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Abstract 

Under conditions of climate change and the dramatic increase in world population, 

studying drought adaptation in plants is a key factor to design sustainable strategies 

to optimize crop productivity and ensure food security. Species with specific ecologies 

have responses to drought that were optimized to meet their local environmental 

challenges while maintaining their fitness. However, surprisingly little is known about 

how the physiological and molecular responses to water deprivation differ among 

closely related plant species with different ecologies. Specifically, how the ecologically 

diverse relatives of the model species Arabidopsis thaliana react to drought stress had 

not been examined.  

I used the annual species Arabidopsis thaliana, and its perennial close relatives A. lyrata 

and A. halleri to investigate the response to stress at phenotypic, transcriptomic and 

metabolic levels. To simulate drought stress, I developed a dry-down experiment that 

mimics a period of missing precipitation and monitors plant reactions to the 

progressive decrease in soil water content (SWC). 

The three species differed significantly in their reaction to decreasing SWC. At the 

phenotypic level, I observed that A. halleri consumed soil water faster and was not able 

to maintain leaf water content as the soil dried down. A. lyrata individuals wilted at a 

comparable soil water content, yet the increased survival rate and the decreased 

damage levels after recovery showed that it has better survival after wilting. By 

contrast, A. thaliana seemed to withstand lower SWC but did not survive wilting. 

The phenotypic differences between the two sister species were confirmed at the 

transcriptome level. In fact, A. halleri down-regulates growth-related genes as soon as 

SWC decreases. Such signs are absent in A. lyrata, which, instead, up-regulates water-

deprivation genes after recovery, indicating that it adjusts its physiology after stress 

exposure. 
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At the metabolome level, results revealed interspecific variation in the initial leaf 

metabolite concentration as well as in response to water depletion. In addition, the 

accumulation of compatible solutes such as sugars and amino acids is found to be a 

conserved mechanism in the three species in response to low SWC. Interestingly, A. 

thaliana displayed the strongest fold change in response to low SWC for proline and 

sucrose, which previously have been proven to play the role of osmoprotectants and 

their abundance was increased in many other species in response to drought stress. 

However, metabolic variation did not reflect ecological differences because the 

drought sensitive A. halleri was more similar to the drought-tolerant A. lyrata, than to 

the annual A. thaliana. 

In summary, these results suggest that these three Arabidopsis species have evolved 

distinct strategies to face drought stress. A. lyrata employed both avoidance and 

tolerance mechanisms, whereas A. thaliana showed stronger avoidance reactions but 

decreased tolerance. A. halleri is the least able to protect itself from the stress imposed 

by exposure to decrease in SWC.   
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Zusammenfassung 

Im Hinblick auf den Klimawandel und das dramatische weltweite 

Bevölkerungswachstum, ist die Anpassung an Trockenstress in Pflanzen ein 

Schlüsselfaktor für die Entwicklung nachhaltiger Strategien um Ernteerträge zu 

optimieren und die Ernährungssicherheit zu gewährleisten. Pflanzen in 

unterschiedlichen ökologischen Nischen haben ihre Stressreaktionen an ihre lokalen 

Umweltbedingungen angepasst und behalten gleichzeitig ihre Fitness. Allerdings ist 

momentan trotzdem noch wenig über die Unterschiede bei der physiologischen und 

molekularen Reaktion auf Wassermangel bei nahe verwandten Pflanzenarten mit 

unterschiedlicher ökologischer Anpassung bekannt. Speziell über die Stressantwort 

bei den ökologisch diversen Verwandten vom Modellorganismus Arabidopsis thaliana 

(Acker-Schmalwand) ist bis jetzt noch wenig bekannt. 

In dieser Arbeit habe ich die Stressreaktionen im Bezug auf Phänotyp, Genexpression 

und den Stoffwechsel in den mehrjährigen Arten A. halleri und A. lyrata, nahe 

Verwandte der einjährigen Art A. thaliana, untersucht. Um die Stressreaktionen bei 

Trockenheit genauer zu untersuchen, habe ich ein Experiment entwickelt, dass eine 

Periode mit ausbleibenden Niederschlägen nachahmt und die Reaktionen der 

Pflanzen auf den fortschreitenden Rückgang des Wassergehalts des Bodens 

untersucht.  

Die Reaktion auf den zurückgehenden Wassergehalt des Bodens ist in den drei 

Arabidopsis Arten signifikant unterschiedlich. Während das Wasser im Boden von A. 

halleri schneller verbraucht wurde und der Turgordruck nicht aufrechterhalten 

werden konnte, ist der Wassergehalt im Boden bei A. lyrata langsamer gesunken. A. 

lyrata verwelkten bei einem vergleichbaren Bodenwassergehalt wie A. halleri, zeigt 

allerdings nach dem Stress eine erhöhte Überlebensrate und verminderte Schäden an 

den Pflanzen. Im Gegensatz zu den beiden anderen Arten, scheint A. thaliana einem 

niedrigeren Bodenwassergehalt standzuhalten, überlebte aber das Welken nicht. 

Die Genexpressionsanalyse in den Schwesternarten A. halleri und A. lyrata bestätigt die 

phänotypischen Unterschiede in Reaktion auf den Trockenstress. 

Wachstumsrelevante Gene werden in A. halleri herunterreguliert sobald der 

Bodenwassergehalt abnimmt. Im Gegensatz werden in A. lyrata Gene, die im 

Zusammenhang mit Wassermangel stehen, nach dem Stress hochreguliert. Dies deutet 

an, dass die Physiologie in A. lyrata nach Trockenstress angepasst wird. 
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Die Metabolite der Blätter zeigen basale sowie stressbedingte Unterschiede zwischen 

den Arten auf. Darüber hinaus wird festgestellt, dass in den drei Arten kompatible 

Solute wie Zucker oder Aminosäuren bei niedrigem Wassergehalt im Boden 

angereichert werden. Interessanterweise zeigte A. thaliana die stärksten 

Veränderungen in der Prolin- und Saccharoseanreicherung, die in vielen anderen 

Arten Zusammenhang mit Trockenstress angereichert werden. Die Variation in der 

Anreicherung der Metabolite spiegelte jedoch keine ökologischen Unterschiede wider, 

da die dürreempfindliche A. halleri der dürretoleranten A. lyrata ähnlicher war als der 

einjährigen A. thaliana. 

Im Verlauf meiner Arbeit habe ich aufgezeigt, dass die drei Arabidopsis Arten 

unterschiedliche Strategien entwickelt haben, um dem Trockenstress zu begegnen. A. 

lyrata verwendete sowohl Vermeidungs- als auch Toleranzmechanismen, während A. 

thaliana stärkere Vermeidungsreaktionen, aber keine Toleranz zeigte. A. halleri ist am 

wenigsten in der Lage, sich vor dem Wassermangel zu schützen. 

 

 

 

 

 

 

 

 

 

 



 

V 

 

List of Figures 

Figure 1: Consensus tree of the Arabidopsis species, according to Novikova et al. (2016). Branch lengths only 

indicate relationships not time of divergence. ____________________________________________________ 9 

 

Figure 2: Soil moisture ~ f (weight) for the four biological replicates of the dry-down experiments in order A; B; 

C and D. The shaded ribbon represents the SD on 40 pots. ________________________________________ 18 

 

Figure 3: Print of stomata on microscope slide observed with an optical microscope (x100). Red arrows show an 

example of the measured distance between the guard cell junctions. _________________________________ 19 

 

Figure 4: Example of original plant pictures (A) treated by GIMP (B) to be used in Rosette Tracker. _______ 20 

 

Figure 5: Raw data as well as fitted curve of the quantum yield of PSII measured in 30 min dark-adapted A. 

halleri plant (hal2.2 genotype). Time of measurement is around five minutes. _________________________ 24 

 

Figure 6: Pipeline used for RNA seq. data analysis. _____________________________________________ 26 

 

Figure 7:  Summary of read mapping to the A. lyrata reference genome V1 using the unspliced read mapper 

bwa. Percentage of reads mapped to the genic vs. intergenic regions for each sample. Samples called ‘hal_1_c, 

hal_2_c, and hal_3_c’ are the three replicates of A. halleri plants sampled at 60% of soil moisture; ‘hal_1_t, 

hal_2_t, and hal_3_t’ are the three replicates of A. halleri plants sampled at 20-25% of soil moisture; ‘hal_1_r, 

hal_2_r, and hal_3_r’ are the three replicates of A. halleri plants sampled after recovery. The same is for A. 

lyrata samples ‘lyr’. _______________________________________________________________________ 27 

 

Figure 8: Summary of short read mapping to the A. lyrata reference genome V1. Percentage of non-mapped 

reads at bottom, above that uniquely mapped, above that multiple mapped for each sample. Samples called 

‘hal_1_c, hal_2_c, and hal_3_c’ are the three replicates of A. halleri plants sampled at 60% of soil moisture; 

‘hal_1_t, hal_2_t, and hal_3_t’ are the three replicates of A. halleri plants sampled at 20-25% of soil moisture; 

‘hal_1_r, hal_2_r, and hal_3_r’ are the three replicates of A. halleri plants sampled after recovery. The same is 

for A. lyrata samples ‘lyr’. _________________________________________________________________ 28 

 

Figure 9: Stomatal density and δ13C measured in Arabidopsis halleri and A. lyrata grown under well-watered 

conditions. (A) Abaxial stomatal density. (B) δ13C measured for the same plants. Violin plots with the same 

letter are not significantly different according to Tukey’s HSD (P value <0.05). _______________________ 34 

 

Figure 10: Stomata length (µm) measured in Arabidopsis lyrata and A. halleri under well-water conditions. 34 

 

Figure 11: Wilting day and soil moisture at wilting for Arabidopsis halleri, A. lyrata and A. thaliana. (A) 

Number of days between initiation of soil dry-down treatment and wilting. (B) Soil moisture at wilting. Letters 

above violin plots indicate significant differences between species (Tukey’s HSD test, P value <0.05). Results are 

shown for the first biological experiment. ______________________________________________________ 36 

 

Figure 12: Typical phenotypes of wilting observed in Arabidopsis halleri, A. lyrata and A. thaliana. Plant 

morphology before the water withdrawal treatment (top row) and at wilting (bottom row) for A. halleri (A, D), 



 

VI 

 

A. lyrata (B, E) and A. thaliana (C, F). All plants were grown in 7 cm pots. One single plant was grown in each 

7 cm pot and no vegetative propagation had occurred at the time the experiment was performed. __________ 37 

 

Figure 13: Soil water content during the first 7 days after water withdrawal. Decrease in soil water content after 

water withdrawal in the first (A) and the second (B) biological experiments for Arabidopsis halleri, A. lyrata, 

and A. thaliana. Shaded ribbons represent the standard deviation. P values show the significant interaction 

between time and species effect on the water content of soil. _______________________________________ 38 

 

Figure 14:  Initial rosette area (mm², at 60% of soil moisture). Data were collected in the second biological trial 

of the drying-down experiment for Arabidopsis halleri, A. lyrata, and A. thaliana. Boxplots with the same letter 

are not significantly different (Tukey’s HSD, P value <0.05). ______________________________________ 39 

 

Figure 15: Correlations between desiccation rate and initial rosette leaf area (at 60 % of soil moisture) [Pearson 

correlation coefficients and P values for: Arabidopsis thaliana (r = 0.32, P = 0.013); A. lyrata (r = 0.14, P = 0.22) 

and A. halleri (r = 0.48, P = 0.00072). Results are shown for the second biological experiment. Lines represent a 

linear regression smoothing where the shaded ribbons represent the standard error._____________________ 40 

 

Figure 16: Initial leaf thickness measured (mm) at 60% of soil moisture (before water withdrawal). Data were 

collected in the second biological experiment for Arabidopsis halleri, A. lyrata, and A. thaliana. Box plots with 

the same letter are not significantly different (Tukey’s HSD, P value <0.05). __________________________ 41 

 

Figure 17: Decrease of leaf thickness over time during the 7 days before wilting (A) it is represented as the 

percentage of leaf thickness variation over time to the initial values. (B) Relative leaf water loss 7 d before wilting 

in Arabidopsis halleri, A. lyrata and A. thaliana. This is equivalent to the ratio of leaf thickness at day 2 vs. day 

7 before wilting. Boxplots with the same letter are not significantly different (Tukey’s HSD, P value <0.05). 

Results are shown for the second biological experiment. __________________________________________ 42 

 

Figure 18: Correlation between the relative water loss in leaves before wilting (equivalent to the ratio of leaf 

thickness on day 2 vs. day 7 before wilting) and the desiccation rate [Pearson correlation coefficients and P 

values for: A. thaliana (r = 0.018, P = 0.732); A. lyrata (r = 0.023, P = 0.692) and A. halleri (r = 0.39, P = 

4.282.10-08)]. Results are shown for the second biological experiment. Lines represent a linear regression 

smoothing where the shaded ribbons represent the standard error. __________________________________ 43 

 

Figure 19: Leaf thickness in response to decrease of soil moisture for Arabidopsis thaliana, A. halleri and A. 

lyrata. Results were collected in the second biological experiment. Shaded ribbons represent the standard 

deviation. Filled triangles correspond to the average wilting soil moisture for the different species. _________ 44 

 

Figure 20: Photosynthesis efficiency at wilting. (A) Percentage of maximum photosystem II efficiencies (Fv:Fm 

ratio) at wilting compared to the initial efficiencies. The average initial Fv:Fm ratios and the standard deviation 

for A. halleri, A lyrata, and A. thaliana were: 0.735 ± 0.11; 0.76 ± 0.052; 0.77 ± 0.008 respectively. (B) 

Percentage of the quantum yield of photosystem II. Violin plots with the same letter are not significantly 

different according to Tukey’s HSD (P value <0.05). Results are shown for the first biological experiment. __ 45 

 

Figure 21: Average survival rate after re-watering following 2–6 days of wilting for Arabidopsis halleri, A. 

lyrata and A. thaliana. Results are shown for the first biological replicate. Barplots with one asterisk or more are 

significantly different (Tukey’s HSD, P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001). _____________________ 46 



 

VII 

 

Figure 22: Damage scored on survivors of 2 d of wilting after resuming growth for Arabidopsis halleri, A. lyrata 

and A. thaliana. Results are shown for the second biological experiment. Barplots with one asterisk or more are 

significantly different (Tukey’s HSD, P < 0.1; ***P < 0.001; ns, not significant). _______________________ 47 

 

Figure 23: Correlogram of Pearson correlation between measured metabolites, in all samples. Positive 

correlations are plotted in blue, negative correlations in red and non-significant correlations (P value > 0.05) in 

white. The color band on the right indicates the correlation coefficients. The size and intensity of colors are 

proportional to the correlation coefficients. _____________________________________________________ 54 

 

Figure 24: A 2D Principal Component Analysis (PCA) biplot of variables (the metabolite data measured at 60% 

SWC; 20% SWC and recovery) and individuals (A. halleri; A. lyrata and A. thaliana). The blue arrows 

represent the different metabolic compounds: the distance between variables and the origin measures the quality 

of the variables on the factor map. Variables that are away from the origin are well represented on the factor map. 

Ellipses group the species * conditions. The first axis explains 19.4% of the variance and the second axis explains 

17%. __________________________________________________________________________________ 58 

 

Figure 26: Volcano plot showing on the x-axis the log2 fold change in relative amounts of metabolites between 

species at 20% of SWC and on the y-axis, the t-test- P value (Bonferroni adjusted for multiple comparison). 

From the top to the bottom: A. lyrata vs. A. halleri; A. lyrata vs. A. thaliana and A. halleri vs. A. thaliana. Red 

points are metabolites showing significantly different abundance between species whereas the purple ones did not 

change significantly between species. _________________________________________________________ 64 

 

Figure 27: Volcano plot showing on the x-axis the log2 fold change in relative constitutive amounts of 

metabolites between species and on the y-axis, the t-test- P value (Bonferroni adjusted for multiple comparison). 

From the top to the bottom: A. lyrata vs. A. halleri; A. lyrata vs. A. thaliana and A. halleri vs. A. thaliana. Red 

points are metabolites showing significantly different abundance between species whereas the purple ones are the 

one that did not change significantly between species. ____________________________________________ 66 

 

Figure S1: Wilting day and soil moisture at wilting for the two first biological experiments of the drying-down 

experiments. (A) Number of days between initiation of soil dry down treatment and wilting. (B) Soil moisture at 

wilting for Arabidopsis halleri, A. lyrata, and A. thaliana. Letters above violin plots indicate significant 

differences between species (Tukey’s HSD test, P value <0.05). Results are shown for the first two biological 

experiments. ____________________________________________________________________________ 99 

 

Figure S2: Proportion of surviving A. halleri, A lyrata, and A. thaliana plants 2 days after re-watering for the 

two first biological experiments. Letters above violin plots indicate significant differences between species 

(Tukey’s HSD test, P value <0.05). Results are shown for the two first biological experiments. ___________ 100 

 

Figure S3: Scree plot used for the PCA analysis to determine the number of factors to retain. ____________ 101 

 

Figure S4: Average standardized amounts of metabolites detected at 60% of soil water content in A. lyrata, A. 

halleri and A. thaliana. Barplots with the same letter are not significantly different (significance based on t-test 

(P value <0.05)). ________________________________________________________________________ 102 

Figure S5: Average standardized amounts of metabolites detected at 60; 20% SWC and recovery in A. lyrata, A. 

halleri and A. thaliana. ___________________________________________________________________ 103 

 

 



 

VIII 

 

List of Tables 

Table 1: Number of genotypes used in the three drying-down experiments. ___________________ 16 

 

Table 2: Number of significantly differentially expressed genes in Arabidopsis halleri and A. lyrata 

during the dry-down experiment at 20% of soil moisture or after recovery compared to expression 

before stress (60% of soil moisture). __________________________________________________ 49 

 

Table 3: Percentage of differentially expressed genes that overlap with differentially expressed genes 

reported in Matsui et al., (2008) after 2 h (dh2) and 10 h (dh10) of dehydration stress (N.S.: not 

significant). The random expectation of overlap % is indicated in bold on the top row. __________ 49 

 

Table 4: GO Categories Showing a Significant Enrichment (P < 0.01) among differentially expressed 

genes between 20% and 60% of soil moisture and between recovery and 60% of soil moisture for 

Arabidopsis halleri and A. lyrata. ____________________________________________________ 51 

 

Table 5: Pathway names, total metabolites involved in that pathway (total), metabolites accumulated 

in this study (hits), and false discovery rate (FDR). ______________________________________ 52 

 

Table 6: Summary statistics of the results of the multivariate analysis of variance on the model: 

metabolites (38 compounds) ~ species * stress-levels. Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 

0.1 ‘ ’ 1 _________________________________________________________________________ 55 

 

Table 7: Summary of the Analysis of variance on the model: relative metabolite concentration~ species 

* conditions + 1| genotypes/replicates. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (P 

values can be found in Suppl. Stat. 10) ________________________________________________ 55 

 

Table 8: Summary of the regulation of metabolites after the post-drought recovery in each species _ 67 

 

Table S1: List of accessions used for the dry-down experiments. ___________________________ 104 

 

Table S2: Phenotypes measured in the three drying-down experiments. ____________________ 106 

 

 

 

 

 

 



 

IX 

 

List of Abbreviations 

# Number 

°C Degree Celsius  

µl Microliter 

ABA abscisic acid 

ABRE/ ABF ABA-respnsive cis-element binding protein/ ABRE-binding factor 

ANOVA Analysis of variance 

ATG Arabidopsis thaliana Genes 

Bwa Burrows Wheeler Aligner 

bZIP basic leucine zipper 

cm centimeter 

d Days 

DNA Deoxyribonucleic acid 

DRE/CRT Drought Responsive Element/ C Repeat 

DW Dry Weight 

FC Fold Change 

FDR False Discovery Rate 

g gram 

GA Gibberellic Acid 

GABA Gamma Aminobutyric Acid 

GCMS Gas chromatography-Mass spectrometry 

GO Gene Ontology 

gs Gas exchange 

h hour 

IGV Integrative Genomic Viewer 

ISTD Internal Standard Ribitol 

KEGG Kyoto Encyclopedia of genes and genomes 



 

X 

 

LEA Late Embryogenesis Abundant 

MANOVA Multivariate analysis of variance 

mg Milligram 

min minutes 

mm millimeter 

N. S.  Not Significant 

PAM Pulse amplitude modulation 

PCA Principle Component Analysis 

PP2C type 2C protein phosphatase 

PSII Photosystem II 

PYL Pyrabactin resistance like 

PYR Pyrabactin resistance 

QTL Quantitative Trait Loci 

r correlation coefficient 

RCAP Regulatory component of ABA receptors 

RNA Ribonucleic acid 

Rubisco Ribulose-1,5-bisphosphate-carboxylase/oxygenase 

SD Standard deviation 

SnRK2 sucrose non-fermenting 1-related protein kinase 

SRA Sequence read archive 

SWC soil water content 

TCA Tricarboxylic acid cycle 

vs. versus  

WUE Water Use Efficiency 

δ13C Carbone isotope discrimination 

               



 

1 

 

1. Introduction 

Plants are sessile organisms that are not able to relocate when faced with biotic and 

abiotic stresses. With fluctuating environments, rapid and constantly changing 

climates and unusual weather events, drought and other stresses such as salinity and 

heat are more frequently occurring all over the world (Dai, 2013).  

As water is the indispensable element for all physiological and cellular plant aspects, 

drought can be considered the major abiotic stress, limiting plant growth and crop 

productivity world-wide (Stebbins, 1952; Boyer, 1982; Bohnert et al., 1995; Bray, 1997; 

Lambers et al., 1998; Bray et al., 2000). In fact, during the vegetative stage, it reduces 

plant growth by limiting leaf expansion, plant height and branching. This leads to the 

reduction of the transpiration rate and water consumption, which limits the duration 

of photosynthetic capacity, shortens the duration of seed filling and decreases seed 

yield (Farooq, 2005). 

The availability of water is then an important selective factor in the evolution of plant 

physiology, morphology and ability to deal with drought stress and it plays a crucial 

role in the determination of the distribution, abundance and diversity of plant species 

(Hoffmann and Sgró, 2011).  

1.1 Drought stress 

1.1.1. Definition of drought 

Drought is defined in several ways, here I’ll only mention the definitions which are 

relevant to the agronomy and ecology fields. In terms of meteorology, drought is the 

long-term (months to years) deficiency of water supply caused by missing 

precipitation (rainfall) or snow and it is often associated with high temperatures 

(Wilhite. 2000). The agricultural drought is defined as the limitation of water available 

to the plant in order to fulfill the physiological needs of evapotranspiration during 

growing season (Claeys and Inzé, 2013; Rattan, 2016). It is caused by below-average 
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precipitation and/or above-normal evaporation which results in the reduction of crop 

production and plant growth (Dai, 2010). Finally, the hydrological drought which 

occurs when the water stored in aquifers, lakes, or reservoirs fall below long-term 

mean levels (Dai, 2010). As it involves stored water, hydrological drought happens 

more slowly. 

1.1.2. Drought as limiting factor 

The Food and Agriculture Organization of the United Nations (FAO) estimated that 

70% of all water consumption is used for agriculture, against 20% for industry and 10% 

for domestic use, and it predicted an increase of 34% in the world population by the 

year 2050 (AQUASTAT-FAO). This implies a dramatic increase in societal demands 

on crop and forest production as well as ecosystem services. Under conditions of 

climate change, i.e. decrease of precipitation and increase in temperature, studying 

drought adaptation in plants is crucial to design sustainable strategies to optimize crop 

productivity and ensure food security (Somerville and Briscoe, 2001). 

1.1.3. Drought response in plants: Drought resistance and Adaptation 

Mechanisms 

In a natural environment, plants can suffer long periods of progressive water 

limitation or may undergo short but severe episode of dehydration. This can lead to 

the development of a series of changes at e.g. morphological, physiological, cellular 

and/or molecular levels allowing plants to adjust to the environmental stresses (Bray, 

1997). 

To cope with water scarcity, higher plants have evolved drought resistance 

mechanisms which can be divided in three strategies: drought escape, dehydration 

avoidance and tolerance strategies (Ludlow, 1989; Fukai and Cooper, 1995; Verslues 

and Juenger, 2011; Fang and Xiong, 2015).  

The contribution and relative importance of each of these strategies varies among 

species. The escape and avoidance strategies are the most relevant to annual species 
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(such as A. thaliana). Perennial species instead favor strategies maximizing survival, 

such as tolerance and avoidance strategies (Chaves et al., 2003). 

      1.1.3.1. Escape strategy 

The escape strategy is based on the ability of plants to skip the drought season by a 

plastic shift in phenology (e.g. time and duration of growth) (Juenger, 2013). In other 

terms, the escape strategy is based on the adjustment of developmental transitions in 

order to either reproduce before water limitation occurs or delay germination beyond 

the dry season. 

With an increase in the duration of seed dormancy or a shortening of the life cycle via 

accelerating the time of flowering, the plant is simply not facing dry seasons (Fox, 1990; 

Bewley, 1997; Tonsor et al., 2005; Franks et al., 2007; Kronholm et al., 2012; Lovell et al., 

2013). Flowering time and seed dormancy are therefore important traits for the 

adaptation to drought.  

The escape strategy is relevant for annual plants as they have to survive as seeds. It 

has been also reported that plants relying on drought escape strategy have the ability 

to adjust their metabolic regulation in order to ensure rapid growth (Verslues and 

Juenger, 2011). 

      1.1.3.2. Avoidance strategy 

The avoidance strategy means that water levels are maintained within tissues through 

a reduction of water loss and the enhancement of water uptake. The damaging effects 

of drought are therefore by-passed by the plant. 

Mechanisms of regulations associated with drought avoidance strategy include the 

amelioration of water absorption through the root system, reducing 

evapotranspiration by closure of stomata as well as having fewer and smaller leaves 

in the early stages of plant development (Levitt, 1980; Price et al., 2002; Farooq et al., 

2009; Munemasa et al., 2015). Dehydration avoiders display high water use efficiency 
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which refers to the proportion of water used in plant’s metabolism to the proportion 

of water lost by transpiration (Farquhar and Richards, 1984; Farquhar et al., 1989; 

Lambers et al., 1998; Dawson et al. 2002). Succulent CAM species and (to a lesser 

degree) C3 plants are considered to be dehydration avoiders (Ludlow, 1989). 

      1.1.3.3. Tolerance strategy 

All spermatophytes possess the molecular toolkit to tolerate intense cellular 

dehydration in seeds (Golovina et al., 1997; Kermode, 1997; Wehmeyer and Vierling, 

2000). Adult plants can therefore draw from this toolbox to be able to tolerate a certain 

degree of dehydration in vegetative organs (Ludlow, 1989; Shinozaki and Yamaguchi-

Shinozaki, 2007). Drought-tolerant plants are capable of maintaining a good level of 

physiological activity and ensuring an acceptable yield even under severe drought 

conditions. I detail below the cascade of molecular, biochemical, and physiological 

processes underpinning the tolerance mechanism. 

1.1.3.3.1. Physiological and biochemical adaptation 

One of the first reactions to the limitation of water is the closure of stomata to reduce 

the transpiration rate. This leads to an increase of water use efficiency (WUE) which is 

the efficiency at which plants fix CO2 relative to their rate of water loss, i.e. the ratio of 

dry matter produced to water consumed (Tambussi et al., 2007). 

Stomatal closure impacts negatively the efficiency of the photosynthesis and inhibits 

its biochemistry by the accumulation of reduced components of the electron transport 

chain. This potentially causes the production of reactive oxygen species (ROS) e.g. O2.- 

and H2O2, which causes oxidative stress that in turn can damage the photosynthetic 

apparatus (Basu et al., 2016). 

Damage of lipids, proteins and nucleic acids of plant cells is also caused by oxidative 

stress. In response to an increase of ROS, plants produce scavenging enzymes or non-

enzymatic antioxidants such as proline (Szabados and Savouré, 2010; Verslues and 
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Sharma, 2010), or GABA (Krasensky and Jonak, 2012) to detoxify its cells. 

Accumulating osmolytes further protects the cellular machinery from damage via the 

osmotic adjustment (OA) process. This biochemical process consists in maintaining the 

turgor pressure in the cells despite a reduced leaf water status (Chaves et al., 2003). 

These osmolytes, also called compatible solutes, include sugars, such as glucose, 

sucrose, fructose, raffinose, and xylose; sugar alcohols e.g. mannitol, sorbitol and 

inositol; and amino acids and their derivatives, such as proline (Hare et al., 1998; Elbein 

et al., 2003). In addition, osmoprotectants have been reported to play an important role 

in maintaining membrane stability and enzyme activity under low water availability 

(Joshi et al., 2016). 

Changes in protein synthesis were also reported in response to drought stress. Late 

Embryogenesis Abundant (LEA) proteins and chaperones are proteins that play an 

important role in osmotic regulation in drought-tolerant plants (Szabados and 

Savouré, 2010; Liu et al., 2017). LEA proteins accumulate during the development of 

seeds and their accumulation confers high tolerance to desiccation stress. They can be 

classified into seven groups based on their amino acid sequence (Dure et al., 1989). 

Dehydrins, which belong to group II of the LEA proteins (Close, 1996), were found to 

enhance tolerance to cold and drought in plants as well as in E. coli (Liu et al., 2017). 

The production of ROS at the source can be inhibited directly by the dehydrins when 

binding to metal ions. Being able to bind to DNA, dehydrins can also repair and protect 

DNA from damage caused by abiotic stresses such as cold and drought (Liu et al., 

2017). Just like compatible solutes, osmotic homeostasis-related proteins (i.e. heat 

shock proteins, or LEA proteins) can further help protect the cell against damage 

imposed by low internal water potential (Ingram and Bartels, 1996; Reddy et al., 2004; 

Yue et al., 2006; Szabados and Savouré, 2010). 

1.1.3.3.2. Molecular adaptation 

In A. thaliana, genes that are activated in response to water-limitation stress were 

divided into two groups: i) genes coding for regulatory proteins such as transcription 
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factors (TFs), signaling protein kinases, protein phosphatases and ABA biosynthesis, 

and ii) genes coding for functional proteins including detoxifing enzymes, osmolyte 

biosynthesis, proteolysis of cellular substrates, water channels and, ion transporters 

(Shinozaki et al., 2003; Sakuma et al., 2006). Similar to the Arabidopsis findings, proteins 

induced by stress in rice can also be classified into functional and regulatory proteins 

(Rabbani et al., 2003). 

Abscisic acid (ABA) has been reported as the main drought-stress induced hormone, 

it is in fact accumulated in response to drought and it induces the early responses to 

stress such as stomatal closure (Krasensky and Jonak, 2014). ABA also plays an 

important role in the activation of the transcriptional changes in genes involved in the 

carbohydrate and lipid metabolism (Hey et al., 2010). 

Drought stress related genes might be triggered through ABA-dependent as well as 

ABA-independent pathways ( Iuchi et al., 2001; Seki et al., 2001; Sakuma et al., 2006; 

Yoshida et al., 2014; Urano et al., 2017). Regulation of gene expression through ABA 

starts when ABA binds to ABA receptors including PYR/PYL and PCARS (May et al., 

2009; Raghavendra et al., 2010), which inhibit the type 2C protein phosphatases (PP2Cs). 

The inhibition of PP2C activate SNF1-Related Protein Kinases (SnRK2s), which in turn 

regulates ABA-responsive transcription factors (AREB/ABFs) and bZIP (Yamaguchi-

Shinozaki and Shinozaki, 2006). These transcription factors can then bind to the cis-

element of ABA-responsive genes (ABRE) to activate ABA-responsive genes and 

physiological processes such as detoxification and scavenging of ROS, osmotic 

regulation of cells and regulation of lipid metabolism (Yamaguchi-Shinozaki and 

Shinozaki, 2005).  

Genes which do not require ABA for expression, displayed a conserved dehydration 

responsive element (DRE) with C-Repeat element in their promoters, which is 

involved in gene regulation (Yamaguchi-Shinozaki and Shinozaki, 1994). 
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Transcription factors mainly DREB1/CBF and DREB2 bind to the cis-acting element 

DRE/CRT of the drought-inducible gene to regulate its expression (Liu et al., 1998). 

Besides ABA, other phytohormones including auxin, ethylene, gibberellic acid (GA), 

and jasmonic acid have been reported to play important role in cellular signal 

transduction pathway under water-shortage stress (Wang et al., 2016). In fact, root 

architecture can be modified by auxin in order to enhance absorption of water from 

deep soil layers (Uga et al., 2013). Ethylene and GA inhibit plant growth under mild 

drought stress (Skirycz et al., 2011; Dubois et al., 2013). Jasmonic acid instead enhances 

growth under drought stress. In fact, growth was found to be altered under mild 

drought conditions in Arabidopsis mutants in jasmonate signaling (Harb et al., 2010). 

1.1.4. Inducing drought stress in plants 

The effect of drought stress has been intensely studied in the last decades in several 

plant species through a multitude of methods. Most of them consist in exposing plants 

to severe dehydration by cutting off leaves and allowing them to dry on a piece of filter 

paper on the bench (Claeys and Inzé, 2013). Alternatively, by root dehydration stress, 

which is applied by removing the entire plant out of the hydroponic solution or the 

solid substrate (e.g. soil) to ensure a complete root dehydration at room temperature. 

This technique was used for different purposes in transcriptomic analysis in different 

plant species and crops such as soybeans (Ferreira et al., 2013; Ha et al., 2015); 

Arabidopsis thaliana (Yamaguchi et al., 2007; Matsui et al., 2008; He et al., 2016); 

Phaseolus acutifolius and P. vulgaris (Micheletto et al., 2007); Barley (Guo et al., 2009) 

and chickpea (Molina et al., 2008). Another method consists of exposing plants to 

osmotic shock by transferring them to/ or watering them with a solution containing 

high concentrations of osmotica such as polyethylene glycol (PEG), mannitol or 

sorbitol. This creates an osmotic pressure in plant cells and therefore removes water 

from the plants (Claeys and Inzé, 2013). Studies using this method were done for 

example in wheat (Liu et al., 2015); Arabidopsis (Kreps et al., 2002); rice (Zhou et al., 

2007); Populus (Caruso et al., 2008) and Cotton (Li et al., 2009).  
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While these experiments were very useful in increasing our knowledge of the 

physiological and molecular responses of plants to water-deficit stress, they are 

different from the physiological conditions occurring in the field (Claeys and Inzé, 

2013). Additionally, water limitation varies in severity in natural conditions in 

duration and timing, as it depends on rainfall patterns. It is therefore important to 

consider other variables such as stress intensity, developmental stages and plant 

organ/cell when conducting a drought-stress experiment (Claeys and Inzé, 2013; 

Lawlor, 2013). Consequently, the "withdrawing watering then re-watering" method is 

a good way to simulate natural field conditions. In fact, it is based on soil water 

depletion by keeping plants in soil and stopping the watering (i.e. days to few weeks) 

to induce drought stress, thus leading to the exposure of plants to moderate and 

progressive drought stress. After re-watering, roots can recover from the stress and 

new leaves begin to grow (Lawlor, 2013). This method has been applied to study 

drought reactions in the model legume Medicago (Zhang et al., 2014), common bean 

(Zadražnik et al., 2013) and in many crop species e.g. wheat (Steinemann et al., 2015), 

maize (Zheng et al., 2010) and alfalfa (Kang et al., 2011).    

Here, I developed a dry-down experimental protocol following the "withdrawing 

watering then re-watering" method, which consists in decreasing the soil water content 

(SWC) progressively and re-watering after wilting symptoms appear. I chose this 

method as it mimics a period of missing precipitation which would occur in natural 

conditions. By keeping plants in the soil, I also avoid confounding effects of stresses 

caused by removing plants from the soil or exposing the roots to light and air. In 

addition, it is particularly well-suited for the comparison of species with different 

ecologies, because all species are exposed to missing precipitation in their native 

environment, irrespective of their respective ecological preferences. 

1.2. The biological study system: Arabidopsis genus 

The Arabidopsis genus is part of the angiosperm clade, it includes small flowering 

plants that are related to cabbages and mustards. This genus belongs to the family of 
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Brassicaceae and it was first described by Gustav Heynhold in 1842 (Al-Shehbaz and 

O’Kane, 2002). 

New sequencing data of species of the Arabidopsis genus reported by Novikova el al., 

(2016) revealed that this genus consists of four major species: A. thaliana, A. halleri, A. 

lyrata and A. arenosa, and three minor groups, corresponding to the geographically 

limited A. croatica, A. cebennensis and A. pedemontana. The divergence between A. 

thaliana and the other species is estimated to at least 6 million years ago (Claus and 

Koch, 2006; Novikova et al., 2016). In figure 1 is a simplified phylogenic tree showing 

the relation between the species used in this project. 

 

Figure 1: Consensus tree of the Arabidopsis species, according to Novikova et al. (2016). 

Branch lengths only indicate relationships not time of divergence. 

The Arabidopsis genus is an interesting system to study drought response in plants as 

its species display distinct life history and ecological characteristics. The species in the 

genus differ in their mating system, contain annual and perennial species and are 

found in very diverse habitats (Clauss and Koch, 2006). 

1.2.1. A. thaliana  

A. thaliana, also known as the Thale Cress, is the most important plant model species 

for the study of cellular, physiological and molecular processes in plants.  

A. thaliana is a diploid species (2n = 10) with a genome size of about 135 Mb. The Tair 

10 database (https://www.arabidopsis.org/) provides the complete genome sequences 

https://www.arabidopsis.org/
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of A. thaliana, along with, gene expression data, DNA and seed stocks, genome maps, 

genetic and physical markers, publications and information about the Arabidopsis 

research community. 

One of the other reasons making A. thaliana a great model species is that its generation 

time is short and it produces a large number of seeds and that we can use true 

biological replicates as we have many seeds of the same accession (The Arabidopsis 

Genome Initiative 2000).  

Over the last two decades, it has become a powerful model plant for evolutionary 

biology and ecology as well (Mitchell-Olds, 2001; Pigliucci, 2002; Clauss and Koch, 

2006; Koch et al., 2008). A. thaliana’s annual life cycle and loss of self-incompatibility 

probably promoted its broad distribution range, from north of Scandinavia to Africa 

(Hoffmann, 2005, Durvasula et al., 2017). The species originates from Africa and occurs 

in sandy soil, river banks, roadsides, rocky slopes, waste places, cultivated ground, 

meadows, slightly alkaline flats, under shrubs and open areas (Al-Shehbaza and 

O’Kane, 2002, Durvasula et al. 2017). 

1.2.2. A. lyrata 

A. lyrata, the northern rock-cress is a perennial species. It occurs in the Northern 

hemisphere from cold to mild climatic regions, from the sea level up to 1500m above 

sea level (Al-Shehbaz & O’Kane 2002). It is mostly found in low competition habitats 

(Jonsell et al., 1995). The species grows on various habitats from dolomitic and gypsum 

habitats in Central Europe to lake and river shorelines, dunes, boulders, cliffs and 

various other habitats in northern Europe and North America (Spence 1959; Clauss & 

Koch 2006).  

It is a diploid species (2n = 16), its genome is ~ 60% larger than A. thaliana genome 

(Clauss and Koch, 2006). A. lyrata is an obligate outcrosser, but the MN47 genotype is 

known to self-fertilize. Vegetative reproduction via rhizomes is also possible in A. 

lyrata (Clauss and Mitchell Olds 2006; Vergeer and Kunin 2011).   
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Two subspecies (ssp.) are identified: i) A. lyrata ssp. petraea which occurs in Central 

and Northern Eurasia and ii) the purely diploid A. lyrata ssp. lyrata which grows in 

central and eastern North America. The subspecies petraea contains also purely diploid 

(Al-Shehbaz & O’Kane 2002) as well as tetraploids individuals (Dart et al., 2004). 

1.2.3. A. halleri  

Similar to its sister A. lyrata, A. halleri, the meadow rock-cress, is a perennial and 

obligate out-crossing species occurring in Europe and Eastern Asia. It grows in grassy 

meadows, forest margins and rocky slopes.  It is a diploid organism (2n = 16) with a 

genome 40-60% larger than A. thaliana genome. As it occurs in highly competitive 

habitats, it is believed to be more tolerant to competition than A. lyrata (Claus and Koch 

2006). 

A. halleri occurs also in heavy metal contaminated soil and has the ability to detoxify 

these soils by the accumulation of heavy metals such as Zn and Cd (Krämer, 2010, 

Ellenberg and Leuschner, 2010; Stein et al., 2017).  

Five subspecies are currently identified: A. halleri subspecies halleri and gemmifera, 

which are distributed in a wide range in Europe and Eastern Asia, respectively (Claus 

and Koch, 2006). Whereas, A. halleri ssp. ovirensis, ssp. tatrica and ssp. dacica are 

distributed in restricted areas, they are found in the Eastern Alps, the Tetra and the 

Carpathian Mountains, respectively (Al-Shehbaz & O’Kane 2002; Kolník and Marhold 

2006; Koch 2019). 

1.3. Why is it relevant to study drought stress response in the 

Arabidopsis genus? 

The response of A. thaliana to severe or mild drought stress has been intensively 

studied and described in detail (Seki et al., 2002; Bray, 2004; Verslues and Juenger, 

2011; Des Marais et al., 2012; Juenger, 2013; Bechtold et al., 2016; Lovell et al., 2015). 

This annual species can rely on modifications of its life cycle to adjust the timing of 

escape and/or avoidance strategies to drought stress (McKay et al., 2003; Kronholm 
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et al., 2012; Wolfe and Tonsor, 2014). The two sister species Arabidopsis lyrata and 

Arabidopsis halleri, in contrast, are less likely to rely on escape strategies because year 

to year survival is of major importance for these perennials. Arabidopsis lyrata is 

probably the most exposed of the two to natural selection by drought due to its 

preference for low competitive communities in soils that do not retain water well 

(Clauss and Koch, 2006; Ellenberg and Leuschner, 2010; Sletvold and Agren, 2012). On 

the other hand, A. halleri must grow to out-compete other species in crowded habitats 

(Clauss and Koch, 2006; Ellenberg and Leuschner, 2010; Stein et al., 2017). Its specific 

ability to accumulate heavy metals enhances its defenses against herbivores but sets 

strong constitutive demands on detoxifying systems which are important for re-

establishing homeostasis after stress (Mittler, 2002; Becher et al., 2004; Krämer and 

Clemens, 2006; Stolpe et al., 2016). The contrasting ecologies of these three species thus 

predict major differences due to their strategies on challenges imposed by water 

limitations. 

1.4. Objectives of this project 

Distantly related annual species, such as rice and Arabidopsis, show common patterns 

of stress responses (Nakashima et al., 2009). Much less is known about how responses 

to stress are reshaped in closely related species with strongly divergent ecologies and 

life histories. So far, most analysis of drought response focused on annual species. 

Comparison of Arabidopsis thaliana with its close relatives A. lyrata and A. halleri can 

help disentangle the molecular changes contributing to tolerance and avoidance 

mechanisms, because different species in the genus have evolved distinct ecologies 

with contrasting demands on tolerance and avoidance (Clauss and Koch, 2006; Koch, 

2019).  

My PhD aimed at the dissection of interspecific differences in drought-stress responses 

and drought resistance ability in each of these three species at three levels: phenotypic, 

transcriptomic and metabolic levels. 
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My first objective was to characterize the interspecific differences based on phenotypes 

of wilting observed and quantified in well-watered and stressed plants. I investigated 

the relative importance of drought resistance strategies in ecologically diverse 

Arabidopsis species. 

As metabolites reflect the integration of gene expression, protein interaction and other 

different regulatory processes they are therefore closer to the phenotype than mRNA 

transcripts (Arbona et al., 2016). The use of metabolomics to understand global 

responses to dehydration stress could be therefore important in improving our 

knowledge of the final steps in signal transduction pathways. As described above, 

tolerance strategy is characterized by the accumulation of osmoprotectants and the 

enhancement of osmotic adjustment mechanism, however, avoidance strategy is 

mainly based on morphological and physiological aspects that enhance water uptake 

from soil and minimizing water loss from leaves. For that reason, I ran a metabolite 

profiling under low SWC to quantify the accumulation of metabolite in desiccated 

plants and compare it to i) non-stressed and ii) recovered plants. This allowed me to 

disentangle interspecific changes involved in the tolerance vs. avoidance strategies. 

I finally quantified transcript abundance in drought-exposed plants for representative 

genotypes of each of A. lyrata and A. halleri species and compare it to the non-stressed 

ones. This allowed me to validate the strategies revealed by phenotypic analyses at the 

molecular level.  
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2. Material and Methods 

To mimic the progression of water depletion in natural conditions, e.g. where soil is 

not able to hold water in a period of missing precipitation, I performed a drying-down 

experiment using the model annual species A. thaliana and its perennial relatives A. 

halleri and A. lyrata. 

Several phenotypes were measured under well-watered conditions as well as under 

the drying-down experiment to find out differences between and within species in 

response to drought stress. Further characterization of the drought-stress response 

was performed on the transcriptome and metabolome levels. 

2.1. Plant Material and Growth Conditions 

 

The total number of genotypes used in each biological trial is shown in Table 1. Central 

European A. lyrata and A. halleri genotypes were included in the dry down 

experiments. These genotypes were taken from populations representative of the 

diversity described in these species (Suppl. Table S1, Ross-Ibarra et al. 2008; Pauwels 

et al. 2005; Novikova et al. 2016; Stein et al., 2017). They were compared to several 

genotypes of A. thaliana with European genomic background originating from Spain 

(The 1001 Genomes Consortium 2016). This sample was chosen because these 

populations are among the most drought resistant in A. thaliana (Exposito et al., 2018) 

and these genotypes are late flowering so that the stress exposure cannot be 

circumvented by life cycle termination. For each genotype, five replicates (vegetatively 

propagated clones for the self-incompatible species, single-descent seeds for A. 

thaliana) were distributed in five randomized complete blocks. 

Plants were grown in 7x7x8 cm pots filled with 150g of a well-homogenized mixture 

of VM soil composed of 60 to 70% of Peat, 30 to 40% of clay, perlite and seramis (clay 

granules) in CLF growth chamber (Perkin Elmer, USA). Growth conditions were 10h 
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light at 20°C, 14h dark at 16°C, 100 µmol m-2 s-1 light intensity supplemented with 10 

min dark-red light at the end of the day. Relative humidity was set to 60%. 

Table 1: Number of genotypes used in the four drying-down experiments. 

Number of 

genotypes 
A. halleri A. lyrata A. thaliana 

Experiment  1 13 22 16 

Experiment  2 12 16 12 

Experiment  3 10 8 10 

Experiment  4 11 9 7 

 

2.2. Dry-down experimental design 

2.2.1. Experimental protocol 

I have grown plants for 5 weeks in the greenhouse then, re-potted them in the weighed 

pots filled with the initial soil mixture and transferred them to the growth chamber 

under the growth conditions mentioned above. Soil water content (SWC) was first 

adjusted to 60% of soil moisture.  

During the two weeks of acclimation in the growth chamber, I kept the plants growing 

under 60% of soil moisture. Then, I stopped the watering until the appearance of first 

symptoms of wilting. Two days after wilting, I re-watered the plants and after one to 

two weeks, I scored survival and symptoms of damage. Phenotyping was conducted 

from the first day of water withdrawal until the wilting day.  

Four independent biological experiments were performed. I discarded any plant that 

was not healthy and vigorously growing at the start of the experiment. Focusing on 

initially healthy plants thus resulted in slight differences in the number of replicates 

and/or genotypes.  
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The two first trials were used for phenotypic characterization and the last ones for 

sampling leaf material for RNA and metabolite extraction. In the two last ones, plants 

were re-watered on the day of wilting to allow collecting leaf material after recovery. 

To minimize variation due to the circadian rhythm, leaf material was sampled at the 

same hour of the day (at midday which corresponds to 4 hours after the light is 

switched on). 

Details of the measured phenotypes in each of the biological trials can be found in the 

Suppl. Table S2. 

2.2.2. Monitoring of soil moisture 

Soil moisture was quantified every day by monitoring pot weight with a precision 

scale by KERN & SOHN GmbH, with an accuracy of 0.01 g. To calculate the initial soil 

moisture (X0), several pots were fully dried down in oven to estimate the weight of dry 

soil in the initial soil mixture (X0) and subsequently saturated with water to determine 

the weight of 100% wet soil (Xf). The percentage of soil moisture at a given time point 

(Xt) was calculated as [(Xt - X0) / (Xf - X0)] × 100. The standard deviation (SD) was 

calculated for the pots used to determine the soil moisture based on the measured 

weight. In figure 2, the soil moisture in function of weight is shown for the four 

biological trials. The standard deviation is relatively very low, this is a good indicator 

for the good quality of the control of soil moisture. 
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Figure 2: Soil moisture ~ f (weight) for the four biological replicates of the dry-down 

experiments in order A; B; C and D. The shaded ribbon represents the SD on 40 pots. 

2.3. Phenotypic trait measurements 

2.3.1. Phenotypic differences between species under well-watered conditions 

Three phenotypes were measured on separate replicate cuttings of nine accessions of 

A. halleri and A. lyrata: stomatal density, stomatal length and carbon isotope 

discrimination (δ13C). These replicate cuttings were maintained in the greenhouse 

under well-watered conditions and were not used for the dry-down experiments. 

2.3.1.1. Stomatal density and length  

 I used an optical microscope to quantify the stomatal density per mm² and the stomata 

length (µm) in fully-developed leaves following the protocol described by Paccard et 

al., (2014). One leaf per plant and five spots per leaf were measured for 5 replicates of 

nine genotypes per species. I used a nail varnish to polish a portion of the abaxial leaf 

surface. The nail polish footprint was removed with clear tape and fixed to a 
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microscope slide for counting the number of stomata per mm-² and measuring the 

average distance between the guard cell junctions (µm) as shown in figure 3. 

 

Figure 3: Print of stomata on microscope slide observed with an optical microscope 

(x100). Red arrows show an example of the measured distance between the guard cell 

junctions. 

2.3.1.2. Carbone isotope discrimination (δ13C) 

I quantified the δ13C in one fully developed leaf for 4 replicates of the same nine 

genotypes in each species. Leaf samples were dried at 65°C for 7 days and 

homogenized. Isotope analysis was conducted on the ISOTOPE cube elemental 

analyzer coupled to an Isoprime 100 isotope ratio mass spectrometer (both from 

Elementar, Hanau, Germany) according to Gowik et al., (2011). The carbon isotope 

ratio is expressed as ‰ against the Vienna Pee Dee Belemnite (VPDB) standard. 
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2.3.2. Phenotypic variation following soil dry-down 

2.3.2.1. Wilting 

Wilting phenotypes consist in symptoms observed in leaves of stressed plants when 

the turgor pressure in the non-lignified plant cells falls and leaves lose their turgidity. 

Wilting symptoms were characterized for each species. Day of wilting were scored as 

well as soil moisture at wilting. 

2.3.2.2. Desiccation rate 

To compare the desiccation rate which represents the speed of water loss over time 

between species, pots were weighed every day starting from the day of water 

withdrawal until the day of wilting. The rate of soil water loss was calculated for each 

pot over the first 7 days after water withdrawal. 

2.3.2.3. Rosette leaf area 

Plants were pictured every day from the beginning of water withdrawal until plant 

recovery. These pictures served to measure the rosette leaf area after being treated 

using GIMP (Figure 4). Rosette leaf area was measured at the beginning of water 

withdrawal and after recovery. It was measured the open source software ImageJ 

(Version 1.51.K) and its Rosette Tracker plugin originally designed to measure A. thaliana 

growth by counting pixels and converting them into mm² (Vylder et al., 2012). 

 

Figure 4: Example of original plant pictures (A) treated by GIMP (B) to be used in 

Rosette Tracker. 

2.3.2.4. Leaf thickness 

A medium size leaf from each plant was marked with ink making sure that the same 

leaf is used for measurements. Every second day, thickness of the middle of leaf lamina 
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was measured using a digital ruler (HOLEX, Hoffmann Group, Knoxville, TN, USA) 

with an accuracy of 0.03 mm. The measurements served to calculate the relative water 

loss in leaves before wilting (equivalent to the ratio of leaf thickness on day 2 vs. day 

7 before wilting). 

Both rosette leaf area and leaf thickness were measured only in the second biological 

trial of the drying-down experiment. 

2.3.2.5. Photosynthesis activity 

Efficiency of the photosynthetic light reaction was measured by pulse amplitude 

modulation (PAM) fluorometry (Schreiber et al., 1986) using the IMAGING-PAM-

Series (M-Series-Maxi version, Heinz Walz GmbH, Effeltrich, Germany). In order to 

gain information on the intactness of photosystem II (PSII) and hence its potential 

photosynthetic capacity, the maximum quantum efficiency of open PSII reaction 

centers (Fv:Fm, i.e. the ratio of variable to maximum chlorophyll a fluorescence) was 

determined (Genty et al., 1989; Maxwell and Johnson, 2000). Intact and non-stressed 

plants usually show an Fv:Fm ratio of around 0.8. Before the application of a saturating 

light flash (duration 0.8 s), plants were dark-adapted for 30 min. PAM measurements 

were performed every three days, because it requires a 24 hours resting time between 

measurements (Porcar-Castell et al., 2014; Maxwell and Johnson, 2000) 

PAM measurements provide also other parameters such as quantum yield of 

photosystem II, electron transport rate and non-photochemical quenching. The 

Quantum yield efficiency of PSII (also called Genty parameter Y (PSII)) reflects the 

photochemical part of fluorescence quenching.  It measures the proportion of light 

absorbed by PSII that is used in photochemistry. As such, it can give a measure of the 

rate of linear electron transport and so indicates the overall photosynthesis. Next to 

the maximum quantum efficiency of PSII, I used the Genty parameter in my data 

analysis to evaluate the photosynthesis efficiency at wilting and compared to the initial 

photosynthesis (measured at 60% of soil moisture).  
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Photosynthesis efficiency was measured in the first biological trial of the drying-down 

experiment. 

2.3.2.6. Survival rate 

Survivors corresponds to plants that developed new leaves during the recovery phase. 

Survival rate were scored on average 2 weeks after re-watering. 

2.3.2.7. Number of days of tolerated wilting 

The number of days of tolerated wilting was scored on plants that survived the first 

dry-down experiment. For this, plants that have survived the wilting were dried down 

a second time until wilting and re-watered after 3, 4, 5 or 6 d of wilting. 

2.3.2.8. Drought damage rate 

After a period of drought stress, plant leaves are damaged. Quantifying leaf damage 

could be an interesting trait to compare the impact of drought on survivors between 

the three species. 

Using plant pictures taken at the beginning of water withdrawal and during the 

recovery phase, the damage caused by wilting was quantified visually on a damage 

severity scale from 1 to 5, reflecting the percentage of damaged leaf area, leaf color and 

leaf strength. 

2.4. Statistical analysis of the phenotypic data 

All plots were created using the CRAN-package ggplot2 (Wickham, 2009). I used 

generalized linear models and multiple comparison tests using the Simultaneous 

Inference in General Parametric Models package named multcomp and Tukey’s Honestly 

Significant Difference test (Tukey HSD). For each phenotype, I ran several models; I 

tested the block effect and as I did not detect any block effect for the different measured 

traits, I removed it from my models. Following are the different tested models, and 

later in results part, I will mention which was the best model:   
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(M1) tests the genotype nested within species effect  

Yijk =  + αi species + βij (species i genotype j) + ijk  

(M2) tests only the species effect when the genotype effect is not significant 

 Yij + i species i ij 

(M3) tests the interaction between species and time effect  

Yijk + αi species i + βj time j + γ ij (species i time j) ijk 

(M4) tests the effect of interaction between species and the cofactor of interest  

Yijk + i species i + βj cofactor j + γij (species j cofactor j) ijk 

  Where:  

Y: quantitative dependent variable e.g. measured phenotypic trait ; µ : is the overall 

mean; andregression coefficientspecies; genotype; time; cofactor (e.g. initial 

rosette size, desiccation rate, initial leaf thickness, damage scores, days after wilting 

etc…) : independent variables with the different levels i ;j  and k; prediction error . 

Models always included block as factor and/or time if a rate was to be analyzed. I 

performed an ANOVA using Fisher-test (or Chi test for the binomial distribution of 

error) to identify the best model (P value ≤ 0.05). Different error distributions were 

specified, depending on the phenotypic trait. A negative binomial was used for 

number of days until wilting; soil moisture; initial rosette area; initial leaf thickness; 

damage scores; relative leaf water loss; stomata density and stomata length. A 

Gaussian was used for the desiccation rate and 13C, a quasi-poisson for the 

photosynthesis activity and quasi binomial for survival rate. 

To estimate the maximum Y (PSII), I fitted a logistic curve to the data of the quantum 

yield of PSII using this equation: 

𝑑

1 + 𝑒𝑥𝑝 (𝑏 ∗ (𝑙𝑜𝑔(𝑥) − 𝑙𝑜𝑔(𝑒)))
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Parameters of the equation are: the upper d; the slope b and the inflexion point e. These 

parameters are the output of the model. To find out which parameter explains better 

the curves, I did a multivariate analysis of variance (MANOVA) on this model: 

(Slope, inflection point, upper) ~ Species / genotypes * soil moisture + block. 

An example of the fitted curve of the measured quantum yield of PSII is shown in 

figure 5 for one measured A. halleri plant. 

 

Figure 5: Raw data as well as fitted curve of the quantum yield of PSII measured in 30 

min dark-adapted A. halleri plant (hal2.2 genotype). Time of measurement is around 

five minutes. 

2.5. Analysis of transcriptome variation during dry-down 

2.5.1. RNA extraction and sequencing 

To quantify transcript abundance during drought stress in representative genotypes 

of each of the A. halleri and A. lyrata species, I used the third biological replicate of the 

drying-down experiment to sample leaf material for RNA extraction. Three to four 

young leaves of ‘hal2.2’ and ‘Plech61.2a’, typical accessions of A. halleri and A. lyrata, 

respectively, were sampled from three replicate individuals at three time points: (1) 

before water withdrawal (soil moisture around 60 %); (2) before wilting symptoms 
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appeared (20–25 % soil moisture); and (3) leaves formed during the recovery phase 

(10–15 days after re-watering). These two accessions are representative of the 

phenotypic diversity observed in the dry-down experiment. Leaves were sampled 

using forceps, quick frozen in liquid nitrogen and stored at -80°C. 

RNA extraction was performed using the PureLink™ RNA Ambion Mini Kit 

(Thermofisher, Darmstadt, Germany). RNA concentration was initially checked with 

NanoDrop 2000c (Thermo Scientific). Then, the RNA quality and quantity were checked 

by an Agilent 2100 bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) using RNA 

nano chips.  

RNA of 18 leaf samples was sequenced on an Illumina HiSeq4000 by the Cologne 

Center for Genomics. Raw sequence data are available in the Sequence Read Archive 

(SRA) database under the accession number: SRP150056. 

2.5.2. RNA seq. data analysis 

For RNA seq. data analysis, I followed the pipeline developed by Fei He, a post-doc in 

our group. The different steps of data analysis are shown in Figure 6.  
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Figure 6: Pipeline used for RNA seq. data analysis. 

As first step, I used the fastx-tool-kits from the FastQC package (V0.11.4) for raw 

sequence quality trimming and filtering following He et al. (2016). I removed the low 

quality nucleotides from the 3’ ends of the sequences using 20 as a phred score 

threshold (t) and 50 as minimum length (l). Sequences were reverse complemented 

using fastx_reverse_complement to cut the other end as I did for the 3’ end. Reads with 

<90 % bases above the quality threshold and paired-end reads with a single valid end 

were discarded.  

For mapping the trimmed and filtered reads to the A. lyrata reference genome V1 (Hu 

et al., 2011), I used an unspliced read mapper, which is used for genomic DNA, (bwa 

version 0.7.15) in order to check for DNA contamination in my samples. After bwa 

mapping, I used the samtools (version 1.3.1) to convert files from .sam to .bam format. 

Then, I used the Integrative genomic viewer (IGV version 2.3.92) which will show 

whether reads map to introns or not. When reads map to introns, it means that the 

RNA is still immature and when reads map to the intergenic regions (between two 
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genes), it might be a DNA contamination or repeated mapped reads. I went through 

the different samples (18 samples) to check for DNA contamination and found the 

same patterns in the same regions (intergenic regions) for different A. halleri samples 

and A. lyrata too, which cannot be a DNA contamination. For better check and 

confirmation of non-DNA contamination in my samples, I used bedtools (v2.25.0) to 

count the number of reads that mapped to genic vs. intergenic regions (Figure7). 

 

Figure 7:  Summary of read mapping to the A. lyrata reference genome V1 using the 

unspliced read mapper bwa. Percentage of reads mapped to the genic vs. intergenic 

regions for each sample. Samples called ‘hal_1_c, hal_2_c, and hal_3_c’ are the three 

replicates of A. halleri plants sampled at 60% of soil moisture; ‘hal_1_t, hal_2_t, and 

hal_3_t’ are the three replicates of A. halleri plants sampled at 20-25% of soil moisture; 

‘hal_1_r, hal_2_r, and hal_3_r’ are the three replicates of A. halleri plants sampled after 

recovery. The same is for A. lyrata samples ‘lyr’. 

After RNA seq. quality check, I used a spliced read mappers STAR (version 2.5.3a) to 

align RNA sequences to the A. lyrata reference genome V1 (Hu et al., 2011). I used the 

software package STAR with standard parameters (Dobin and Gingeras, 2015). 

Alternative transcripts were not considered because the current annotation of the A. 

lyrata genome does not describe alternative transcripts.  
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Transcriptome sequencing yielded in a total of 20 million read pairs per sample, with 

an average read length of 75 bp. I used ‘samtools view -q 10’ to select the unique and 

high quality mapping reads with a probability of correct mapping of 90 %. 

On average, more than 80 % of all reads and around 20 % of unmapped and multiple 

mapped reads were uniquely mapped (Figure 8). R scripts were used to verify that 

reads covered the whole length of genes (and to confirm that I had no signs of RNA 

degradation) and for counting the number of reads mapped to each gene. 

 

Figure 8: Summary of short read mapping to the A. lyrata reference genome V1. 

Percentage of non-mapped reads at bottom, above that uniquely mapped, above that 

multiple mapped for each sample. Samples called ‘hal_1_c, hal_2_c, and hal_3_c’ are 

the three replicates of A. halleri plants sampled at 60% of soil moisture; ‘hal_1_t, 

hal_2_t, and hal_3_t’ are the three replicates of A. halleri plants sampled at 20-25% of 

soil moisture; ‘hal_1_r, hal_2_r, and hal_3_r’ are the three replicates of A. halleri plants 

sampled after recovery. The same is for A. lyrata samples ‘lyr’. 
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2.5.3. Differentially expressed gene Analysis 

In order to find genes that were differentially expressed between the different 

conditions, I used the DESeq2 Bioconductor package from R (Bioconductor version: 

Release 3.5) (Love et al., 2014). I used the Wald test to compute P values and the 

following design: 

~ species/sample point 

With two levels for the factor species (A. halleri and A. lyrata) and three levels for the 

factor sample point (leaves sampled at 60 % of soil moisture, at 20–25 % of soil moisture 

and after recovery).  

Genes with a P value <0.1 after Benjamini–Hochberg correction for false discovery rate 

(FDR) and log2-fold change ≤ –0.5 or ≥0.5 were considered as differentially expressed. 

2.5.4. Gene ontology analysis 

In order to identify enriched Gene Ontology (GO) terms, I performed a functional 

enrichments among differentially expressed genes using the org.At.tair.db data 

package of Bioconductor, and the rank test of the TopGO package (Alexa and 

Rahnenfuhrer, 2010). The elim algorithm followed by a Fisher test were used with a 

cut-off of 0.01. As background, I used all expressed genes (around 12 220 genes). 

I analyzed the enrichments separately for: (1) all responsive genes; (2) downregulated 

genes; and (3) upregulated genes. Then, I used the hyper-geometric test to test for the 

significance of gene overlap with a set of stress-responsive genes published by Matsui 

et al., (2008). 

2.6. Analysis of metabolic variation during dry-down 

 2.6.1. Metabolite extraction  

The forth trial of the drying-down experiment was used for sampling leaf material for 

metabolite extraction. 8 to 11 genotypes per species and 5 replicates per genotype were 

used for each time point (Table 1). In total, 27 genotypes x 5 replicates = 135 plants 
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were distributed in five complete randomized blocks and used for sampling leaf 

material. Sampling was done before the water withdrawal (at 60% of soil moisture), 

then, at wilting (between 10 and 20% of soil moisture), and finally during recovery 

phase where the newly formed leaves were collected. I froze the collected fresh leaf 

material in liquid Nitrogen, grounded with a homogenizer (Precellys) and lyophilized 

over night to dry the material. For each sample, 2 to 4 mg of dry material were 

aliquoted in 1.5 ml Eppendorf tubes and metabolites were extracted following the 

protocol of Lunn et al., (2006) which was adapted by Dr. Tabea Mettler-Altmann 

(University of Düsseldorf). Briefly, each sample was quenched by adding 350 µl of ice-

cold chloroform/methanol (3:7, v/v). The samples were mixed by vortexing and 

incubated at -20 °C for 30 min. Polar metabolites were extracted from the chloroform 

phase by addition of 560 µl ice-cold MilliQ water. The aqueous phase was collected 

and combined after two repititions of centrifugation at maximum speed for 2 min. The 

extract was evaporated to dryness using a centrifugal vacuum dryer at 20 °C and 

redissolved in 250 μl of water. 

2.6.2. Gas chromatography–mass spectrometry (GC-MS)  

The extracted metabolites were analyzed according to Fiehn (2007) using a 7200 GC-

QTOF (Agilent Technologies). Peak integration was done using the MassHunter 

Software (Agilent Technologies). For relative signal intensities quantification, all 

metabolite peak areas were normalized to the corresponding dry weight (DW) used 

for extraction and the peak area of the internal standard (ISTD) ribitol that was added 

prior to extraction. 

2.6.3. Data analysis and statistics 

The raw standardized data were plotted using the R package ggplot2.  

I generated a correlation matrix using pearson correlation and looked for groups of 

metabolites that cluster together in order to separate them into metabolic pathways. I 
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used the corrplot R function from the corrplot package to visualize the correlation 

between metabolites.  

To identify to which metabolic pathways the extracted compounds belong to, I 

mapped the 38 extracted metabolites to the biological pathways using Arabidopsis 

thaliana pathway libraries involved in the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) online database. To test for significant overlap, I have run a hypergeometric 

test using the online MetaboAnalyst 4.0 server (http:// www.metaboanalyst.ca ). 

To compare constitutive metabolite abundance between species, I calculated the 

proportion of each metabolite to the total abundance of extracted metabolites 

following this equation:  

Standardized amount of the given compound / sum of all compounds for the given species x100  

For further statistical analysis, I log transformed the relative standardized amounts of 

metabolites (standardized to dry weight and ribitol control) to make sure that these 

amounts followed a mulvariate normal distribution and computed a MANOVA on 

this model: 

Metabolite levels ~ Species * stress-levels 

Then, to examine separately each extracted metabolite and to determine the 

significances of the species effect and the interaction species by stress-levels effect, I 

performed an analysis of variance (ANOVA) taking into account the variance that 

might be explained by genotype effect. For that reason, genotypes were defined as 

random effect in my model. I used for that purpose, the generalized linear mixed 

model from the lme4 R package and the statistical model I tested is: 

Relative abundance of metabolites ~ Species * stress-levels + (1| Genotypes / replicates) 

For the error distribution, I used a negative binomial and I determined the parameter 

theta by the glm.nb function in the MASS package. I also tested the genotype effect 

http://www.metaboanalyst.ca/
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separately using an ANOVA on two generalized mixed linear model, the first model 

takes in account genotypes and the second contains only the technical replicates: 

Model1: metabolite levels ~ species/genotypes * conditions + (1 | Technical replicates) 

Model2: metabolite levels ~ species * conditions + (1 | Technical replicates) 

Then, I generated classic volcano plots to identify the differentially accumulated 

metabolites in response to soil water depletion and recovery. The volcano plot consists 

in presenting P values from t-test on the Y-axis and the fold change (FC) values in the 

X-axis. The t-test and P values are based on mean abundance per genotypes as unit of 

replication. I adjusted P values using Bonferroni correction for multiple comparisons 

(Li, 2012; Kumar et al., 2018). The fold change was calculated for each species under 

drought stress vs. control conditions and for the recovery vs. control conditions. 

Finally, I run a principle component analysis (PCA) to reduce the dimensionality of 

the data set and visualize samples grouping. To run the PCA, I used the R basic stat 

package function prcomp and for results visualization, I used the factoextra R package. 
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3. Results 

3.1. Phenotypic data analysis results 

3.1.1. Interspecific differences in stomata density and length but not in water-

use efficiency  

The sister species A. lyrata and A. halleri display differences in phenotypic and 

physiological traits as they have evolved in different ecological niches. That is why I 

started by characterizing the physiological constitutive differences between them 

under well-watered conditions to evaluate whether these differences can influence 

their potential to face up with limiting soil water content (SWC). Variation in stomata 

density on the leaf surface was explained by both within and between species variance 

(M1: F18, 469 = 36.15, P value < 2e-16; F1, 487 = 256.59, P value < 2.2e-16, respectively, Figure 

9A). In A. lyrata stomatal density on the abaxial leaf surface was globally lower than in 

A. halleri (on average 80 and 150 stomata/mm² in A. lyrata and A. halleri, respectively). 

I also observed that the stomatal density correlates negatively with stomatal length as 

the stomata in A. lyrata are larger compared to A. halleri (P value< 2e-16, Figure 10). This 

negative correlation between stomata size and density was also observed in A. thaliana, 

and the stomatal density in A. thaliana varies from 87 to 204 stomata/mm² (Dittberner 

et al., 2018). Genetic variation in stomata length was significant both within and 

between species (M1: F16, 1370 = 53.68, P value < 2e-16; F1, 1386 = 3801.39, P value < 2.2e-16, 

respectively). These differences however did not coincide with differences in carbone 

isotope discrimination (δ13C), a commonly used proxy for water-use efficiency (WUE, 

Farquhar and Richards, 1984; Farquhar et al. 1989; Lambers et al. 1998; Dawson et al. 

2002). In non-stressed conditions, leaf δ13C showed significant genetic variation within 

species but no significant differences between A. halleri and A. lyrata (M1: F16, 54 = 7.440, 

P value = 9.76e-09, and F1, 70 = 0.005, P value = 0.969, respectively Figure 9B). 
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Figure 9: Stomatal density and δ13C measured in Arabidopsis halleri and A. lyrata grown 

under well-watered conditions. (A) Abaxial stomatal density. (B) δ13C measured for 

the same plants. Violin plots with the same letter are not significantly different 

according to Tukey’s HSD (P value <0.05). 

 

Figure 10: Stomata length (µm) measured in Arabidopsis lyrata and A. halleri under 

well-water conditions. Tukey’s HSD (P value <0.05) test fot significance. 
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3.1.2. Wilting-related phenotypes revealed different drought response 

strategies 

After the two weeks of plants acclimation in the growth chamber, some of the 

genotypes showed symptoms of weakness and illness under the control conditions. 

So, before starting with the water withdrawal, I discarded those plants and I only kept 

those displaying strong growth vigor. As a consequence, the set of genotypes used for 

each species in the two first experimental trials, which were used for phenotyping, is 

overlapping but not identical (total number of genotypes kept in the first and second 

trials was 51 and 36 respectively).  

After few to several days of water withholding, plants started to show wilting 

symptoms. I observed that the day of first appearance of these symptoms differed 

significantly between and within species in the first trial (M1: F2, 214 = 316.48, P value < 

2.2e-16, Figure 11A, F48, 166 = 3.51, P value = 1.159e-09, for species and genotypes within 

species, respectively). The same result was observed in the second trial (M1: F2, 201 = 

115.27, P value < 2.2e-16, F33, 168 = 1.97, P value = 0.0029, Suppl. Figure S1A).  

I also recorded the day of appearance of wilting symptoms and found that on average, 

A. halleri genotypes wilted around 5 to 7 days after water withdrawal, A. lyrata 

genotypes after 12 days and A. thaliana genotypes after 18 days (Suppl. Stat. 1). 

Differences in the timing of wilting did not exactly coincide with SWC differences. At 

wilting, A. halleri and A. lyrata showed similar soil moisture (18-20%), whereas A. 

thaliana only showed wilting symptomes after soil moisture dropped below 10% 

(Figure 11B, Suppl. Stat. 2). Here again, these effects were consistent across trials 

(Suppl. Figure S1B). Significant differences were detected between species for soil 

moisture at wilting (M1: F2, 214 = 44.27, P value = 3.982e-16, F2, 201 = 181.60, P value < 2.2e-16 

for the first and second trial respectively), and within species (M1: F48, 166 = 1.52, P value 

= 0.02, F33, 168 = 2.23, P value = 0.00049 for the first and second trial respectively). 
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Figure 11: Wilting day and soil moisture at wilting for Arabidopsis halleri, A. lyrata 

and A. thaliana. (A) Number of days between initiation of soil dry-down treatment and 

wilting. (B) Soil moisture at wilting. Letters above violin plots indicate significant 

differences between species (Tukey’s HSD test, P value <0.05). Results are shown for 

the first biological experiment. 

I also characterized the wilting symptoms in the three species as I observed that they 

displayed different phenotypic changes when the soil moisture decreases. In fact, In 

A. thaliana, leaves became pale and curled laterally, in A. lyrata, they curled apically 

and in A. halleri leaf changed to darker green and collapsed (Figure 12). 
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Figure 12: Typical phenotypes of wilting observed in Arabidopsis halleri, A. lyrata and 

A. thaliana. Plant morphology before the water withdrawal treatment (top row) and at 

wilting (bottom row) for A. halleri (A, D), A. lyrata (B, E) and A. thaliana (C, F). All plants 

were grown in 7 cm pots. One single plant was grown in each 7 cm pot and no 

vegetative propagation had occurred at the time the experiment was performed. 

3.1.3. In A. halleri, plants displayed comparatively higher desiccation rate 

I evaluated the rate of soil water loss per day for each species to understand why A. 

halleri plants wilted around one week earlier than A. lyrata but at a similar soil 

moisture. I detected a significant interaction between species and time on soil moisture 

before wilting which showed that soil moisture decreased faster in pots where A. halleri 

genotypes grew (Figure 13A, M3: F12, 1194 = 97.026, P value < 2.2e-16). A. halleri thus 

consumed water significantly faster than A. thaliana and A. lyrata. Here again, this 

observation was replicated for the second biological trial (M3: F4, 1224 = 761.07, P value < 

2.2e-16, Figure 13B) although the slight difference in soil moisture reached after seven 

days of water withdrawal. This difference might be explained by the difference in the 
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used genotypes or the slight variation of conditions in the growth chamber between 

the two independent biological trials.  

 

Figure 13: Soil water content during the first 7 days after water withdrawal. Decrease 

in soil water content after water withdrawal in the first (A) and the second (B) 

biological experiments for Arabidopsis halleri, A. lyrata, and A. thaliana. Shaded ribbons 

represent the standard deviation. P values show the significant interaction between 

time and species effect on the water content of soil. 

I also measured the initial plant size and estimated the desiccation rate in order to 

examine the impact of plant size on the rate of soil water loss.  The desiccation rate 

consists in the rate of soil water loss per day over the 7 days following the water 

withdrawal in the second trial of the dry-down experiment. Results showed that A. 

lyrata and A. halleri genotypes started with similar rosette size, but A. thaliana rosettes 

were initially significantly larger (M2: F2, 173 = 10.85, P value = 3.65e-05, Figure 14, Suppl. 

Stat. 3). 
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Figure 14:  Initial rosette area (mm², at 60% of soil moisture). Data were collected in 

the second biological trial of the drying-down experiment for Arabidopsis halleri, A. 

lyrata, and A. thaliana. Boxplots with the same letter are not significantly different 

(Tukey’s HSD, P value <0.05). 

Statistical analysis showed significant effect of the initial rosette area on the desiccation 

rate (M4 F1, 170 = 16.10, P value = 8.97e-05) but no significant interaction between initial 

rosette area and species on desiccation rate (M4: F2,170 = 1.89, P value = 0.15): Therefore, 

the consumption of soil water does not scale with plant size even though significant 

correlations between desiccation rate and initial rosette size were detected in A. halleri, 

less in A. thaliana but not in A. lyrata (Figure 15). In other terms, A. thaliana which 

started with bigger plants did not consume water faster than the other two species and 

A. halleri which has the higher desiccation rate did not start with bigger plants. These 

results suggest different strategies employed by the species in response to water 

depletion.  
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Figure 15: Correlations between desiccation rate and initial rosette leaf area (at 60 % of 

soil moisture) [Pearson correlation coefficients and P values for: Arabidopsis thaliana (r 

= 0.32, P = 0.013); A. lyrata (r = 0.14, P = 0.22) and A. halleri (r = 0.48, P = 0.00072). Results 

are shown for the second biological experiment. Lines represent a linear regression 

smoothing where the shaded ribbons represent the standard error. 

3.1.4. The relative leaf water loss before wilting is comparatively lower in A. 

lyrata 

In order to understand how plants are using the water absorbed from soil and whether 

they lose it directly via evapotranspiration or they keep it inside their cells and to 

understand how it is related to the desiccation rate, I estimated changes in leaf water 

content during the water limited phase by monitoring leaf thickness (Lambers et al. 

1998) during soil dry-down phase in the second biological trial.  

Initial leaf thickness was significantly higher in A. lyrata plants compared to A. thaliana 

and A. halleri (M1: F2, 140 = 9.38, P value = 0.00015, Figure 16, Suppl. Stat. 4). I also detected 

a significant genotype effect within A. lyrata on the initial leaf thickness (F33, 140 = 1.642, 

P value = 0.02548). 
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Figure 16: Initial leaf thickness measured (mm) at 60% of soil moisture (before water 

withdrawal). Data were collected in the second biological experiment for Arabidopsis 

halleri, A. lyrata, and A. thaliana. Box plots with the same letter are not significantly 

different (Tukey’s HSD, P value <0.05). 

During the water limited phase, I observed that the leaf thickness decreased over time 

as it is shown in Figure 17A. To compare the relative loss of leaf water content before 

wilting, I calculated the ratio of leaf thickness 2 days before wilting by leaf thickness 7 

days before wilting (Figure 17B). Results show that A. thaliana and A. halleri, lost similar 

amounts of water in the days preceding wilting. There was no significant genotype 

effect on the decrease of leaf thickness in the 7 days before wilting (M1: F33, 138 = 0.9401, 

P value = 0.5663) but the relative decrease before wilting was significantly higher in A. 

thaliana and A. halleri, compared to A. lyrata (M1: F2,171 = 6.628, P value = 0.001688, Figure 

17B, Suppl. Stat. 5). This pattern indicates that leaf water content in the days preceding 

the onset of wilting decreased significantly more slowly in A. lyrata plants compared 

to A. halleri and A. thaliana. This suggests that wilting A. lyrata leaves experience a more 

progressive loss of turgor. 
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Figure 17: Decrease of leaf thickness over time during the 7 days before wilting (A) it 

is represented as the percentage of leaf thickness variation over time to the initial 

values. (B) Relative leaf water loss 7 d before wilting in Arabidopsis halleri, A. lyrata and 

A. thaliana. This is equivalent to the ratio of leaf thickness at day 2 vs. day 7 before 

wilting. Boxplots with the same letter are not significantly different (Tukey’s HSD, P 

value <0.05). Results are shown for the second biological experiment.   

The correlation between leaf thickness and soil desiccation rate was significant only 

for A. halleri (Figure 18), which suggests that in A. halleri the water absorbed from soil 

is directly lost by leaves. This observation is confirmed by the statistical model testing 

the effect of soil desiccation rate by species effect on the relative loss of leaf water 

content before wilting, where I detected significant interaction effect of soil desiccation 

rate and species (M4, F2, 818 = 11.15, P value = 1.667e-05) on leaf thickness change over 

time only in A. halleri (Suppl. Stat. 6). 
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Figure 18: Correlation between the relative water loss in leaves before wilting 

(equivalent to the ratio of leaf thickness on day 2 vs. day 7 before wilting) and the 

desiccation rate [Pearson correlation coefficients and P values for: A. thaliana (r = 0.018, 

P = 0.732); A. lyrata (r = 0.023, P = 0.692) and A. halleri (r = 0.39, P = 4.282.10-08)]. Results 

are shown for the second biological experiment. Lines represent a linear regression 

smoothing where the shaded ribbons represent the standard error. 

I was also interested in analyzing the decrease of leaf thickness in function of soil 

moisture before wilting, to find out which of the three species is able to hold higher 

amount of water in its leaves when soil moisture decreases. This analysis showed that 

A. thaliana leaves were able to hold higher amounts of water at lower soil moisture, 

compared to A. lyrata and A. halleri (Figure 19) i.e. at 20% of soil moisture, A. thaliana 

loses around12% of its initial leaf thickness, wherewas A. lyrata and A. halleri lose ~ 

37% and 50% respectively. This finding indicates that this species can effectively avoid 

the effects of drought by maintaining a comparatively higher water content in its 

leaves. 
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Figure 19: Leaf thickness in response to decrease of soil moisture for Arabidopsis 

thaliana, A. halleri and A. lyrata. Results were collected in the second biological 

experiment. Shaded ribbons represent the standard deviation. Filled triangles 

correspond to the average wilting soil moisture for the different species. 

3.1.5. High photosynthesis efficiency in wilted A. halleri and A. lyrata plants  

Photosynthesis efficiency was measured to evaluate the physiological status of plants 

at wilting. I used the Fv:Fm ratio as an indicator for the potential capacity of non-cyclic 

electron flow in the photosynthetic light reaction. Despite the collapsed or rolled leaves 

observed at wilting in A. halleri and A. lyrata, respectively, both still had a high 

photosynthetic capacity: on average 83 and 90 %, respectively (Figure 20A, Suppl. Stat. 

7a). In contrast, the photosynthetic capacity at wilting had significantly dropped in 

wilted A. thaliana rosettes.  

I also evaluated the quantum yield of PSII, which measures the proportion of light 

absorbed by photosystem II that is used in photochemistry and so indicates overall 

photosynthesis. The maximum of this parameter was estimated by the “upper” 

parameter predicted by the model used to fit the YPSII curve (see Material and 

Methods). I used the “upper” parameter based on results of analysis of variance on the 

output of the MANOVA results (Suppl. Stat.8). Similar to the findings of the Fv:Fm 
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ratio: both A. lyrata and A. halleri still performed photosynthesis efficiently: their 

photosynthesis efficiency was on average 75 and 80% of the efficiency before wilting 

for A. halleri and A. lyrata respectively. By contrast, photosynthesis activity had 

significantly dropped in wilted A. thaliana rosettes (Figure 20B, Suppl. Stat. 7b). 

 

Figure 20: Photosynthesis efficiency at wilting. (A) Percentage of maximum 

photosystem II efficiencies (Fv:Fm ratio) at wilting compared to the initial efficiencies. 

The average initial Fv:Fm ratios and the standard deviation for A. halleri, A lyrata, and 

A. thaliana were: 0.735 ± 0.11; 0.76 ± 0.052; 0.77 ± 0.008 respectively. (B) Percentage of 

the quantum yield of photosystem II. Violin plots with the same letter are not 

significantly different according to Tukey’s HSD (P value <0.05). Results are shown for 

the first biological experiment. 

3.1.6. A. thaliana has the lowest survival rate 

I Re-watered each plant individually, 2 days after observing the wilting symptoms. 

Two to three weeks after re-watering, I scored survival.  

I observed that the proportion of survivors was significantly lower in A. thaliana 

compared to A. halleri and A. lyrata (9%; 85% and 84%, respectively, Figure 21, Suppl. 

Stat. 9). These differences were consistent across the two trials (Suppl. Figure S2). 



 

46 

 

3.1.7. A. lyrata survived longer wilting-period than A. halleri 

To evaluate and compare the tolerance to wilting in A. lyrata and A. halleri, I ran an 

additional trial examining whether extending the time from wilting to re-watering 

impacted survival.  

I detected a significant interaction effect of species and re-watering duration on 

survival (M4: Chi-Squared = 234, DF = 1, DF residuals = 252, P value = 1.615e-04). I 

observed that 70-85% of A. lyrata plants survived 3 to 6 day-long wilting periods 

(Figure 21). In comparison, this percentage dropped to 10% for A. halleri plants that 

had endured 5 days of wilting without re-watering and this was significantly different 

between species (Figure 21, M2:  F1, 26 = 20.681, P value = 0.0001109). These results 

indicate that A. lyrata is more tolerant to wilting than its sister species A. halleri. 

 

Figure 21: Average survival rate after re-watering following 2–6 days of wilting for 

Arabidopsis halleri, A. lyrata and A. thaliana. Results are shown for the first biological 

replicate. Barplots with one asterisk or more are significantly different (Tukey’s HSD, 

P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001). 
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3.1.8. Efficient post-drought recovery in A. lyrata plants  

In order to assess the tolerance to wilting, I compared the damage displayed by plants 

that survived 2 days of wilting in A. lyrata and A. halleri.  

Results showed significant interaction between species and the damage score (M4, F3, 

100 = 2.96, P value = 0.035). In A. lyrata, about 70% of plants showed a very low degree 

of damage in leaves whereas in A. halleri, only 30% of plants had low damage levels 

(Figure 22, F1, 25 = 24.063, P value = 4.761e-05). I did not include A. thaliana in the statistical 

analysis because only 10 from 60 plants survived wilting. These results confirmed that 

A. lyrata tolerates soil dehydration and wilting better than A. halleri. 

 

Figure 22: Damage scored on survivors of 2 d of wilting after resuming growth for 

Arabidopsis halleri, A. lyrata and A. thaliana. Results are shown for the second biological 

experiment. Barplots with one asterisk or more are significantly different (Tukey’s 

HSD, P < 0.1; ***P < 0.001; ns, not significant). 

 



 

48 

 

3.2. Transcriptomic data analysis results 

3.2.1. Transcriptome analysis confirms that A. halleri is more sensitive to low 

SWC 

A. lyrata and A. halleri both wilted at the same SWC but they differed in their survival 

following wilting. In order to gain insight into the molecular changes underpinning 

these differences, I performed a third dry-down experiment to collect leaf material in 

one representative genotype of each of the sister species A. halleri and A. lyrata and 

examined the reaction to stress and recovery at the transcriptome level. 

For each species, I compared transcript abundance at three time points during the dry-

down experiment, i.e., at soil moisture 60%, soil moisture 20-25% and after recovery. 

The two species wilted at around 18% of soil moisture, as observed in the first two 

experiments, i.e., just below the soil moisture level at which leaf material was sampled. 

107 and 976 genes changed expression level at 20-25 vs. 60% soil moisture in A. lyrata 

and A. halleri, respectively (FDR 0.1; fold-change >1.6). Only three genes were 

responsive in both species to the decrease in SWC and this was a random overlap 

(hypergeometric test, P value = 0.993).  

After recovery, 275 A. lyrata genes and 20 A. halleri genes had changed expression level 

compared to 60% SWC (Table 2). Since both species had similarly high survival rates 

upon two days of wilting and because new undamaged leaves were sampled, these 

differences are not due to survival differences. I conclude that A. halleri displayed a 

comparatively sharpened response to low SWC, whereas the transcriptome of A. lyrata 

was comparatively more altered after recovery. 
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Table 2: Number of significantly differentially expressed genes in Arabidopsis halleri 

and A. lyrata during the dry-down experiment at 20% of soil moisture or after recovery 

compared to expression before stress (60% of soil moisture).  

  A. halleri A. lyrata 

20% vs 60% of soil moisture 

Up 253 36 

Down 676 71 

recovery vs 60% of soil moisture 

Up 8 111 

Down 12 156 

 

In a previous study, 2975 and 5445 genes were shown to be responsive to two and 10 

hours of dehydration in A. thaliana respectively (Matsui et al., 2008). These drought-

responsive genes were enriched in all sets of responsive genes identified in my study, 

either in A. halleri or in A. lyrata, at 20% soil moisture or after recovery (Table 3, 

hypergeometric test, maximum p ≤ 8.77E-19). This confirmed that my protocol 

succeeded in activating dehydration responsive genes. 

Table 3: Percentage of differentially expressed genes that overlap with differentially 

expressed genes reported in Matsui et al., (2008) after 2 h (dh2) and 10 h (dh10) of 

dehydration stress (N.S.: not significant). The random expectation of overlap % is 

indicated in bold on the top row.  

  

dh2 

expected: 

up 7.39% 

down 10% 

dh10 

expected: 

up 10% 

down 7.5% 

A. halleri  

20% vs. 60% 

Up (127 

ATG genes) 

27.5%    

P = 1.09E-12 

47.2%   

P = 7.82E-28 
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of soil 

moisture 
Down (385 

ATG genes) 

12.4%   

P = 6.03E-23 

36.3%   

P = 1.17E-59 

A. halleri  

recovery vs. 

60% of soil 

moisture 

Up (6 ATG 

genes) 
0  N.S. 0  N.S. 

Down (7 

ATG genes) 
0  N.S. 

28.5%   

P = 1.20E-02 

A. lyrata  

20% vs. 60% 

of soil 

moisture 

Up (15 ATG 

genes) 

40%   

P = 4.52E-05 

46.6%  

 P = 3.34E-05 

Down (37 

ATG genes) 
5.4%  N. S. 

18.9%   

P = 5.7E-03 

A. lyrata  

recovery vs 

60% of soil 

moisture 

Up (61 ATG 

genes) 

63.9%   

P = 1.06E-30 

54%   

P = 8-77E-19 

Down (90 

ATG genes) 
11.1%  N. S. 

32.2%  P = 

1.63E-12 

             

3.2.2. Different GO categories are regulated in the two species 

Analysis of enrichment in Gene Ontology (GO) categories confirmed that different sets 

of genes were activated in the two species at each sampling stage. In A. halleri many 

genes involved in growth and development were down regulated when SWC 

decreased to 20-25%, (Table 4).  These functions were not enriched in A. lyrata samples 

collected at the same time, instead genes involved in response to water deprivation 

and in ethylene and ABA signaling pathways were up regulated in A. lyrata after 

recovery (Table 4). Several of the GO terms enriched either in A. halleri at 20% SWC or 

in A. lyrata after recovery have already been associated with drought stress. For 

example, GO categories such as isopentenyl diphosphate metabolic process, response 

to water deprivation, hyperosmotic salinity response, photosynthesis light reaction, 

response to chitin, photosystem II assembly, and maltose metabolic process (Table 4) 

were also enriched among genes responding to mild drought stress in A. thaliana, 
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although the direction of the gene expression change was not the same (Des Marais et 

al., 2012). I further observed that genes with altered expression in A. halleri were 

enriched for genes functioning in plastid organization, pentose-phosphate shunt and 

photosystem II assembly. These three GO categories harbor an excess of cis-acting 

changes in the A. halleri lineage in response to dehydration stress (He et al., 2016). 

Table 4: GO Categories Showing a Significant Enrichment (P < 0.01) among 

differentially expressed genes between 20% and 60% of soil moisture and between 

recovery and 60% of soil moisture for Arabidopsis halleri and A. lyrata. 

 GO.ID Term P value Gene 

regulation 

A. halleri 

20% vs 

60% of 

soil 

moisture 

GO:0015979 photosynthesis 0.0011 down 

GO:1901576 organic substance biosynthetic process 0.0013 down 

GO:0044711 single-organism biosynthetic process 0.0014 down 

GO:0051188 cofactor biosynthetic process 0.0023 down 

GO:0008283 cell proliferation 0.0035 down 

GO:0006098 pentose-phosphate shunt 0.0041 down 

GO:0009965 leaf morphogenesis 0.0048 down 

GO:0009657 plastid organization 0.0059 down 

GO:0042254 ribosome biogenesis 0.0059 down 

GO:0006084 acetyl-CoA metabolic process 0.0064 down 

A. lyrata 

recovery 

vs 60% 

of soil 

moisture 

GO:0006098 pentose-phosphate shunt 0.000043 down 

GO:0010200 response to chitin 0.000051 up 

GO:0010207 photosystem II assembly 0.00007 down 

GO:0000023 maltose metabolic process 0.00017 down 

GO:0009873 ethylene-activated signaling pathway 0.0002 up 

GO:0019252 starch biosynthetic process 0.00039 down 

GO:0009612 response to mechanical stimulus 0.0015 up 

GO:0009414 response to water deprivation 0.0029 up 

GO:0042538 hyperosmotic salinity response 0.0043 up 

GO:0051707 response to other organism 0.005 up 

GO:0009657 plastid organization 0.00571 down 
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GO:0050790 regulation of catalytic activity 0.00763 down 

GO:0042742 defense response to bacterium 0.00784 down 

GO:0009738 abscisic acid-activated signaling 

pathway 
0.0086 up 

  

3.3. Metabolic data analysis results  

3.3.1. Correlation between metabolites revealed different metabolic pathways 

In total, the abundance of 38 metabolites was quantified. Seven genotypes for A. lyrata 

and A. thaliana and 9 for A. halleri, with 5 replicates each, were included in this analysis. 

Because equal amounts of DW were used, abundance could be compared across 

genotypes and/or stress-levels. 

All extracted metabolites were mapped to biological pathways using Arabidopsis 

thaliana pathway libraries of the KEGG online database. They were significantly 

enriched in around 20 biological pathways (Table 5). These include pathways of the 

central metabolism, such as citrate cycle, nitrogen metabolism, starch and sucrose 

metabolism, alanine, aspartate and glutamate metabolism, or arginine and proline 

metabolism, as well as secondary metabolism, such as glucosinolates. 

Table 5: Pathway names, total metabolites involved in that pathway (total), 

metabolites accumulated in this study (hits), and false discovery rate (FDR). 

Pathway Name Total Hits FDR 

Alanine, aspartate and glutamate metabolism 22 9 2.0625E-7 

Aminoacyl-tRNA biosynthesis 67 12 5.9083E-6 

Citrate cycle (TCA cycle) 20 6 3.6561E-4 

Galactose metabolism 26 6 0.0014299 

Arginine and proline metabolism 38 6 0.010362 

Valine, leucine and isoleucine biosynthesis 26 5 0.010362 

Glyoxylate and dicarboxylate metabolism 17 4 0.014183 

Glycine, serine and threonine metabolism 30 5 0.014183 

Butanoate metabolism 18 4 0.014183 

Carbon fixation in photosynthetic organisms 21 4 0.02342 

Nitrogen metabolism 15 3 0.066774 
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Starch and sucrose metabolism 30 4 0.0738 

Glucosinolate biosynthesis 54 5 0.12545 

Phenylalanine, tyrosine and tryptophan 

biosynthesis 

21 3 0.12666 

Pyruvate metabolism 21 3 0.12666 

Glutathione metabolism 26 3 0.20176 

Cyanoamino acid metabolism 11 2 0.20176 

Glycerolipid metabolism 13 2 0.26042 

Pantothenate and CoA biosynthesis 14 2 0.28257 

Valine, leucine and isoleucine degradation 34 3 0.32872 

 

Correlation between metabolites (Figure 23) showed that compounds belonging to the 

same pathway are correlated (i.e. amino acids are positively correlated, sugars as well). 

Results of correlations are also showing that compounds can be anti-correlated which 

suggest that the biological pathways controlling metabolite abundance are 

interconnected.  

For the next part of analysis, I classified the 38 extracted metabolites in 10 biological 

pathways following the classification used by Guo et al., (2018). These are: amino acids, 

dicarboxylic acid, GABA shunt, gluconate shunt, glycolysis, Organic acids, 

photorespiration, shikimic pathway, Sugars and Polyols and TCA cycle. 
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Figure 23: Correlogram of Pearson correlation between measured metabolites, in all 

samples. Positive correlations are plotted in blue, negative correlations in red and non-

significant correlations (P value > 0.05) in white. The color band on the right indicates 

the correlation coefficients. The size and intensity of colors are proportional to the 

correlation coefficients. 

3.3.2. Analysis of variance showed significant species by stress-levels effect 

for almost all metabolites 

I started my statistical analysis by a multivariate analysis of variance because the 

extracted metabolites are not independent. Results of the MANOVA show a global i) 

significant species effect, ii) significant stress-levels effect and, iii) significant species 

by stress-levels effect (Table 6). 
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Table 6: Summary statistics of the results of the multivariate analysis of variance on 

the model: metabolites (38 compounds) ~ species * stress-levels. Signif. codes:  0 ‘***’ 

0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 df Pillai approx F Pr(>F) 

Species 2 1.9123 17.225 < 2.2e-16 *** 

stress-levels 2 1.7531    5.6053      5.088e-11 *** 

species * stress-levels 4 2.6549    1.6620     0.035199 * 

To examine separately each dependent variable, I have run an analysis of variance for 

each metabolite in order to answer the following questions: i) does the abundance of 

the metabolite change significantly in response to water depletion (i.e. significant 

stress-levels effect)? ii) do species differ in the metabolite response to water depletion 

(i.e. significant species by stress-levels effect)? 

For almost all metabolites (95%), I detected significant genotype effect (Suppl. Stat. 11). 

Results of the ANOVA on these models are shown in table 7. Around 71% of 

metabolites have a significant species effect, 95% are significantly changing according 

to the stress-levels and only 10% did not show significant species by stress-levels effect. 

Table 7: Summary of the Analysis of variance on the model: relative metabolite 

concentration~ species * conditions + 1| genotypes/replicates. Signif. codes: 0 ‘***’ 0.001 

‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (P values can be found in Suppl. Stat. 10) 

Metabolic pathway metabolite species conditions 
species * 

conditions 

Amino acids 

Alpha-alanine *** *** ** 

Asparagine *** ** N.S. 

Aspartate *** ** * 

Glutamate *** *** *** 

Glycine N.S. *** ** 

Isoleucine . *** *** 

Leucine *** *** *** 

Phenylalanine . *** *** 

Proline N.S. *** *** 

Threonine *** *** * 

Tryptophan *** *** * 
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Valine N.S. *** *** 

Dicarboxylic acid 
Hydroxyglutarate *** *** ** 

Malonate ** *** . 

GABA shunt 
GABA *** * *** 

Putrescine *** *** *** 

Gluconate shunt Gluconate *** *** *** 

Glycolysis 

Fructose N.S. *** * 

Glucose . *** * 

Sucrose *** *** *** 

Organic acids 

Glycerate *** *** N.S. 

Lactate *** * ** 

Maleate *** *** . 

Photorespiration Glycolate *** ** * 

Shikimic pathway Shikimate *** *** * 

Sugars and Polyols 

Glycerol . . *** 

Maltose *** * *** 

Mannitol N.S. * N.S. 

Myoisonitol *** N.S. N.S. 

Raffinose N.S. *** *** 

Xylose *** *** ** 

Sorbitol N.S. * * 

TCA cycle 

Alpha-Ketoglutarate *** *** . 

Fumarate *** *** ** 

Isocitrate *** *** ** 

Malate *** *** ** 

Succinate *** * *** 

 Pyruvate * *** *** 

  

3.3.3. Evidence of interspecific variation in metabolite regulation in response 

to soil water depletion  

3.3.3.1. A. lyrata and A. halleri displayed comparable response to low SWC 

compared to A. thaliana 

Results of the principle component analysis are shown in the biplot of variables and 

individuals (figure 24) and the scree plot can be found in Suppl. Figure S3. The PCA 

identified an obvious distinction between species and stress-levels. The first and 

second axes separate the species and the stress-levels, respectively. The first PC 

explains 19.4% of the variance and the second one explains 17%, which is indicating 
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that the variation between species is almost as important as variation between stress-

levels.  

The blue arrows show the metabolites. When they are in the opposite quadrants of the 

plot it means that they are negatively correlated and when they are from the same side, 

it indicates that they are positively correlated. Interestingly, most free amino acids 

(such as leucine, valine, phenylalanine, glycine as well as proline) and sugars 

(including sucrose, glucose, fructose and raffinose) show strong positive loading on 

principal component 2 (PC2) which is separating the stress-levels and more precisely 

in the direction of 20% SWC. 

The PCA reflected well the interspecific variation reported above, where A. lyrata, A. 

halleri and A. thaliana are separated along the first PC. It is clear that A. lyrata and A. 

halleri are clustering closer to each other than to A. thaliana.  

This analysis shows also that recovery and control conditions cluster together, whereas 

the 20% SWC is far away and is more variable in A. lyrata and A. halleri compared to 

A. thaliana, as the points showed stronger dispersion. 
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Figure 24: A 2D Principal Component Analysis (PCA) biplot of variables (the 

metabolite data measured at 60% SWC; 20% SWC and recovery) and individuals (A. 

halleri; A. lyrata and A. thaliana). The blue arrows represent the different metabolic 

compounds: the distance between variables and the origin measures the quality of the 

variables on the factor map. Variables that are away from the origin are well 

represented on the factor map. Ellipses group the species * conditions. The first axis 

explains 19.4% of the variance and the second axis explains 17%. 

3.3.3.2. A. thaliana displayed the strongest increase in osmolyte abundance in 

response to soil water depletion 

I used one-sided t-test based on mean abundance per genotypes as unit of replication 

to identify which metabolites responded differently to the decrease in soil water 

content. In figure 25, the log2 fold change of the relative amounts of metabolites under 
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20 vs. 60% SWC and recovery vs. 60% SWC are shown along with their Bonferroni 

adjusted P values for each species.  

As expected, for all species, the most important changes in metabolite accumulation 

are observed under 20% of SWC whereas, during the recovery phase, metabolite 

accumulation comes closer to its initial level (e.g. 60% SWC). These results were also 

observed previously in the output of the generalized mixed linear model, where the 

recovery and control conditions were not significantly different for ~70% of the 

compounds (Suppl. Stat. 10), as well as in the output of principle component analysis. 

These results are in line with the typical reactions to drought reported in A. thaliana i.e. 

accumulation of osmolytes such as amino acids (mainly proline) and sugars (Nambara 

et al., 1998; Urano et al., 2009; Bhaskara et al., 2015). 

The abundance of amino acids in A. thaliana under low soil moisture, however, was 

generally higher than in the other two species. In fact, 8 of the 13 amino acids displayed 

significantly increased abundance (log2 (FC)>0 and Padj. value<0.05) in A. thaliana 

against 6 and 5 in A. halleri and A. lyrata, respectively (Figure 25). The number of 

metabolites with increased abundance in response to the stress (log2 (FC)>0) is also 

higher in A. thaliana, i.e., 15 against 12 and 9 in A. halleri and A. lyrata, respectively. In 

addition, in A. thaliana, 9 metabolites increased by more than 4-fold in abundance, in 

A. halleri, only two metabolites reached this fold-change threshold. In A. lyrata, no 

metabolite showed a fold-change greater than 4-fold.  

More precisely, we observed that all three species showed significant increase in 

proline level in response to drought-stress and interestingly A. thaliana displayed a 

fold change (FC = 8) that was significantly stronger than in either A. halleri (P value = 

8.05e-05, FC = 3) or A. lyrata (P value = 0.000143, FC = 3) (Figure 25).  

All four sugars, i.e. glucose, fructose, sucrose and raffinose accumulated significantly 

under stress in A. thaliana, whereas, only sucrose accumulated in A. lyrata and A. halleri 

(Figure 25). Not only proline showed the strongest fold change in response to low SWC 
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in A. thaliana but also sucrose, which displayed approximately 8 FC in A. thaliana, 

which was significantly larger than the 2 to 4 FC observed in A. halleri (P value = 2.04e-

09) or A. lyrata (P value = 1.02e-08) (Figure25). 
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Figure 25: Volcano plot showing on the x-axis the log2 fold change of 20% SWC vs. 

60% SWC and recovery vs. 60% and on the y-axis, the t-test- P value (Bonferroni 

adjusted for multiple comparison). On the left side from the top to the bottom, are A. 

lyrata, A. halleri and A. thaliana 20% SWC vs. 60% SWC and on the right side, same 

order shown for recovery vs. 60% SWC. Red points are metabolites showing 

significantly different response in both conditions whereas the purple ones did not 

change significantly between conditions. 

3.3.3.3. Metabolite abundances significantly differed between species in response 

to soil water depletion 

Even though the strongest FC in proline and sucrose accumulation was observed in A. 

thaliana, the relative amount of sucrose at low SWC remained significantly higher in 

A. halleri and A. lyrata compared to A. thaliana whereas it did not differ significantly 

between species for proline (Figure 26). However, for almost all other amino acids 

accumulated at 20% SWC, A. thaliana showed the highest relative amounts compared 

to A. lyrata and A. halleri (Figure 26).  

Similar to proline, fructose, phenylalanine and glycine, significantly accumulated in 

A. thaliana under low SWC, but in the end, they reached similar relative amounts as in 

A. lyrata and A. halleri (Figure 26). These results suggest that the abundance of these 

metabolites is lower in non-stressful conditions in A. thaliana compared to the other 

two species.  

On the other hand, GABA, myo-inositol, alpha-ketoglutarate, alpha-alanine and 

putrescine which did not respond significantly to the stress in A. thaliana, displayed 

significantly higher relative amounts at 20% of SWC in A. thaliana compared to A. lyrata 

and/or A. halleri (Figure 26). This again suggested constitutive variation in metabolite 

abundance between species. 



 

63 

 

 



 

64 

 

Figure 26: Volcano plot showing on the x-axis the log2 fold change in relative amounts 

of metabolites between species at 20% of SWC and on the y-axis, the t-test- P value 

(Bonferroni adjusted for multiple comparison). From the top to the bottom: A. lyrata 

vs. A. halleri; A. lyrata vs. A. thaliana and A. halleri vs. A. thaliana. Red points are 

metabolites showing significantly different abundance between species whereas the 

purple ones did not change significantly between species. 

3.3.4. Interspecific constitutive differences in metabolite composition 

In order to compare the constitutive interspecific variation in metabolite composition 

between the three species, I plotted standardized amounts under well-watered 

conditions i.e. 60% of SWC (Suppl. Figure 4). 

Significant constitutive differences were also detected between species in metabolite 

abundance. In fact, the initial amount of sucrose was significantly lower in A. thaliana 

compared to the other two species (P value < 2.2e-16), its proportion is only 10% against 

40 and 50% in A. lyrata and A. halleri respectively. Whereas, no significant differences 

between species were detected for other sugars such as glucose and raffinose (P value 

= 0.06; and 0.4 respectively). But, the relative amount of fructose was significantly 

higher in A. lyrata compared to A. thaliana (Figure 27).  

Constitutive proline abundance at 60% SWC was significantly higher in A. lyrata and 

A. halleri compared to A. thaliana (Figure 27, more than 2 FC, P value = 0.000228; P value 

= 1.08e-05, respectively). However, its constitutive level was similar in the two sister 

species (P value = 0.6641).  

Percentage of organic acids such as glycerate, maleate, lactate, and glycolate were also 

comparatively lower than sucrose or fumarate, but their constitutive level was higher 

in A. halleri compared to A.thaliana and A. lyrata (P value < 2.2e-16; 7.410e-10; 0.0001 and 

6.281e-12 respectively). 
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 Figure 27: Volcano plot showing on the x-axis the log2 fold change in relative 

constitutive amounts of metabolites between species and on the y-axis, the t-test- P 

value (Bonferroni adjusted for multiple comparison). From the top to the bottom: A. 

lyrata vs. A. halleri; A. lyrata vs. A. thaliana and A. halleri vs. A. thaliana. Red points are 

metabolites showing significantly different abundance between species whereas the 

purple ones are the one that did not change significantly between species. 

 3.3.5. Is the recovery from stress elastic (homeostatic); under- or 

overcompensatory?  

Recovery plays an important role in determining plant survival after a drought stress 

episode. Moreover, traits recover with different time kinetics and to a different extent 

(Ülo, 2015). Recovery mechanisms can be divided in three types i) homeostatic 

recovery, where the trait value returns to the pre-stressed one ii) undercompensatory 

recovery, where the trait value fails to return the pre-stressed one, and iii) 

overcompensatory recovery, where recovery leads to abundance levels beyond the 

initial one (Ülo, 2015). 

Recovery was reported to be homeostatic and/or overcompensatory when plants are 

subjected to mild drought stress (Ruiz-Sánchez et al. 1997; Morales et al. 2013) whereas 

severe stress was associated to undercompensatory recovery (Liang and Zhang, 1999; 

Gallé et al., 2007). Overall, 35 metabolites showed homeostatic or overcompensatory 

levels after recovery, suggesting that the three species were subjected to rather mild 

stress. Nevertheless, the patterns differed between species indicating that stress left an 

overall signature that differed among species.  

Comparison between recovery and control conditions showed interspecific variation 

in the dynamics and degree of recovery upon rewatering (Figure 25). In A. halleri, I 

observed a dramatically lower number of responding metabolites compared to A. 

thaliana and A. lyrata: only 3 metabolites showed significant accumulation and one 

decreased significantly compared to 60% of SWC against 8 and 7 with increased 
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abundance in A. lyrata and A. thaliana respectively. In A. thaliana, sucrose level 

decreased to approach the initial level, whereas proline abundance remained 

significantly higher than at 60% SWC.  

Finally, results (Table 8) showed that recovery of proline is overcompensatory in the 

three species. In A. halleri, recovery is mainly homeostatic (i.e. homeostatic for i.e 83% 

of the responsive-metabolites), overcompensatory for 12.5% and undercompensatory 

for only 4%. Whereas, in A. lyrata and in A. thaliana recovery is homeostatic for 55 and 

59% respectively, overcompensatory for respectively 38 and 31% and 

undercompensatory for 5.5 and 9% of the responsive metabolites. 

Table 8: Summary of the regulation of metabolites after the post-drought recovery in 

each species 

 A. halleri A. lyrata A. thaliana 

Tryptophan homeostatic homeostatic undercompensatory 

Proline overcompensatory overcompensatory overcompensatory 

Glycine homeostatic overcompensatory homeostatic 

Isoleucine homeostatic homeostatic overcompensatory 

Valine homeostatic homeostatic overcompensatory 

Phenylalanine --- --- homeostatic 

alpha_Alanine homeostatic homeostatic --- 

Aspartate homeostatic homeostatic --- 

Leucine homeostatic --- overcompensatory 



 

68 

 

Glutamate homeostatic overcompensatory --- 

Threonine --- --- homeostatic 

Asparagine overcompensatory --- --- 

Hydroxyglutarate homeostatic --- overcompensatory 

GABA undercompensatory undercompensatory --- 

Putrescine --- overcompensatory --- 

Gluconate homeostatic --- homeostatic 

Pyruvate homeostatic --- overcompensatory 

Fructose --- --- homeostatic 

Sucrose homeostatic homeostatic overcompensatory 

Glucose --- --- homeostatic 

Glycerate --- homeostatic --- 

Maleate homeostatic homeostatic --- 

Lactate homeostatic overcompensatory --- 

Glycolate homeostatic --- homeostatic 

Shikimate homeostatic homeostatic homeostatic 

Mannitol --- --- --- 
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Maltose --- --- homeostatic 

Xylose --- overcompensatory --- 

Glycerol --- --- undercompensatory 

Raffinose overcompensatory --- homeostatic 

Succinate homeostatic --- --- 

alpha_Ketoglutarat

e 

homeostatic overcompensatory --- 

Malate homeostatic homeostatic homeostatic 

Fumarate --- --- homeostatic 

Isocitrate homeostatic overcompensatory homeostatic 
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4. Discussion 

4.1. Surprisingly low levels of variation between genotypes at the 

phenotypic level 

As I was interested in the interspecific comparison of the drought stress response, I 

had to account for variation within species. I thus included replicates of 7 to 16 

genotypes per species in my experimental design.  

I detected significant genotype effect for 95% of metabolites that respond significantly 

to low SWC. These results are expected as intraspecific genetic differences in drought-

tolerance have been observed in wheat, barley or Arabidopsis thaliana, and the genetic 

determinants of these differences have been mapped (Shi et al., 2017; Gudys et al., 2018; 

Junger et al., 2005). 

However, for the measured phenotypic and physiological traits, the differences 

detected between species were larger than differences within species. Genotypic 

variation was observed only for the initial rosette area, initial leaf thickness and, initial 

stomatal density. However, I did not detect any genotypic effect in response to water 

depletion. Differences in response to water depletion therefore revealed fixed 

interspecific differences in avoidance and tolerance strategies to drought stress. It is 

tempting to speculate that this pattern reflects the constraints exerted on reactions to 

drought. If they deviate from the species-specific response, plant fitness might be 

negatively affected. 

4.2. The ecological differences between A. lyrata and A. halleri cannot 

be explained by the critical SWC reached at wilting  

The sister species A. lyrata and A. halleri have separated recently and gene flow 

between these clades is still detectable (Novikova et al., 2016). Yet, the two species 

display marked differences in ecological preference (Clauss & Koch, 2006). Ellenberg 

indices, which are reliable estimates of ecological preferences in Central Europe, show 
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that A. lyrata is found in very dry areas with a soil humidity index (F) of 3, while A. 

halleri occurs in habitats where water is not limiting (F = 6) (Ellenberg and Leuschner, 

2010). I was therefore surprised to observe that A. halleri and A. lyrata individuals 

wilted at identical soil water content. In addition, contrary to my expectations, the 

ruderal species A. thaliana tolerated markedly lower levels of soil water content than 

its perennial relatives. Altogether, these observations show that the respective 

ecological preferences of A. lyrata, A. halleri and A. thaliana is not explained by the SWC 

threshold at which wilting symptoms appear. 

4.3. Interspecific variation in stomatal density did not reflect differences 

in WUE  

Based on my data, I cannot evaluate whether the low stomatal density observed in A. 

lyrata (Figure 9A) contributes to its ability to cope with low water availability. In fact, 

increased stomatal density has been associated with decreased WUE in several plant 

species (Reich, 1984; Muchow and Sinclair, 1989; Anderson and Briske, 1990; Pearce et 

al., 2006; Doheny-Adams et al., 2012; Liu et al., 2012; Carlson et al., 2016). Yet, in 

monkey flowers and in A. thaliana, lower stomatal density was associated with higher 

WUE (Wu et al., 2010; Dittberner et al., 2018). The consequences of modification in 

stomatal density and size on the plant’s ability to cope with limiting water supply are, 

in fact, not directly predictable. Firstly, the two traits (i.e. stomatal density and size) 

are generally negatively correlated (Hetherington and Woodward, 2003; Dittberner et 

al., 2018). Secondly, WUE can decrease as a result of either increased stomatal density 

or increased stomatal size because larger stomata close more slowly (Raven, 2014). 

Thirdly, plants may show changes in stomatal patterning when they are exposed to 

limiting water supply, which was reported in A. lyrata (Paccard et al., 2014). Fourthly, 

parameters independent of stomatal patterning such as photosynthetic ability can also 

contribute to variation in WUE, as reported in A. thaliana (Farquhar et al., 1989; 

Dittberner et al., 2018). My data reveal that in well-watered greenhouse conditions, A. 
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lyrata did not show a globally higher WUE than A. halleri (Figure 9B), despite 

significant differences in stomatal density and size (Figure 9A; Figure 10). 

Alternatively, similarities in WUE detected between species might be explained by the 

fact that it was estimated using δ13C, which is calculating the ratio of carbon isotope 13 

to carbon isotope 12 (Lambers et al., 1998; Dawson et al. 2002). As the ambient air is 

mainly composed of 12C and only ~ 1.1% of the stable isotope 13C (Farquhar et al., 1989), 

the discrimination against 13C is then, greater with more open stomata. In other terms, 

when stomata are closed, 12C is used up and the relative amount of 13C increases, which 

leads to the increase of 13C to 12C ratio. And when stomata are open, the WUE is lower 

and the discrimination against 13C is then higher and δ13C values are then more 

negative (McKay et al., 2003). This indirect parameter used to estimate WUE, might be 

in some cases biased by the concentration of CO2 surrounding the measured leaves, 

which may not allow a precise estimate of WUE. Other means of measurements of 

WUE were reviewed by Tambussi et al., (2007), such as: 

1) WUE = Net photosynthetic rate [µmol CO2 m-1s-1] / Transpiration rate [mmol H2O m-2s-1]; 

or 2) WUE = Total biomass / Water consumption (amount of irrigation (g) during the 

experiment). Canavar et al., (2014) performed measurements of δ13C as well as WUE 

following the second equation in order to assess the relationship between the indirect 

estimate and the direct measurement of WUE, and results showed that δ13C and WUE 

were negatively correlated under drought stress in Safflower. 

4.4. Evidence of interspecific variation in drought-induced plasticity 

levels revealed by metabolite profiling 

In my study, the determination of metabolites that are induced in response to soil 

water depletion, was done by a targeted metabolite profiling analysis in 7 to 9 

genotypes of each of the A. halleri, A. lyrata and A. thaliana species using the GC-MS 

technique.  
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This analysis demonstrates that in response to SWC decrease, the relative abundance 

of metabolites is differentially regulated when compared between the different stress-

levels as well as between species (Figure 24). 

In response to soil water depletion, the abundance of osmoprotectants increased 

significantly in A. thaliana, A. lyrata and A. halleri, which suggests that their 

accumulation is a conserved mechanism in the three species even though their level of 

accumulation and composition significantly differs. In fact, 71.5% of all differentially 

accumulated sugars and amino acids showed significantly higher FC in A. thaliana 

compared to A. halleri and A. lyrata. This implies that A. thaliana has the strongest level 

of plasticity compared to the other two species. 

Surprisingly, the plasticity was found to be less pronounced in the drought-tolerant 

species A. lyrata compared to the drought-sensitive species A. halleri (i.e. only 9% of 

the differentially induced metabolites displayed significant FC in A. lyrata compared 

to A. halleri). This observation indicates that A. halleri and A. lyrata display similar 

evolutionary changes in drought-induced plasticity, which was not expected as these 

species have evolved in different ecological niches: These similarities observed in A. 

halleri and A. lyrata might be explained by the fact that these congeneric species are 

closer to each other than to A. thaliana, which might indicate that phylogeny has 

therefore stronger impact on the evolution of drought-related plasticity observed at 

the metabolome level than the differences in their ecologies. It might also be that the 

response of most metabolites depends on the life cycle, because A. halleri and A. lyrata 

are both perennial, and metabolite levels change during development. Nevertheless, 

despite their commonalities, A. lyrata and A. halleri did display distinct metabolite 

signatures. These metabolic changes suggest a distinct activation of drought-stress 

associated pathways in the genus.  
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4.5. Identification of several metabolic pathways associated to drought-

stress response in the Arabidopsis genus 

4.5.1. Increased abundance of osmolytes in response to drought stress in A. 

halleri, A. lyrata and A. thaliana 

The most significant changes were observed in amino acids (such as proline, valine 

and leucine), organic acids (including mannose, malate and glycerate) and sugars (i.e. 

sucroe, fructose and raffinose) (Figure 25). Their accumulation in response to drought 

stress has been reported in many species such as barley, tomato, A. thaliana, wheat, 

soybean (Templer et al., 2017; Rhodes et al., 1986; Urano et al., 2009; Basu et al., 2016; 

Michaletti et al., 2018; Das et al., 2017). These compounds are commonly considered as 

compatible solutes, which enhance the osmotic adjustment process, protecting 

membranes and proteins from damage by ROS (Krasensky and Jonak, 2012). 

In response to decrease in SWC, the three species showed significantly increased 

abundances of the branched-chain amino acids such as valine, leucine, and isoleucine, 

which act as osmolytes. This was reported in previous studies in Arabidopsis thaliana 

(Nambara et al., 1998; Urano et al., 2009) and wheat (Ullah et al., 2017). 

The increase of proline abundance in response to drought stress was detected in the 

three species with the highest fold change in A. thaliana. Proline was reported to 

accumulate in response to drought stress in several plant species including Arabidopsis 

thaliana (Nambara et al., 1998; Bhaskara et al., 2015), wheat (Ullah et al., 2017; Guo et 

al., 2018), rice (Basu et al., 2016), soybean (Das et al., 2017), Lotus (Diaz et al., 2005) and 

corn (Zadebagheri et al., 2004). Its accumulation is reported in drought-tolerant plants 

as it acts as osmoticum, contributes to the cellular redox balance, plays the role of 

signaling molecule under environmental stress including drought (Szabados and 

Savouré, 2010) and acts as molecular chaperone to stabilize proteins structure 

(Krasensky and Jonak, 2012).  
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Importantly, I also observed that abundance of sugars increased in A. lyrata, A. halleri 

and A. thaliana at low SWC. Similar changes were reported in several species exposed 

to drought stress (i.e. soybean: Das et al., 2017; wheat: Ullah et al., 2017 as well as in A. 

thaliana: Urano et al., 2009). In these studies, accumulation of sugars under drought 

stress conditions was associated with enhancement of the protection of proteins from 

further water loss by providing the hydration shell around them. 

4.5.2. Nitrogen and amino acid metabolisms seem inhibited by soil water 

depletion only in A. lyrata and A. halleri 

Glutamate is a central amino acid in plants as it is involved in i) nitrogen assimilation 

as well as the dissimilation of ammonia (NH3) and ii) in amino acid metabolism as it 

forms the basis for the synthesis of other amino acids such as GABA, arginine, and 

proline (Brian and Peter, 2007). Wang et al., (2017) reported that under water-limitation 

stress, nitrogen assimilation is significantly inhibited as many enzymes including 

glutamine- and glutamate synthase decreased, which leads to the decrease of 

glutamate under drought stress. They also reported the decrease of alanine and 

aspartate as well, because they are both derived from glutamate. Interestingly, in my 

data, I observed significant decrease in glutamate level under 20% SWC only in the 

drought-sensitive species A. halleri. Whereas, alanine and aspartate decreased 

significantly in both A. halleri and A. lyrata but not in A. thaliana (Figure 25). These 

findings suggest that at 20% of SWC, the nitrogen metabolism of the annual species A. 

thaliana is not altered yet, but in its perennial relatives, it is already down-regulated. 

4.5.3. Glycolysis seems inhibited by the drought stress in A. halleri and A. 

thaliana, whereas the TCA cycle appears to be reduced only in A. halleri 

Wang et al, (2017) reported in their review that 20% of total drought-responsive 

proteins are involved in carbohydrate and energy metabolism e.g., glycolysis, 

tricarboxylic acid (TCA) cycle - which plays a vital role in energy production-, electron 

transport chain, and ATP synthesis in leaves in response to drought stress. 
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Inhibition and stimulation of energy production under drought stress conditions via 

TCA cycle and glycolysis depend on the strategy employed by the plant species. In 

fact, plants that accumulate sugars as osmolytes and save energy for recovery would 

inhibit the glycolysis as well as the TCA cycle, whereas, plants that rely on strategy for 

providing energy during the activation of stress defenses would increase the activity 

of both pathways (Echevarria-Zomeno et al., 2009). In A. thaliana, glycolysis seems to 

be inhibited in response to low SWC as sugars (i.e. sucrose, glucose and fructose) 

accumulated significantly (Figure 25). In A. halleri, sucrose was accumulated and 

pyruvate- a substrate of TCA cycle and the product of glycolysis (Cavalcanti et al., 2014) 

- was significantly less abundant in response to soil water depletion which suggests 

that glycolysis is also inhibited in A. halleri. However, it is not clear whether glycolysis 

was activated or inhibited under low water-availability in A. lyrata as it displayed 

significant increase only of sucrose.   

Metabolites involved in TCA cycle including succinate, fumarate, malate, alpha-

ketoglutarate, and pyruvate were regulated in different direction in the three species. 

Accumulation of succinate was reported in drought-tolerant wheat genotypes and 

associated to the efficient use of TCA cycle under drought stress conditions (Budak et 

al., 2013). Fumarate, pyruvate, malate which are important substrates of TCA cycle 

were also accumulated in drought-tolerant wheat genotypes but not in wheat-sensitive 

ones (Ullah et al., 2017; Guo et al., 2018). On the other hand, alpha-ketoglutarate –

which is used in the synthesis of succinate through succinyl-CoA synthetase activity – 

decreased in response to drought stress in drought-tolerant wheat genotype (Ullah et 

al., 2017).  

My results showed that the drougt-tolerant species A. lyrata, displayed similar pattern 

as drought-tolerant wheat plants: succinate, malate significantly accumulated in 

response to soil water depletion, alpha-ketoglutarate decreased significantly (Figure 

25) and fumarate displayed already high levels as it was significantly higher than in 

A. halleri and comparable to A. thaliana at 20% SWC (Figure 26). These observations 
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suggest that the TCA cycle still produces energy under conditions of missing 

precipitation in A. lyrata. Similar to the response of A. lyrata, A. thaliana displayed an 

increase of malate, fumarate and pyruvate in response to drought stress, which 

suggests that TCA cycle is still functioning. Alternatively, increased accumulation of 

TCA cycle intermediates might be the consequence of i) a block in one of the TCA 

enzymes, ii) increased accumulation of backbones for amino acid biosynthesis (less 

flux of C through TCA, more into amino acids) and/or iii) more TCA intermediates 

coming from protein degradation. In this case, flux measurements of metabolites 

might be useful to explain the accumulations of TCA intermediates observed in A. 

lyrata and A. thaliana and its consequences on plant fitness in drought conditions. 

In A. halleri, however, even though succinate and malate accumulated significantly and 

alpha-ketoglutarate decreased under low SWC, the TCA cycle seemed to be affected 

by limited-water conditions as pyruvate decreased in response to water depletion and 

fumarate level is low at 20% SWC.  

4.5.4. Non-predicted behavior of GABA under drought stress might associate 

with increased drought-tolerance in A. lyrata 

The non-proteinogenic amino acid GABA was reported to accumulate in higher plants 

following the onset of a variety of stresses including drought stress (Rhodes et al., 1986; 

Brian and Peter, 2007; Renault et al., 2010). Mekonnen et al., (2016) reported that 

accumulation of GABA in response to drought stress enhances stomatal closure 

preventing water loss in A. thaliana. Surprisingly, it was not accumulated in any of the 

three species. More so, it was significantly down-regulated in the drought-tolerant A. 

lyrata when the soil moisture decreased. Interestingly, a similar result was observed in 

a drought-tolerant wheat genotype where GABA shunt appeared to be inhibited in 

shoots (Guo et al., 2018). 

Mekonnen et al., (2016) reported that A. thaliana accessions producing a lower 

constitutive level of GABA displayed a higher sensitivity to drought stress as stomatal 
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closure decreases and that increasing the internal GABA level may rescue these plants. 

Similar findings were observed in rice, black pepper and white clover where an 

external application of GABA enhances the plant’s performance under drought and 

heat stress conditions (Nayyar et al., 2014; Vijayakumari and Puthur, 2016; Yong et al., 

2017, respectively). In my study I observed that at 60% of SWC, A. lyrata and A. thaliana 

have significantly higher level of GABA than the sensitive-species A. halleri (more than 

2 FC, P value = 1.50e-05; P value = 1.20e-09 respectively, figure 27) and that A. thaliana and 

A. lyrata displayed similar constitutive GABA levels. These results are in line with the 

fact that A. halleri is losing leaf-water faster than the other two species. 

4.5.5. Shikimate pathway enhanced by soil water limitation in all three 

species 

In response to the decrease in soil water content, the three species displayed significant 

down-regulation of shikimate and up-regulation of tryptophan (Figure 25). A similar 

observation was reported in wheat (Michaletti et al., 2017), explained by the fact that 

tryptophan accumulates via the shikimate pathway, and found to be associated with 

an improvement of drought tolerance (Khan et al., 2019). 

4.6. Interspecific differences indicate that species deploy different 

drought resistance strategies 

Phenotypic characterization as well as metabolite profiling analysis suggest that the 

three species have evolved different strategies to deal with drought stress. 

4.6.1. High levels of stress avoidance are associated with low tolerance to 

drought in A. thaliana 

In annual species, seasonal drought can be a potent source of selection for accelerated 

flowering and faster cycling (Franks et al. 2007; Fitter and Fitter 2002). A. thaliana was 

therefore expected to maximize its resource investment into fast cycling and show a 

lower level of stress tolerance compared to its perennial relatives. Here, I focused on 

late flowering A. thaliana genotypes that in the culture conditions I imposed could not 
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accelerate their development to escape drought. This allowed comparing their ability 

to avoid or tolerate wilting. 

Compared to A. lyrata and A. halleri, A. thaliana is the last species to wilt and it is able 

to resist a very low soil moisture (less than 10%). In addition, results of leaf water 

content over decrease of soil moisture showed that A. thaliana is able to hold higher 

amount of water at lower soil moisture compared to the other two species. This 

suggests that when it is grown under conditions where the escape strategy is not 

possible, the annual species A. thaliana employs avoidance strategy-mechanisms to 

maintain internal water content for longer period. The ability of this annual species to 

escape stress by accelerating development has therefore not led to the loss of 

mechanisms favoring the maintenance of internal water potentials. 

A. thaliana, however, displayed a marked decrease in photosynthetic activity as 

previously reported in several species such as Hordeum vulgare, Hibiscus rosa-sinensis 

and Andropogon gerardii (Golding and Johnson, 2003; Muñoz and Quiles, 2013; Maricle 

et al., 2017) and contrary to its relatives A. lyrata and A. halleri, it was not able to tolerate 

two days of wilting. This is therefore an indicative that A. thaliana have evolved lower 

levels of tolerance to wilting.   

The enhanced avoidance strategy observed in A. thaliana in response to low SWC was 

associated with the strongest increase of metabolite abundance (especially, proline and 

sugars) as well as the highest level of drought-induced plastivity. Indeed, the 

production of proline, which is both an osmoprotectant and an anti-oxidant, has been 

documented to play a role in local adaptation in this species (Nambara et al., 1998; 

Verslues and Juenger, 2011; Kesari et al., 2012; Bhaskara et al., 2015). 

I detected no significant variation for the response to decreasing SWC between the A. 

thaliana accessions included in this study, but here, I cannot conclude that the 

avoidance capacity and the low tolerance to wilting I observed is fixed in the species. 

In addition, this set of accessions is not necessarily representative of the whole species. 
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A. thaliana is broadly distributed and its genotypes can form ecotypes with markedly 

different levels of stress resistance (May et al. 2017). Furthermore, two recent studies 

indicate that Swedish genotypes have a comparatively greater capacity to face dry 

conditions, probably because the short favorable season of Scandinavia constrains 

them to face limiting water availability when it strikes (Exposito-Alonso et al. 2017, 

Dittberner et al. 2018). 

4.6.2. A. lyrata displays both tolerance and avoidance strategy in response to 

drought stress 

With the highest survival rate, A. lyrata is the most tolerant to wilting. It is also the only 

species that showed adaxial leaf rolling, a phenotype favoring drought avoidance in 

plants (Oppenheimer, 1960; O'Toole and Moya, 1978; Jones, 1979, Clarke, 1986). Leaf 

rolling indeed reduces transpiration rate by reducing the effective leaf area. This is 

consistent with what I observed in the relative leaf water loss before wilting in A. lyrata 

which was significantly lower than in A. halleri and A. thaliana. Altogether, this 

indicates that exposure to limiting SWC is comparably less damaging in A. lyrata. 

Metabolite profiling confirmed that A. lyrata deploys tolerance strategy as its 

constitutive proline and sucrose were significantly higher than in A. thaliana. In 

addition, its cellular activity seemed to be less altered by the imposed drought stress 

i.e. energy production (via glycolysis and TCA cycle) was not inhibited and 

photorespiration was not enhanced. 

A. lyrata, has therefore the ability to minimize its exposure to the stressful 

consequences of low soil water content and maximize its ability to survive severe 

dehydration. It thus deploys both avoidance and tolerance strategies. These results are 

congruous with the previous findings suggesting that A. lyrata is a drought resistant 

species (Sletvold & Agren 2012; Paccard et al., 2014).  



 

82 

 

4.6.3. A. halleri is directly exposed to stress caused by low soil moisture 

A. halleri was not able to regulate its water consumption when the soil dryed-down. In 

fact, it showed the highest desiccation rate and the highest leaf water decrease before 

the onset of wilting. Therefore, of the three species, A. halleri clearly displayed the 

weakest levels of drought avoidance, being almost directly exposed to stress caused 

by decreasing SWC.  

On the other hand, although less tolerant to wilting than A. lyrata, A. halleri displays 

some level of tolerance, because it was comparatively more tolerant than A. thaliana as 

it survived two days of wilting. In addition, its photosynthetic activity was not altered 

at wilting and its efficiency was as high as in A. lyrata 

Interestingly and contrary to my expectations, metabolite profiling in response to 

water depletion highlighted the fact that osmolytes (mainly amino-acids and sugars) 

are accumulated not only in the drought-tolerant species (i.e. A. lyrata) and in the 

species that tends to display more avoidance traits (i.e. A. thaliana) but they also 

accumulate in A. halleri which showed the highest sensitivity to water-limitation stress. 

A. halleri thrives in more competitive habitats than its relatives (Clauss and Koch 2016; 

Stein et al. 2016), and the competitive ability generally evolves in a trade-off with stress 

tolerance in plant species (Grime et al. 1977, Sreenivasulu et al. 2012, Diaz et al. 2016). 

Even though A. halleri displayed higher stomatal density than A. lyrata, which as a trait 

has been associated with greater growth rates and lower drought resistance (Doheny-

Adams et al. 2012, Liu et al. 2012), the results at the metabolome level suggested that 

many tolerance mechanisms were maintained in A. halleri, despite selection for 

improved competitive ability in this species. 
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4.7. Transcript abundance under water-deficit stress confirms that A. 

halleri is more sensitive to soil water depletion 

Results of transcriptome analysis in response to water depletion showed that both the 

drought-tolerant A. lyrata and the drought-sensitive A. halleri have considerably 

reshaped their transcriptome. In addition, the changes observed at the transcriptome 

level corroborate the interspecific differences observed at the phenotypic level.  

In fact, at 25% soil water content, i.e. shortly before the appearance of the first wilting 

symptoms, A. halleri showed the strongest change in the expression levels of a large 

number of genes, 976 genes against 107 in A. lyrata (Table 2). These genes were strongly 

enriched in stress-repressed functional GO categories indicating that the plant 

experiences direct stress at the cellular level as SWC approaches the limiting threshold. 

In A. lyrata, the transcriptome response to decreasing SWC was more subtle, 

suggesting comparatively lower levels of cellular stress immediately before wilting, 

compared to A. halleri. Its transcriptome was comparatively more altered after 

recovery. 

 I further observed that for genes that were down-regulated after recovery in A. lyrata, 

the most enriched GO category is “pentose-phosphate shunt” (P value < 5.10-5), a 

metabolic pathway involved in the scavenging of reactive oxygen intermediate that is 

normally sharply activated by abiotic stress (Mittler 2002; Kruger & Schaewen 2003). 

Several additional GO functions associated with drought stress, e.g. “hyperosmotic 

salinity response”, “response to water deprivation”, “abscisic acid-activated signaling 

pathway”, “ethylene-activated signaling pathway”, and, “response to chitin” were up- 

regulated in A. lyrata during recovery. The latter functions seem to have a dynamic 

role in response to drought stress. In A. thaliana, they were up-regulated by severe 

dehydration (Matsui et al., 2008) but down-regulated by mild stress (Des Marais et al., 

2012). Their up-regulation after recovery in A. lyrata, in the absence of obvious stress, 

shows that the reaction of this species to decreasing SWC contrasts not only with that 
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displayed by A. halleri but also with that known for A. thaliana. These data therefore 

show that the direction of stress reaction at the gene expression level can flip between 

stress-levels and/or between species. 

As i) survival rates upon two days of wilting was similarly high in A. halleri and A. 

lyrata , ii) the soil moisture at wilting was similar in both species and iii) I only sampled 

new undamaged leaves, these findings at the molecular level confirm that the two 

perennial sister species have evolved different strategies to respond to water 

depletion. 

Despite i) their contrasting ecologies, ii) the differences of their ability to control for 

water consumption, iii) their ability to survive wilting and, iv) the way they reshaped 

their transcriptome in response to drought stress, constitutive similarities as well as 

similarities in drought-responsive plasticity were detected between these sister species 

at the metabolome level. This suggests that connecting metabolites and gene 

abundance under drought stress conditions is not straightforward. Indeed, the 

regulation of a given metabolite might be controlled by one and/or several genes and 

one gene might be involved in the regulation of one and/or many metabolic pathways. 

Therefore, to unveil genes and processes underlying complex traits, it is necessary to 

integrate transcription with metabolites (Joung et al., 2009). This is possible as software 

packages have been developed such as MapMan (Thimm et al., 2004) or, more recently, 

MetGenMap (Joung et al., 2009). These algorithms have proven to be useful tools to 

predict the function of co-regulated genes under given conditions and to identify genes 

involved in metabolite biosynthesis and transcriptional regulation (Arbona et al., 

2013). Connecting the phenotypic and metabolic changes I have revealed with the 

genetic modification that control them should be a priority of follow-up studies. 

4.8. Conclusion and outlook 

This study documented that all three congeneric species A. lyrata, A. halleri and A. 

thaliana differed in their ability to activate tolerance and avoidance mechanisms in 
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response to soil water depletion. This was mainly observed at the phenotypic and 

transcriptomic levels. Whereas at the metabolome level, results showed that A. halleri 

and A. lyrata displayed comparable constitutive metabolite abundance as well as 

drought-induced plasticity when subjected to water-limitation. This suggests that the 

fact that these perennial sister species are closely related has bigger effect on the 

evolution of drought related stress responses than their distinct ecologies. But, general 

conclusions cannot be drawn based on only three plant species. It is therefore, 

interesting to investigate drought-stress responses in other related plant species 

evolving in different ecological niches and having different life history, to disentangle 

the influence of relatedness, adaptation to specific ecological niches and life history on 

the evolution of drought-stress resistance. 

As this study provided evidence of interspecific differences of constitutive and 

drought-responsive traits, it would be interesting to dissect their underpinning genetic 

basis. This is possible, as in our lab., interspecific back-cross segregating populations 

(between A. halleri and A. lyrata) have been generated which will allow the genetic 

mapping of loci for morphological and physiological traits reflective of the differences 

in water conservation as well as QTLs for drought reaction in A. lyrata x A. halleri 

mapping populations. 
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A. Supplementary Figures 

 

Figure S1: Wilting day and soil moisture at wilting for the two first biological 

experiments of the drying-down experiments. (A) Number of days between initiation 

of soil dry down treatment and wilting. (B) Soil moisture at wilting for Arabidopsis 

halleri, A. lyrata, and A. thaliana. Letters above violin plots indicate significant 

differences between species (Tukey’s HSD test, P value <0.05). Results are shown for 

the first two biological experiments. 
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Figure S2: Proportion of surviving A. halleri, A lyrata, and A. thaliana plants 2 days 

after re-watering for the two first biological experiments. Letters above violin plots 

indicate significant differences between species (Tukey’s HSD test, P value <0.05). 

Results are shown for the two first biological experiments. 
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Figure S3: Scree plot used for the PCA analysis to determine the number of factors to 

retain. 
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Figure S4: Average standardized amounts of metabolites detected at 60% of soil water 

content in A. lyrata, A. halleri and A. thaliana. Barplots with the same letter are not 

significantly different (significance based on t-test (P value <0.05)). 
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Figure S5: Average standardized amounts of metabolites detected at 60; 20% SWC and 

recovery in A. lyrata, A. halleri and A. thaliana. 
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B. Supplementary Tables 

Table S1: List of accessions used for the dry-down experiments. 

Species accessions Country Latitude Longitude 

A. lyrata SB12 Germany 51.31 10.55 

A. lyrata LF2 Austria 47.59 15.36 

A. lyrata LF10 Austria 47.59 15.36 

A. lyrata NT12 Germany 49.31 11.32 

A. lyrata Vos Austria 47.58 16.10 

A. lyrata Plech91.4a Germany 49.37 11.30 

A. lyrata PlechC3 Germany 49.37 11.30 

A. lyrata Plech61.2a Germany 49.37 11.30 

A. lyrata Plech92.2a Germany 49.37 11.30 

A. lyrata Plech.Rock79b Germany 49.37 11.30 

A. lyrata Plech73.3a Germany 49.37 11.30 

A. lyrata Plech85.1a Germany 49.37 11.30 

A. lyrata Plech61.4a Germany 49.37 11.30 

A. lyrata Plech.61.a19 Germany 49.37 11.30 

A. lyrata HAS.166b Germany NA NA 

A. lyrata HAS.005 Germany NA NA 

A. lyrata HAS.122c Germany NA NA 

A. lyrata HAS120 Germany NA NA 

A. lyrata HAS101c Germany NA NA 

A. lyrata HAS114 Germany NA NA 

A. lyrata MN47 US, Michigan NA NA 

A. lyrata Sky Scotland NA NA 

A. halleri Laut3 Germany 51.86 10.30 

A. halleri Laut11 Germany 51.86 10.30 
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A. halleri Wall7 Germany 50.41 11.56 

A. halleri Wall10 Germany 50.41 11.56 

A. halleri Lita6 Czech 49.77 14.01 

A. halleri Kowa7 Poland 50.76 15.85 

A. halleri Krom10 Slovakia 48.92 20.90 

A. halleri Bara4 Romania 47.69 23.63 

A. halleri Bara3 Romania 47.69 23.63 

A. halleri Nisu6 Romania 46.86 22.81 

A. halleri Nisu5 Romania 46.86 22.81 

A. halleri Prev2 Slovenia 46.52 15.52 

A. halleri Prev6 Slovenia 46.52 15.52 

A. halleri Lobn5 Slovenia 46.52 15.52 

A. halleri Lobn6 Slovenia 46.52 15.52 

A. halleri Noss10 Italy 45.86 9.88 

A. halleri hal2.2 Italy 45.86 9.84 

A. thaliana IP-Ara-4 Spain 41.70 -3.68 

A. thaliana IP-Cmo-3 Spain 40.05 -4.65 

A. thaliana IP-Hom-4 Spain 40.82 -1.68 

A. thaliana IP-Lab7 Spain 40.40 -5.00 

A. thaliana Amu-0 Spain 40.87 -4.50 

A. thaliana Coy-0 Spain 40.44 -4.27 

A. thaliana Gud-3 Spain 40.65 -4.11 

A. thaliana Hec-0 Spain 42.86 -0.70 

A. thaliana Hue-3 Spain 42.96 -6.10 

A. thaliana Pdl-0 Spain 43.02 -5.60 

A. thaliana Prd-0 Spain 41.14 -3.68 

A. thaliana Som-0 Spain 41.14 -3.58 

A. thaliana Urd-1 Spain 42.27 -2.98 
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A. thaliana Val-0 Spain 42.31 -3.10 

A. thaliana Col-Fri NA NA NA 

 

Table S2: Phenotypes measured in the three drying-down experiments. 

 

 

Trait 
Trial 1 Trial  2 Trial  3 Trial  4 

Soil moisture     

Wilting day     

Leaf thickness     

Initial rosette area     

Photosynthesis     

Survival rate     

Drought damage 

rate 
    

Transcript 

abundance 
    

Metabolite 

accumulation 
    



 

107 

 

C. Statistical models results 

 
Suppl. Stat. 1: 

Summary statistics of the multiple comparison of the wilting day between species. 

Simultaneous tests for general linear hypotheses, multiple comparison of means: 

Tukey contrast; fit: glm (formula = wilting_day ~ species + experiments, family = 

negative binomial (theta = 130041)) 

Linear Hypotheses Estimate Std. Error z value Pr(>|z|) 

lyrata - halleri == 0 0. 09238     0. 01162     7.95 <1e-10 

thaliana - halleri == 0 -0. 15550     0. 01218   -12.77 <1e-10 

thaliana - lyrata == 0 -0. 24788     0. 01249   -19.84 <1e-10 

 

Suppl. Stat. 2: 

Summary statistics of the multiple comparison of the soil moisture at wilting between 

species. Simultaneous tests for general linear hypotheses, multiple comparison of 

means: Tukey contrast; fit: glm (formula = soil moisture ~ species + experiments, family 

= negative binomial (theta = 5.14)) 

Linear Hypotheses Estimate Std. Error z value Pr(>|z|) 

lyrata - halleri == 0 0. 01929     0. 03639    0.530 0.856 

thaliana - halleri == 0 -0. 27688     0. 03638   -7.611 <1e-10 

thaliana - lyrata == 0 -0. 29616     0. 03851   -7. 691 <1e-10 

 
Suppl. Stat. 3:  

Summary statistics of the multiple comparison of the initial rosette area between 

species. Simultaneous tests for general linear hypotheses, multiple comparison of 

means: Tukey contrast; fit: glm (formula = initial rosette area ~ species, family = 

negative binomial (theta = 5.14)) 

Linear Hypotheses Estimate Std. Error z value Pr(>|z|) 

thaliana - halleri == 0 0. 64040     0. 15940    4.017 0. 000175*** 

     lyrata - halleri == 0 0. 07326     0. 15402    0.476 0. 882542     

lyrata - thaliana == 0 -0. 56714     0. 14175   -4. 001 0.000181 *** 
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Suppl. Stat. 4: 

Summary statistics of the multiple comparison of the initial leaf thickness between 

species. Simultaneous tests for general linear hypotheses, multiple comparison of 

means: Tukey contrast; fit: glm (formula = initial leaf thickness ~ species, family = 

negative binomial (theta = 194918)) 

Linear Hypotheses Estimate Std. Error z value Pr(>|z|) 

lyrata - halleri == 0 0.13339 0.05566    2.396 0.0435 * 

thaliana - halleri == 0 -0.07336     0.06001    -1.222 0.4389     

thaliana - lyrata == 0 -0.20675     0.05210   -3.969 <0.001 *** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Suppl. Stat. 5: 

Summary statistics of the multiple comparison of the relative leaf water loss 7 days 

before wilting between species. Simultaneous tests for general linear hypotheses, 

multiple comparison of means: Tukey contrast; fit: glm (formula = ratio leaf thickness 

2 by 7 days before wilting ~ species, family = negative binomial (theta = 212261)) 

Linear Hypotheses Estimate Std. Error z value Pr(>|z|) 

lyrata - halleri == 0 0.13113 0. 05342    2. 455    0. 0372 * 

thaliana - halleri == 0 -0. 04045     0. 05758   -0. 703    0. 7613    

thaliana - lyrata == 0 -0. 17159     0. 05001   -3. 431    0. 0018 ** 

 

 

Suppl. Stat. 6: 

Summary statistics of glm testing the effect of interaction between species and 

desiccation rate on the relative loss of leaf water content before wilting. 

Model: glm (formula = ratio leaf thickness 2 by 7 days before wilting ~ species * 

desiccation rate, family = negative.binomial (theta = 221492)) 

Coefficients Estimate Std. Error t value Pr(>|t|) 

Intercept -0.458698  0.140235 -3.271 0.001117 ** 

Species lyrata 0.200251 0.180193 1.111 0.000137 *** 

Species halleri -0.815855 0.212890 -3.832 0.000137 *** 
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Dessication rate -0.013724 0.034552 -0.397 0.691320 

Species lyrata:dessication 

rate 
0.0058098 0.044901 0.114 0.909623 

Species halleri:dessication 

rate 
-0207574    0.051474 -4.033 6.03e-05 *** 

Species thaliana: 

dessication rate 
-0.005098 0.044901 -0.114 0.9096 

 
Dispersion parameter for Negative Binomial (221492) family taken to be 0.05412319 

Null deviance: 401.31 on 823 degrees of freedom 

Residual deviance: 395.58 on 818 degrees of freedom 

AIC: 1460.3 

Number of Fisher Scoring iterations: 4 

 
Suppl. Stat. 7a: 

Summary statistics of the multiple comparison of the maximum quantum efficiency of 

PSII (Fv:Fm ratio) at wilting between species. Simultaneous tests for general linear 

hypotheses, multiple comparison of means: Tukey contrast; fit: glm (formula = 

photosynthetic capacity at wilting ~ species, family = quasi-poisson) 

Linear Hypotheses Estimate Std. Error z value Pr(>|z|) 

lyrata - halleri == 0 0.07337 0.30653 0.239 0.96885 

thaliana - halleri == 0 -1.03034 0.30362 -3.394 0.001998 * 

thaliana - lyrata == 0 -1.10371 0.27656 -3.991 0.000187*** 

 

Suppl. Stat. 7b: 

Summary statistics of the multiple comparison of the quantum yield efficiency of PSII 

(YPSII) at wilting between species. Simultaneous tests for general linear hypotheses, 

multiple comparison of means: Tukey contrast; fit: glm (formula = photosynthetic 

activity at wilting ~ species, family = "quasi-poisson") 

 

Linear Hypotheses Estimate Std. Error z value Pr(>|z|) 

lyrata - halleri == 0 0.2783 0.1952 1.426 0.7182 

thaliana - halleri == 0 -0.5420 0.2485 -2.182 0.0168 * 

thaliana - lyrata == 0 -0.8203 0.2143 -3.829 <0.001 *** 
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Suppl. Stat. 8: 

Output of the model (Parameters of PAM):  

Inflection point 

Slope 

Upper value 

Manova (Parameters of PAM) ~ species / genotype * soil moisture (SWC) + block 

 Pillai Pr(>F) 

Species 0.23368 1.202e-10 *** 

Soil moisture 0.08046 0.000224 *** 

species * genotype  0.58699  0.035199 *  

species * soil moisture 0.07887  0.004609 **  

Block 0.02425 0.459437 

 

Analysis of variance on the output of  the MANOVA:  

Response slope: 

                            Df  Sum Sq  Mean Sq  F value    Pr(>F)     

species                     2   4.44   2.2198   0.9961 0.3697584     

SWC                         1   0.12   0.1199   0.0538 0.8166097     

block                       2   3.18   1.5882   0.7127 0.4906187     

species:genotype           48   112.02 2.3336   1.0472 0.3885357     

species: SWC                2   15.62  7.8078   3.5038 0.0305389 *   

species:genotype:SWC       48   205.99  4.2914  1.9258 0.0002307 *** 

Residuals                  811  1807.22  2.2284                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 Response upper: 

                            Df Sum Sq Mean Sq F value    Pr(>F)     

species                      2  1.179 0.58969 13.0837 2.556e-06 *** 

SWC                          1  0.008 0.00838  0.1859 0.6664706     

block                        2  0.143 0.07163  1.5892 0.2047201     

species:genotype            48  3.971 0.08273  1.8355 0.0006262 *** 

species: SWC                 2  2.217 1.10827 24.5897 4.286e-11 *** 

species:genotype:SWC     48  2.917 0.06077  1.3484 0.0608093 .   

Residuals                811 36.552 0.04507                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 Response inflection point: 

                             Df     Sum Sq    Mean Sq F value    Pr(>F)     

species                       2 1.6688e+17 8.3442e+16  1.6851   0.18608     

SWC                           1 6.9707e+14 6.9707e+14  0.0141   0.90559     

block                         2 1.0743e+17 5.3714e+16  1.0847   0.33849     

species:genotype             48 2.5739e+18 5.3622e+16  1.0829   0.32813     

species:SWC                   2 6.5978e+17 3.2989e+17  6.6618   0.00135 **  

species:genotype: SWC        48 6.6372e+18 1.3827e+17  2.7923 3.919e-09 *** 

Residuals                    811 4.0160e+19 4.9519e+16                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

3 observations deleted due to missingness 
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Suppl. Stat. 9: 

Summary statistics of the multiple comparison of the survival rate 2 days after re-

watering between species. Simultaneous tests for general linear hypotheses, multiple 

comparison of means: Tukey contrast; Fit: glm (formula = survival ~ species, family = 

quasi-binomial) 

Linear Hypotheses Estimate Std. Error z value Pr(>|z|) 

lyrata - halleri == 0 -0.01762 0.05674 -0.311 0.948 

thaliana - halleri == 0 -0.77383 0.06023 -12.847 <1e-06 *** 

thaliana - lyrata == 0 -0.75621 0.05415 -13.966 <1e-06 *** 

 

Suppl. Stat. 10:  

Generalized mixed linear models and analysis of variance for the 38 extracted 

metabolites. The negative binomial was used to correct for the error distribution. The 

parameter “theta” was calculated using the R function “glm.nb” from the MASS 

package. The term “conditions” means stress-levels (i.e. 20; 60% SWC and Recovery)

Alpha-alanine 

Generalized linear mixed model fit by maximum likelihood (Laplace Approxi

mation) ['glmerMod'] 

 Family: Negative Binomial(3.9545)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.re

plicate) 

   Data: C_alpha_Alanine 

 

     AIC      BIC   logLik deviance df.resid  

  6237.5   6282.6  -3106.7   6213.5      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.6515 -0.5804 -0.0904  0.5212  3.2933  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.04093  0.2023   

 genotypes                     (Intercept) 0.00000  0.0000   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         9.23252    0.07899 116.885  < 2e-16 *** 

specieslyrata                      -0.31301    0.11944  -2.621 0.008775 **  

speciesthaliana                     0.42705    0.12200   3.500 0.000465 *** 

conditions20%                      -0.52141    0.10580  -4.928  8.3e-07 *** 

conditionsRecovery                 -0.11176    0.11813  -0.946 0.344101     

specieslyrata:conditions20%         0.15623    0.16583   0.942 0.346134     

speciesthaliana:conditions20%       0.34367    0.16229   2.118 0.034208 *   

specieslyrata:conditionsRecovery    0.49317    0.17668   2.791 0.005249 **  

speciesthaliana:conditionsRecovery  0.07392    0.17257   0.428 0.668414     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                    Chisq Df Pr(>Chisq)     

species            69.363  2  8.671e-16 *** 

conditions         41.419  2  1.014e-09 *** 

species:conditions 15.751  4   0.003373 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Alpha-Ketoglutarate 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(3.4396)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.replicate) 

   Data: C_alpha_Ketoglutarate 

 

     AIC      BIC   logLik deviance df.resid  

  4086.2   4131.3  -2031.1   4062.2      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.8358 -0.5867 -0.1519  0.4441  8.3214  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 1.737e-02 1.318e-01 

 genotypes                     (Intercept) 6.224e-10 2.495e-05 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         5.65145    0.07892  71.611  < 2e-16 *** 

specieslyrata                      -0.33866    0.12235  -2.768  0.00564 **  

speciesthaliana                     0.60883    0.12510   4.867 1.14e-06 *** 

conditions20%                      -0.47216    0.11395  -4.143 3.42e-05 *** 

conditionsRecovery                  0.13792    0.12463   1.107  0.26846     

specieslyrata:conditions20%         0.11618    0.17854   0.651  0.51522     

speciesthaliana:conditions20%       0.27426    0.17616   1.557  0.11950     

specieslyrata:conditionsRecovery    0.39610    0.18813   2.105  0.03525 *   

speciesthaliana:conditionsRecovery  0.06323    0.18389   0.344  0.73095     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            128.371  2  < 2.2e-16 *** 

conditions          63.327  2  1.773e-14 *** 

species:conditions   8.823  4    0.06568 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Asparagine 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(0.279)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.replicate) 

   Data: C_Asparagine 
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     AIC      BIC   logLik deviance df.resid  

  4454.2   4499.3  -2215.1   4430.2      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.5282 -0.4644 -0.2617  0.1158  4.8638  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 1.075e-08 0.0001037 

 genotypes                     (Intercept) 6.339e-01 0.7961917 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                          7.6880     0.3644  21.096  < 2e-16 *** 

specieslyrata                       -2.3569     0.5671  -4.156 3.24e-05 *** 

speciesthaliana                     -1.9409     0.5889  -3.296 0.000981 *** 

conditions20%                       -0.5718     0.4273  -1.338 0.180776     

conditionsRecovery                   0.9241     0.4599   2.009 0.044516 *   

specieslyrata:conditions20%         -0.4136     0.6604  -0.626 0.531107     

speciesthaliana:conditions20%        0.5930     0.6875   0.863 0.388394     

specieslyrata:conditionsRecovery    -0.3620     0.6829  -0.530 0.596046     

speciesthaliana:conditionsRecovery  -0.8031     0.7881  -1.019 0.308184     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            34.5850  2   3.09e-08 *** 

conditions         13.7919  2   0.001012 **  

species:conditions  5.6086  4   0.230344     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Aspartate 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(0.7977)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.replicate) 

   Data: C_Aspartate 

 

     AIC      BIC   logLik deviance df.resid  

  6266.2   6311.3  -3121.1   6242.2      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.8931 -0.6484 -0.1652  0.4610  3.8696  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 2.486e-10 1.577e-05 

 genotypes                     (Intercept) 5.282e-02 2.298e-01 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         9.54226    0.17164  55.593  < 2e-16 *** 

specieslyrata                      -0.99432    0.26861  -3.702 0.000214 *** 

speciesthaliana                    -0.98707    0.27470  -3.593 0.000327 *** 

conditions20%                      -0.43535    0.23519  -1.851 0.064154 .   

conditionsRecovery                  0.07273    0.25904   0.281 0.778880     

specieslyrata:conditions20%        -0.25173    0.36793  -0.684 0.493856     

speciesthaliana:conditions20%       0.42178    0.36603   1.152 0.249192     

specieslyrata:conditionsRecovery    0.43334    0.38826   1.116 0.264371     

speciesthaliana:conditionsRecovery -0.26310    0.38704  -0.680 0.496653     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            32.8192  2  7.471e-08 *** 

conditions          9.3863  2   0.009158 **  

species:conditions 10.7963  4   0.028951 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Fructose 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(0.6715)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.replicate) 

   Data: C_Fructose 

 

     AIC      BIC   logLik deviance df.resid  

  7534.2   7579.3  -3755.1   7510.2      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.8195 -0.5413 -0.3002  0.1906  9.2700  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 5.792e-09 7.611e-05 

 genotypes                     (Intercept) 5.021e-01 7.086e-01 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         10.4481     0.2745  38.067   <2e-16 *** 

specieslyrata                        0.9021     0.4219   2.138   0.0325 *   

speciesthaliana                     -0.5270     0.4327  -1.218   0.2232     

conditions20%                        0.5977     0.2685   2.226   0.0260 *   

conditionsRecovery                  -0.5046     0.2835  -1.780   0.0751 .   

specieslyrata:conditions20%         -0.3704     0.4080  -0.908   0.3639     

speciesthaliana:conditions20%        0.8573     0.4004   2.141   0.0323 *   

specieslyrata:conditionsRecovery    -0.1804     0.4128  -0.437   0.6622     

speciesthaliana:conditionsRecovery   0.9134     0.4188   2.181   0.0292 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species             4.4453  2     0.1083     

conditions         35.0802  2  2.412e-08 *** 

species:conditions 10.8670  4     0.0281 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Fumarate 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(1.0882)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.replicate) 

   Data: C_Fumarate 

 

     AIC      BIC   logLik deviance df.resid  

  7663.4   7708.5  -3819.7   7639.4      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.0431 -0.4971 -0.1639  0.2909  9.7364  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.0154   0.1241   

 genotypes                     (Intercept) 0.4449   0.6670   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                    Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         8.651566   0.214083  40.412   <2e-16 *** 

specieslyrata                       3.808368   0.322844  11.796   <2e-16 *** 

speciesthaliana                     3.675325   0.344556  10.667   <2e-16 *** 

conditions20%                       0.195516   0.181380   1.078   0.2811     

conditionsRecovery                 -0.282342   0.187266  -1.508   0.1316     

specieslyrata:conditions20%        -0.007217   0.276773  -0.026   0.9792     

speciesthaliana:conditions20%       0.444885   0.277427   1.604   0.1088     

specieslyrata:conditionsRecovery    0.552505   0.282216   1.958   0.0503 .   

speciesthaliana:conditionsRecovery -0.210771   0.282046  -0.747   0.4549     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

  

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            223.131  2  < 2.2e-16 *** 

conditions          14.637  2  0.0006633 *** 

species:conditions  13.591  4  0.0087220 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

GABA 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(0.9466)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.replicate) 

   Data: C_GABA 

 

     AIC      BIC   logLik deviance df.resid  

  5460.9   5506.0  -2718.4   5436.9      304  
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Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.9723 -0.5669 -0.3247  0.1915  4.5048  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.155    0.3938   

 genotypes                     (Intercept) 0.107    0.3271   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                          6.5722     0.1958  33.567  < 2e-16 *** 

specieslyrata                        1.2903     0.2981   4.329 1.50e-05 *** 

speciesthaliana                      1.8382     0.3023   6.081 1.20e-09 *** 

conditions20%                        0.8440     0.2360   3.576 0.000348 *** 

conditionsRecovery                  -0.4714     0.2613  -1.804 0.071252 .   

specieslyrata:conditions20%         -1.6445     0.3677  -4.472 7.75e-06 *** 

speciesthaliana:conditions20%       -0.9094     0.3583  -2.538 0.011156 *   

specieslyrata:conditionsRecovery    -0.3996     0.3906  -1.023 0.306252     

speciesthaliana:conditionsRecovery   0.5134     0.3689   1.392 0.163958     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

  

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            55.2955  2  9.834e-13 *** 

conditions          6.6687  2    0.03564 *   

species:conditions 27.5294  4  1.553e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Gluconate 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(1.0455)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.replicate) 

   Data: C_Gluconate 

 

     AIC      BIC   logLik deviance df.resid  

  5226.9   5271.9  -2601.4   5202.9      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.9280 -0.5123 -0.2435  0.1813  3.7333  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.2366   0.4864   

 genotypes                     (Intercept) 0.1084   0.3293   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                          6.0904     0.1859  32.757  < 2e-16 *** 

specieslyrata                        1.2323     0.2889   4.265 2.00e-05 *** 

speciesthaliana                      0.9644     0.2938   3.282 0.001029 **  

conditions20%                        1.2660     0.2250   5.627 1.83e-08 *** 

conditionsRecovery                   0.8435     0.2474   3.409 0.000651 *** 

specieslyrata:conditions20%         -0.7185     0.3451  -2.082 0.037352 *   

speciesthaliana:conditions20%       -2.0078     0.3343  -6.006 1.91e-09 *** 

specieslyrata:conditionsRecovery    -0.3842     0.3713  -1.035 0.300758     

speciesthaliana:conditionsRecovery  -0.4940     0.3500  -1.412 0.158086     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

  

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                    Chisq Df Pr(>Chisq)     

species            15.904  2  0.0003519 *** 

conditions         18.602  2  9.135e-05 *** 

species:conditions 39.259  4  6.159e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Glucose 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(1.2725)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.replicate) 

   Data: C_Glucose 

 

     AIC      BIC   logLik deviance df.resid  

  8386.5   8431.6  -4181.2   8362.5      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.0874 -0.6430 -0.2629  0.3815  6.4476  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 2.213e-09 4.704e-05 

 genotypes                     (Intercept) 2.573e-01 5.073e-01 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         11.7162     0.1947  60.190  < 2e-16 *** 

specieslyrata                        0.2520     0.2910   0.866 0.386489     

speciesthaliana                      0.3016     0.3182   0.948 0.343100     

conditions20%                        0.6489     0.1727   3.758 0.000171 *** 

conditionsRecovery                   0.1028     0.1907   0.539 0.590032     

specieslyrata:conditions20%         -0.2674     0.2734  -0.978 0.328142     

speciesthaliana:conditions20%        0.7227     0.2685   2.692 0.007102 **  

specieslyrata:conditionsRecovery    -0.4159     0.2869  -1.450 0.147092     

speciesthaliana:conditionsRecovery   0.1613     0.2787   0.579 0.562849     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species             5.5607  2    0.06202 .   

conditions         52.0522  2  4.977e-12 *** 

species:conditions 12.8813  4    0.01187 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Glutamate 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(43622491)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.replicate) 

   Data: C_Glutamate 

 

      AIC       BIC    logLik  deviance  df.resid  

 984063.0  984108.0 -492019.5  984039.0       304  

 

Scaled residuals:  

     Min       1Q   Median       3Q      Max  

-120.723  -30.123    0.004   29.472  189.356  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.15593  0.3949   

 genotypes                     (Intercept) 0.02938  0.1714   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                    Estimate Std. Error  z value Pr(>|z|)     

(Intercept)                         9.987163   0.044559  224.131  < 2e-16 *** 

specieslyrata                      -0.453283   0.105069   -4.314  1.6e-05 *** 

speciesthaliana                    -0.365079   0.116335   -3.138   0.0017 **  

conditions20%                      -0.300051   0.001576 -190.397  < 2e-16 *** 

conditionsRecovery                  0.045505   0.001625   28.000  < 2e-16 *** 

specieslyrata:conditions20%         0.143922   0.002783   51.723  < 2e-16 *** 

speciesthaliana:conditions20%       0.105553   0.002537   41.611  < 2e-16 *** 

specieslyrata:conditionsRecovery    0.291588   0.002684  108.623  < 2e-16 *** 

speciesthaliana:conditionsRecovery -0.161407   0.002580  -62.557  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                       Chisq Df Pr(>Chisq)     

species               18.199  2  0.0001117 *** 

conditions         81037.792  2  < 2.2e-16 *** 

species:conditions 31753.903  4  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Glycerate 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(2.182)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.replicate) 

   Data: C_Glycerate 

 

     AIC      BIC   logLik deviance df.resid  

  6811.5   6856.5  -3393.7   6787.5      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.4082 -0.5095 -0.1804  0.3090  5.1535  
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Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.06524  0.2554   

 genotypes                     (Intercept) 0.04286  0.2070   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         11.0425     0.1208  91.445   <2e-16 *** 

specieslyrata                       -2.2059     0.1869 -11.806   <2e-16 *** 

speciesthaliana                     -2.0495     0.1912 -10.718   <2e-16 *** 

conditions20%                        0.2064     0.1426   1.448   0.1477     

conditionsRecovery                  -0.4016     0.1694  -2.372   0.0177 *   

specieslyrata:conditions20%          0.3604     0.2236   1.612   0.1071     

speciesthaliana:conditions20%        0.2009     0.2193   0.917   0.3594     

specieslyrata:conditionsRecovery     0.4887     0.2481   1.970   0.0489 *   

speciesthaliana:conditionsRecovery   0.2318     0.2418   0.959   0.3378     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                      Chisq Df Pr(>Chisq)     

species            242.7638  2  < 2.2e-16 *** 

conditions          31.9629  2  1.146e-07 *** 

species:conditions   4.7299  4     0.3162     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Glycerol 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

['glmerMod'] 

 Family: Negative Binomial(4.1108)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Technical.replicate) 

   Data: C_Glycerol 

 

     AIC      BIC   logLik deviance df.resid  

  6270.3   6315.4  -3123.2   6246.3      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.4769 -0.5569 -0.1448  0.2616  6.1846  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.01578  0.1256   

 genotypes                     (Intercept) 0.03609  0.1900   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotypes, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         9.48582    0.09376 101.168  < 2e-16 *** 

specieslyrata                      -0.59464    0.14356  -4.142 3.44e-05 *** 

speciesthaliana                    -0.19555    0.14671  -1.333   0.1826     

conditions20%                      -0.19355    0.10433  -1.855   0.0636 .   

conditionsRecovery                 -0.16368    0.11836  -1.383   0.1667     

specieslyrata:conditions20%         0.72776    0.16373   4.445 8.80e-06 *** 

speciesthaliana:conditions20%       0.23375    0.15907   1.469   0.1417     

specieslyrata:conditionsRecovery    0.36357    0.17527   2.074   0.0381 *   

speciesthaliana:conditionsRecovery -0.04148    0.17114  -0.242   0.8085     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species             4.8623  2   0.087936 .   

conditions          4.9563  2   0.083897 .   

species:conditions 21.5613  4   0.000245 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Glycine 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(2.029)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Glycine 

 

     AIC      BIC   logLik deviance df.resid  

  5894.3   5939.3  -2935.1   5870.3      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.1930 -0.6166 -0.2552  0.3240  3.2367  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.06269  0.2504   

 genotypes                     (Intercept) 0.07857  0.2803   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                    Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         8.006928   0.139159  57.538  < 2e-16 *** 

specieslyrata                      -0.293040   0.211713  -1.384 0.166316     

speciesthaliana                    -0.001603   0.216739  -0.007 0.994101     

conditions20%                       0.724604   0.152994   4.736 2.18e-06 *** 

conditionsRecovery                  0.185818   0.173282   1.072 0.283565     

specieslyrata:conditions20%         0.392121   0.236472   1.658 0.097275 .   

speciesthaliana:conditions20%       0.289468   0.231742   1.249 0.211629     

specieslyrata:conditionsRecovery    0.854773   0.256765   3.329 0.000872 

*** 

speciesthaliana:conditionsRecovery  0.095470   0.248807   0.384 0.70119

1     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species             0.3703  2   0.830997     

conditions         92.2261  2  < 2.2e-16 *** 

species:conditions 14.8572  4   0.005007 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Glycolate 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(3.6888)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Glycolate 

 

     AIC      BIC   logLik deviance df.resid  

  4609.7   4654.7  -2292.8   4585.7      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.4385 -0.5494 -0.2114  0.2588  5.3647  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.04036  0.2009   

 genotypes                     (Intercept) 0.01969  0.1403   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         7.14353    0.09109  78.424  < 2e-16 *** 

specieslyrata                      -1.00864    0.13997  -7.206 5.76e-13 *** 

speciesthaliana                    -0.56516    0.14274  -3.959 7.51e-05 *** 

conditions20%                      -0.40604    0.11023  -3.683  0.00023 *** 

conditionsRecovery                 -0.17063    0.12550  -1.360  0.17395     

specieslyrata:conditions20%         0.55198    0.17242   3.201  0.00137 **  

speciesthaliana:conditions20%       0.08582    0.16886   0.508  0.61130     

specieslyrata:conditionsRecovery    0.37093    0.18703   1.983  0.04734 *   

speciesthaliana:conditionsRecovery -0.08100    0.18220  -0.445  0.65664     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

  

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            51.5871  2  6.281e-12 *** 

conditions          9.7774  2   0.007531 **  

species:conditions 13.0376  4   0.011094 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Hydroxyglutarate 
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Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(1.1604)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Hydroxyglutarate 

 

     AIC      BIC   logLik deviance df.resid  

  4167.4   4212.5  -2071.7   4143.4      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.0753 -0.4125 -0.1603  0.2090  7.7006  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.12250  0.3500   

 genotypes                     (Intercept) 0.04038  0.2009   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                          4.5302     0.1545  29.316  < 2e-16 *** 

specieslyrata                        0.5281     0.2392   2.208  0.02722 *   

speciesthaliana                      1.2031     0.2442   4.927 8.34e-07 *** 

conditions20%                        1.3153     0.2278   5.773 7.80e-09 *** 

conditionsRecovery                   0.4183     0.2271   1.842  0.06545 .   

specieslyrata:conditions20%         -0.8537     0.3285  -2.598  0.00936 **  

speciesthaliana:conditions20%       -0.8340     0.3222  -2.588  0.00965 **  

specieslyrata:conditionsRecovery    -0.2821     0.3346  -0.843  0.39919     

speciesthaliana:conditionsRecovery   0.2871     0.3254   0.882  0.37766     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                    Chisq Df Pr(>Chisq)     

species            36.068  2  1.472e-08 *** 

conditions         32.259  2  9.888e-08 *** 

species:conditions 14.528  4   0.005786 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Isocitrate 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(1.9959)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Isocitrate 

 

     AIC      BIC   logLik deviance df.resid  

  6957.1   7002.1  -3466.5   6933.1      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.3883 -0.6235 -0.2263  0.4288  5.3955  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 4.014e-10 2.003e-05 

 genotypes                     (Intercept) 1.286e-01 3.586e-01 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                          9.6517     0.1477  65.344  < 2e-16 *** 

specieslyrata                        0.1676     0.2276   0.736 0.461625     

speciesthaliana                      1.4217     0.2356   6.034  1.6e-09 *** 

conditions20%                       -0.5729     0.1519  -3.771 0.000162 *** 

conditionsRecovery                   0.2644     0.1704   1.551 0.120853     

specieslyrata:conditions20%          0.4267     0.2352   1.814 0.069656 .   

speciesthaliana:conditions20%       -0.4075     0.2311  -1.764 0.077813 .   

specieslyrata:conditionsRecovery     0.5865     0.2525   2.322 0.020221 *   

speciesthaliana:conditionsRecovery   0.2504     0.2491   1.005 0.314806     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species             45.438  2  1.359e-10 *** 

conditions         114.839  2  < 2.2e-16 *** 

species:conditions  16.036  4   0.002972 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Isoleucine 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(3.268)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Isoleucine 

 

     AIC      BIC   logLik deviance df.resid  

  4159.2   4204.3  -2067.6   4135.2      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.4251 -0.6365 -0.2154  0.4075  4.9301  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.01046  0.1023   

 genotypes                     (Intercept) 0.01667  0.1291   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         5.50594    0.09058  60.782  < 2e-16 *** 

specieslyrata                      -0.12924    0.13818  -0.935  0.34960     

speciesthaliana                    -0.53352    0.14188  -3.760  0.00017 *** 

conditions20%                       0.93360    0.11680   7.993 1.31e-15 *** 

conditionsRecovery                  0.07368    0.13138   0.561  0.57493     

specieslyrata:conditions20%        -0.21868    0.18348  -1.192  0.23332     

speciesthaliana:conditions20%       1.52867    0.18078   8.456  < 2e-16 **

* 

specieslyrata:conditionsRecovery    0.02311    0.19544   0.118  0.90586     

speciesthaliana:conditionsRecovery  0.28021    0.19261   1.455  0.14572     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                      Chisq Df Pr(>Chisq)     

species              5.9479  2     0.0511 .   

conditions         362.2834  2     <2e-16 *** 

species:conditions 111.1817  4     <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Lactate 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(3.4362)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Lactate 

 

     AIC      BIC   logLik deviance df.resid  

  6684.9   6729.9  -3330.4   6660.9      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.3670 -0.5473 -0.1700  0.1955  6.3019  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.03676  0.1917   

 genotypes                     (Intercept) 0.03619  0.1902   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     
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(Intercept)                        10.23977    0.10059 101.801  < 2e-16 *** 

specieslyrata                      -0.82126    0.15470  -5.309  1.1e-07 *** 

speciesthaliana                    -0.45090    0.15792  -2.855 0.004301 **  

conditions20%                      -0.38113    0.11427  -3.335 0.000852 *** 

conditionsRecovery                 -0.04210    0.13070  -0.322 0.747365     

specieslyrata:conditions20%         0.68180    0.18005   3.787 0.000153 **

* 

speciesthaliana:conditions20%       0.20293    0.17458   1.162 0.245074     

specieslyrata:conditionsRecovery    0.40082    0.19364   2.070 0.038458 *   

speciesthaliana:conditionsRecovery  0.02811    0.18829   0.149 0.881343     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            17.7452  2  0.0001402 *** 

conditions          7.0036  2  0.0301436 *   

species:conditions 15.4028  4  0.0039348 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Leucine 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(2.8717)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Leucine 

 

     AIC      BIC   logLik deviance df.resid  

  3829.2   3874.2  -1902.6   3805.2      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.4290 -0.6994 -0.2310  0.4321  5.6578  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 3.732e-02 1.932e-01 

 genotypes                     (Intercept) 1.153e-09 3.396e-05 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         5.02758    0.09166  54.851  < 2e-16 *** 

specieslyrata                      -0.34272    0.13866  -2.472   0.0134 *   

speciesthaliana                    -0.33368    0.14174  -2.354   0.0186 *   

conditions20%                       0.76157    0.12585   6.051 1.44e-09 *** 

conditionsRecovery                  0.16048    0.14124   1.136   0.2559     

specieslyrata:conditions20%        -0.15965    0.19748  -0.808   0.4188     

speciesthaliana:conditions20%       0.92039    0.19361   4.754 2.00e-06 **

* 

specieslyrata:conditionsRecovery    0.02413    0.21088   0.114   0.9089     

speciesthaliana:conditionsRecovery  0.15889    0.20574   0.772   0.4399     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                    Chisq Df Pr(>Chisq)     

species             22.01  2  1.662e-05 *** 

conditions         167.54  2  < 2.2e-16 *** 

species:conditions  36.68  4  2.097e-07 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Malate 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(2.1306)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Malate 

 

     AIC      BIC   logLik deviance df.resid  

  8010.2   8055.3  -3993.1   7986.2      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.4248 -0.5671 -0.1467  0.3543  3.5659  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 1.443e-10 1.201e-05 

 genotypes                     (Intercept) 1.328e-01 3.645e-01 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                        11.89874    0.14428  82.469  < 2e-16 *** 

specieslyrata                       0.00642    0.22222   0.029 0.976953     

speciesthaliana                    -1.49629    0.23379  -6.400 1.55e-10 *** 

conditions20%                       0.53399    0.14252   3.747 0.000179 *** 

conditionsRecovery                 -0.04123    0.16061  -0.257 0.797409     

specieslyrata:conditions20%         0.08475    0.22136   0.383 0.701845     

speciesthaliana:conditions20%       0.80071    0.22192   3.608 0.000309 *

** 

specieslyrata:conditionsRecovery   -0.08782    0.23960  -0.367 0.713984     

speciesthaliana:conditionsRecovery  0.67147    0.24004   2.797 0.005153 

**  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                    Chisq Df Pr(>Chisq)     

species            31.666  2   1.33e-07 *** 

conditions         82.343  2  < 2.2e-16 *** 

species:conditions 17.936  4    0.00127 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Maleate 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(3.1291)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Maleate 

 

     AIC      BIC   logLik deviance df.resid  

  5424.4   5469.5  -2700.2   5400.4      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.4317 -0.6376 -0.1228  0.4358  3.7007  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.007462 0.08638  

 genotypes                     (Intercept) 0.083175 0.28840  

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                          8.0673     0.1199  67.269  < 2e-16 *** 

specieslyrata                       -0.3944     0.1842  -2.141  0.03226 *   

speciesthaliana                     -0.8097     0.1892  -4.278 1.88e-05 *** 

conditions20%                        0.6600     0.1193   5.530 3.20e-08 *** 

conditionsRecovery                   0.0545     0.1342   0.406  0.68458     

specieslyrata:conditions20%         -0.1818     0.1867  -0.974  0.33010     

speciesthaliana:conditions20%       -0.5104     0.1828  -2.793  0.00523 **  

specieslyrata:conditionsRecovery    -0.1313     0.2002  -0.656  0.51183     

speciesthaliana:conditionsRecovery  -0.2063     0.1958  -1.054  0.29199     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            42.0461  2  7.410e-10 *** 

conditions         47.5597  2  4.705e-11 *** 
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species:conditions  8.0847  4    0.08852 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Malonate 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(3.2963)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Malonate 

 

     AIC      BIC   logLik deviance df.resid  

  3669.4   3714.5  -1822.7   3645.4      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.5410 -0.5186 -0.1008  0.4607  2.8288  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 1.021e-10 0.0000101 

 genotypes                     (Intercept) 1.421e-01 0.3769361 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         5.30249    0.13816  38.379   <2e-16 *** 

specieslyrata                      -0.36926    0.21408  -1.725   0.0845 .   

speciesthaliana                    -0.79818    0.22077  -3.615   0.0003 *** 

conditions20%                      -0.06082    0.11753  -0.517   0.6048     

conditionsRecovery                  0.14459    0.13103   1.104   0.2698     

specieslyrata:conditions20%         0.39405    0.18307   2.152   0.0314 *   

speciesthaliana:conditions20%       0.43300    0.18008   2.405   0.0162 *   

specieslyrata:conditionsRecovery    0.33596    0.19570   1.717   0.0860 .   

speciesthaliana:conditionsRecovery  0.16784    0.19159   0.876   0.3810     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species             9.8125  2  0.0074003 **  

conditions         14.1186  2  0.0008594 *** 

species:conditions  8.6829  4  0.0695341 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Maltose 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(2.5347)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Maltose 

 

     AIC      BIC   logLik deviance df.resid  

  6460.6   6505.7  -3218.3   6436.6      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.4707 -0.5246 -0.0857  0.3505  6.9521  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.03884  0.1971   

 genotypes                     (Intercept) 0.06989  0.2644   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                          9.8266     0.1233  79.712  < 2e-16 *** 

specieslyrata                       -0.1174     0.1904  -0.617 0.537487     

speciesthaliana                     -1.1380     0.1956  -5.820  5.9e-09 *** 

conditions20%                        0.0286     0.1335   0.214 0.830358     

conditionsRecovery                   0.2665     0.1514   1.760 0.078386 .   

specieslyrata:conditions20%          0.1187     0.2082   0.570 0.568626     

speciesthaliana:conditions20%       -0.7964     0.2060  -3.865 0.000111 **

* 

specieslyrata:conditionsRecovery    -0.3834     0.2243  -1.710 0.087356 .   

speciesthaliana:conditionsRecovery  -0.4294     0.2218  -1.936 0.052905 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            99.1394  2  < 2.2e-16 *** 

conditions          6.1945  2    0.04517 *   

species:conditions 26.0623  4  3.074e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Mannitol 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(0.7968)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Mannitol 

 

     AIC      BIC   logLik deviance df.resid  

  4224.3   4269.3  -2100.1   4200.3      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.8918 -0.4599 -0.1539  0.2420  9.2223  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.03941  0.1985   

 genotypes                     (Intercept) 0.03050  0.1746   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                    Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         5.366608   0.189996  28.246   <2e-16 *** 

specieslyrata                       0.057003   0.276206   0.206    0.836     

speciesthaliana                    -0.002947   0.278518  -0.011    0.992     

conditions20%                       0.379020   0.243035   1.560    0.119     

conditionsRecovery                  0.200714   0.272015   0.738    0.461     

specieslyrata:conditions20%         0.537143   0.397691   1.351    0.177     

speciesthaliana:conditions20%      -0.266824   0.365578  -0.730    0.465     

specieslyrata:conditionsRecovery   -0.072803   0.399415  -0.182    0.855     

speciesthaliana:conditionsRecovery  0.121283   0.389372   0.311    0.755     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                    Chisq Df Pr(>Chisq)   

species            1.9163  2    0.38360   

conditions         8.2221  2    0.01639 * 

species:conditions 6.1362  4    0.18921   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Myoisonitol 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(2.8514)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Myoinositol 

 

     AIC      BIC   logLik deviance df.resid  

  7423.4   7468.4  -3699.7   7399.4      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.5963 -0.5440 -0.1834  0.4060  8.1029  
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Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.02734  0.1653   

 genotypes                     (Intercept) 0.06636  0.2576   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                    Estimate Std. Error z value Pr(>|z|)     

(Intercept)                        10.161216   0.118800  85.532  < 2e-16 *** 

specieslyrata                       0.854070   0.181948   4.694 2.68e-06 *** 

speciesthaliana                     1.802680   0.185676   9.709  < 2e-16 *** 

conditions20%                       0.025322   0.124241   0.204   0.8385     

conditionsRecovery                 -0.009429   0.138481  -0.068   0.9457     

specieslyrata:conditions20%        -0.346990   0.195466  -1.775   0.0759 .   

speciesthaliana:conditions20%      -0.047988   0.191324  -0.251   0.8020     

specieslyrata:conditionsRecovery   -0.057114   0.209220  -0.273   0.7849     

speciesthaliana:conditionsRecovery  0.028955   0.201954   0.143   0.8860     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

  

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                      Chisq Df Pr(>Chisq)     

species            136.4299  2     <2e-16 *** 

conditions           1.2822  2     0.5267     

species:conditions   3.7298  4     0.4438     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Phenylalanine 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(0.869)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Phenylalanine 

 

     AIC      BIC   logLik deviance df.resid  

  4149.3   4194.3  -2062.6   4125.3      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.9314 -0.4901 -0.1395  0.2568  5.4716  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.00000  0.0000   

 genotypes                     (Intercept) 0.02654  0.1629   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                    Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         5.650503   0.158850  35.571  < 2e-16 *** 

specieslyrata                      -0.476060   0.246510  -1.931  0.05346 .   

speciesthaliana                    -0.772980   0.252344  -3.063  0.00219 **  

conditions20%                       0.144011   0.226127   0.637  0.52422     

conditionsRecovery                  0.009099   0.247145   0.037  0.97063     

specieslyrata:conditions20%         0.518851   0.352113   1.474  0.14061     

speciesthaliana:conditions20%       1.380242   0.348076   3.965 7.33e-05 

*** 

specieslyrata:conditionsRecovery    0.152018   0.372358   0.408  0.68309     

speciesthaliana:conditionsRecovery -0.203745   0.369036  -0.552  0.5808

8     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species             4.9798  2    0.08292 .   

conditions         32.3096  2  9.640e-08 *** 

species:conditions 23.7547  4  8.945e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Proline 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(1.1302)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Proline 

 

     AIC      BIC   logLik deviance df.resid  

  6519.3   6564.4  -3247.7   6495.3      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.0630 -0.5892 -0.0920  0.4069  3.7443  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 2.478e-10 1.574e-05 

 genotypes                     (Intercept) 8.829e-02 2.971e-01 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         8.84315    0.16538  53.470  < 2e-16 *** 

specieslyrata                      -0.10897    0.25098  -0.434  0.66416     

speciesthaliana                    -1.13643    0.25981  -4.374 1.22e-05 *** 

conditions20%                       1.12896    0.20321   5.556 2.76e-08 *** 

conditionsRecovery                  0.68612    0.22815   3.007  0.00264 **  

specieslyrata:conditions20%        -0.04924    0.31005  -0.159  0.87381     

speciesthaliana:conditions20%       1.21755    0.30880   3.943 8.05e-05 **

* 

specieslyrata:conditionsRecovery   -0.07185    0.33294  -0.216  0.82914     

speciesthaliana:conditionsRecovery  1.00238    0.32945   3.043  0.00235 

**  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                      Chisq Df Pr(>Chisq)     

species              4.5933  2  0.1005959     

conditions         128.5985  2  < 2.2e-16 *** 

species:conditions  21.9542  4  0.0002047 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Putrescine 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(1.6692)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Putrescine 

 

     AIC      BIC   logLik deviance df.resid  

  4970.4   5015.4  -2473.2   4946.4      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.1734 -0.5907 -0.2738  0.3519  3.6873  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.03316  0.1821   

 genotypes                     (Intercept) 0.12245  0.3499   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                          6.1665     0.1589  38.811  < 2e-16 *** 

specieslyrata                       -0.1098     0.2410  -0.456  0.64867     

speciesthaliana                      1.5096     0.2500   6.039 1.55e-09 *** 

conditions20%                        0.2982     0.1661   1.795  0.07261 .   

conditionsRecovery                  -0.1911     0.1871  -1.022  0.30698     

specieslyrata:conditions20%         -0.1677     0.2583  -0.649  0.51624     

speciesthaliana:conditions20%        0.1310     0.2595   0.505  0.61355     

specieslyrata:conditionsRecovery     1.4900     0.2795   5.331 9.76e-08 **

* 
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speciesthaliana:conditionsRecovery   0.7302     0.2713   2.691  0.00712 *

*  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

  

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                    Chisq Df Pr(>Chisq)     

species            78.391  2  < 2.2e-16 *** 

conditions         20.405  2  3.708e-05 *** 

species:conditions 40.451  4  3.491e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Pyruvate 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(2.5919)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Pyruvate 

 

     AIC      BIC   logLik deviance df.resid  

  4889.0   4934.1  -2432.5   4865.0      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.2518 -0.5621 -0.1367  0.3660  6.0620  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.03031  0.1741   

 genotypes                     (Intercept) 0.10114  0.3180   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                          7.0538     0.1330  53.054  < 2e-16 *** 

specieslyrata                        0.1123     0.2072   0.542   0.5879     

speciesthaliana                     -0.5851     0.2116  -2.765   0.0057 **  

conditions20%                       -0.5120     0.1313  -3.900 9.63e-05 *** 

conditionsRecovery                   0.0792     0.1469   0.539   0.5898     

specieslyrata:conditions20%          0.1004     0.2096   0.479   0.6319     

speciesthaliana:conditions20%        0.9370     0.2028   4.620 3.84e-06 *** 

specieslyrata:conditionsRecovery     0.3718     0.2206   1.685   0.0920 .   

speciesthaliana:conditionsRecovery   0.2255     0.2146   1.051   0.2934     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species             6.0541  2    0.04846 *   

conditions         22.1004  2  1.588e-05 *** 

species:conditions 30.8388  4  3.302e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Raffinose 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(0.901)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Raffinose 

 

     AIC      BIC   logLik deviance df.resid  

  6733.9   6779.0  -3355.0   6709.9      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.9408 -0.6474 -0.2992  0.5374  3.4214  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 1.612e-10 0.0000127 

 genotypes                     (Intercept) 2.799e-01 0.5290720 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         9.40156    0.22123  42.497  < 2e-16 *** 

specieslyrata                       0.15865    0.34148   0.465  0.64223     

speciesthaliana                    -1.00004    0.35378  -2.827  0.00470 **  

conditions20%                       0.41626    0.23364   1.782  0.07481 .   

conditionsRecovery                  0.67378    0.24895   2.706  0.00680 **  

specieslyrata:conditions20%        -0.39369    0.35843  -1.098  0.27204     

speciesthaliana:conditions20%       1.75847    0.35666   4.930 8.21e-07 **

* 

specieslyrata:conditionsRecovery   -1.22704    0.37332  -3.287  0.00101 *

*  

speciesthaliana:conditionsRecovery  0.06998    0.36714   0.191  0.84884     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species             1.4731  2     0.4788     

conditions         30.5656  2  2.306e-07 *** 

species:conditions 47.7376  4  1.070e-09 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Shikimate 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(3.2014)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Shikimate 

 

     AIC      BIC   logLik deviance df.resid  

  4970.0   5015.1  -2473.0   4946.0      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.7858 -0.4924 -0.0888  0.4019  3.2465  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 1.817e-10 1.348e-05 

 genotypes                     (Intercept) 1.329e-01 3.646e-01 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         7.58613    0.13548  55.995  < 2e-16 *** 

specieslyrata                      -0.95869    0.20996  -4.566 4.97e-06 *** 

speciesthaliana                     0.11671    0.21593   0.541    0.589     

conditions20%                      -0.62884    0.11691  -5.379 7.51e-08 *** 

conditionsRecovery                 -0.02558    0.13155  -0.194    0.846     

specieslyrata:conditions20%        -0.19280    0.18352  -1.051    0.293     

speciesthaliana:conditions20%      -0.25285    0.17946  -1.409    0.159     

specieslyrata:conditionsRecovery    0.37928    0.19682   1.927    0.054 .   

speciesthaliana:conditionsRecovery  0.27099    0.19173   1.413    0.158     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species             32.059  2  1.092e-07 *** 

conditions         161.881  2  < 2.2e-16 *** 

species:conditions  10.714  4    0.02997 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Sorbitol 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(1.1322)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Sorbitol 

 

     AIC      BIC   logLik deviance df.resid  

  5031.5   5076.5  -2503.7   5007.5      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.0633 -0.5375 -0.3180  0.2152  5.1866  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.08925  0.2988   

 genotypes                     (Intercept) 0.18121  0.4257   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         7.09682    0.19614  36.182  < 2e-16 *** 

specieslyrata                      -0.72770    0.29823  -2.440 0.014685 *   

speciesthaliana                     0.04577    0.30940   0.148 0.882395     

conditions20%                      -0.69611    0.20877  -3.334 0.000855 *** 

conditionsRecovery                 -0.23760    0.22903  -1.037 0.299550     

specieslyrata:conditions20%         0.94629    0.32665   2.897 0.003768 **  

speciesthaliana:conditions20%       0.32495    0.32182   1.010 0.312618     

specieslyrata:conditionsRecovery    0.75073    0.33967   2.210 0.027094 *   

speciesthaliana:conditionsRecovery  0.08523    0.34054   0.250 0.802363     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)   

species             2.1288  2    0.34494   

conditions          7.7342  2    0.02092 * 

species:conditions 10.2358  4    0.03664 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Succinate 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(2.385)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Succinate 

 

     AIC      BIC   logLik deviance df.resid  

  5195.0   5240.0  -2585.5   5171.0      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.2664 -0.6175 -0.1893  0.2633  5.8890  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.02701  0.1643   

 genotypes                     (Intercept) 0.06613  0.2572   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         6.89513    0.12292  56.094  < 2e-16 *** 

specieslyrata                       0.20332    0.19217   1.058 0.290054     

speciesthaliana                     1.15983    0.19444   5.965 2.45e-09 *** 

conditions20%                       0.39639    0.14079   2.816 0.004869 **  

conditionsRecovery                  0.07237    0.15407   0.470 0.638542     

specieslyrata:conditions20%        -0.80938    0.21758  -3.720 0.000199 **

* 

speciesthaliana:conditions20%      -0.84124    0.21259  -3.957 7.59e-05 **

* 

specieslyrata:conditionsRecovery    0.39724    0.22845   1.739 0.082064 .   

speciesthaliana:conditionsRecovery -0.15433    0.22380  -0.690 0.490449     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            31.8268  2  1.227e-07 *** 

conditions          7.4765  2     0.0238 *   

species:conditions 34.3363  4  6.357e-07 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

Sucrose 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(2.0498)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Sucrose 

 

     AIC      BIC   logLik deviance df.resid  

  8956.2   9001.3  -4466.1   8932.2      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.3886 -0.5748 -0.0843  0.4124  4.2338  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.05055  0.2248   

 genotypes                     (Intercept) 0.01830  0.1353   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                     Estimate Std. Error z value Pr(>|z|)     

(Intercept)                        13.3000456  0.1083644 122.734  < 2e-16 *** 

specieslyrata                       0.0682134  0.1614993   0.422   0.6728     

speciesthaliana                    -1.7694084  0.1773172  -9.979  < 2e-16 *** 

conditions20%                       0.8840569  0.1311288   6.742 1.56e-11 *** 

conditionsRecovery                  0.0002958  0.1539163   0.002   0.9985     

specieslyrata:conditions20%        -0.0371448  0.2126742  -0.175   0.8613     

speciesthaliana:conditions20%       1.3192461  0.2200689   5.995 2.04e-0

9 *** 

specieslyrata:conditionsRecovery   -0.2995083  0.2238068  -1.338   0.180

8     

speciesthaliana:conditionsRecovery  0.4058425  0.2419937   1.677   0.09

35 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            104.120  2  < 2.2e-16 *** 

conditions         229.773  2  < 2.2e-16 *** 

species:conditions  44.648  4  4.706e-09 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Threonine 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(1.2613)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Threonine 

 

     AIC      BIC   logLik deviance df.resid  

  4398.4   4443.5  -2187.2   4374.4      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.1171 -0.6591 -0.2276  0.3080  6.0281  
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Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.002148 0.04635  

 genotypes                     (Intercept) 0.092877 0.30476  

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         6.91935    0.18372  37.663  < 2e-16 *** 

specieslyrata                      -2.06949    0.25619  -8.078 6.59e-16 *** 

speciesthaliana                    -2.15534    0.26333  -8.185 2.72e-16 *** 

conditions20%                       0.54364    0.19567   2.778  0.00546 **  

conditionsRecovery                  0.00911    0.21742   0.042  0.96658     

specieslyrata:conditions20%        -0.46127    0.29912  -1.542  0.12305     

speciesthaliana:conditions20%       0.41570    0.29423   1.413  0.15770     

specieslyrata:conditionsRecovery    0.29713    0.31817   0.934  0.35037     

speciesthaliana:conditionsRecovery  0.23382    0.31348   0.746  0.45575     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                     Chisq Df Pr(>Chisq)     

species            132.954  2  < 2.2e-16 *** 

conditions          20.476  2  3.579e-05 *** 

species:conditions  11.659  4    0.02008 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Tryptophan 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(0.5808)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Tryptophan 

 

     AIC      BIC   logLik deviance df.resid  

  3605.3   3650.4  -1790.6   3581.3      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.7609 -0.5500 -0.2431  0.2090  7.7512  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.06513  0.2552   

 genotypes                     (Intercept) 0.03228  0.1797   

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         4.59096    0.21545  21.308  < 2e-16 *** 

specieslyrata                      -0.46313    0.31526  -1.469  0.14182     

speciesthaliana                    -0.71131    0.32344  -2.199  0.02786 *   

conditions20%                       1.34452    0.28088   4.787 1.69e-06 *** 

conditionsRecovery                  0.49674    0.31954   1.555  0.12005     

specieslyrata:conditions20%        -0.02477    0.43848  -0.056  0.95496     

speciesthaliana:conditions20%       0.06061    0.43132   0.141  0.88825     

specieslyrata:conditionsRecovery   -0.49056    0.47528  -1.032  0.30201     

speciesthaliana:conditionsRecovery -1.28914    0.46738  -2.758  0.00581 

**  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                    Chisq Df Pr(>Chisq)     

species            22.817  2   1.11e-05 *** 

conditions         75.796  2  < 2.2e-16 *** 

species:conditions 10.415  4    0.03398 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Valine 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(3.8955)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Valine 

 

     AIC      BIC   logLik deviance df.resid  

  5552.7   5597.8  -2764.3   5528.7      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.6014 -0.6745 -0.1495  0.4621  3.6159  

 

Random effects: 

 Groups                        Name        Variance Std.Dev. 

 Technical.replicate:genotypes (Intercept) 0.006897 0.08305  

 genotypes                     (Intercept) 0.020544 0.14333  

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         7.71377    0.08587  89.835  < 2e-16 *** 

specieslyrata                       0.03803    0.13120   0.290  0.77191     

speciesthaliana                    -0.35333    0.13476  -2.622  0.00874 **  

conditions20%                       0.95379    0.10619   8.982  < 2e-16 *** 

conditionsRecovery                  0.13224    0.11952   1.106  0.26853     

specieslyrata:conditions20%        -0.14247    0.16614  -0.858  0.39116     

speciesthaliana:conditions20%       0.90522    0.16398   5.520 3.38e-08 **

* 

specieslyrata:conditionsRecovery   -0.04418    0.17725  -0.249  0.80316     

speciesthaliana:conditionsRecovery  0.38478    0.17424   2.208  0.02722 

*   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> Anova(h2.model1) 

Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                      Chisq Df Pr(>Chisq)     

species              0.7942  2     0.6723     

conditions         326.9857  2  < 2.2e-16 *** 

species:conditions  42.5498  4  1.283e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Xylose 

Generalized linear mixed model fit by maximum likelihood (Laplace App

roximation) ['glmerMod'] 

 Family: Negative Binomial(1.9471)  ( log ) 

Formula: relativeResponse ~ species * conditions + (1 | genotypes/Techni

cal.replicate) 

   Data: C_Xylose 

 

     AIC      BIC   logLik deviance df.resid  

  4752.2   4797.3  -2364.1   4728.2      304  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.3925 -0.5560 -0.1558  0.3146  5.2408  

 

Random effects: 

 Groups                        Name        Variance  Std.Dev.  

 Technical.replicate:genotypes (Intercept) 7.787e-10 2.791e-05 

 genotypes                     (Intercept) 7.080e-02 2.661e-01 

Number of obs: 316, groups:  Technical.replicate:genotypes, 124; genotyp

es, 26 

 

Fixed effects: 

                                   Estimate Std. Error z value Pr(>|z|)     

(Intercept)                         6.09862    0.13007  46.887  < 2e-16 *** 

specieslyrata                       0.71894    0.20077   3.581 0.000342 *** 

speciesthaliana                     0.63128    0.20605   3.064 0.002186 **  

conditions20%                      -0.21764    0.15017  -1.449 0.147239     

conditionsRecovery                  0.04299    0.16914   0.254 0.799350     

specieslyrata:conditions20%         0.12149    0.23536   0.516 0.605706     

speciesthaliana:conditions20%       0.15817    0.23044   0.686 0.492473     

specieslyrata:conditionsRecovery    0.89264    0.25463   3.506 0.000455 *

** 

speciesthaliana:conditionsRecovery  0.10304    0.24654   0.418 0.676004     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

> Anova(h2.model1) 
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Analysis of Deviance Table (Type II Wald chisquare tests) 

 

Response: relativeResponse 

                    Chisq Df Pr(>Chisq)     

species            41.296  2  1.078e-09 *** 

conditions         20.140  2  4.233e-05 *** 

species:conditions 16.802  4   0.002112 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

Suppl. Stat. 11: Results of comparison between generalized mixed linear models to 

test for genotype effect 

Data: Isocitrate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 6233.3 6274.7 -3105.7   6211.3                              

mymod1 77 6247.5 6536.7 -3046.7   6093.5 117.88     66  9.097e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Data: Glycerate 
Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)   

mymod2 11 4095.8 4137.1 -2036.9   4073.8                            

mymod1 77 4143.1 4432.3 -1994.5   3989.1 84.672     66    0.06058 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Tryptophan 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 4505.9 4547.2 -2241.9   4483.9                              

mymod1 77 4449.8 4738.9 -2147.9   4295.8 188.14     66  1.132e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Mannitol 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 6275.2 6316.5 -3126.6   6253.2                              

mymod1 77 6293.5 6582.7 -3069.8   6139.5 113.73     66  0.0002393 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Maltose 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 7666.7 7708.0 -3822.3   7644.7                              

mymod1 77 7486.7 7775.9 -3666.3   7332.7 311.98     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Proline 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)     

mymod2 11 7797.3 7838.6 -3887.7   7775.3                             

mymod1 77 7614.4 7903.6 -3730.2   7460.4 314.9     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Glycolate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 5523.2 5564.5 -2750.6   5501.2                              

mymod1 77 5438.6 5727.8 -2642.3   5284.6 216.63     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Glycine 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 5301.1 5342.4 -2639.6   5279.1                              

mymod1 77 5184.9 5474.1 -2515.5   5030.9 248.18     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Isoleucine 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 8512.4 8553.7 -4245.2   8490.4                              

mymod1 77 8335.8 8625.0 -4090.9   8181.8 308.61     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Valine 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq) 

mymod2 11 6811.9 6853.3 -3395.0   6789.9                          

mymod1 77 6898.3 7187.5 -3372.1   6744.3 45.665     66     0.9734 

 

Data: GABA 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)     

mymod2 11 6850.3 6891.6 -3414.1   6828.3                             

mymod1 77 6803.2 7092.4 -3324.6   6649.2 179.1     66  2.204e-12 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Phenylalanine 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 6357.3 6398.6 -3167.7   6335.3                              

mymod1 77 6242.5 6531.7 -3044.3   6088.5 246.76     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Sorbitol 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 5933.4 5974.7 -2955.7   5911.4                              

mymod1 77 5880.9 6170.1 -2863.4   5726.9 184.48     66  3.791e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Alpha Alanine 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 4657.5 4698.8 -2317.7   4635.5                              

mymod1 77 4614.0 4903.2 -2230.0   4460.0 175.48     66  7.085e-12 *** 
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Pyruvate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 4208.8 4250.1 -2093.4   4186.8                              

mymod1 77 4184.7 4473.9 -2015.4   4030.7 156.05     66  2.944e-09 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Xylose 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 7065.5 7106.8 -3521.7   7043.5                              

mymod1 77 6905.2 7194.4 -3375.6   6751.2 292.32     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Hydroxyglutarate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 4201.5 4242.8 -2089.7   4179.5                              

mymod1 77 4144.1 4433.3 -1995.0   3990.1 189.37     66  7.502e-14 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Putrescine 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 6766.5 6807.8 -3372.3   6744.5                              

mymod1 77 6652.1 6941.3 -3249.1   6498.1 246.39     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Succinate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 3862.9 3904.2 -1920.4   3840.9                              

mymod1 77 3829.2 4118.4 -1837.6   3675.2 165.66     66  1.572e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Glycerol 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)     

mymod2 11 8102.1 8143.4 -4040.0   8080.1                             

mymod1 77 7998.3 8287.5 -3922.1   7844.3 235.8     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Aspartate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 5502.0 5543.3 -2740.0   5480.0                              

mymod1 77 5399.6 5688.8 -2622.8   5245.6 234.44     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Leucine  

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 3923.5 3964.8 -1950.7   3901.5                              

mymod1 77 3578.9 3868.0 -1712.4   3424.9 476.61     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Glutamate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 6546.1 6587.4 -3262.1   6524.1                              

mymod1 77 6441.3 6730.5 -3143.7   6287.3 236.81     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Maleate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    

mymod2 11 4236.2 4277.6 -2107.1   4214.2                             

mymod1 77 4261.0 4550.2 -2053.5   4107.0 107.22     66   0.001007 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Alpha Ketoglutarate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)     

mymod2 11 7528.5 7569.8 -3753.3   7506.5                             

mymod1 77 7406.7 7695.9 -3626.4   7252.7 253.8     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Threonine 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 4164.1 4205.4 -2071.1   4142.1                              

mymod1 77 4180.3 4469.5 -2013.1   4026.3 115.84     66  0.0001471 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Raffinose 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 6531.3 6572.6 -3254.6   6509.3                              

mymod1 77 6547.2 6836.4 -3196.6   6393.2 116.08     66  0.0001392 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Data: Gluconate  

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 5067.9 5109.2 -2523.0   5045.9                              

mymod1 77 4944.9 5234.0 -2395.4   4790.9 255.07     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Malonate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 5016.4 5057.7 -2497.2   4994.4                              

mymod1 77 4840.7 5129.9 -2343.4   4686.7 307.63     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Asparagine 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 6848.0 6889.3 -3413.0   6826.0                              

mymod1 77 6681.7 6970.9 -3263.9   6527.7 298.24     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Shikimate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 5187.1 5228.4 -2582.6   5165.1                              
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mymod1 77 4909.9 5199.1 -2377.9   4755.9 409.23     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Lactate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 5200.9 5242.2 -2589.5   5178.9                              

mymod1 77 4958.2 5247.4 -2402.1   4804.2 374.71     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Malate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 5291.4 5332.7 -2634.7   5269.4                              

mymod1 77 5157.5 5446.7 -2501.8   5003.5 265.87     66  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Fructose 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)    

mymod2 11 8971.5 9012.8 -4474.8   8949.5                            

mymod1 77 9005.9 9295.0 -4425.9   8851.9 97.67     66   0.006855 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Sucrose 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 4442.6 4483.9 -2210.3   4420.6                              

mymod1 77 4390.3 4679.5 -2118.2   4236.3 184.31     66  4.008e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Data: Myoisonitol 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 3622.9 3664.2 -1800.5   3600.9                              

mymod1 77 3634.6 3923.8 -1740.3   3480.6 120.32     66  5.066e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Fumarate 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 5590.2 5631.5 -2784.1   5568.2                              

mymod1 77 5557.5 5846.7 -2701.8   5403.5 164.67     66  2.133e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Data: Glucose 

Models: 

mymod2: relativeResponse ~ species * conditions + (1 | Technical.replicate) 

mymod1: relativeResponse ~ species/genotypes * conditions + (1 | Technical.replicate) 

       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)     

mymod2 11 4797.4 4838.7 -2387.7   4775.4                              

mymod1 77 4776.7 5065.9 -2311.4   4622.7 152.72     66  7.909e-09 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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