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Zusammenfassung

Ende des letzten Jahrhunderts lieferten Catlin und Zelditch eine vollsténdige Be-
schreibung des folgenden Phanomens: Betrachtet man die Bergman-Kern-Funktion
By, des k-ten Tensorproduktes eines positiven holomorphen Geradenbiindels L iiber
einer kompakten, geschlossenen, komplexen Mannigfaltigkeit M, so hat diese Funk-

tion eine asymptotische Entwicklung in k, d.h. By lasst sich als formale Summe
By ~ agk™ + a1 k"t 4+ agk™ 2 4+ ask™ 3 ..., fiir k — o0

schreiben. Hierbei kodieren die Funktionen ag,aq,... lokale geometrische Eigen-
schaften der zugrundeliegenden Objekte M und L. In diesem Sinne untersuchen
wir sowohl das asymptotische Verhalten der Bergman-Kern-Funktion als auch das
Verhalten des zugehorigen Bergman-Kerns fiir den Fall, dass die Mannigfaltigkeit
nicht notwendigerweise kompakt, die Metrik nur teilweise positiv, und die zugrun-
deliegende Geometrie nicht beliebig regulér ist.

Im ersten Teil der Arbeit nehmen wir an, dass M ein beschranktes Gebiet des
euklidischen Raums ist und konstruieren einen asymptotisch reproduzierenden In-
tegralkern fir quadratintegrable holomorphe Funktionen beziiglich eines beliebigen
gewichteten inneren Produkts. Wir zeigen, dass zu jeder natiirlichen Zahl N eine
offene Teilmenge My existiert, auf welcher sowohl der Bergman-Kern als auch die
Bergman-Kern-Funktion eine asymptotische Entwicklung bis hin zur Ordnung N
besitzen, abhangig von der Regularitit der zugrundeliegenden geometrischen Ob-
jekte. Es stellt sich heraus, dass die Krimmung der Metrik auflerhalb von My
beliebig seien kann. Unsere Methode liefert auflerdem eine explizite Darstellung der
Koeffizienten dieser asymptotischen Entwicklung fiir jede Wahl von Koordinaten.
Im zweiten Teil der Arbeit nehmen wir an, dass M ein Gebiet einer vollstandigen
Kéhler-Mannigfaltigkeit X ist und dass sich L zu einem holomorphen Geradenbiin-
del Ly iiber X fortsetzen lasst. Wir beginnen mit einer oberhalbstetigen Metrik
auf L und betrachten die Menge M., bestehend aus Punkten, an denen diese Me-
trik durch positive Metriken auf Lo niedergehalten wird. Unter Verwendung der
Resultate des ersten Teils beweisen wir, dass der Bergman-Kern und die Bergman-
Kern-Funktion eine asymptotische Entwicklung auf M., haben, wobei die Ordnung

dieser Entwicklung nur durch die Regularitédt der Geometrie begeschrankt wird.



Abstract

A famous result of Catlin and Zelditch developed in the end of the last century gives a
complete description for the following phenomena: Given a positive holomorphic line
bundle L over a closed compact complex manifold M the Bergman kernel function
By, for the k-th tensor power of L has a full asymptotic expansion. More precisely,

Bj, can be written as a formal sum
By ~ agk™ + a1k 4+ agk™ 2 + ask™ 3 ..., for k — oo

where the coefficients ag, aq,... purely depend on the local geometric data of X
and L. In that sense, we study the asymptotic behavior of the Bergman kernel
function and the related Bergman kernel when M is not necessarily compact, L is
only partially positive and the geometric data fail to be smooth.

In the first part of this thesis we consider M to be a bounded domain in the Euclidean
space and establish a local asymptotically reproducing kernel for square integrable
holomorphic functions with respect to a weighted inner product. From this method
we deduce that for any non-negative integer N the Bergman kernel and the Bergman
kernel function have an asymptotic expansion on some set My up to some order
less than or equal to N depending on the regularity of the geometric data. It turns
out that the curvature of the metric can be arbitrary in the complement of My.
In addition, our method provides an explicit formula for the coefficients in this
expansion which holds for any choice of coordinates.

In the second part we assume that M is a domain contained in a complete Kahler
manifold X and that L can be holomorphically extended to a holomorphic line
bundle Ly over X. We start with an upper semi-continuous metric on L and consider
the set M, consisting of points where the metric of L can be suppressed by positive
metrics defined on Ly. Using the results obtained in the first part, we prove that
the Bergman kernel and the Bergman kernel function have an asymptotic expansion
on M., where the order of the expansion is just limited by the regularity of the

geometric data.
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Chapter 1

Introduction and Statement of the Results

1.1 Introduction

Let E be a holomorphic line bundle over a complex manifold M and let O(M, E)
be the space of global holomorphic sections. The choice of a Hermitian metric on
E and a volume form dVj; on M defines the space L*(M, F), which is the space of
L*-integrable sections in E with respect to the norm || - ||, coming from the inner

product
(u,v)p, ::/ h(u,v)dVyy , for u,v € L*(M, E).
M

For simplicity we will assume that A and dV}; are smooth objects. Let
HY(M,E)=L*(M,E)NO(M, E)

denote the space of holomorphic sections with finite L?-norm. One can check that
this is a closed d-dimensional subspace of L*(M, E) where d € Ny U {oco} strongly
depends on the choice of the inner product when M is non-compact. Since HY (M, E)
is closed there exists a unique orthogonal projection L*(M,E) — HY(M, E). Tt
turns out that this projection can be represented by an integral kernel P, 41,, called
Bergman kernel which is a smooth section M x M — E X E* and by restricting
Py, qv,, along the diagonal in M x M we obtain the so called Bergman kernel function
Bh,avy, € C°(M,R). Given an orthonormal basis {s;}9_, of H3(M, E) we have the

following representations

M-

Ph,dVM (a:, y) = Sj(x) X Sj(y)* S Ez ® E;,

<
Il
-

(1.1)

Bh,dVM(I) |S]($)|i S Rv T,y € M.

<
Il
-

I
™M=

From the construction it is already clear that (1.1) does not depend on the choice
of the orthonormal basis. Furthermore, we have [,; By, av,,dVy = d, so B av,,
should be seen as a dimension density of HY(M,E). The Bergman kernel was
first introduced by Stefan Bergman in 1922 for domains in C™ [1]. Because of its
strong connection to many subjects in complex geometry, complex analysis and
quantum physics it has attracted a lot of attention during the last century till now
(see [30], [11]). The Bergman kernel and the Bergman kernel function appear for

example in the context of pseudoconvex boundaries [7], [19], [28] and extensions
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of holomorphic maps [18], holomorphic embeddings [21], distribution of zeros of
random holomorphic sections [35], existence and approximation of Kéhler metrics
[36], vanishing theorems [14] as well as in quantization theory [34], [25], [18], [9], [32]
and the computation of path integrals [15]. For a complete reference see the book
of Ma—Marinescu [30]. A very important subject is to study the Bergman kernel
for the line bundle Ly, = LF ® E, k € N, where L* is the k-th tensor power of a
holomorphic Hermitian line bundle L over M. The metrics of L and E induce a
metric hy, on Ly and one tries to understand the asymptotic behavior of P, 4v,, and
By, av,, for k — oo. When L is positive, i.e. its metric has a positive curvature, M
is compact and hy and dVj; are smooth it follows from a result of Catlin [10] and

Zelditch [38] that By, av,, has an asymptotic expansion that is
Bhk,dVM ~ (lokn + alk:”_l + agk:”_2 + ... (12)
where ag, aq, ... are smooth functions with ag > 0. More precisely, for any N, r € Ny

there exists a constant C' = Cy,» > 0 such that

S CNﬂnk’_N_l—i_n
cr (M)

N
_ Jn—J
Bhk ,dVar Z a; k
j=0

holds for all £ € N. Furthermore, they calculated ag. Note that the computation
of the coefficients a; in terms of local geometric data is an interesting but difficult
subject (see Section 1.3 and the discussion therein).

In general, the asymptotic behavior of P, 4v,, and By, av,, in the case when L
is globally positive or semi-positive and M possess a complete Kahler metric is well
understood due to Dai-Lu-Ma [13] and Ma-Marinescu [30]. Their results even hold
for symplectic manifolds and orbifolds and can be generalized to the case where hy
is singular in some specific cases (see [31], [12], [20]).

When L fails to be globally semi-positive there are - compared to the wide
range of literature for the globally positive case - only a few results known. The
most general results for that case are due to Berman [5] and Hsiao-Marinescu [20].
In [4] and [5] Berman studies big line bundles over compact projective manifolds.
He established criteria on the existence of an asymptotic expansion in terms of
equilibrium weights. Hsiao—Marinescu proved in [20] the existence of an asymptotic
expansion under the assumption that the Kodaira-Laplacian has a small (local)
spectral gap. Given a point p € M where the curvature of L fails to be positive it
follows from a result of Berman [2] (see also [20]) that

lim sup k™" By, av,, (p) = 0.
k—o0
This shows that one should consider the set of points where L is positive in order

to get an asymptotic expansion as in (1.2).
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In this thesis we consider the case when the metric of L is arbitrary and study
the asymptotic behavior of Py, qv,, and By, av,, at points where the curvature of L is
positive. Starting with bounded domains D in C" and globally trivial line bundles,
assuming that the metric and the volume form is continuous up to the boundary,
we give a self contained proof for Bergman kernel expansion based on elementary
methods from complex analysis in combination with the asymptotic expansion of
oscillatory integrals in a version proven by Hormander [24] which allows us to weaken
the regularity assumptions on the metric hg. It turns out that for any N € Ny we
have an expansion up to order N on a set Dy (see Definition 1.1) where the curvature
is positive, sufficiently regular and the metric satisfies some growth condition on D
but is not necessarily semi-positive in the complement of Dy. Furthermore, thanks
to Hormander’s method of stationary phase, our approach leads also to an explicit
formula for all coefficients a; in the asymptotic expansion (1.2) (see Definition 1.12).
The main result in this part of the thesis is the construction of a reproducing kernel
which asymptotically recovers the value of any holomorphic function at any given
point in Dy up to some error which is an O(k~V~1*"*¢) (see Theorem 1.3). The set
Dy can be very small or even empty strongly depending on D and N. However, by
shrinking D we can always ensure that Dy is non-empty. In this sense our results
provide a local reproducing kernel which can be used to study the Bergman kernel

in a more general case which leads to the second part of the thesis.

In the second part we will combine our results of local reproducing kernels with
the L? estimates of Hérmander [22] given in a generalized version by Demailly [14].
We study the Bergman kernel for a domain M contained in a complete Kahler ma-
nifold X for line bundles which can be globally extended to X. Given a continuous
volume form dVj; on M and an upper semi-continuous Hermitian metric A on L we
obtain quite general results on Bergman kernel expansion for some set M) which
consists of points where the metric h is suppressed by a semi-positive metric hy of
a holomorphic line bundle Ly over X with Lg|y; = L (see Definition 1.14, Theo-
rem 1.15 and Theorem 1.16). An important feature of this method is that we can
assume very weak regularity conditions on h and dV), in the complement of M), (see
Example 1.19).

The thesis is organized as follows: this chapter provides an overview on our re-
sults (Section 1.2 and Section 1.3) as well as a discussion of their relation to previous
results (Section 1.4). Furthermore, we give a sketch of the proofs in Section 1.5 poin-
ting out the main ideas. Chapter 2 contains a detailed study of Bergman kernels
and their asymptotics on domains in C”. In Chapter 3 we will prove the results

announced in Section 1.2 and Section 1.3.
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1.2 Local Expansion

Let D C C" be a bounded domain ¢, p € C°(D) such that p > 0 on D. We will
consider the setting (D x C,h) — (D, dVp) where the projection of the line bundle
is given by (2,A) = z, dVp = pdVen and h is defined by |(z,\)|? = [A\]?e#(). We
identify holomorphic sections with holomorphic functions on D via the trivialization
2+ (2,1), that is we consider the space Hy, (D) = {f € O(D) | ||fllkp, < 00}

where the norm || - [|x,, is induced by the inner product

(f7 g)k(p,p = /D fgeiképdVDv fug c Hl(c)(p,p(D>'

Assume p € CNT2(D) N C°(D) for some non-negative integer N € Ny. We define
the functions vy, pn : D x D — C |

z ol (2
) = g0(2)+1<06|§V+2;!affz()w—z)a,
on(z,w) = p(w) —yn(z,w) — v (z,w).

The complex Hessian of ¢ in z € D is the Hermitian n X n matrix given by

(80(2)
Hw(z) - <82jazl 1§l,j§”.

Let D, ; denote the set of points in D where H,(z) is positive definite.

Definition 1.1
We say that zy € D has the N-th localization property (for ¢) if the following two

conditions are satisfied

(1) 20 € Dyt
(ii)  Pn(z0,2) >0 forall z € D\ {2}

The set of all points which satisfy this condition is denoted by D, .

Example 1.2

Let D C C™ be a domain and ¢ € C*(D,R, ¢(z) = X7, Aj|z]?, where Ay, ..., A,
are positive real numbers. We have H,(z) = diag(\i, ..., ;) and hence D, , = D.
Furthermore, D,y = D holds for all N € Ny.

We have 2y € D, if and only if the transformed weight ¢n(zo,) is positive
on D\ {0} (see Figure 2.1 in Section 2.5). Note that it does not need to be pluri-
subharmonic away from zy. The N-th localization property is carefully studied in

Section 2.5. For example, if D is bounded, we have that D, y is open.
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We will show that under certain regularity conditions on ¢ and p we have that
By, and Py, , have asymptotic expansions up to order N and N/2 on D, y and
D, n x D. Our first main result is the construction of some reproducing kernel
function which recovers the value of any holomorphic function f € H,g% ,(D) at a
point z € D, ny up to some error of order N + 1 —n + € where € > 0 can be chosen
arbitrarily small.

Theorem 1.3

Let D C C™ be a bounded domain, | € Ny a non-negative integer and
@€ OGN+3TL+4+Z<D, R) N CO(E) and pE C4N+2n+2+l(D, R) N CO(E)

be two functions such that p > 0 on D and dVp(z) = p(2)dVen. For any a € Nj
and j € N, |a|,7 < N, there exist functions )\%?a € CY(D,, ) where )\%?a(zo) only
depend on @, p and their derivatives at zg € Dy, such that Ky, n : Dy x D — C
defined by

N .
Kipn(z,w) = L ek (2.2)+w (2.0) Z i Z )\g\ﬂf?a(z)(w —2)°
J=0 la|<N
satisfies the following: For any compact set K C D, n and any € > 0 there exists a
constant C' > 0 such that

f(2) = (F, g (2, gl €9 < R0 IR

holds for all k € [1,00), z € K and f € Hy, (D).

Here C' is bounded when ¢ stays in a bounded set in CON+3"+4(D R) N C°(D) such
that inf_ x5 PN (2, w)/|w — 2|* has a positive lower bound and p stays in a
bounded set in C*NT2"+2(D R) N C°(D) such that inf, 5 p(w) has a positive lower

bound.

We have an explicit formula for )\%?a(20>, Jyla] < N, j <N -— %‘ (see Theo-

rem 3.17 and Remark 3.18) in terms of p, ¢ and their derivatives. In the smooth

1}
2

provements (see Lemma 3.23). Note that for the expansion of the Bergman kernel

setting we can show that this formula also holds for 7 > N — with some im-

function By, , we just need to know )\%?0.

Definition 1.4
For ¢ € CYH"H4(D R) and p € CY*T*""2(D,R), p > 0, define b; = b7": D, — R
by by =1 and for j > 1, z € D, ; set

2j
bi(z) = > > > (—1)(1”5?;)1)”;75))”3(2) '-‘-'V[(;:En,o

d=1 aend (3(1) . p(d)emp)d-1
[21=27 500, |pa-1)|<;
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where "
B AT rtal+8] I
) _ A Xl c 0t
Vos = a7 > > (Drgtaan-g
plp(z) o inl=1+ Lo +16] LA
n>max{a,B}
o J1 Lif2|(r+p+q)andr>|p—q,
Xpg =
0 , else,
and l
o Pa(o>,5<0)(2) , <Pa<a'>,/3<a'>(2)
Ha,p = > 2. 01300)] H a@130)!

(0., a(l>>e(Ng>l+1 8O, 5(l>>€(N3>z+1 j=1

ol |+ Ao | =am 1B |+.. 4188 |=Bm
Pap(2) = (Xu)*(Xw)?p(z) and

(XexZe)(z) if max{|al, |} > 2,min{|al,|8]} > 1,

0 , else,

‘Pmﬁ(z) =

with
0 0

ml = —|—...—|—an7
18’&)1 8wn

where ' = (Fln)1<i,m<n is an invertible complex matrix such that F*H,(2)F =
diag(A, ..., \,) for some Ag,..., A, € R, and we set A7 = A" - .-\,

(Xw)a = H Xg%a Xw,m =
m=1

Note that in Definition 1.4 we have X2 = 0% when F' = Id and that A\y,... A\,
strongly depend on the choice of F'. From the definition it is not clear that b;(z) is

real valued, independent of F' and continuous. This has to be proven.

Lemma 1.5

We have that b;(z) is well defined and independent of the choice of F'. Furthermore,
given p € COT3 (DY and p € CHT2H(D R) for some | € Ny we have b; €
(D, ).

We will show now that the b;s , by = b7, defined above are precisely the coeffi-
cients in the asymptotic expansion of the Bergman kernel function. See Section 2.1

for the notations we use in Theorem 1.6.

Theorem 1.6
Let D C C" be a bounded domain and

© c 06N+3n+4+l(D’ R) N CO (ﬁ)’ p c C4N+2n+2+l(D, R) N CO(E)

be two functions such that p > 0 on D and dVp(z) = p(2)dVen. For any e > 0 and
any 0 < r <1 we have

det(H N
e ( 4.0) g Z k,fjb}o,p — O(kch(N+1)+n+r+s) in CT(D@’N>

Bk%ﬂ - J
P j=0
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with ¢, =1 — 5. More precisely, for any compact set K C Dy n, any 0 < r <1

and any € > 0 there exists a constant C' = Ck; > 0 such that

det(HSO) < CK lk—cT(N+1)+n+r+€
"o - e

N
By, — k" Z k_]b;‘o’p
§=0

Cr(K)

holds for all k € [1,00). Here C is bounded when ¢ stays in a bounded set in
CONFTInHH(D,R) N C%(D) such that inf e 5PN (2,w)/|w — 2|* has a uniform
positive lower bound and p stays in a bounded set in C*NT22+(D RYNC(D) such

that inf, .5 p(w) has a uniform positive lower bound.
We have the following theorem for the off-diagonal expansion.

Theorem 1.7
Let D C C™ be a bounded domain and

© c C«6N+3n+4+l(l)7 R) N CO(E), p c C4N+2n+2+l<D’ R) N CO(E)

be two functions such that p > 0 on D and dVp(z) = p(2)dVen. Given N € Ny
define Pyon: Doy x D — C by

p(w)

N .
Prppn(z,w) = ke M7 - @) 3 =i §™ A0 () (w — 2)e

J=0 lo|<N
satisfies with /\S\Jga as in Theorem 1.3. For any ¢ > 0 and r <[ we have

Prpp— Prpon = O(k—%(N+1)+n+r+5) in CT(D%N x D)

_r_

I+1°
and any € > 0 there exists a constant C' = Ck ;. > 0 such that

with ¢, =1 — More precisely, for any compact set K C Dy n X D, any r <1,

| Prg,p — Pkcp,p,NHcr(K) < OK,LEIC_%(NHHHM%

holds for all k € [1,00). Here C' is bounded when ¢ stays in a bounded set in
CONFTIHH(D,R) N C°(D) such that inf e 55 lw — 21 /@n(z,w) has a uniform
positive lower bound and p in a bounded set in C*NT2T2+ (D R)N C°(D) such that

inf, .5 p(w) has a uniform positive lower bound.

Corollary 1.8

Let K C Dy n x D be compact. Given € > 0 there exist constants C,0 > 0 such
that | Py, ,(z,w)| < C(k”e_5k|w_z|2 +k_%+"+5) holds for all (z,w) € K, k €
[1,00). Here C and 6~ stay bounded under the same conditions on ¢ and p as in
Theorem 1.7.
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Definition 1.9
Given ¢, p € C*DNCYD), a € Ny, j € Ny define b;, € C®(D, )

b — a!7r"p ()
Ja det(H¢) 2j+2|al,

with )\%?a as in Theorem 1.3, and set

B et(H(2) o e 3 gy baald)

ﬁ’kpr(z,w) =
P05 n ‘ I
p(2) =0 <N @

for (z,w) € Dy 4.

Corollary 1.10
With the notations in Theorem 1.7 and Definition 1.4 assuming that @ and p are
smooth and continuous up to the boundary, i.e. o,p € C*(D,R) N C°D), we have

Pk(p,p - Pkgo’p’le = O(]{J_N_HH_T_&) m CT(DWAN X D),
det(H, N
By, — e(p%");{;n Z kb, = O(k_(N+1)+n+r+e) in C"(Dy.y)
j=0

ﬂ—n
1
Jor any N,r € Ny and any 0 < e < 3.

Note that we do not assume that D, ;. = D, that is ¢ does not need to be positive
definite (or positive semi-definite) everywhere on D. In a geometric sense this means
that the fiber metric induced by ¢ is only partially positive. In general the set D, v
is small or even empty depending strongly on N. On the other hand we have that
given any N € Ny and any point in 2y € D, + there exists an open neighborhood U
of zy such that 2y € U, y holds. Therefore, our results should be considered as local
expansion results. However, using some deep result of Hormander [22] and Demailly
[14] we can apply our local computations to a more general setting. We are going
to describe the results obtained for such a setting in the next section. Let us finish

this section with the following example.

Example 1.11

Let D C C™ be a bounded domain. Let U C D be some open set ¢ € C3°(U,R) a
smooth non-negative function supported in U. Consider the weight ¢ € C*°(D,R)N
C'(D), ¢(z) = X1 Ajlz* + ¢(2), A,..., A > 0. As in Example 1.2 we find
V:=D\U C Dy,4. Given p € C®(D)NC°D), p>0on D, any N,r € Ny and

any0<5<%wehave

Prpp — pk%pAN = O(kiNJrnMis) in C"(V x D),

N 1.3
det(Hy) S kb = O(k~ WD) i O (V) (13)

Bkso,p - i
p §=0
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with

Prppan(z,w) =

k" 6_5(2?:1 Aj(lwj—z; Q—Zij+7jwj)) i kI Z bja(2)
m™p(z) = Jal<n-;

An explicit formula for b, , is obtained in Theorem 3.17 and Lemma 3.23. We will
state this formula here for the case n =1 and Ay = 1. We find

Al (=D m) (m) (ra)
_ 71 T2 Td
bja= >, D > Bl Va,g1Vp1,62 "+ " VBa1 0
d=1 TeNd BEN371 p
IT1=2i+lel g, 8, 1<2j+2]al
where
8r+g—par+g—q
r _ ) 9 = P
Vp,q - Xp,

q (r+g—p)!(r+129—q)!

with X](Jfg as in Definition 1.4. Note that b;, = b; holds which implies that the sum
for b; just need to be considered for 3i,..., 841 < j.

1.3 Global Expansion

Let (L,h) — (M,dVy) be a holomorphic Hermitian line bundle over a complex
manifold M with volume form dV);. Given complex coordinates (U, z) around a
point p € M and a local holomorphic frame s we can identify h ~ ™% with ¢ =
—log(h(s,s)), dVy = pdVen for some positive function g, and holomorphic sections
on U with holomorphic functions in the complex variable z. We say that h is upper
semi-continuous or has upper semi-continuous weight if — log(h(s, s)) is upper semi-
continuous for any local holomorphic frame s. Let M} 1 denote the set of points in
M which have a neighborhood where h is of class C? and has positive curvature. Let
(E, hg) be another holomorphic line bundle with smooth Hermitian metric. We are
interested in studying the Bergman kernel P = Pyrgp,, av,, and its Bergman kernel
function By, = Byrgn,.av,, for the space HY(M, L*® E) consisting of all holomorphic
sections with finite L?-norm as mentioned in Section 1.1. We define the following

invariants for our setting.

Definition 1.12

Assume that h is of class C%3"+4 and dV), is of class C¥+2"+2, Define
b, dVar | h,dVar,h ,
by = by M M, — R, b TME (p) = 077 (2(p))

where b7 is given by the formula in Definition 1.4 with respect to a choice of local
trivializations s of L and e of E and local coordinates (U, z) with ¢ = —log(h(s, s)),
p=hg(e,e)p, dVy = pdVc .
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Lemma 1.13
The function b; = b?’hE’dVM is well defined, that is b; is independent of the choice of
coordinates and trivializations. Furthermore, we have that b?’hE’dVM e CY (M, ,,R)

if h is of class COT3"4H and dV)y, is of class CU+2n+2H,

Definition 1.12 together with Lemma 1.13 give us globally defined quantities
which decode information of h, hg and dV},; and are explicitly given in local coordi-
nates. Note that it follows from the definition that b; does not depend on any choice
of a Hermitian metric on M. Since the b;s are our candidates for the coefficients
in the expansion of the Bergman kernel function that observation becomes obvious
because the definition of By only depends on the choice of volume form and line
bundle metric.

One of the most important cases where the Bergman kernel and its Bergman
kernel function has an asymptotic expansion is when L — M is a positive holomor-
phic line bundle over a compact Hermitian manifold M. The Hermitian metric on
M induces a volume form dV;;. As mentioned in Section 1.1 a theorem of Catlin
[10] and Zelditch [38] (see also [30]) implies that By has an asymptotic expansion,
that is

Bk ~ aok" -+ alkj"_l -+ agk,'"_2 + ... (14)

A very difficult task is to calculate the coefficients a; in terms of local geometric
data. It is well-known that the Bergman kernel localizes in that setting (see [30,
Section 4.1.2]). Hence we have a; = b;. In other words we established an explicit
formula (in local coordinates, see Definition 1.4 and 1.12) for the coefficients a;.
But this formula does not give a direct link between the coefficients and geometric
objects. As mentioned before the coefficients a; should not depend on the choice of
the Hermitian metric on M but on its volume form. However, under the assumption
that L is positive the curvature induces a unique Kéhler metric w on M. So it is

= b?’hE VM in terms of the geometry with respect to that

h,hE,dVig
bj

natural to express the q;
specific Kahler metric. Since the construction of given in Definition 1.12
holds for any choice of local coordinates, we can choose Kahler normal coordinates
(see [6]) and some "good" local frame of E and find that the derivatives of ¢ and p
in Definition 1.4 are directly linked to the curvature tensor and the Ricci tensor of
w, the curvature of hr and their covariant derivatives (see also [37] and Section 1.4).

We will now introduce the setting where we want to prove an asymptotic ex-
pansion. In order to get a full asymptotic expansion one has to assume the metric
h and the volume form to be smooth, i.e. to be of class C'°, at least at points one
wants to prove the expansion. Let Ly and Ejy be two holomorphic line bundles over

a complete Kéhler manifold X with metric w and let M C X be a domain. Fix
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a smooth Hermitian metric hg on Ey and consider the holomorphic line bundles
L = Lo|y and E = Ey|y over M. Let h be a Hermitian metric on L with upper
semi-continuous weight. We will use the notation ¢; (L, h) to denote the curvature of
the Hermitian line bundle (L, h) at points where the metric h is of class C?. Locally

we can write ¢1(L, h) = —£99dlog(h(s, s)) for any local holomorphic frame s of L.

Definition 1.14

We define the set M, C M by saying p € M), « if and only if p has an open
neighborhood U where h is smooth with positive curvature and there exists a smooth
semi-positive metric hg on Ly — X and ky with A < hg on M and h = hg on U and
kci(Lo, ho) + c1(E, hg) > 0 for all k > k.

We will study the Bergman kernel and the Bergman kernel function for the line
bundle L, = LF ® E @ A"T*10 M where the metric h,, on A"T*M9 M is induced by
the metric w and the volume form is given by dVy; = p<;, where p € C°(M,R) is
positive and bounded. In local coordinates (U, z) we will use the holomorphic frame

dz := dzy A ... Ndz, for A"T*POM and find dViy, = ppdVien, hy(dz,dz) = 1/p.
Hence we find that b; is independent of w, so we set b?’hE’p = b?’hE@h“’dVM in this
setting. Putting hy := h¥ ® hg ® h,, to denote the metric of L; we write P, .avy,
for the Bergman kernel and By, q4v,, for the Bergman kernel function of the space

HY(M, Ly). We have the following results.

Theorem 1.15 (On-Diagonal Expansion)

Let Lo and Eq be two holomorphic line bundles over a complete Kdihler manifold
(X,w) and let hg be a smooth Hermitian metric on Ey. Let (M,dVy) be a domain
inside X with volume form dVy; = pw™ for some bounded, positive function p €
C°(M,R) and consider the holomorphic line bundles L = Lo|ys and E = Ey|y
over M. For any upper semi-continuous metric h on L and k € N consider the

holomorphic Hermitian line bundle
(Li hi) = (L* @ E@ A"T* O M W @ hig @ hy,)

and let By, av,, denote the Bergman kernel function for the space HY(M, Ly,).
Given any N,r € Ny assuming p € C*™ 2 T2(M,, ) withm = Nr+N+r?+r+2,

we have

k™ e (L, h)* & s _Nelim\ .
Bhyavar — Wlln(wl‘/]\jzb?hmpk 7= Ok~ in C" (M 00).-

7=0
More precisely, given any compact set K C M}, o and any partial differential opera-

tor I of order < r there exists a constant C' = Ck r such that

k™ ci(L, h)* & »
F (Bhk,dVM - 7M Zb.?’hE’pk J) (p)

< CkaNfHﬁL
™ nldVy = -
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holds for all p € K and all k € N. Here C is bounded when p stays in a bounded
in CAm 220N, o R) N COY(M) such that infyens p(p) has a uniform positive lower

bound and sup,cy, p(p) has a uniform upper bound.

Given local coordinates (U, z) around a point p € M and local holomorphic fra-
mes s and e of L and E, we denote by (U x U, (z,w)) the induced coordinates around
(p,p) € M x M and choose §j,(z,w) := e2 @@ sk ()e(2)dz(s* (w)e(w)dw)* as a
trivialization of Ly X Lj|yxy with ¢ = —log(h(s, s)).

Theorem 1.16 (Near-Diagonal Expansion)
Under the assumptions of Theorem 1.15 given N,r € Ny, 0 < e < % and any point
p € My such that p is smooth in an open neighborhood around p, there exist
coordinates (U, z) around p and local holomorphic frames s and e of L and E such
that

Propavay — Prppan(z,0)8 (2, w) = O(k~NT"47=2) i O(U x U)

where Pk%ﬁAN: U x U — C is defined in Definition 1.9 and p = phg(e,e).

Corollary 1.17
For any point p € M}, « there exist coordinates (U, z) around p and constants C,§ >
0 such that |Py, av,,| < k"Ce=%%=wl* 1 R(k) with R(k) = O(k=>) in C™(U x U).

Theorem 1.18 (Off-Diagonal Asymptotics)
Let D C My, o be an open subset such that p is smooth on D. One has

Ph,.avy, = O(k~) in C"(D x (M \ D)).
We will now use these results to generalize the setting in Example 1.11.

Example 1.19

Let D C C" be any domain. Let U C D be some open set, 1) an upper semi-
continuous non-negative function supported in U. Consider the weight ¢ defined
by ¢(2) = X7_1 Ajlz]* +(2), Ar,...,Aw > 0. As in Example 1.11 we find V :=
D\ U C M,¢ . Given a bounded function p € C*(V)NC%D), p > 0 on D, we
have that (1.3) is still valid.

Example 1.20

Let (L, h) be a holomorphic line bundle with smooth positive Hermitian metric over
a compact complex manifold X and let M C X be a domain with volume form
dVy = c1(L, h)"|y. We denote the restriction of the Hermitian line bundle to M
again by (L, h) and consider the Bergman kernel P and the Bergman kernel function
By, for the space H)(M, L*). Note that in general the space HY(M, L*) contains more

sections than HJ(X, L*) and can be infinite dimensional while HY(X, L¥) is always
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finite dimensional since X is compact. We find M}, .. = M and hence deduce from
Theorem 1.15 and Theorem 1.16 that P, and Bj; admit asymptotic expansions on
M. Furthermore, given an open set U C M and a perturbation of h in M \ U of
the form he™¥ for some non-negative upper semi-continuous function 1) supported
in M \ U, we find that P, and By for the perturbed metric still have the same

expansion on U.

1.4 Relation to Previous Results

The subject of Bergman kernel expansion has a long history started by Tian [36]
in 1990. We start by giving an overview about the most famous results in this
context and the results which are directly linked to this thesis. For a complete
reference on Bergman kernel expansion we refer to the book of Ma—Marinescu [30].
In the following let (M,w) denote a complex Hermitian manifold, L a Hermitian
line bundle and E a Hermitian vector bundle over X. Let HY(M, L* @ E) be the
space of holomorphic sections in L* ® F with finite L?>-norm. We denote by P,
the Bergman kernel and by By, Bi(x) = Py(x, ), the Bergman kernel function for
HY(M, L* ® E). Note that if E has rank > 1 we have that Bj becomes a section in
the endomorphism bundle of E. Bergman kernel expansion contains the following

subdisciplines:
e On-diagonal expansion, that is the expansion of the Bergman kernel function.

e Near-diagonal expansion, that is the expansion of the Bergman kernel in a
small neighborhood around the diagonal of M x M.

e Off-diagonal expansion, that is the behaviour of the Bergman kernel away from

the diagonal.
e Computations of the coefficients in the expansions.

In [36] Tian uses a so called peak section method to establish an on-diagonal ex-
pansion up to order 2 under the assumption that L is positive, w is the curvature of
L, F = C is trivial and M is compact. He also shows that - modulo some technical
assumptions - this method works when (M, w) is a complete Kéahler manifold.
Catlin [9] and Zelditch [38] study the case when L is positive and M is compact,
and prove a full asymptotic expansion for the Bergman kernel function using a deep
result on Szego kernel expansion on pseudoconvex boundaries due to Sjostrand and
Boutet de Monvel [7]. Furthermore, they calculate the coefficient ag. Note that the

work of Catlin [9] also contains a result on near-diagonal expansion.
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In [27] Lu generalizes the methods of Tian in order to prove a full asymptotic on-
diagonal expansion, calculated the first three coefficients and described an algorithm
for computing all coefficients. Lu assumes that M is compact and L is positive.
Under the assumption that M is a bounded pseudoconvex domain in C*, L, K ~ C
are trivial, L is semi-positive and w is the curvature of L, Englis proves in [17] a full
on-diagonal and near-diagonal expansion on sets where L is positive using results of
Fefferman [18] and asymptotic expansion for Laplace integrals. Since the coefficients
in the expansion of Laplace integrals are explicitly given he computed the first four
coefficients for the on-diagonal expansion in [16] .

In [13] Dai-Liu-Ma (cf. Ma—Marinescu [30]) prove an asymptotic expansion for ge-
neralized Bergman kernels for spin® Dirac operators on symplectic orbifolds using
a heat kernel approach. As a consequence they obtain a strong result on Bergman
kernel expansion on complex manifolds under the assumption that M is compact
and L is positive. Furthermore, Ma-Marinescu [30] give an algorithm for compu-
ting the coefficients for the Bergman kernel expansion (see also their work [29] for
computations of the coefficients in the near-diagonal expansion). Their result also
works - modulo some technical details - when (M, w) is complete and L is positive
(see [30]).

In [3] Berman-Brendtsson-Sjostrand give a proof for Bergman kernel expansion using
L? estimates and the construction of local reproducing kernels up to an asympto-
tically small error. The local kernel is obtained using techniques from microlocal
analysis. They assume that L is positive and M is compact. In [37] Xu give an
explicit formula for the coefficients in the expansion of the Bergman kernel function

in terms of graphs and combinatorial functions.

All the results mentioned above use the assumption that the metric is smooth and
has positive (or at least semi-positive) curvature. Furthermore, (M, w) is assumed to
be compact or complete. General results for smooth metrics with arbitrary curvature
are due to Berman [5] and Hsiao—Marinescu [20]. Note that the results of Hsiao—
Marinescu also work for (0,¢)-forms. In [5] (cf. [4]) Berman considers M to be
compact and L to be a big line bundle with a smooth metric of arbitrary curvature.
As a consequence of his results it turns out that Bergman kernel expansion holds
(in the sense of Ma—Marinescu [30]) exactly on the set of points where the metric
coincides with its equilibrium metric (modulo some base locus). Hsiao—Marinescu
considered in [20] the Bergman kernel for lower energy forms and prove that this
object always admits an asymptotic expansion. It follows that for arbitrary M and
arbitrary smooth Hermitian metric on L the Bergman kernel P, and Bergman kernel
function By has an asymptotic expansion on subsets D C M where the Kodaira

laplacian has a small (local) spectral gap.
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Our approach is related to methods due to Tian, Berman-Berendtsson—Sjostrand,
Berman and Englis and uses an expansion result on oscillatory integrals as proven
by Hormander in [24] (see also Theorem 2.51). Note that in this thesis we restrict
ourselves to the case where F has rank one. We will now explain the relation of our

results from Section 1.2 and their proofs to other results and methods in detail.

Recall that Theorem 1.3 provides a reproducing kernel for a bounded domain D
which reproduces the value of any holomorphic function at any point of D, x (see
Definition 1.1) up to some error which is an O(k=N=1%"). Note that we do not
assume the weight ¢ and the volume form pdVen to be smooth, that ¢ does not
need to be plurisubharmonic everywhere on D and that the estimates are uniform
in ¢, p up to some technical conditions. Furthermore, we give an explicit formula
for the coefficients for the on-diagonal expansion (see Definition 1.4).

In [3] Berman-Brendtsson-Sjostrand construct a reproducing kernel with error which
is an O(k~N=1%7) (see [3, Proposition 2.7]) using techniques from microlocal analy-
sis - which is different from our approach - in the following setting. They consider
the domain D to be a ball in C" around the origin, fixed a smooth weight ¢ and a
smooth volume form pdVe» and assume the weight ¢ to be strictly plurisubharmonic
on D. From their method they obtained an algorithm for computing the coefficients
for the on-diagonal expansion but do not give an explicit formula in general.
Englis proved a result on Bergman kernel expansion in the following setting (see
[17, Corollary 1]). He considered a bounded pseudoconvex domain D C C™ and
assumed the fixed data ¢ and p := det(H,) to be smooth and bounded and ¢ to be
plurisubharmonic. Under some further technical assumption he proved a full expan-
sion of the Bergman kernel on the set of points where ¢ is strictly plurisubharmonic
using an asymptotic expansion for Laplace integrals. Since the coefficients in the
expansion of Laplace integrals are well-known (see [16]) he could calculate the first
four coefficients. Although his method is different from ours we have that the ex-
pansion for Laplace integrals (see [16, Corollary 2]) is similar to Theorem 2.50 under
the assumptions that ¢ is smooth and ¢y can be replaced by the almost analytic
extension of ¢ which actually means to put NV = co. Note that in Theorem 2.50 we
also have uniformity in ¢ and its derivatives thanks to the Hérmander’s method of
stationary phase.

In [26] Liu-Lu develop an abstract version of the peak section method introduced by
Tian [36] and generalized by Lu [27]. As a consequence of their result they obtain an
on-diagonal expansion for the Bergman kernel for compact manifolds with positive
line bundles under the assumption that the metric is fixed, smooth and has positive
curvature. This setting seems to be quite different to our local setting considered

in Section 1.2. However, we establish a local version of their abstract peak section
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method to prove Theorem 1.3. Note that they need Hérmander’s L? estimates which
we can avoid here. Since on a compact manifold the space of holomorphic sections is
finite dimensional it is much easier to prove that the Bergman kernel function can be
approximated by their peak section method. In our case the space of holomorphic
functions is always infinite dimensional. That leads to the problem that we do not
see immediately that our computations approximate the Bergman kernel function.
We overcome this difficulty by introducing the local reproducing kernel with small
error (see Theorem 1.3). It turns out that this is actually an improvement of the
method of Liu-Lu since we also obtain results for the off-diagonal expansion (see
Theorem 1.7). We refer to Section 1.5.1 and Remark 1.21 for more information
about the relation between our method and the method of Liu—Lu. Note that the
results of Dai—Liu—-Ma and Ma—Marinescu also provides uniformity in the geometric
data. On a compact manifold this implies that the expansion holds under weaker
regularity assumptions on the metric, that is the metric does not need to be of class
C*.

In [37] Xu gives a closed formula for the coefficients in the expansion of the Berg-
man kernel functions. More precisely, he proves that any coefficient is the weighted
sum over a set of special graphs which correspond to geometric objects of the ma-
nifold, that is the curvature and its covariant derivatives, with weights given by
combinatorial functions which are recursively defined. Although our formula for the
coefficients (see Definition 1.4) is less aesthetic those combinatorial functions are
contained in an explicit way. However, our formula is in local coordinates and hence
the connection to geometric quantities is not obvious. Choosing Kéhler coordinates

(see [6]) will immediately lead to an expression in terms of geometric quantities.

Let us explain now how the results from Section 1.3 and their proofs are related
to previous results. In [3] Berman-Brendtsson-Sjéstrand used L? estimates of Hor-
mander [23] (cf. [14]) to extend their local reproducing kernel to the entire manifold.
We follow their procedure with some slight modifications to extend our local repro-
ducing kernel (see Theorem 1.3) to the global setting (see Section 1.5.2 for an outline
of the idea). As a consequence we obtain the results from Sections 1.3. Note that we
assume very weak regularity conditions on the metric and the volume form outside
the set we want to prove asymptotic expansion (see Example 1.19). Furthermore,
our results for the on-diagonal expansions provides uniformity in the volume form
which does not need to be smooth (see Theorem 1.15). In Section 1.3 assuming that
the manifold M is compact and the metric and volume form are smooth and fixed,
our result follows from the results of Berman in [5]. If the surrounding manifold X
is complete and the metric is the restriction of a smooth positive metric on Ly to L

our results follow from Hsiao—Marinescu [20].
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1.5 Sketch of the Proofs

In this section we give a sketch of the proof of the results announced in Section 1.2
and Section 1.3. In Section 1.5.1 we give a description of the proof of Theorem 1.3
in a simple case and explain how Theorem 1.7 and Theorem 1.6 follows from The-
orem 1.3 as a simple consequence. Furthermore, we explain how to get the for-
mula (see Definition 1.4) for the coefficients in the expansion of the Bergman kernel
function. In Section 1.5.2 we show how the results from Section 1.3 can be deduced

from Theorem 1.3 and the L? estimates due to Hormander.

1.5.1 Reproducing Kernels with Asymptotically Small Errors

We will start with the proof of Theorem 1.3 and then explain how Theorem 1.7 and
Theorem 1.6 follow. We start by sketching the proof while pointing out the main
ideas. Note that the fundamental idea of this proof is due to Tian [36] and was
generalized by Lu [27] and Liu-Lu [26] (see Remark 1.21).

For making the idea clear we consider the case n = 1, that is D is a bounded
domain in C and we assume 0 € D. Assume that ¢, p € C°°(D,R) N C°(D) be two
smooth real valued functions which are continuous up to the boundary of D with
p > 0. Let H}, (D) be the space of holomorphic functions with finite L?-norm
| - llkg,p and let Ky ,, Py, and By, , be the reproducing function, the Bergman
kernel and Bergman kernel function for that space (see Section 2.4 for the definition
and construction of these objects). We then want to show how to get a pointwise
asymptotic expansion of By, ,(0) up to order N € N assuming that ¢ has the N-th
localization property in zp = 0 (see Section 2.5). For any 0 < o < N consider the
function vy (2) = (2 — 2o)%e kN (02) = 2=k (02) and set Viy = spanc{va} (see
Section 2.5 for the definition of vy and @y). Our assumptions ensures that Vi is

an (N +1)-dimensional subspace of Hp_ (D). We can split the proof into two steps:

ke,p

(i) Calculate the Bergman kernel function By (0) at zp = 0 for the space Vi

and show that By, (0) admits an asymptotic expansion up to order N, that is
|BN7]€(O) — CL()/'C + Cle’O + Cle’_l + ...+ aNk_N+1| S Cok’_N

for real numbers ag,...,ay € R and a constant Cy > 0 independent of k €
[1,00).

(ii) Show that for any 0 < ¢ < 1 there exists a constant C' > 0 such that for all
k € [1,00) we have | By (0) — By, ,(0)| < Ok~ N-1+nte,

Step (i): We have By ;(0) = e #2321 15;(0)|? where {s;}]_, is any orthonormal

basis for Vi with respect to the inner product on Vi given by the restriction
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of the inner product on Hp, (D). We observe v,,(0) = 0 for all 1 < o < N. If
we choose an orthonormal basis {s;} with {s;}_; C spanc{vax}i_; we have
By i(0) = e |5(0)[>. Then the ansatz is to find u, = 20 Aapvar € HY, (D)
such that (ug, vak)k, = 0 for all 1 < o < N and (ug,vox) = 1. So we are seeking

for the solution of the linear equation
A = (1,0,0,...,0)7

where Ay = (Va1 Va,k)kp)geq BN and Ay = (Aog,---,Ang). By Cramer’s rule we
adetAan -

get Aax = (—1) ot A4 where A, is the N x N submatrix of A obtained by

eliminating the first row and the o'" column from A;. We write

(Vo> VB k) ko :/ X(z)zo‘fﬁe_WN(O’z)dVD(z) +/ (1-— X(z))zo‘fﬁe_kw(o’z)dvp(z)
D D

for some cutoff function y supported in D such that y = 1 in a neighborhood of 0.

The N-th localization property ensures that the second term on the right-hand side is
an O(k~°). For the first term on the right-hand side we use the method of stationary
phase due to Hérmander (see Section 2.6) to show that this term has an asymptotic

expansion with an explicit formula for the coefficients. Expanding the determinants
det AO,k
det Ay,

to get an explicit formula for the coefficients in that expansion we do some rescaling

. In order

we get as a conclusion an asymptotic expansion for B N,k(()) = Aok =

of the entries of A,. More precisely, we set A, = Sk L A..S, for some diagonal matrix
Sp to get Ay = Id+Cik™ + ...+ Cnk™N + O(k~N*1) for some matrices Cy, ..., Cy
independent of k. Using the ansatz A;' = Id+Bik~'+...+ Byk™N +O(k~N=1) we
could uniquely determine the k-independent matrices By, ..., By from Ci,...,Cy
using flkfl,;l = Id. Since we know C1, ..., Cy,Sy explicitly and By ;(0) = Ao is the
first entry of the vector Skfl,;lsk_l(l, 0,0,...,0)T we end up with an explicit formula
for the coefficients in the expansion of By x(0). A detailed proof of that formula is
given in Section 3.2.

Step (ii): Here we show that wy satisfies some reproducing property up to order
N, that is

F(0) = (f unug|?e ™0 < CRTNH || FIR L, f € H, (D) (1.5)

for some 0 < ¢ < 1 and some constant C' > 0 independent of k. Let W ; be the space
of all elements in Hy, ,
tion H}, (D) = Vi ® Wy By construction (1.5) is true for all f € V. Proving
an L?-norm estimate for the stationary phase formula in Section 2.7 and using the
information about Ay x, 0 < o < N we find that (1.5) holds for the elements in
Wy k. To proof that (1.5) is true for all f € H,g% ,(D) we need to establish a relation
between the orthogonal complement Vi of Vi, in Hp, (D) and Wy . More pre-

(D) — VVNJ€

(D) which vanish up to order N in 0. We have the decomposi-

cisely, we prove that the restriction of some projection Id —T'n: H, ,8% p
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coming from some modified Taylor expansion in 0 is uniformly bounded in k (see
Section 2.8, Theorem 2.66). From (1.5) and the reproducing property of the kernel

K,y 5(0, 2) (see Definition 2.34) a direct calculation shows
[Brgp(0) = Brx(0)] < [[Ki,p(0,) = walli, < ChT7H,

We just showed a pointwise expansion in zy = 0 here. However, in this thesis we
will show that the estimate is uniform in zy, p and ¢ staying in some bounded sets
which satisfy certain conditions (see Theorem 1.7 and 1.6).

Using similar arguments as above and basic L?-norm estimates from Section 2.3
we get the estimates for [Py, , v — Piyp| in Theorem 1.7. To get an estimate in the
C'-norm we use Hérmander’s trick (see Lemma 3.11) and an apriori estimate for the

Bergman kernel (see Corollary 2.39).

Remark 1.21

Our approach is related to the generalization due to Liu-Lu [26] of the methods
used in [36] and [27]. In [26] Liu—Lu proved a result on the asymptotic expansion
in k£ of the Bergman kernel function for sections in the k-th tensor power of a
positive holomorphic line bundle twisted with some holomorphic vector bundle over
a compact manifold. The main difference compared to our setting is that the space
of holomorphic sections on a compact manifold is finite dimensional. Hence they
worked with matrices Ay as above of increasing size but which contains all the
information of the space of holomorphic sections. This makes it easier to prove that
an inverse of a submatrix of sufficiently large but fixed size approximates already
the Bergman kernel function. In our setting the space of holomorphic functions has
always infinite dimension. In order to prove that our computations approximate the
Bergman kernel function we construct a reproducing kernel modulo sum error in
(1.5). Using this kernel we are able to deduce a result on the off-diagonal expansion

from our method.

1.5.2 Approximation of Bergman Kernels on Manifolds

In this section we will outline the idea for the proofs of Theorem 1.15 and Theo-
rem 1.16. For the proof of Lemma 1.13 see Lemma 3.29. The idea is basically to
extend the reproducing kernel from Theorem 1.3 as a holomorphic section in the
second argument to the entire manifold. Note that the extension of locally repro-
ducing kernels to global settings via L? estimates by Hormander was also used by
Berman-Brendtsson—Sjostrand in [3] and Berman in [5]. In principle we follow the
prove of [3, Theorem 3.1]. For making the idea clear we will just proof the expansion

at one point and consider the following simplified setting. Let (X,w) be a complete
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Kéhler manifold of complex dimension n = 1 and M C X a domain. Let (Lg, ho)
be a positive holomorphic line bundle over X and let h be a Hermitian metric on
L = Lo|p such that h < hg on M and h = hg on some open set U C M. Choose
dVyr = pw to be the volume form for some positive function p € C°°(M,R) such that
p is bounded by a constant Cy > 0. Set L;, = L* @T*19 X We are interested in the
Bergman kernel P, and its Bergman kernel function By for the space HY(M, Ly,),
k € Nat a point p € U. Choose coordinates (D, z) around p with z(p) = 0 and hence
identify D with a subset of C around 0. Assume that s is a local holomorphic frame
of L defined on D, define ¢ = —log(|s|?) and set s = s* ® dz. We have that s, is a
local holomorphic frame of L;. By shrinking D we can ensure that 0 has the N-th
localization property for . Given a holomorphic section f € HJ(M, L) we have
f = fus on D for some holomorphic function fi € H,g%p(D). Setting ), = ugsy with
uy as in Section 1.5.1 and using (1.5) we find since hk(f, U)dVyr = frire ™ pdVe
that
f = se(Frn)knln, < CENTH IR vy | € HI (M, L)

where (-,-);p indicates the inner product obtained by integration over D. We
showed that u, has locally also a reproducing property up to some error. But we
cannot proceed as in Section 1.5.1 to show that u(0) approximates By(p) since g
fails to be holomorphic on M. To overcome this difficulty we multiply u; with a
cutoff function supported and D and equal to one in an open neighborhood V' of 0
and consider 9(x@i;) = (0x)iy, € QOV (X, LE@T*10 X). Thanks to the L? estimates
of Hormander [23] in Demailly [14] we find by our assumptions a smooth section v
on X with values in Lf ® T*(9 X such that dv, = (9x)i and

[l v < [ 1@ Pl v

Since |dx/|? is supported in an annulus around 0, properties of uy and h < hy it follows
vkl avi, < CoJx vk, dVx = O(k~>°). Furthermore, we have that xi — vy is

holomorphic on M and v is holomorphic on V. We conclude that

|f_ Sk(fv ak)hdeM‘hk < Ck7N71+n+EHink,dVM7 f € HS<M7 Lk) (16)

and can proceed as in Section 1.5.1 to prove that |By(p) — ux(0)] < Ck=N-14nte,
An approximation for the Bergman kernel Py can also be obtained from (1.6) using

similar arguments as in Section 1.5.1.



Chapter 2

Bergman Kernels in C”

This chapter contains the fundamental framework for the proofs of the results an-
nounced in Section 1.2 and Section 1.3. More precisely, we present a careful study
of the space of holomorphic sections with weighted finite L2-norm. The chapter is
organized as follows. In Section 2.1 we state basic definitions from analysis and in-
troduce the notations which are used during this thesis. Section 2.2 and Section 2.3
contain the notion of holomorphic functions, basic properties and basic asymptotic
L?norm estimates for them. In Section 2.4 we introduce the Bergman kernel and
proof some apriori estimates. Sections 2.5 - 2.8 contain the partial steps for the

proof of Theorem 1.3 (see Section 1.5 for more explanations).

2.1 Analysis and Basic Notations

2.1.1 Analysis in R"

We use the following notations: N = {1,2,...}, Ny = NU{0}, R (resp. C) is the set
of real (resp. complex) numbers. Given a complex number z = a + ib € C, where
a,b € R and i denotes the complex unit (i = —1), we write Re(z) = a, Im(z) = b,

Z = a — b and set
12|* = 22 = a* + 1%, |z] = +/|2|%

A subset X C R" is called domain if it is open and connected. For U C X we
write U CC X if U is relatively compact in X, that is the closure of U is a compact
subset of X. Given an open set X C R" and a non-negative integer [ € Ny the set
of I-times continuously differentiable complex valued functions is denoted by C'(X)
and we set C°°(X) = M;ey CY(X). Furthermore, for | = 0 we denote by C°(X) the
continuous functions from X to C, where X is the closure of X. The set C}(X),
[ € NgU {00}, indicates the subspace of C'(X) which consists of all functions which
vanish outside a compact subset of X. Given a function f: X — C, the support of
f, denoted by supp(f), is the closure of the set of points where f is non-vanishing.
The space C'(X,R) consists of all real valued function in C!(X) and hence we define
C>*(X,R), CI{(X,R), C°(X,R) as above. Furthermore, we set C'(X,C") = C'(X)",
CYX,R") = CY{X,R)".
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An element a € N is called a multi-index. We set
lal = a1 + ...+ ay, al =ai!. . o).
Given another multi-index 8 € Nj we further set

a+p= (a4 B, ...,qn+ 5n),

a>fBea;>piforalll <j<n,

a—pF= (a1 =P, ., n — Bn), if a>p,
max{a, B} = (max{a, f1}, ..., max{ay,, B.}),

()= () ()

Let © = (x1,...,x,) the canonical coordinate map of R™. We will use the notations
o\ o\
r® =ax .. ain, i = — )
! " v <8[E1 ) ﬁxn
If there is no reason for confusion x = (x4, ..., x,) will sometimes denote a point or

vector in R™. The Euclidean norm of x is given by |z| = \/]le + ...+ |z,]? and
given r > 0 and xy € R" the open ball of radius r around x¢ is B, (z) = {x € R™ |
|z — 0| < r}. The differential of a function f € C'(X) is denoted by

b =50 oz,

dzx,,

and we set |d, f| = \/|%|2 +...+ |%|2. Given a measurable function f: X — C
(measurable in the sense of the Borel o-algebra on R") its integral with respect to

the Lebesgue measure on R" is denoted by

J Ve = [ fl@)dVin ()

whenever it exists and we identify dVg» with the standard volume form on R", that

is dVgn = dzy A ... Ndx,. Givenamap F: X — Y C R™ F € CY(X,R™), we
OF;(x)
81’[

denote its Jacobi matrix at a point x € X by D,F = ( J1<ji<n and write DF
to describe the map DF € C°(X,R*™), x + D,F.

For any subset U C X and f € C'(X) we define || f||ci@r) € Rso U {oco} by

||f||Cl(U) = Z sup |dy (f)()].
\a|§l zelU
Note that if U C X is compact or relatively compact we have that || ¢ is finite
and f — || fl|ci) defines a seminorm on C*(X). We define a topology on C'(X) in
the following way:
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Definition 2.1
A subset A C C'(X) is closed if and only if for every sequence {fi}ren C A and
f € CYX) which satisfy

]}g{)lo 1f = fellcrw)y =0

for any compact subset K C X one has f € A.

This gives rise for a topology on C*°(X) = M,y CY(X) by saying a subset A C
C>=(X) is closed if A is a closed set in C'-topology for any | € N. A subset S C C'(X)
is said to be bounded in C'(X) if for any compact set K C X there exists a constant
C > 0 such that [[f|lcix) < C holds for all f € S. Moreover, assuming that
D CC X is an open relatively compact subset of X we say that S c CY(D)NC°(D)
is bounded if S is bounded as a subset of C'(D) and there exists a constant C' > 0
such that || f[oep) < C holds for all f € S. The topology on C'(X) induces a
topology on C'(X,R) and a subset of C'(X,R) or C'(D,R)NC°(D) is bounded if it
is bounded considered as a subset of C'(X) or C'(D)NC°(D), respectively. A subset
of CY(X,R") or C'(X,C") is bounded the image of its projection to any component
is a bounded set in C!'(X).

Now we are going to introduce the Landau symbols.

Definition 2.2

Given a set A, a function g: A — R, a family of functions {f,}sca C C'(X) and an
open set D C X we say f, = O(g(a)) in CY(D) if for any compact subset K C D
there exists a constant Cx > 0 such that || fo||c1(x) < Ckg(a) holds for any a € A.
We say f. = O(g(a)) in C*°(D) if f, = O(g(a)) in C'(D) holds for all [ € N.

Given a function h: X — R we write f,(z) = O(h(z)) on D, uniformly in a € A if
for any compact subset K C D there exists a constant C'x > 0 such that |f,(z)] <
Crh(z) holds for all x € K and a € A.

Usually we use the Landau symbols for the setting A = [1,00) x B and g(k,b) =
k* where B is a parameter set and s € R is a real number. We say fr = O(k®) in
C'(D) uniformly in b € B instead of f = fx;, = O(k®) in C'(D) if the parameter
dependence is not explicitly written in the index. Given B = B; x --- x B, we also
write “uniformly in b; € By,...,by € B;” instead of “uniformly in b € B” where
b= (by,...,bs). We further write fi, = O(k=>) if fi = O(k®) holds for all s € R.

Definition 2.3

Let A be a set, {fi.a}(kayeoo)xa C CH(X) a family of functions and D C X. We say
that fi, has an asymptotic expansion of order N € Ny in C'(D) topology uniformly
in a € Aif there exist s € R and functions (called coefficients) £, ..., f(N) € CY(D)
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such that f(© £ 0 for all a € A and {f}4c4 is a bounded subset of C'(D) for
1 <5 < N with

oo — 2 9K = O(g(k)) in C'(D)
=0

(uniformly in @ € A) for some function g: [1,00) — R with limsup,_,. k" g(k) < 0.

The function f{? is called leading coefficient.

Remark 2.4
A simple induction shows that the coefficients in an asymptotic expansion are uni-

que.

Lemma 2.5

Assume that f,r € CYD), (k,a) € [1,00) X A has an asymptotic expansion of order
N in CY(D)-topology uniformly in a € A such that |f,x| and the modulus of the
leading coefficient is locally bounded and locally positively bounded from below, that is
for any compact set there exists a constant C > 0 with 1/C < | fox(2)|,|f?(x)] < C
forallk € [1,00), a € A and x € K. Then 1/f,x has an asymptotic expansion of
order N in C'(D)-topology uniformly in a € A. Furthermore, the coefficients in the
expansion of 1/ for at a point x € D only depend on the coefficients in the expansion

of far in that point x.

Proof. The assumptions on the leading coefficient f{*) in the expansion of £, imply
that f,/f?) € CY(D) has an asymptotic expansion of order N in C'(D)-topology
uniformly in @ € A. Hence it is enough to prove the statement for f{*) = 1. We define
{9}, c CYD) as follows: g{” = 1 and recursively —g{/) = I gbmm) flm)
where féj), 0 < 7 < N are the coefficients in the expansion of f;, . It follows
from induction that {g%)},c4 is a bounded subset of C*(D) for 1 < j < N and the
construction ensures Ryqop =1 — (S0 k™7g9) (S0 k™7 f9)) = O(k™N~1). Since

fr.o has an asymptotic expansion we have
RQ,a,k = fka Zk ]f(J = ( )) in Cl( )

for some function hy: [1,00) — R with limsup,_,. K"V hi(k) = 0, which immedia-
tely implies f, = O(1) in C'(D). We calculate

N N
fa,k Z k_jg((zj) —-1= Rl,a,k + RZ,a,k Z k_jgt(zj) = O(h(k)) in Ol(D>

=0 =0
with ho(k) := max{hy(k), k= N"'}. Since |f, x| is locally bounded and locally positi-
vely bounded from below, we find ﬁ = O(1) in C'(D). Hence we find

Zkfa = O(h(h) in C'(D)



2.1. Analysis and Basic Notations 25

with lim sup,,_, . K~ Vh(k) < 0. From the construction of g\) the second part of the

statement follows immediately. O]

We end this section by stating a modified version of the well-known theorem

about local diffeomorphisms.

Theorem 2.6

Let X C R™ be open, xo € X a point, | € Ny a non-negative integer and S C
C'"2(X,R"™) a bounded set. Assume that there exists a constant Cy > 0 such that
| Dy (F)v| > Colv| holds for all F € S and v € R™. Then there exists an open
neighborhood U C X around xy such that for any F € S we have that Fly: U —
F(U) is a C'"™*2-diffeomorphism. Furthermore, there exist constants C e > 0 with
IFollcrzreyy < C and Be(F(x0)) € F(U) for all F € S.

Proof. 1f S has only one element the statement is in fact the well-known theorem
about the existence of local diffeomorphisms around the point x3. To prove the
modified version we will repeat the first part of the prove of the standard version
given in [8, Theorem 2.1] to show that we can choose a fixed U where the restrictions
of all F' are invertible at the same time. The remaining claims follow then from the
standard version, the chain rule and Taylor expansion.

Put X,, = {x — 2 | # € X}. Given F € S we find that F: X,, — R*, F(z) =
D, (F)"'F(x)— F(z,) satisfies F'(0) = 0 and Dy(F) = Id. Setting S = {F | F € S}
we find that S is bounded in the C**?-norm. The assumption |D,,(F)v| > Cylv|
and the construction of F' ensures that proof of the original statement follows from
proving the statement for S. Hence without loss of generality we can assume zo = 0
and F(0) = 0, Do(F) = Id for all F € S. Since S is bounded in C*norm and
Dy(F) = Id there exists for any open set X' CC X a constant C; > 0 such that
| Id =D, F|| < Ci|z| holds for all F' € S and z € X', so we can choose r > 0 such
that ||Id —D,F|| < 3 holds for all F € S and z € B,,(0) C X. For any y € R”
and any F € S consider the map g, r: By, (0) — R", g, #(2) = y + 2 — F(z). Given
z,11,2 € By (0) and y € B,(0) we find |g,r(z1) — gyr(21)] < iz — 22| and
19y 7()] < |gyr(x) — gy 7(0)] + ly| < 2r. We conclude that g, r is a contraction
which maps B, (0) into itself. Applying the Banach fixed-point theorem shows
that the equation g, p(x) = x has a unique solution z, r for any y € B,(0) and
FeS. For FeSsetVi=F"1B,(0))NBy(0). We find that the restriction of F,
Flv,: — B,(0) has an inverse given by G := F|;;! (y) = z, p. Since F is a C' map

and by assumption we have that D, F' is invertible for all z € B,,.(0) we deduce that
F:=F|y: — B,(0) is a C'-diffeomorphism with

D(FY) = (DF) o F1, (2.1)
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Using | D, (F)v| > 3|v| for all z € B,,(0), F € S and v € R™ we find that |det(DF)|
has a uniform positive lower bound. We conclude that {(DF)™* | F € S} C
C™*1(By,(0)) is bounded and deduce from (2.1) using induction that S = {Gp | F €
S} C C™%(B,(0)) is bounded. It remains to show that 0 is an interior point of
Nres F1(B,(0)). By the assumptions on r we find that |F(z) — F(0)| < 2|z| holds
for all z € Bo,.(0) and F' € S. Hence, we have that F(U) C B,(0) for all F' € S with
U = B,/»(0). Since S satisfies the same properties as S we have |Gr(y) — 0| < Cyly|
for some constant Cy > 0 independent of F' € S and y € B,(0). Choosing ¢ > 0
sufficiently small leads to Gp(y) € U for all F' € S and y € B.(0). The complete

claim follows from F|;' = GF|rw). O

2.1.2 Analysis in C"

Identify (C",z = (21,...,2,)) with (R* z = (21,...,22,)) via z; = x; + iz, for
je{l,...,n} and set Z; = Z; = x; — iTj4n, j = 1,...,n. From this identification
we get that an open set X C C" can be treated as an open set in R?" and therefore
integration of measurable functions over X, the space C'(X) with its topology, the
notion of Landau symbols for families in this space and its subspaces (like C}(X),
CYX,R), etc.) are defined as in Section 2.1.1. We set

o 1({a .0
8%_2<ma_@%m
0 10 . 0
0z, (8%_{—@83:]-_,_”

> s de = d.l’j —I— ’idl’j_,_n

77, = 5 ) , dfj = d[[’j — id$j+n.
J

Given a function f € C'(X) we have
2n o .
=1 0z
j
where 0 and 0 are defined by
B n af _— n af B
8f—jz::182jdzj and 6f—jz::1azjdzj.

Furthermore, we will use the notations

@ a1 Qn o a o a o
2% =202 8Z—<821> ...<azn> ,

S A Y S
Z0 =21 72 - =\ a3, -\ az

where o« € N” is a multi-index and set |z| = \/|zl|2 + ...+ |z,]%. Usually, the

variables z or w will denote complex coordinates, points or vectors in C" where
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their real counterparts with respect to the identification of C* and R*" are denoted
by z or y, respectively. Therefore we also write df := dg or dj, := dj for a € NZn
and |d, f| := |d.f| or |dwf| := |d,f] for f € C'(X). Furthermore, the volume form
on C", which is identified with the volume form on R?", is denoted by dVe- and we

have dVer = (3)" dzs A Adey NdZL A N dZ = day A A dwg, = dVze.

Example 2.7
Let v = (71,...,7) : (0,1) = C" be a C* map and f € C*(C"). We have
(’3 aRe’yj " Of 0Im~;
0=2 SLaO 50 + 3 5w
_ = ﬁ 04 " of %
=Sl G0+ S s omGio

Given a point a € C and a real number r» > 0 the open disc of radius r around a is
denoted by D,(a) = {z € C | |z—a| < r} and we write DI'(2) = D,(21) X...xD,(2,)
to denote the polydisc of radius r around z € C". An open ball in C" of radius
r > 0 around z € C" is denoted by B,(z) with B,(2) = {w € C" | |w — z| < r}. We
further set DI = DI’(0) and B, = B,.(0).

Let us start with the following theorem about Taylor expansion which is just a

reformulation of Taylor’s formula well-known in the real case.

Theorem 2.8 (Taylor’s Formula)
Given a function f € Cl+1(X) we have
(0% (6% ﬂ
flw) =3 ,B, (0202 £(2)) (w — 2)°Tw = 2)” + O(Jw — 2"+,
la+B|<I

More precisely, for any compact set K C X x X there exists a constant C > 0 such
that

‘f(w) - > ,5, (30‘651”( )) (w—2)%(w —2)" | < Clw — 2|'*!

la+6|<I

where C is bounded when f stays in a bounded set in C'1(X).

Proof. First, we prove the statement on an open ball B CC X which is relatively
compact in X. Given z,w € B define f : [0,1] — C, f(t) = f(t(w — z) + 2). By
using induction and Example 2.7 we find

o\" m! =8 N
() 70= ¥ L@t 9T

laf+[B]=m

B

for any 0 < m < [+ 1. Taylor’s Formula in one real variable together with an

(2)" o)

estimate for its remainder (see [8, Theorem 3.4]) implies

-3 L (2) 50| < oy s

<
(1) e
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As a conclusion we find a constant C' > 0 such that

1

A= fw) = Y = (0202f(2)) (w = 2)°(w — 2) | < Clfllews (sl — 2

o< 0!
holds for all z,w € B and f € C'*1(X).

Now let K C X be a compact set and consider a smaller open ball B' cC B
contained in B. There exists an € > 0 such that for all z € B’ and w € K \ B
we have |w — z| > e. Furthermore, we find a constant C’ > 0 such that A <
C'||f|lcr1(py holds for all z € B', w € K and f € C"'(X) and hence we find
A < max{e™"C", C}| f|lci+1(p)|lw — z['T*. As a conclusion, we get that the claim of
Theorem 2.8 holds on B’ x K C X x X. We finish the proof, using the fact that any
compact subset of X x X is contained in a compact set K x Ky, where K1, Ko C X

are compact. ]

Lemma 2.9
Given f,g € CY(X) and a € N, |a| <1, we have

(9= (g)dsﬁfdfg, K= X (2‘) (5,)85“’65‘5763’85’9.
B<a o'<a f'<p

Lemma 2.10
Let f € CY(X x X) be a function and define f € CY(X) by f(2) = f(z,2). For any

a e N, |a| <1, we have

£i) = X () a0 .

o\

Lemma 2.9 and Lemma 2.10 follow from a straightforward induction.

2.1.3 Real and Complex Hessians

Given a function f € C?*(X) we consider its (real) Hessian Hess;(z) at a point
z € X, which is a 2n x 2n-matrix defined by Hess;(z) = ( 1 Its

O ;0 (Z)) 1<4,0<2n
complex analogue is defined as follows.

Definition 2.11
The complex Hessian of a function f € C%(X) at the point z € X is defined by

0% f
Hy(2) = ( - aZj<z>)1<u<n.

The following lemma gives a relation between the real and the complex Hessian.
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Lemma 2.12
Given f € C*(X) and z € X one has

(e Y ()29 429)
n 110y 1 1d, v 1d,, 7z 7z

82
where we set Gf(Z) = (azjgzz(z))1<jz<n'

Proof. A direct calculation shows that the entry a;;, 1 < 1,5 < 2n of the matrix on
the left-hand side is given by

32 . (92 . 82 . .
(8:(:1890]- Zaxlaan 8ml+n8a}J 8zl+n8z]+n) f(Z) ) if l’j S n,
o2 o2 . .
_ (8xl_n8zj_n d;rl n0T; + 1 dwlax] n (‘m&zj) f(Z) ) if l’] Z n,
v L P if | <n,j>
<8ml<9xj_n 83:1690] 8wl+n6x] n Banam]) f(Z) ) 1 =n,J=n,
0 52 . .
(arl,nﬁxj + Zaxl,naan + (9x18:vj (9x18:vj+n) f(Z) ) if 1 2 n,J S n.
The claim follows from 2 —i-%— = 2.2 and -2 +i =22 for1<j<n 0O
8acj 81‘j+n 8Zj azj 8:Ej+n an — —

Corollary 2.13
Let 29 € X be a point. Assume that f € C*(X,R) satisfies 0% f(z9) = 0 for all
a €N, |al =2. One has det (% Hessf(z0)> = | det H;(2)|*.

Proof. Using the same notations as in Lemma 2.12, the assumptions on f imply
G5(2) = Gf(z) = 0. Furthermore, one has

Id, —ild, Id, Id,
1d,, Id, 11d,, —¢1d,
Then the claim follows from Lemma 2.12 and basic properties of the determinant.

]

In real analysis the real Hessian matrix plays in important role with respect to
the notion of convexity or convex functions. The analogue in complex analysis is

called pseudoconvexity and is related to so called plurisubharmonic functions.

Definition 2.14

A function f € C?*(X,R) is called strictly plurisubharmonic (spsh) in 2y € X if
H, (%) is positive definite. We say f is spsh on D C X if it is spsh in any point
2o € D. We denote by Dy (or sometimes D, ) the largest subset of X where f is
spsh.
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Example 2.15
Let 29 € X be a point and f € C*(X,R) a real valued function. If Hess;(z) is
positive definite (i.e. f is convex in a neighborhood of zy) then f is spsh in 2.
Assuming that 02 f(z9) = 0 holds for all & € Nfj, |a| = 2 we find that Hessf(2) is
positive definite if and only if f is spsh in z.

In order to describe coefficients which appear in the expansion of some integrals
(see Section 2.6) we are interested in second order differential operators of the form

o? = o?
(Ad,, d,) = 1<%;2n aj i Do and (Bd,,0,) = IS%:SR bjlm

where A = (ajj)1<1j<on and B = (bjj)1<j<, are matrices with complex entries of
size 2n X 2n and n X n, respectively. We need the following relation between these

objects.

Lemma 2.16
Let zg € X be a point. Assume that f € C*(X,R) is strictly plurisubharmonic in z
and satisfies 02 f(z) = 0 for all « € N}, |a| = 2. One has

((Hessy(20)) "'y, dy) = 2(H7 " (20)0%, 0s).

Proof. Using Example 2.15 we find that the inverse of Hess(2) exists. From Lemma

2.12, the proof of Corollary 2.13 and the assumptions on f we have

1 Id, Id, H;! 0 Id, —:Id, _
T : s (@) — ,Z = Hess;'(2).  (2.2)
4\ ¢1d,, —ild, 0 H; (2) Id,, ¢Id,

We write HGSSEI(Z) = (alj)lgl,jggn and H;l(Z) = (blj)lgl,jgn- Given x = (1’1, c ,$2n) S

R?*" we deduce the following identity from (2.2):

4 3 aymzy= Y bjlmtive) (@ —izeyy)+ Y. bij(zi—izen) (T +izns).

1<1,j<2n 1<l,j<n 1<l,5<n
Since by; = by, 92 = 2 (aTj — Zaan) for 1 <1,5 < n and by replacing x; with o
we find 5 9 5 8
2w Pk 2 big oo
1<1,j<2n Zy 1<l,j<n 21 0%
and the claim follows. ]

2.2 Basic Properties of Holomorphic Functions

Definition 2.17
A function f € C*(X) is called holomorphic if df = 0, that is

0
Tf:(), forj:]_72,...,n.
3zj
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The set of all holomorphic functions on X is denoted by O(X).

A map F = (Fy,...,F,): X — C™ is holomorphic if each of its components
is a holomorphic function. The property of being holomorphic is preserved under

holomorphic maps.

Lemma 2.18
Let Y C C™ be an open set, F = (Fy,...,Fy): X — Y a holomorphic map and
f € O) a holomorphic function. We have fo F € O(X).

Proof. Since f is holomorphic we find by Example 2.7 that % foF =Y 2L0A

. Ow; Oz
holds for all j = 1,...,2n. Thus, we conclude % ol =3, 3%% = ( for all
j=1,...,n. O

A map F'=: X — Y between two open sets X,Y C C" is called biholomorphic

if it is bijective with holomorphic inverse.

Lemma 2.19
Let X, Y C C" be two open sets and F = (Fy,..., F,): X =Y a C'-diffeomorphism
which is holomorphic. We have that F~1:Y — X is holomorphic, that is F is

biholomorphic.

Proof. Let D(F') be the real Jacobi matrix of F' seen as a map between two open sets
in R?" using the identification C* ~ R™ as before, that is D(F) is the Jacobi matrix of
the map (z1,...,Zn,Y1,...,Yn) — (ReFi(2),...,Re F,(2),Im Fi(2),...,Im F,(2))
with z = (z1,..., 2,), zj = x; +iy;, 1 < j <n. We find

Id, ild, Id, 1Id,\ . (GF) GF) ~ (0F
(Idn —z’Idn) D) (—udn z’Idn> =2 (G(F) G(F)) G(F) = <8zj>1§l’j§n'

Since F' is holomorphic we find G(F) = G(F') = 0. Furthermore, D(F) is invertible

at any point z € X. This implies that G(F') is an invertible complex n x n-matrix

at any point z € X. Doing the same procedure for the inverse map F'~! and using
D(F)D(F~') = Idy, we end up with

W, — [GF) 0 GFY) GFY)\ _ (GF)GF™) GF)GFT)
T\ o a®) \¢F) ¢FY) \GEGEFET) GIFGETD)

Since G(F) is invertible at any point z € X we conclude G(F~1) = G(F~1) =
which shows that F'~! is holomorphic. O]

The boundary of a disc D,(a) C C is given by dD,(a) = {z € C | |z — a| = r}.
Given a polydisc D(2) = D,.(21) X ... x D,.(z,) of radius r > 0 around z € C" its
distinct boundary dyD?(z) is defined by 0yD7(z) = 9D, (21) X ... X D, (2y,).
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We start with a fundamental theorem of Cauchy for holomorphic functions in

one complex variable.

Theorem 2.20 (Cauchy’s Integral Theorem)
Let X be an open subset of C and f € O(X) a holomorphic function. Given an
open set D CC X with piecewise C'-boundary 0D one has

omif(z) = / FO 4

oD ( — z

forany z € D.

Proof. Choose g9 > 0 such that D.(z) CC D holds for all ¢ < g5. We have that
D\ D.(z) has a piecewise C'-boundary. We then apply Stokes’ formula (see [14,
(1.18)]) and find

f(©) f(©) _ f(©)
/az) ¢ — zdC B /anme(z) ¢ — de B /D\De(z) d (C — z) dq

_ 9 (SN e e -
a /D\De(@ ¢ <C - Z) dende=0

since ¢ — (¢ —2)7 1 f(¢) is holomorphic on D\ D.(z) and d{ A d¢ = 0. Thus, we can

write

<271 sup |f(C)— f(2)]

CeD:(2)

2mif(2) —/ f(odg" =

oD ( — 2

[0S0,
D () (—=z

for all € < ¢p. The statement then follows from the continuity of f.

]

From Theorem 2.20 all the basic properties for holomorphic functions in several

complex variables follow.

Corollary 2.21 (Cauchy’s Integral Theorem in Several Complex Variables)
Let DI'(z) CC X be a polydisc. Given a holomorphic function f € O(X) one has

An o f(ClaaCn)
RO R R o P v L ORI

for all z € D*(z).

Proof. See [33, Theorem 1.3]. O

Corollary 2.22
We have O(X) C C*(X) and therefore 0%(O(X)) C O(X) with

al f(ClaaCn)

%I = G /aowm T (e

¢, ... d¢,

for any polydisc, DI'(w) CC X, and any f € O(X).
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Proof. Using the fact that f is continuous we can differentiate under the integral

sign in Corollary 2.21 to prove the statement. [l

Corollary 2.23 (Taylor Expansion)
Fizw e X. Given D'(w) CC X and f € O(X) we have

flz)=> W(z —w)® for all z € D) (w)

aeN"? o

where the power series on the right-hand side converges absolutely for all z € D (w).
Proof. See [33, Theorem 1.18]. O

Corollary 2.24

We have that O(X) is closed in the C°-topology. More precisely, given a sequence
{fm}men C O(X) of holomorphic functions which converges locally uniformly to
some function g : X — C, we have g € O(X) and the sequence converges in C*-

topology.
Proof. See [33, Theorem 1.9]. O

Corollary 2.25 (Identity Theorem)
Let f € O(X) be a holomorphic function and let z € X be a point such that
(09f)(2) =0 for all « € N*. If X is connected one has f = 0.

Proof. See [33, Theorem 1.19]. O

Corollary 2.26 (Maximum Principle)
Let f € O(X) be a holomorphic function such that |f|* has a local mazimum in X.

If X is connected one has that f is constant.
Proof. See [33, Corollary 1.22]. O

From the definition of holomorphic function it follows immediately that f is
holomorphic in each variable z; when the other variables are kept fix. The converse

is also true.

Theorem 2.27 (Hartogs 1906)

Let X1 C C" and X9 C C™ be two open sets and f : X1 X X9 — C a function
satisfying f(-,w) € O(Xy) for allw € Xy and f(z,-) € O(Xs) for all z € X;. Then
one has f € O(X; x Xa).

Proof. See [23, Theorem 2.2.8]. O
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2.3 L?>-Norm Estimates for Holomorphic Functions

Lemma 2.28
Let K C C" be a compact set, X C C" an open neighborhood of K, v : X — R an

upper semi-continuous function and o € Nj a multi-index. There exist a constant
C > 0 such that

02 F)F <O [ 1Fw)e " dVen(w)
holds for all z € K and all f € O(X).

Proof. Let zg € K be a point, § > 0 such that D3s(z) C X. Given a holomorphic
function f € O(X) and r = (11,...,71,), 0<71; <6, j=1,...,n, we find

27 2
2m)"02 f(z) = a'/ fz —i—ere )d0
(rei?)e
i0

for any z € Dj(z9) where re? = (re, ... ,Tnewl) and df = df, ...df,. Applying

the standard estimate for integrals and the Cauchy—Schwarz inequality one gets

n,.Q 27 2 .
(ZW) |08 f(2)] §/ / |f(z 4 re®)|df

2 27r
/ / (z 4 rei?)|2d6.

Squaring both sides, integrating with respect to ridr; . ..r,dr, and using polar coor-

M\:

dinates leads to

62
—M|aa |/ 1dr1-...-/0 a”drn</ (w) P~ dVen (w)

where M = Sup,ep,; () $(2). Let C' > 0 be the constant defined by

52 52 -t
C = aleM (ﬂ"/o ritdry - ... -/0 rg‘”drn> .

Then [02f(2)|> < C [ |f(w)[?e= ™ dVen(w) holds for all z € Ds(z) and all f €
O(X). By compactness, K can be covered by a finite number of polydiscs contained

in X and hence the lemma follows. O]

Lemma 2.29
Let K C C" be a compact set, X C C" an open neighborhood of K, ¢ € C3(X,R),
p € C°(X,R), p > 0 two real valued functions and o € N a multi-index. There

exists a constant C' > 0 such that
05 F(E e ) < ORM T [ ) P40 o) Ve ()

holds for all z € K, k € [1,00) and f € O(X). Here C is bounded when ¢ stays in
a bounded set in C*(X,R) and p stays in a subset of C°(X,R) such that inf,cx p(2)

has a positive lower bound.
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Proof. Let zy € K be a point, § > 0 such that D%;(29) C X and S; C C?*(X,R),
Sy C C°(X,R) some sets such that S; is bounded and inf,cx p(z) > C holds for
all p € Sy where Cy > 0 is some constant. Given a holomorphic function f € O(X)
and a point 2z € D¥(z) we define g, € O(X) by gi.(w) = f(w)e =% where

) = 2D 5 L) (w2

1<]al<2

Using Taylor expansion (see Theorem 2.8) we find

and hence p(w) < v(z,w) +v(z,w) + M|w — 2| for all (z,w) € DF(z0) x Ds(20)
and all ¢ € S; where M > 0 is some constant. Similar to the proof of Lemma 2.28

we find
2

n 52 §
T N@ge) ) [ rme [ pee i, < / (w) 2640 dVew (w).
. 0 0
One has [5°rle ™ *Mrdr = [\(Mk)~""! and
/ T e M g < (L D)L 4+ MU (1 4 620 M
62

so that we find a constant C'y > 0 such that

2

52 5
™ _ _ 17 —la|—
— rote kML gy, / rome kM gr > Colk ol =n
al Jo 0

holds for all k € (1,00). Furthermore, we have that p > C; on Dj5(2) holds for all
p € S, and hence

|(Ongr.2)(2)]” < CCr 1k””“'/ (w) 2™ p(w)dVen (w). (2.3)

We prove the original statement by induction with respect to |a|. Given v = 0
we have [(0%gx.)(2)|> = |f(2)]2e™®=5) = |f(2)]2e™**). Now assume that the
statement holds for all 5 € N, || < N € N. Given o € Nj, |a|] = N we find

(T00)(2) = OGN +al Y s RN (o)

B<a (
Using the induction hypothesis, (2.3) and [(02e7%7%)(2)| < Csk!Ple=*#()/2 for some
constant C3 > 0 independent of k € [1,00), z € D§(2), ¢ € S and p € Sy we
conclude

(05.1)(2)Pe ™) SCk‘Q‘”H"/ ()!f(w)\ze_k“” pw)dVen (w)

Ds(z
for all £ € [1,00) and z € Ds(zp) where C' > 0 is a constant independent of k €
[1,00), z € D§(20), ¢ € S; and p € S;. We have that K can be covered by a
finite number of polydiscs contained in X and hence the conclusion of the lemma
follows. O
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Lemma 2.30
Let D5 C C™ be a polydisc of radius 36 around 0 for some § > 0, ¢ € C*(D%;, R),
p € C°(D%,R), p > 0 two real valued functions. For any e > 0 and o € NI there

exists a constant C' > 0 such that

()P < Ottt | e f(w) e pw)dVen (w)

n

holds for all z € D}, k € [1,00) and f € O(D4;). Here C is bounded when ¢ stays
in a bounded set in C3(D4;, R) and p stays in a bounded set in C°(D4s, R) such that

inf.epy, p(2) has a positive lower bound.

Proof. Let S; C C*(D%,R) and Sy C C°(DY%;, R) be bounded subsets such that
infzemg% p(z) > Cy holds for all p € Sy where Cjy > 0 is some constant. We will prove

the claim via induction with respect to n. Consider the case n = 1 and set

Af) = [t fw)Pe e pw)dVi(w),

where a € Ny. Then for any 7 < ¢ one finds
AN = [ e fw)Pe e pw)dV(w)

> 72l |f (w)]?e™ ) p(w)dV (w)

=7l ([ )Pt pdve() = [ 1fw) et O p(wdve(w))

Applying Lemma 2.29, there exists a constant C; > 0 independent of k € [1,00),
f e Oy, ¢ € Sy and p € Sy such that
sup |/ (@) Pe™ < Cuk [ [7(w)Pet ) pw)dVie(w)

a€Ds

holds. Using this, the standard estimate for integrals, p < C5 > 0 on Dsys for all
p € Sy and D, C Ds we get

() 2 720 (sup (@R 00 sup F(@)Pe ) [ 1p(ujavi(u)

a€Dg acD,

> k7172l sup | f(a))PeRe@ (C’l_l — CQk/ 1dV@)
a€Dg D,
= k72l sup | f(a)Pe @ (O — Cokrr?) (2.4)
a€Dg
and the calculation above is true for any 7 < 0. Then set 7 = 51{:_%_%04 for some
€ > 0. One has
Ak(f) = 02k~ 1oHD7% sup | £(a) e (C71 = Cyo%k Tol ) .

a€Dys
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For k large enough one can achieve that §21°l(C — 0252]€_|E7‘7T) > ('3 for some
constant C3 > 0. As a conclusion one finds C' > 0 and kg € (1, 00) such that

sup (@)% 4 ORI [ fus flu) Pe o) pludve(w)  (2.5)
a€Ds 2

holds for all k£ € (kg,00), f € O(Dss), ¢ € Sy and p € S,. For k < kg we can choose
7 in (2.4) sufficiently small and conclude that C' > 0 can be chosen large enough
such that (2.5) holds for all k£ € [1, 00).

Now assume the statement holds for n — 1. Let a € Njj be a multi-index and
write a = (o/, a,,) where o/ € Ng~'. Given f € O(D%) one has (w' + f(w',a)) €
O(D%; 1) for any a € Dys. Furthermore, the sets {¢(-,a) | @ € Dys, ¢ € S;} and
{p(-;a) | a € Dys,p € Sy} are bounded subsets of C*(Dy; ', R) and C°(Dy; ' R),
respectively. Using the induction hypothesis one finds a constant C’ > 0 such that

‘f(Z/, a)‘26—kch(z’,a) < C/k|o/\+n—l+a/ 1 \w’alf(w’, a)‘26—kch(w’,a)p(w/’ a)dVCn_l(w’)
D35
for all 2/ € D', k € [1,00), f € O(DY), » € Si, p € Sy and a € Dys. Because
both sides are continuous and bounded in a, we can integrate them with respect to
la|?*ndVe on Dy and get

J, ol G @) et v < R [ ) et pla) Ve (),
26 25

Since {p(2,:) | 2 € D}, ¢ € S} is a bounded set in C%(Dss,R) and (a +
f(#,a)) € O(Dss) for any 2’ € D¥!, we can apply the case n = 1, that is (2.5), on
the left-hand side. Thus, for any & > 0 there exists a constant C” > 0 such that

sup |f(Z/, a)|26_k(’0(2/’a) < C”k|a\+n+a+s’ / |waf(w)|26—ks0(w)p(w)dv(c” (’LU)

a€Ds DZs
holds for all 2/ € D! k € [1,00), f € O(DY), p € Si, p € Ss. ]
Remark 2.31

In Lemma 2.30, choosing ¢ sufficiently small depending on ¢ and p, we observe by
some slight modification in the proof that the constant C' can be replaced by §21*C”

where C’ > 0 is a constant which is independent of a € N.

2.4 Reproducing Kernels and Bergman Kernel Functions

Let D C C" be a domain and p € C°(D,R) a continuous function such that p > 0
on D holds. We choose the volume form on D to be dVp = pdVien. Given a weight,
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i.e. an upper semi-continuous function ¢ : D — R which is bounded from below, we

consider the space
HY(D) = H} (D) = {f € O(D) | [ |f(w)lPe#aVp(w) < o0}
together with an L2- inner product defined by

(£.9)ep = | Fw)glw)e Vi (w)

and set || flop =/ (f, [e,p

Lemma 2.32
The pair (HY (D), (+,)y.,0) is a separable complex Hilbert space.

Proof. We have that L*(D,p) = CSO(D)H'”W together with (-, ), , is a separable
complex Hilbert space. Thus, it lasts out to show that H) (D)= O(D)N L*(D, )
is closed. Let {fi}ien C H (D) be a Cauchy sequence with respect to the L*-norm
| - [lop- We find that ¢ — In(p) defines an upper semi-continuous function on D
which is bounded from below. Then, using Lemma 2.28 with respect to the weight
@ —1In(p), we find that for any compact subset K C D there exists a constant C' > 0
such that sup,¢ g | fi(2) = fn(2)| < C|fi— finlly,p holds for all [,m € N. We conclude
that {f;}ien converges locally uniformly to some function g € C°(D) N L?(D, )
which implies g € O(D) by Corollary 2.24. O

Lemma 2.33
Given z € D there exists an unique function g. € H) (D) such that (f,g.),, = f(2)
holds for all f € HY (D).

Proof. Let z € D be a point. We apply Lemma 2.28 with respect to the weight
¢ — In(p) to find that the map f +— f(2) defines a C-linear continuous map on
H 27 (D). Since H, 27 ,(D) is a complex Hilbert space we can apply the representation
theorem of Riezs and find a unique function g. € HJ ,(D) such that (f, g.),, = f(2)
holds for all f € HJ (D). O

Lemma 2.33 gives rise for the following definition.

Definition 2.34

We denote by K, = K,, : D x D — C the function which satisfies K,(z,-) €
HY (D) and (f, KWI;(Z, -)) = f(z) for any f € H) (D) and z € D. Furthermore,
set P, (z,w) = e 2@WE+HWIK (2 w) and B,,(z) = P,,(2,2). The function
P, = P,, : Dx D — C is called reproducing kernel for the space H) (D) or
just Bergman kernel. The function B, = B, , : D — R is called Bergman kernel

function.
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The following two lemmata describe basic properties for the Bergman kernel or

the Bergman kernel function.

Lemma 2.35

One has K, , € C*(D x D). Furthermore, given any orthonormal basis {s;};j>1 of
HY (D) one has K, ,(2,w) = Xj51 55(2)s;(w) where the sum on the right hand side
converges with respect to the topology on C*(D x D).

Proof (cf. [11, Theorem 6.3.2] for the case ¢ =0 and p=1). Let {s;},;>1 be an ort-
honormal basis of H) (D) which always exists since H) (D) is separable. By de-
finition one has K, ,(z,-) = > ;51 5;(2)s;(-) where the sum on the right-hand side
converges with respect to |||, ,. Using the same argument as in the proof of Lemma
2.32 we find that K, ,(z,w) = 3,51 5;(2)s;(w) where the sum on the right-hand side

converges pointwise. From this fact we observe that K, ,(z,w) = K, ,(w, z) holds.

Set D = {z | z € D}. Since K, ,(z,-) is a holomorphic function on D we conclude
that (z,w) + K, ,(Z,w) defines a function on D x D which is holomorphic in the
variable z and w separately and hence, using Theorem 2.27, it defines a holomorphic
function on D x D. As a conclusion we get K, , € C*®(D x D).

We still have to prove the second part of the statement. Considering K, ,(2, 2)
for 2 € D we find that z — Y52, [s;(2)|* defines a smooth function on D. Ap-
plying a theorem of Dini we get that the sum converges locally uniformly. Since
15;(Z)s;(w)| < 1s;(Z)|% + |s;(w)|? for any j € N we have that on any compact subset
K c D x D,

0 = lim su s + s
N—)OO(zwIE)K]Z]V|] | |]( )|
> lim  sup | 5;(Z)s;(w)]

N—o0 (z,w)eK j=N

holds. Thus, ((z w) = XN, SJ(Z)SJ(Z))NeN is a sequence of holomorphic functions
which converges locally uniformly. By Corollary 2.24 all its derivatives converges

locally uniformly too which proves the second part of the statement. O]

Lemma 2.36

For any z € D one has

f z 26790('2)
By, ,(2) = sup —| (2)] 5
remo onoy  IfIIZ,

Proof. Given z € D one has e #9)| K, ,(z,-)||2, = B,,(z). Let f € HY (D) be
arbitrary. Applying the Cauchy-Schwarz inequality to (f, K, ,(2,)),, = f(2) we
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deduce e~#O)|f ()| < B,,()|f]2,, and get

| f(2)]2e#
B,,(2)> sup o
o reno ono | f]12

On the other hand one has K, ,(z,-) € H) (D) and K, ,(2,2) = K, ,(2,-)[2,
which leads to

| Kpp(2, 2) 2?1 |f(2)[Pe?®)
K 2 P 2
H %P(Z? ) HLp,p fEHO (DO ”f”go,p

B«P,p(2> =

]

Replacing the weight ¢ by the weight ko, k € [1, 00), we would like to study the
asymptotic behavior of Py, , and By, , when k goes to infinity. We should consider

some examples for such quantities to get an idea how this behavior could look like.

Example 2.37
Let D = C" be the complex Euclidean space. Consider the weight ¢ € C*°(D),
©(z) = 51 Ajlz|* where A\; € R, j =1,...,n and set p = 1. For any k € [1,00)

one has
oo L if A, A, >0,
dim HY, (C") = '
0 , else,
and the Bergman kernel and the Bergman kernel function for the case A,..., A\, >0
are given by
k" —EZﬁ Aj(lwj—z;|?+w;Z;—w,25) k"
P/ﬂp,p(zaw):*)\l'---')\ne 2 2uj=0 N\UWj—%j 3% JJ’Bk(pp(z):—)\l..'..)\n'
ks ’ "

Consider the weight ¢ € C*(C), ¢(2) = In(1+]z|?) and assume that the volume
form is given by pdVen, where p € C®(C"), p(z) = (1 + |z|*)~2. For any k € [1,00)
(C™) = k and one has

one has dim H kw p

k 1+ zw ; k
Prpplz,w) = = ) By p(z) = —.
o w(w >) 9

L+ [2[) (1 fw]?

Let D = D(0) be the polydisc in C" with radius r > 0 around 0. Set p = ¢ = 1.
For any k € [1,00) one has dim Hp_ (D?(0)) = oo with

ke,p
n
oy e

2

N e

The precise formulas in Example 2.37 can be verified by a direct computation

P r’ B 1
o (25 W) ) ko (2 e

— 2jW;)?

since the monomials {z%|a € Njj} are already orthogonal with respect to the inner

products.
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The next lemma together with its consequences give upper bounds for the k-
dependent Bergman kernel Py, , and its kernel function By, , and their derivatives

when £ goes to infinity.

Lemma 2.38
Assume ¢ € C3(D,R). Given a, 5 € N2" one has e~ 2"d?d Ky, , = O(knHe181) on,
Dx D, where h(z,w) = ¢(2)+p(w). More precisely, for any compact set K C Dx D

there exists a constant C' > 0 such that
e‘g(*"(z)“o(w))IdeE,KkW(z, w)| < CrHelH)

holds for all (z,w) € K and C is bounded when ¢ stays in a bounded set in C3(D,R)
and p stays in a subset of C°(D,R) such that p > 0 holds and inf,cy p(z) has a
positive lower bound where V- C D is some open set satisfying K C'V x V.

Proof. Let o, 3" € NZ" be two multi-indices. Lemma 2.35 implies that (z,w) —
Ky p(2,w) is antiholomorphic in the first argument and holomorphic in the second
argument and hence d%'d? K}, , = c020? K}, , for some complex number ¢ € C \ 0
and multi-indices o, 3 € N" defined by o; = o) +a;,,; and 5 = 8+, 1 < j < n.
Because of |a] = |o/| and || = || it just lasts out to estimate 9205 Ky, ,.

From Lemma 2.28 we get that f+— (0% f)(2) defines a C-linear continuous map
on HY, (D). As in the proofs of Lemma 2.33 and Lemma 2.35 we find that there

exists a unique element g . € Hy, (D) such that (95 f)(2) = (f, gk.2) ke, holds for all

f € HY, (D) and that one has the identity gi.(w) = 3,5 (Ogsgk))(z)sgk) (w) where
{sék)}jzl is an orthonormal basis of H}, (D). Let Ky, K5 C D be two compact sets

and let S; C C3(D,R) and Sy C C°(D,R) be two sets such that S; is bounded and
p >0, inf,cy p(z) > Cp holds for all p € Sy where Cy > 0 is some constant and V'
is an open neighborhood of K; U K3;. We apply Lemma 2.29 and find a constant
C > 0 such that

e H )| (0% gr.) (2))? < Clk"+2‘a|||gk7zl|iw

holds for all z € Ky, k € [1,00), ¢ € Sy and p € Sy which leads to [|gk.||7, e ) <
C1 k2ol where we use the identity (0%gx.)(z) = lgr.:|I2,,.,- Applying Lemma 2.29

again we find a constant C'y > 0 such that
e_’W(“’)_W(Z)|(6£gk7z)(w)|2 < ng”“'m||gk7z||iwe_k“"(z) < 0102k2n+2|a\+2\6\

holds for all (z,w) € K1 x K, k € [1,00), p € S;and p € S;. Since ;54 sg-k)(w)s(.k)(z)

J
converges in C'*° topology, we have

(D2 g1,.)(w) = 37 (925)(2) (025 (w) = 202 Ky (2, 0).
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Thus, we conclude that |e’§(“"(“’)’k“"(z))(@agKk%p)(z, w)| < CkmHel+8l holds for all
(z,w) € K1 X Ky, k € [1,00), ¢ € S1 and p € Sy with C = /C1C,. Since any
compact set K C D x D is contained in a compact set of the form K; x Ky, the

claim follows. O]

Corollary 2.39

Let ¢ € CN(D,R) be arbitrary. Given o, 3 € N3", |a|,|8| < N, one has d®d? Py, , =
O(kn+eH8ly on Dx D and d2 By, , = O(k"Hl) on D. More precisely, given compact
sets K1, Ky C D there exist constants Cy,Cy > 0 such that

|d2dy Prpp(z, w)| < CLE™ AL 1d2 By o (2)] < Cok™H1e

hold for all z € Ky, w € Ky, k € [1,00) and Cy,Cy are bounded when ¢ stays in a
bounded set C™ (D, R) and p stays in a subset of C°(D,R) with p > 0 and inf ¢y p(2)
has a positive lower bound where V' C D is an open neighborhood of K1 U K.

Proof. Let S; C CV(D,R) be a bounded set and Sy C C°(D,R) a subset such that
p >0 and inf,cy p(z) > C” hold for all p € Sy where C” > 0 is a constant. Define a
function g, : DX D — R by gi,(2,w) = e~ 3((EHew) | et o' € N2" be two multi-
indices satisfying o/ < o and 8 < 8. One has (gr,) *(d¥'d? gr,) = O(KI¥H1FT) on

D x D where the underlying estimates are uniform in ¢ € S;. Set
A (2, 0) = (A2 d5 7 K ) (2, 0) (d2 d gi) (2, 0)

and observe, using Lemma 2.38, that A, g = O(k"*l*18l) on D x D holds. More
precisely, for any compact sets K, Ky C D there exists a constant C' > 0 such that

|Aa’,ﬁ’(27 w)] S Ckn+|a‘+|6|

holds for all z € Ky, w € Ky, k € [1,00), ¢ € S1 and p € S5. Then the estimates

for the derivatives of Py, , follow from the identity

d2d,, Py, = fla! > > (@Na—a)Bi B - )" P
B'<Ba'<a
The estimates for the derivatives of By, , follow from the fact that we can write
(A2 Brpp)(2) = ol 3 (o = B)1B) 7 H(dS P dg, Prg o) (2, 2).-
B<a
O
For the rest of this section we are going to study some transformation behavior

of the Bergman kernel. Therefore, let D C C" be a domain, p € C°(D,R) a positive

function and ¢: D — R upper semi-continuous and bounded from below.
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Lemma 2.40
Let f € O(D) be a holomorphic function and set ¥ = ¢ + 2f + 2f. We have
Py (2, w) = SRS WIFE P (2 w), 2,w € D, and hence B, , = By,

Proof. Given an orthonormal basis {s;}9_, of H}, (D), d = dim H},

kop(D), we find
that {s;e*/}9_, is an orthonormal basis of HY, (D). We calculate

d
_(@+u(w) 2)+2F(w) 7N 2)—f(w)+f(w)—f(z
Py, (z,w)=e 5 Ze2f( )+2/( )sj(z)sj(w) — oS (A= fw)+f(w)—f( )p%p(%w).
j=1

Lemma 2.41
Let U C C" be a domain and G = (Gy,...,Gy): U — D C C" be a biholomorphic
map. Set @' = po G and p' = |det(F)|?p o G with F = (%)gﬂgn' We have

Py y(z,w) = P, ,(G(2),G(w)), z,w € D, and hence By y = B, ,0G.

Proof. Given an orthonormal basis {s;}9_, of H) (D), d = dim HY (D), we find

that {s; o G}9_, is an orthonormal basis of HY, ,(U) since

(f7 g)tp,p = /U f o Gg o G6_¢,| det(F)|2pldVCn

by the standard transformations for integrals. m

2.5 The Localization Property

Throughout this section we consider the following setting: Let D C C™ be a bounded
domain and ¢ € CMT3(D,R)NC°(D) be a real valued function which is continuous
up to the boundary, where M € NU {oco}. The volume form of D is denoted by
dVp = pdVen where p € C°(D), p > 0, is continuous and positive on D.

For N € Ny, N < M, let vy, @n : D x D — C be defined by

(o) = 2B 5 101p(2)

| «
2 1<|aj<N+2 ¥ 0%z

—z)°

and Py (z, w) = p(w) — (2, w) — v (2, w).
Recall that D, , denotes the set of all points z in D where the complex Hessian
H,(z) of ¢ is positive definite (see Definition 2.14). The localization property is

defined as follows.
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As illustrated in the two upper pictures zy has the N-th localization property for ¢ because
the transformation @n(2o,-) is positive on D\ {z0}. In the two pictures below, 2y does

not have the N-th localization property since there ewists at least one point z € D with

QZ)N(Z(), Z) < 0.

Figure 2.1: Hlustration of the N-th localization property

Definition 2.42
Let N € Ny be a non-negative integer. A point z € D has the N-th localization
property (for ¢) if the following two conditions are satisfied,

(Z) z € D%-&-v

(ii) pn(z,w) >0 for all w € D\ {z}.
The set of all points which have the N-th localization property is denoted by D, x
(or sometimes Dy ) and given N > M we set D, y = 0.
Example 2.43
Let ¢ € C*°(D,R) N C%D) be defined by ¢(z) = XJ_; Ajlz]* for \j € Ry, j =
1,...,n. Then any point z € D has the N-th localization property for arbitrary
N € Ny. In other words, D, y = D for all N € Np.

Proof. Let z € D be a point. Since the complex Hessian H,(z) in z is a diagonal
matrix diag(Ay, ..., A,) with A; > 0,1 < j <n we find z € D, . Furthermore, one

has
wj — 2 = Jw|* + |25 — wizj — zw5 = |wy* — |2 = Z5(w; — 25) = 2;(w; — ),

D2 (1) = \;zj and 9% = 0 for |a| > 1. Hence, for any N € Ny one finds

owj

Zij 5" = p(w) — yn(z,w) = yn(z,w) = Gy (z,w).
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Lemma 2.44

Given any N € Ny the set Dy n is open. Moreover, for any compact set K C Dy n
there exists a constant C > 0 such that py(z,w) > Clw — z|* holds for all z € K
and w € D.

Proof. Let N € Ny be a non-negative integer. If D, y = ) there is nothing to show.
Otherwise take zp € D, n. We will show that there exists an open neighborhood
D' C D around z, such that any z € D" has the N-th localization property and that
on(z,w) > Clw— 2| holds for all z € D" and w € D for some constant C' > 0. The
complete statement follows from the fact that K can be covered by finitely many
open sets.

By Taylor expansion in w at some point z € D we find

on(z,w) = (w— 2)Hy(2)(w — z)T + R(z,w)

and for any relative compact sets V, V' CC D there exists a constant C; such that
|R(z,w)| < Cyjw — z|* holds for all (z,w) € V x V' (see Theorem 2.8). Since the
eigenvalues of H,(z) depend continuously on z one has that D, ; is open and there
exist an open neighborhood U C D, ; around z; and a constant Cy > 0 such that
(w — z)HMz)WT > Cylw — z|? for all (z,w) € U x D. Thus, choosing a ball
B.(2z9) C U of radius € > 0 around z, we find that

on(z,w) > Colw — 2> — Crlw — 2> > |w — 2*(Cy — 2eCY)

holds for all w,z € B.(2). For ¢ sufficiently small there exists a constant C3 > 0
such that @y (z,w) > Cslw — z|* holds for all w,z € B.(z). By the assumption
on ¢ we find § > 0 such that @y (z0,w) > 26 for all w € D \ B.(z2). Since Py
is continuous on D x D there exists 0 < ¢ < & such that py(z,w) > § for all
z € Bo(2) and w € D\ B.(2) and hence @n(z,w) > 0 for all z € B.(z) and
w € D\ {z}. Set t = Sup(, y)ep_, (z)xp [W — 2| then for C' = min{Cs,§/t*} we have
on(z,w) > Clw — z|? for all z € B./(2) and w € D. O

Example 2.45
Let N € Ny be a non-negative integer K C D,y a compact set and o € N a

multi-index. There exists a constant C > 0 such that
| [ 1w = 2ot onEmavy ()] < Okl
D

holds for all z € K and k € [1,00). Here C is bounded when ¢ stays in a bounded
set S C CNVF3(D,R) such that inf(, y)erxxp @n(2, w)/|w—z|* has a uniform positive

lower bound.
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Proof. Let 2y € K be a point. Using Lemma 2.44 we find an open neighborhood
D' CC Dy around 2y and a constant C; > 0 such that @x(z,w) > Cilw — z|?
holds for all z € D' and w € D. For example, choose C; > 0 such that C; <
inf(. wyexxp |w — 2|*/@n(z,w) holds for all ¢ € S to obtain the second part of the
statement. Furthermore, there exists a constant C'y > 0 such that p < (5. Thus,

one has
| /D (w — 2)*Pe o8 G0 gy ()] < Cy /D l(w — 2)*2e=*Ctwo=2 gy, (w).

We set
432 = [ l(w = 2) PP Ve, w) | j = 1,2
Uj

where U; = C" and Uy = C™" \ D and write
/ |(w — z)a|26—’“cﬂw—2‘2dv@n (w) = A1(2) — As(2).
D

Let 0 = dist(D’,0D) > 0 be the distance between D’ and the boundary of D. Since
Jor, [(w — 2)@|2e=Crlw==P=8) gy (w) < C5 holds for all z € D’ where C > 0 is some
constant and |w—z|>— 2 > 0 for all z € D" and w € U, one finds Ay(z) < Cze 0°C1k,
One has

00 9 co _ m!
2/ r2mtle=tr gy :/ rme dr =
0 0 tmtl

for m € Ny and ¢ > 0. Then, using polar coordinates leads to

n
ao|+n
Ch

A(z) =" / O/
j=1"9
and hence there exists a constant C; > 0 such that
A1(2> - AQ(Z) S 041{3_”_'&‘

for all z € D’ and all sufficiently large k € [1,00). We conclude that there exists a
constant C' > 0 such that

| [ 1w = 2ot onGmavy (w)] < Crnle
D

holds for all z € D" and all k € [1,00). O

The localization property ensures that the asymptotic behavior of some integrals
considered in the following sections comes from integrals with compactly supported
integrands. More precisely, one has has the following.

Lemma 2.46
Let N € Ny be a non-negative integer and K C Dy a compact set. Given any cutoff
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function x € C§°(D), 0 < x <1, x = 1 in an open neighborhood of K, there exist
constants 0,C' > 0 such that

’/ (1 — x(w))h(z, w)e **¥EO GV, (w)| < e Vol(D)HpHCo@) sup  |h(z,w)]
D (z,w)eKxD

holds for all z € K, k € [1,00) and h € C°(D x D). Here § can be chosen as

G2 int gl )/~ =P

where C" > 0 is a constant which only depends on K and .

Proof. Choose an open neighborhood D' C D around K such that y = 1 on D’
holds. By Lemma 2.44 there is a constant C; > 0 such that @y (z,w) > Ci|lw — z|?
holds for all (z,w) € K x D and C; can be chosen to be
Ci= inf @y(z,w)/|w— 2|
(z,w)eK XD
Hence we find @y (z,w) > Cidist(K,dD’)? for all (z,w) € K x D\ D' which leads
t

’ /D (1— X(w))h(z,w)e_k¢N(z’w)dVD(w)’ < e /D I p()ldVen ()

for any z € K, k € [1,00) and h € C°(D x D). Applying the standard estimate for
integrals finishes the proof. O

The following lemma is important for applying the results obtained in Section 3.1
to the manifold setting. It shows that under some conditions we can always assume

that the localization property holds in a local sense.

Lemma 2.47

Let N € Ny be a non-negative integer, S C CN*3(D,R) a bounded set, D' C D open
and C' > 0 a constant such that H,(2) — C'Id is positive definite for all z € D" and
p € 5. Given zyg € D' there exists an open neighborhood V- C D" around zy such
that for any z € V, p € S we have that z satisfies the N-th localization property for
© |i. More precisely, there exists a constant C' > 0 such that ¢n(z,w) > Clw — z|?
and |d,@n(z,w)| > Clw — z| holds for all (z,w) €V xV and all p € S.

Proof. By Taylor expansion in w at some point z € D’ we find
- —T
on(z,w) = (w—2)Hy(2)(w — 2) + R(z,w).

Choose a ball B.(zy) CC D’ of radius € > 0 around z,. There exists a constant
C; such that |R(z,w)| < Cilw — z|? for all z,w € B.(2) and ¢ € S by The-

orem 2.8. By the assumptions on S there exists a constant C’ > 0 such that
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(w—2)H,(2)(w — z)T > C'|w — z|? for all (z,w) € B.(20) x D and ¢ € S. Thus,
we find that

on(z,w) > C'lw — 2> — Crjw — 2> > |w — 2[*(C" — 2¢Cy)

holds for all z,w € B.(z) and ¢ € S. Similar, we find a constant Cy > 0 such that
|dywpn(z,w)| > |w— z|(2C" — 2eCy) holds for all z,w € B.(zp) and ¢ € S. Choosing
e > 0 sufficiently small there exists a constant C' > 0 such that @x (2, w) > Clw—z|?
and [(0y + 0)Pn (2, w)| > Clw — 2| hold for all w, z € B.(2) and ¢ € S. Putting
V = B./2(2), the claim follows. O

Remark 2.48

Choosing S C CV*3(D,R) compact in Lemma 2.47 it is sufficient to assume that
H,(z) is positive definite in a neighborhood of D’. Since the eigenvalues of H,(z)
depend continuously on (z,p) € D x C¥*3(D,R) there exists a constant C’ such
that H,(z) — C'Id is positive definite for all z € D’ and all p € S.

2.6 The Method of Stationary Phase

As before, we assume that D C C" is a bounded domain with volume form dVp =
pdVen where p € C°(D), p> 0 on D.

Definition 2.49
Given z € D, o, f € NI, k € [1,00) and ¢ € CNT3(D,R) N C°(D) set

QaB ko (2) = /D (w—a)" (w— 2)Pe *nEqV, (w),
where ¢ is defined as in Section 2.5.

We like to study the asymptotic behavior of a, g r,(2) when k goes to infinity.
Recall that D, y C D is the set of points which satisfy the N-th localization property
for o € CN*3(D,R) N C°(D) (see Definition 2.42). We have the following theorem.

Theorem 2.50

Let M, N € Ny be two non-negative integers, N < 3M+1, ¢ € C3M*T4(D, R)NC°(D)
and p € C*MT2(D) N C%(D). Given o, € Ny, |af,|8] < M, one has anpr, =
O (k= maxtlalB=ny in CO(D,, x) and in particular

n M
m —j—n, (J) —M-1y 0
Qa Bl — 7 k7 a5 = O(k ) in C°(D,,
Pl det(H,) j:ma§a,|5} 7 ( o)
where
: 2 (=1)m o —
A2 = 3o (2710, 0,08 (o (o) — ) 0 7))

©=0 M'(N—i_j)
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and hy . (w) = ¢n(z,w) — (w — 2)TH,(2)(w — z). More precisely, given a compact
set K C D, n and an open neighborhood D' CC D, n of K there exists a constant
C > 0 such that

" - —j-n_ () —M—1
Qo o (2) FRIGRE) jma§a|75|} k ag5(2)| < Ck
holds for all z € K and k € [1,00). Here C is bounded when ¢ stays in a bounded set
in C*MH(D, R)NCO(D) such that inf , .5 P (2,w)/|2—w[* has a positive lower
bound and p stays in a bounded set in C*M*+2(D,R) N C°(D) such that inf, 5 p(2)
has a positive lower bound.
Furthermore, if |o| = |B| we have ag%l)(z) = (H,(2) "0y, 0u) (@ w?) p(2) /||

We will prove Theorem 2.50 by adapting the stationary phase formula of Hor-

mander to our setting.

Theorem 2.51 (Method of Stationary Phase [24, Theorem 7.7.5])

Let K C R"™ be a compact set, X an open neighborhood of K and M a positive integer.
Ifue CM(K), feC3™M(X) andIm f > 0 in X, Im f(z9) = 0, det f"(z) # 0,
f'#0idn K\ {xo} then

UM M iy Ll

<M

<CEk™ 3 sup|diul, k> 0.

la|<2M

Here C' is bounded when f stays in a bounded set in C3M (X)) and |x — zo|/|f'(2)]

has a uniform bound. With

Gro () = f(2) = f(20) = (f"(w0) (& — z0),  — 0} /2

which vanishes of third order at xo we have

SN i (wo) Ty, ) (gt w) () /.

v—p=j 2v>3u

This is a differential operator of order 2j acting on u at xoq. The coefficients are
rational homogeneous functions of degree —7j in f"(xo), ..., f ¥ (xq) with denomi-
nator (det f"(x¢))¥. In every term the total number of derivatives of u and of f” is

at most 27.
Proof. See [24, Theorem 7.7.5]. O

Lemma 2.52
Let D C C™ be a domain, M, N € Ny non-negative integers with N < 3M — 2,
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S c C3MHL(DR) a bounded set, D' C D open and C' > 0 some constant such that
H,(z) — C'Id is positive definite for all z € D" and ¢ € S. Furthermore, assume
p € C*M(D R). Given a function u € C** (D x D) set u,(w) = u(z,w) and

by(2) = S (1A (H (=), B () (2) 1+ )

where
hn-(w) = @n(z,w) = (w = 2) T Hy(2)(w — 2).

Given zy € D' there exist an open neighborhood D" CC D' around zy, a cutoff
function x € CP(D,R), 0 < x <1, x =1 in a neighborhood of D" and a constant
C > 0 such that the expression

Ai(2) :/Du(z,w)X(w)e_k‘ﬁN(z’w)dVD(w)

satisfies

| Ar(2) — Z K 7m0;(2) < Ok~ sup [xt=pll ez o)

<M

det(HgO(
forallk € [1,00), z€ D", p €S, pe C**(D,R) and u € C*(D x D).

Proof. We would like to apply Theorem 2.51. Therefore set f,(w) = f,,(w) =
i¢n (2, z4+w) and g = 0. By construction we have Im f,(0) = 0 and f(0) = 0. Since
Hg, (21 (2) = Hy(z) and by Corollary 2.13 we find det(f7(0)/2i) = det(H,(z))* > 0
for all z € D’. Using Lemma 2.47 we find an open ball Bs.(zy) CC D’ of radius
5¢ > 0 around z, and constants C;,Cy > 0 such that py(z,w) > Cilw — z|?
and [(0y + 0u)@n(z,w)| > Colw — 2| for all z,w € Bs.(2) and ¢ € S. Hence
we have Im f,(w) > 0 and fl(w) # 0 for all z € B.(z), w € B4 (0) \ {0} and
¢ € S. Furthermore, S" := {f., | z € B.(20),¢ € S} defines a bounded set in
C3M+1(B,.(0)) satisfying |w|/|f'(w)| < Cs for all w € B4.(0) and all f € S’. Choose
a cutoff function y € C§°(Bac(20),R), 0 < x < 1, x = 1 in an open neighborhood of
B.(2). One has

Aplz) = /M o 1 WX (e ) Ve )

for all z € B.(2p). For z € B.(2¢) set @,(w) = u(z, z+w)x(z+w)p(z+w). Then, for
all z € B.(z0) we have @, € C*(B4.(0)) and supp(@,) C Bs.(0). Set X = B4 (0),
K = B3.(0) and apply Theorem 2.51. Thus, we find a constant C' > 0 such that

4(5) = gty K < O

<M
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holds for all k € [1,00), 2z € B.(zy) where

SN I (0)  dyy da) (g o) (0) /)

v—p=j2v>3p

and

gz,O(w> - fz(w) - fz(o) - <f!(0>w7w>/2 - ihN,z(Z + w)‘

Using (f2(0)7'd,,d,) = —2i(H,(2) "'y, 0y) from Lemma 2.16 we find

bj(2) = Z. > (F1)(He(2) " 0w, 0u)” (R cu=p)(2) /1l

= Z_: 2) " O, 0u) T (Mg uzp) (2) /1) (1 + 5)!

where we use that for v = 7 + p, p, v > 0 one has that 2v > 3 holds if and only if
i < 27 holds to obtain the last line. O]

Proof of Theorem 2.50. Let M € N be a positive integer, D’ CC D open and
S; C C3MT(D,R)NCY(D), Sy C C*M+2(D,R) N C°(D) be bounded sets such that
{inf, epwp Pn(z,w0) /|2 —wl* | ¢ € Si}, {inf,c5p | p € Sp} have positive lower
bounds. For any ¢ € S; we have D' C D, y then. Let K C D’ be a compact subset.
Given zy € K we can apply Lemma 2.52 and find an open neighborhood D" cC D’
around zp and a cutoff function y € C{°(D,R), 0 < x <1, x =1 on D” and a
constant C'; > 0 such that

1 . ‘
Qo B — L=i=nq0) < O kM
st e ) 2, e =6
where
apa(2) = [ x()(w—a)" (w = 2) e vy (w)
and

) 2j —1)#

(4) ( 1) -1 a \ptj a B
a;5(z) = ———————(H,(2) O, Ou)" ™ (hy (W) p(w)(w — 2) (W — 2)7)|w=z.
5(2) ,;:o:M!(NJFJ)!( o(2) ) (B (w)* p(w)( ) ( )7
Using Lemma 2.46 we find a constant Cy > 0 and ¢ > 0 such that |asgx(2) —
o prk(2)] < Coe™* holds for all 2 € D", k € [1,00), ¢ € S; and p € Sy. Thus, there

exists a constant C'3 > 0 such that

ijn]) <Cng

<M

Gapk(2) — det(H ()

holds for all z € D", k € [1,00), ¢ € Sy and p € S,.
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Now, consider ag)ﬁ for 7 < max{|a|,|B|}. For fixed u, 0 < p < 2j, we write

<Htp(z)_18wv 5w>j+u = Z 00/75’5:1 ag
lo/|=|B"|=j+n
where ¢, 3 € C are complex numbers. Given o/, 8" € NI, |[o/| = || = p + J, such

that o’ > « and ' > ( holds (this implies g > 0) we find, using the general Leibniz
rule, that

3205 (hy. (w)* p(w) (W — 2) (w — 2)) |y =
o/l o
(O/ _ Oé)'(ﬁ' _ B)'aw 8w (hN,Z( ) p( ))lwzz

holds. Since hy.(w)*p(w) = O(|w|**) and |o/ — «|,|8" — B8] < u we have that less

then 2u derivatives acting on the function O(|w[**) which implies

T208 P (hy o (w)* p(w)) s = 0.

w

If o/ > « or § > p fails, we directly observe that

(67

35,02 (e (w) plw){w = 2] (w0 = 2)7) s = 0
holds. Hence,
(Ho(2) ™ 0y 0u0) ™ (v (w) plw) (w = 2)" (w = 2)°) s = 0
and we conclude that afi?g = 0 if j < max{|al,|5|} which proves that a,pr €

O (k~maxtlablBl}=ry in CO(D"), uniformly in ¢ € S; and p € Ss.

Given a, 5 € N, |a| = |f]|, consider agi}'). If 4 > 0 we can proceed similar as

above to observe that
305 () plw)w = 2)" (w0 = 2)°) s = 0
holds for |o/| = |5'| = i+ |a|. Treating the case p = 0 leads to
(Ho(2) ™0, 0)* (plw) (w = 2)" (w = 2)°) 1=

= Oé!ﬁlca,ﬁp(z)
= p(Z) <H<p(2’)7lawa 5w>‘a|wawﬁ'

Covering K by finitely many of those D” completes the proof. O

Lemma 2.53
Given z € D,y such that H,(z) = diag(Aq, ..., \,) one has

D=3 Sy CU g )
o =0 |nl=p+j pln —a)l(n =B e
nzmax{aaﬁ}

where (L/A)T =A™ 0o\,
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2
— and hence

Proof. One has (Hy(2) 0y, Ou) = S04 A 16w18w

(Hy(2) 00y D) = S0 (/D g o0

‘ wTw
Inl=pti T
Given a, f € Nj such that n > max{«, 8} holds one finds
g?u@?u(hl\f,z<w)up(w)(w - Z)a(w - Z)6)|w:z

O O ) 2)

Given a, f € N§ such that n > max{«, 8} fails one has

(67

T 00 (hv 2 (w) p(w)(w — 2)" (w = 2)) s = 0.

Thus, we conclude

a

G ( 1/ 77! AT aB(hk p)(2).
a,B #Zo 7]¥+J ( / ) ,U'(77 _ CY)'(T} _ 5') w w ( N,zp)( )
n>max{c,3}

2.7 An L?>-Norm Estimate for the Stationary Phase Formula

Let N € Ny be a non-negative integer. In this section we study the asymptotic
behavior for & — oo of the inner product (-, )k, , between polynomials of degree at
most N and holomorphic functions in Hy, (D) which vanish up to order N at some
point. For brevity we will use the notations HY(D) := Hp, (D), (,-)k := (-, Jkp.p
and || - ||x := || ||kp, in this section. As before, we assume that D C C" is a bounded

domain.

Definition 2.54
Given a point zy € C" and a holomorphic function f € O(U) defined on an open

neighborhood U around z, we say that f vanishes up to order N € Ny in zp if
0% f(z0) = 0 holds for all « € N§, |a] < N.

The following result is fundamental for proving the reprodicng property in The-
orem 1.3. The idea for Theorem 2.55 in the version given below was inspired by

Chin-Yu Hsiao during a discussion in 2016.

Theorem 2.55
For N € Ny let p € CNT(D,R) be a function and dVp = pdVen be a volume form,
that is p € CNTYD,R) with p > 0. For any z0 € Dy, B € Ny and 0 < e < 1
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there ezist an open neighborhood U C D around zy, a cutoff function x € C§°(D,R),
0<x <1, x=1o0nU and a constant C such that for all z € U, k € [1,00), and
all functions f € HY(D) which vanish up to order N in z, one has

N+1+n e

[ pw)lw=2) e ET  w)e o (w) < Ch- Fle-

Here C' is bounded when ¢ stays in a bounded set in CNT4(D,R) with a constant
C" > 0 such that H,(z) — C'1d is positive definite on supp(x) and p stays in a
bounded set in CN*1(D,R) such that Sup,ceupp(y) (W)~ has a uniform bound.

Corollary 2.56
Given N € Ny, ¢ € CNT(D,R) N C%D), dVp = pdVen with p € CNT(D,R) N
C%D), p >0, z0 € Dyn, 8 € Ny and any neighborhood D' CC D,y around z,

there exists a constant C > 0 such that

N+1+n €

[ f@w==) enEe vy w) < ok EEE g @)

for all z € D', k € [1,00) and all f € HP(D) which vanish up to order N in z.
Here C'is bounded when ¢ stays in a bounded set in CNT(D,R)NC°(D) such that
SUD(, u)e D xD lw—z|?/dn (2, w) has a uniform bound for some open neighborhood D"
of D" and p stays in a bounded set in CN*1(D,R)NC°(D) such that sup, 5 p(w) ™

has a uniform bound.

Proof. Given any point zo € D’ we apply Theorem 2.55 and find

N+1+n 5

’/ )= k'yN(zw)X(w>e—k90(w)dVD(w>’ < Ck™ [l

for some cutoff function x with suppx C D”, x = 1 on some open neighborhood
U C D" of zy for all z € U. Setting

Ay = | [ f)lw=2)" NED (1 = x(w))e OV w)

we have that the left-hand side of (2.7) can be estimated by A;+ As. So we just need
to show that A, will decrease fast enough when k goes to infinity. Cauchy-Schwarz

inequality and the assumptions on ¢ and p lead to

— —kon(z,w
A < |10 =2 (1= x() e vy (w)| 111}
< G g2

where 9, C1 > 0 only depend on sup, ,,)c pi5 W —2|*/@n (2, w) and sup,, 5 p(w)~".

Since we can cover D’ by a finite number of such sets U the claim follows. O]
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Remark 2.57

Theorem 2.55 and Corollary 2.56 stay true for a fixed weight ¢ € CV*3(D,R).
We need to increase the regularity by one in order to get the uniformity in ¢. The
reason for that can be found in Proposition 2.59, which is also true for a fixed weight
@ € CNT3(D,R) but needs the higher regularity for choosing the neighborhoods
independent of .

Sketch of the proof. Before we begin with the proof of Theorem 2.55, we
would like to outline the idea first by using a simple example. Consider the case
n=10D=D,2z =0, p=1and

p(2) = |2 + pa(2), pa(2) = a(2"2 +7%2) + 2727 + 2027 + ||V

for a € R. We immediately find that vy(0,w) = 0 and hence that ¢y (0,z) =
©(z). First, we choose a disk Dg, with radius 0 < 67 < 1 around 0 such that
©(2) > Cp|z|? holds on Dy, for some constant Cy > 0. Then choose a cutoff function
x € C(Dy,R) with x = 1 on some open neighborhood U CC Dy, around 0.
Given a holomorphic function f € O(ID) which vanishes up to order N in zy = 0 we
can write f(z) = zNTlg(z) for some holomorphic function g € O(D). We then use

integration by parts and get
[ X0 = (=0 [ (()gla)ehn® (3 e av
= N[t (N () ) g z)e e ar
D

By Lemma 2.30 we have sup,p, |g(2)[2e~29() < C RNTHH/2)| £]|2 for some con-

stant C'; > 0 independent of k and g or f respectively. It follows

L@ e Oave

N+1 n

< Cikm T | Sl

/ Gk (Z)G_kicp(z)dv(c
D

with Gi(z) = ka2 (X(z)ek““(z)). We write the integral on the right-hand
side as [ Gk(z)e_k%‘ﬂ(z)d\/c = Ay + Ay with

Alk_/Gk £(|22K e R g, AM_/Gk )1 — (|2 2k ))e M@ v,

where £ € C5°((—24,20),R), 0 < & < 1and £ =1 on (—6,0) is a cutoff function
with 6 = 272 and ¢ = ¢/8(N + 1). We find |Ayx| < CokN+1e= "2+ Using
Example 2.45 we have fD e~hielz )dVe < C3k~™. Then a direct calculation shows
that |A; | < C’4k:_”+25/(N+1) assuming a = 0. For the general case, that is a # 0,
we have to change the coordinates in order to eliminate all the z%Z° terms with
min{|«a|, |5|} = 1 in the Taylor expansion of @y (zp,-) up to order N 4+ 2. Those

coordinates are provided in Proposition 2.59. A careful analysis of £(|z|2k' ") Gy (2)
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F(Z,U(])

One has that F maps the subset Uy x Uy C D x C" to D such that its restriction to
any {z} x Uy is biholomorhpic. Furthermore, the Uy is always contained in F(z,Up) and
F(z,Uy) is always contained in Us for all z € U;. Note that the left-hand side of the

picture represents a subset of C*™ while the right-hand side represents a subset of C".

Figure 2.2: Ilustration of F' in Proposition 2.59

using these coordinates is done in Lemma 2.63. So let us assume a = 0. Putting all

together we get

N+1—n

/x(z)f(z)e’k“”(z)dv@ < Ok || [ (Cah 2 (V4D L Oy N+ =000k
D

< CETET S

for some constant C' > 0 independent of k£ and f.

Given n > 1 we cannot apply Lemma 2.30 directly because in general the holomor-
phic functions, which vanish up to order N in 2y, do not have the form z%g(z) in
that case. We overcome this difficulty by introducing the meaning of a splitting de-
composition (see Definition 2.60) and by modifying Lemma 2.30 (see Lemma 2.62).
Moreover, here we just consider the case where zy, p and ¢ are fixed. To prove
the general statement we also need to show that the constant C' > 0 can be chosen

independent of zy, p and ¢ in some suitable sets.

Remark 2.58
It should be mentioned that in the case n = 1 a much simpler proof of Theorem 2.55
could be given. But this simpler method does not generalize to higher dimensions

since the zero set of z — 2%, |a| > 0, fails to be compact in that case.

For the proof of Theorem 2.55 we need to change coordinates at some point in
order to show that some error terms become small. We prove the existence of those
so called Kéahler coordinates (see [6], [26]) in Proposition 2.59. We have to prove
that in some sense those coordinates can be chosen uniformly in ¢ when ¢ stays in

some bounded set in CNT4(D) (see Figure 2.2 for a visualization).
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Proposition 2.59

For ¢ € CN*Y(D,R) and any 29 € D, and any open neighborhood Us C D around
2o there exist an open neighborhood Uy C C™ around 0, open neighborhoods Uy, Us C
D,y around zy and C*-map F = F, : Uy x Uy — D such that F(z,0) = z,
F(z,-) : Uy — F(z,Uy) is biholomorphic, Uy CC F(z,Uy) CC Us for all z € Uy and

Pz, Flz,w)) = wl* = 3 capl2)u@” —n(z,w)
ali8l<N+2

with |n(z,w)| < Clw|NT3 for some constant C > 0 independent of z.
If ¢ stays in a bounded set A C CNT4(D,R) such that Hy(z) — C'1d is positive
definite for all p € A and for all z in an open neighborhood D' of zy the sets Uy, Uy, Us
with Uy C D' and the constant C can be chosen independent of p. Furthermore,
{n(z,) }oev, stays in a bounded set in CNT4(D,C) and {cnp(2)}.cr, stays in a
bounded set in C for all o, 5 € N™ with 2 < |al, || < N + 2.

Proof. Let Hy(z) = (gifa(g)lgl,jgn be the complex Hessian of ¢ in z € D. We have
that S,(2) := (y/H,(2)) ™" is well defined and of class C¥*2 on D’ since we can always
assume that locally £ < v"H(z)v < % for all v € C™ of unit length and all ¢ € A for
some t > 0 to get, by using the Taylor expansion of x +— /t + (z — t) and Cramer’s
rule, that S, is well defined and of class CV*2. Choose open neighborhoods U’ CC
D" around 2y and U” C C" around 0 such that the smooth map F,o: U’ xU"” — D,
F,o(z,w) = S,(2)w + z is well defined for all ¢ € A. Then, by a Taylor expansion

of pn(z, Fppo(z,-)) we can write

on (2, Fpo(z,w)) = [w* + m(z,w) +mi(z,w) — oz, w) — n(z, w)

mew) =Y Y Wbt mlzw) = Y cap(z)utT?

7=12<|a|<N+1 |l +181>3

|al,[BI<N+2
where b; , and ¢, g are C*-functions on U’ such that ¢, 5(2) = 01if o] < 1or || <1
and n(z,w) € O(Jw|"*3). Note that b;,ca s and 7 also depend on . Throughout
this proof by saying n(z,w) = O(|w|N*?) we mean |n(z,w)| < Clw|¥*3 for some
constant C' independent of ¢ € A and (z,w) in the domain of definition of 7.
Define a map G, : U' x U” — U’ x C" by G (z,w) = (z,G,(z,w)) where

Gy(z,w) = (wj + > bm(z)wo‘) :

2<|a|<N+1

The real Jacobi matrix of G, in (zo,0) is the identity map for all ¢ € A and hence
invertible. Since A C CV**4(D,R) is bounded we have that {G,},c is bounded in
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the C%-norm. Thus, we can shrink U’ and U” independent of ¢ € A to ensure that
é’w is a C%-diffeomorphism on its image for all ¢ € A. Furthermore, we find that
for any z € U’ the map G,(z,-) has an invertible differential, is holomorphic and
injective and hence biholomorphic on its image (see Lemma 2.19). Since {écp}(pe A
is bounded in the C?-norm we can find open neighborhoods V' C U’ around 2z,
and V" C C"™ around 0 independent of ¢ € A such that V' x V" is contained
in the image of éea for all ¢ € A. Denote the restriction of the inverse map of
Gy : U xU" = Gu(U' xU") to V' x V" by G;'. We have that G;' can be written
as G7'(z,w) = (2, F,1(z,w)) where F,; : V' x V" — U" is a C?-map such that
F,1(2,0) = 0 and Fi,1(z, ) is biholomorphic on its image for any z € V’. We find

o (2, Fpo(z,w)) = Go(z, w)* = n(z,w) —n'(2,w)

for functions 7', ) depending on ¢ with n'(z,w) € O(Jw|N*?) and

no(z, w) = Z c’aﬂ(z)wo‘wg (2.8)
lal+18]>3
lal,|BI<N+2

where ¢, 5 are C*-functions on U’ such that ¢, 5(z) = 0 if |a] < 1 or |[f] < 1.
Furthermore, we observe that (2, Fi,1(z, w))+1' (2, F,1(2,w)) = 7o(2, w) +7(2, w)
where 7, 7jp are C*-functions such that 7j(z,w) = O(Jw|¥*3) and 7y can be written
in the form (2.8). Define F, : V' x V" — V' x D by F,(z,w) = (2, F,(z,w)) where
F(z,w) = F,o(z, F,1(2,w)). We have that F, is a diffeomorphism on its image
and that Fi,(z,0) = z and F,(z,-) is biholomorphic on its image for any z € V' as
the composition of the maps (z,w) — (2, F,0(z,w)) and é;l. Let U; CC Us be
an open neighborhood around z,. Since F,(2,0) = (20,%0) and the properties of
{G,},ea we find an open subset of the form W’ x W” where W' C V' is an open
neighborhood around zo and W” C V" is an open neighborhood around 0 such that
W' x W" c Fw_l(V’ x U}) holds for all ¢ € A. Using similar arguments we find
open neighborhoods Uy € W' and Uj C U N D’ around 2z, independent of ¢ € A
satisfying Fw’l(Ul x Us) C W' x W" for all p € A. Now set Uy = W” and restrict
F, to Uy x Uy. We have that F,(z,0) = z and F,(z, -) is biholomorphic on its image

for all z € U;. Furthermore,

(2, Fylz,w) = [w]” — 1oz, w) — (2, w)

where 7j(z,w) € O(|w|¥*?) and
M(zw) = > Caplz)uw”

lal+181>3
lal,|BI<N+2

for C?-functions ¢, defined on U; such that ¢,s(2) = 0if |a] < 1 or |3 < 1.

Using standard relations between the derivatives of a map and its inverse (see
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Theorem 2.6) and the the properties of A we find that {F,1(z,)}.cv,0ca and
hence {F,(z,)}.etn pea is bounded in any Cl-norm. As a conclusion we get that
{7(z, ) }2ev, pea is bounded in CV*4(D, C) and {¢ap(2)}setr pea is bounded in C.
Since F,(U; x Uy) C V' x Uy we find that F,(z,Uy) C Uy cC Us for all z € U,
and ¢ € A. Given z € U; and w € Uj we can find a point (2/,w’) € U; x Uy
such that Fw(z’, w') = (z,w). By the construction of 15@ we have z = 2z’ and hence
w € F,(z,Up). This proves that U; C F,(z,Up) holds for all z € U; and ¢ € A.
Taking an open neighborhood U, CC Uj around zj finishes the proof. O]

Let U C C" be a domain and assume that U contains the closure of a polydisc

D¥ of radius ¢ around 0.

Definition 2.60

Let f be a holomorphic function on U which vanishes up to order N € Ny in
0. A (local) decomposition f(w) = X4 =n+1 W fo(w) where f, € O(D}), fo(w) =
28 CL(BO‘)wﬁ , |a| = N+1, converges absolutely on DY is called a splitting decomposition
(of f) if for all o, § € Ny, |a| = N +1, the following holds: a$” # 0 implies a';’ = 0
for all o, ' satisfying o/ + 8’ =a+ 5, a#d', p# .

Roughly speaking this means that a term w” cannot be contained in the power

series expansion of w® f, (w) and w® fu(w), o # o' at the same time.

Lemma 2.61

Any f € O(U) admits a splitting decomposition. Furthermore, given a splitting
decomposition f(w) = Y jq=ni1 W fo(w) and a positive continuous function
p:10,8]" — Ry one has

L, 0 falw)u? Blwip(unf? ... fusf*)dVen =0

foralla# 5, 7 < 9.

Proof. Assume that f vanishes up to order N € Ny in 0. By assumption U contains
the closure of a polydisc D? for some 7 > § around 0. Thus, we can write f(w) =
Yla|>N+1 Gaw® where the sum on the right hand side converges absolutely on the
closure of D}. Let (1), (2),...,a(dys+1) be an enumeration of the elements in
{a e N"| |a| = N + 1}. For w € D} define

fi(w) = Y aw”

la|>N+1
a—a(l)eNy

where o — (1) € Nj means that a; > «(1); holds for all 1 < j <n. We have that

f1 is a holomorphic function on D§ and that its power series converges absolutely
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on D7. Take «(2) and do the same construction for f — f; to obtain f, and so on.
One has that fi(w) == fi(w)/w*®, 1 <1 < dy,1, defines a holomorphic function
on DY. Since for any |a] > N + 1 there exists at least one 1 < | < dyy; such
that a — o € NP and by construction we get that f(w) = Y/ w*® fi(w) is a
splitting decomposition. To prove the second part of the statement we observe that
for m € Z\ {0} one has [;™ ¢™?df = 0. This implies that for o, 3 € N§, a # 3, one
gets

0 = H (/0 61(043'_61)9619) . /[O " H rj]+ﬁj+1p(7’%7 . ’ri)drl o drn
5T j=1

for any 7 € R,. Consider a splitting decomposition of f,i.e. f(w) = ¥4 j=n11 W fa(w)
and w fo(w) = X s> n41 a(ﬁa)wﬁ converges absolutely, || = N+1. By the properties
of a splitting decomposition we have that

R R W o ey
o/ ,f'>N+1 a'yﬁ'ingl
o’ £B

is a power series which converges absolutely on D¥. Thus, for 7 < ¢ we find
| we falw)eP )l ... ) dVes

= X Pl [ el ) dVes
ol B/ >N+1 D;‘

@' #p
= 0.

]

Lemma 2.62
Let Sy ¢ CN*(D,R) and Sy C C°(D,R) be bounded sets, D' CC D open and

1,05 > 0 two constants such that H,(z) — C11d is positive definite and p(z) > C}
for all ¢ € Sy, all p € Sy and all z € D'. Choose U;, 0 < j < 3, and F as in
Proposition 2.59. Assume that Uy contains the closure of a polydisc D3s ~ of radius
309 around O for some g > 0. One can find an open neighborhood U C Uy around z
such that the following holds: For any e > 0 there exists a constant C' > 0 such that
for allk € [1,00), all o € Sy,p € Sy, all z € U and any f € HY (D), which vanishes
up to order N in z, and any splitting decomposition of f o F(z,-)e */(&F (=)

f(F(va))eim(Z’F(z’w)) = Z waga,Z,k(w> » Jazk € O(Dg‘f&o)
lo]=N+1

one has

S SUp |G s(w)[Pem T PEEEW) < Nt f12
la|=N+1 wEDF,
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Proof. We can write ¢(z, F(z,w)) = |w|* + R(z,w) where |R(z,w)| < Cylw|® for
some constant Cy > 0 independent of z € U; and ¢ € S;. Thus, we can find 6 > 0
such that |R(z,w)/|w|?| < 1/5 on U; x DYs. Setting C; = 6/5 we conclude that

@(Z>F(Z>w)) < Cl|w|2 < @(ZvF(Zaw))

DN W

holds for all w € DY;, 2 € U and ¢ € S;. Applying Lemma 2.30 for p(w) = C|w|?
and p =1 we find a constant Cy > 0 independent of g, . and k such that

_ _ 2 02 —_ 2
- (NHEnte) gy |Ger(w) e ROl < */ W Ga 2 e (w)] e k1wl dVen (w)
weDy n Jyg

holds. By Lemma 2.61 we have

J

2

e~k gy, (w)

Z waga,Z,k(w)

|a|=N+1

— Z / |wagaﬁz’k(w)|26_kcl|w|2dVCn(w).
D35

|a|=N+1

n
26

Write dV, y,(w) = F*(z,w)(p(w)dVen) = p(z,w)dVen for p € S;. There is a
constant C3 > 0 independent of p € Sy such that Csp(z,w) > 1 holds for all
(z,w) € U x Dys. Thus, one finds

RO ST sup [ga . (w)| e E A )
la|=N+1 weD}

<Oy [ |F(F(z w))e R ED Pkl i, )

26

< /D (P (2 w)2e KPR G ) TG gV ()

20

< CoCa [ (P (e w)Pe . g (w)

26

=G0y [, )P Vo (w) < GO R

’ ;5)

The following lemma is crucial for the proof of Theorem 2.55.

Lemma 2.63

Let Uy € C™ be an open neighborhood around 0 and N € Ny be a non-negative
integer. Furthermore, let R,S C CNT3(Uy) be bounded sets with supps C Uy for
all s € S and that there is a constant Cy > 0 such that |n(w)| < Colw|NT3 holds
for allm € R and w € Uy. Let £ € CP(R,R) be a cutoff function 0 < & < 1,
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supp(§) C (—20,20) C (—1,1), £ = 1 on (—9,6) for some § > 0 such that Uy

contains the closure of a ball of radius 36 around 0. Set

Ry=2wr > capw@|cop €Ay CC™(Up)

la] 8122
o, | BI<SN+2

where A C C is some bounded set. Forn € R, ny € Ry and s € S set
Gop(w) = e—k(ﬂo(w)—&-n(w))g‘z} (s(w)ek(no(w)+n(w))) '

There ezists a constant C > 0 such that for all « € Ny, |a] = N +1, all k € [1,00)
and alln € R, ny € Ry, s €S one has

p [€(H [ ]2) G w)] < CHEVH),

weUy

Proof. First we notice that

sup sup |05 s(w)| < Cy
|a|§N w€eDgs

for some constant C; > 0 independent of k£ and s € S. Next, we find for |a] < N +1
that [0)n(w)| < Cylw|N*+3-1el for some constant Cy > 0 independent of w € Ds;,
n € Rand «, |a] < N+ 1. Set &(w) = (k' ¢|w|?). Since supp(§) C (—246,20),
ie. &(k'F|w|?) =0 for |w]* > 26k, we conclude

|5377(w)| < 02|,w|N+3—|a\ < CBk—(l—a)(N-l—?)—\aD

for all w € supp &, n € R and «, || < N + 1, where we choose C3 > 0 such that
Cy(20)N+3-lel < Oy for all |a| < N + 1. One has

) T2 Dn(w)] < Ok 3 0-0073) ghlal0-e)4m
j=1
< (14 Cy)NH gk (N-00-9) < Oyke

for all a(1),...,a(m) € Nj, 1 <m < N+ 1, | X7, a(j)] < N+ 1. Thus, there
exists C5 such that

‘e*kn(w)gzekn(w)‘ < Oy k(VHDe

forallp € R, w € suppé&y, |a| < N+ 1and k € [1,00). For o/, 5" € Nj such that
/|, |B'| > 2 one has

Fw” @ | < w]? < fwl?.
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Thus, we find a constant Cg > 0 such that for all ny € Ry, || < N+ 1, k € [1,00)
and w € supp(&) one has |9,n0(w)| < Csk~'** and hence there exists a constant
C7 > 0 independent of 1y € Ry, k € [1,00) and w € supp(&y) such that

k7 TL 35 mo(w)] < Cok0e
j=1

holds for all a(1),...,a(m) € Ng, 1 <m < N+1, [¥07, a(j)] < N+1. We
conclude that there is a constant Cg > 0 such that for any ny € Ry, k € [1,00),
w € supp(&x) and || < N + 1 one has

‘6—/6770(11))53616770(10) ‘ < Cgk(N-i-l)E'

As a conclusion we find a constant C' > 0 such that |G (w)| < Ck*WV+D for all
neER, € Ry s€S, ke[l,o), wesupp(&) and |a] = N + 1 or in other words

sup [ (k' |w[*) G p(w)| < CRHNHY
weUy
for all k£ € [1,00).
[l

Proof of Theorem 2.55. Let S; € CN*4(D,R) and S, € CY (D, R) be boun-
ded sets, D' CC D open and C},C) > 0 two constants such that H,(z) — C]1d
is positive definite and p(z) > C} for all ¢ € Sy, all p € S5 and all z € D'. Fix
0 <& <1and z € D'. Choose an open neighborhood V' C D’ around z, such
that for o[y the point zy has the N-th localization property. Now, there exists an
open neighborhood V' C V such that ¢|y has the N-th localization property for
any point z € V' and any ¢ € S;. More precisely there exists a constant C§ > 0
with @y (z,w) > Clw — 2| for all (z,w) € V' x V and ¢ € S; (see Lemma 2.47).
Apply Proposition 2.59 where we assume U; C V'’ and U3 CC V. Choose the cutoff
function x € C§°(D, R) to be supported in Us and x = 1 on some open neighborhood
U’ C U,y around zy. Set

A = [ F) =2 Ty e Vi)

— g(z, w)h(z, w)ek’YN,F(va)e_k@(F(Z:w))d‘/%Uo (w)
Uo
where g(z,w) = f(F(z,w)) is holomorphic in w and h(z,w) = (F(z,w) — z)ﬁx(F(z, w)),
N E(z,w) = y(z, F(z,w)), dV,u,() = F(z,-)*dVp. Note that supp(h(z,-)) C U;
holds for all z € U;. We further set ¢y r(z,w) = @n(z, F(z,w)) and can assume

that Uy contains the closure of a polydisc D% of radius 37 around 0 for some 7 > 0.
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Choose a cutoff function £ € Cf°(R,R), 0 < & < 1, supp(§) C (—24,25) C (—1,1),
¢ =1 on (—4,8) where v/§ < 7. Consider the term

2

() = | [ g w)h(z, w)e (1 = gDV, g, (w)
0

<A1 1z w)PI(L = €)oo CaV, g ().

By the assumptions on ¢y, U; and the properties of F' from Proposition 2.59 we find
a constant C} independent of k, z € U; and ¢ € Sy such that @y p(z,w) > Ci|wl|?.

Then, we conclude

I w) P = &) oV g )
< [ Ih= w11~ €l )

< e [z w)PaV. g, (w)
0

where [, |h(z, w)[?dV. y,(w) is uniformly bounded in z € Uy, ¢ € Sy and p € 5.
Now, consider

Ag g (2) ::/ g(z,w)s(z,w)ekaF(z’w)e_k‘P(F(z’w))deUO(w)

0

=/, gz, w)e e gy w)e’k“vaF(Z’w)dVAUO (w)
0

where s(z,w) := h(z,w)&(Jw|?). Since Uy contains the closure of a polydisc D%, of
radius 37 around 0 we find by the assumption on f a splitting decomposition of

g(z,-Je e as
g(z, w)efk’yN,p(z,w) _ Z wagz,a,k (w)

|a|=N+1

where g, o1 are holomorphic functions on D%_. By the properties of s we can write
A (2) = Xjaj=n+1 Bak(2) where

B, k(z) == g wagz,mk(w)s(z,w)e‘k‘ﬁN’F(z’w)dVZ,UD(w).
0

We write
o, r(z,w) = |wl* = 1no(z, w) —n(z,w)
as in Proposition 2.59 where

mw(zw) = > caplz)ww’

lal+181>3
lal,|BI<N+2
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such that ¢, (z) = 0 if o] < 1 or |8] < 1 and n(z,w) = O(Jw|[¥*3). Furthermore,
set

Gai(z,w) = p(z,w) e 0 EwFnEw)

00 (p(z7 w)s(z, w)ek(no(z,w)ﬂ(z,w)))
where p(z, w)dVen = dV, y,(w). One calculates
Bar(2) = (=F) ™ [ g ap(w)s(z, w)eF R @ ) QY. g (w)

— B g (W) Gz, w)e Er Y, g ()

Uo

Fore =¢'/8(N + 1), 0 < ¢ < 1, consider the term

Brosl2) = | gemsw)(1 = 0 )Gz w)e ™ PY P2V, )

z,w)

_3kg
< SUp |g. a(w)e” TENEE sup |G (2, w)]
webh? webhn?

(1= R ) ey, g ),

T

We observe that |Gy (2, w)| < CokNT! for some constant Cy > 0 independent of ,
ze U, we Uy, p €S and p € Sy. Furthermore, we have @¢n (2, w) > Cy|w|?.
Thus,

[ (= € fuf))e tomr ey g () < Coe 4

-

for some constant C5 > 0 independent of k, z, ¢ and p which implies

By ax(z) < CoyClye 1R ENFL gup |gz7a,k(w)|e_%“3NvF(z’w).
webhr

Now, consider
BQ,a,k(z) = ‘/ gz,a,k(w)Ga,k’(zv w)g(kl_g|w|2)6_k¢N’F(ZVw)dVYz,UO (w)
Uo

3k _
< sup |gzax(w)le” 4 PN, (2,w) sup ]f(kl E]w|2)Ga,]1€(z,w)|
webn webn

. /Dn €*§¢N,F(Z:w)d‘/z7U0<w)'
A similar argument as above and Example 2.45 leads to
/Dn e‘ﬁN’F(%w)dVZ,UO (w) < Cyk™
for some constant Cy > 0 independent of k, z, ¢ and p which implies

BQ,a,k(z) S 04]{:_” sup |gz,a,k(w)|€_%¢F(Z7w) sup |€(k1_€|w|2)Ga,k(zaw)|‘

webh? webh?
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Using Lemma 2.63 and Lemma 2.62 we find an open neighborhood U C U; around
20, ko € N and constants C'5, Cg > 0 such that

6K )Gl (2, w)| < Cob? V02

and

~ 5/
SUP [gs o (w)[2e™ 7 PPE0) < CulNFTIHET | 1|12
webh?

holds for all z € U, k > ko, « € Nj, o] = N+ 1, w € Uy, p € Sy, p € 5
and f with the properties mentioned above and all splitting decompositions for
f(F(z,-))e ®#E) Then we have

| Ba i (2)| <~ (N+14n)+2(N+1)e sup (’gzymk(w)‘e—%@p(z,w))
web}

. (0203670151&kN+1+n72(N+1)s + 0405)

__N+LHK+&N+1k+d
2

P2 £l (CoCe Ot N+ =20 0,5

<k

_ N+4l4n—¢

<k= 2 Grll Sl

some constant C7; > 0 independent of z € U, k > ko, ¢ € S, p € Sy and f or its
decomposition respectively such that CyCye €10k pN+1+n=(N+1)e L 0 Oy < Cf for all
k > ko. Putting all together we find

/D Fw)w = 2) e E (W) e OV (w)| < A (z) + S [Bakl2)]
|o|=N+1

N+1+n—e

<CE 2 fl

for some constant C' independent of z € U, k > kg, p € S, p € S92 and f. From
Lemma 2.29 Cauchy—Schwarz inequality and the compactness of [1, ko] we can choose
C such that the statement holds for all k£ € [1, c0). O

2.8 Decomposition of H}(D)

Let D C C" be a bounded domain with volume form dVp = pdVin where p €
C?WNAn+) (D) N CO(D) is positive on D and consider a weight ¢ € C3V++4(D) N
C%(D). Given k € [1,00) and z € D let V. yx C HY(D) = Hy, (D) be the lincar
subspace spanned by the linear independent set

{w— (w— z)“ekW(z’w)}|a|§N.

Let W, v C Hp, (D) the linear subspace which consists of all elements in Hy,, (D)

vanishing up to order N in z, i.e

olel f

W, Nk = {f € H;SW(D) | %(z) =0forall « e Ny , |o < N} .
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For any holomorphic function f on D we can write the Taylor expansion in z up to
order N as

1 olelf

ol 0w

Ton(f)(w) =

o] <N
Then, define the linear map T nx : Hp, (D) — Hp, (D) by

(2)(w = 2)*.

Tz,N,k(f) (U)) = ek’YN(ZﬂU)Tz,N(eik’YN(Zf)f('))(w)'

We will show that H,S%p(D) can be written as the direct sum of V, vy and W, n

with respective projection T, n .

Lemma 2.64

One has H,g%p(D) = V. nir ® W, Nk where the respective projections are given by
T.ni or I —T, ny respectively. More precisely, T, y is a projection, i.e T, nj ©
T.nk = T.ng, such that ran(T, i) = Ve vk and ker(T, ni) = We N k-

Proof. By construction one has ran(7}, y ) C V. yi. Given a polynomial p, p(w) =
Ylaj<n Calw — 2)%, of degree lower than or equal to N one has T, yp = p. For
f € Vz,N,k write

flw) = ek (zw) Z Co(w — 2)*

la] <N

and consider the polynomial p defined by p(w) = e *¥E®) f(w). One gets

Towaf (w) = eWENT, yp)(w) = N EDp(w) = f(w)

and hence V, nj C ran(T, n ) as well as T, n 0T, v g = Th N Since w — e Fn(zw)
does not vanish we have f € W, x4 if and only if e *wE) f(.) € W, v, Further-

more, one observes that f € W, v if and only if T, 5 f = 0. Thus, we conclude that

ker(Tz’N,k) = Wz,N,k~ ]

We would like to study the restriction of || - ||xp, to V. nx. Therefore, we set
Va k- (W) = s (w — 2)%enGEw) for o € Ng, o] < N, k € [1,00) and z,w € D.
Then, {va,:}aj<n is a basis for V. y, and we define a norm || - [[x2 by || fl[Z2 =

Z\a|gzv ‘Ca|2 for f = Z|a\§N CaVak,z € Va N k-

Lemma 2.65
Given N € Ny and D' CC Dy there exists a constant C > 0 such that

1 fllkgo = Cllf llrs2

holds for all k € [1,00) and f € V, ny,. Moreover, C > 0 can be chosen independent
of v and p if ¢ stays in a bounded set S; C C3NFTMHY(D) N C%D) such that
inf(..uyepxp @n(z,w)/|w — z* has a positive lower bound and p stays in a bounded
set Sy C C?NFHD) (D) N C%(D) such that inf.cp p(z) has a positive lower bound.
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Proof. Let Rp/(C™) be the space of homogeneous polynomials of degree M in n

complex variables, i.e.
Ry (CY) ={f € Clzr,..., 2] | f(A2) = XM f(2) for all A € C}.

First, we observe that (f,g)" = AM f(2)g(z) € C defines a Hermitian inner product
on Ry (C"), because AM292° = alplé, 5, o, 3 € NI with |o| = |8] = M, and
{z* | |la] = M} is a basis for Ry (C"), where A = (9,,0.) = X1, 82‘9W Given
A € Gl,(C) we have that f — f o A defines an automorphism on RM(C") Since

(A710,, A710.)M f(2)g(2) = AM f(Az)g(Az) we find out that

(f.9)" = (A710., A710:.)" f(2)9(2)

defines a Hermitian inner product on Ry (C") as well. For 0 < M < N let R, prx
be the linear span of the linear independent set {va,k7z}|a|: m- By Theorem 2.50 we
find

(Caos Vi — P(2) det(Ho(2)) ™ (Hp(2) "0 B) M| < Cok™

for some constant C; > 0 independent of k € [1,00), z € D', ¢ € S, p € Sy and
a, B €N, |al,[B] = M. Given f € R,y write f = 3|4j=as CaVa,k,- and we observe
that the function g defined by g(w) = e *?N&=Hw) £(2 4 ) satisfies g € Ry (C).
We conclude that

I1£11E = p(2) det(Hy(2)) ™ (Ho(2) 7 0w, Fu) M g (w)g(w)] < Cok™ 37 Jeal?

laj=M

for some constant Cy > 0 independent of k € [1 ),z € D' pe S, pe S and
[ € R.p. Since (Hy(2) 0y, Ou) = (Hyp(2) 20y, Hp(2)™ %610) we find, using the
considerations above, that

<H@(z)_18w,5w>Mg(w)mz Cs Z |Coz|2

|a|=M

holds for some constant C3 > 0 independent of z € D" and g € Ry (C"). Thus, one

has

1£%p,p = (C5 = kT Co)lI R
By using Theorem 2.50 we find for «, 5 € Ny, ||, |8] < N, |a| # |B] that

_1
|(Ua,k,zvvﬂ,k:,z)k<p,p| S C’4k 2

holds where Cy > 0 is a constant independent of k € [1,00), z € D’7 peSyand p e
Sy. Thus, we find a constant Cs > 0 such that |(f, 9)ke,p| < Csk™ (||f||,€2 + llgllZ:2)
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for all £ € [1,00), s € D', p € S1, p€ Sy and f € R, pmp, g € R, such
that M # M’. Using the decomposition V, nj = @%:0 R, ar we find constants
Ce, C7 > 0 with || f|lkpp > (Cs— Crk™2)|| f||r. Thus, there exist ko € N and Cs > 0
such that || f|lkpsp = C||fllx2 holds for all k > ko, z € D', p € S1, p € Sy and f €
V..ng. We have || f|lkeo/|| fllee > 0 for all k € [1,00) and f € V, v \ {0} and there
exists a constant Co > 0 with —Cy < inf, \cp p@N < SUP(, epxp PN < Co,
inf,.5p > 1/Cy for all ¢ € Sy and p € ;. Together with the compactness of {f €
Vong | [ flle2 = 1} and [1, k] we find a constant Cyo > 0 with || f|ke.,/| fllk:2 = Chro
forall f € V, ni, k € [1, ko], ¢ € Sy and p € Sy. Putting C = min{Cs, Cyo} finishes
the proof. n

We have the decomposition Hy, (D) = V. @® V., where V!, denotes the
orthogonal complement of V, . in Hy, (D). The main result we want to prove
in this section shows that the restriction of Id =T, x4 to V 'y, is bounded by a
constant independent of k and locally uniformly in z C D’. In particular, we will

show the following.

Theorem 2.66
Given D' CC Dy there exists a constant C > 0 such that

1A =T2 nk) fllkgp < Cll F llkgp

holds for all k € [1,00), z € D" and f € VZLN,g Moreover, C' > 0 can be chosen
independent of ¢ and p if ¢ stays in a bounded set S; C C3N*3T4(D) N C°(D)
such that inf(, wyep xp P (2, w)/|w — z|* has a positive lower bound and p stays in
a bounded set Sy C C*NT2T2(D)YNCO(D) such that inf,cp p(z) has a positive lower
bound.

In order to prove Theorem 2.66 we need the following lemma which shows that
V. ~i and W, nj become asymptotically orthogonal, i.e. W, x5 — VZLN,~C when &

goes to infinity.

Lemma 2.67
In the situation of Theorem 2.66 we have that for any 0 < € < 1 there ezists a
constant C' > 0 such that

—E

(f, Q)ksa,p’ < Ok—THfHk’%p“g“k%p
holds for all k € [1,00), o € Sy, p€ Sa, z€ D', f €V, ni and g € W, n .

Proof. We define another norm on V, n which is the maximum norm with respect
to the basis

{w i (w—2)%e= ) <y,
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e [[fllreo = maxjy<n |cal where f(w) = 34 <y calw — z)®eFwEw) - One has
N+n
that ||f||k;oo < Cok

|| f|lk:2 and hence, using Lemma 2.65, we find a constant Cy > 0 such
NMHfH;wp holds for all k£ € [1,00), z € D', p € Sy, p € Sy, and
f € V.~ Then, we can apply Corollary 2.56 and get for f € V, v and g € W,y
that

+n+1 £

|(fs 9kgol < CLk™ 1 licoll gl < CK 2 1 fllkppllgllipo

holds. In other WOI‘dS for any 0 < € < 1 there exists a constant C' > 0 such that
\(f, kgl < Ck™ 5 |1 fllkppllgllke.p holds for all k € [1,00), z € D', ¢ € Sy, p € Sy,
fe€Vonrand g € W, ny. O

Proof of Theorem 2.66. Given f €V, Nk write f = fi+ fa where fi =T, yif €
Ving and fo = (I — Ty ni)f € W, Ny respectively. We find 0 = (f1, fip, =
| fill,., + (f1, fg);wp and hence, using Lemma 2.67 for some 0 < ¢ < 1, ||f1
[(f1, f2)kpol < Cik™ kg,oll f2llkp,e Which implies || fi][rp, < Cik~ [0

Thus, we have Hf”lw,p 2 |[f2llkgo = f1llko = If2llrg,o(1 — Crk™ T) and we can
find kp € N and C > 0 such that H(I —Toni) Fllepp < Cllfllkp, for all & > ko,

ze D, peb,peS;and f € Vly, From the compactness of [1, ko] and the

||k<pp =

assumption that S; and Sy are bounded sets we find by using Lemma 2.28 that
C > 0 can be chosen such that the statement holds for all k£ € [1, c0). O



Chapter 3

Bergman Kernel Expansion

In this chapter we prove the main results announced in Section 1.2 and Section 1.3.
We construct the local asymptotically reproducing kernel in Section 3.1. Theo-
rem 1.3 then follows from Lemma 3.4 and Lemma 3.8. In Section 3.2 we establish
a formula for the coefficients in the Bergman kernel expansion (see Definition 1.4
and Example 1.11). The main calculations for the explicit formulas are performed
in the proof of Theorem 3.17. With that formulas Theorem 1.6 and Theorem 1.7
follow from Lemma 3.9 and Lemma 3.12 (see Theorem 3.20, Theorem 3.21 and
Corollary 3.26).

In Section 3.3 we introduce some basic notations from complex geometry in order
to apply Theorem 1.3 in the manifold case (see Lemma 3.30). Using Hérmander’s
L? estimates in a version due to Demailly (see Theorem 3.31) we prove Theorem 1.15
and Theorem 1.16 in Section 3.4 (see Theorem 3.36 and Theorem 3.38).

3.1 Local Expansion of the Bergman Kernel

Let D C C" be a bounded domain and let ¢ € COVT3" (D R) N C%D), p €
CANTIT2(D R) N C%(D) be two real valued functions such that p > 0 on D holds.
Define a volume form on D by dVp(z) = p(2)dVen. For any k € [1,00) set

Hy, (D) ={f € OD) ||| £llkp,, < o0}

where the norm || - ||, , is induced by the weighted inner product (-, )i, , given by

(f:Dkon = [ F)9(E)e V() , for all f.g € (D).

Thus, HY

kp,p
Ky = Ky, , the reproducing kernel, P, := Py, , the Bergman kernel and B :=

(D) is the space of holomorphic functions on D with finite L?-norm. Let

By, the Bergman kernel function for the space Hy, ,(D) (see Definition 2.34). For
brevity, we will also use the notations Hy(D) := Hyp, (D), (-,-)r = (-,)kp, and
|l - [l& == - lke,p in this section. Let yn, @y : D x D — C be defined by

e = 28 v 1 9"p(2)

| leY
2 1<ja=nt2 @ 0%z

(w - 2)°
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and ¢y (z,w) = p(w) — yn(z,w) — yn(z,w). Given a, o/, 8 € Ny and z € D we set

tapa(z) = [ (w=2)7w=2) e v, (w)

Ani(2) = (aapr(2))al i<y and An o k(2) = (Ga,8,1(2))|al,181<N,al£0,840

where we define an order on Nj by saying a < § if |a| < |8] and using lexicographic
order for |a| = |3]. We have that Ay ;(2) and Ay o k(%) are square matrices and that

An(2) is invertible as the restriction of (-, ), , to the finite dimensional subspace
Vi 2k = spanc{w — (w — z)ae]”(Z’w)}‘aKN C H,S%p(D).
Hence, for any a € Njj, |a| < N, we can define

NUM(e) det An ok (2)

ANak(2) = (=1) det Ani(2)

where NUM: N — Nj is the inverse of the enumeration of the elements in Njj with

respect to the order on N. Now, define Ky = Ky, ,n: D x D — C

KN,k;(Z,w) — kv (z2)+ N (2w)) Z )\N,%k(z)(w _ Z)oc
la|<N

and set similar to Section 2.4

_ e te(w)

Pyi(z,w) =e > Kni(z,w) and Byi(2) = Pyvi(z, 2)

for 2 € D, w e D.

Lemma 3.1
One has (f, Kni(z,))k = f(2) for all z € D and f € Vy ..

Proof. Let z € D be a point. Consider the vector Avx(z) = (An.ar(2))<n- By
Cramer’s rule we find that Ay x(z) solves Ani(2)Ani(2) = (1,0,0,...,0)7 which

implies

— o T 0 ,if 0 < |af < N,
/ Kyi(z,w)(w — z) M Ew ke gy, () = o] :
D ekiv(z2) i o = 0.
Given f € Vi write f(w) = Yju<n ca(w — )%™ &) and hence, using that
Y (2,2) € R holds, one finds (f, Kyi(z, ) = coe?’?) = f(2). O

Lemma 3.2
For any z € D one has | Knx(z, )|z = Kni(2,2) and By x(2) = Anox(2).
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Proof. Since Ky y(z,-) € V. we can apply Lemma 3.1 and find

[ K v (2, i = (Kng(2: ) vz, )k = Knp(z,2) = >\N,0,k(Z)ekh(z’z)ﬂ(z’z))-
Furthermore, one has By x(2) = e G Ky (2, 2) = Avox(2). O

Lemma 3.3
Given ¢ € CONTHH(DYN CO(D) one has Ay o1 € CONT3TIFY(D) for all o € N,
la| < N.

Recall that D, x is the set which consists of all points z € D satisfying the N-th

localization property, that is

(i) z€ Dy,
(ii)  Pn(z,w) >0 forallw e D\ {z}.

For the rest of the section we define the following. Let D’ CC D be an open set and
Sy C CONT3H(D RYNCO(D), Sy € CWN+2+2(D R)NC°(D) be bounded sets such
that {inf, \cp 5 Pn(z,w)/1z —w* | ¢ € Si}, {inf,c5p | p € S} have positive
lower bounds. It immediately follows that D" C D, y for ¢ € 5.

Lemma 3.4

Let | € Ny be a non-negative integer. For any ¢ € Sy N CNT3HH(D) p €
So N CNF2E2H(DY and o € N, |a| < N, there exist functions )\53’)&, e ,)\5\],\2 €
CY (D) where )\%?a(z) depends only on the derivatives of p and p in z € D, such
that

N .
Mok — K3 KA, = O(k™N1") in CO(D') wniformly in ¢ € Si and p € Ss.
j=0

Furthermore, we have AﬁS}O(z) =71 "p(z) "t det (Hy,(2)).

Proof. Let Fy be the set of all multi-indices o € Nf, |a| < N and denote by
Perm(Fl) the group of permutations of the elements in Fy where we define an

order on Fly as before by saying o < (3 if |a| < || and using lexicographic order for

la| = |5|. Using the Laplace rule for the determinant we find
det(AN,k) = Z (—1)Sign(7—) H aaﬂ-(a),k.
T€Perm(Fy) aEFN

We can apply Theorem 2.50 and find aq r(a)r = O(k—n—max{lalm(@)}) which implies
Qo,r(a)k = O(k—n—|0<\) with

ol ™ G+ k=i — O(p-N-1Y in (' 1
Ga,r(a) k det(H(p) Zaa,'r(a) O( ) in C ( ) (3 )

J=0
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uniformly in ¢ € S; and p € Sy. Thus, k% [Tocry Gar@)r = O(1) and hence
ki det(Ani) = O(1) where dy = Yy<n(|a| +n). From Lemma 2.65 we get
that for any compact subset K C D’ there exists a constant C' > 0 such that
det(Anx(2)) > Ck™ holds for all z € K, k € [1,00), ¢ € S; and p € S5. We

conclude that
kN det(Ang) — chk T =0k N in CUD)

uniformly in ¢ € S; and p € Sy holds where ¢y, ..., cy are continuous functions
defined on D’ and ¢y positive lower bound uniform in ¢ € S; and p € Sy on any

compact subset of D’. Applying the Leibniz criterion for determinants we find

det(AN”&]f) — Z (_1)Sig(7')+NUM(/B) H aa,T(a),k'

TEPerm(Fp) aEFn

r(0)=4 a0

As before NUM: Nj — Nj is the inverse of the enumeration of the elements in N

with respect to the order on Njj. Using the same arguments as above, we find
kN det(An p) Zcmk I =O(k™N Y in C°(D)
uniformly in ¢ € S} and p € Sy where cg, 0, ...,can are continuous functions de-

fined on D’. We apply Lemma 2.5 for
kdn—n det(AN7/37k)

m to get after multiplication with

N ) )
Mgk — K" Ak = Ok =) in C°(D)

J=0

uniformly in ¢ € S; and p € Sy. Since
det(Ava(Z)) — a0707k det(AN’o’k> = O(kidN*l)

we find by (3.1) that 5‘§3,)0(Z) =7 " det(Hw(z))(aéO())( ))~! holds which implies by
Theorem 2.50 ;\587)0(,2) = 7 "det(H,(2))p(z)*. It remains to show the first part of
the statement, that is for [ > 0, |a| < N, 0 < j < N, ¢ € S; N CNHH(D) and
p € Sy N CYFTH(D) we have S\%)Q = )\%?ab/ where /\S\J,?a € CYD,) such that
/\g\J,)a(z) only depends on the derivatives of p and p at z € D, . Given 2y € D, we
find by Lemma 2.47 an open neighborhood U C D around zy such that z, € Uplz,N
holds. We apply the already proven part of Lemma 3.4 to the setting D = U,
S = {gp\U} and S2 = {p|g} and find )\%?&U € Cl(U@WN), 0 < j < N, because
of a ) € C’l(Uﬂﬁ?N) by Theorem 2.50. Given another open neighborhood V' C U

: () :
around zo we have Uy NNV C Vv and since aq5.n(2) can be expressed in terms
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of the derivatives of ¢ and p at z € Uyl v we verify that )\%a (zo) = )\%a (20) holds.

In this way we can define /\ : Dy — C and find that A Na(zo) only depends on

the derivatives of ¢ and p at 20. The construction also implies that A N coincides

with )\Na on D'. Furthermore, since a&ﬁN € C' Uy n) for p € CONTHH(U) and
€ CHNF2H(U) it follows that any point zo has an open neighborhood where A

is a C' functions. Hence, we have A%?a € C'(Dy4). D

Corollary 3.5
Given ¢ € CONTHH(DYN S, and p € C’4N+2"2+l( ) N Sy we have the following.
For all « € Ny, |a| < N, there exist functions )\Na, . )\(N € C'(D,) such that

AN.ak — k:”z AP kT =0k Y in CO(Dy ).

7=0
Furthermore, we have AES?O(Z) =71 "p(z) " det (Hy(2)).

Remark 3.6

Given any open set U C C", ¢ € CONE3H(T) p € CNT2"2(U) and a € U such
that H,(a) is positive definite Lemma 3.4 allows us to define A%?a(a) for0 <j <N,
a € Ny, |a| < N, by taking a bounded open neighborhood V' CC U around a with
a € Vi (which always exists by Lemma 2.47). Then )\E\J}?a(a) is independent of
the choice of V.

Lemma 3.7
We have e*?~|Pyi|* = O(k*™) in C°(D' x D) uniformly in ¢ € Sy and p € Sy. In
addition we find for any compact set K C D' constants §,C' > 0 such that

| Pz, w)| < Chneokemul
holds for all (z,w) € K x D, k € [1,00), ¢ € Sy and p € Ss.

Proof. Write

_W(w) + 7N<Z> Z) + FYN(Z’ w) + VN(Zv Z) + ’VN(ZJU) = _SEN(Z? w) + gp(z)

Thus, we find

2

e*’“(s"(z)“"(“’))\KN,k(z, w)|2 — o kon(zw) Z ANak(2)(w — 2)°
la|<N

The first part of the claim follows from Py(z,w) = e —k SR Ky (2, w) and

Lemma 3.4. Using the assumptions on S; we find 6 > 0 such that ¢y (z,w) >
dlw— z|* for all (z,w) € D' x D and all ¢ € S;. Since D is bounded the second part

of the claim follows. O
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Lemma 3.8
For any compact subset K C D" and € > 0 there ezists a constant C' > 0 such that

1£(2) = (f, Ky (2, )il e E) < Ol D Ente| p 12
holds for all z € K, k € [1,00), p € S1, p€ Sy and f € HY(D).

Proof. Given k € [1,00) and z € D’ we can write H)(D) = Vy ., & V]\%’m where
Vn.kx C HY(D) is defined as above and Vj\%zyk denotes its orthogonal complement
in H(D). Recall that we denote the Taylor expansion up to order N in z of a
holomorphic function f on D by T, n(f), i.e.

We have another decomposition Hp(D) = Vi, & W, where

olel f

0w

W2k = {fEH,S(D) | (z) =0 for all |«| SN}

and the respective projection on Vi, is given by T,y : HY(D) — HP(D) by
T.nk(f)(w) = eFEIT, y(e7®1E) £(1))(w) (see Lemma 2.64). By Theorem 2.66
there exists a constant C; > 0 such that ||(Id =7, yx)f|lx < Ci]|f]lx holds for all
kell,0),zeD,pe S, peSyand feVy,,.

Now, given g € Vi.x, we have by Lemma 3.1 that (Knx((2,)),9)r = 9(2)
holds. For f € V]\%’Z’k we write f = f; + fo with respect to the decomposition
HY(D) = V. @ Wik and get for f by Corollary 2.56 that

2

> '/ folw)(w — z)aekrGwle# Vi (w)| < Cok™ N7 |
D

lo|<N

holds for some constant Cy > 0 independent of k € [1,00), z € D', p € Sy, p € 5

and fo. Thus, using Lemma 3.4 one has
|(for Kv (2, )il 90 < Cobm VD4 |2 < O Ok Y HDH042] £ 2

for some constant C3 > 0 independent of k € [1,00), z € D', p € S, p € Sy and fs.

Since

(f +9)(2) = (f + 9. Kni(z,))el?e ™ = |(fo, Kna(z, )il e )
and || f + gz = ||f1IZ + ||g]|? the claim follows. 0

From this lemma we obtain
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Lemma 3.9

For any 0 < e <1 one has

By, — By, = O(kK™N71tmte) yn CO(D),
P.— Py, = O(k™"2 7)) in C°(D' x D)

uniformly in o € S1 and p € Ss.

Proof. Writing f(z) = (f, Ki(z,-))r and putting f(-) = Kg(z, ) — Kni(z, ) we find
by using Lemma 3.8 that

Ok > | Ky(2,7) = Kz, [[re ™
e M (Ki(z,2) + Kni(z,2) — 2Re(Kni(z, ), Ke(z,))k)
= e MEEK(z,2) - e_k‘p(z)KN,k(z, 2)
= Bi(z) — Bni(z) >0

where we use the reproducing property of Kj(z,-), that Ky(z,2) is real and
Bi(z) > Bnk(z) since By is the Bergman kernel function for a larger space (see
Lemma 2.36). Since K} and Ky are holomorphic in the second argument we can

apply Lemma 2.29 and get

CK" | Ki(z, ) = Knalz0)lli = e ™Kz, w) — Kz, w)?

= ek‘p(z)]Pk(z,w) — PN7k(z,w)|2.

Corollary 3.10

Let K C D' x D be compact. Given € > 0 there exist constants C,0 > 0 such that
| Prpp(z,w)| < C(k:"e*‘;k‘“”ZIQ + l{:_%ﬂl*a) holds for all k € [1,00), (z,w) € K,
p e S and p € 5.

Proof. The statement is a direct consequence of Lemma 3.7 and Lemma 3.9. O]
NOW, define kN,k = f(ktp,p,N : D' x D — C
Kyi(z,w) = k(N (2,2)+7n (20)) Z ki Z )\%?a(z)(w —2)®
j=0 la|<N

with )\E\J}?a as in Lemma 3.4 and set

(2)+o(w) —=
e_kgoz;pu

f’Mk(z,w) = Kni(z,w) and BNk(z) = pNJﬁ(z,z)
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for z € D', w € D. Lemma 3.9 and Lemma 3.4 imply B;, — BN,k = O(k~N-tinte)
in C°(D’) which proves that the Bergman kernel function By for HY(D) has an
asymptotic expansion of order N on D’ in C%-norm. To get an expansion in C'-

norm for [ > 0 we need the following.

Lemma 3.11 (Hérmander’s Trick)

Let U C R™ be a domain. For any V CC U there exists a constant C' > 0 such that

\d. f(x)]> < C|l flleowry (| fllcowr + 1 fllczn)
holds for all z € V and all f € C*(U).

Proof. Given a non-negative function g € C%((—4¢, ), R) one has

8%l (0)]* < g(0)(g(0) +2 sup ?lg" (x)])-
x| <
A proof of this statement can be found for example in [24, Lemma 7.7.2]. Replacing
g by g + supj, <5 |9(z)| and considering real and imaginary part separately shows
that

8°lg'(0)]* < 8 sup |g(x)|(sup |g(z)| + sup 6%|¢" (z)])
|z|<d |z| < |z <8

holds for all g € C?(—6,5). Given any x € V choose § > 0 such that Bs(z) C U
holds. For 1 < j < n put ¢;(t) = f(x + te;), where e; is the vector which has a
of

one at the j-th position and all other entries are zero. We have 7-(r) = ¢}(0) and
J

hence

dof(2) = D 1g5(0)]> <8 sup |g;(x)|(67 sup |g;(z)] + sup g} (z)])
Jj=1 z|<

j=1 |z|<d |z|<d

< 8n|flleow) (82 fllcow + 1 lez)-
Choosing 0 > 0 such that Bs(z) C U holds for all = € V finishes the proof. O

Lemma 3.12
Given | € Ny put Sy := Sy N CONEHH(DY and Sy = Sy N CPNH243+ (D).
Assuming that Sy and Sy are bounded subsets of CONT3 5+ (D') and C2N+2n+3+ (D)

respectively one has for any 0 < e < 1

By — BNJg = O(k_CT(N+1)+n+T) m CT(D,),

P, — PN,k = O(kicr N2+1+n+r) m CT(D/ X D)

uniformly z'ngoGS’l andpegg for 1 Srglwithcrzl—l%l.
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Proof. We are going to prove a slightly more stronger result, that is for any € > 0

we have
By — By, = O(k~ N H=94m4ry iy C7(D'),

~ N+1—¢ <32)
Py — Py, = O(k~="3=5+47) in C"(D' x D)

uniformly in ¢ € S, and pE Syfor 1 <r<lwithe, =1— rll’f;l. By Lemma 2.39
and Lemma 3.4 we have that d%Byy,dSBy = O(k"*1°l) and dSdS Py, d3di Py =
O(k"HelH8l) in CO(D') or C°(D' x D) respectively, uniformly in ¢ € S; and p € S,
for any o, 3 € NZ, |8]| + |a| < 1. Hence we find that (3.2) is true for ¢, = ¢l® = 0,
1 <r <. For m € Ny we write ¢™ = (¢{™, ..., c{™)T € Rl. Applying Lemma 3.11

and using the estimate in C%-norm from Lemma 3.9 we find that if (3.2) was true

for ¢, = cﬁm), 1 < r <[, we have that the statement will be true for ¢, = cff”“),
1 <r <1, where ¢(™*Y is defined by

(m)
022 + % , forr =1,
(m)
(m+1) _ ) o_ 1

CT — l21 —I—F s fOl"?“:l,
(m) (m)
C C
S+ else.

We can rewrite this as ¢ = F(c™) where F: R! — R! is the affine map defined
by F(v) = Av + b with

2—1

= O
[ S -
O =
—_
<>
I

1 0 211

Setting ¢® = 0 and ¢V = F(c™) for m € Ny, it follows from induction that the
statement holds for all cﬁ,m), 1 <r <, and m € Ny. We are now going to show that
™ — ¢ = (cy,...,q) for m — oo with ¢, = 1 — rllf;, 1 < r < 1. The constant
e > 0 ensures that the statement (3.2) follows after finitely many iterations.

For | = 1 we immediately find c§’”) s for all m > 1. Given [ > 2 we start by
observing that the restriction F': [0,1]! — [0, 1] is well defined. Let ||A|| denote the

operator norm of A with respect to the standard Euclidean norm on R!. Applying

the definition of the operator norm to A it follows ||A|| < 1. Since A is a real
symmetric matrix we have that it is diagonalizable with eigenvalues Ay,..., \; € R.
Furthermore, we have ||A|| = max{|\|,...,|\/|}, which implies \y,..., A\, € [—1, 1].
Solving the the equation (A+Id)v = 0 recursively shows ker(A+Id) = {0} and hence
Ay, A € (—1,1) which implies [|A|| < 1. We conclude that F' is a contraction.
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Since [0,1]" € R! is closed we deduce from the Banach fixed-point theorem that
lim,, o ¢™ = ¢ where ¢ is given by the solution of F(¢) = ¢. Finding ¢ then leads
to solving the equation (2Id —2A)c = 2b. This can be written as co = 2¢; — 1,
2¢; — -1 =2V and ¢, = 2¢,_1 — 9, 3 <1 <[ which in fact leads to the problem
of finding ¢; € [0, 1] such that

0 1 2 C1 _
(=1.2) (—1 2) (2@1 - 1) =2 (3:3)
1 2 1 -1

we observe Bu; = vy, Buy = vy + vy, (c1,2¢; — 1)T = (3c; — 2)v1 + (¢ — 1w,
Because of (=1,2)v; = 1 and (—1,2)ve = 0 we have that (3.3) is equivalent to
(3c1 4+ 2) + (I — 2)(c; — 1) = 27! which has ¢; = 425 = 1 — 127 45 its unique

holds. Putting

ol I+1
solution. It follows ¢y = 2¢; — 1 = 1 — 21l_+21 and since ¢, = 2¢,_1 — Cr_g =
(—1,2)B"3((3c1 — 2)v1 + (¢1 — 1)wg), 3 < r < I, we conclude that ¢, = 1 — rll’fl_l

holds for all 1 < r < [. Choosing ¢ > 0 sufficiently small proves the original

statement. O

3.2 Coeflicients

Given N € Ny let ¢ € CN3H(U R), p € CWNF2T2(U R) two functions defined
in a neighborhood U around a point z; € C". Before we start to compute the
coefficients in the expansion of the Bergman kernel, that is )\g\’{odp (20) := )\g\,’o(zo)
defined in Lemma 3.4 we need to develop some basic tools in order to reduce the

computations to simpler cases.

Lemma 3.13
Let f,g € O(U) be holomorphic functions and let ) € CONT3FT4(U R), p € CONT3H (U R)

be defined by v(z) = @(2) + f(2) + f(2) and p(z) = e9&+9@) p(2). We have Hy(z)
is positive definite and A%?é‘p’p(zo) = eg(z)ﬂ(z)/\%?éw’ﬁ(zo) forall0 <j < N.

Proof. We have By, , = 69(2)+9(Z)Bk¢,ﬁ by Lemma 2.40. Since f is holomorphic we
find 9f = 0f = 0 and hence we conclude H,(z9) = Hy(20) by the definition of
the complex Hessian. Using Lemma 2.47 we find an open neighborhood D CC U
around zp such that zy € Dy, xy N Dy n holds. From Lemma 3.9 it follows that

SOONE™ (20) = ARG (20))k 7 < kN1

=0

for some constants C' > 0 and 0 < £ < 1 which proves the statement. O]
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Lemma 3.14

Given an invertible n xn-matriz F' consider the map G: C" — C" defined by G(w) =
F(w—2)+2. We have poG € CNT3H(G=HU),R), poG € CNT+2(G-IU R),
Hoc(20) = F*Hy(20) F is positive definite and A%?é“pOG’pOG(ZO) = | det(F)|2/\S\j}7)é<p’p(zo)
for all0 < j < N. In addition, for o, 3 € NI and ¢ € Cl*HIB(UNGH(U)) we have
05041 0 Glz0) = XgX g1 (20) with

i 0 0
Xwa: meam7 me: mly ani
(Xo) H( m) ’ 18w1+ + ow,,

m=1

where F' = (Fn)1<t.m<n.-

Proof. Since G is holomorphic (even affine linear) we find Hooq(20) = F*Hy,(20)F
which immediately implies that Hy.q(20) is positive definite. Since G(z) = 2 and
using Lemma 2.47 we find an open neighborhood D CC UNG~(U) around 2, such
that 2z € Dy n N Dyoc, v holds. We have | det(F)|*Biy|, = Biypoc|, by Lemma 2.41.
As in the proof of Lemma 3.13 the claim follows from Lemma 3.9. The last part of
the statement follows from the chain rule and the fact that the differential of G is

constant by induction. O

Lemma 3.15
We have /\E\JZO(ZO) = /\%?O(ZO) for any M < N and j < M.

Proof. Using Lemma 2.47 we find an open neighborhood D CC U around zy such
that 2o € Dy, n N Dy, pr holds. From Lemma 3.9 it follows that

M ‘ |
Z(Ag\i[),o(zo) — )\%?O(ZO))k*J < O M1
j=0

for some constants C' > 0 and 0 < € < 1 which proves the statement. O

Lemma 3.16
Let d,n € N be some positive integers and Ay, ..., Aq € Mat,«,(C) matrices, A; =
(a(j) Ji<im<n for j = 1,...,d. Denote by B = (bim)o<im<n € Mat,x,(C) the

lym
product of the A;’s, i.e B = A;-...-Aq. One has that
1 d
bl7m = Z al(,ozla(()i),az e a'géd)_l,m
aeNd—1

holds for all 1 <1,m <n.

Proof. We prove the statement via induction with respect to d. Given the cased =1

there is nothing to show. Let d € N be arbitrary and assume that the statement
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holds for d. We set B' = Ay - ... Ay, B" = (b],,)o<t;m,<n- One has B = B'Agyq,
ie. bym =230 g’jagfl,: b, Using the induction hypothesis one finds
_ 1 (2 (d)
bgd - Z alyala(al)on Oy g
aeNd—1
ALy, Xg—1<N
and hence .
— 1) (2 (d) (d+1)
bl,m - Z Z al,masn),fm oy, j%Gm
aeNd—1 .7:1
at,...,ag—1<n
which proves that the statement holds for d + 1. n

Theorem 3.17

Given a point zg € C" and ¢ € CNT3HY(U R), p € CNT2H2(U R) two functions
defined in a neighborhood U around zy such that Hy,(zo) is positive definite and
p(z0) > 0. We have the following expression for )\%?Q(ZO) constructed in Lemma 3.4.
We have )\537)0(20) = detHeGo)) o gssuming H,(2) = diag(Aq, ..., \,) we find

mp(z)
- det(H,(z0)) AT
AW _ 2 2 by 3.4
N,T(ZO) W”p(z) 71 N, ,J(Z())v ( )
gy d (@)  (a2) (@)
bnri(z0) = > D > (—1) VT,§<1>V5<12>75(2> T V,g(f—w,o
d=1 aeNd (3<1) ’’’’ B(d)>E<N6L>d71

|ee|=2j+]7] 1BD)],...,|BE-D|<N
for1<j<Nifr=0 cmdfor()gjgN—% if 1 <|r| < N where

BT rt|al 48l |
) _ A Xalg| RNV
Vo,p = B! ,O(Z) Z Z ( 1) l!)\nun—am—ﬁ

=0 \m=z+”|a2‘+‘5‘

n>max{a,B}

- 1 ,if2|(r+p+q) andr>|p—gq|,

X i =
i 0 , else.
and
(0) SN
© _ > >y 92" 9y p(z0) . ﬁ 92 05" h 2 (20)
Ha,p = a0150)] ] a@130)]
(@), aWyemp)itl (50),.. p(0)emm)i+ j=1

|08 |+ 4o |=am 18D |+.. 4188 |=Bm

Here hy ,, is given by
hN,z<w) = @N(za w) - (w - Z)THQD<Z>(U) - Z)

Furthermore, for 7 = 0 and H,(zy) not necessarily diagonal let F' be an invertible

matriz such that F*H,(z)F = diag(A,...,\,) for some \,...,\, € Ry, In
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that case (3.4) stays true when we can replace 020° p(2) by (Xu)*(Xw)?p(20), and
aigjagh]\/,zo(’zo) by

J(XexBe) (2) , if max{lal,|8]} > 2,min{|al, |8} > 1,
@a,ﬁ(zo) N else

with
0

ow,,
where F' = (Fiim)1<i.m<n and noticing that X§ = 0 when F = 1d.

0
HXnga - mli—i_—'—an
0w1

Proof. Recall that

Ao pi(20) = /D (w — zo)*(w — zo)ﬁe’k‘f’N(zo’w)dVD(w).

Cdet(Hy(2)) AN agsis)
Ca,B,k = ,n.np(z) Og'ﬁ' w aa”&k(ZO).

From Theorem 2.50 we get

Define

o 2N ( )
. k(z ) R Eigl ( ) O(k;—2N—1—n).
B 0 det(Hcp(Z)) j:ma§a|7|5|} K

Replacing j by (5 + |a| +|5])/2 we find since j + |a| + || > 2 max{|«|, ||} if and
ouly if j > ||a] — |3]] that

2N (4) 5
-4.0) ~N-1y0) Xalg] [A*AP (dtlel+lal)
Capr — D kT 2¢]y = O(k ; Cq \/7% 2 3.5)

B = B ( ) B p(z) ol B8 ( O) (

with

o)1 Lif2[G+pta), j=Ip—dl,

Xpa =
0 , else.

As in Section 3.1 set Cnx(2) = (Ca,8,4(2))o<|af s1<n - L€t Sny be a diagonal matrix
1

with entries ( %k (nHal)) . One has Sy AnpSnr = Cnx and hence
’ || <N

Az_v,lk = SN,kC;[}kSN,k. Thus, it lasts out to calculate C’&lk. Therefore, we write
Cnge — X2 k30 = (O(kNY) with C; = (¢V))ocjalsien- Here (O(kN-1))
denotes a matrix of suitable size such that any entry is an O(k~¥~1). Since cg{% -1

if « = 3 and 0(0% = 0 otherwise we find Cy = Id. Put

2N . ~
CN,k = — Z ]{37%0]‘ and CA;V,I{ = Z(CN}]C)CI.
j=1
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One has Ciy ;= (O(k~%)) and hence (Civ = (O(k~N=2)). Thus we find that
CnpClyy — Id = Cy,Onye — Id = —CFH' = 1d+(O(k~=2)) holds. We need to
prove that this implies Cly; — CN,k = (O(k_N_%)). As in the proof of Lemma 3.4
we find 6 > 0 such that det(Cy ) > 9 holds for all £ € [1,00) and that det(Cy )
as well as all the subdeterminants of Cyy is an O(1). Applying Cramer’s rule we
find Cy}, = (O(1)) which implies C}, , — Oy, = Oy (CnipClhyp —1d) = (O(k—N-2)).

Thus, we can write

>2N+1

2N ) . 1 (g J
S EEOY = (0N ), A =3 S (-] Gy
j=0

Let ¢ (resp. ¢*()) denote the entry of C]?,}k (resp. C;\(,j )) at position (a,0). One has
2N )
=S k50 4 Ok, (3.6)

Since Anq is the entry of Ay at position (a,0) we find

det(H, () [

la|
k=2 cp. 3.7
ﬂ-np(zo) a! > C ( )

E"ANak(20) =
From Lemma 3.4 we have k™" Ay o — S0 k:*j)\%?a = O(k~N~1). Plugging (3.6)
into (3.7) we find after comparing the coefficients that

det(H,(z0)) [\

)\(j)
" p(20) al

Y () = e (2i+lal)

holds for j € Ng, 0 < j < N — |O“ Let us compute now ¢+ Tt follows from
Lemma 3.16 that

(27+al) EAay d (11) A(72) (7a)
(27+|c _ 1 T2 Td
Z Z ( 1) Z ca,ﬁlcm,nz <Gy 00
d=1 TeNd nE(Ng)d_l
|7|=2;+|e In1lsesna—1|<N

From Lemma 2.53 we find

_ 2 7 (=1)n! N gn—ppl 5

n>max{a,B}

which implies

() ag Jt+lal+8l |

G) _ Xaljgl AN Cnt

Cap = \ > > (DS s
( ) alp! =0 In|=i+ 2t lal 18] i

n>max{a,f}
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where M&)g = ,ﬁ,a 95 (hly .,p)(%0). Using Lemma 2.9 we get

O > ( e 1[3”)'83 g~ Rl (2 )) ( 1,,51,,%05,' (= )>.

o'<a B'<B

Writing hly 20 = MNz -+ B,z and proceeding inductively we find

Waﬁ(o)p( l J>86(]) hN (ZO)
w w »20
2O150)] 1;[ 2130

o _

Has = > >

,,,,, aWyemm)i+1 (50, sM)emp)itt
ol |+ +|a<”\ =am B |+ +|BY |=Bm

Now consider the case 7 = 0 and F' = Id. We want to show that we can replace
(020%hn20)(20) bY 0as(20) Where @, 5(20) is defined as above. Define a holomorphic
function f(w) = Ejalsn12 0%¢(20)(w — 20)* and set ¢ = o — f — f € CONFIH(U),

1% () = (20, w) — (w0 — 20) Hy(20)(w — 20).

We notice by the definition of h%z that for |al, | 3] < 4N we have (8,07 h'% 20)(20) =0
if min{|e|, ||} = 0 or max{|«/|,|8|} < 1. Using Lemma 3.13 we can replace hy , by
h}/\’,,z with %agh}"m (20) = @a,5(20) Where @, 5(20) is defined as above. Now consider
the case where 7 = 0 and H,(2) is not diagonal. Given an invertible matrix F' with
F*H,(z)F = diag(Ay, ..., A,) define the map G: C" — C", G(w) = F(w — z) + 2.
Since H,oi(29) is diagonal and by Lemma 3.14 we find that )vaj can be computed
as in the diagonal case with ¢ and p replaced by ¢ o G and p o GG. The statement
follows from X2 X5 (z) = 02051 o G(zy) for any sufficiently often differentiable

function . O

Remark 3.18

In the case where H,, is not diagonal we can still get a formula for /\S\J,?a, a # 0, by
Jtlal+(8]

replacing aiﬂ 2 (%) in (3.5) with its representation given in Theorem 2.50.

Assuming higher regularity on ¢ and p in Theorem 3.17 would lead to a similar
expression also for the )\%?a with 7 > N — ‘%l We will show this in Lemma 3.23
below where we assume ¢ and p to be smooth. Before we turn to the smooth case
let us focus on the coefficients for the diagonal expansion, that is the coefficients in

the expansion of By, , in the non-smooth case.

Definition 3.19
Let D C C" be a domain and j € Ny a non-negative integer. Given two functi-
ons p € CUTH(D R), p € CUTH (D R) we define b;: D,y — R by bj(z) =

def L )\(j 0 (2) with )\%(z) given as in Theorem 3.17.
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From Lemma 3.4 it is clear that b; € C'(D, ,R) if p € COUT" (D R) and
p € CHT2(D R) holds for some | € Ny. We have the following theorem for diagonal

Bergman kernel expansion.

Theorem 3.20 (On-Diagonal Expansion)
Let D C C™ be a bounded domain, D' C D open and S; C CN*2+4+(D) N C%(D)
and Sy C C*PNTHH(DY N CO(D) two bounded sets such that
{ inf _on(z,w)/lz—w 9 €S} and {infp|pe S}
z€D

(z,w)eD'xD

have positive lower bounds. Then for any 0 < r < I we have that By, , has an
asymptotic expansion of order ¢,(N+1)—n—r—1 in C"(D’) uniformly in ¢ € Sy and
p € Sy with ¢, = 1— 7, coefficients by, ..., by of class C' defined in Definition 3.19
and explicitly computed in Theorem 3.17. More precisely, for any € > 0 we have

d t(H.
Bk%p € Z k~ Jb N+1)+n+5) in CO(D/)

uniformly in ¢ € S; and p € Sy, and for 1 <r <[ we have

d t(H,
Bktp,p € Zk jb Cr(N+1)+’VL+7") n CT(D,)

uniformly in ¢ € Sy and p € Ss.

Furthermore, the b; = bjpf“", 0 < 3 < N, are polynomials in the derivatives of
p and the entries of H, and the reciprocals of p and the eigenvalues of H, (see
Theorem 3.17).

Proof. The claim follows immediately from Lemma 3.9, Lemma 3.12, Lemma 3.15
and Theorem 3.17. O

Theorem 3.21 (Near-Diagonal Expansion)
Let D C C™ be a bounded domain, D' C D open and S; C CNT2H4+(D)y N CO(D)
and Sy C CANT2H2H(DY N CO(D) two bounded sets such that

{ inf _on(zw)/|z—wf|¢eSi} and {infp|pe S}
(z;w)eD’'xD z€D

have positive lower bounds. Then for any 0 < r < [ we have that Py, , has an
expansion of order (N 4 1) —n —r —1 in C™(D') uniformly in ¢ € S N C>®(D')
and p € Sy N C®(D') with ¢, = 1 — 5 and Coo—coeﬁﬁczents )\Na, Jj € Ng,a € N,
such that )\%?a = b;q for2|a|+2j < N with )\N’a constructed in Lemma 3.4 and b; 4

defined in Definition 3.24. More precisely, for any e > 0 we have

N+1

Pkcp,p - Pk;go,p,N = O(k/’_i—’—n—’—e) m CO< X D)
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uniformly in ¢ € Sy NC®(D’) and p € SN C>(D"), and for 1 <r <1 we have
Prop— Prppn = O(k_c’"%%”) in C"(D' x D)
uniformly in ¢ € Sy NC®(D') and p € So N C®(D") with

N - N
Prgpn(z,w) = ke 3002w 3773 57 A0 (2)(w = 2)”.
§=0 la|<N

Furthermore, for any point z € D' where Hy,(2) is diagonal the )\%?a = )\%?&p’@ can

be computed explicitly for any j and any « with j,|a| < N (see Theorem 3.17 and
Lemma 3.23).

Proof. The claim follows immediately from Lemma 3.9, Lemma 3.12, Lemma 3.15
and Theorem 3.17. [

Now we will consider the smooth case, that is ¢, p € C*°(D,R) where D C C" is
a domain. From Definition 3.19 we obtain functions by, by, ... € C*(D,, 1, R) which

are explicitly computed in terms of the entries of H,, p and their derivatives.

Lemma 3.22

Let zy € D be a point such that H,(2) is positive definite and o € N be a multi-
index. We have )\%?a(zo) = )\S\Qa(zo) for all M, N, j € Ny satisfying 2|a|+27 < M <
N. Here )\%?a(zo) and )\g\Qa(zo) are defined by Lemma 3.4 and Remark 3.6.

Proof. Fix M, N € Ny and o € Ny with |a] < M < N. First we observe that
3 (yar (2, w) — Vv (2, w))|wez = 0 for all |n| < M which implies

" e_k%SD(w)'f‘k'Y]VI(ZUw
w

AN —kip(w)+k zZw
IR (P PR

) |w:z
for all |n| < M. From Lemma 2.47 we get an open neighborhood D' CC D around
zo such that 2o € D/, y N D, ), holds. Using Lemma 3.12 we find a constant C' > 0
such that
= ~ M
(k"0 (Pri = Parg)lw=sy| < Ck™2 T

1

holds for all £ € [1,00) and some fixed ¢ < 5. By Lemma 2.9 and our previous

considerations we conclude

M . .
Z (77> ag—r(e—kécp(w)Jrka(z,w))‘w:ZO Z T!k_j()\g\]}T(Zo) _ )\5\]7)7(20))|
- , ,

= i=0 (3.8)
< Ck_%_fﬂnl + R(k)
with
N .
Rk =12 (Z)aZ)T(eké%"(w)Jrka(z,w)Nw:ZO S I, (z0)] < CTRTMNE
TN j=M+1
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for some constant ¢’ > 0 independent of k where the sums run over all 7 € N,
7 < n. For |n| = 0 the claim follows from Lemma 3.15. Assume that the claim is
true for all n € Ny, || < |a|. By (3.8) it follows that

M .
S alk T (AP (20) = AP (20))] < k=7 el 4 g M=l

holds for all k € [1,00) and hence )\Ma(zo) )\S\J,) (20) for all j < — |al. O

Lemma 3.23

Let zy € D be a point such that H,(zo) is positive definite and diagonal. We have
that the formula (3.4) for )\Na(ZO) holds also for N — |O“ < j < N. Furthermore,
for j <& — |a| we have that (3.4) stays true when we replace 0208 hx ., (20) by

(9208¢) (2) , if max{|al,|8]} > 2,min{|al, |8} > 1,

Pa,6(20) =
, else.

Proof. Fix N € Nj. For the first part of the statement we go through the proof
of Theorem 3.17 and see that (since ¢ and p are smooth) we can expand ay g
up to higher order namely 4N + n + 1. This implies that (3.6) becomes ¢{ =
> k=3c 4+ O(k~2Y~2). We conclude

det(Hy(20)) [A a2jtlal)

)\(j) _
N,a('zo) W”p(Zo) al

forall 0 < j < N.

For the second part, we define a holomorphic function

f = —5 Z <P Zo - Zo)a
|| >N+2

and set ) = o + 2f +2f € C°°(D),
W0 (w) = P (z0,w) — (w — 20) Hy(z0)(w — ).

As in the proof of Theorem 3.17 we notice that Hy/(z) is diagonal and that by the de-
finition of h%’z we have (0, &BhNZO)(zO) = 0 if min{|al, | 5|} = 0 or max{|a|, |8]} <1,
laf,|B] < 4N. Using Lemma 2.40 we get Pyy ,(2, w) = ek(f(z)*f(“’)*m*f(z))Pk%p(z, w),
z,w € D. Since all the derivatives of f vanish up to order N + 2 we can proceed as
in the proof of Lemma 3.22 and find )\%?&W’p(zo) = )\%?&w’p(zo) forallj <5 —lal. O

Lemma 3.22 and Lemma 3.23 give rise for the following definition.
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Definition 3.24
Given ¢, p € C*(D,R), p > 0 and a € Ny define

_ _ P O
bja: Dy — R, bj(2) = m)‘zj(law),a(z)

where in the case when H,(z) is diagonal /\%a| +j).a(?) 18 explicitly given by Theo-

rem 3.17 with the modification in Lemma 3.23. Furthermore, set

B
A k™ det(H, N - —
Pk%p7N<z’w) - e ( @(2))6—§(¢(w)—2’yN(z,w)) kI Z bj@(Z)('UJ _ Z) )
m p i=0 al< )
Lemma 3.25
One has

D Ny . r
Pk(p,p,QN — P]ﬂp,p’gN = O(]C >t +€) i C' (D%QN X D)
with Py, ,on as in Theorem 3.21.

Proof. Let K C D, oy be compact and n, 7 € N2", |n| + |7| < r, two multi-indicies.
Set Y (z,w) = e~ 3(p(w) =2y (=w)  The 2N-th localization property ensures that there
exist constants C, 8 > 0 such that |1)(z, w)|* < Ck=%%=F holds for (z,w) € K x D
and k € [1,00). This observation leads to

2N i S
Bitulevn) S G| < G

N+1

for all k € [1,00) and all (z,w) € K x D where C} > 0 is a constant independent of
k, z and w. Given a € Ny, |a| < N — j, we get from Lemma 3.22 that %bm =

Aé@&,a. Then consider the term

«

Rj(7w) 1= (2, w) AR, (2) (w = 2)
for 0 <j< Nand N—j < |a] <2N. Given 0 < ¢ < 1 we find |d?d], R, . x|*
Coe™ % for |w — 2z|? > k%1, For |w— z|? < k! we have |(w —2)?|? < |w — z|?/¥!
EPIED  Since || > N—j+1 we find |d7d7 R; o 1|2 < Csk™"2 <. Here Cy, Cs, & > 0

are constants independent of k, z and w. The claim follows from

IA A

2N i o
Prppon(2,0) =Py pon(z,0) = Pn(z,w) | Y0 Ryan(zw) + 3 AL (2)(w — 2)

|a|<2N N+1
N—j<|e|

]

Corollary 3.26
Let D C C™ be a bounded domain. Given ¢,p € C*(D)NC°(D), e >0 andr € Ny

we have
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3.3 Bergman Kernels on Manifolds

Let M be a complex manifold of complex dimension n. Given a smooth vector
bundle F' over M we denote by I'(M, F') the space of smooth sections M — F. Let
TYOM (resp. T®'M) denote the bundle of holomorphic (resp. antiholomorphic)
vectors. Let E be a holomorphic line bundle over M. The space of smooth (p, q)-
forms (or forms of type (p, ¢)) with values in E is defined by QP¢(M, E) =T'(M,E®
APT*OO N @ ATT*OD M) where T*VOM = (TYOM)* and T*OVM = (TO1M)*.
We denote by 0: QP¢(M, E) — QPYM(M, E) and 9: QP4(M, E) — QPITY(M, E)
the holomorphic and antiholomorphic differential. A Hermitian metric hy on F
is said do be upper semi-continuous (resp. of class C!) if — log(|s},) is an upper
semi-continuous (resp. a C!) function for any local holomorphic frame s of E where
|s|ny; = \/hE(s,s) denotes the pointwise norm of s. Given a continuous volume form
dVyr on M and an upper semi-continuous locally bounded Hermitian metric hg on
E we denote by HY(M, E) the space of holomorphic sections with finite L?*-norm

| - [|ng.avy, induced by the inner product

(f-Dsavy = [ he(f.9)dVs f.g € L, v, (M. E).

We have that HY(M, E) is a separable Hilbert space. Given an orthonormal basis
{s;}9_,, d € NgU {oo}, of H)(M, E) we define the Bergman kernel

=1

d
PhEdVM: M— FEX E*7 PhEadV]\/I(I7y) - ZSj(.I‘) ® (Sj(y))*

=1

and the Bergman kernel function

Bhgavy : M =R, Buyav,, = Y hs(s;,s;),
j=1

where we write v* := hg(-,v) € E} for v € E,, x € M and choose the metric i}, on
E* such that v — v* becomes an isometry. Note that P, 4v,, and By, av,, are well
defined, independent of the choice of the orthonormal basis {s; }?:1 and in the case
when hp is smooth we have Py, v, € I'(M, EX E*) and By, av,, € C(M,R) (see
Section 2.4).

From now on we assume that hg is smooth. Given another holomorphic Hermi-
tian line bundle L over M and an upper semi-continuous Hermitian metric h on L
we are interested in studying the Bergman kernel and the Bergman kernel function
for the space HY(M, L), k € N with L, = L* ® E and hy = h* @ hg.

Definition 3.27
Let Mj, 4+ denote the subset of M consisting of points which have a neighborhood

where h is of class C* with positive curvature ¢; (L, h).
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The curvature ¢;(L, h) is a form of type (1,1) and can be locally written as
¢1(L, h) = =100 1og(h(s, s)) for any local holomorphic frame s of L around points

where h is at least of class C?. We define the following invariants.

Definition 3.28

Assume h is of class C%*3"+4 and dV), is of class C¥*2"+2 Define
by = b A L — R, T () = b9 (2(p))

where b7 is given by the formula in Definition 1.4 with respect to a choice of local
trivializations s of L and e of E and local coordinates (U, z) with ¢ = —log(h(s, s)),
p=hg(e,e)p, dVy = pdVin .

Lemma 3.29
The function b; is well defined, that is b; is independent of the choice of coordinates

and trivializations. Furthermore, we have that b; € C' (M, R) if h is of class

COIT3nHA and AV, is of class CH+2n+2+L,

Proof. We need to show that b7 is invariant under biholomorhic mappings. Let U
and V' be open neighborhoods around points p; and py in C" and let G: U — V
be a biholomorphic map. Set F' = (%)1§m,l§n and ¢ = det(F(p)). By shrinking
U and V we can achieve that |det(F(z)) — ¢| < |c|/2 holds for all p € U, p; €
Uyj and pa € Viog,j. By Lemma 3.14 we have B o |det(F)jpo¢ = By,p- Using our
assumptions on det(F) we find |det(F)|? = elos(det(F))+log(det(F) Then the claim
follows from Lemma 3.13, Lemma 3.9 and the uniqueness of the coefficients in an
asymptotic expansion. The last part of the statement follows from Definition 3.19

and Lemma 3.4. O

Lemma 3.30

Given N € Ny assume that p € M+ has an open neighborhood U C M where
h is of class CON®3"t and dVy, is of class C*NT2F2 Choose coordinates (D, z),
D ccC U around p such that D is identified with a bounded domain in C" and
local holomorphic frames s and e for L and E such that z(p) € Dy n holds (see
Lemma 2.47) with ¢ := —log(|s|?). Furthermore, set p = ple|n, where p is defined
by dVay = p - (%)ndzl A...Ndzy NdZy N ... Ndz,. For any compact set K C Dy y
there exists a constant C' > 0 such that

1F(2) = (f, Kippn (2, )i’ F2E < ORIV FIR

for all f € HY(M,Ly), k € N and z € D,y where fe H,g%p(D) is defined by
f(2)s*@e=f and (-, Vupp, Kippn are as in Section 3.1.
Here C' is bounded when p stays in a bounded set in C*NT2+2(D R) N C°(D) such

that inf, .55 p(w) has a positive lower bound.

Proof. The statement follows immediately from Lemm 3.8. O]
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3.4 Global Bergman Kernel Expansion

We start this section by stating the following theorem on L? estimates due to Hor-

mander [23] in a generalized version given by Demailly [14].

Theorem 3.31 ([14, Theorem VIII-6.5])

Let (X,w) be a weakly pseudoconvex Kihler manifold, E a hermitian line bundle on
X, ¢ € C®°(X,R) a weight function such that the eigenvalues \y < ... < A, of
iO(E) +id'd"¢ are > 0. Then for every form g of type (n,q), ¢ > 1, with L} . (resp.
C*) coefficients such that D"g =0 and

1 2
S S 4V < +oo.
/X/\1+...+)\n|g|e oo

We can find a L2 (resp. C*) form f of type (n,q — 1) such that D" f = g and
1

RV < [ sl vav.
I L

Proof. [14, Theorem VIII-6.5] O

Lemma 3.32
The conclusion of Theorem 3.31 is valid if (X,w) is a complete Kdihler manifold
provided that g has compact support.

Proof. The claim follows from [14, Theorem VIII-4.5] and [14, VIII-(6.4)]. O

We will reformulate Theorem 3.31 in our notation. Therefore, let (X,w) be a
complete Kéahler manifold and let (E, hg) be a holomorphic Hermitian line bundle
with smooth metric hg.

Corollary 3.33

Assume ¢ (E,hg) >0 on X. Let f € T(X,E @ A"T*M0X) be a section compactly
supported in Xy, + and C' > 0 a constant with Cc,(E, hg) > w on the support of f.
Then there exists u € I'(X, E @ A"T*MOX) with f —u € H)(X, E @ A"T*10X),
such that [y |uli dVx < C [x [0f[2dVx holds.

We focus on the following setting. Let Ly be a holomorphic line bundle over
a complete Kéhler manifold (X,w). Given a domain M C X we consider the line
bundle L = Lg|py. Let (E,hg) — X be another holomorphic line bundle with
smooth Hermitian metric hg. Choose an upper semi-continuous metric A on L, a
function p € C°(M) which is positive and bounded and define a volume form on
M by dVy = p“;. Then we consider the Bergman kernel P, qv,, and the Bergman
kernel function By, 4v,, for the space HY(M, Ly) with L, = L* @ E @ A"T*30 M,
k € N. In local coordinates (U, z) using the holomorphic frame dz := dz; A ... Adz,
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for A"T*(10) M we observe dVy; = ppdVen and hy,(dz,dz) = 1/p. Hence we find that

_ bh AV hE®KY 4t hig setting. Note that b?’p

depends on the fixed metric hr but we do not indicate this here to maintain a brief

b; is independent of w, so we set bh”

notation style.

Definition 3.34

We define the set M), C M by saying p € M), » if and only if p has an open
neighborhood U where h is smooth with positive curvature and there exists a smooth
Hermitian metric hg on Lo — X with A < hg on M and h = hg on U and ky € N
such that

kCl(Lo, ho) + Cl(E, hE') > 0, k > ko. (39)

Remark 3.35
In Definition 3.34 assume that FE is trivial with flat metric then (3.9) is equivalent

to assume that hg is semi-positive.

Theorem 3.36 (On-Diagonal Expansion)

For any e > 0, N € Ny and p € C*™ 22+ ()0, R)NCO°(M), m = Nr+ N +
r? 4 2r + 1, which is positive and bounded one has

k:”cl(L h)n N h _ _N— .

M ’ preP—i — Ok~ N-1+n (M}, o0).
™ nldVy Z J O( ) in C"(Mp,o0)

J=0

BhideM -

More precisely, given any compact set K C My, o, and any partial differential opera-

tor I of order < r there exists a constant C = Ck p such that

k™ c1(L, h)"
F (Bhk,dVM o ;'dVM thﬂk J)

7=0

<Cl€ N—-14n

holds for all p € K and all k € N. Here C is bounded when p stays in a bounded
set in CHTIF2AT(NL o R) N CY(M) such that infyen p(p) has a uniform positive

lower bound and sup,ecy, p(p) has a uniform upper bound.
The theorem follows from the following lemma.

Lemma 3.37

Let U C M be an open set where h is smooth and has positive curvature. Assume
there exists a semi-positive smooth Hermitian metric hy on Ly with h < hy on M,
h = hy on U, and there exists ko € N such that kcy (Lo, ho) + c1(E, hg) > 0 holds on
X for all k > ky. For anye >0, N € Ny and p € CNT2T2(U R) N CO(M) which
is positive and bounded one has

n n N
k C1(L7h) Zkijb?’p _ O(k7N71+n+5) in CO(U)

Bh dVy = T v v,
ks@V M ™ nldVM =
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More precisely, given a compact set K C U, N € Ny, € > 0, a bounded subset
S c CWNFIE2() N CO(M) and a constant Cy > 0 with 1/Cy < p(p) < Cy for all
p €M and p € S, there exists a constant C' = Ck s ne > 0 independent of k such
that

k’Cth h —N—14+n+
Ek:]bp <C’k:N1”8
T n‘dVMJO

holds for all k e N, pe K and p € S.

Bhk ,dVar (p) -

Proof. Fix N € Ny, € > 0 and a compact set K C U. Given any point p € K choose
local coordinates (D, z), D CC U around p and local frames s and e for L and F
such that z(p) € D,y (see Lemma 2.47) where » = —log(|s|?) and set g = ple|n,.
Furthermore, let s, = s* ® e ® dz be the induced local holomorphic frame for L
and identify D with an open set in C" via the local coordinate z. Since D, is
open and non-empty we find an open neighborhood D" CC D, y around p. With

Ky o n(2,w) = 83 (w) Kiy 5 n (2, w) we find from Lemma 3.30 that

f = s1(2)(f, K s (20 0) g avag ol < CLk™ 2 FIR L avn,

for all k € N, all z € D" and all f € HY(M, L;,) where C} is a constant independent
of ke N, z € D and p € S. Now take a cutoff function y € C°(M,R), 0 < x <1
supported in D such that y = 1 in a neighborhood of the closure of D’. Using h < hg
on M and h = hy on U we get from Corollary 3.33 that for any £ € N, k > ko,
and any z € D' we can choose u*) € I'(M, L;,) such that x(w) Ky, , (2, w) — ul® is
holomorphic on M and

[, avs, < C3C [ ORI Kg (2, 0) Vi

where Cy > 0 is a constant independent of k > kg, 2 € D’ and p € S. Note that
it is actually enough to assume here that 1/Cy < p holds on supp(y). Since dy(w)
and (1 — x(w)) is zero in a neighborhood of D’ we find from Lemma 3.7 that

e NuPF, e /D(l — X(w))*| Ky v (2, 0) [, dVar = O(k™)  (3.10)
in C°(D’) uniformly in p € S. Write
Ko v (2,w) = X(w) K, 5 (2, w) + (1= x(w)) Ky v (2, 0) = ul + ul.
From (3.10) we conclude
f = si(2) (f, x (W) Ky (2, w) — 0 avy n < Csk™ 0 Fllpavy, (3.11)

for all k > kg, z € D" where Cj3 is a constant independent of k, z and p. For z € D’

set v{F) = Z;-lil @(z)syﬂ where {s§ };l’“l is an orthonormal basis of HY(M, Ly)
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with dj, = dim HY(M, L) € N U {co}. Here we use the notation f(z)sy = f to
identify sections f € HY(M, L) with holomorphic functions f on D. We have f(z) =
(f, 08N avy, for all f € HO(M, Ly). Putting [ = 0P — x(w) K}, 5 v (2, w) + ul
we have f¥) € H)(M, Ly, as in the proof of Lemma 3.9 we obtain from (3.11)

[0 = X(w) Ky v (2, w) +ul |7, e < Oyt (3.12)
for all k > kg, z € D' and p € S. Furthermore, we have
-0, = @8, 08 n avsy = X(2)Anox(2)7P + 2Reul (2) + Ry,
with

Rl = [Ibe(@)Kiy o (200) + 0P 7, = x(2) Ao (2)eH)
< Q= x(@) K o (207, 0 + 1617,

where we used (Kyp 58 (2, *)s Kkp s N (25 ko s = Anox(2)e"¥?) (see Lemma 3.2) and
(f, o)) = f(z) for any f € HY(M, L) by the reproducing property of the Bergman
kernel. Since dul¥) = (Ox(w))K, ko5 (2, w) we have that u, is holomorphic on D"
with D' cc D”. Hence we can use Lemma 2.29 and find a constant C; > 0
independent of k with [ul¥(2)[ e7*) < Cik"e @ |u.|2 = O(k™>) on D'
Using By, av,, = (vz,v.)p,e ) (3.10) and the expansion of Ay, in Lemma 3.4

(see also Lemma 3.15 and Definition 3.19) we conclude

k" e (L, h)" & b NS
k,]b ,0 <Cl€ N—-14n+e
an nldVy 2 g

7=0

BhldeM -

on D' for all k € N, p € S. Since K can be covered by finitely many of those sets
D’ the claim follows. O

Proof of Theorem 3.36. We just need to show that any point in M), ., has an open
neighborhood where the claim in Theorem 3.36 holds. Given an arbitrary point in
M}, o we know from the definition that is has an open neighborhood U C M,
where the assumptions of Lemma 3.37 are satisfied. In Lemma 3.37 we proved
the statement already for » = 0 and arbitrary N. Let Cj; > 0 be a constant
and S C Oy N CO(M), m = Nr + N + r?2 + 2r + 2 a bounded set
with 1/Cy < p(p) < Cp for all p € M and p € S. Using Hérmander’s trick (see
Lemma 3.11) and Lemma 3.12 which is true for that case since all the arguments

are local and Corollary 2.39 is valid we find

k™ Cl(L h) Zk—jb?,p _ O(kfcr(m)+n+r+e) in CT(U)

Bhwavis = an nldVy
‘]:
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uniformly in p € S with ¢, = i Taking £ > 0 small enough the statement follows
from ¢,(Nr+ N+ +2r+2) —r=N+1+4c¢ and X7y, k77b; = O(k™V"!) in
C"(U) uniformly in p € S (see Definition 3.19 and Remark 3.18). O

In order to state the next theorem we fix the following notation. Given local
coordinates (D, z) around a point p € M and local holomorphic frames s and e of L
and F, we denote by (D x D, (z,w)) the induced coordinates around (p,p) € M x M
and choose §;(z, w) := e2 @) gk (2)e(2)dz(s* (w)e(w)dw)* as a trivialization of
L ® Lj|yxu with ¢ = —log(h(s,s)). Furthermore, set p = plel;  and recall the
definition of 15;% 5N (see Definition 1.9). We have the following result on off-diagonal

expansion.

Theorem 3.38
Assume that p € C®(Mj, ., R) N C°(M) is bounded and positive. Let p € M, », be a
point and (D, z) local coordinates around p with D C M, o. For anye >0, N € N,

one has
Popavay — S5(2,0) Prg pan (2,w) = O(k™ "2 T7474) in C"(Dyan x D).
Furthermore, for any open set D C M}, o, we have
Phy.avy, = O(k™) in C"(D x M \ D).
For the proof we need the following lemma.

Lemma 3.39

Let U C M be an open set where h is smooth and has positive curvature. Assume
there exists a semi-positive smooth Hermitian metric hy on Lo with h < hg on M,
h = hy on U, and there exists ko € N such that kcy(Lo, ho) + c1(E, hg) > 0 holds on
X for allk > ko. Let p € U be a point and (D, z) local coordinates around p with
D CU. Foranye >0, N € Ny and p € C®(U,R)NC°(M), C;* < p < Cy on M
for some constant Cy > 0 one has

N N+l .
Puyavas — 85Peppn(z,w) = O(k™"2 +749) in C%(Dyan X D)

with Py, ;N as in Theorem 3.21. Furthermore, for any open set D C M, o, we have

Phk,dVM = O(k‘_oo) mn CO(D X M\E)

Proof. We use the same notation as in the proof of Lemma 3.37. Given any compact
subset K of D we take a cutoff function y with support in D and y = 1 in a
neighborhood of K. Choose D' CC D,y N K. As in the proof of Lemma 3.37 we
find

[0l — x(w) Ky p (2, w) +ul|[f 759 < Oyt (3.13)
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for all z € D" and all k > ko where v{¥) and u{¥) as in the proof of Lemma 3.37. We
apply Lemma 2.29 and find

158 () — Koy (2, w) 4 0 (w) [PeHe@ o) < Oy N—1+2nte

for all (z,w) € D' x K. We have that u{*) is holomorphic in a neighborhood of K. We
apply Lemma 2.29 again and find by (3.10) that |a{¥) (w)|2e k) +ew) = O(k=)
in C°(D’ x K). Since locally we have

Phavy, = 55(2) ® (0P (w)) e~ 2 ()W)

z

the claim follows from Lemma 3.4. Furthermore, we have that «*) is holomorphic
outside the support of x. By Lemma 3.7 we conclude | Py, av,, [, op: < Cak™71720%
on K x M \ supp(x). Since the statement is true for all N we find by choosing K
and the support of x sufficiently small that

Pyavy, = O(k™) in C°(D x M \ D)
is valid for any set D C U. O]

Proof of Theorem 3.38. As explained in the proof of Theorem 3.36 the C" expansion
can be obtained from the C° expansion using Hérmander’s trick and the apriori
estimate for P, gv,, in Corollary 2.39 as in the proof of Lemma 3.12. Then the
conclusion of Theorem 3.38 follows from Lemma 3.25 by replacing N with 2N. [

As a consequence we obtain the following corollary which is actually the result
of Catlin [10] and Zelditch [38] for vector bundles of rank one.

Corollary 3.40

Let M be a compact complex manifold, dVy; a smooth volume form on M and L,
E two holomorphic line bundles over M with smooth Hermitian metrics such that
the metric of L has positive curvature. The Bergman kernel function for the space
HY(M,L* ® E) has an asymptotic expansion, that is

k™ er(L, h)" N h,hg,dV, ~N-1 .
B St R IpvhEaVar k +n (M
7 nldViy Z i O( ) in C"(M)

J=0

Bhk®hE AV

for any N,r € Ny.

Proof. Since M is compact and L is positive we have that the curvature of L induces
a complete Hermitian metric on M. Thus, the curvature of L* becomes arbitrary

large for £ — oo and M is compact the claim follows from Theorem 3.36 replacing
E by E®@ (AMT*1:0)~1, O
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