x)eikf(x)dx− eikf(x0)(det(kf ′′(x0)/2πi))− 1

2
∑
j<M

k−jLju| (2.6)

≤ Ck−M
∑
|α|≤2M

sup |dαxu|, k > 0.

Here C is bounded when f stays in a bounded set in C3M+1(X) and |x− x0|/|f ′(x)|
has a uniform bound. With

gx0(x) = f(x)− f(x0)− 〈f ′′(x0)(x− x0), x− x0〉/2

which vanishes of third order at x0 we have

Lju =
∑

ν−µ=j

∑
2ν≥3µ

i−j+2ν2−ν〈f ′′(x0)−1dx, dx〉ν(gµx0u)(x0)/µ!ν!.

This is a differential operator of order 2j acting on u at x0. The coefficients are
rational homogeneous functions of degree −j in f ′′(x0), . . . , f (2j+2)(x0) with denomi-
nator (det f ′′(x0))3j. In every term the total number of derivatives of u and of f ′′ is
at most 2j.

Proof. See [24, Theorem 7.7.5].

Lemma 2.52
Let D ⊂ Cn be a domain, M,N ∈ N0 non-negative integers with N ≤ 3M − 2,
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S ⊂ C3M+1(D,R) a bounded set, D′ ⊂ D open and C ′ > 0 some constant such that
Hϕ(z) − C ′Id is positive definite for all z ∈ D′ and ϕ ∈ S. Furthermore, assume
ρ ∈ C2M(D,R). Given a function u ∈ C2M(D ×D) set uz(w) = u(z, w) and

bj(z) =
2j∑
µ=0

(−1)µ〈Hϕ(z)−1∂w, ∂w〉µ+j(hµN,zuzρ)(z)/µ!(µ+ j)!

where
hN,z(w) = ϕ̃N(z, w)− (w − z)THϕ(z)(w − z).

Given z0 ∈ D′ there exist an open neighborhood D′′ ⊂⊂ D′ around z0, a cutoff
function χ ∈ C∞0 (D,R), 0 ≤ χ ≤ 1, χ ≡ 1 in a neighborhood of D′′ and a constant
C > 0 such that the expression

Ak(z) =
∫
D
u(z, w)χ(w)e−kϕ̃N (z,w)dVD(w)

satisfies

|Ak(z)− πn

det(Hϕ(z))
∑
j<M

k−j−nbj(z)| ≤ Ck−M sup
z∈D′′

‖χuzρ‖C2M (D)

for all k ∈ [1,∞), z ∈ D′′, ϕ ∈ S, ρ ∈ C2M(D,R) and u ∈ C2M(D ×D).

Proof. We would like to apply Theorem 2.51. Therefore set fz(w) = fz,ϕ(w) =
iϕ̃N(z, z+w) and x0 = 0. By construction we have Im fz(0) = 0 and f ′z(0) = 0. Since
Hϕ̃N (z,·)(z) = Hϕ(z) and by Corollary 2.13 we find det(f ′′z (0)/2i) = det(Hϕ(z))2 > 0
for all z ∈ D′. Using Lemma 2.47 we find an open ball B5ε(z0) ⊂⊂ D′ of radius
5ε > 0 around z0 and constants C1, C2 > 0 such that ϕ̃N(z, w) ≥ C1|w − z|2

and |(∂w + ∂w)ϕ̃N(z, w)| ≥ C2|w − z| for all z, w ∈ B5ε(z0) and ϕ ∈ S. Hence
we have Im fz(w) > 0 and f ′z(w) 6= 0 for all z ∈ Bε(z0), w ∈ B4ε(0) \ {0} and
ϕ ∈ S. Furthermore, S ′ := {fz,ϕ | z ∈ Bε(z0), ϕ ∈ S} defines a bounded set in
C3M+1(B4ε(0)) satisfying |w|/|f ′(w)| ≤ C2 for all w ∈ B4ε(0) and all f ∈ S ′. Choose
a cutoff function χ ∈ C∞0 (B2ε(z0),R), 0 ≤ χ ≤ 1, χ ≡ 1 in an open neighborhood of
Bε(z0). One has

Ak(z) =
∫
B4ε(0)

u(z, z + w)χ(z + w)ρ(z + w)eikfz(w)dVCn(w)

for all z ∈ Bε(z0). For z ∈ Bε(z0) set ũz(w) = u(z, z+w)χ(z+w)ρ(z+w). Then, for
all z ∈ Bε(z0) we have ũz ∈ C2M(B4ε(0)) and supp(ũz) ⊂ B3ε(0). Set X = B4ε(0),
K = B3ε(0) and apply Theorem 2.51. Thus, we find a constant C > 0 such that

|Ak(z)− πn

det(Hϕ(z))
∑
j<M

k−j−nbj(z)| ≤ Ck−M
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holds for all k ∈ [1,∞), z ∈ Bε(z0) where

bj(z) =
∑

ν−µ=j

∑
2ν≥3µ

i−j+2ν2−ν〈f ′′z (0)−1dx, dx〉ν(gµz,0ũz)(0)/µ!ν!

and

gz,0(w) = fz(w)− fz(0)− 〈f ′′z (0)w,w〉/2 = ihN,z(z + w).

Using 〈f ′′z (0)−1dx, dx〉 = −2i〈Hϕ(z)−1∂w, ∂w〉 from Lemma 2.16 we find

bj(z) =
∑

ν−µ=j

∑
2ν≥3µ

(−1)µ〈Hϕ(z)−1∂w, ∂w〉ν(hµN,zuzρ)(z)/µ!ν!

=
2j∑
µ=0

(−1)µ〈Hϕ(z)−1∂w, ∂w〉µ+j(hµN,zuzρ)(z)/µ!(µ+ j)!

where we use that for ν = j + µ, µ, ν ≥ 0 one has that 2ν ≥ 3µ holds if and only if
µ ≤ 2j holds to obtain the last line.

Proof of Theorem 2.50. Let M ∈ N be a positive integer, D′ ⊂⊂ D open and
S1 ⊂ C3M+4(D,R)∩C0(D), S2 ⊂ C2M+2(D,R)∩C0(D) be bounded sets such that
{inf(z,w)∈D′×D ϕ̃N(z, w)/|z − w|2 | ϕ ∈ S1}, {infz∈D ρ | ρ ∈ S2} have positive lower
bounds. For any ϕ ∈ S1 we have D′ ⊂ Dϕ,N then. Let K ⊂ D′ be a compact subset.
Given z0 ∈ K we can apply Lemma 2.52 and find an open neighborhood D′′ ⊂⊂ D′

around z0 and a cutoff function χ ∈ C∞0 (D,R), 0 ≤ χ ≤ 1, χ ≡ 1 on D′′ and a
constant C1 > 0 such that∣∣∣∣∣∣ãα,β,k(z)− 1

πn det(Hϕ(z))
∑
j<M

k−j−na
(j)
α,β(z)

∣∣∣∣∣∣ ≤ C1k
−M

where
ãα,β,k(z) =

∫
D
χ(w)(w − a)α(w − z)βe−kϕ̃N (z,w)dVD(w)

and

a
(j)
α,β(z) =

2j∑
µ=0

(−1)µ
µ!(µ+ j)!〈Hϕ(z)−1∂w, ∂w〉µ+j(hN,z(w)µρ(w)(w − z)α(w − z)β)|w=z.

Using Lemma 2.46 we find a constant C2 > 0 and δ > 0 such that |aα,β,k(z) −
ãα,β,k(z)| ≤ C2e

−δk holds for all z ∈ D′′, k ∈ [1,∞), ϕ ∈ S1 and ρ ∈ S2. Thus, there
exists a constant C3 > 0 such that∣∣∣∣∣∣aα,β,k(z)− πn

det(Hϕ(z))
∑
j<M

k−j−na
(j)
α,β(z)

∣∣∣∣∣∣ ≤ C3k
−M

holds for all z ∈ D′′, k ∈ [1,∞), ϕ ∈ S1 and ρ ∈ S2.
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Now, consider a(j)
α,β for j < max{|α|, |β|}. For fixed µ, 0 ≤ µ ≤ 2j, we write

〈Hϕ(z)−1∂w, ∂w〉j+µ =
∑

|α′|=|β′|=j+µ
cα′,β′∂

α′

w ∂
β′

w

where cα,β ∈ C are complex numbers. Given α′, β′ ∈ Nn
0 , |α′| = |β′| = µ + j, such

that α′ ≥ α and β′ ≥ β holds (this implies µ > 0) we find, using the general Leibniz
rule, that

∂
α′

w ∂
β′

w (hN,z(w)µρ(w)(w − z)α(w − z)β)|w=z =
α′!β′!

(α′ − α)!(β′ − β)!∂
α′−α
w ∂β

′−β
w (hN,z(w)µρ(w))|w=z

holds. Since hN,z(w)µρ(w) = O(|w|3µ) and |α′ − α|, |β′ − β| < µ we have that less
then 2µ derivatives acting on the function O(|w|3µ) which implies

∂
α′−α
w ∂β

′−β
w (hN,z(w)µρ(w))|w=z = 0.

If α′ ≥ α or β′ ≥ β fails, we directly observe that

∂
α′

w ∂
β′

w (hN,z(w)µρ(w)(w − z)α(w − z)β)|w=z = 0

holds. Hence,

〈Hϕ(z)−1∂w, ∂w〉µ+j(hN,z(w)µρ(w)(w − z)α(w − z)β)|w=z = 0

and we conclude that a(j)
α,β = 0 if j < max{|α|, |β|} which proves that aα,β,k ∈

O(k−max{|α|,|β|}−n) in C0(D′′), uniformly in ϕ ∈ S1 and ρ ∈ S2.
Given α, β ∈ Nn

0 , |α| = |β|, consider a(|α|)
α,β . If µ > 0 we can proceed similar as

above to observe that

∂
α′

w ∂
β′

w (hN,z(w)µρ(w)(w − z)α(w − z)β)|w=z = 0

holds for |α′| = |β′| = µ+ |α|. Treating the case µ = 0 leads to

〈Hϕ(z)−1∂w, ∂w〉|α|(ρ(w)(w − z)α(w − z)β)|w=z

= α!β!cα,βρ(z)
= ρ(z)〈Hϕ(z)−1∂w, ∂w〉|α|wαwβ.

Covering K by finitely many of those D′′ completes the proof.

Lemma 2.53
Given z ∈ Dϕ,N such that Hϕ(z) = diag(λ1, . . . , λn) one has

a
(j)
α,β(z) =

2j∑
µ=0

∑
|η|=µ+j

η≥max{α,β}

(1/λ)η (−1)µη!
µ!(η − α)!(η − β!)∂

η−α
w ∂η−βw (hµN,zρ)(z)

where (1/λ)η = λ−η1
1 · . . . · λ−ηnn .
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Proof. One has 〈Hϕ(z)−1∂w, ∂w〉 = ∑n
l=1 λ

−1
l

∂2

∂wl∂wl
and hence

〈Hϕ(z)−1∂w, ∂w〉µ+j =
∑

|η|=µ+j
(1/λ)η (µ+ j)!

η! ∂
η

w∂
η
w.

Given α, β ∈ Nn
0 such that η ≥ max{α, β} holds one finds

∂
η

w∂
η
w(hN,z(w)µρ(w)(w − z)α(w − z)β)|w=z

= η!η!
(η − α)!(η − β)!∂

η−α
w ∂η−βw (hµN,zρ)(z).

Given α, β ∈ Nn
0 such that η ≥ max{α, β} fails one has

∂
η

w∂
η
w(hN,z(w)µρ(w)(w − z)α(w − z)β)|w=z = 0.

Thus, we conclude

a
(j)
α,β(z) =

2j∑
µ=0

∑
|η|=µ+j

η≥max{α,β}

(1/λ)η η!
µ!(η − α)!(η − β!)∂

η−α
w ∂η−βw (hµN,zρ)(z).

2.7 An L2-Norm Estimate for the Stationary Phase Formula
Let N ∈ N0 be a non-negative integer. In this section we study the asymptotic
behavior for k →∞ of the inner product (·, ·)kϕ,ρ between polynomials of degree at
most N and holomorphic functions in H0

kϕ,ρ(D) which vanish up to order N at some
point. For brevity we will use the notations H0

k(D) := H0
kϕ,ρ(D), (·, ·)k := (·, ·)kϕ,ρ

and ‖ ·‖k := ‖ ·‖kϕ,ρ in this section. As before, we assume that D ⊂ Cn is a bounded
domain.

Definition 2.54
Given a point z0 ∈ Cn and a holomorphic function f ∈ O(U) defined on an open
neighborhood U around z0 we say that f vanishes up to order N ∈ N0 in z0 if
∂αz f(z0) = 0 holds for all α ∈ Nn

0 , |α| ≤ N .

The following result is fundamental for proving the reprodicng property in The-
orem 1.3. The idea for Theorem 2.55 in the version given below was inspired by
Chin-Yu Hsiao during a discussion in 2016.

Theorem 2.55
For N ∈ N0 let ϕ ∈ CN+4(D,R) be a function and dVD = ρdVCn be a volume form,
that is ρ ∈ CN+1(D,R) with ρ > 0. For any z0 ∈ Dϕ,+, β ∈ Nn

0 and 0 < ε < 1



54 Bergman Kernels in Cn

there exist an open neighborhood U ⊂ D around z0, a cutoff function χ ∈ C∞0 (D,R),
0 ≤ χ ≤ 1, χ ≡ 1 on U and a constant C such that for all z ∈ U , k ∈ [1,∞), and
all functions f ∈ H0

k(D) which vanish up to order N in z, one has∣∣∣∣∫
D
f(w)(w − z)βekγN (z,w)χ(w)e−kϕ(w)dVD(w)

∣∣∣∣ ≤ Ck−
N+1+n−ε

2 ‖f‖k.

Here C is bounded when ϕ stays in a bounded set in CN+4(D,R) with a constant
C ′ > 0 such that Hϕ(z) − C ′ Id is positive definite on supp(χ) and ρ stays in a
bounded set in CN+1(D,R) such that supw∈supp(χ) ρ(w)−1 has a uniform bound.

Corollary 2.56
Given N ∈ N0, ϕ ∈ CN+4(D,R) ∩ C0(D), dVD = ρdVCn with ρ ∈ CN+1(D,R) ∩
C0(D), ρ > 0, z0 ∈ Dϕ,N , β ∈ Nn

0 and any neighborhood D′ ⊂⊂ Dϕ,N around z0

there exists a constant C > 0 such that∣∣∣∣∫
D
f(w)(w − z)βekγN (z,w)e−kϕ(w)dVD(w)

∣∣∣∣ ≤ Ck−
N+1+n−ε

2 ‖f‖k (2.7)

for all z ∈ D′, k ∈ [1,∞) and all f ∈ H0
k(D) which vanish up to order N in z.

Here C is bounded when ϕ stays in a bounded set in CN+4(D,R)∩C0(D) such that
sup(z,w)∈D′′×D |w−z|2/ϕ̃N(z, w) has a uniform bound for some open neighborhood D′′

of D′ and ρ stays in a bounded set in CN+1(D,R)∩C0(D) such that supw∈D ρ(w)−1

has a uniform bound.

Proof. Given any point z0 ∈ D′ we apply Theorem 2.55 and find

A1 :=
∣∣∣∣∫
D
f(w)(w − z)βekγN (z,w)χ(w)e−kϕ(w)dVD(w)

∣∣∣∣ ≤ Ck−
N+1+n−ε

2 ‖f‖k

for some cutoff function χ with suppχ ⊂ D′′, χ ≡ 1 on some open neighborhood
U ⊂ D′′ of z0 for all z ∈ U . Setting

A2 :=
∣∣∣∣∫
D
f(w)(w − z)βekγN (z,w)(1− χ(w))e−kϕ(w)dVD(w)

∣∣∣∣
we have that the left-hand side of (2.7) can be estimated by A1 +A2. So we just need
to show that A2 will decrease fast enough when k goes to infinity. Cauchy-Schwarz
inequality and the assumptions on ϕ and ρ lead to

A2
2 ≤

∣∣∣∣∫
D
|(w − z)β(1− χ(w))|2e−kϕ̃N (z,w)dVD(w)

∣∣∣∣ ‖f‖2
k

≤ C1e
−δk‖f‖2

k

where δ, C1 > 0 only depend on sup(z,w)∈D′′×D |w−z|2/ϕ̃N(z, w) and supw∈D ρ(w)−1.
Since we can cover D′ by a finite number of such sets U the claim follows.
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Remark 2.57
Theorem 2.55 and Corollary 2.56 stay true for a fixed weight ϕ ∈ CN+3(D,R).
We need to increase the regularity by one in order to get the uniformity in ϕ. The
reason for that can be found in Proposition 2.59, which is also true for a fixed weight
ϕ ∈ CN+3(D,R) but needs the higher regularity for choosing the neighborhoods
independent of ϕ.

Sketch of the proof. Before we begin with the proof of Theorem 2.55, we
would like to outline the idea first by using a simple example. Consider the case
n = 1, D = D, z0 = 0, ρ ≡ 1 and

ϕ(z) := |z|2 + µa(z), µa(z) := a(z2z + z2z) + z3z2 + z3z2 + |z|N+3

for a ∈ R. We immediately find that γN(0, w) ≡ 0 and hence that ϕ̃N(0, z) =
ϕ(z). First, we choose a disk D6τ with radius 0 < 6τ < 1 around 0 such that
ϕ(z) ≥ C0|z|2 holds on D6τ for some constant C0 > 0. Then choose a cutoff function
χ ∈ C∞0 (D2τ ,R) with χ ≡ 1 on some open neighborhood U ⊂⊂ D2τ around 0.
Given a holomorphic function f ∈ O(D) which vanishes up to order N in z0 = 0 we
can write f(z) = zN+1g(z) for some holomorphic function g ∈ O(D). We then use
integration by parts and get∫

D
χ(z)f(z)e−kϕ(z)dVC = (−k)−N−1

∫
D
χ(z)g(z)ekµa(z)

(
∂
N+1

e−k|z|
2)
dVC

= k−N−1
∫
D
e−kµa(z)

(
∂
N+1

χ(z)ekµa(z)
)
g(z)e−kϕ(z)dVC.

By Lemma 2.30 we have supz∈D2τ |g(z)|2e− 3
2ϕ(z) ≤ C1k

N+1+n+ε/2‖f‖2
k for some con-

stant C1 > 0 independent of k and g or f respectively. It follows∣∣∣∣∫
D
χ(z)f(z)e−kϕ(z)dVC

∣∣∣∣ ≤ C1k
−N+1−n

2 + ε
4‖f‖k

∣∣∣∣∫
D
Gk(z)e−k 1

4ϕ(z)dVC

∣∣∣∣
with Gk(z) = e−kµa(z)∂

N+1 (
χ(z)ekµa(z)

)
. We write the integral on the right-hand

side as
∫
DGk(z)e−k 1

4ϕ(z)dVC = A1,k + A2,k with

A1,k =
∫
D
Gk(z)ξ(|z|2k1−ε′)e−k 1

4ϕ(z)dVC, A2,k =
∫
D
Gk(z)(1− ξ(|z|2k1−ε′))e−k 1

4ϕ(z)dVC

where ξ ∈ C∞0 ((−2δ, 2δ),R), 0 ≤ ξ ≤ 1 and ξ ≡ 1 on (−δ, δ) is a cutoff function
with δ = 2τ 2 and ε′ = ε/8(N + 1). We find |A2,k| ≤ C2k

N+1e−
δC0

4 kε
′
. Using

Example 2.45 we have
∫
D2τ

e−k
1
4ϕ(z)dVC ≤ C3k

−n. Then a direct calculation shows
that |A1,k| ≤ C4k

−n+2ε′(N+1) assuming a = 0. For the general case, that is a 6= 0,
we have to change the coordinates in order to eliminate all the zαzβ terms with
min{|α|, |β|} = 1 in the Taylor expansion of ϕ̃N(z0, ·) up to order N + 2. Those
coordinates are provided in Proposition 2.59. A careful analysis of ξ(|z|2k1−ε′)Gk(z)
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Cn

D

{z} × U0
U1 × U0

z0

F

F (z, U0)

U2

U3
D

One has that F maps the subset U1 × U0 ⊂ D × Cn to D such that its restriction to
any {z} × U0 is biholomorhpic. Furthermore, the U2 is always contained in F (z, U0) and
F (z, U0) is always contained in U3 for all z ∈ U1. Note that the left-hand side of the
picture represents a subset of C2n while the right-hand side represents a subset of Cn.

Figure 2.2: Illustration of F in Proposition 2.59

using these coordinates is done in Lemma 2.63. So let us assume a = 0. Putting all
together we get∣∣∣∣∫

D
χ(z)f(z)e−kϕ(z)dVC

∣∣∣∣ ≤ C1k
−N+1−n

2 + ε
4‖f‖k(C4k

−n+2ε′(N+1) + C2k
N+1e−δC0kε

′

)

≤ Ck−
N+1+n−ε

2 ‖f‖k

for some constant C > 0 independent of k and f .
Given n > 1 we cannot apply Lemma 2.30 directly because in general the holomor-
phic functions, which vanish up to order N in z0, do not have the form zαg(z) in
that case. We overcome this difficulty by introducing the meaning of a splitting de-
composition (see Definition 2.60) and by modifying Lemma 2.30 (see Lemma 2.62).
Moreover, here we just consider the case where z0, ρ and ϕ are fixed. To prove
the general statement we also need to show that the constant C > 0 can be chosen
independent of z0, ρ and ϕ in some suitable sets.

Remark 2.58
It should be mentioned that in the case n = 1 a much simpler proof of Theorem 2.55
could be given. But this simpler method does not generalize to higher dimensions
since the zero set of z → zα, |α| > 0, fails to be compact in that case.

For the proof of Theorem 2.55 we need to change coordinates at some point in
order to show that some error terms become small. We prove the existence of those
so called Kähler coordinates (see [6], [26]) in Proposition 2.59. We have to prove
that in some sense those coordinates can be chosen uniformly in ϕ when ϕ stays in
some bounded set in CN+4(D) (see Figure 2.2 for a visualization).
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Proposition 2.59
For ϕ ∈ CN+4(D,R) and any z0 ∈ Dϕ,+ and any open neighborhood U3 ⊂ D around
z0 there exist an open neighborhood U0 ⊂ Cn around 0, open neighborhoods U1, U2 ⊂
Dϕ,+ around z0 and C2-map F = Fϕ : U1 × U0 → D such that F (z, 0) = z,
F (z, ·) : U0 → F (z, U0) is biholomorphic, U2 ⊂⊂ F (z, U0) ⊂⊂ U3 for all z ∈ U1 and

ϕ̃(z, F (z, w)) = |w|2 −
∑

|α|,|β|≥2
|α|,|β|≤N+2

cα,β(z)wαwβ − η(z, w)

with |η(z, w)| ≤ C|w|N+3 for some constant C > 0 independent of z.
If ϕ stays in a bounded set A ⊂ CN+4(D,R) such that Hϕ(z) − C ′ Id is positive
definite for all ϕ ∈ A and for all z in an open neighborhood D′ of z0 the sets U0, U1, U2

with U1 ⊂ D′ and the constant C can be chosen independent of ϕ. Furthermore,
{η(z, ·)}z∈U1 stays in a bounded set in CN+4(D,C) and {cα,β(z)}z∈U1 stays in a
bounded set in C for all α, β ∈ Nn with 2 ≤ |α|, |β| ≤ N + 2.

Proof. Let Hϕ(z) = (∂
2ϕ(z)
∂zj∂zl

)1≤l,j≤n be the complex Hessian of ϕ in z ∈ D. We have
that Sϕ(z) := (

√
Hϕ(z))−1 is well defined and of class CN+2 onD′ since we can always

assume that locally t
2 ≤ vTH(z)v ≤ 3t

2 for all v ∈ Cn of unit length and all ϕ ∈ A for
some t > 0 to get, by using the Taylor expansion of x 7→

√
t+ (x− t) and Cramer’s

rule, that Sϕ is well defined and of class CN+2. Choose open neighborhoods U ′ ⊂⊂
D′ around z0 and U ′′ ⊂ Cn around 0 such that the smooth map Fϕ,0 : U ′×U ′′ → D,
Fϕ,0(z, w) = Sϕ(z)w + z is well defined for all ϕ ∈ A. Then, by a Taylor expansion
of ϕ̃N(z, Fϕ,0(z, ·)) we can write

ϕ̃N(z, Fϕ,0(z, w)) = |w|2 + η1(z, w) + η1(z, w)− η0(z, w)− η(z, w)

η1(z, w) =
n∑
j=1

∑
2≤|α|≤N+1

wjbj,α(z)wα , η0(z, w) =
∑

|α|+|β|≥3
|α|,|β|≤N+2

cα,β(z)wαwβ

where bj,α and cα,β are C2-functions on U ′ such that cα,β(z) = 0 if |α| ≤ 1 or |β| ≤ 1
and η(z, w) ∈ O(|w|N+3). Note that bj,α, cα,β and η also depend on ϕ. Throughout
this proof by saying η(z, w) = O(|w|N+3) we mean |η(z, w)| ≤ C|w|N+3 for some
constant C independent of ϕ ∈ A and (z, w) in the domain of definition of η.
Define a map G̃ϕ : U ′ × U ′′ → U ′ × Cn by G̃ϕ(z, w) = (z,Gϕ(z, w)) where

Gϕ(z, w) =
wj +

∑
2≤|α|≤N+1

bj,α(z)wα


1≤j≤n

.

The real Jacobi matrix of G̃ϕ in (z0, 0) is the identity map for all ϕ ∈ A and hence
invertible. Since A ⊂ CN+4(D,R) is bounded we have that {G̃ϕ}ϕ∈A is bounded in
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the C2-norm. Thus, we can shrink U ′ and U ′′ independent of ϕ ∈ A to ensure that
G̃ϕ is a C2-diffeomorphism on its image for all ϕ ∈ A. Furthermore, we find that
for any z ∈ U ′ the map Gϕ(z, ·) has an invertible differential, is holomorphic and
injective and hence biholomorphic on its image (see Lemma 2.19). Since {G̃ϕ}ϕ∈A
is bounded in the C2-norm we can find open neighborhoods V ′ ⊂ U ′ around z0

and V ′′ ⊂ Cn around 0 independent of ϕ ∈ A such that V ′ × V ′′ is contained
in the image of G̃ϕ for all ϕ ∈ A. Denote the restriction of the inverse map of
G̃ϕ : U ′×U ′′ → G̃ϕ(U ′×U ′′) to V ′× V ′′ by G̃−1

ϕ . We have that G̃−1
ϕ can be written

as G̃−1(z, w) = (z, Fϕ,1(z, w)) where Fϕ,1 : V ′ × V ′′ → U ′′ is a C2-map such that
Fϕ,1(z, 0) = 0 and Fϕ,1(z, ·) is biholomorphic on its image for any z ∈ V ′. We find

ϕ̃N(z, Fϕ,0(z, w)) = |Gϕ(z, w)|2 − η′0(z, w)− η′(z, w)

for functions η′, η′0 depending on ϕ with η′(z, w) ∈ O(|w|N+3) and

η′0(z, w) =
∑

|α|+|β|≥3
|α|,|β|≤N+2

c′α,β(z)wαwβ (2.8)

where c′α,β are C2-functions on U ′ such that c′α,β(z) = 0 if |α| ≤ 1 or |β| ≤ 1.
Furthermore, we observe that η′0(z, Fϕ,1(z, w))+η′(z, Fϕ,1(z, w)) = η̃0(z, w)+ η̃(z, w)
where η̃, η̃0 are C2-functions such that η̃(z, w) = O(|w|N+3) and η̃0 can be written
in the form (2.8). Define F̃ϕ : V ′ × V ′′ → V ′ ×D by F̃ϕ(z, w) = (z, Fϕ(z, w)) where
Fϕ(z, w) = Fϕ,0(z, Fϕ,1(z, w)). We have that F̃ϕ is a diffeomorphism on its image
and that Fϕ(z, 0) = z and Fϕ(z, ·) is biholomorphic on its image for any z ∈ V ′ as
the composition of the maps (z, w) 7→ (z, Fϕ,0(z, w)) and G̃−1

ϕ . Let U ′3 ⊂⊂ U3 be
an open neighborhood around z0. Since F̃ϕ(z0, 0) = (z0, z0) and the properties of
{G̃ϕ}ϕ∈A we find an open subset of the form W ′ ×W ′′ where W ′ ⊂ V ′ is an open
neighborhood around z0 and W ′′ ⊂ V ′′ is an open neighborhood around 0 such that
W ′ ×W ′′ ⊂ F̃−1

ϕ (V ′ × U ′3) holds for all ϕ ∈ A. Using similar arguments we find
open neighborhoods U1 ⊂ W ′ and U ′2 ⊂ U ′3 ∩ D′ around z0 independent of ϕ ∈ A
satisfying F̃−1

ϕ (U1 × U ′2) ⊂ W ′ ×W ′′ for all ϕ ∈ A. Now set U0 = W ′′ and restrict
Fϕ to U1×U0. We have that Fϕ(z, 0) = z and Fϕ(z, ·) is biholomorphic on its image
for all z ∈ U1. Furthermore,

ϕ̃(z, Fϕ(z, w)) = |w|2 − η̃0(z, w)− η̃(z, w)

where η̃(z, w) ∈ O(|w|N+3) and

η̃0(z, w) =
∑

|α|+|β|≥3
|α|,|β|≤N+2

c̃α,β(z)wαwβ

for C2-functions c̃α,β defined on U1 such that c̃α,β(z) = 0 if |α| ≤ 1 or |β| ≤ 1.
Using standard relations between the derivatives of a map and its inverse (see
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Theorem 2.6) and the the properties of A we find that {Fϕ,1(z, ·)}z∈U1,ϕ∈A and
hence {Fϕ(z, ·)}z∈U1,ϕ∈A is bounded in any C l-norm. As a conclusion we get that
{η̃(z, ·)}z∈U1,ϕ∈A is bounded in CN+4(D,C) and {c̃α,β(z)}z∈U1,ϕ∈A is bounded in C.
Since F̃ϕ(U1 × U0) ⊂ V ′ × U ′3 we find that Fϕ(z, U0) ⊂ U ′3 ⊂⊂ U3 for all z ∈ U1

and ϕ ∈ A. Given z ∈ U1 and w ∈ U ′2 we can find a point (z′, w′) ∈ U1 × U0

such that F̃ϕ(z′, w′) = (z, w). By the construction of F̃ϕ we have z = z′ and hence
w ∈ Fϕ(z, U0). This proves that U ′2 ⊂ Fϕ(z, U0) holds for all z ∈ U1 and ϕ ∈ A.
Taking an open neighborhood U2 ⊂⊂ U ′2 around z0 finishes the proof.

Let U ⊂ Cn be a domain and assume that U contains the closure of a polydisc
Dn
δ of radius δ around 0.

Definition 2.60
Let f be a holomorphic function on U which vanishes up to order N ∈ N0 in
0. A (local) decomposition f(w) = ∑

|α|=N+1 w
αfα(w) where fα ∈ O(Dn

δ ), fα(w) =∑
β a

(α)
β wβ, |α| = N+1, converges absolutely on Dn

δ is called a splitting decomposition
(of f) if for all α, β ∈ Nn

0 , |α| = N +1, the following holds: a(α)
β 6= 0 implies a(α′)

β′ = 0
for all α′, β′ satisfying α′ + β′ = α + β, α 6= α′, β 6= β′.

Roughly speaking this means that a term wβ cannot be contained in the power
series expansion of wαfα(w) and wα′fα′(w), α 6= α′ at the same time.

Lemma 2.61
Any f ∈ O(U) admits a splitting decomposition. Furthermore, given a splitting
decomposition f(w) = ∑

|α|=N+1 w
αfα(w) and a positive continuous function

ρ : [0, δ]n → R+ one has∫
Dnτ
wαfα(w)wβfβ(w)ρ(|w1|2, . . . , |w2|2)dVCn = 0

for all α 6= β, τ ≤ δ.

Proof. Assume that f vanishes up to order N ∈ N0 in 0. By assumption U contains
the closure of a polydisc Dn

τ for some τ > δ around 0. Thus, we can write f(w) =∑
|α|≥N+1 aαw

α where the sum on the right hand side converges absolutely on the
closure of Dn

δ . Let α(1), α(2), . . . , α(dN+1) be an enumeration of the elements in
{α ∈ Nn | |α| = N + 1}. For w ∈ Dn

δ define

f̃1(w) =
∑

|α|≥N+1
α−α(1)∈Nn0

aαw
α

where α− α(1) ∈ Nn
0 means that αj ≥ α(1)j holds for all 1 ≤ j ≤ n. We have that

f̃1 is a holomorphic function on Dn
δ and that its power series converges absolutely
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on Dn
δ . Take α(2) and do the same construction for f − f̃1 to obtain f̃2 and so on.

One has that fl(w) := f̃l(w)/wα(l), 1 ≤ l ≤ dN+1, defines a holomorphic function
on Dn

δ . Since for any |α| ≥ N + 1 there exists at least one 1 ≤ l ≤ dN+1 such
that α − α(l) ∈ Nn

0 and by construction we get that f(w) = ∑dN+1
l=1 wα(l)fl(w) is a

splitting decomposition. To prove the second part of the statement we observe that
for m ∈ Z \ {0} one has

∫ 2π
0 eimθdθ = 0. This implies that for α, β ∈ Nn

0 , α 6= β, one
gets

0 =
n∏
j=1

(∫ 2π

0
ei(αj−βj)θdθ

)
·
∫

[0,τ ]n

n∏
j=1

r
αj+βj+1
j ρ(r2

1, . . . , r
2
n)dr1 . . . drn

=
∫
Dnτ
wαwβρ(|w1|2, . . . , |w2|2)dVCn

for any τ ∈ R+. Consider a splitting decomposition of f , i.e. f(w) = ∑
|α|=N+1 w

αfα(w)
and wαfα(w) = ∑

|β|≥N+1 a
(α)
β wβ converges absolutely, |α| = N+1. By the properties

of a splitting decomposition we have that

wαfα(w)wβfβ(w) =
∑

α′,β′≥N+1
a

(α)
α′ a

(β)
β′ w

α′wβ′ =
∑

α′,β′≥N+1
α′ 6=β′

a
(α)
α′ a

(β)
β′ w

α′wβ′

is a power series which converges absolutely on Dn
δ . Thus, for τ ≤ δ we find∫

Dnτ
wαfα(w)wβfβ(w)ρ(|w1|2, . . . , |w2|2)dVCn

=
∑

α′,β′≥N+1
α′ 6=β′

a
(α)
α′ a

(β)
β′

∫
Dnτ
wα
′
wβ′ρ(|w1|2, . . . , |w2|2)dVCn

= 0.

Lemma 2.62
Let S1 ⊂ CN+4(D,R) and S2 ⊂ C0(D,R) be bounded sets, D′ ⊂⊂ D open and
C ′1, C

′
2 > 0 two constants such that Hϕ(z)− C ′1 Id is positive definite and ρ(z) > C ′2

for all ϕ ∈ S1, all ρ ∈ S2 and all z ∈ D′. Choose Uj, 0 ≤ j ≤ 3, and F as in
Proposition 2.59. Assume that U0 contains the closure of a polydisc Dn

3δ0 of radius
3δ0 around 0 for some δ0 > 0. One can find an open neighborhood U ⊂ U1 around z0

such that the following holds: For any ε > 0 there exists a constant C > 0 such that
for all k ∈ [1,∞), all ϕ ∈ S1, ρ ∈ S2, all z ∈ U and any f ∈ H0

k(D), which vanishes
up to order N in z, and any splitting decomposition of f ◦ F (z, ·)e−kγ(z,F (z,·)),

f(F (z, w))e−kγ(z,F (z,w)) =
∑

|α|=N+1
wαgα,z,k(w) , gα,z,k ∈ O(Dn

3δ0)

one has ∑
|α|=N+1

sup
w∈Dn

δ0

|gα,z,k(w)|2e− 3k
2 ϕ̃(z,F (z,w)) ≤ CkN+n+1+ε‖f‖2

k.
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Proof. We can write ϕ̃(z, F (z, w)) = |w|2 + R(z, w) where |R(z, w)| ≤ C0|w|3 for
some constant C0 > 0 independent of z ∈ U1 and ϕ ∈ S1. Thus, we can find δ > 0
such that |R(z, w)/|w|2| ≤ 1/5 on U1 × Dn

3δ. Setting C1 = 6/5 we conclude that

ϕ̃(z, F (z, w)) ≤ C1|w|2 ≤
3
2 ϕ̃(z, F (z, w))

holds for all w ∈ Dn
3δ, z ∈ U and ϕ ∈ S1. Applying Lemma 2.30 for ϕ(w) = C1|w|2

and ρ ≡ 1 we find a constant C2 > 0 independent of gα,z,k and k such that

k−(N+1+n+ε) sup
w∈Dn

δ

|gα,z,k(w)|2e−kC1|w|2 ≤ C2

n

∫
Dn2δ
|wαgα,z,k(w)|2e−kC1|w|2dVCn(w)

holds. By Lemma 2.61 we have

∫
Dn2δ

∣∣∣∣∣∣
∑

|α|=N+1
wαgα,z,k(w)

∣∣∣∣∣∣
2

e−kC1|w|2dVCn(w)

=
∑

|α|=N+1

∫
Dn2δ
|wαgα,z,k(w)|2e−kC1|w|2dVCn(w).

Write dVz,U0(w) := F ∗(z, w)(ρ(w)dVCn) = ρ(z, w)dVCn for ρ ∈ S2. There is a
constant C3 > 0 independent of ρ ∈ S2 such that C3ρ(z, w) > 1 holds for all
(z, w) ∈ U × Dn

2δ. Thus, one finds

k−(N+1+n+ε) ∑
|α|=N+1

sup
w∈Dn

δ

|gα,z,k(w)|2e− 3k
2 ϕ̃(z,F (z,w))

≤ C2

∫
Dn2δ
|f(F (z, w))e−kγ(z,F (z,w))|2e−kC1|w|2dVCn(w)

≤ C2

∫
Dn2δ
|f(F (z, w))|2e−k(ϕ̃(z,F (z,w))+γ(z,F (z,w))+γ(z,F (z,w)))dVCn(w)

≤ C2C3

∫
Dn2δ
|f(F (z, w))|2e−kϕ(F (z,w))dVz,U0(w)

= C2C3

∫
F (z,Dn2δ)

|f(w)|2e−kϕ(w)dVD(w) ≤ C2C3‖f‖2
k.

The following lemma is crucial for the proof of Theorem 2.55.

Lemma 2.63
Let U0 ⊂ Cn be an open neighborhood around 0 and N ∈ N0 be a non-negative
integer. Furthermore, let R, S ⊂ CN+3(U0) be bounded sets with supp s ⊂ U0 for
all s ∈ S and that there is a constant C0 > 0 such that |η(w)| ≤ C0|w|N+3 holds
for all η ∈ R and w ∈ U0. Let ξ ∈ C∞0 (R,R) be a cutoff function 0 ≤ ξ ≤ 1,
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supp(ξ) ⊂ (−2δ, 2δ) ⊂ (−1, 1), ξ ≡ 1 on (−δ, δ) for some δ > 0 such that U0

contains the closure of a ball of radius 3δ around 0. Set

R0 =

w 7→
∑

|α|,|β|≥2
|α|,|β|≤N+2

cα,βw
αwβ

∣∣∣∣∣∣∣∣∣ cα,β ∈ A
 ⊂ C∞(U0)

where A ⊂ C is some bounded set. For η ∈ R, η0 ∈ R0 and s ∈ S set

Gα,k(w) = e−k(η0(w)+η(w))∂
α

w

(
s(w)ek(η0(w)+η(w))

)
.

There exists a constant C > 0 such that for all α ∈ Nn
0 , |α| = N + 1, all k ∈ [1,∞)

and all η ∈ R, η0 ∈ R0, s ∈ S one has

sup
w∈U0

|ξ(k1−ε|w|2)Gα,k(w)| ≤ Ckε2(N+1).

Proof. First we notice that

sup
|α|≤N

sup
w∈D3δ

|∂αws(w)| ≤ C1

for some constant C1 > 0 independent of k and s ∈ S. Next, we find for |α| ≤ N +1
that |∂αwη(w)| ≤ C2|w|N+3−|α| for some constant C2 > 0 independent of w ∈ D3δ,
η ∈ R and α, |α| ≤ N + 1. Set ξk(w) = ξ(k1−ε|w|2). Since supp(ξ) ⊂ (−2δ, 2δ),
i.e. ξ(k1−ε|w|2) = 0 for |w|2 ≥ 2δkε−1, we conclude

|∂αwη(w)| ≤ C2|w|N+3−|α| ≤ C3k
−(1−ε)(N+3−|α|)

for all w ∈ supp ξk, η ∈ R and α, |α| ≤ N + 1, where we choose C3 > 0 such that
C2(2δ)N+3−|α| ≤ C3 for all |α| ≤ N + 1. One has

km|
m∏
j=1

∂
α(j)
w η(w)| ≤ Cm

3 k
−m2 (1−ε)(N+3)k

1
2 |α|(1−ε)+m

≤ (1 + C3)N+1kεk−
m−1

2 (N−1)(1−ε) ≤ C4k
ε

for all α(1), . . . , α(m) ∈ Nn
0 , 1 ≤ m ≤ N + 1, |∑m

j=1 α(j)| ≤ N + 1. Thus, there
exists C5 such that ∣∣∣e−kη(w)∂

α

we
kη(w)

∣∣∣ ≤ C5k
(N+1)ε

for all η ∈ R, w ∈ supp ξk, |α| ≤ N + 1 and k ∈ [1,∞). For α′, β′ ∈ Nn
0 such that

|α′|, |β′| ≥ 2 one has

|∂αwwβ
′
wα
′ | ≤ |w||β′| ≤ |w|2.
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Thus, we find a constant C6 > 0 such that for all η0 ∈ R0, |α| ≤ N + 1, k ∈ [1,∞)
and w ∈ supp(ξk) one has |∂αwη0(w)| ≤ C6k

−1+ε and hence there exists a constant
C7 > 0 independent of η0 ∈ R0, k ∈ [1,∞) and w ∈ supp(ξk) such that

km|
m∏
j=1

∂
α(j)
w η0(w)| ≤ C7k

(N+1)ε

holds for all α(1), . . . , α(m) ∈ Nn
0 , 1 ≤ m ≤ N + 1, |∑m

j=1 α(j)| ≤ N + 1. We
conclude that there is a constant C8 > 0 such that for any η0 ∈ R0, k ∈ [1,∞),
w ∈ supp(ξk) and |α| ≤ N + 1 one has

∣∣∣e−kη0(w)∂
α

we
kη0(w)

∣∣∣ ≤ C8k
(N+1)ε.

As a conclusion we find a constant C > 0 such that |Gα,k(w)| ≤ Ck2ε(N+1) for all
η ∈ R, η0 ∈ R0, s ∈ S, k ∈ [1,∞), w ∈ supp(ξk) and |α| = N + 1 or in other words

sup
w∈U0

|ξ(k1−ε|w|2)Gα,k(w)| ≤ Ck2ε(N+1)

for all k ∈ [1,∞).

Proof of Theorem 2.55. Let S1 ⊂ CN+4(D,R) and S2 ⊂ CN+1(D,R) be boun-
ded sets, D′ ⊂⊂ D open and C ′1, C

′
2 > 0 two constants such that Hϕ(z) − C ′1 Id

is positive definite and ρ(z) > C ′2 for all ϕ ∈ S1, all ρ ∈ S2 and all z ∈ D′. Fix
0 < ε′ < 1 and z0 ∈ D′. Choose an open neighborhood V ⊂ D′ around z0 such
that for ϕ|V the point z0 has the N -th localization property. Now, there exists an
open neighborhood V ′ ⊂ V such that ϕ|V has the N -th localization property for
any point z ∈ V ′ and any ϕ ∈ S1. More precisely there exists a constant C ′3 > 0
with ϕ̃N(z, w) ≥ C|w − z|2 for all (z, w) ∈ V ′ × V and ϕ ∈ S1 (see Lemma 2.47).
Apply Proposition 2.59 where we assume U1 ⊂ V ′ and U3 ⊂⊂ V . Choose the cutoff
function χ ∈ C∞0 (D,R) to be supported in U2 and χ ≡ 1 on some open neighborhood
U ′ ⊂ U2 around z0. Set

Ak(z) :=
∫
D
f(w)(w − z)βekγN (z,w)χ(w)e−kϕ(w)dVD(w)

=
∫
U0
g(z, w)h(z, w)ekγN,F (z,w)e−kϕ(F (z,w))dVz,U0(w)

where g(z, w) = f(F (z, w)) is holomorphic in w and h(z, w) = (F (z, w)− z)βχ(F (z, w)),
γN,F (z, w) = γ(z, F (z, w)), dVz,U0(·) = F (z, ·)∗dVD. Note that supp(h(z, ·)) ⊂ U1

holds for all z ∈ U1. We further set ϕ̃N,F (z, w) = ϕ̃N(z, F (z, w)) and can assume
that U0 contains the closure of a polydisc Dn

3τ of radius 3τ around 0 for some τ > 0.
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Choose a cutoff function ξ ∈ C∞0 (R,R), 0 ≤ ξ ≤ 1, supp(ξ) ⊂ (−2δ, 2δ) ⊂ (−1, 1),
ξ ≡ 1 on (−δ, δ) where

√
δ < τ . Consider the term

A1,k(z) :=
∣∣∣∣∫
U0
g(z, w)h(z, w)ekγN,F (z,w)(1− ξ(|w|2))e−kϕ(F (z,w))dVz,U0(w)

∣∣∣∣2
≤ ‖f‖2

k

∫
U0
|h(z, w)|2|(1− ξ(|w|2))|2e−kϕ̃N,F (z,w)dVz,U0(w).

By the assumptions on ϕ̃N , U1 and the properties of F from Proposition 2.59 we find
a constant C1 independent of k, z ∈ U1 and ϕ ∈ S1 such that ϕ̃N,F (z, w) ≥ C1|w|2.
Then, we conclude∫

U0
|h(z, w)|2(1− ξ(|w|2))|2e−kϕ̃N (z,w)dVz,U0(w)

≤
∫
U0
|h(z, w)|2|(1− ξ(|w|2))|2e−kC1|w|2dVz,U0(w)

≤ e−C1δk
∫
U0
|h(z, w)|2dVz,U0(w)

where
∫
U0
|h(z, w)|2dVz,U0(w) is uniformly bounded in z ∈ U1, ϕ ∈ S1 and ρ ∈ S2.

Now, consider

A2,k(z) :=
∫
U0
g(z, w)s(z, w)ekγN,F (z,w)e−kϕ(F (z,w))dVz,U0(w)

=
∫
U0
g(z, w)e−kγN,F (z,w)s(z, w)e−kϕ̃N,F (z,w)dVz,U0(w)

where s(z, w) := h(z, w)ξ(|w|2). Since U0 contains the closure of a polydisc Dn
3τ of

radius 3τ around 0 we find by the assumption on f a splitting decomposition of
g(z, ·)e−kγN,F (z,·) as

g(z, w)e−kγN,F (z,w) =
∑

|α|=N+1
wαgz,α,k(w)

where gz,α,k are holomorphic functions on Dn
3τ . By the properties of s we can write

A2,k(z) = ∑
|α|=N+1 Bα,k(z) where

Bα,k(z) :=
∫
U0
wαgz,α,k(w)s(z, w)e−kϕ̃N,F (z,w)dVz,U0(w).

We write
ϕ̃N,F (z, w) = |w|2 − η0(z, w)− η(z, w)

as in Proposition 2.59 where

η0(z, w) =
∑

|α|+|β|≥3
|α|,|β|≤N+2

cα,β(z)wαwβ
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such that cα,β(z) = 0 if |α| ≤ 1 or |β| ≤ 1 and η(z, w) = O(|w|N+3). Furthermore,
set

Gα,k(z, w) = ρ(z, w)−1e−k(η0(z,w)+η(z,w))

· ∂αw
(
ρ(z, w)s(z, w)ek(η0(z,w)+η(z,w))

)
where ρ(z, w)dVCn = dVz,U0(w). One calculates

Bα,k(z) = (−k)−N−1
∫
U0
gz,α,k(w)s(z, w)ek(η0(z,w)+η(z,w))(∂αwe−k|w|

2)dVz,U0(w)

= k−N−1
∫
U0
gz,α,k(w)Gα,k(z, w)e−kϕ̃N,F (z,w)dVz,U0(w)

For ε = ε′/8(N + 1), 0 < ε′ < 1, consider the term

B1,α,k(z) :=
∣∣∣∣∫
U0
gz,α,k(w)(1− ξ(k1−ε|w|2))Gα,k(z, w)e−kϕ̃N,F (z,w)dVz,U0(w)

∣∣∣∣
≤ sup

w∈Dnτ
|gz,α,k(w)|e− 3k

4 ϕ̃N,F (z,w) sup
w∈Dnτ

|Gα,k(z, w)|

·
∫
Dnτ

(1− ξ(k1−ε|w|2))2e−
k
4 ϕ̃N,F (z,w)dVz,U0(w).

We observe that |Gα,k(z, w)| ≤ C2k
N+1 for some constant C2 > 0 independent of k,

z ∈ U1, w ∈ U0, ϕ ∈ S1 and ρ ∈ S2. Furthermore, we have ϕ̃N,F (z, w) ≥ C1|w|2.
Thus, ∫

Dnτ
(1− ξ(k1−ε|w|2))2e−

k
4 ϕ̃N,F (z,w)dVz,U0(w) ≤ C3e

−C1
δ
4k
ε

for some constant C3 > 0 independent of k, z, ϕ and ρ which implies

B1,α,k(z) ≤ C2C3e
−C1δkεkN+1 sup

w∈Dnτ
|gz,α,k(w)|e− 3k

4 ϕ̃N,F (z,w).

Now, consider

B2,α,k(z) :=
∣∣∣∣∫
U0
gz,α,k(w)Gα,k(z, w)ξ(k1−ε|w|2)e−kϕ̃N,F (z,w)dVz,U0(w)

∣∣∣∣
≤ sup

w∈Dnτ
|gz,α,k(w)|e− 3k

4 ϕ̃N,F (z,w) sup
w∈Dnτ

|ξ(k1−ε|w|2)Gα,k(z, w)|

·
∫
Dnτ
e−

k
4 ϕ̃N,F (z,w)dVz,U0(w).

A similar argument as above and Example 2.45 leads to∫
Dnτ
e−

k
4 ϕ̃N,F (z,w)dVz,U0(w) ≤ C4k

−n

for some constant C4 > 0 independent of k, z, ϕ and ρ which implies

B2,α,k(z) ≤ C4k
−n sup

w∈Dnτ
|gz,α,k(w)|e− 3k

4 ϕ̃F (z,w) sup
w∈Dnτ

|ξ(k1−ε|w|2)Gα,k(z, w)|.
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Using Lemma 2.63 and Lemma 2.62 we find an open neighborhood U ⊂ U1 around
z0, k0 ∈ N and constants C5, C6 > 0 such that

|ξ(k1−ε|w|2)Gα,k(z, w)| ≤ C5k
2(N+1)ε

and
sup
w∈Dnτ

|gz,α,k(w)|2e− 3k
2 ϕ̃F (z,w) ≤ C6k

N+1+n+ ε′
2 ‖f‖2

k

holds for all z ∈ U , k ≥ k0, α ∈ Nn
0 , |α| = N + 1, w ∈ U0, ϕ ∈ S1, ρ ∈ S2

and f with the properties mentioned above and all splitting decompositions for
f(F (z, ·))e−kγF (z,·). Then we have

|Bα,k(z)| ≤k−(N+1+n)+2(N+1)ε sup
w∈Dnτ

(
|gz,α,k(w)|e− 3k

4 ϕ̃F (z,w)
)

·
(
C2C3e

−C1δkεkN+1+n−2(N+1)ε + C4C5
)

≤k−
N+1+n

2 + 8(N+1)ε+ε′
4 ‖f‖k

(
C2C3e

−C1δkεkN+1+n−2(N+1)ε + C4C5
)

≤k−
N+1+n−ε′

2 C7‖f‖k

some constant C7 > 0 independent of z ∈ U , k ≥ k0, ϕ ∈ S1, ρ ∈ S2 and f or its
decomposition respectively such that C2C3e

−C1δkεkN+1+n−(N+1)ε+C4C5 ≤ C7 for all
k ≥ k0. Putting all together we find∣∣∣∣∫

D
f(w)(w − z)βekγ(z,w)χ(w)e−kϕ(w)dVD(w)

∣∣∣∣ ≤ A1,k(z) +
∑

|α|=N+1
|Bα,k(z)|

≤ Ck−
N+1+n−ε′

2 ‖f‖k

for some constant C independent of z ∈ U , k ≥ k0, ϕ ∈ S1, ρ ∈ S2 and f . From
Lemma 2.29 Cauchy–Schwarz inequality and the compactness of [1, k0] we can choose
C such that the statement holds for all k ∈ [1,∞).

2.8 Decomposition of H0
k(D)

Let D ⊂ Cn be a bounded domain with volume form dVD = ρdVCn where ρ ∈
C2(N+n+1)(D) ∩ C0(D) is positive on D and consider a weight ϕ ∈ C3(N+n)+4(D) ∩
C0(D). Given k ∈ [1,∞) and z ∈ D let Vz,N,k ⊂ H0

k(D) = H0
kϕ,ρ(D) be the linear

subspace spanned by the linear independent set

{w 7→ (w − z)αekγN (z,w)}|α|≤N .

LetWz,N,k ⊂ H0
kϕ,ρ(D) the linear subspace which consists of all elements in H0

kϕ,ρ(D)
vanishing up to order N in z, i.e

Wz,N,k :=
{
f ∈ H0

kϕ,ρ(D) | ∂
|α|f

∂αw
(z) = 0 for all α ∈ Nn

0 , |α| ≤ N

}
.
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For any holomorphic function f on D we can write the Taylor expansion in z up to
order N as

Tz,N(f)(w) =
∑
|α|≤N

1
α!
∂|α|f

∂αw
(z)(w − z)α.

Then, define the linear map Tz,N,k : H0
kϕ,ρ(D)→ H0

kϕ,ρ(D) by

Tz,N,k(f)(w) = ekγN (z,w)Tz,N(e−kγN (z,·)f(·))(w).

We will show that H0
kϕ,ρ(D) can be written as the direct sum of Vz,N,k and Wz,N,k

with respective projection Tz,N,k.

Lemma 2.64
One has H0

kϕ,ρ(D) = Vz,N,k ⊕ Wz,N,k where the respective projections are given by
Tz,N,k or I − Tz,N,k respectively. More precisely, Tz,N,k is a projection, i.e Tz,N,k ◦
Tz,N,k = Tz,N,k, such that ran(Tz,N,k) = Vz,N,k and ker(Tz,N,k) = Wz,N,k.

Proof. By construction one has ran(Tz,N,k) ⊂ Vz,N,k. Given a polynomial p, p(w) =∑
|α|≤N cα(w − z)α, of degree lower than or equal to N one has Tz,Np = p. For

f ∈ Vz,N,k write
f(w) = ekγN (z,w) ∑

|α|≤N
cα(w − z)α

and consider the polynomial p defined by p(w) = e−kγN (z,w)f(w). One gets

Tz,N,kf(w) = ekγN (z,w)(Tz,Np)(w) = ekγN (z,w)p(w) = f(w)

and hence Vz,N,k ⊂ ran(Tz,N,k) as well as Tz,N,k◦Tz,N,k = Tz,N,k. Since w 7→ e−kγN (z,w)

does not vanish we have f ∈ Wz,N,k if and only if e−kγN (z,·)f(·) ∈ Wz,N,k. Further-
more, one observes that f ∈ Wz,N,k if and only if Tz,Nf = 0. Thus, we conclude that
ker(Tz,N,k) = Wz,N,k.

We would like to study the restriction of ‖ · ‖kϕ,ρ to Vz,N,k. Therefore, we set
vα,k,z(w) = k

|α|+n
2 (w − z)αekγN (z,w) for α ∈ Nn

0 , |α| ≤ N , k ∈ [1,∞) and z, w ∈ D.
Then, {vα,k,z}|α|≤N is a basis for Vz,N,kϕ and we define a norm ‖ · ‖k;2 by ‖f‖2

k;2 =∑
|α|≤N |cα|2 for f = ∑

|α|≤N cαvα,k,z ∈ Vz,N,kϕ.

Lemma 2.65
Given N ∈ N0 and D′ ⊂⊂ DN there exists a constant C > 0 such that

‖f‖kϕ,ρ ≥ C‖f‖k;2

holds for all k ∈ [1,∞) and f ∈ Vz,N,kϕ. Moreover, C > 0 can be chosen independent
of ϕ and ρ if ϕ stays in a bounded set S1 ⊂ C3(N+n)+4(D) ∩ C0(D) such that
inf(z,w)∈D′×D ϕ̃N(z, w)/|w − z|2 has a positive lower bound and ρ stays in a bounded
set S2 ⊂ C2(N+n+1)(D) ∩ C0(D) such that infz∈D ρ(z) has a positive lower bound.
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Proof. Let RM(Cn) be the space of homogeneous polynomials of degree M in n

complex variables, i.e.

RM(Cn) = {f ∈ C[z1, . . . , zn] | f(λz) = λMf(z) for all λ ∈ C}.

First, we observe that (f, g)Id = ∆Mf(z)g(z) ∈ C defines a Hermitian inner product
on RM(Cn), because ∆Mzαzβ = α!β!δα,β, α, β ∈ Nn

0 with |α| = |β| = M , and
{zα | |α| = M} is a basis for RM(Cn), where ∆ = 〈∂z, ∂z〉 = ∑n

j=1
∂2

∂zj∂zj
. Given

A ∈ Gln(C) we have that f 7→ f ◦ A defines an automorphism on RM(Cn). Since
〈A−1∂z, A−1∂z〉Mf(z)g(z) = ∆Mf(Az)g(Az) we find out that

(f, g)A = 〈A−1∂z, A−1∂z〉Mf(z)g(z)

defines a Hermitian inner product on RM(Cn) as well. For 0 ≤ M ≤ N let Rz,M,k

be the linear span of the linear independent set {vα,k,z}|α|=M . By Theorem 2.50 we
find

|(vα,k,z, vβ,k,z)kϕ,ρ − ρ(z) det(Hϕ(z))−1〈Hϕ(z)−1∂w, ∂w〉Mwαwβ| ≤ C1k
−1

for some constant C1 > 0 independent of k ∈ [1,∞), z ∈ D′, ϕ ∈ S1, ρ ∈ S2 and
α, β ∈ Nn

0 , |α|, |β| = M . Given f ∈ Rz,M,k write f = ∑
|α|=M cαvα,k,z and we observe

that the function g defined by g(w) = e−kϕ̃N (z,z+w)f(z + w) satisfies g ∈ RM(Cn).
We conclude that

|‖f‖2
k − ρ(z) det(Hϕ(z))−1〈Hϕ(z)−1∂w, ∂w〉Mg(w)g(w)| ≤ C2k

−1 ∑
|α|=M

|cα|2

for some constant C2 > 0 independent of k ∈ [1,∞), z ∈ D′, ϕ ∈ S1, ρ ∈ S2 and
f ∈ Rz,M,k. Since 〈Hϕ(z)−1∂w, ∂w〉 = 〈Hϕ(z)− 1

2∂w, Hϕ(z)− 1
2∂w〉 we find, using the

considerations above, that

〈Hϕ(z)−1∂w, ∂w〉Mg(w)g(w) ≥ C3
∑
|α|=M

|cα|2

holds for some constant C3 > 0 independent of z ∈ D′ and g ∈ RM(Cn). Thus, one
has

‖f‖2
kϕ,ρ ≥ (C3 − k−1C2)‖f‖2

k;2.

By using Theorem 2.50 we find for α, β ∈ Nn
0 , |α|, |β| ≤ N , |α| 6= |β| that

|(vα,k,z, vβ,k,z)kϕ,ρ| ≤ C4k
− 1

2

holds where C4 > 0 is a constant independent of k ∈ [1,∞), z ∈ D′, ϕ ∈ S1 and ρ ∈
S2. Thus, we find a constant C5 > 0 such that |(f, g)kϕ,ρ| ≤ C5k

− 1
2 (‖f‖2

k;2 + ‖g‖2
k;2)
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for all k ∈ [1,∞), s ∈ D′ , ϕ ∈ S1, ρ ∈ S2 and f ∈ Rz,M,k, g ∈ Rz,M ′,k such
that M 6= M ′. Using the decomposition Vz,N,k = ⊕N

M=0 Rz,M,k we find constants
C6, C7 > 0 with ‖f‖kϕ,ρ ≥ (C6−C7k

− 1
2 )‖f‖k;2. Thus, there exist k0 ∈ N and C8 > 0

such that ‖f‖kϕ,ρ ≥ C‖f‖k,2 holds for all k ≥ k0, z ∈ D′, ϕ ∈ S1, ρ ∈ S2 and f ∈
Vz,N,k. We have ‖f‖kϕ,ρ/‖f‖k;2 > 0 for all k ∈ [1,∞) and f ∈ Vz,N,k \ {0} and there
exists a constant C9 > 0 with −C9 ≤ inf(z,w)∈D′×D ϕ̃N ≤ sup(z,w)∈D′×D ϕ̃N ≤ C9,
infz∈D ρ > 1/C9 for all ϕ ∈ S1 and ρ ∈ S2. Together with the compactness of {f ∈
Vz,N,k | ‖f‖k;2 = 1} and [1, k0] we find a constant C10 > 0 with ‖f‖kϕ,ρ/‖f‖k;2 ≥ C10

for all f ∈ Vz,N,k, k ∈ [1, k0], ϕ ∈ S1 and ρ ∈ S2. Putting C = min{C8, C10} finishes
the proof.

We have the decomposition H0
kϕ,ρ(D) = Vz,N,k ⊕ V ⊥z,N,k where V ⊥z,N,k denotes the

orthogonal complement of Vz,N,k in H0
kϕ,ρ(D). The main result we want to prove

in this section shows that the restriction of Id−Tz,N,k to V ⊥z,N,k is bounded by a
constant independent of k and locally uniformly in z ⊂ D′. In particular, we will
show the following.

Theorem 2.66
Given D′ ⊂⊂ DN there exists a constant C > 0 such that

‖(Id−Tz,N,k)f‖kϕ,ρ ≤ C‖f‖kϕ,ρ

holds for all k ∈ [1,∞), z ∈ D′ and f ∈ V ⊥z,N,k. Moreover, C > 0 can be chosen
independent of ϕ and ρ if ϕ stays in a bounded set S1 ⊂ C3N+3n+4(D) ∩ C0(D)
such that inf(z,w)∈D′×D ϕ̃N(z, w)/|w − z|2 has a positive lower bound and ρ stays in
a bounded set S2 ⊂ C2N+2n+2(D)∩C0(D) such that infz∈D ρ(z) has a positive lower
bound.

In order to prove Theorem 2.66 we need the following lemma which shows that
Vz,N,k and Wz,N,k become asymptotically orthogonal, i.e. Wz,N,k → V ⊥z,N,k when k
goes to infinity.

Lemma 2.67
In the situation of Theorem 2.66 we have that for any 0 < ε < 1 there exists a
constant C > 0 such that

|(f, g)kϕ,ρ| ≤ Ck−
1−ε

2 ‖f‖kϕ,ρ‖g‖kϕ,ρ

holds for all k ∈ [1,∞), ϕ ∈ S1, ρ ∈ S2, z ∈ D′, f ∈ Vz,N,k and g ∈ Wz,N,k.

Proof. We define another norm on Vz,N,k which is the maximum norm with respect
to the basis

{w 7→ (w − z)αekγ(z,w)}|α|≤N ,



70 Bergman Kernels in Cn

i.e. ‖f‖k;∞ := max|α|≤N |cα| where f(w) = ∑
|α|≤N cα(w − z)αekγN (z,w). One has

‖f‖k;∞ ≤ k
N+n

2 ‖f‖k;2 and hence, using Lemma 2.65, we find a constant C2 > 0 such
that ‖f‖k;∞ ≤ C2k

N+n
2 ‖f‖kϕ,ρ holds for all k ∈ [1,∞), z ∈ D′, ϕ ∈ S1, ρ ∈ S2, and

f ∈ Vz,N,k. Then, we can apply Corollary 2.56 and get for f ∈ Vz,N,k and g ∈ Wz,N,k

that
|(f, g)kϕ,ρ| ≤ C1k

−N+n+1−ε
2 ‖f‖k;∞‖g‖kϕ,ρ ≤ Ck−

1−ε
2 ‖f‖kϕ,ρ‖g‖kϕ,ρ

holds. In other words, for any 0 < ε < 1 there exists a constant C > 0 such that
|(f, g)kϕ,ρ| ≤ Ck−

1−ε
2 ‖f‖kϕ,ρ‖g‖kϕ,ρ holds for all k ∈ [1,∞), z ∈ D′, ϕ ∈ S1, ρ ∈ S2,

f ∈ Vz,N,k and g ∈ Wz,N,k.

Proof of Theorem 2.66. Given f ∈ V ⊥z,N,k write f = f1 +f2 where f1 = Tz,N,kf ∈
Vz,N,k and f2 = (I − Tz,N,k)f ∈ Wz,N,k respectively. We find 0 = (f1, f)kϕ,ρ =
‖f1‖2

kϕ,ρ + (f1, f2)kϕ,ρ and hence, using Lemma 2.67 for some 0 < ε < 1, ‖f1‖2
kϕ,ρ =

|(f1, f2)kϕ,ρ| ≤ C1k
− 1−ε

2 ‖f1‖kϕ,ρ‖f2‖kϕ,ρ which implies ‖f1‖kϕ,ρ ≤ C1k
− 1−ε

2 ‖f2‖kϕ,ρ.
Thus, we have ‖f‖kϕ,ρ ≥ ‖f2‖kϕ,ρ − ‖f1‖kϕ,ρ ≥ ‖f2‖kϕ,ρ(1 − C1k

− 1−ε
2 ) and we can

find k0 ∈ N and C > 0 such that ‖(I − Tz,N,k)f‖kϕ,ρ ≤ C‖f‖kϕ,ρ for all k ≥ k0,
z ∈ D′, ϕ ∈ S1, ρ ∈ S2 and f ∈ V ⊥z,N,k. From the compactness of [1, k0] and the
assumption that S1 and S2 are bounded sets we find by using Lemma 2.28 that
C > 0 can be chosen such that the statement holds for all k ∈ [1,∞).



Chapter 3

Bergman Kernel Expansion

In this chapter we prove the main results announced in Section 1.2 and Section 1.3.
We construct the local asymptotically reproducing kernel in Section 3.1. Theo-
rem 1.3 then follows from Lemma 3.4 and Lemma 3.8. In Section 3.2 we establish
a formula for the coefficients in the Bergman kernel expansion (see Definition 1.4
and Example 1.11). The main calculations for the explicit formulas are performed
in the proof of Theorem 3.17. With that formulas Theorem 1.6 and Theorem 1.7
follow from Lemma 3.9 and Lemma 3.12 (see Theorem 3.20, Theorem 3.21 and
Corollary 3.26).
In Section 3.3 we introduce some basic notations from complex geometry in order
to apply Theorem 1.3 in the manifold case (see Lemma 3.30). Using Hörmander’s
L2 estimates in a version due to Demailly (see Theorem 3.31) we prove Theorem 1.15
and Theorem 1.16 in Section 3.4 (see Theorem 3.36 and Theorem 3.38).

3.1 Local Expansion of the Bergman Kernel

Let D ⊂ Cn be a bounded domain and let ϕ ∈ C6N+3n+4(D,R) ∩ C0(D), ρ ∈
C4N+2n+2(D,R) ∩ C0(D) be two real valued functions such that ρ > 0 on D holds.
Define a volume form on D by dVD(z) = ρ(z)dVCn . For any k ∈ [1,∞) set

H0
kϕ,ρ(D) = {f ∈ O(D) | ‖f‖kϕ,ρ <∞}

where the norm ‖ · ‖kϕ,ρ is induced by the weighted inner product (·, ·)kϕ,ρ given by

(f, g)kϕ,ρ =
∫
D
f(z)g(z)e−kϕ(z)dVD(z) , for all f, g ∈ L2(D).

Thus, H0
kϕ,ρ(D) is the space of holomorphic functions on D with finite L2-norm. Let

Kk := Kkϕ,ρ the reproducing kernel, Pk := Pkϕ,ρ the Bergman kernel and Bk :=
Bkϕ,ρ the Bergman kernel function for the space H0

kϕ,ρ(D) (see Definition 2.34). For
brevity, we will also use the notations H0

k(D) := H0
kϕ,ρ(D), (·, ·)k := (·, ·)kϕ,ρ and

‖ · ‖k := ‖ · ‖kϕ,ρ in this section. Let γN , ϕ̃N : D ×D → C be defined by

γN(z, w) = ϕ(z)
2 +

∑
1≤|α|≤N+2

1
α!
∂|α|ϕ(z)
∂αz

(w − z)α
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and ϕ̃N(z, w) = ϕ(w)− γN(z, w)− γN(z, w). Given α, α′, β ∈ Nn
0 and z ∈ D we set

aα,β,k(z) =
∫
D

(w − z)α(w − z)βe−kϕ̃N (z,w)dVD(w)

AN,k(z) = (aα,β,k(z))|α|,|β|≤N and AN,α′,k(z) = (aα,β,k(z))|α|,|β|≤N,|α|6=0,β 6=α′

where we define an order on Nn
0 by saying α < β if |α| < |β| and using lexicographic

order for |α| = |β|. We have that AN,k(z) and AN,α′,k(z) are square matrices and that
AN,k(z) is invertible as the restriction of (·, ·)kϕ,ρ to the finite dimensional subspace

VN,z,k = spanC{w 7→ (w − z)αekγ(z,w)}|α|≤N ⊂ H0
kϕ,ρ(D).

Hence, for any α ∈ Nn
0 , |α| ≤ N , we can define

λN,α,k(z) = (−1)NUM(α) detAN,α,k(z)
detAN,k(z)

where NUM : Nn
0 → N0 is the inverse of the enumeration of the elements in Nn

0 with
respect to the order on Nn

0 . Now, define KN,k = Kkϕ,ρ,N : D ×D → C

KN,k(z, w) = ek(γN (z,z)+γN (z,w)) ∑
|α|≤N

λN,α,k(z)(w − z)α

and set similar to Section 2.4

PN,k(z, w) = e−k
ϕ(z)+ϕ(w)

2 KN,k(z, w) and BN,k(z) = PN,k(z, z)

for z ∈ D, w ∈ D.

Lemma 3.1
One has (f,KN,k(z, ·))k = f(z) for all z ∈ D and f ∈ VN,z,k.

Proof. Let z ∈ D be a point. Consider the vector λN,k(z) = (λN,α,k(z))T|α|≤N . By
Cramer’s rule we find that λN,k(z) solves AN,k(z)λN,k(z) = (1, 0, 0, . . . , 0)T which
implies

∫
D
KN,k(z, w)(w − z)αekγN (z,w)e−kϕ(w)dVD(w) =

0 , if 0 < |α| ≤ N,

ekγN (z,z) , if α = 0.
.

Given f ∈ VN,z,k write f(w) = ∑
|α|≤N cα(w − z)αeγN (z,w) and hence, using that

γN(z, z) ∈ R holds, one finds (f,KN,k(z, ·)k) = c0e
kγ(z,z) = f(z).

Lemma 3.2
For any z ∈ D one has ‖KN,k(z, ·)‖2

k = KN,k(z, z) and BN,k(z) = λN,0,k(z).
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Proof. Since KN,k(z, ·) ∈ VN,z,k we can apply Lemma 3.1 and find

‖KN,k(z, ·)‖2
k = (KN,k(z, ·), KN,k(z, ·))k = KN,k(z, z) = λN,0,k(z)ek(γ(z,z)+γ(z,z)).

Furthermore, one has BN,k(z) = e−kϕ(z)KN,k(z, z) = λN,0,k(z).

Lemma 3.3
Given ϕ ∈ C6N+3n+4+l(D)∩C0(D) one has λN,α,k ∈ C5N+3n+1+l(D) for all α ∈ Nn

0 ,
|α| ≤ N .

Recall that Dϕ,N is the set which consists of all points z ∈ D satisfying the N -th
localization property, that is

(i) z ∈ Dϕ,+,

(ii) ϕ̃N(z, w) > 0 for all w ∈ D \ {z}.

For the rest of the section we define the following. Let D′ ⊂⊂ D be an open set and
S1 ⊂ C6N+3n+4(D,R)∩C0(D), S2 ⊂ C4N+2n+2(D,R)∩C0(D) be bounded sets such
that {inf(z,w)∈D′×D ϕ̃N(z, w)/|z − w|2 | ϕ ∈ S1}, {infz∈D ρ | ρ ∈ S2} have positive
lower bounds. It immediately follows that D′ ⊂ Dϕ,N for ϕ ∈ S1.

Lemma 3.4
Let l ∈ N0 be a non-negative integer. For any ϕ ∈ S1 ∩ C6N+3n+4+l(D), ρ ∈
S2 ∩ C4N+2n+2+l(D) and α ∈ Nn

0 , |α| ≤ N , there exist functions λ(0)
N,α, . . . , λ

(N)
N,α ∈

C l(Dϕ,+) where λ(j)
N,α(z) depends only on the derivatives of ϕ and ρ in z ∈ Dϕ,+ such

that

λN,α,k − kn
N∑
j=0

k−jλ
(j)
N,α = O(k−N−1+n) in C0(D′) uniformly in ϕ ∈ S1 and ρ ∈ S2.

Furthermore, we have λ(0)
N,0(z) = π−nρ(z)−1 det (Hϕ(z)) .

Proof. Let FN be the set of all multi-indices α ∈ Nn
0 , |α| ≤ N and denote by

Perm(FN) the group of permutations of the elements in FN where we define an
order on FN as before by saying α < β if |α| < |β| and using lexicographic order for
|α| = |β|. Using the Laplace rule for the determinant we find

det(AN,k) =
∑

τ∈Perm(FN )
(−1)sign(τ) ∏

α∈FN
aα,τ(α),k.

We can apply Theorem 2.50 and find aα,τ(α),k = O(k−n−max{|α|,τ(α)}) which implies
aα,τ(α),k = O(k−n−|α|) with

kn+|α|aα,τ(α),k −
πn

det(Hϕ)

N∑
j=0

a
(j+|α|)
α,τ(α) k

−j = O(k−N−1) in C0(D′) (3.1)
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uniformly in ϕ ∈ S1 and ρ ∈ S2. Thus, kdN ∏α∈FN aα,τ(α),k = O(1) and hence
kdN det(AN,k) = O(1) where dN = ∑

|α|≤N(|α| + n). From Lemma 2.65 we get
that for any compact subset K ⊂ D′ there exists a constant C > 0 such that
det(AN,k(z)) ≥ Ck−dN holds for all z ∈ K, k ∈ [1,∞), ϕ ∈ S1 and ρ ∈ S2. We
conclude that

kdN det(AN,k)−
N∑
j=0

cjk
−j = O(k−N−1) in C0(D′)

uniformly in ϕ ∈ S1 and ρ ∈ S2 holds where c0, . . . , cN are continuous functions
defined on D′ and c0 positive lower bound uniform in ϕ ∈ S1 and ρ ∈ S2 on any
compact subset of D′. Applying the Leibniz criterion for determinants we find

det(AN,β,k) =
∑

τ∈Perm(FN )
τ(0)=β

(−1)sig(τ)+NUM(β) ∏
α∈FN
α 6=0

aα,τ(α),k.

As before NUM : Nn
0 → N0 is the inverse of the enumeration of the elements in Nn

0

with respect to the order on Nn
0 . Using the same arguments as above, we find

kdN−n det(AN,β,k)−
N∑
j=0

cβ,jk
−j = O(k−N−1) in C0(D′)

uniformly in ϕ ∈ S1 and ρ ∈ S2 where cβ,0, . . . , cβ,N are continuous functions de-
fined on D′. We apply Lemma 2.5 for k−dN

det(AN,k) to get after multiplication with
kdN−n det(AN,β,k)

λN,β,k − kn
N∑
j=0

λ̃
(j)
N,βk

−j = O(k−N−1+n) in C0(D′)

uniformly in ϕ ∈ S1 and ρ ∈ S2. Since

det(AN,k(z))− a0,0,k det(AN,0,k) = O(k−dN−1)

we find by (3.1) that λ̃(0)
N,0(z) = π−n det(Hϕ(z))(a(0)

0,0(z))−1 holds which implies by
Theorem 2.50 λ̃(0)

N,0(z) = π−n det(Hϕ(z))ρ(z)−1. It remains to show the first part of
the statement, that is for l ≥ 0, |α| ≤ N , 0 ≤ j ≤ N , ϕ ∈ S1 ∩ C6N+4+l(D) and
ρ ∈ S2 ∩ C4N+l+l(D) we have λ̃(j)

N,α = λ
(j)
N,α|D′ where λ

(j)
N,α ∈ C l(Dϕ,+) such that

λ
(j)
N,α(z) only depends on the derivatives of ϕ and ρ at z ∈ Dϕ,+. Given z0 ∈ Dϕ,+ we

find by Lemma 2.47 an open neighborhood U ⊂ D around z0 such that z0 ∈ Uϕ|
U
,N

holds. We apply the already proven part of Lemma 3.4 to the setting D = U ,
S1 = {ϕ|U} and S2 = {ρ|U} and find λ

(j),U
N,α ∈ C l(Uϕ|

U
,N), 0 ≤ j ≤ N , because

of a(m)
α,β ∈ C l(Uϕ|

U
,N) by Theorem 2.50. Given another open neighborhood V ⊂ U

around z0 we have Uϕ|
U
,N ∩V ⊂ Vϕ|

V
,N and since a(j)

α,β,N(z) can be expressed in terms
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of the derivatives of ϕ and ρ at z ∈ Uϕ|
U
,N we verify that λ(j),U

N,α (z0) = λ
(j),V
N,α (z0) holds.

In this way we can define λ(j)
N,α : Dϕ,+ → C and find that λ(j)

N,α(z0) only depends on
the derivatives of ϕ and ρ at z0. The construction also implies that λ(j)

N,α coincides
with λ̃

(j)
N,α on D′. Furthermore, since a(j)

α,β,N ∈ C l(Uϕ|
U
,N) for ϕ ∈ C6N+4+l(U) and

ρ ∈ C4N+2+l(U) it follows that any point z0 has an open neighborhood where λ(j)
N,α

is a C l functions. Hence, we have λ(j)
N,α ∈ C l(Dϕ,+).

Corollary 3.5
Given ϕ ∈ C6N+3n+4+l(D) ∩ S1 and ρ ∈ C4N+2n2+l(D) ∩ S2 we have the following.
For all α ∈ Nn

0 , |α| ≤ N , there exist functions λ(0)
N,α, . . . , λ

(N)
N,α ∈ C l(Dϕ,+) such that

λN,α,k − kn
N∑
j=0

λ
(j)
N,αk

−j = O(k−N−1) in C0(Dϕ,N).

Furthermore, we have λ(0)
N,0(z) = π−nρ(z)−1 det (Hϕ(z)).

Remark 3.6
Given any open set U ⊂ Cn, ϕ ∈ C6N+3n+4(U), ρ ∈ C4N+2n2(U) and a ∈ U such
that Hϕ(a) is positive definite Lemma 3.4 allows us to define λ(j)

N,α(a) for 0 ≤ j ≤ N ,
α ∈ Nn

0 , |α| ≤ N , by taking a bounded open neighborhood V ⊂⊂ U around a with
a ∈ Vϕ|

V
,N (which always exists by Lemma 2.47). Then λ

(j)
N,α(a) is independent of

the choice of V .

Lemma 3.7
We have ekϕ̃N |PN,k|2 = O(k2n) in C0(D′ ×D) uniformly in ϕ ∈ S1 and ρ ∈ S2. In
addition we find for any compact set K ⊂ D′ constants δ, C > 0 such that

|PN,k(z, w)| ≤ Ckne−δk|z−w|
2

holds for all (z, w) ∈ K ×D, k ∈ [1,∞), ϕ ∈ S1 and ρ ∈ S2.

Proof. Write

−ϕ(w) + γN(z, z) + γN(z, w) + γN(z, z) + γN(z, w) = −ϕ̃N(z, w) + ϕ(z).

Thus, we find

e−k(ϕ(z)+ϕ(w))|KN,k(z, w)|2 = e−kϕ̃N (z,w)

∣∣∣∣∣∣
∑
|α|≤N

λN,α,k(z)(w − z)α
∣∣∣∣∣∣
2

.

The first part of the claim follows from PN,k(z, w) = e−k
ϕ(z)+ϕ(w)

2 KN,k(z, w) and
Lemma 3.4. Using the assumptions on S1 we find δ > 0 such that ϕ̃N(z, w) ≥
δ|w− z|2 for all (z, w) ∈ D′×D and all ϕ ∈ S1. Since D is bounded the second part
of the claim follows.
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Lemma 3.8
For any compact subset K ⊂ D′ and ε > 0 there exists a constant C > 0 such that

|f(z)− (f,KN,k(z, ·))k|2e−kϕ(z) ≤ Ck−(N+1)+n+ε‖f‖2
k

holds for all z ∈ K, k ∈ [1,∞), ϕ ∈ S1, ρ ∈ S2 and f ∈ H0
k(D).

Proof. Given k ∈ [1,∞) and z ∈ D′ we can write H0
k(D) = VN,z,k ⊕ V ⊥N,z,k where

VN,z,k ⊂ H0
k(D) is defined as above and V ⊥N,z,k denotes its orthogonal complement

in H0
k(D). Recall that we denote the Taylor expansion up to order N in z of a

holomorphic function f on D by Tz,N(f), i.e.

Tz,N(f)(w) =
∑
|α|≤N

1
α!
∂|α|f

∂αw
(z)(w − z)α.

We have another decomposition H0
k(D) = VN,z,k ⊕Wz,k where

WN,z,k =
{
f ∈ H0

k(D) | ∂
|α|f

∂αw
(z) = 0 for all |α| ≤ N

}

and the respective projection on VN,z,k is given by Tz,N,k : H0
k(D) → H0

k(D) by
Tz,N,k(f)(w) = ekγ(z,w)Tz,N(e−kγ(z,·)f(·))(w) (see Lemma 2.64). By Theorem 2.66
there exists a constant C1 > 0 such that ‖(Id−Tz,N,k)f‖k ≤ C1‖f‖k holds for all
k ∈ [1,∞), z ∈ D′, ϕ ∈ S1, ρ ∈ S2 and f ∈ V ⊥N,z,k.

Now, given g ∈ VN,z,k, we have by Lemma 3.1 that (KN,k((z, ·)), g)k = g(z)
holds. For f ∈ V ⊥N,z,k we write f = f1 + f2 with respect to the decomposition
H0
k(D) = VN,z,k ⊕WN,z,k and get for f2 by Corollary 2.56 that

∑
|α|≤N

∣∣∣∣∫
D
f2(w)(w − z)αekγ(z,w)e−ϕ(w)dVD(w)

∣∣∣∣2 ≤ C2k
−(N+1)−n+ε‖f2‖2

k

holds for some constant C2 > 0 independent of k ∈ [1,∞), z ∈ D′, ϕ ∈ S1, ρ ∈ S2

and f2. Thus, using Lemma 3.4 one has

|(f2, KN,k(z, ·))k|2e−kϕ(z) ≤ C3k
−(N+1)+n+ε‖f2‖2

k ≤ C1C3k
−(N+1)+n+ε‖f‖2

k

for some constant C3 > 0 independent of k ∈ [1,∞), z ∈ D′, ϕ ∈ S1, ρ ∈ S2 and f2.
Since

|(f + g)(z)− (f + g,KN,k(z, ·))k|2e−kϕ(z) = |(f2, KN,k(z, ·))k|2e−kϕ(z)

and ‖f + g‖2
k = ‖f‖2

k + ‖g‖2
k the claim follows.

From this lemma we obtain
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Lemma 3.9
For any 0 < ε < 1 one has

Bk −BN,k = O(k−N−1+n+ε) in C0(D′),
Pk − PN,k = O(k−

N+1
2 +n+ε) in C0(D′ ×D)

uniformly in ϕ ∈ S1 and ρ ∈ S2.

Proof. Writing f(z) = (f,Kk(z, ·))k and putting f(·) = Kk(z, ·)−KN,k(z, ·) we find
by using Lemma 3.8 that

Ck−(N+1)+n+ε ≥ ‖Kk(z, ·)−KN,k(z, ·)‖2
ke
−kϕ(z)

= e−kϕ(z)(Kk(z, z) +KN,k(z, z)− 2 Re(KN,k(z, ·), Kk(z, ·))k)
= e−kϕ(z)Kk(z, z)− e−kϕ(z)KN,k(z, z)
= Bk(z)−BN,k(z) ≥ 0

where we use the reproducing property of Kk(z, ·), that KN,k(z, z) is real and
Bk(z) ≥ BN,k(z) since Bk is the Bergman kernel function for a larger space (see
Lemma 2.36). Since Kk and KN,k are holomorphic in the second argument we can
apply Lemma 2.29 and get

Ckn‖Kk(z, ·)−KN,k(z, ·)‖2
k ≥ e−kϕ(w)|Kk(z, w)−KN,k(z, w)|2

= ekϕ(z)|Pk(z, w)− PN,k(z, w)|2.

Corollary 3.10
Let K ⊂ D′ ×D be compact. Given ε > 0 there exist constants C, δ > 0 such that
|Pkϕ,ρ(z, w)| ≤ C

(
kne−δk|w−z|

2 + k−
N+1

2 +n+ε
)
holds for all k ∈ [1,∞), (z, w) ∈ K,

ϕ ∈ S1 and ρ ∈ S2.

Proof. The statement is a direct consequence of Lemma 3.7 and Lemma 3.9.

Now, define K̃N,k = K̃kϕ,ρ,N : D′ ×D → C

K̃N,k(z, w) = ek(γN (z,z)+γN (z,w))kn
N∑
j=0

k−j
∑
|α|≤N

λ
(j)
N,α(z)(w − z)α

with λ(j)
N,α as in Lemma 3.4 and set

P̃N,k(z, w) = e−k
ϕ(z)+ϕ(w)

2 K̃N,k(z, w) and B̃N,k(z) = P̃N,k(z, z)
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for z ∈ D′, w ∈ D. Lemma 3.9 and Lemma 3.4 imply Bk − B̃N,k = O(k−N−1+n+ε)
in C0(D′) which proves that the Bergman kernel function Bk for H0

k(D) has an
asymptotic expansion of order N on D′ in C0-norm. To get an expansion in C l-
norm for l ≥ 0 we need the following.

Lemma 3.11 (Hörmander’s Trick)
Let U ⊂ Rn be a domain. For any V ⊂⊂ U there exists a constant C > 0 such that

|dxf(x)|2 ≤ C‖f‖C0(U)(‖f‖C0(U) + ‖f‖C2(U))

holds for all x ∈ V and all f ∈ C2(U).

Proof. Given a non-negative function g ∈ C2((−δ, δ),R) one has

δ2|g′(0)|2 ≤ g(0)(g(0) + 2 sup
|x|<δ

δ2|g′′(x)|).

A proof of this statement can be found for example in [24, Lemma 7.7.2]. Replacing
g by g + sup|x|<δ |g(x)| and considering real and imaginary part separately shows
that

δ2|g′(0)|2 ≤ 8 sup
|x|<δ
|g(x)|(sup

|x|<δ
|g(x)|+ sup

|x|<δ
δ2|g′′(x)|)

holds for all g ∈ C2(−δ, δ). Given any x ∈ V choose δ > 0 such that Bδ(x) ⊂ U

holds. For 1 ≤ j ≤ n put gj(t) = f(x + tej), where ej is the vector which has a
one at the j-th position and all other entries are zero. We have ∂f

∂xj
(x) = g′j(0) and

hence

|dxf(x)|2 =
n∑
j=1
|g′j(0)|2 ≤ 8

n∑
j=1

sup
|x|<δ
|gj(x)|(δ−2 sup

|x|<δ
|gj(x)|+ sup

|x|<δ
|g′′j (x)|)

≤ 8n‖f‖C0(U)(δ−2‖f‖C0(U) + ‖f‖C2(U)).

Choosing δ > 0 such that Bδ(x) ⊂ U holds for all x ∈ V finishes the proof.

Lemma 3.12
Given l ∈ N0 put S̃1 := S1 ∩ C6N+3n+5+l(D′) and S̃2 := S2 ∩ C2N+2n+3+l(D′).
Assuming that S̃1 and S̃2 are bounded subsets of C6N+3n+5+l(D′) and C2N+2n+3+l(D′)
respectively one has for any 0 < ε < 1

Bk − B̃N,k = O(k−cr(N+1)+n+r) in Cr(D′),
Pk − P̃N,k = O(k−cr

N+1
2 +n+r) in Cr(D′ ×D)

uniformly in ϕ ∈ S̃1 and ρ ∈ S̃2 for 1 ≤ r ≤ l with cr = 1− r
l+1 .
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Proof. We are going to prove a slightly more stronger result, that is for any ε > 0
we have

Bk − B̃N,k = O(k−cr(N+1−ε)+n+r) in Cr(D′),

Pk − P̃N,k = O(k−cr
N+1−ε

2 +n+r) in Cr(D′ ×D)
(3.2)

uniformly in ϕ ∈ S̃1 and ρ ∈ S̃2 for 1 ≤ r ≤ l with cr = 1− r 1−2−l
l+1 . By Lemma 2.39

and Lemma 3.4 we have that dαxB̃N,k, d
α
xBk = O(kn+|α|) and dαxd

β
y P̃N,k, d

α
xd

β
yPk =

O(kn+|α|+|β|) in C0(D′) or C0(D′ ×D) respectively, uniformly in ϕ ∈ S̃1 and ρ ∈ S̃2

for any α, β ∈ Nn
0 , |β| + |α| ≤ l. Hence we find that (3.2) is true for cr = c(0)

r = 0,
1 ≤ r ≤ l. For m ∈ N0 we write c(m) = (c(m)

1 , . . . , c
(m)
l )T ∈ Rl. Applying Lemma 3.11

and using the estimate in C0-norm from Lemma 3.9 we find that if (3.2) was true
for cr = c(m)

r , 1 ≤ r ≤ l, we have that the statement will be true for cr = c(m+1)
r ,

1 ≤ r ≤ l, where c(m+1)
r is defined by

c(m+1)
r =



c
(m)
2
2 + 1

2 , for r = 1,
c

(m)
l−1
2 + 1

2l+1 , for r = l,

c
(m)
r+1
2 + c

(m)
r−1
2 , else.

We can rewrite this as c(m+1) = F (c(m)) where F : Rl → Rl is the affine map defined
by F (v) = Av + b with

A = 1
2



0 1
1 0 1

1 0 1
. . .
1 0


, b =



2−1

0
...
0

2−l−1


.

Setting c(0) = 0 and c(m+1) = F (c(m)) for m ∈ N0, it follows from induction that the
statement holds for all c(m)

r , 1 ≤ r ≤ l, and m ∈ N0. We are now going to show that
c(m) → c = (c1, . . . , cl) for m → ∞ with cr = 1 − r 1−2−l

l+1 , 1 ≤ r ≤ l. The constant
ε > 0 ensures that the statement (3.2) follows after finitely many iterations.

For l = 1 we immediately find c(m)
1 = 1

2 for all m ≥ 1. Given l ≥ 2 we start by
observing that the restriction F : [0, 1]l → [0, 1]l is well defined. Let ‖A‖ denote the
operator norm of A with respect to the standard Euclidean norm on Rl. Applying
the definition of the operator norm to A it follows ‖A‖ ≤ 1. Since A is a real
symmetric matrix we have that it is diagonalizable with eigenvalues λ1, . . . , λl ∈ R.
Furthermore, we have ‖A‖ = max{|λ1|, . . . , |λl|}, which implies λ1, . . . , λl ∈ [−1, 1].
Solving the the equation (A±Id)v = 0 recursively shows ker(A±Id) = {0} and hence
λ1, . . . , λl ∈ (−1, 1) which implies ‖A‖ < 1. We conclude that F is a contraction.
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Since [0, 1]l ⊂ Rl is closed we deduce from the Banach fixed-point theorem that
limm→∞ c

(m) = c where c is given by the solution of F (c) = c. Finding c then leads
to solving the equation (2 Id−2A)c = 2b. This can be written as c2 = 2c1 − 1,
2cl − cl−1 = 2−l and cr = 2cr−1 − cr−2, 3 ≤ r ≤ l which in fact leads to the problem
of finding c1 ∈ [0, 1] such that

(−1, 2)
 0 1
−1 2

l−2 c1

2c1 − 1

 = 2−l (3.3)

holds. Putting

B =
 0 1
−1 2

 , v1 =
1

1

 , v2 =
−2
−1


we observe Bv1 = v1, Bv2 = v1 + v2, (c1, 2c1 − 1)T = (3c1 − 2)v1 + (c1 − 1)v2.
Because of (−1, 2)v1 = 1 and (−1, 2)v2 = 0 we have that (3.3) is equivalent to
(3c1 + 2) + (l − 2)(c1 − 1) = 2−l which has c1 = l+2−l

l+1 = 1 − 1−2−l
l+1 as its unique

solution. It follows c2 = 2c1 − 1 = 1 − 21−2−l
l+1 and since cr = 2cr−1 − cr−2 =

(−1, 2)Br−3((3c1 − 2)v1 + (c1 − 1)v2), 3 ≤ r ≤ l, we conclude that cr = 1 − r 1−2−l
l+1

holds for all 1 ≤ r ≤ l. Choosing ε > 0 sufficiently small proves the original
statement.

3.2 Coefficients
Given N ∈ N0 let ϕ ∈ C6N+3n+4(U,R), ρ ∈ C4N+2n+2(U,R) two functions defined
in a neighborhood U around a point z0 ∈ Cn. Before we start to compute the
coefficients in the expansion of the Bergman kernel, that is λj,ϕ,ρN,0 (z0) := λjN,0(z0)
defined in Lemma 3.4 we need to develop some basic tools in order to reduce the
computations to simpler cases.

Lemma 3.13
Let f, g ∈ O(U) be holomorphic functions and let ψ ∈ C6N+3n+4(U,R), ρ̃ ∈ C6N+3n+4(U,R)
be defined by ψ(z) = ϕ(z) + f(z) + f(z) and ρ̃(z) = eg(z)+g(z)ρ(z). We have Hψ(z0)
is positive definite and λ(j),ϕ,ρ

N,0 (z0) = eg(z)+g(z)λ
(j),ψ,ρ̃
N,0 (z0) for all 0 ≤ j ≤ N .

Proof. We have Bkϕ,ρ = eg(z)+g(z)Bkψ,ρ̃ by Lemma 2.40. Since f is holomorphic we
find ∂f = ∂f = 0 and hence we conclude Hϕ(z0) = Hψ(z0) by the definition of
the complex Hessian. Using Lemma 2.47 we find an open neighborhood D ⊂⊂ U

around z0 such that z0 ∈ Dϕ,N ∩Dψ,N holds. From Lemma 3.9 it follows that
N∑
j=0

(λ(j),ϕ,ρ
N,0 (z0)− λ(j),ψ,ρ

N,0 (z0))k−j ≤ Ck−N−1−ε

for some constants C > 0 and 0 < ε < 1 which proves the statement.
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Lemma 3.14
Given an invertible n×n-matrix F consider the map G : Cn → Cn defined by G(w) =
F (w−z0)+z0. We have ϕ◦G ∈ C6N+3n+4(G−1(U),R), ρ◦G ∈ C4N+2n+2(G−1U,R),
Hϕ◦G(z0) = F ∗Hψ(z0)F is positive definite and λ(j),ϕ◦G,ρ◦G

N,0 (z0) = | det(F )|2λ(j),ϕ,ρ
N,0 (z0)

for all 0 ≤ j ≤ N . In addition, for α, β ∈ Nn
0 and ψ ∈ C |α|+|β|(U ∩G−1(U)) we have

∂αw∂
β
wψ ◦G(z0) = Xα

wX
β
wψ(z0) with

(Xw)α =
n∏

m=1
(Xw,m)αm , Xw,m = Fm1

∂

∂w1
+ . . .+ Fmn

∂

∂wn

where F = (Flm)1≤l,m≤n.

Proof. Since G is holomorphic (even affine linear) we find Hϕ◦G(z0) = F ∗Hϕ(z0)F
which immediately implies that Hϕ◦G(z0) is positive definite. Since G(z0) = z0 and
using Lemma 2.47 we find an open neighborhood D ⊂⊂ U ∩G−1(U) around z0 such
that z0 ∈ Dϕ,N ∩Dϕ◦G,N holds. We have | det(F )|2Bkϕ|D = Bkϕ◦G|D by Lemma 2.41.
As in the proof of Lemma 3.13 the claim follows from Lemma 3.9. The last part of
the statement follows from the chain rule and the fact that the differential of G is
constant by induction.

Lemma 3.15
We have λ(j)

M,0(z0) = λ
(j)
N,0(z0) for any M ≤ N and j ≤M .

Proof. Using Lemma 2.47 we find an open neighborhood D ⊂⊂ U around z0 such
that z0 ∈ Dϕ,N ∩Dϕ,M holds. From Lemma 3.9 it follows that

M∑
j=0

(λ(j)
M,0(z0)− λ(j)

N,0(z0))k−j ≤ Ck−M−1−ε

for some constants C > 0 and 0 < ε < 1 which proves the statement.

Lemma 3.16
Let d, n ∈ N be some positive integers and A1, . . . , Ad ∈ Matn×n(C) matrices, Aj =
(a(j)
l,m)1≤l,m,≤n for j = 1, . . . , d. Denote by B = (bl,m)0≤l,m,≤n ∈ Matn×n(C) the

product of the Aj’s, i.e B = A1 · . . . · Ad. One has that

bl,m =
∑

α∈Nd−1
α1,...,αd−1≤n

a
(1)
l,α1a

(2)
α1,α2 . . . a

(d)
αd−1,m

holds for all 1 ≤ l,m ≤ n.

Proof. We prove the statement via induction with respect to d. Given the case d = 1
there is nothing to show. Let d ∈ N be arbitrary and assume that the statement
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holds for d. We set B′ = A1 · . . . · Ad, B′ = (b′l,m)0≤l,m,≤n. One has B = B′Ad+1,
i.e. bl,m = ∑n

j=1 b
′
l,ja

(d+1)
j,m . Using the induction hypothesis one finds

b′l,j =
∑

α∈Nd−1
α1,...,αd−1≤n

a
(1)
l,α1a

(2)
α1,α2 . . . a

(d)
αd−1,j

and hence
bl,m =

∑
α∈Nd−1

α1,...,αd−1≤n

n∑
j=1

a
(1)
l,α1a

(2)
α1,α2 . . . a

(d)
αd−1,j

a
(d+1)
j,m

which proves that the statement holds for d+ 1.

Theorem 3.17
Given a point z0 ∈ Cn and ϕ ∈ C6N+3n+4(U,R), ρ ∈ C4N+2n+2(U,R) two functions
defined in a neighborhood U around z0 such that Hϕ(z0) is positive definite and
ρ(z0) > 0. We have the following expression for λ(j)

N,α(z0) constructed in Lemma 3.4.
We have λ(0)

N,0(z0) = det(Hϕ(z0))
πnρ(z) and assuming Hϕ(z0) = diag(λ1, . . . , λn) we find

λ
(j)
N,τ (z0) = det(Hϕ(z0))

πnρ(z)
λτ

τ ! bN,τ,j(z0), (3.4)

bN,τ,j(z0) =
2j+|τ |∑
d=1

∑
α∈Nd

|α|=2j+|τ |

∑
(β(1),...,β(d))∈(Nn0 )d−1

|β(1)|,...,|β(d−1)|≤N

(−1)dν(α1)
τ,β(1)ν

(α2)
β(1),β(2) · . . . · ν(αd)

β(d−1),0

for 1 ≤ j ≤ N if τ = 0 and for 0 ≤ j ≤ N − |τ |2 if 1 ≤ |τ | ≤ N where

ν
(r)
α,β = λβ

β!
χ

(r)
|α|,|β|

ρ(z)

r+|α|+|β|∑
l=0

∑
|η|=l+ r+|α|+|β|

2
η≥max{α,β}

(−1)l η!
l!ληµ

(l)
η−α,η−β

χ(r)
p,q =

1 , if 2 | (r + p+ q) and r ≥ |p− q| ,

0 , else.

and

µ
(l)
α,β =

∑
(α(0),...,α(l))∈(Nn0 )l+1

|α(0)
m |+...+|α

(l)
m |=αm

∑
(β(0),...,β(l))∈(Nn0 )l+1

|β(0)
m |+...+|β

(l)
m |=βm

∂α(0)
w ∂β

(0)
w ρ(z0)

α(0)!β(0)! ·
l∏

j=1

∂α(j)
w ∂β

(j)
w hN,z0(z0)
α(j)!β(j)! .

Here hN,z0 is given by

hN,z(w) = ϕ̃N(z, w)− (w − z)THϕ(z)(w − z).

Furthermore, for τ = 0 and Hϕ(z0) not necessarily diagonal let F be an invertible
matrix such that F ∗Hϕ(z0)F = diag(λ1, . . . , λn) for some λ1, . . . , λn ∈ R+. In
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that case (3.4) stays true when we can replace ∂αw∂βwρ(z0) by (Xw)α(Xw)βρ(z0), and
∂αw∂

β
whN,z0(z0) by

ϕα,β(z0) =


(
Xα
wX

β
wϕ
)

(z) , if max{|α|, |β|} ≥ 2,min{|α|, |β|} ≥ 1,
0 , else,

with
(Xw)α =

n∏
m=1

Xαm
w,m, Xw,m = Fm1

∂

∂w1
+ . . .+ Fmn

∂

∂wn

where F = (Flm)1≤l,m≤n and noticing that Xα
w = ∂αw when F = Id.

Proof. Recall that

aα,β,k(z0) =
∫
D

(w − z0)α(w − z0)βe−kϕ̃N (z0,w)dVD(w).

Define
cα,β,k = det(Hϕ(z))

πnρ(z)

√
λαλβ

α!β! k
n+ 1

2 (|α|+|β|)aα,β,k(z0).

From Theorem 2.50 we get

aα,β,k(z0)− πn

det(Hϕ(z))k
−n

2N∑
j=max{|α|,|β|}

k−ja
(j)
α,β(z0) = O(k−2N−1−n).

Replacing j by (j + |α|+ |β|)/2 we find since j + |α|+ |β| ≥ 2 max{|α|, |β|} if and
only if j ≥ ||α| − |β|| that

cα,β,k −
2N∑
j=0

k−
j
2 c

(j)
α,β = O(k−N−1), c(j)

α,β =
χ

(j)
|α|,|β|

ρ(z)

√
λαλβ

α!β! a
( j+|α|+|β|

2 )
α,β (z0) (3.5)

with

χ(j)
p,q =

1 , if 2 | (j + p+ q), j ≥ |p− q| ,
0 , else.

As in Section 3.1 set CN,k(z) = (cα,β,k(z))0≤|α|,|β|≤N . Let SN,k be a diagonal matrix

with entries
(√

det(Hϕ(z))λα
πnρ(z)α! k

1
2 (n+|α|)

)
|α|≤N

. One has SN,kAN,kSN,k = CN,k and hence

A−1
N,k = SN,kC

−1
N,kSN,k. Thus, it lasts out to calculate C−1

N,k. Therefore, we write
CN,k −

∑2N
j=0 k

− j2Cj = (O(k−N−1)) with Cj = (c(j)
α,β)0≤|α|,|β|≤N . Here (O(k−N−1))

denotes a matrix of suitable size such that any entry is an O(k−N−1). Since c(0)
α,β = 1

if α = β and c(0)
α,β = 0 otherwise we find C0 = Id. Put

C̃N,k = −
2N∑
j=1

k−
j
2Cj and C ′N,k =

2N∑
d=0

(C̃N,k)d.



84 Bergman Kernel Expansion

One has C̃N,k = (O(k− 1
2 )) and hence

(
C̃N,k

)2N+1
= (O(k−N− 1

2 )). Thus we find that
CN,kC

′
N,k − Id = C ′N,kCN,k − Id = −C̃2N+1

N,k = Id +(O(k−N− 1
2 )) holds. We need to

prove that this implies C ′N,k − C−1
N,k = (O(k−N− 1

2 )). As in the proof of Lemma 3.4
we find δ > 0 such that det(CN,k) ≥ δ holds for all k ∈ [1,∞) and that det(CN,k)
as well as all the subdeterminants of CN,k is an O(1). Applying Cramer’s rule we
find C−1

N,k = (O(1)) which implies C ′N,k−C−1
N,k = C−1

N,k(CN,kC ′N,k− Id) = (O(k−N− 1
2 )).

Thus, we can write

C−1
N,k −

2N∑
j=0

k−
j
2C
′(j)
N = (O(k−N− 1

2 )), C ′(j)N =
j∑

d=1

∑
η∈Nd
|η|=j

(−1)d
d∏
l=1

Cηl .

Let cαk (resp. cα,(j)) denote the entry of C−1
N,k (resp. C

′(j)
N ) at position (α, 0). One has

cαk =
2N∑
j=0

k−
j
2 cα,(j) +O(k−N− 1

2 ). (3.6)

Since λN,α,k is the entry of A−1
N,k at position (α, 0) we find

k−nλN,α,k(z0) = det(Hϕ(z0))
πnρ(z0)

√
λα

α! k
|α|
2 cαk . (3.7)

From Lemma 3.4 we have k−nλN,α,k −
∑N
j=0 k

−jλ
(j)
N,α = O(k−N−1). Plugging (3.6)

into (3.7) we find after comparing the coefficients that

λ
(j)
N,α(z0) = det(Hϕ(z0))

πnρ(z0)

√
λα

α! c
α,(2j+|α|)

holds for j ∈ N0, 0 ≤ j ≤ N − |α|2 . Let us compute now cα,(2j+|α|). It follows from
Lemma 3.16 that

cα,(2j+|α|) =
2j+|α|∑
d=1

∑
τ∈Nd

|τ |=2j+|α|

(−1)d
∑

η∈(Nn0 )d−1

|η1|,...,|ηd−1|≤N

c(τ1)
α,η1c

(τ2)
η1,η2 . . . c

(τd)
ηd−1,0.

From Lemma 2.53 we find

a
(j)
α,β(z) =

2j∑
l=0

∑
|η|=l+j

η≥max{α,β}

(1/λ)η (−1)lη!
l!(η − α)!(η − β!)∂

η−α
w ∂η−βw (hlN,zρ)(z)

which implies

c
(j)
α,β =

χ
(j)
|α|,|β|

ρ(z)

√
λαλβ

α!β!

j+|α|+|β|∑
l=0

∑
|η|=l+ j+|α|+|β|

2
η≥max{α,β}

(−1)l η!
l!ληµ

(l)
η−α,η−β
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where µ(l)
α,β = 1

α!β!∂
α

w∂
β
w(hlN,z0ρ)(z0). Using Lemma 2.9 we get

µ
(l)
α,β =

∑
α′≤α

∑
β′≤β

(
1

(α− α′)!
1

(β − β′)!∂
α−α′
w ∂β−β

′

w hlN,z0(z0)
)(

1
α′!

1
β′!∂

α′

w ∂
β′

w ρ(z0)
)
.

Writing hlN,z0 = hN,z0 · · ·hN,z0 and proceeding inductively we find

µ
(l)
α,β =

∑
(α(0),...,α(l))∈(Nn0 )l+1

|α(0)
m |+...+|α

(l)
m |=αm

∑
(β(0),...,β(l))∈(Nn0 )l+1

|β(0)
m |+...+|β

(l)
m |=βm

∂α(0)
w ∂β

(0)
w ρ(z0)

α(0)!β(0)! ·
l∏

j=1

∂α(j)
w ∂β

(j)
w hN,z0(z0)
α(j)!β(j)! .

Now consider the case τ = 0 and F = Id. We want to show that we can replace
(∂αw∂βwhN,z0)(z0) by ϕα,β(z0) where ϕα,β(z0) is defined as above. Define a holomorphic
function f(w) = ∑4N

|α|≥N+2 ∂
αϕ(z0)(w− z0)α and set ψ = ϕ− f − f ∈ C6N+3n+4(U),

hψN,z0(w) = ψ̃N(z0, w)− (w − z0)THψ(z0)(w − z0).

We notice by the definition of hψN,z that for |α|, |β| ≤ 4N we have (∂αw∂βwh
ψ
N,z0)(z0) = 0

if min{|α|, |β|} = 0 or max{|α|, |β|} ≤ 1. Using Lemma 3.13 we can replace hN,z by
hψN,z with ∂αw∂βwh

ψ
N,z0(z0) = ϕα,β(z0) where ϕα,β(z0) is defined as above. Now consider

the case where τ = 0 and Hϕ(z0) is not diagonal. Given an invertible matrix F with
F ∗Hϕ(z0)F = diag(λ1, . . . , λn) define the map G : Cn → Cn, G(w) = F (w−z0)+z0.
Since Hϕ◦G(z0) is diagonal and by Lemma 3.14 we find that λjN,τ can be computed
as in the diagonal case with ϕ and ρ replaced by ϕ ◦ G and ρ ◦ G. The statement
follows from Xα

wX
β
wψ(z0) = ∂αw∂

β
wψ ◦ G(z0) for any sufficiently often differentiable

function ψ.

Remark 3.18
In the case where Hϕ is not diagonal we can still get a formula for λ(j)

N,α, α 6= 0, by

replacing a( j+|α|+|β|
2 )

α,β (z0) in (3.5) with its representation given in Theorem 2.50.

Assuming higher regularity on ϕ and ρ in Theorem 3.17 would lead to a similar
expression also for the λ(j)

N,α with j > N − |α|
2 . We will show this in Lemma 3.23

below where we assume ϕ and ρ to be smooth. Before we turn to the smooth case
let us focus on the coefficients for the diagonal expansion, that is the coefficients in
the expansion of Bkϕ,ρ in the non-smooth case.

Definition 3.19
Let D ⊂ Cn be a domain and j ∈ N0 a non-negative integer. Given two functi-
ons ϕ ∈ C6j+3n+4(D,R), ρ ∈ C4j+2n+j(D,R) we define bj : Dϕ,+ → R by bj(z) =
πnρ

det(Hϕ)λ
(j)
j,0(z) with λ(j)

j,0(z) given as in Theorem 3.17.
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From Lemma 3.4 it is clear that bj ∈ C l(Dϕ,+,R) if ϕ ∈ C6j+3n+4+l(D,R) and
ρ ∈ C2j+2+l(D,R) holds for some l ∈ N0. We have the following theorem for diagonal
Bergman kernel expansion.

Theorem 3.20 (On-Diagonal Expansion)
Let D ⊂ Cn be a bounded domain, D′ ⊂ D open and S1 ⊂ C6N+2n+4+l(D) ∩ C0(D)
and S2 ⊂ C2N+2n+2+l(D) ∩ C0(D) two bounded sets such that

{ inf
(z,w)∈D′×D

ϕ̃N(z, w)/|z − w|2 | ϕ ∈ S1} and { inf
z∈D

ρ | ρ ∈ S2}

have positive lower bounds. Then for any 0 ≤ r ≤ l we have that Bkϕ,ρ has an
asymptotic expansion of order cr(N+1)−n−r−1 in Cr(D′) uniformly in ϕ ∈ S1 and
ρ ∈ S2 with cr = 1− r

l+1 , coefficients b0, . . . , bN of class C l defined in Definition 3.19
and explicitly computed in Theorem 3.17. More precisely, for any ε > 0 we have

Bkϕ,ρ − kn
det(Hϕ)
πnρ

N∑
j=0

k−jbj = O(k−(N+1)+n+ε) in C0(D′)

uniformly in ϕ ∈ S1 and ρ ∈ S2, and for 1 ≤ r ≤ l we have

Bkϕ,ρ − kn
det(Hϕ)
πnρ

N∑
j=0

k−jbj = O(k−cr(N+1)+n+r) in Cr(D′)

uniformly in ϕ ∈ S1 and ρ ∈ S2.
Furthermore, the bj = bρ,ϕj , 0 ≤ j ≤ N , are polynomials in the derivatives of

ρ and the entries of Hϕ and the reciprocals of ρ and the eigenvalues of Hϕ (see
Theorem 3.17).

Proof. The claim follows immediately from Lemma 3.9, Lemma 3.12, Lemma 3.15
and Theorem 3.17.

Theorem 3.21 (Near-Diagonal Expansion)
Let D ⊂ Cn be a bounded domain, D′ ⊂ D open and S1 ⊂ C6N+2n+4+l(D) ∩ C0(D)
and S2 ⊂ C4N+2n+2+l(D) ∩ C0(D) two bounded sets such that

{ inf
(z,w)∈D′×D

ϕ̃N(z, w)/|z − w|2 | ϕ ∈ S1} and { inf
z∈D

ρ | ρ ∈ S2}

have positive lower bounds. Then for any 0 ≤ r ≤ l we have that Pkϕ,ρ has an
expansion of order cr

2 (N + 1)− n− r − 1 in Cr(D′) uniformly in ϕ ∈ S1 ∩ C∞(D′)
and ρ ∈ S2 ∩ C∞(D′) with cr = 1 − r

l+1 and C∞-coefficients λ(j)
N,α, j ∈ N0, α ∈ Nn

0 ,
such that λ(j)

N,α = bj,α for 2|α|+ 2j ≤ N with λ(j)
N,α constructed in Lemma 3.4 and bj,α

defined in Definition 3.24. More precisely, for any ε > 0 we have

Pkϕ,ρ − Pkϕ,ρ,N = O(k−
N+1

2 +n+ε) in C0(D′ ×D)
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uniformly in ϕ ∈ S1 ∩ C∞(D′) and ρ ∈ S2 ∩ C∞(D′), and for 1 ≤ r ≤ l we have

Pkϕ,ρ − Pkϕ,ρ,N = O(k−cr
N+1

2 +n+r) in Cr(D′ ×D)

uniformly in ϕ ∈ S1 ∩ C∞(D′) and ρ ∈ S2 ∩ C∞(D′) with

Pkϕ,ρ,N(z, w) = kne−
k
2 (ϕ(w)−2γN (z,w))

N∑
j=0

k−j
∑
|α|≤N

λ
(j)
N,α(z)(w − z)α.

Furthermore, for any point z ∈ D′ where Hϕ(z) is diagonal the λ(j)
N,α = λ

(j),ρ,ϕ
N,α can

be computed explicitly for any j and any α with j, |α| ≤ N (see Theorem 3.17 and
Lemma 3.23).

Proof. The claim follows immediately from Lemma 3.9, Lemma 3.12, Lemma 3.15
and Theorem 3.17.

Now we will consider the smooth case, that is ϕ, ρ ∈ C∞(D,R) where D ⊂ Cn is
a domain. From Definition 3.19 we obtain functions b0, b1, . . . ∈ C∞(Dϕ,+,R) which
are explicitly computed in terms of the entries of Hϕ, ρ and their derivatives.

Lemma 3.22
Let z0 ∈ D be a point such that Hϕ(z0) is positive definite and α ∈ Nn

0 be a multi-
index. We have λ(j)

N,α(z0) = λ
(j)
M,α(z0) for all M,N, j ∈ N0 satisfying 2|α|+2j ≤M ≤

N . Here λ(j)
N,α(z0) and λ(j)

M,α(z0) are defined by Lemma 3.4 and Remark 3.6.

Proof. Fix M,N ∈ N0 and α ∈ Nn
0 with |α| ≤ M ≤ N . First we observe that

∂
η

w(γM(z, w)− γN(z, w))|w=z = 0 for all |η| ≤M which implies

∂
η

we
−k 1

2ϕ(w)+kγM (z,w)|w=z = ∂
η

we
−k 1

2ϕ(w)+kγN (z,w)|w=z

for all |η| ≤ M . From Lemma 2.47 we get an open neighborhood D′ ⊂⊂ D around
z0 such that z0 ∈ D′ϕ,N ∩D′ϕ,M holds. Using Lemma 3.12 we find a constant C > 0
such that

|k−n∂τw(P̃N,k − P̃M,k)|w=z0| ≤ Ck−
M
2 −ε+|τ |

holds for all k ∈ [1,∞) and some fixed ε < 1
2 . By Lemma 2.9 and our previous

considerations we conclude∣∣∣∣∣∣
∑
τ≤η

(
η

τ

)
∂η−τw (e−k 1

2ϕ(w)+kγN (z,w))|w=z0

M∑
j=0

τ !k−j(λ(j)
M,τ (z0)− λ(j)

N,τ (z0))

∣∣∣∣∣∣
≤ Ck−

M
2 −ε+|η| +R(k)

(3.8)

with

R(k) =

∣∣∣∣∣∣
∑
τ≤η

(
η

τ

)
∂η−τw (e−k 1

2ϕ(w)+kγN (z,w))|w=z0

N∑
j=M+1

τ !k−jλ(j)
N,τ (z0)

∣∣∣∣∣∣ ≤ C ′k−M−1+|η|
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for some constant C ′ > 0 independent of k where the sums run over all τ ∈ Nn
0 ,

τ ≤ η. For |η| = 0 the claim follows from Lemma 3.15. Assume that the claim is
true for all η ∈ Nn

0 , |η| < |α|. By (3.8) it follows that∣∣∣∣∣∣
M∑
j=0

α!k−j(λ(j)
M,α(z0)− λ(j)

N,α(z0))

∣∣∣∣∣∣ ≤ Ck−
M
2 −ε+|α| + C ′k−M−1+|α|

holds for all k ∈ [1,∞) and hence λ(j)
M,α(z0) = λ

(j)
N,α(z0) for all j ≤ M

2 − |α|.

Lemma 3.23
Let z0 ∈ D be a point such that Hϕ(z0) is positive definite and diagonal. We have
that the formula (3.4) for λ(j)

N,α(z0) holds also for N − |α|2 < j ≤ N . Furthermore,
for j ≤ N

2 − |α| we have that (3.4) stays true when we replace ∂αw∂βwhN,z0(z0) by

ϕα,β(z0) =


(
∂αw∂

β
wϕ
)

(z) , if max{|α|, |β|} ≥ 2,min{|α|, |β|} ≥ 1,
0 , else.

Proof. Fix N ∈ N0. For the first part of the statement we go through the proof
of Theorem 3.17 and see that (since ϕ and ρ are smooth) we can expand ak,α,β

up to higher order namely 4N + n + 1. This implies that (3.6) becomes cαk =∑4N
j=0 k

− j2 cα,(j) +O(k−2N− 1
2 ). We conclude

λ
(j)
N,α(z0) = det(Hϕ(z0))

πnρ(z0)

√
λα

α! c
α,(2j+|α|)

for all 0 ≤ j ≤ N .
For the second part, we define a holomorphic function

f(w) = −1
2

4N∑
|α|≥N+2

∂αz ϕ(z0)(w − z0)α

and set ψ = ϕ+ 2f + 2f ∈ C∞(D),

hψN,z0(w) = ψ̃N(z0, w)− (w − z0)THψ(z0)(w − z0).

As in the proof of Theorem 3.17 we notice thatHψ(z0) is diagonal and that by the de-
finition of hψN,z we have (∂αw∂βwh

ψ
N,z0)(z0) = 0 if min{|α|, |β|} = 0 or max{|α|, |β|} ≤ 1,

|α|, |β| ≤ 4N . Using Lemma 2.40 we get Pkψ,ρ(z, w) = ek(f(z)−f(w)+f(w)−f(z))Pkϕ,ρ(z, w),
z, w ∈ D. Since all the derivatives of f vanish up to order N + 2 we can proceed as
in the proof of Lemma 3.22 and find λ(j),ϕ,ρ

N,α (z0) = λ
(j),ψ,ρ
N,α (zo) for all j ≤ N

2 −|α|.

Lemma 3.22 and Lemma 3.23 give rise for the following definition.
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Definition 3.24
Given ϕ, ρ ∈ C∞(D,R), ρ > 0 and α ∈ Nn

0 define

bj,α : Dϕ,+ → R, bj,α(z) = ρ

det(Hϕ(z))λ
(j)
2(|α|+j),α(z)

where in the case when Hϕ(z) is diagonal λ(j)
2(|α|+j),α(z) is explicitly given by Theo-

rem 3.17 with the modification in Lemma 3.23. Furthermore, set

P̂kϕ,ρ,N(z, w) = kn

πn
det(Hϕ(z))

ρ
e−

k
2 (ϕ(w)−2γN (z,w))

bN2 c∑
j=0

k−j
∑

|α|≤bN2 c−j

bj,α(z)(w − z)α.

Lemma 3.25
One has

P̂kϕ,ρ,2N − Pkϕ,ρ,2N = O(k−
N+1

2 +n+r+ε) in Cr(Dϕ,2N ×D)

with Pkϕ,ρ,2N as in Theorem 3.21.

Proof. Let K ⊂ Dϕ,2N be compact and η, τ ∈ N2n
0 , |η|+ |τ | ≤ r, two multi-indicies.

Set ψk(z, w) = e−
k
2 (ϕ(w)−2γN (z,w)). The 2N -th localization property ensures that there

exist constants C, δ > 0 such that |ψ(z, w)|2 ≤ Ck−δk|z−w|
2 holds for (z, w) ∈ K×D

and k ∈ [1,∞). This observation leads to∣∣∣∣∣∣dηzdτwψk(z, w)
2N∑
N+1

λ
(j)
N,α(z)(w − z)α

∣∣∣∣∣∣ ≤ C1k
−N−1+r

for all k ∈ [1,∞) and all (z, w) ∈ K ×D where C1 > 0 is a constant independent of
k, z and w. Given α ∈ Nn

0 , |α| ≤ N − j, we get from Lemma 3.22 that det(Hϕ)
ρ

bj,α =
λ

(j)
2N,α. Then consider the term

Rj,α,k(z, w) := ψk(z, w)kjλ(j)
N,α(z)(w − z)α

for 0 ≤ j ≤ N and N − j < |α| ≤ 2N . Given 0 < ε′ < 1 we find |dηzdτwRj,α,k|2 ≤
C2e

−δkε′ for |w−z|2 > kε
′−1. For |w− z|2 ≤ kε

′−1 we have |(w−z)β|2 ≤ |w−z|2|β| ≤
k|β|(ε

′−1). Since |α| ≥ N−j+1 we find |dηzdτwRj,α,k|2 ≤ C3k
−N+1

2 +ε. Here C2, C3, ε > 0
are constants independent of k, z and w. The claim follows from

P̃kϕ,ρ,2N(z, w)−P̂kϕ,ρ,2N(z, w) = ψk(z, w)

 ∑
|α|≤2N
N−j<|α|

Rj,α,k(z, w) +
2N∑
N+1

λ
(j)
N,α(z)(w − z)α

 .

Corollary 3.26
Let D ⊂ Cn be a bounded domain. Given ϕ, ρ ∈ C∞(D)∩C0(D), ε > 0 and r ∈ N0

we have
Pkϕ,ρ − P̂kϕ,ρ,2N = O(k−

N+1
2 +n+r+ε) in Cr(Dϕ,2N ×D).
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3.3 Bergman Kernels on Manifolds
Let M be a complex manifold of complex dimension n. Given a smooth vector
bundle F over M we denote by Γ(M,F ) the space of smooth sections M → F . Let
T 1,0M (resp. T 0,1M) denote the bundle of holomorphic (resp. antiholomorphic)
vectors. Let E be a holomorphic line bundle over M . The space of smooth (p, q)-
forms (or forms of type (p, q)) with values in E is defined by Ωp,q(M,E) = Γ(M,E⊗
ΛpT ∗(1,0)M ⊗ ΛqT ∗(0,1)M) where T ∗(1,0)M := (T 1,0M)∗ and T ∗(0,1)M := (T 0,1M)∗.
We denote by ∂ : Ωp,q(M,E) → Ωp+1,q(M,E) and ∂ : Ωp,q(M,E) → Ωp,q+1(M,E)
the holomorphic and antiholomorphic differential. A Hermitian metric hE on E

is said do be upper semi-continuous (resp. of class C l) if − log(|s|2hE) is an upper
semi-continuous (resp. a C l) function for any local holomorphic frame s of E where
|s|hE :=

√
hE(s, s) denotes the pointwise norm of s. Given a continuous volume form

dVM on M and an upper semi-continuous locally bounded Hermitian metric hE on
E we denote by H0

2 (M,E) the space of holomorphic sections with finite L2-norm
‖ · ‖hE ,dVM induced by the inner product

(f, g)hE ,dVM =
∫
M
hE(f, g)dVM f, g ∈ L2

hE ,dVM
(M,E).

We have that H0
2 (M,E) is a separable Hilbert space. Given an orthonormal basis

{sj}dj=1, d ∈ N0 ∪ {∞}, of H0
2 (M,E) we define the Bergman kernel

PhE ,dVM : M → E � E∗, PhE ,dVM (x, y) =
d∑
j=1

sj(x)⊗ (sj(y))∗

and the Bergman kernel function

BhE ,dVM : M → R, BhE ,dVM =
∑
j=1

hE(sj, sj),

where we write v∗ := hE(·, v) ∈ E∗x for v ∈ Ex, x ∈M and choose the metric h∗E on
E∗ such that v 7→ v∗ becomes an isometry. Note that PhE ,dVM and BhE ,dVM are well
defined, independent of the choice of the orthonormal basis {sj}dj=1 and in the case
when hE is smooth we have PhE ,dVM ∈ Γ(M,E�E∗) and BhE ,dVM ∈ C∞(M,R) (see
Section 2.4).

From now on we assume that hE is smooth. Given another holomorphic Hermi-
tian line bundle L over M and an upper semi-continuous Hermitian metric h on L
we are interested in studying the Bergman kernel and the Bergman kernel function
for the space H0

2 (M,Lk), k ∈ N with Lk = Lk ⊗ E and hk = hk ⊗ hE.

Definition 3.27
Let Mh,+ denote the subset of M consisting of points which have a neighborhood
where h is of class C2 with positive curvature c1(L, h).
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The curvature c1(L, h) is a form of type (1, 1) and can be locally written as
c1(L, h) = − i

2∂∂ log(h(s, s)) for any local holomorphic frame s of L around points
where h is at least of class C2. We define the following invariants.

Definition 3.28
Assume h is of class C6j+3n+4 and dVM is of class C4j+2n+2, Define

bj = bh,hE ,dVMj : Mh,+ → R, bh,hE ,dVMj (p) = bϕ,ρj (z(p))

where bϕ,ρj is given by the formula in Definition 1.4 with respect to a choice of local
trivializations s of L and e of E and local coordinates (U, z) with ϕ = − log(h(s, s)),
ρ = hE(e, e)ρ̃, dVM = ρ̃dVCn .

Lemma 3.29
The function bj is well defined, that is bj is independent of the choice of coordinates
and trivializations. Furthermore, we have that bj ∈ C l(Mh,+,R) if h is of class
C6j+3n+4+l and dVM is of class C4j+2n+2+l.

Proof. We need to show that bϕ,ρj is invariant under biholomorhic mappings. Let U
and V be open neighborhoods around points p1 and p2 in Cn and let G : U → V

be a biholomorphic map. Set F = ( ∂Gl
∂zm

)1≤m,l≤n and c = det(F (p)). By shrinking
U and V we can achieve that | det(F (z)) − c| ≤ |c|/2 holds for all p ∈ U , p1 ∈
Uϕ,j and p2 ∈ Vϕ◦G,j. By Lemma 3.14 we have Bϕ◦G,|det(F )|ρ◦G = Bϕ,ρ. Using our
assumptions on det(F ) we find | det(F )|2 = elog(det(F ))+log(det(F )). Then the claim
follows from Lemma 3.13, Lemma 3.9 and the uniqueness of the coefficients in an
asymptotic expansion. The last part of the statement follows from Definition 3.19
and Lemma 3.4.

Lemma 3.30
Given N ∈ N0 assume that p ∈ Mh,+ has an open neighborhood U ⊂ M where
h is of class C6N+3n+4 and dVM is of class C4N+2n+2. Choose coordinates (D, z),
D ⊂⊂ U around p such that D is identified with a bounded domain in Cn and
local holomorphic frames s and e for L and E such that z(p) ∈ Dϕ,N holds (see
Lemma 2.47) with ϕ := − log(|s|2h). Furthermore, set ρ̃ = ρ|e|hE where ρ is defined
by dVM = ρ ·

(
i
2

)n
dz1 ∧ . . . ∧ dzn ∧ dz1 ∧ . . . ∧ dzn. For any compact set K ⊂ Dϕ,N

there exists a constant C > 0 such that

|f̃(z)− (f̃ , Kkϕ,ρ̃,N(z, ·))kϕ,ρ|2e−kϕ(z) ≤ Ck−N−1+n+ε‖f‖2
hk,dVM

for all f ∈ H0
2 (M,Lk), k ∈ N and z ∈ Dϕ,N where f̃ ∈ H0

kϕ,ρ(D) is defined by
f̃(z)sk ⊗ e = f and (·, ·)kϕ,ρ, Kkϕ,ρ̃,N are as in Section 3.1.
Here C is bounded when ρ stays in a bounded set in C4N+2n+2(D,R) ∩ C0(D) such
that infw∈D ρ(w) has a positive lower bound.

Proof. The statement follows immediately from Lemm 3.8.
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3.4 Global Bergman Kernel Expansion
We start this section by stating the following theorem on L2 estimates due to Hör-
mander [23] in a generalized version given by Demailly [14].

Theorem 3.31 ([14, Theorem VIII–6.5])
Let (X,ω) be a weakly pseudoconvex Kähler manifold, E a hermitian line bundle on
X, ϕ ∈ C∞(X,R) a weight function such that the eigenvalues λ1 ≤ . . . ≤ λn of
iΘ(E)+ id′d′′ϕ are ≥ 0. Then for every form g of type (n, q), q ≥ 1, with L2

loc (resp.
C∞) coefficients such that D′′g = 0 and∫

X

1
λ1 + . . .+ λn

|g|2e−ϕdV < +∞.

We can find a L2
loc (resp. C∞) form f of type (n, q − 1) such that D′′f = g and∫

X
|f |2e−ϕdV ≤

∫
X

1
λ1 + . . .+ λn

|g|2e−ϕdV.

Proof. [14, Theorem VIII–6.5]

Lemma 3.32
The conclusion of Theorem 3.31 is valid if (X,ω) is a complete Kähler manifold
provided that g has compact support.

Proof. The claim follows from [14, Theorem VIII–4.5] and [14, VIII–(6.4)].

We will reformulate Theorem 3.31 in our notation. Therefore, let (X,ω) be a
complete Kähler manifold and let (E, hE) be a holomorphic Hermitian line bundle
with smooth metric hE.

Corollary 3.33
Assume c1(E, hE) ≥ 0 on X. Let f ∈ Γ(X,E ⊗ ΛnT ∗(1,0)X) be a section compactly
supported in XhE ,+ and C > 0 a constant with Cc1(E, hE) ≥ ω on the support of f .
Then there exists u ∈ Γ(X,E ⊗ ΛnT ∗(1,0)X) with f − u ∈ H0

2 (X,E ⊗ ΛnT ∗(1,0)X),
such that

∫
X |u|2hEdVX ≤ C

∫
X |∂f |2ωdVX holds.

We focus on the following setting. Let L0 be a holomorphic line bundle over
a complete Kähler manifold (X,ω). Given a domain M ⊂ X we consider the line
bundle L = L0|M . Let (E, hE) → X be another holomorphic line bundle with
smooth Hermitian metric hE. Choose an upper semi-continuous metric h on L, a
function ρ ∈ C0(M) which is positive and bounded and define a volume form on
M by dVM = ρω

n

n! . Then we consider the Bergman kernel Phk,dVM and the Bergman
kernel function Bhk,dVM for the space H0

2 (M,Lk) with Lk = Lk ⊗ E ⊗ ΛnT ∗(1,0)M ,
k ∈ N. In local coordinates (U, z) using the holomorphic frame dz := dz1 ∧ . . .∧ dzn
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for ΛnT ∗(1,0)M we observe dVM = ρρ̃dVCn and hω(dz, dz) = 1/ρ̃. Hence we find that
bj is independent of ω, so we set bh,ρj := bh,dVM ,hE⊗h

ω

j in this setting. Note that bh,ρj
depends on the fixed metric hE but we do not indicate this here to maintain a brief
notation style.

Definition 3.34
We define the set Mh,∞ ⊂ M by saying p ∈ Mh,∞ if and only if p has an open
neighborhood U where h is smooth with positive curvature and there exists a smooth
Hermitian metric h0 on L0 → X with h ≤ h0 on M and h = h0 on U and k0 ∈ N
such that

kc1(L0, h0) + c1(E, hE) ≥ 0, k ≥ k0. (3.9)

Remark 3.35
In Definition 3.34 assume that E is trivial with flat metric then (3.9) is equivalent
to assume that h0 is semi-positive.

Theorem 3.36 (On-Diagonal Expansion)
For any ε > 0, N ∈ N0 and ρ ∈ C4m+2n+2+r(Mh,∞,R) ∩ C0(M), m = Nr + N +
r2 + 2r + 1, which is positive and bounded one has

Bhk,dVM −
kn

πn
c1(L, h)n
n!dVM

N∑
j=0

bh,ρj k−j = O(k−N−1+n) in Cr(Mh,∞).

More precisely, given any compact set K ⊂Mh,∞ and any partial differential opera-
tor F of order ≤ r there exists a constant C = CK,F such that∣∣∣∣∣∣F

Bhk,dVM −
kn

πn
c1(L, h)n
n!dVM

N∑
j=0

bh,ρj k−j

 (p)

∣∣∣∣∣∣ ≤ Ck−N−1+n

holds for all p ∈ K and all k ∈ N. Here C is bounded when ρ stays in a bounded
set in C4m+2n+2+r(Mh,∞,R) ∩ C0(M) such that infp∈M ρ(p) has a uniform positive
lower bound and supp∈M ρ(p) has a uniform upper bound.

The theorem follows from the following lemma.

Lemma 3.37
Let U ⊂ M be an open set where h is smooth and has positive curvature. Assume
there exists a semi-positive smooth Hermitian metric h0 on L0 with h ≤ h0 on M ,
h = h0 on U , and there exists k0 ∈ N such that kc1(L0, h0) + c1(E, hE) ≥ 0 holds on
X for all k ≥ k0. For any ε > 0, N ∈ N0 and ρ ∈ C4N+2n+2(U,R) ∩ C0(M) which
is positive and bounded one has

Bhk,dVM −
kn

πn
c1(L, h)n
n!dVM

N∑
j=0

k−jbh,ρj = O(k−N−1+n+ε) in C0(U).
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More precisely, given a compact set K ⊂ U , N ∈ N0, ε > 0, a bounded subset
S ⊂ C4N+2n+2(U) ∩ C0(M) and a constant C0 > 0 with 1/C0 ≤ ρ(p) ≤ C0 for all
p ∈ M and ρ ∈ S, there exists a constant C = CK,S,N,ε > 0 independent of k such
that ∣∣∣∣∣∣Bhk,dVM (p)− kn

πn
c1(L, h)n
n!dVM

N∑
j=0

k−jbh,ρj (p)

∣∣∣∣∣∣ ≤ Ck−N−1+n+ε

holds for all k ∈ N, p ∈ K and ρ ∈ S.

Proof. Fix N ∈ N0, ε > 0 and a compact set K ⊂ U . Given any point p ∈ K choose
local coordinates (D, z), D ⊂⊂ U around p and local frames s and e for L and E
such that z(p) ∈ Dϕ,N (see Lemma 2.47) where ϕ = − log(|s|2h) and set ρ̃ = ρ|e|hE .
Furthermore, let sk = sk ⊗ e ⊗ dz be the induced local holomorphic frame for Lk
and identify D with an open set in Cn via the local coordinate z. Since Dϕ,N is
open and non-empty we find an open neighborhood D′ ⊂⊂ Dϕ,N around p. With
K ′kϕ,ρ,N(z, w) = sk(w)Kkϕ,ρ̃,N(z, w) we find from Lemma 3.30 that

|f − sk(z)(f,K ′kϕ,ρ̃,N(z, w))hk,dVM ,U |2hk ≤ C1k
−N−1+n+ε‖f‖2

hk,dVM

for all k ∈ N, all z ∈ D′ and all f ∈ H0
2 (M,Lk) where C1 is a constant independent

of k ∈ N, z ∈ D′ and ρ ∈ S. Now take a cutoff function χ ∈ C∞0 (M,R), 0 ≤ χ ≤ 1
supported in D such that χ ≡ 1 in a neighborhood of the closure of D′. Using h ≤ h0

on M and h = h0 on U we get from Corollary 3.33 that for any k ∈ N, k ≥ k0,
and any z ∈ D′ we can choose u(k)

z ∈ Γ(M,Lk) such that χ(w)K ′kϕ,ρ,N(z, w)− u(k)
z is

holomorphic on M and

‖u(k)
z ‖2

hk,dVM
≤ C2

0C2

∫
M
|∂χ(w)|2ω|K ′kϕ,ρ̃,N(z, w)|2hkdVM

where C2 > 0 is a constant independent of k ≥ k0, z ∈ D′ and ρ ∈ S. Note that
it is actually enough to assume here that 1/C0 ≤ ρ holds on supp(χ). Since ∂χ(w)
and (1− χ(w)) is zero in a neighborhood of D′ we find from Lemma 3.7 that

e−kϕ(z)‖u(k)
z ‖2

hk
, e−kϕ(z)

∫
D

(1− χ(w))2|K ′kϕ,ρ̃,N(z, w)|2hkdVM = O(k−∞) (3.10)

in C0(D′) uniformly in ρ ∈ S. Write

K ′kϕ,ρ̃,N(z, w) = χ(w)K ′kϕ,ρ̃,N(z, w) + (1− χ(w))K ′kϕ,ρ̃,N(z, w)− u(k)
z + u(k)

z .

From (3.10) we conclude

|f − sk(z)(f, χ(w)K ′kϕ,ρ,N(z, w)− u(k)
z )hk,dVM |2hk ≤ C3k

−N−1+n+ε‖f‖hk,dVM (3.11)

for all k ≥ k0, z ∈ D′ where C3 is a constant independent of k, z and ρ. For z ∈ D′

set v(k)
z = ∑dk

j=1 s̃
(k)
j (z)s(k)

j where {s(k)
j }

dk
j=1 is an orthonormal basis of H0

2 (M,Lk)
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with dk = dimH0
2 (M,Lk) ∈ N ∪ {∞}. Here we use the notation f̃(z)sk = f to

identify sections f ∈ H0
2 (M,L) with holomorphic functions f̃ on D. We have f̃(z) =

(f, v(k)
z )hk,dVM for all f ∈ H0(M,Lk). Putting f (k)

z = v(k)
z − χ(w)K ′kϕ,ρ̃,N(z, w) + u(k)

z

we have f (k)
z ∈ H0

2 (M,Lk) as in the proof of Lemma 3.9 we obtain from (3.11)

‖v(k)
z − χ(w)K ′kϕ,ρ̃,N(z, w) + u(k)

z ‖2
hk
e−kϕ(z) ≤ C3k

−N−1+n+ε (3.12)

for all k ≥ k0, z ∈ D′ and ρ ∈ S. Furthermore, we have

‖fz‖2
hk

= (v(k)
z , v(k)

z )hk,dVM − χ(z)λN,0,k(z)ekϕ(z) + 2 Reu(k)
z (z) +Rk,z

with

|Rk,z| =
∣∣∣‖χ(w)K ′kϕ,ρ̃,N(z, w) + u(k)

z ‖2
hk
− χ(z)λN,0,k(z)ekϕ(z)

∣∣∣
≤ ‖(1− χ(w))K ′kϕ,ρ̃,N(z, w)‖2

hk,D
+ ‖u(k)

z ‖2
hk

where we used (Kkϕ,ρ̃,N(z, ·), Kkϕ,ρ̃,N(z, ·))kϕ,ρ̃ = λN,0,k(z)ekϕ(z) (see Lemma 3.2) and
(f, v(k)

z ) = f̃(z) for any f ∈ H0
2 (M,Lk) by the reproducing property of the Bergman

kernel. Since ∂u(k)
z = (∂χ(w))K ′kϕ,ρ̃,N(z, w) we have that uz is holomorphic on D′′

with D′ ⊂⊂ D′′. Hence we can use Lemma 2.29 and find a constant C4 > 0
independent of k with |u(k)

z (z)|2hke
−kϕ(z) ≤ C4k

ne−kϕ(z)‖uz‖2
hk

= O(k−∞) on D′.
Using Bhk,dVM = (vz, vz)hke−kϕ(z), (3.10) and the expansion of λN,0,k in Lemma 3.4
(see also Lemma 3.15 and Definition 3.19) we conclude∣∣∣∣∣∣Bhk,dVM −

kn

πn
c1(L, h)n
n!dVM

N∑
j=0

k−jbh,ρj (q)

∣∣∣∣∣∣ ≤ C5k
−N−1+n+ε

on D′ for all k ∈ N, ρ ∈ S. Since K can be covered by finitely many of those sets
D′ the claim follows.

Proof of Theorem 3.36. We just need to show that any point in Mh,∞ has an open
neighborhood where the claim in Theorem 3.36 holds. Given an arbitrary point in
Mh,∞ we know from the definition that is has an open neighborhood U ⊂ Mh,∞

where the assumptions of Lemma 3.37 are satisfied. In Lemma 3.37 we proved
the statement already for r = 0 and arbitrary N . Let C0 > 0 be a constant
and S ⊂ C4m+2n+2+r(U) ∩ C0(M), m = Nr + N + r2 + 2r + 2 a bounded set
with 1/C0 ≤ ρ(p) ≤ C0 for all p ∈ M and ρ ∈ S. Using Hörmander’s trick (see
Lemma 3.11) and Lemma 3.12 which is true for that case since all the arguments
are local and Corollary 2.39 is valid we find

Bhk,dVM −
kn

πn
c1(L, h)n
n!dVM

m∑
j=0

k−jbh,ρj = O(k−cr(m)+n+r+ε) in Cr(U)
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uniformly in ρ ∈ S with cr = 1
r+1 . Taking ε > 0 small enough the statement follows

from cr(Nr +N + r2 + 2r + 2)− r = N + 1 + cr and
∑m
j=N+1 k

−jbj = O(k−N−1) in
Cr(U) uniformly in ρ ∈ S (see Definition 3.19 and Remark 3.18).

In order to state the next theorem we fix the following notation. Given local
coordinates (D, z) around a point p ∈M and local holomorphic frames s and e of L
and E, we denote by (D×D, (z, w)) the induced coordinates around (p, p) ∈M×M
and choose ŝk(z, w) := e

k
2 (ϕ(z)+ϕ(w))sk(z)e(z)dz(sk(w)e(w)dw)∗ as a trivialization of

Lk � L∗k|U×U with ϕ = − log(h(s, s)). Furthermore, set ρ̃ = ρ|e|2hE and recall the
definition of P̂kϕ,ρ̃,N (see Definition 1.9). We have the following result on off-diagonal
expansion.

Theorem 3.38
Assume that ρ ∈ C∞(Mh,∞,R)∩C0(M) is bounded and positive. Let p ∈Mh,∞ be a
point and (D, z) local coordinates around p with D ⊂Mh,∞. For any ε > 0, N ∈ N0

one has

Phk,dVM − ŝk(z, w)P̂kϕ,ρ̃,2N(z, w) = O(k−
N+1

2 +n+r+ε) in Cr(Dϕ,2N ×D).

Furthermore, for any open set D ⊂Mh,∞ we have

Phk,dVM = O(k−∞) in Cr(D ×M \D).

For the proof we need the following lemma.

Lemma 3.39
Let U ⊂ M be an open set where h is smooth and has positive curvature. Assume
there exists a semi-positive smooth Hermitian metric h0 on L0 with h ≤ h0 on M ,
h = h0 on U , and there exists k0 ∈ N such that kc1(L0, h0) + c1(E, hE) ≥ 0 holds on
X for all k ≥ k0. Let p ∈ U be a point and (D, z) local coordinates around p with
D ⊂ U . For any ε > 0, N ∈ N0 and ρ ∈ C∞(U,R) ∩ C0(M), C−1

0 ≤ ρ ≤ C0 on M
for some constant C0 > 0 one has

Phk,dVM − ŝkPkϕ,ρ̃,N(z, w) = O(k−
N+1

2 +n+ε) in C0(Dϕ,2N ×D)

with Pkϕ,ρ̃,N as in Theorem 3.21. Furthermore, for any open set D ⊂Mh,∞ we have

Phk,dVM = O(k−∞) in C0(D ×M \D).

Proof. We use the same notation as in the proof of Lemma 3.37. Given any compact
subset K of D we take a cutoff function χ with support in D and χ ≡ 1 in a
neighborhood of K. Choose D′ ⊂⊂ Dϕ,N ∩K. As in the proof of Lemma 3.37 we
find

‖v(k)
z − χ(w)K ′kϕ,ρ,N(z, w) + u(k)

z ‖2
hk
e−kϕ(z) ≤ C3k

−N−1+n+ε (3.13)
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for all z ∈ D′ and all k ≥ k0 where v(k)
z and u(k)

z as in the proof of Lemma 3.37. We
apply Lemma 2.29 and find

|ṽ(k)
z (w)−Kkϕ,ρ,N(z, w) + ũ(k)

z (w)|2e−k(ϕ(z)+ϕ(w)) ≤ C3k
−N−1+2n+ε

for all (z, w) ∈ D′×K. We have that u(k)
z is holomorphic in a neighborhood ofK. We

apply Lemma 2.29 again and find by (3.10) that |ũ(k)
z (w)|2e−k(ϕ(z)+ϕ(w)) = O(k−∞)

in C0(D′ ×K). Since locally we have

Phk,dVM = sk(z)⊗ (v(k)
z (w))∗e− k2 (ϕ(z)+ϕ(w))

the claim follows from Lemma 3.4. Furthermore, we have that u(k)
z is holomorphic

outside the support of χ. By Lemma 3.7 we conclude |Phk,dVM |2hk⊗h∗k ≤ C4k
−N−1+2n+ε

on K ×M \ supp(χ). Since the statement is true for all N we find by choosing K
and the support of χ sufficiently small that

Phk,dVM = O(k−∞) in C0(D ×M \D)

is valid for any set D ⊂ U .

Proof of Theorem 3.38. As explained in the proof of Theorem 3.36 the Cr expansion
can be obtained from the C0 expansion using Hörmander’s trick and the apriori
estimate for Phk,dVM in Corollary 2.39 as in the proof of Lemma 3.12. Then the
conclusion of Theorem 3.38 follows from Lemma 3.25 by replacing N with 2N .

As a consequence we obtain the following corollary which is actually the result
of Catlin [10] and Zelditch [38] for vector bundles of rank one.

Corollary 3.40
Let M be a compact complex manifold, dVM a smooth volume form on M and L,
E two holomorphic line bundles over M with smooth Hermitian metrics such that
the metric of L has positive curvature. The Bergman kernel function for the space
H0
k(M,Lk ⊗ E) has an asymptotic expansion, that is

Bhk⊗hE ,dVM −
kn

πn
c1(L, h)n
n!dVM

N∑
j=0

k−jbh,hE ,dVMj = O(k−N−1+n) in Cr(M)

for any N, r ∈ N0.

Proof. SinceM is compact and L is positive we have that the curvature of L induces
a complete Hermitian metric on M . Thus, the curvature of Lk becomes arbitrary
large for k →∞ and M is compact the claim follows from Theorem 3.36 replacing
E by E ⊗ (ΛnT ∗(1,0))−1.

.
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