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Summary

Pioneering works on the laboratory model organisms has identified multi-
ple evolutionarily conserved signalling pathways in regulation of longevity.
High-throughput experiments have identified the genes and pathways that
are regulated by these longevity interventions. However the high-throughput
experiments yields a long list of significantly differentially regulated genes
posing the challenge in identifying the causal genes of the phenotype. Network
approaches are powerful resources in discovering genes and modules that are
associated with the phenotype. Network propagation is a powerful systems
biology approach that works through the principle that genes driving the same
phenotype tend to interact closely, thus the gene signal is spread on the network
to amplify the phenotype associated genes and modules. It is a global scoring
method with various applications such as protein function prediction, inferring
condition specifically altered sub-networks and prioritising the genes.

Various mathematical formulations for network propagation exists, including
Random walks, Random walk with restart and Heat diffusion. In this thesis
we have systematically analysed the performance of RWR and HD algorithms
using the Rattus norvegicus ageing mRNA and protein abundance data from
two different metabolically active tissues. We observed that depending on the
network normalization approach and the nature of input scores, the propagated
scores are biased by topology of the network ("topology bias"). In the algorithms
of network propagation, spreading coefficient (α or ’t’) governs the amount and
distance of signal spread in the network, is a tuning parameter thus it becomes
extremely important to assess its impact on the propagated scores. In this study
we have compared the two algorithms by employing a wide range of α and ’t’
parameters and demonstrate the existence of optimal spreading coefficients and
their dependence on the input scores (initial states of the walker). Furthermore,
we exemplified its utility and robustness in finding the altered sub-networks
during ageing with gene expression and protein abundance datasets from brain
and liver tissues.
Using C. elegans as a model we investigated the transcriptional responses

to perturbations of insulin signalling, germline signalling, calorie uptake, and
hypoxia. So far we lack insight into the extent to which these pathways im-
pact on common molecular endpoints relevant for ageing or lifespan. Using
traditional methods for the interpretation of transcriptomics data focussing
on the responses of individual genes we observed only little similarity between
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the perturbations. We thus employed network propagation for the detection
of molecular networks that are consistently affected across conditions. This
method rests on the notion that even if the same cellular function is targeted
by different perturbations we often do not observe responses of the same genes.
Instead, different perturbations may lead to the alteration of different genes
acting in a common molecular sub-network. Our analysis revealed molecular
sub-networks that were relevant for lifespan across multiple pathway pertur-
bations. These networks included proteins involved in transcription, tRNA &
rRNA processing, chromatin remodelling, stress resistance and reproduction
and collagen suggesting the existence of common modules and converging
downstream mechanisms that are involved in the lifespan control of C. elegans.

Furthermore we aimed to understand the tissue specific responses to reduced
IIS (rIIS) and pinpoint the lifespan specific molecular mechanisms that are
mediated by the transcription factor dfoxo using network propagation. To
address this, dfoxo dependent and independent proteins were classified and the
individual classes of proteins differential protein abundance p-values were prop-
agated on the protein-protein interaction network of Drosophila. Subsequently,
dfoxo dependent and independent network modules were revealed. Besides that
network propagation was used to identify the common molecular signatures of
rIIS from two genetic models that are associated with longevity.
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Zusammenfassung

Wegweisende Arbeiten an Modellorganismen haben mehrere evolutionär kon-
servierte Signalwege in der Regulation von Langlebigkeit identifiziert. Hochdurchsatz-
Experimente haben Gene und Pfadwege identifiziert, die durch diese Langlebigkeits-
Interventionen reguliert werden. Diese Hochdurchsatz-Experimente liefern
lange Listen von signifikant differentiell regulierten Genen, wodurch die Iden-
tifizierung der kausalen Gene des Phänotyps eine Herausforderung darstellt.
Netzwerk-Ansätze sind leistungsfähige Methoden zur Entdeckung von Genen
und Modulen, die direkt mit dem Phänotypen assoziiert sind. Network Propa-
gation ist ein systembiologischer Ansatz, der darauf basiert, dass Gene, die den
gleichen Phänotyp auslösen, dazu neigen, eng zusammenzuarbeiten: das Signal
einzelner Gene wird auf ein Netzwerk abgebildet, um die mit dem Phänotypen
assoziierten Gene und Module zu verstärken. Network Propagation ist damit
eine globale Scoring-Methode mit verschiedenen Anwendungen, wie der Vorher-
sage von Proteinfunktionen, der Identifizierung von spezifisch veränderten
Sub-Netzwerken sowie Genprioritisierung. Es existieren verschiedene mathema-
tische Formulierungen von Network Propagation, unter anderem RandomWalks,
Random Walks mit Neustart (RWR) und Heat Diffusion (HD). In dieser Arbeit
haben wir systematisch die Leistung von RWR und HD Algorithmen unter
Verwendung von Rattus norvegicus altersassoziierten mRNA- und Proteinexpres-
sionsdaten in zwei metabolisch aktiven Geweben analysiert. Wir beobachteten,
dass die propagierten Scores - abhängig von Netzwerk-Normalisierung und
Art der Eingabedaten - von der Topologie des Netzwerkes beeinflusst werden
("Topologie-Bias"). In den Algorithmen der Network Propagation bestimmt der
Streukoeffizient ("spreading coefficient", α oder "t") die Stärke und die Reich-
weite der Signalausbreitung im Netzwerk. Daher ist es wichtig, den Einfluss
dieses Parameters auf die propagierten Scores einzuschätzen. In dieser Studie
haben wir die beiden Algorithmen unter einer breiten Auswahl von α und ’t’
Parametern verglichen. Wir demonstrieren die Existenz von optimalen Streuko-
effizienten und ihre Abhängigkeit von den Eingabewerten (Anfangszustände des
Random Walks). Darüber hinaus zeigen wir die Anwendbarkeit und Robustheit
von Network Propagation bei der Identifizierung veränderter Subnetzwerke
während des Alterns, anhand von Genexpressions- und Proteinexpressionsdaten
aus Gehirn- und Lebergeweben.
Im Modellorganismus C. elegans haben wir die Antwort des Transkriptoms

auf Störungen der Insulin-Signalgebung, der Keimbahn-Signalübertragung, der
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Kalorienaufnahme und der Hypoxie untersucht. Es ist eine offene Frage, in-
wiefern diese Pfadwege auf gemeinsame molekulare Endpunkte wirken, die
für das Altern oder die Lebensspanne relevant sind. Unter Verwendung tra-
ditioneller Methoden zur Interpretation von Transkriptomdaten, welche sich
auf die Antwort einzelner Gene konzentrierten, beobachteten wir nur eine
geringe Ähnlichkeit zwischen unterschiedlichen Perturbationen. Wir verwen-
deten daher Network Propagation für die Identifizierung von molekularen
Netzwerken, die konsistent durch die betrachteten Faktoren beeinflusst werden.
Diese Methode beruht auf der Annahme, dass selbst bei Ansprache dersel-
ben zellulären Funktion durch Perturbationen häufig nicht dieselben Gene
verändert werden. Stattdessen können verschiedene Perturbationen zur Verän-
derung verschiedener Gene führen, die in einem gemeinsamen molekularen
Subnetzwerk agieren. Unsere Analyse identifizierte molekulare Subnetzwerke,
welche die Lebensspanne durch Perturbation verschiedener Signalwege beein-
flussen. Diese Netzwerke enthielten Proteine, die an Transkription, tRNA- und
rRNA-Prozessierung, Chromatin-Remodellierung, Collagen, Stressresistenz und
Reproduktion beteiligt sind, was auf die Existenz gemeinsamer Module und
konvergenter Downstream-Mechanismen der Kontrolle der Lebensspanne in C.
elegans hindeutet.

Ein weiteres Ziel dieser Arbeit war die Identifizierung gewebespezifischer
Reaktionen auf reduzierte Aktivität des Insulin-Signalweges IIS (rIIS). Mithilfe
von Network Propagation sollten die molekularen Mechanismen, die über den
Transkriptionsfaktor dfoxo die Lebensspanne modulieren, präzise bestimmt
werden. Dafür wurden Proteine in dfoxo-abhängige und unabhängige Proteine
klassifiziert und die stärke der differentiellen Expression (p-Werte) wurden in
einem Protein-protein-Interaktionsnetzwerk von Drosophila propagiert. An-
schließend wurden dfoxo-abhängige und unabhängige Netwerkmodule bestimmt.
Darüber hinaus wurde Network Propagtion verwendet, um die gemeinsamen
molekularen Signaturen von rIIS in zwei mit Langlebigkeit assoziierten genetis-
chen Modellen zu bestimmen.
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1. Introduction

1. Introduction

Ageing refers to decline in organismal fitness or tissue/cell health with time. It
is a complex process caused by accumulation of molecular, cellular and organ
damage leading to loss of physiological function and increased vulnerability
to diseases,56.25 Inspite the complexity of aging, research works on laboratory
model organisms has shown that single gene mutations can extend healthy
lifespan through ameliorating age dependent loss of function,62.86 The first gene
that was identified to increase lifespan of C.elgegans was age-1, catalytic sub-
unit of class-1 phosphatidylinositol 3-kinase (PI3K),46.27 Most of the insights in
ageing were obtained from the laboratory model organisms including budding
yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans,
the fruit fly Drosophila melanogaster and the mouse. C.elegans is convenient
model organism for studying the genetic basis of ageing as we have the potential
to down-regulate the gene expression by feeding them bacteria that express
double stranded RNA copies of gene of interest16 and most interestingly 80% of
its genes have human ortholog.49 It has a normal lifespan of 2-3 weeks, due to
its short lifespan several lifespan-extending mutants have been identified. The
normal lifespan of Drosophila melanogaster is comparatively shorter living for 3
months and is easy to culture and maintain and possess powerful genetic tools
and most importantly the full genomic sequence has been published (Drosophila
melanogaster sequencing consortium 2000).

Research on the model organisms has demonstrated that there are common-
alities of the aging process in these very different organisms. The same type of
interventions can extend lifespan through improving health and function during
ageing as well as protecting the animal from age-related diseases. Insulin/IGF-1
signaling, Target of Rapamycin (TOR) pathway and dietary restriction modu-
late lifespan in C.elegans and are conserved in higher organisms,41,50,12,108,4.89

This evolutionary conservation has robustly acclaimed for effects of nutrition
and the molecular mechanisms involved in sensing of nutrients,25,42.28 However
the insulin/IGF-1 signaling regulate diverse physiological functions such as
development, growth, stress resistance, metabolism, reproduction and most
interestingly lifespan,25.42 This pleotropic effect of the lifespan extending path-
ways poses challenge in dissecting and identifying the mechanisms that are
particularly associated in ameliorating aging.
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1. Introduction

1.1. High-throughput gene expression studies in ageing

Transcriptome profiling of C.elegans long lived mutants have identified the genes
and the molecular mechanisms associated to lifespan extension,33,68,85.35 The
gene expression studies of longevity mutants with the epistatic conditions has
revealed molecular signatures such as stress resistance, antimicrobial response
and reduced energy metabolism that ameliorate ageing. These high-throughput
assays yields a long list of significantly differentially regulated genes posing
a challenge in identifying the causal genes of the phenotype. Though these
studies have pinpointed cellular functions that are specifically altered in long
lived mutants, the common molecular responses across these longevity pathways
still remains elusive. Quantitative proteomics study of germline loss mutants
of C.elegans has found proteins involved in RNA processing, translation, pro-
tein folding and proteolysis were decreased and collagen proteins and innate
immune response proteins were increased in their abundance.77 Despite recent
improvements, MS-based shotgun proteomics does not cover all proteins. In
addition, measurements are affected by technical and biological noise. Network
approaches are powerful resources in discovering genes and modules that are
associated with the phenotype,83.8

1.2. Network approaches

A simple and straight forward network analysis approaches are to predict all
the neighbouring genes of regulated gene in the network as being associated
to the phenotype71 or calculation of the shortest path between potential and
known disease proteins.26 However these naive and simple approach would
lead to false predictions i.e. genes connected to regulated genes through
irrelevant interactions. Furthermore with this appraoches one would leave
relevant genes (false negatives) that are not directly interacting with the
regulated genes, eventhough such genes are well connected to regulated genes
through multiple long distance interactions. Thus global network-similarity
appraoches outperform these local distance measures.43 This study focused on a
method that accounts for the global network structure: network propagation has
been studied in great detail. Network propagation relies on the principle that
genes exerting the same phenotype are closely interacting,61 hence spreading
the signal on the network allows the identification of the altered pathways
in a condition of study. The large protein-protein interaction data produced
through high-throughput assays such as yeast two-hybrid assay and tandem
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affinity purification (TAP) followed by mass spectrometry serve as a powerful
resource for global network-based approaches.87

1.3. Network propagation

Network propagation works by combining each gene’s score with scores of
neighbouring genes in the network, it considers all possible paths between
genes. Therefore gene prioritization with network propagation can overcome
the false positive prediction and enrich the true causal genes that are connected
through multiple paths.18 Network propagation starts with the definition of
query nodes i.e nodes that are altered in the condition of study from the
experimental measurements and subsequently propagating certain fraction of
query node scores to neighbouring nodes. The amount or fraction of spread is
defined by the spreading coefficients. The spreadng coefficient corresponds to
the amount and distance of signal spread in the global network. Propagation
is done iteratively until the propagated scores converge on the network. Thus
nodes without prior information will also gain scores after spreading and can be
associated with the phenotype. Network propagation offers several advantages
such as scoring the distant gene that that are not direct neighbors but still
relevant for the phenotype and high scoring the genes that are well connected
through many short paths to the regulated genes. Through signal spreading
to the neighbouring genes network propagtion can be applied for imputing
missing values,20 main applications of network propagation are prioritization of
causal genes with the input of known phenotype associated genes,104 boosting
signal-to-noise ratio by amplifying the signal and reducing the noise as well as
inferring sub-networks or modules that are associated with the phenotype,93.57
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Figure 1: Illustration of network with scores before and after network propaga-
tion

1.4. Thesis aims

Exploring the different mathematical formulation of network propagation and
understanding the nuances between the random walk with restart and heat
diffusion formulations of network propagation. Further to study the impact of
various graph normalization approaches with these formulations, finding the
appropriate graph transformation for each formulation. To demonstrate the
power of network propagtion in different application, we considered the identi-
fication of common functional modules of longevity using the transcriptome
data from longevity mutants of C.elegans, besides that the candidate genes
identified through propagation were experimentally validated with the support
from our collaborators. Additionally to illustrate the specificity of network
propagation in identifying the tissue specifically modified protein sub-networks
of reduced insulin/IGF-1 genetic models of longevity from Drosophila.

1.4.1. Overview of the thesis

Chapter 2 covers the comparison of the two network propagation algorithms,
random walk with restart and heat diffusion. The two algorithms were explored
in great detail using the published ageing datasets from Ori et al., 2015.70 R
package BioNetSmooth was developed for implementing random walk with
restart algorithm based network propagation.

Chapter 3 highlights the application of random walk with restart network
propagation algorithm with longevity RNA-Sequencing datasets. We identified
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the lonegivty sub-network of C.elegans and subsequently the funtional modules
association with lifespan extension were experimentally validated using the
RNAi assays.

Chapter 4 focuses on understanding the transcription factors interaction in
regulation of lifespan extension in C.elegans. For this study the ChIP-Seq
datasets of the X transcription factors were processed and targets of were
predicted using the TFTargetCaller R package. The transcription factors
activities were estimated using their target genes expression in the longevity
mutants. Thus we identified the transcription factors that may be associated
with the lifespan extension in worms.

Chapter 5 describes the application of network propagation in determining
the tissue specific proteome alterations in reduced insulin signaling mutants of
Drosophila melanogaster. Furthermore the integrated analysis of two reduced
insulin signaling mutants pinointed the lifespan associated modules.
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2. Network propagation algorithms: a detailed
exploration

2.1. Introduction

Network propagation has become a common systems biology tool with wide
range of applications such as protein function prediction, inferring condition
specifically altered sub-networks and prioritising the disease genes.18 It starts
with the definition of query nodes, the genes that are known to be associated
with the phenotype. Once the query nodes are assigned with a score on the
apriori network, certain fraction of query node scores are spread to neighbouring
nodes through the edges in network. The magnitude of spread to adjacent nodes
is defined with spreading coefficient. As a result of spreading, genes neighbouring
the query genes tend to accumulate similar scores. Subsequently the nodes
propagated scores can be examined to identify altered sub-networks where the
query nodes are closely connected to other nodes in the network. Furthermore
network propagated scores can be ranked to prioritize the phenotype causal
genes. There are various mathematical formulations exist in implementing
the network propagation, such as random walk with restart (RWR),43 heat
diffusion (HD).15 There is a vast list of tools available for network propagation,
they include geneMania,66 TieDie,75 Diffusion15 etc.

2.1.1. Random walk with restart

Random walk on graphs is an iterative walker that transitions randomly to the
neighbouring node on graph with a probability α (spreading coefficient). In
the weighted network, the transition to adjacent node is proportional to their
weights (for STRING functional interaction network the combined scores can
be used as edge weights). Random walk with restart is a variant of random
walk with an option to transition back to the starting node at every time step
that is given by a restart probability (1 − α). In the network propagation
framework restart probability defines the magnitude of signal that has to be
retained at the query nodes, can be seen as a dampening factor on long walks.
RWR is an iterative step process, the node scores are propagated on network
until the scores converge on the network.104
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F t = α ·W · F t−1 + (1− α) · F 0. (1)

Where F 0 is a vector representing the initial node scores, α is the spreading
coefficient representing the fraction of spread, W is the normalized matrix of
the interaction network, t represents the number of iterations of spread and F t

is the vector representing the converged propagated scores. The convergence is
estimated using the norm of F t − F t−1 and when it is well below 10−6.37

2.1.2. Heat diffusion

Heat diffusion is a continuous-time analogue of lazy random walks without
restart and the spreading of signal is controlled by the time parameter. The
nodes are assigned with the certain ratios of changes in their expression and at
every time step the information from these nodes flows to the adjacent nodes.
In heat diffusion the fraction of spread is defined with ’t’ time parameter, at
every time step the node scores are propagated to their adjacent nodes.15 When
the time parameter is 0 the node scores are not propagated to adjacent nodes
and when the ’t’ is infinite the solutions would represent the network topology
with a loss in initial information. The heat diffusion equation is given by

F = F 0 · exp−W ·t (2)

where h is the vector of initial query node scores, L is the normalized matrix
representation of the interaction network, t is the time diffusion and is a tunable
parameter and d is the vector representing network propagated node scores.

2.1.3. Study Aims

Here in this chapter we have systematically analyzed the performance of
these two algorithms using the Rattus norvegicus ageing mRNA and protein
abundance data from two different metabolically active tissues: Brain and
liver at two age groups.70 Firstly we have demonstrated the influence of the
graph normalization techniques on the propagated scores with the utilization
of two network propagation algorithms. Secondly, transcriptome replicates
were utilized to illustrate the effect of spreading parameters in reducing the
variances between the replicates and increasing the consistent signals. Finally
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the significance of choosing the optimal spreading parameters were illustrated
by showing the increase in consistency between transcriptome and proteomic
changes of tissues as well as amplification of more tissue specific and condition
specific cellular functions.

2.2. Datasets

For this detailed study on the network propagation algorithms, the published
young and old tissues transcriptome and proteome datasets from Rattus norvegi-
cus were used.70 The accession number for the transcriptome is GEO: GSE66715
and for the proteome ProteomeXchange: PXD002467. The data were derived
from young (6 months) and old (24 months) Rat liver and brain samples with
three biological replicates for each age. The transcriptome profiling was from
the entire tissues whereas the proteomics measurements were from four sub-
cellular fractions (nuc:nuclei, pn1:mitochondrial, pn2:cytoplasmic membrane,
sol:soluble cytosolic proteins). Thus to collate the mRNA and protein abun-
dance changes, the protein log fold changes from four sub-cellular fractions of
a tissue were combined by calculating the weighted means.

weighted LFCfraction1 = LFC from fraction1
no. of proteins measured in fraction1 (3)

weighted average LFC = mean (weighted LFC from fraction1:4) (4)

These weighted average log2 fold changes were propagated on the network
and subsequently mRNA and protein propagated scores were compared.

2.2.1. STRING functional interaction network

The functional interaction network for Rattus norvegicus was retrieved from
STRING database version 10.5.91 The generic network was filetered with the
combined scores threshold of above 900 for high confidence interactions. This
step of filtering was essential to avoid the flow of signal to the false positive
edges. The filetered network had 9,747 nodes and 8,78,886 interactions, this
network was employed for diffusing the transcriptome and proteome signals.
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Figure 2: Workflow of network propagation analysis

2.3. Methods

2.3.1. Random Walk with Restart

Network propagation with random walk with restart was performed by using
the R package BioNetSmooth, version 1.0.0. First the propagation starts by
mapping the log fold changes of expression data or protein abundances on
the protein-protein interaction network of Rattus norvegicus with the function
network_mapping. Subsequently the function network_propagation propagates
the mapped log fold changes on the network according to the equation 1. The
progation runs iteratively with t=[1, 2, 3, ...] until convergence. The final
scores are reached when the matrix norm of Ft+1 - Ft fell below 10-6.
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2.3.2. Heat diffusion

Network propagation with heat diffusion was done according to the equation 2.
First the network matrix W was multiplied with spreading paramter t with
negative sign. Further exponential of the multiplied matrix was computed
using the expm function from Matrix R package, version 1.2-10. The propgated
scores were obtained by multiplying the log fold changes with the exponential
of the matrix.

2.3.3. Graph normalization methods

For the network matrix W different graph normalizations can be employed.
The simplest representation of a graph is the adjacency matrix A = [aij]. The
entries aij of the matrix are defined by

aij =

1, if vi is adjacent to vj

0, otherwise
, (5)

when G = (V,E) is a connected undirected graph with V as vertex set.
The adjacency matrix can be normalized by the degrees of nodes. In this

case the entries are

aij =


1
di

, if vi is adjacent to vj

0, otherwise
, (6)

where di denotes the degree of vertex vi.
The Laplacian transformation L = [lij ] of the graph can be used. It is defined

by L = D − A, where A is the adjacency matrix and D is a diagonal matrix
containing the nodes degrees. The entries lij of the matrix L are filled by the
following equation

lij =


di, if vi = vj

−1, if vi 6= vj and vi is adjacent to vj

0, otherwise

. (7)

The Laplacian matrix is normalized by the degrees of the interacting nodes.
In this case the entries lij of the matrix are defined by
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lij =



1, if vi = vj

−1√
di · dj)

, if vi 6= vj and vi is adjacent to vj

0, otherwise

. (8)

2.3.4. Gene ontology analysis

topGO was employed for GO term enrichment analysis and R.norvegicus genes
and protein annotations were retrieved from biomaRt R package, version 2.35.13.
To identify enriched GO terms, the one-sided elim Fisher procedure was used
(α 6 0.05; (Alexa, RahnenfÃĳhrer, and Lengauer 2006). The enrichment
score of a GO term is defined as log2 (#Detected significant genes/ #Expected
significant genes). The network propagation results were interpreted by selecting
the top 10% high scored genes based on the propagated scores from mRNA
and protein log fold changes separately. For this analysis the network genes
were ussed as reference background. Further the GO terms were filtered to
contain atleast 10 genes in a term and having log2 enrichment scores above 1.
The barplots represent the number of enriched GO terms after filtering based
on above conditions from each method.

2.4. Results

2.4.1. Effects of graph normalization and topology bias

We have assessed the influence of different graph normalization schemes on the
propagated scores with two different network propagation algorithms: Random
walk with restart (RWR) and Heat diffusion (HD). For our study, the functional
interaction network G = (V,E) of Rattus norvegicus was retrieved from STRING
database and filtered for high confidence edges using combined scores ≥ 900.
To propagate the gene scores, the network has to be normalized using their
degrees or interacting nodes degrees. The network was first converted to an
adjacency matrix (A) and subsequently normalized with the following schema:
Laplacian, normalized Laplacian and degree normalized adjacency. Laplacian
of the functional interaction network was created by subtracting the Degree
matrix with adjacency matrix of G. The normalized Laplacian was created by
dividing the adjacency matrix with square root product of degrees of interacting
nodes. Degree normalized adjacency of the network was created by multiplying
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the adjacency matrix with inverse of the column sums on the diagonal. For
heat diffusion the Laplacian transformed network (D-A) was utilized and
the log2 fold changes of genes expression were propagated with spreading
parameter ’t’=0.6. To determine the influence of graph normalization scheme
on the propagated scores, hub and non-hub nodes were classified based on their
degrees. The top 10% high degreed nodes were classified as hub nodes and
the bottom 10% low degreed nodes as non-hub nodes. Then hub and non-hub
nodes starting scores and propagated scores were compared. The Laplacian
transformation has an intrinsic nature of biasing the node scores in favour of
hub nodes due to their higher connections in network. Hub nodes on average
tend to gather higher scores than initial scores just by topology of network
(Figure 1A). Similarly for heat diffusion, degree normalized adjacency of the
network (A/D) was employed for propagating genes expression changes with
spreading parameter ’t’=0.6. Followed by network propagation, the hub and
non-hub node scores were evaluated. Most interestingly the degree normalized
adjacency transformed network has not lead to topology bias on the propagated
scores (Figure 1B). Further we evaluated the graph normalization approaches
with random walk with restart algorithm, the normalized Laplacian of the
filtered functional interaction network was employed to propagate scores using
spreading coefficient of X until convergence. Subsequently hub and non-hub
nodes scores were compared, the hub nodes tend to accumulate higher scores
compared to the non-hub nodes (Figure 1C). Additionally we tested degree
normalized adjacency for RWR, interestingly the topology bias was not observed
on the propagated scores (Figure 1D). Therefore for successive analysis we
have employed degree normalized adjacency of the network for propagating
expression changes of the old tissues of rat.
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Figure 3: For RWR and HD, depending on the graph normalization scheme
the network propagated scores are biased in favour of hub nodes. A) For
the heat diffusion algorithm, use of Laplacian transformed network leads to
accumulation of higher scores on hub nodes just by topology of the network.
As on average the network propagated scores on hub nodes are much higher
compared to the propagated scores on non-hub nodes. B) Whereas employing
degree normalized adjacency (AD−1) matrix of network has similar propagated
scores on hub and non-hub nodes on average. C) For the RWR algorithm,
using normalized Laplacian matrix representation of network for propagation
leads to a bias on hub nodes as illustrated. D) Whereas with the utilization of
degree normalized adjacency (AD−1) of network has similar propagated scores
on hub and non-hub nodes on average. Thus the degree normalized adjacency
transformed matrix was utilized for propagation of log2 fold changes for both
the algorithms and subsequently the results were compared.
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Table 1: Different graph normalization approaches and their impact on propa-
gated scores.

Method Graph
normalization Topology bias Correction

HD laplacian Yes -

HD normalized
laplacian No -

HD
degree

normalized
adjacency

No -

RWR laplacian - -

RWR normalized
laplacian Yes mean smoothed

scores

RWR
degree

normalized
adjacency

No -

2.4.2. Finding optimal spreading parameters- Within-dataset
consistency

The crucial parameter in propagation is the spreading coefficient, which governs
the amount and distance of signal spread on interaction network. Since the
spreading parameter is tunable for both algorithms we have determined the
impact of spreading parameter on propagated scores. For random walk with
restart, parameter α defines the fraction of node scores that has to be propagated
to adjacent nodes and it ranges between 0-1. Likewise in heat diffusion the
parameter ’t’ corresponds to the fraction of diffusion and it ranges from 0 to
infinity. Reduction in variances of the replicates from transcriptome has been
utilized as a criterion in estimating the impact of spreading parameters on the
propagated scores. Most often we only have one level of expression data, either
transcriptome or proteome thus it becomes essential to find approaches for
assessing the effect of spreading parameters with the given datasets. Therefore
in this study we have utilized the transcriptome data alone and used variances
within the replicates as a measure to assess the range of spreading parameters.

Transcriptome of brain and liver tissues at their young and old ages were
profiled with three biological replicates by Ori et al 2015. For the differential
expression analysis of old vs young tissue samples a generalized linear model
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was constructed using DESeq2. Similarly for every replicate of a condition
differential expression analysis was carried out with all replicates of other
condition (old1 vs young), this way individual replictaes variances are retained.
Subsequently the mean log fold changes and the replicate-wise log fold changes
for each tissue were propagated on the network. For this propagation process,
the heat diffusion and random walk with restart algorithms were employed with
varying spreading parameters α and ’t’. To assess the influence of spreading
parameters the propagated scores from mean log fold changes were correlated
with the replicate-wise propagated scores for each α and ’t’ respectively for
RWR and HD (Figure 2). With heat diffusion of brain log fold changes,
the maximum correlation between replicates was observed at the spreading
parameter t of 0.6. Suggesting that the consistency between the replicates were
improved by reducing the replicate specific variances. Additionally suggesting
the maximum limit for propagation of brain datasets with heat diffusion (Figure
2A). For the liver samples, there is a little gain of information after propagation
as we observe only a slight improvement in the correlation with increasing
signal spread on the network (Figure 2B). With RWR, for Brain samples the
maximum correlation is reached only near 1, this may indicate that propagation
has not improved the consistency between the replicates (Figure 2C). For liver
samples replicate-wise propagated scores have maximal correlation at α 0.5.
Suggesting this could be the optimal spreading coefficient for liver samples
(Figure 2D). Thus this analysis provides a valuable information on the amount
of propagation that has to be done for the datasets.
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Figure 4: continued on the following page
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Figure 4: Correlation of replicate-wise propagated log fold changes with prop-
agated avg.log2 fold changes. A.Correlation values from replicate-wise prop-
agated log fold changes with mean log2 fold changes of Brain samples with
varying t in heat diffusion. B.Correlation values from heat diffusion of replicate-
wise propagated scores and mean propagated scores of Liver samples. C.Brain
samples RWR propagated scores from replicates and all old vs young corre-
lation values. D. Liver samples correlation values across varying α. The red
dots denote the optimal spreading parameters from the between dataset i.e.
mRNA and protein propagated scores correlations, dotted lines represent the
individual replicates maximal correlation, the right panel represents the average
correlations from replicates at each spreading parameter for HD and RWR.

2.4.3. Finding optimal spreading parameters- Between-dataset
consistency

The relationship between protein and mRNA levels in the ageing tissues of
Rattus norvegicus is utilized as an yet another criterion in assessing the impact
of the spreading parameters.54 To collate the mRNA and proteins expres-
sion changes of old tissues vs young, the protein log2 fold changes from four
sub-cellular fractions of a tissue were combined by calculating the weighted
means (LFC Fraction1= LFC from fraction1 / # proteins measured in fraction1
subsequently mean lfc values were estimated across the fractions). For each
tissue mRNA and protein actual log2 fold changes were propagated indepen-
dently on the degree normalized adjacency of network with varying spreading
parameters, for RWR α starting from 0 to 0.98 and for HD ’t’ starting from
0 to 200 were tested. When the spreading parameter is 0, the scores are
not propagated on the network. The correlation between mRNA and protein
levels of ageing brain is 0.179 without network propagation. The correlations
were calculated with the propagated mRNA and protein log2 fold changes of
brain with varying spreading parameters for each propagation algorithm. Most
interestingly we observe that the correlation of mRNA and protein changes in
old brain tissue was improved with network propagation for a certain range of
spreading coefficients (HD_Cor = 0.183; RWR_Cor = 0.184) (Figure 2A,B).
Similarly for the liver tissue the correlation of transcriptome and proteome
was enhanced after propagation, initial_Cor = 0.26 and after propagation
HD_Cor = 0.263 and RWR_Cor = 0.264 (Figure 2C,D). This suggests that
through propagating the signals from old tissues vs young, the network regions
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that are consistently changing in their expression and protein abundance were
amplified. However as the spreading coefficients increases we tend to lose the
biological signal and amplify the network topology, thus the correlations once
again increases as we are nearly close to 100% spreading of the initial signal on
the network (most likely to be noise-noise correlation). Thus we hypothesize
that the local maximum correlated spreading coefficients could be the optimal
spreading parameters for these datasets on this interaction network.

Figure 5: continued on the following page
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Figure 5: Network propagation improves the correlation between mRNA and
protein levels of ageing tissues (brain and liver). A & B. plot shows the
correlations between propagated scores from mRNA log2 fold changes and
protein weighted mean log2 fold changes from old brain samples with varying
spreading coefficients for random walk with restart and heat diffusion. C & D.
Correlations of propagated scores from mRNA and protein log fold changes of
liver samples with HD and RWR. Correlations were calculated for the genes
that are expressed and quantified with RNA-Sequencing and MS proteomics as
well as present in the functional interaction network (n= 1741 genes).

2.4.4. Functional interpretation of the network propagation results

The increase in consistency between mRNA and protein levels with network
propagation is likely due to amplification of genes involved in cellular functions
that are specific for the tissue. In particular we expect that for brain samples the
amplified genes should be relevant for brain functions like synaptic transmission
and for liver tissue the amplified genes are expected to be relevant for liver
specific functions such as fatty acid metabolism and amino acid catabolism. To
assess this notion the GO enrichment analysis was performed on the top 10%
of the high scored genes from network propagation separately for each tissue
mRNA and proteome. The number of significantly enriched GO terms from
network analysis were compared to the significantly enriched GO terms from
the differentially expressed genes. We observed more number of significant
GO terms with the network amplified genes compared to terms enriched from
differentially expressed genes (Figure 3A). The increase in number of significant
GO terms is expected, as we used a functional interaction network for node
scores propagation. More interestingly, GO enrichment of high scored genes
from propagation using optimal spreading parameters clearly showed more
tissue specifically altered functions. Furthermore we conducted overlap analysis
of top10% genes from propagation with known ageing related genes of Rat from
JenAge database (http://agefactdb.jenage.de/). This intersection analysis also
revealed that network amplified genes are indeed enriched for ageing associated
genes compared to the differentially regulated genes. Likewise for the liver tissue
we observe after network propagation, more number of significantly enriched
tissue specific functional GO terms as well as more number of known ageing
associated genes (Figure 3B). These observations supports that spreading
parameters (t=0.6 in HD and α =0.5 in RWR) are the optimal spreading
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parameters for these tissue expression and protein profiles with STRING
functional interaction network.

Figure 6: Amplification of more tissue specific GO terms and known ageing
associated genes. A. Bar plot represents number of significantly enriched GO
terms, number of tissue specific terms and no of ageing related genes in the
top10% genes before and after network propagation with two algorithms for
old brain samples. B. Liver samples number of significantly enriched GO terms,
number of tissue specific terms and no of ageing related genes in the top10%
genes before and after network propagation with two algorithms. The unshaded
bars represent the no. of functional terms enriched in the transcriptome and
shaded bars represent no. of functional terms enriched with the proteome.

2.4.5. Analysis of age-related proteome and transcriptome changes

The actual log fold changes of transcripts and proteins were propagated on the
network, most of the genes retained their direction of change after propagation.
Interestingly we observe that the correlation between mRNA and protein
changes were slightly improved after propagation with use of a certain spreading
parameters on both algorithms (Fig.5).
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Figure 7: Correlation of mRNA and protein initial scores and propagated scores
from RWR and HD. The top panel represents the mRNA and protein log2 fold
changes from brain old vs young samples. The bottom panel corresponds to
the mRNA and protein log2 fold changes from liver samples

Based on actual log fold changes of transcripts and proteins, the genes
were categorized into concordant and discordant classes. Concordant genes
are the genes whose mRNA log fold changes signs are matched with protein
direction of change and discordant genes have the non-matching signs of log2
fold changes. Subsequently we performed gene ontology enrichment analysis
on the individual catogories of genes to understand cellular functions that are
concordantly changed and discordantly changed in individual tissues (Fig.6A).
Glutathione metabolism (glutathione has an antioxidant role and might be
activated as a response to increased stress during ageing) and response to
toxic substance were consistently activated in both brain and liver old samples.
Cellular amino acid metabolism was activated at both mRNA and protein levels
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for old brain samples. Interestingly we observed that mitochondrial function
related terms were inactivated in old brain samples. Network propagation
improved the consistency between mRNA and protein changes in both tissues.
However, certain sub-networks might still show discordant behaviour i.e. mRNA
positively regulated and protein negatively regulated and vice versa. To check
this notion we have categorized the genes into two classes: concordant and
discordant genes. This time genes were categoried based on signs of propagated
scores. From the Gene ontology enrichment analysis of the individual categories
of genes, the top 3 terms based on their lowest p-value from elim fisher test
are represented in the heatmap (Fig.6B). The genes with increased mRNA
expression and protein abundances across the sub-cellular fractions correspond
to processes such as Glutathione metabolism, cellular oxidant detoxification,
aging and regulation of insulin secretion. Genes with decreased mRNA and
protein abundances are enriched for: mito.respiratory complex I, mitochondrial
ETC (mitochondrial number and function has shown to decline with age) this
suggests that in the old brain samples there is reduced mitochondrial function.
Genes with increased expression and decreased protein abundances in old brain
samples are enriched for electron transport chain, mitochondrion organization
and response to hormone. Genes with decreased expression and increased
protein abundances mainly correspond to spliceosome complex and splicing.
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Figure 8: Gene Ontology enrichments from the concordant and discordant
genes.

For propagating the protein lfc, the lfc from fractions were weighted and
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Figure 8: A) Based on genes actual mRNA and protein log fold changes
they were categorized into concordant and discordant groups. GO enrichment
analysis were carried on each quadrant of genes and the top 3 GO terms
based on their lowest p-value from elim fisher test on the biological processes
category are represented. B) After network propagation with HD and RWR,
the genes were classified similarly but this time with their propagated scores.
GO enrichment of the different classes of genes and top 3 terms are represented

averaged. Thus we wanted to check whether the splicing complex proteins
were increased in all the sub-cellular fractions as this would have different
implications ex:if cytosol fraction has increased splicing proteins then it would
imply enhanced production of splicing proteins, if nucleus has increased protein
abundance it would mean more stable assembly splicing complex and efficient
splicing. The log2 fold changes of the spliceosome complex genes from RNA-seq
and proteomics on sub-cellular fractions indicate that the splicing proteins
abundances are indeed increased in the nuclear fraction of the old brain samples
(Fig.7).
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Figure 9: Splicing complex genes had increased in their protein abundances
from nuclear fractions of old brain samples. A) Splicing complex genes mRNA
expression and protein changes in old vs young tissues are represented.
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2.5. Discussion

Our studies on detailed exploration of the network propagation algorithms,
Random Walk with restart (RWR) and Heat Diffusion (HD) has provided
the following insights. Firstly we have tested different graph normalization
techniques for network propgation and from this analysis we identified that
degree normalized adjacency representation of the network does not induce
any topology bias on the propagated scores. With RWR, use of the normalized
Laplacian network and for HD employing Laplacian network leads to accumu-
lation of higher scores on the hub nodes just by the topology of the network
though those nodes were not high scored initially. Gene function prediction
following the principle of guilt by association was shown to be having similar
performance after pruning the edges based on the node degrees.30 This is in
line with the idea that functionally relevant information are localized on a small
fraction of the interactions of the network.

Secondly we have assessed the impact of the spreading parameters with differ-
ent approaches, using transcriptome replicates vairance as a criterion and using
both mRNA and protein measurements consistency as yet another measure.
From the replicates analysis we observed that the different datasets require
different amounts of spreading additionally for brain datasets there was not any
further improvements upon network propagation. Previously RWR was used
in genome wide association studies for identifying candidate genes of crohn’s
disease.78 In this study the impact of the parameter α has been assessed using
the internal consistency of gene ranks by employing 0.2,0.4,0.6,0.8,0.9 values
and determined that 0.85 was optimal for their datasets. To our knowledge
this is the first study to assess the impact of spreading parameters α and ’t’ in
RWR and HD systematically with two different approaches.
Using Gene ontology enrichment analysis of the high scored nodes with

use of optimal spreading parameters revealed enrichment of tissue function
specific GO terms as well as known aging related genes. Further examination
of the concordant and discordant genes before and after network propagation
revealed that mitochondrial function related terms were reduced in their protein
abundances for both the tissues. Mitochondrial functional decline is one of
the well known hallmarks of aging,56.90 Furthermore we also observe that
spliceosome complex proteins abundances were increased specifically in the
brain nuclear fractions, this could possible due to enhanced stability of the
spliceosome proteins in the nucleus to reduce the splicing errors with age or
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possibly a result of efficient relocalization of splicing complex subunits from
cytosol to nucleus. Experiments are needed to validate the possible reasons
for spliceosome complex increased abundances in brain samples. Interestingly
overexpression of one of the splicing subunit in lab model organisms has shown
to be associated with lifespan extension.36
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3. Systems insights from C.elegans longevity
interventions

3.1. Introduction

Seminal works in laboratory model organisms has identified evolutionarily
conserved signaling pathways in regulation of longevity.42 These conserved
pathways include reduced insulin/IGF-1 like signaling,41 dietary restriction,50

signals from the germline,38,5,52 and the hypoxia signaling. These lifespan
extensions are mediated through single gene mutations,27 importantly these
longevity traits are regulated through specific transcription factors. In C.elegans
weaker mutations in daf-2 gene, encoding a hormone receptor orthologous to
insulin or IGF-1 receptor has shown to double the lifespan by activating the
transcription factors daf-16 and skn-1,68,4145 . The eat-2 mutants, genetic
mimetic of dietary restriction, whose lifespan extension is dependent on activity
of transcription factors nhr-62, pha-4 and skn-1,35,73.9 Ablation of germline
precursors of C.elegans results in lifespan extension, glp-1 mutants longevity
is mediated by nuclear hormone receptors and transcription factors such as
daf-12, daf-16, HSF-1, nhr-80, pha-4 and nhr-49,38,31.80 Deletion of vhl-1, a
cullin E3 ubiquitin ligase leads to lifespan extension and hif-1 transcription
factor is epistatic to vhl-1.60

Transcriptome profiling of C.elegans long lived mutants have identified the
genes and the molecular mechanisms associated to lifespan extension,33,68,85.35

The gene expression studies of longevity mutants with the epistatic conditions
has revealed molecular signatures such as stress resistance, antimicrobial re-
sponse and reduced energy metabolism that ameliorate ageing. Although these
independent studies have pinpointed cellular functions that are specifically
altered in long lived mutants, the common molecular responses across these
longevity pathways still remains elusive. Network based approaches are one of
the efficient methods for such integrated analysis.
In this study, with the utilization of a robust systems biology approach,

network propagation coupled with experimental studies we have uncovered
common and specific downstream processes that are causally associated with
lifespan extension of C.elegans. The transcriptome of long lived mutants, eat-2,
daf-2, glp-1 and vhl-1 with their epistatic double mutants were characterized
using RNA- sequencing. The genes that were commonly differentially regulated
in all the four longevity mutants were revealed through overlap analysis. Fur-
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thermore network propagation of the transcriptional changes has pinpointed
the sub-networks comprising nine functional modules that are altered and
ameliorate aging in C.elegans.

3.1.1. Study aims

There are various molecular pathways that are implicated to extend life span
across different species. The molecular responses upon modulation of these
pathways in isolation have been studied in detail. However the common
molecular responses across these longevity pathways remains elusive. Therefore
in this study we wanted to understand the convergent molecular mechanisms
that are co-occurring on modulating these lifespan extending pathways in
C.elegans. Thus We performed RNA-sequencing on different lifespan extending
mutant worm populations that covers the four signaling pathways such as
insulin signaling, dietary restriction, germline ablation and hypoxia signaling.

3.2. Datasets

To study the insulin signalling mediated lifespan extension we have daf-2 (e1370:
nucleotide substitution mutant for insulin signalling receptor), compared to
the wild type (N2) and daf-2 (e1370);daf-16 (mgDf50), longevity phenotype
of daf-2 mutants are dependent on daf-16 transcription factor. Therefore we
have the double knockout mutants as a second control and comparison of the
daf-2 transcriptome with these strains allow us to pinpoint the lifespan specific
molecular changes.
To identify the molecular changes of dietary restriction mediated lifespan

extension, eat-2 (ad465: mutant with reduced pharyngeal pumping mimicking
dietary restriction), a genetic mimetic of DR is compared to wild type (N2) and
eat-2 (ad465);nhr-62 (tm1818) as longevity phenotype is partially dependent
on nhr-62 transcription factor.
Similarly for germline ablation signalling, glp-1 (e2141:mutant that have

impaired germ cell proliferation) is compared to wild type (N2) and glp-1
(e2141); daf-16 (mu86), longevity phenotype of glp-1 is mediated through
daf-16.

For hypoxia signalling, vhl-1 mutant worms (ok161: mutation in subunit of
E3-ubiquitin ligase complex) that extend lifespan is compared to wild type
and vhl-1 (ok161); hif-1 (ia4) as vhl-1 mediated longevity is dependent on the
hypoxia response transcription factor hif-1.
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3.2.1. STRING functional interaction network

The functional interaction network for Caenorhabditis elegans was retrieved
from STRING database version 10.5.91 To limit the analysis only to the high
confidence interactions the generic network was filtered using combined scores
threshold > 700. This step of filtering was essential to avoid the flow of signal
to the nodes connected through spurious edges. The filtered network had 10,735
nodes with 4,05,668 edges and this network was employed for diffusing the
transcriptome signals from each longevity mutant (negative log transformed
p-values).

3.3. Methods

3.3.1. RNA-seq read mapping and differential expression analysis

The read qualities were assessed using the FastQC. For the libraries that had
adaptor sequences contamination and poor quality reads, raw sequence reads
were trimmed using the cutadapt (V1.12).58 The trimmed reads were mapped to
the C.elegans reference genome assembly from Ensembl WBcel235. For aligning
the reads to the reference genome Tophat2 (V2.1.1)44 was used. Subsequently
the aligned reads were counted over the protein coding genes (# total protein
coding genes) using bedtools multicov (V2.26.0).79 Differentially expressed
genes (DEGs) were determined using DESeq255 using Wald test with pairwise
contrasts of longevity mutant vs N2 strains and longevity mutant vs double
knockout strains. p-values were adjusted for multiple hypothesis testing using
BH method. For each mutant, adjusted P-values of genes were -log transformed
and used for network propagation.

3.3.2. Network propagation of differential expression scores with
Random Walk with Restart

Network propagation was done using the filtered C.elegans STRING functional
interaction network. First, the network was converted to an adjacency ma-
trix and normalized with Laplacian transformation (using the graph.laplacian
function in the igraph R package). The p-values of genes that resulted from
differential expression analysis were negative log transformed and subsequently
superimposed on the corresponding nodes in network separately for every
longevity mutant. After mapping, the transformed p-values on the individual
nodes were diffused to their adjacent nodes using the spreading coefficient of
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0.6 (corresponds to the percentage of sharing to neighbours). This spreading
changed the scores of all genes in the network, and it was iteratively repeated
until gene scores do not change anymore. The convergence of scores was esti-
mated by calculating the maximum absolute column sums between the current
propagated scores matrix (F t) and previous iteration propagated scores matrix
(F t−1) using the norm function in R and when norm of the matrices falls below
1× 10−6 the scores are considered for subsequent exploration,37.104

F t = αWF t−1 + (1− α)Y

Where F t is the matrix of network propagated scores at ’t’ iteration, column
corresponds to the conditions considered for the study and rows of the matrix
corresponds to network genes. W is an asymmetric square matrix representing
the laplacian transformed network. α is the spreading coefficient corresponds
to the fraction of the node scores to be shared with adjacent nodes in network.
We noticed that the network topology (i.e. the network structure) induces a
bias: certain regions of the network tend to accumulate high scores during the
propagation even if there is no actual signal. In order to correct for this bias,
we computed a node-specific topology bias in the following way: we started
with equal scores on each node (e.g. each node has a score of 1). Then, we
perform the propagation as described above. The resulting scores reflect the
bias and are subtracted from the node scores after propagating the actual nodes
scores. Subsequently, the corrected propagated scores were clustered based
on their Euclidean distances (using the hclust function in R) allowing for the
identification of clusters of genes that has accumulated higher signals through
propagation consistently across lifespan extending mutants.

3.3.3. Gene ontology term enrichment

topGO was employed for Gene Ontology enrichment analysis and C.elegans
genes and protein annotations were retrieved from gene ontology consortium
(www.geneontology.org). To identify enriched GO terms, the one-sided elim
Fisher procedure was used (α 6 0.05).1 The enrichment score of a GO term
is defined as log2 (#Detected significant genes/ #Expected significant genes).
From the clustering of corrected propagated scores of genes, the individual
cluster genes were tested for GO term enrichment against the network genes as
reference background. Furthermore to functionally characterize the consistently
high score accumulating cluster genes were pooled and tested for gene enrich-
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ment again against the network genes. The dotplots shows the most specific
significantly enriched categories with a minimum of five associated genes.

3.3.4. Selection of candidate genes for lifespan screening

For the experimental validation of the network propagation highlighted modules,
we have selected module members based on their propagated scores and log2 fold
changes. For each module the constituent genes median log2 fold changes were
calculated across the seven comparisons (every pro-longevity mutant compared
to wild type and double mutants, except glp-1 which is only compared to glp-
1;daf-16). From each of the longevity module, the genes that had the negative
median log2 fold changes were filtered. As these genes were down-regulated in
atleast 50% of the analysed comparisons with the logic that knocking down
these genes in the wt strains will allow us to score their functional relevance
with lifespan extension.

3.4. Results

3.4.1. Transcriptional changes in the longevity mutants of
C.elegans

To identify the longevity genes mutation specific expression profiles of C.elegans
we characterised the transcriptomes of wild type and longevity strains at their
young adult stage. For the detailed characterization of the insulin signaling
mediated changes in gene expression daf-2 (lowered Insulin signaling pathway)
mutants were studied. Similarly other pro-longevity mutants, eat-2 (genetic
mimetic of Dietary restriction), glp-1 (germline-less mutant) and vhl-1 (hypoxia
mutant) were characterized using the RNA-Sequencing. First we compared
the transcriptional profiles of long lived strains with wild type N2 strains and
double mutants (daf-2;daf-16 for daf-2 mutants, eat-2;nhr-62 for eat-2 mutants,
vhl-1;hif-1 for vhl-1 mutants).
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Figure 10: Transcriptional response to longevity interventions. (a) Schematic
overview of the expreimental design (b) Percentage of genes that are differen-
tially regulated in lifespan extending mutants with respect to N2 strains of
C.elegans.

3.4.2. Consistently regulated genes in longevity mutants

To identify the genes that are affected commonly in the pro-longevity mutants,
the overlap of top 1,000 most strongly affected genes were examined. From
this overlap analysis, we observed only six were commonly affected by the
lifespan extending interventions (Figure 2a). These six genes include fib-1,
is a rRNA methyltransferase involved in nucleolar size control, ruvb-2 has
DNA helicase activity, glh-1 is a RNA helicase and involved in P-granule
maintenance, retr.1 is a retrotransposon like protein 1, Y66D12A.9 is an human
ortholog of PSME (proteasome activator complex), and E04D5.1 is an ortholog
of eukaryotic translation initiation factor 2A. All these 6 common genes were
consistently down-regulated in all the longevity mutants. In order to determine
the cellular functions which were consistently affected, we analyzed genes that
were differentially regulated in at least three out of the four mutants. Functional
enrichment analysis of these genes identified defense response, RNA processing,
translation, processes linked to reproduction among others (Figure 2b). This
functional enrichment analysis suggested that common molecular sub-networks
could be affected in the lifespan extending mutants even though the specific
genes responding to the knockouts are not identical. Further to systematically
explore the notion of consistently regulated functions we utilized network
propagation. For propagating the differential regulation scores, we have used a
functional gene interaction network from STRING database, that links genes
with common molecular functions. Thus, network propagation will lead to
increased gene scores in sub-networks that are strongly affected by the mutation.
We performed network propagation independently for each of the four mutants
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and selected again the top 1,000 genes, but this time with the largest network
propagation scores and not those with the most significant individual changes.
Using this approach we obtained 16 genes that were affected commonly in all
four mutants (Figure 2c). Once again we performed functional enrichment
analysis on gene sets affected by at least three mutations, which identified twice
as many significant GO terms as before (16 versus 8). The increase in number
of significant GO terms is expected, because we used a functional interaction
network for propagating the scores. Some functions were commonly identified
with both approaches, such as defense response, posttranscriptional regulation,
and developmental processes related to reproduction. Importantly, the network
approach lead to the identification of several other cellular processes that
are known to be important for lifespan, such as proteolysis and amino acid
metabolism. Our results indicate that network propagation identifies molecular
networks that are consistently altered in longevity mutants.

36



3. Systems insights from C.elegans longevity interventions

Figure 11: Comparison of conventional approach to network propagation
approach. Venn diagram depicts the overlap of genes that are differentially
regulated in different lifespan extending conditions. (a) Number of uniquely and
commonly differentially expressed genes from top1000 significant genes for every
longevity mutants transcriptomes compared to wild type: vhl-1, daf-2, glp-1
and eat-2 versus N2 using Deseq2. (b) GO enrichment results from differentially
regulated genes in at-least three conditions using topGO. The elim algorithm
was used and the GO terms were filtered to have minimum of five genes. (c)
Common and unique genes from top 1000 genes ranked based on network
propagated scores. With the conventional differential expression analysis using
RNA-seq data revealed very few genes that are commonly regulated in different
longevity mutants. However, using network propagation approach much more
genes that are functionally related are found to be commonly regulated in
longevity mutants. (d) GO enrichment results from common top 1000 highly
ranked genes from at least three mutants after network propagation.
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3.4.3. Consistently altered functional sub-network of C.elegans
longevity

Next we sought to identify the subnetworks that are altered in longevity
mutants, the genes were clustered based on their network propagated scores.
This resulted in five gene clusters, among them three clusters were consistently
high-scoring in at least three longevity mutants (Figure 3). We hypothesized
that these three clusters contain genes that are particularly relevant for lifespan
regulation. In total 2,782 genes were contained in these three clusters. In
order to obtain a smaller network containing genes most relevant for lifespan
regulation we further filtered these 2,782 genes. First, we performed GO
enrichment analysis, which identified nine cellular functions that were already
known to be important for lifespan: reproduction, nucleosome assembly and
disassembly, determination of adult lifespan, collagens, protein metabolism,
oxidation-reduction, transcription, rRNA and tRNA processing and stress
resistance among others. We have extracted the genes annotated in these Gene
Ontology Terms and constructed the longevity sub-network with 784 genes.
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Figure 12: Heatmap of network propagated scores. Network propagated scores
for each condition after topology bias correction. The clusters 1, 4 & 5 are
commonly enriched in lifespan extending conditions from both comparisons
(Wt and double KO).

This sub-network was further filtered for genes with at least three neighbours
to extract highly connected modules, resulting in 410 nodes in the filtered
sub-network. Moreover for visual simplicity, the nodes that had more than
three edges were shown. The node colours represent their functions, the node
size corresponds to the no.of nodes that are merged together by their gene
name ex. col-1,2,10 were merged to one single node for viewing. All the
subsequent analyses are restricted to these 410 genes with constituting the
different functional modules (Figure 4).
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Figure 13: Longevity sub-network and the functional modules revealed through
network propagation. Sub-network of genes that are consistently high scored
in longevity mutants. The node colors correspond to the primary function of
the gene, the nodes betweenness were log transformed and represented as the
node sizes. The width of edges correspond to their confidence of interaction
from the STRING database.

To gain further insights from the identified longevity sub-network, mod-
ules (densely interconnected communities) were determined using the Girvan-
Newman algorithm. This algorithm finds communities by iteratively removing
the edges with high betweenness thus eventually resulting in 8 individual
network components with more than 15 genes in each community. Based on
the previous studies on these mutants we expected that these modules are
important for lifespan, but their activity could differ across the mutants. In
order to explore this hypothesis we used the average expression of genes in these
modules as a proxy for module activity (Fig5). Some of the modules showed
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highly consistent behaviour across the lifespan extending mutants. For example,
the modules ’transcription’, ’RNA processing’, and ’proteolysis’ were down-
regulated in all mutants with extended lifespan, while they were up-regulated
in mutants with reduced lifespan. However, other network modules showed
more condition-specific regulation. For example, ’Nucleosome assembly’ was
specifically down-regulated in the eat-2 mutant, but not in the other lifespan
extending mutants.
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Figure 14: Functional modules from the network propagation identified sub-
network. The interconnected modules in subnetwork were found by Girvan-
Newman algorithm based on the edge betweenness measures. Activity of the
network modules across the longevity mutants.
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3.4.4. Selection of module members for experimental validation

All of the above analyses were based on correlating gene expression of network
modules with lifespan phenotypes. This does not establish a causal relationship
between the activation (or inactivation) of individual modules and lifespan.
Thus, we selected module members whose repression with RNAi would likely
extend lifespan. Specifically, we selected 156 genes from the network that had
negative median expression fold changes across the four lifespan extending
conditions compared to wild type and double knockouts (Ref. Table of selected
genes). Further, we added the 6 and 16 genes identified by overlapping the
four longevity conditions before and after network propagation (Figure 2). In
total we have selected 172 genes as 6 genes that were common from both Venn
analysis, were differentially regulated and also high scored from smoothing. We
have employed RNAi to understand the functional relevance of these modules
in longevity. We observed an interesting overlap of the selected genes with the
GenAge ageing related genes.92 Network propagated scores guided the selection
of candidate genes for longevity.

3.4.5. Causal association of network propagation identified genes in
longevity of C.elegans

To score the functional relevance of selected candidate genes in lifespan ex-
tension, the survival ratios of the RNAi strains were analysed. The survival
ratios were calculated by counting the number of worms survived at day 25 in
RNAi treated compared to mock treated worms. The ratios above 1 imply that
RNAi treatment has a positive effect on the survival of worms. The maximum
lifespan extension was observed for the positive genes (Fig. 6a). To our surprise
we found two positive genes that were longer lived than daf-2 mutants (rpb-5
and glh-1). rbp-5 is a shared component of RNA polymerases I, II and III and
it has been reported to have a role in transcriptional activation of yeast.64 glh-1
is a RNA helicase and is consistently down-regulated in all longevity mutants
subsequently identified through direct intersection of regulated genes. To fur-
ther understand the modules involvement in lifespan regulation the modules
percentage of survival responses were calculated. For each module the fraction
of lifespan associated genes were counted among the selected candidate genes
(number of genes with survival ratios above 1/ number of genes selected from
a module * 100). From this analysis we observed that among the selected
network modules, collagen modules had the maximum positive survival effect
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followed by oxidation-reduction module (Figure 6).

Figure 15: Survival response of selected candidate genes through network
propagation. (a) Cumulative density of survival ratios of the candidate genes.
(b) Individual network modules survival responses in percentages, n corresponds
to no of genes with improved survival/ no of genes selected from this module.

Table 2: Comparison of lifespan screening studies of C.elegans

Lifespan study
by

No.of RNAi
clones screened

No.of strains
reproducibly

lifespan
extending

% of lifespan
extending
strains from
screened strains

Hansen et al.
2005

70% of C.elegans
ORFs

94 candidates of
which only 29

could be
confirmed

Lee et al. 2002 2,663 genes 52 genes 1.8%
Hamilton et al.
2005 16,475 genes 89 genes 0.54%

Network
propagation
guided study

147 genes

27 genes (If
mean lifespan
response is

considered-49
genes)

18.4%,(If mean
lifespan response
is
considered-33%)

3.4.6. Dichotomous expression behaviour of collagen genes in
c.elegans longevity mutants

In C.elegans, collagens are a family of structural proteins that constitute the
extracellular matrix. The collagen gene family is quite large, comprising of
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more than 150 gene members. From the previous studies on daf-2 mutants it
was observed that many collagen gene members are overexpressed in lifespan
extending conditions.23 Therefore we checked the expression changes of all the
cuticle forming collagen genes in all the longevity mutants (Figure.7). In our
analysis we also observed that most of the collagen genes were overexpressed
across the lifespan extending mutants. Most interestingly, we also observed that
few collagen gene members were consistently down-regulated in the lifespan
extending mutants. Furthermore these collagens were high scored after network
propagation implying that they themselves and their functional neighbors are
also differentially regulated. Thus we got more curious to look in detail on
these few collagen gene members such as col-19, col-20, col-92, col-93, col-119,
col-178 and col-179. We also studied the role of these down-regulated collagens
in lifespan extension. For that we have made RNAi knockdowns of each of
these collagens in N2 strains and observed the number of worms that are alive
at day 25. From this lifespan screening experiments we found that all the
selected collagens were consistently having higher survival ratios compared to
the untreated worms except col-19 and col-20. In order to avoid miscounting
the offsprings these lifespan experiments were performed in the presence of a
chemical FUDR which blocks the germline development. To make sure that the
survival response of these collagens are not a side effect of the FUDR treatment
we have also performed lifespan assays in the absence of FUDR and observed
that the longevity effect on knocking these selected collagens are reproducible
in the absence of FUDR treatments.
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Figure 16: Expression changes of all the collagens that are constituent of cuticle
in longevity mutants of C.elegans

Most interestingly, we also observed that few collagen gene members were
consistenly down-regulated in the longevity mutants. Furthermore these colla-
gens were high scored after network propagation implying that they themselves
and their functional neighbors are also differentially regulated in the lifespan
extending conditions.
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Figure 17: Collagen members that show divergent pattern of expression com-
pared to other members of collagens. Furthermore these collagens inactivation
is functionally linked to lifespan extension in C.elegans

Thus we got more curious to look in detail on these few collagen gene members
such as col-19, col-20, col-92, col-93, col-119, col-178 and col-179. We also
studied the role of these down-regulated collagens in lifespan extension. For
that we have made RNAi knockdowns of each of these collagens in N2 strains
and observed the number of worms that are alive at day25. From this lifespan
screening experiments we found that all the selected collagens except of col-19
and col-20 were consistently having higher survival ratios compared to the
untreated worms. In order to avoid miscounting the offsprings these lifespan
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experiments were performed in the presence of a chemical FUDR which blocks
the germline development. To make sure that the survival response of these
collagens are not a side effect of the FUDR treatment we have also done lifespan
experiments in the absence of FUDR and observed that the longevity effect on
knocking these selected collagens are reproducible.

Figure 18: Collagens association with lifespan extension in C.elegans. a.
Survival ratios of selected collagen gene members upon RNAi treatment in the
N2 strains. b. Differentially regulated genes in col179 RNAi strains compared
to untreated N2 strains of worms. c. Biological processes that are activated in
col-179 RNAi treated worms.
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3.4.7. Col-179 RNAi worms exhibits enhanced defense response

We observed that col-179 RNAi treated worms were reproducibly lifespan
extending in both presence and in absence of FUDR. Thus we were curious
to uncover the molecular changes that are associated with lifespan extension.
Hence we performed RNA-sequencing of both col-179 RNAi treated worms
and the untreated worms. To validate the knock-down of col-179 transcripts
in RNAi treated worms we checked the expression changes of col-179 RNAi
worms in comparison to N2 mock treated worms. We observed that col-179
transcripts were expressed at the same levels in RNAi treated as of the mock
treated worms. This caught our attention to check for the sequence identity
of col-179 with other collagen gene members. From the sequence analysis we
found that col-178 and col-179 share high sequence identity, 93% of the col-179
nulceotide sequences are identical to col-178 sequence. Therefore it is likely that
our RNAi treatment could be knocking down both col-179 & col-178 transcripts.
On examining the expression changes of col-178 transcripts in RNAi treated
worms with respect to mock treated worms we observed that only col-178
expression was knocked down with RNAi treatment but not both col-178 and
col-179 (Figure 8). Further to gain more molecular insights on these stains we
identified the differentially regulated genes that might causally be linked to
lifespan extension. For this analysis, relative abundance of transcripts were
estimated by comparing the transcriptome of RNAi treated worms with mock
treated worms (Figure 9b).

Gene ontology (GO) enrichment was performed separately for the up-regulated
and down-regulated genes in RNAi treated worms this allowed us to uncover
the cellular functions that are affected and might be associated to lifespan
extension. From this analysis we found that defense response and immune
response genes were particularly over expressed in addition to other processes
including lipid transport, protein and amino acid catabolic processes, carboxylic
acid catabolism and oxidation-reduction process. Furthermore we also noticed
that other collagen gene members were over-expressed. Upon GO enrichment
analysis of the down-regulated genes we determined many biological processes
that are strongly linked to reproduction such as embryonic pattern specifica-
tion, oocyte maturation, single fertilization, hatching, hermaphrodite genitalia
development, regulation of vulval development etc. From the previous studies
on longevity interventions, lifespan extention through somatic maintenance are
often are associated with reduced reproductive outputs.74 Thus we speculate
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that our RNAi worms could also have a delayed reproductive age. In addition
to these cellular functions we also observed glycolysis related genes, protein
N-linked glycosylation, proteasome dependent protein catabolism and other
collagen gene members.

Figure 19: Biological processes that are down-regulated in col-179 RNAi treated
worms

3.5. Discussion

Lowered insulin signaling, dietary restriction, germline ablation as well as
hypoxia signaling pathways ameliorates aging effects and extends lifespan.
These conserved signaling mediated changes in the transcriptome has been
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studied in detail only in isolation. However the transcriptional changes across
these pro-longevity pathways has not been systematically characterised. This is
essential to pinpoint intervention specific and common alterations across these
pro-longevity mutants as they would allow us to delineate the cellular functions
that are associated with lifespan extension. Here we have identified the sub-
networks that are consistently altered and validated their causal association
with longevity.

3.5.1. Transcriptome profiling of longevity mutants of C.elegans

Transcriptomics studies on reduced insulin signaling in C.elegans has identified
the molecular signatures such as stress resistance, antimicrobial response, lipid,
protein and energy metabolism being associated with longevity,94.33 We also
observed that these cellular functions are altered in the reduced insulin signal-
ing mutants. The dietary restriction mutant, eat-2 has reduced pharyngeal
pumping, further gene expression studies on DR has identified the processes
associated to longevity: fatty acid localization, protein metabolism and nucleo-
some assembly and organization.35 From our transcriptome characterization
of DR we also observed pharyngeal development and pumping genes were
regulated thus confirming DR phenotype, additionally nucleosome organization,
protein metabolism and fatty acid biosynthesis were regulated in alignment
with previous findings. Proteomic quantification studies on germline loss mu-
tants, glp-1 revealed protein metabolism, immune responses being associated
with longevity.77 Our transcriptome studies of glp-1 compared to glp-1;daf-16
indicates immune responses, carbohydrate and protein metabolism being differ-
entially regulated, the gene expression changes were consistent with the protein
abundances of glp-1. Hypoxic signaling,17,6010 is mediated in both dependent
and independent manner of HIF-1 transcription factor and also observed to
induce changes in extracellular matrix genes. Our transcriptome analysis on
vhl-1 indicates ER unfolded protein response, innate immune response were
activated along with the extracellular matrix remodelling.

3.5.2. Identification of commonly regulated genes mediating
lifespan extension

From the direct intersection of differentially regulated genes from all four
pro-longevity mutants we identified that six genes were commonly regulated.
Common genes include fib-1 a nucleolar protein, is involved in regulation of
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nucleolar size and was observed that reduced nucleolar size is a hallmark of
longevity.97 glh-1 is germline specific ATP dependent RNA helicase and in
our lifespan screening assays ie was observed to be consistently having much
higher survival rates compared to mock treated. E04D5.1 is predicted to have
trnaslation initiation activity and in our lifespan screening analysis was found
to be 80% better surviving. Other genes ruvb-2, retr-1 and Y66D12A.9 were
not screened for their survival response as these genes clones we were not able
to obtain their RNAi clones.

3.5.3. Convergent modules of longevity identified through network
propagation

Employing network propagation on the RNA-Seq datasets from the longevity
mutants aids in discovering the lifespan associated subnetwork in C.elegans.
The subnetwork had 410 genes after filtering for nodes with three or more
edges. Upon application of edge-betweenness community finding approach
we pinpointed 8 functional modules. The modules activities were estimated
using their constituent genes expression changes in the respective mutants. On
observing the activity profiles of the modules, we grouped the modules into
two classes: condition- specific modules (nucleosome assembly module to be
specifically down-regulated in DR mutant), lifespan related modules (as these
modules were oppositely regulated in lifespan decreasing mutants eg: mRNA
processing). We also observed that tRNA and rRNA processing module was
inactivated in all pro-longevity mutants. RNA polymerase III generates short
non-coding RNAs including tRNAs and 5S rRNAs. Target of rapamycin kinase
complex 1 is an important determinant of lifespan and regulates RNA pol III
activity.40 Study on yeast, worms and flies has shown that reduction in RNA
polymerase III extends chronological and organismal lifespan respectively.24

Our results are in good agreement with these previous observations on RNA
polymerase III activity involvement in lifespan extension.

3.5.4. Dampened collagen expression associated with enhanced
immune response

Collagen genes were found to be overexpressed in rIIS condition and germline
ablated worms more interestingly a molecular signature of longevity.23 Sur-
prisingly we identified that knocking the expression of our collagen module
members were promoting longevity. Later for detailed study, we focused on
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one of the collagen module member, col-179 as this gene knock-down was
sufficient to extend lifespan and ameliorate aging effects. Col-179 was observed
to be consistently down-regulated in day 1,6 and 10 of daf-2 mutants.33 Upon
gene expression quantification studies of col-179 RNAi strains, we found that
immune response module was activated. Additionally col-179 was altered as
a down-stream effector of the longevity interventions. Most of the longevity
interventions activate immune responses in C.elegans through activation of
daf-16,65,76.111 These observations suggests that col-179 activates immune
module as a secondary downstream effect of the longevity interventions. The
activated innate immune response in C.elegans is important for both anti-viral
and anti-microbial defense response. The col-179 RNAi strains could impart
resistance to pathogens thus provide better survivability compared to mock
treated strains.
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4. Interplay of transcription factors in
regulation of longevity in C.elegans

4.1. Introduction

Lifespan of the organism is influenced by genetic and environmental factors. In
C.elegans multiple molecular pathways has discovered in regulating lifespan.103

The signaling pathways include reduced insulin/IGF-1 like signaling, dietary
restriction,50 signals from the germline,38,52 and the hypoxia signaling. These
lifespan extensions are exhibited through single gene mutations, importantly the
longevity trait is regulated through specific transcription factors. In C.elegans
weaker mutations in daf-2 gene, encoding a hormone receptor orthologous to
insulin or IGF-1 receptor has shown to double the lifespan by activating the tran-
scription factors daf-16 and skn-1,68,41.45 In C.elegans the maximum lifespan is
observed with daf-2 mutants i.e. by reducing insulin/IGF-1 signaling.41 Using
microarray experiments the downstream genes of daf-16 has been identified
and found to be responsible for lifespan extension.68 With the advancements
in the sequencing platforms, the targets of daf-16 transcription factor has been
profiled using ChIP-Sequencing,69.48 These target genes exert various functions
including stress-resistance, anti-microbial response and metabolic functions.
Similarly the dietary restriction induced lifespan extension is regulated

by specific transcription factor, pha-4 which has important role in embronic
development of the foregut. Later in the life of worm pha-4 is involved in
glycogen production and glucose homeostasis during the caloric restriction
conditions.73 The binding sites of pha-4 is specific for the different lifestages,
the binding sites were dramatically shifted between the embro stage and starved
larval condition. The binding sited from embronic stage corresponded to genes
involved in organ development and binding sites from starved larval condition
represented genes involved in metabolism.112

Genes differential expression reflects the regulatory networks that operative
in the organism under particular condition. Precise and comprehensive charac-
terization of mRNA transcript levels is essential in understanding the molecular
changes responsible in dictating a phenotype.
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4.1.1. Study aims

In this study the RNA-sequencing data from the lifesan extending and decreasing
mutants has been exploited to understand the transcription factors regulatory
interactions in C.elegans. The ChIP-seq profiles of 176 transcription factors
were processed and target genes of the individual transcription factors at their
lifestages were predicted. Subsequently the target genes expression profiles
in the lifespan extending and decreasing mutants were analysed, the mean
expression change of the target genes of a transcription factor in the particular
condition is estimated as TF activity. Further TF activities of the mutants
were correlated with lifespan change of mutant in order to associate TF with
lifespan change in C.elegans.

4.2. Datasets

4.2.1. ChIP-Seq datasets

Transcription factors ChIP-seq datasets were retrieved from the modENCODE
database (ftp://data.modencode.org/). The transcription factors were profiled
at different lifestages, only for few transcription factors all the lifestages were
covered. There were two biological replicates for every experiment, in total 176
experiments raw sequence files were retrived.

4.2.2. RNA-seq datasets

To study the insulin signalling mediated lifespan extension we have daf-2 (e1370:
nucleotide substitution mutant for insulin signalling receptor), compared to
the wild type (N2) and daf-2 (e1370);daf-16 (mgDf50), longevity phenotype
of daf-2 mutants are dependent on daf-16 transcription factor. Therefore we
have the double knockout mutants as a second control and comparison of the
daf-2 transcriptome with these strains allow us to pinpoint the lifespan specific
molecular changes.
To identify the molecular changes of dietary restriction mediated lifespan

extension, eat-2 (ad465: mutant with reduced pharyngeal pumping mimicking
dietary restriction), a genetic mimetic of DR is compared to wild type (N2) and
eat-2 (ad465);nhr-62 (tm1818) as longevity phenotype is partially dependent
on nhr-62 transcription factor.
Similarly for germline ablation signalling, glp-1 (e2141:mutant that have

impaired germ cell proliferation) is compared to wild type (N2) and glp-1
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(e2141); daf-16 (mu86), longevity phenotype of glp-1 is also mediated through
daf-16. In addition to daf-16 transcription factor, Myc-like complex (MML-
1/MXL-2) and hlh-30 were found to be associated with germline induced
lifespan extension. Thus these datasets were retrieved from ArrayExpress
database with the accession: E-MTAB-3686.

For hypoxia signalling, vhl-1 mutant worms (ok161: mutation in subunit of
E3-ubiquitin ligase complex) that extend lifespan is compared to wild type
and vhl-1 (ok161); hif-1 (ia4) as vhl-1 mediated longevity is dependent on the
hypoxia response transcription factor hif-1.

4.3. Workflow

Figure 20: Transcription factors activity analysis pipeline. The transcription
factors ChIP-Seq datasets mapped read files were retrieved from modENCODE
database. The genome aligned reads were used for peak calling with MACS2
software. Subsequently the peak called files were used for target gene prediction
with TFTargetCaller R package. Once target genes of the transcription factors
were predicted, the target genes log fold changes in the lifespan increasing
and decreasing mutants were computed. Subseqently the target genes mean
expression changes were estimated for transcription factor’s activity in the
respective mutant. Calculated TF activities were correlated with the lifespan
change of the mutants from geneAge database.
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4.4. Methods

4.4.1. modENCODE ChIP-Seq data processing

Raw sequence fastQ files for every experiment were retreived from modEN-
CODE database. The read qualities were assessed using the FastQC. For the
libraries that had adaptor sequences contamination and poor quality reads,
raw sequence reads were trimmed using the cutadapt (V1.12).58 The trimmed
reads were mapped to the C.elegans reference genome assembly from Ensembl
WBcel235. For aligning the reads to the reference genome Bowtie 251 was used.
Subsequently the duplicaed reads were removed using MACS2 filterdup tool
and filtered reads were used for peak calling with MACS2 callpeak command.
Further peakcalled files were processed using TFTargetCaller R package.82

4.4.2. Target gene prediction using TFTargetCaller

Transcripts gene positions were retrieved from the Ensembl64 database
(www.ensembl.org) using the R package biomaRt.21 All genes of C.elegans
that are described as protein-, miRNA-, or lincRNA-coding were included for
target gene prediction. For genes with multiple transcripts, the most 5âĂš
TSS position of the transcripts was considered as the representative TSS of
the gene. The peakcalled files of the transcription factors were imported to R
environment and each peak was assigned to its closest gene, the peak that is
closest to that gene was considered. Subsequently the peaks were scored with
peak-to-gene distance distribution.82 Through randomizations the q-values
were calculated for every gene, representing the probability of the particular
gene being a target of the transcription factor. Genes with q − value 6 0.1
were predicted as target genes of a TF and were considered for subsequent
analysis.
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4.5. Results

4.5.1. Known longevity associated transcription factors

Firstly as a proof of principle the known longevity transcription factors were
analysed. Expression changes of target genes in a condition would indicate
the transcription factor’s activity in the given condition. We have exploited
this notion in assessing the activity of the transcription factors in the lifespan
related mutants. For each TF the target genes were predicted and their log2
fold changes in the mutants were calculated. DAF-16 is known to be active
in the reduced insulin signaling mutant (daf-2), thus we expected that the
predicted target genes of daf-16 should be overexpressed in the daf-2 mutant.
As anticipacted the target genes of daf-16 were overexpressed in the daf-2
mutant, where it has to be active. Interestingly we also observed that on
average the target genes of daf-16 were overexpressed in lifespan extending
mutants and down-regulated in lifespan decreasing mutants. We reasoned that
daf-16 regulates a large classe of genes that are associated in lifespan extension
and it is likely that some of these genes will be expressed in the other longevity
mutants through target sharing with other TFs. However the strength of target
genes expression in daf-2 is much higher compared to their expression in other
longevity mutants, thus still maintaining the specificity of daf-16 in insulin
signaling.

Further we assessed pha-4 TF activity in the lifespan related mutants, simi-
larly target genes of pha-4 were predicted and their expression changes in the
lifespan related mutants were computed. Dietary restriction (DR) induced
lifespan extension is mediated through pha-4 hence the target genes are an-
ticipated to be overexpressed in eat-2, a genetic mimetic of DR. We observed
that on average pha-4 target genes were overexpressed in eat-2 mutants and
in other longevity mutants, interestingly the target genes were not expressed
or down-regulated in the lifespan decreasing mutants. pha-4 target genes ex-
pression correlation with lifespan change intrigued us, hence we estimated the
TF activity as mean log fold changes of target genes in a mutant and the TF
activities of the mutants were correlated with the lifespan change in fraction.
The lifespan changes of the mutants were retrieved from the genAge database
(http://genomics.senescence.info/genes/). On correlating the daf-16 activities
with lifespan change of the mutants we observed a positive correlation of 0.842.
For pha-4 we observed a correlation of 0.88.
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HLH-30 is one of the 42 HLH transcription factors in C.elegans, it regulates
the expression of multiple autophagy-related and lysosomal genes. HLH-30
is shown to be required for the lifespan extension in all C.elegans longevity
mutants.52 Moreover overexpression of hlh-30 in control strains extends lifespan,
all these findings suggests that hlh-30 activity may be a universal mechanism
of longevity in C.elegans. To test our approach we predicted the target genes
of hlh-30 profiled at the L4 larval stage and the targets expression change
in the mutants were computed. We observed that hlh-30 target genes were
over-expressed in the longevity mutants suggesting that hlh-30 is active in
these mutants. hlh-30 targets were not changing in their expression or down-
regulated in the lifespan decreasing mutants. Subsequently the hlh-30 activities
in the mutants were estimated and correlated with their lifespan change, the
correlation was 0.786. These findings confirmed our approach of estimating TF
activities and subsequently identifying their association with lifespan.
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Figure 21: continued on the following page
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Figure 21: Transcription factors: daf-16,pha-4 and hlh-30 target genes expres-
sion changes in the lifespan extending and decreasing mutants of C.elegans.
A) daf-16 ChIP-Seq data was retrieved from modENCODE database and its
target genes were predicted using TFTargetCaller R package. Target genes
expression changes in the lifespan increasing and decreasing mutants. B) pha-4
ChIP-Seq data was processed and the targets were predicted, target genes
expression changes in the lifespan mutants of C.elegans. C) hlh-30 target genes
log2 fold changes in the mutants of worm. The green boxes represents the
log fold changes from the lifespan extensing mutants, yellow boxes represent
mutants that have no change in their lifespan and saffron denotes the lifespan
decreasing mutants. On each plot correlation of TF activity with the lifespan
change is indicated.

4.5.2. Common targets of DAF-16:PHA-4:HLH-30

DAF-16, PHA-4 and HLH-30 target genes were overepressed in the longevity
mutants still showing their specificity to their respecitive signaling pathways as
the lfc signal is particularly stronger in the respective mutants. In daf-2, daf-16
target genes has higher expression signal similarly in eat-2, pha-4 target genes
has higher strength of expression in eat-2 as well as in daf-2. We reasoned
that daf-16 regulates a large classe of genes that are associated in lifespan
extension and it is likely that some of these genes are expressed in the other
longevity mutants through sharing of targets with other TFs. In ordder to test
this notion we interesected the target genes of DAF-16, PHA-4 and HLH-30
and we found that there were 39 genes that were commonly regulated by these
three longevity associated transcription factors. Further functional enrichment
of these common target genes showed significant enrichments for the followinf
cellular functions: amino acid biosynthesis, male sex differentiaion,response
to growth stimulus, lipid metabolism and regulation of gene expression this
includes other down-stream transcription factors that are regulated through
these three master transcription factors. Then we estimated the mean log
fold changes of these 39 common targets of daf-16, pha-4 and hlh-30 and
correlated with lifespan change of the mutants, we observed that these common
targets were also strongly positively associated with lifespan of C.elegans with
correlation value of 0.787. This intersection and correlation analysis of the
shared targets suggests that these genes could be the common denominators of
lifespan extension.
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indicated. 63
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4.5.3. Experimental design for validation of TFs interaction

We found that the most studied transcription factors of longevity, daf-16, pha-4
and hlh-30 commonly regulate a set of genes and they are associated with
lifespan extension. Our analysis suggests that these transcription factors are
in functional interaction. Most importantly HLH-30 is required for lifespan
extension in all C.elegans longevity mutants52 irrespective of the longevity
mediating signaling pathway. Moreover overexpression of hlh-30 in control
strains extends lifespan, all these findings suggests that hlh-30 activity may be
a universal mechanism of longevity in C.elegans. Based on our observations
we hypothesize that based on the up-stream longevity intervention, hlh-30
is activated through activation of the respective signaling pathway master
transcription factor. For example in the reduced insulin/IGF-1 signaling
pathway (daf-2) daf-16 becomes activated to induce hlh-30 activation and
reguates common target genes that are causal for lifespan extension, similarly
during dietary restriction pha-4 is activated and in turn activates hlh-30 to
drive the expression of lifespan causal genes. In order to test this hypothesis
we have an co-immunoprecipation assay for hlh-30 in the different genetic
backgrounds, N2 control strain, daf-2 mutant strain and eat-2 mutant strain.
The interactome of the hlh-30 can be captured in these genetic backgrounds
and among the differentially interacting proteins we expect daf-16 in daf-2
mutants and pha-4 in eat-2 mutants.

4.5.4. Estimation of TF activities

To assess activities of all ChIP-seq profiled transcription factors, the target
genes of the TFs from different lifestages were predicted. The predicted target
genes expression change, log fold changes in the mutants were computed. The
TF activity in each mutant was estimated as mean log2 fold change of targets
in the mutant. Further the TF activities were correlated with lifespan change
of mutants. This resulted in TFs that are strongly positively associated with
lifespan (Cor > 0.5), TFs that are slightly associated with lifespan (Cor < 0.5
& > 0), TFs that are negatively associated with lifespan (Cor < 0 ). Among
the strongly lifespan associated transcription factors we observed the already
known longevity TFs such as JUN-1,102 EOR-1,53 SKN-1,101,100,11 DVE-1.96

Using our approach we have identified the other novel transcription factors
that are associated with lifespan extension.
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5. Altered tissue specific sub-networks in
reduced insulin/IGF-1 signaling of
Drosophila

(Part of this chapter has been published in: Luke S Tain, Robert Sehlke,
Chirag Jain, Manopriya Chokkalingam, Nagarjuna Nagaraj, Paul Essers, Mark
Rassner, Sebastian Grönke, Jenny Froelich, Christoph Dieterich, Matthias
Mann, Nazif Alic, Andreas Beyer, and Linda Partridge. A proteomic atlas
of insulin signalling reveals tissue-specific mechanisms of longevity assurance.
Molecular Systems Biology, 13(9), September 2017.)

5.1. Introduction

Insulin/IGF-1 signaling (IIS) has essential roles in growth, metabolism, stress
resistance and lifespan. In the rececnt studies reduced activities of insulin/IGF-
1 signaling has shown to increase lifespan of laboratory model organisms such
as yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans,
the fruit fly Drosophila melanogaster as well as in mice.14 In Drosophila
melanogaster the IIS pathway consists of 7 insulin like peptide ligands (DILP1-
7), an Insulin receptor (DInR), an insulin receptor substrate and a downstream
forkhead box O transcription factor (dFOXO). Each of the DILPs shows
characteristic spatio-temporal expression patterns.32 DILP1,2,3 and 5 are
expressed in brain median neurosecretory cells (mNSCs). Partial ablation of
median neurosecretory cells of Drosophila adult brain leads to reduced activity
of IIS pathway and extension of lifespan.13

Long-lifespan of the reduced IIS pathway is mediated by a transcription factor,
dfoxo in Drosophila melanogaster and daf-16 in C.elegans,41,109.84 Lowered IIS
mediated longevity and xenobiotic resistance phenotypes are regulated by the
transcription factor dfoxo and other reduced IIS phenotypes are regulated by
other transcription factors.84 Thus dfoxo directs gene expression changes that
are potentially causal for lifespan extension and therefore aid in pinpointing
the lifespan extension specific mechanisms in Drosophila melanogaster. In
C.elegans transcriptome studies on reduced IIS mutants has revealed lifespan
specific molecular mechansims,68,23.33 Similarly in Drosophila gene expression
studies has revelaed the lifespan associated biological processes,95.3 Various post
transcriptional mechanisms are known to modify the protein abundances.54
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Thus quantification of protein abundances are more representative of the
functional state of the organism.

Figure 24: Pleotropic effects of insulin signaling network.

In this study as a first genetic model, we profiled the proteomes of the mNSC
ablated flies in the presence and absence of the transcription factor dfoxo.
Modulation of the IIS in a tissue-specific manner is also associated to lifespan
extension in C.elegans and Drosophila,107,29,19.2 Induction of dfoxo in midgut
and fat body activates the transcription of dilp6 in fat body. However dfoxo
represses the activin ligand dowdle in muscle and these signals have an effect on
the mNSCs thus dilp2 peptide levels are reduced in circulation,7.6 Furthermore
activation of dilp6 is essential for the lifespan extension mediated by dfoxo.7

Hence to pinpoint the tissue specific mechanisms that are mediated by lowered
IIS through dfoxo we have characterized the proteome of four metabolically
active tissues of Drosophila, brain, gut, fat body and thorax.

Interestingly the lifespan effect in Drosophila is also modulated by an intra-
cellular symbiont Wolbachia pipientis, is a maternally transmitted bacteria,63.98

Furthermore Wolbachia has been shown to increase IIS in Drosophila.39 Tetra-
cycline treatment of wolbachia carrying fly strains leads to normal lifespan.
Intriguingly dilp2-3, 5 mutants in the presence of wolbachia has shown extreme
lifespan however wolbachia did not have any effect on the wDah control strains,
suggesting specific interaction between IIS pathway and emphwolbachia. There-
fore in this study as a second genetic model we have characterized the proteome
of dilp2-3,5 mutants, WDah control strains in the presence and absence of
Wolbachia. These proteomes were also quantified for the same four tissues as of
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ablation model: brain, gut, fat body and thorax.

5.1.1. Study aims

In this study we aimed to understand the tissue specific responses to reduced
IIS (rIIS) and pinpoint the lifespan specific molecular mechanisms that are
mediated by the transcription factor dfoxo. To address this, dfoxo dependent
and independent proteins were classified and the individual classes of proteins
differential protein abundance p-values were propagated on the protein-protein
interaction network of Drosophila. Subsequently the dfoxo dependent and
independent network modules were revealed. Furthermore with the application
of network propagation we unravelled the common molecular signatures of rIIS
from two genetic models as well as lifespan mediating protein modules.

5.2. Datasets

For this comprehensive study on reduced insulin/IGF-1 signaling in Drosophila
melanogaster. For abaltion genetic model, the systemic insulin responsive
tissues brain, gut, fat body and thorax proteomes were characterized for mNSCs
ablated fly strains and wDah control strains in the presence and absence of the
transcription factor dfoxo. The data is already published and can be retrieved
from PRIDE archive database with the accession PXD006225. For the dilp
genetic model of rIIS, the dilp2-3,5 mutants and wDah control strains proteomes
for the same four tissues were characterised with the presence and absence of
the endosymbiont wolbachia pipientis. Thus for each genetic model of rIIS for
each tissue we have two strains ablated or dilp mutant with control strain and
two conditions either presence or absence of dfoxo or Wolbachia.

5.2.1. Drosophila interaction network (DroID)

The protein-protein interaction network of D.melanogaster was obtained from
Drosophila interaction database (DroID).67 It is a comprehensive database
designed uniquely for the organism. In this database the protein-protein
interactions are assembled from various sources such as flybase experimentally
derived from physical interactions, protein interactions determined in large-
scale co-affinity purification (co-AP)/MS screens from Perimon Lab, co-AP/MS
screens by the Drosophila interaction mapping project, protein interaction
generated from yeast two-hybrid system of Finley lab etc. The network was
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further filtered for high confidence edges (40% confidence, n = 34,866).110

5.3. Methods

5.3.1. Proteome differential expression analysis

The proteins with differential abundances were tested against null hypothe-
sis of no change, for ablation model mNSCs abaltion induced changes were
evaluated by comparing long-lived vs wDah control strains. The differentially
expressed proteins were subsequently classified into dfoxo dependent and dfoxo
independent, dfoxo dependent proteins are differentially expressed in long-lived
vs wDah control strains and also in the interaction term (long-lived - wDah vs
ablated-dfoxo - wDah-dfoxo). dfoxo independent proteins were differentially
expressed in long-lived vs wDah control strains and required to be equivalent
with regard to differential expression change in the interaction term analysis.

For dilp2-3,5 rIIS model, reduced insulin signaling induced changes in protein
abundances we compared long-lived (dilp2-3,5 mutants + wol) vs wDah control
strains. For wolbachia induced changes in dilp2-3,5 mutants protein abundances
were compared between long-lived (dilp2-3,5 mutants + wol) vs dilp2,3-5
mutants in the absence of Wolbachia (dilp2-3,5 mutants - wol).

5.3.2. Network propagation

The network was converted to an adjacency matrix and normalized with the
Laplacian transformation (using the graph.laplacian function in the igraph R
package). Differentially regulated proteins were classified into dfoxo-dependent
and dfoxo-independent. For the analysis of dfoxo-dependent proteins, the p-
values of proteins not belonging to this group were excluded (set to 1). Likewise,
for the evaluation of the dfoxo-independent set, p-values of proteins not detected
as such were excluded. Finally, the p-values were -log2 transformed and mapped
to the network. After mapping, the transformed p-values on the individual
nodes were diffused to their adjacent nodes using the spreading coefficient of
0.8 (corresponds to the percentage of sharing to neighbours). Subsequently, the
corrected propagated scores were clustered based on their Euclidean distances
(using the hclust function in R) allowing for the identification of enriched clusters
for each tissue. For visualizing the enriched clusters from dfoxo-dependent
and dfoxo-independent proteins on the same heatmap, the propagated profiles
were subtracted (dfoxo-dependent propagated scores and dfoxo-independent
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propagated scores).

5.3.3. Functional enrichment analysis

topGO was employed for Gene Ontology enrichment analysis and D.melanogaster
genes and protein annotations were retrieved from gene ontology consortium
(www.geneontology.org). To identify the significantly enriched Gene Ontology
terms, one-sided elim Fisher procedure was employed (α 6 0.05).1 The enrich-
ment scores were calculated as log2 (#Detected significant genes/ #Expected
significant genes). From the clustering of corrected propagated scores of genes,
the individual cluster genes were tested for GO term enrichment against the
network genes as reference background. Furthermore to functionaly characterize
the consistently high score accumulating cluster genes were pooled and tested
for gene enrichment again against the network genes. The significantly enriched
GOTerms from each cluster was represented on the heatmap.

5.4. Results

5.4.1. Tissue specifically altered network modules in lowered
insulin signaling induced by mNSC ablation

To identify the candidate proteins that could be causal for lifespan extension,
first we have classified the differentially expressed proteins in ablated mNSCs
strains with respect to wDah control strains into dfoxo dependent and inde-
pendent proteins. Subsequently the dfoxo dependent proteins P-values from
long-lived vs control strains differnetial expression analysis were propagated
on the network with spreading coefficient of 0.8 for each tissue. Similarly for
dfoxo independent proteins the P-values were transformed and propagated on
the network until convergence. The propagated scores were combined and then
clustered the dfoxo-dependent and dfoxo-independent responses to reduced IIS
in each tissue and identified functional categories of these clusters with GO
enrichment analysis.
The dfoxo dependent clusters were particularly interesting as dfoxo tran-

scription factor mediates longevity and xenobiotic stress resistance phenotypes
of rIIS pathway and other phenotypes are mediated in a dfoxo independent
manner.Thus these clusters should include the processes that are causally
associated with lifespan extension. In brain samples the dfoxo dependent pro-
tein modules were enriched for mitochondrial electron transport chain, mRNA
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splicing and nucleosome assembly. Whereas gut samples showed enrichment for
proteasome and ubiquitin mediated protein catabolism in a dfoxo dependent
way. In fat body samples mitochondrial electron transport chain, ribosomal
contituents and nucleosome assembly were enriched in dfoxo dependent clusters.
Thus network propagation of scores from differentially expressed proteins in
rIIS condition in the generic protein-protein interaction network clearly sug-
gests tissue-specifically altereted protein modules. Further these results were
experimentally validated for their association in lifespan extension.93
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Figure 25: Hierarchical clustering and Gene Ontology enrichment analysis
of dfoxo-dependent and dfoxo-independent rIIS-mediated regulation of the
proteome. The P-vales from ablation vs wDah dfoxo dependent proteins
were propagated on the DroID filtered network separately and likewise for
the dfoxo-independent proteins P-values. For visualizing dfoxo dependent
and independent protein modules, dfoxo-dependent_propagated scores were
subtracted from dfoxo-independent_propagated scores

dfoxoDependentScore− dfoxoIndependentScore

and clustered based on their propagated scores. Heatmap of significantly
regulated dfoxo-dependent (red) and dfoxo-independent (blue) proteins in
response to reduced IIS. Coloured side bars represent network clusters and
associated most significantly enriched GO terms.
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5.4.2. Network integration of two lowered insulin signaling models

To investigate consistently affected processes in reduced IIS condition from
dilp2-3,5 and ablation models, the network propagation results from the ablation
and dilp were integrated. From the ablation proteomics, the absolute log2 fold
changes from long-lived vs wDah control and absolute log fold changes from
ablated longlived vs ablated foxo Null strains were propagated independently
on the network to identify the rIIS induced changes and rIIS induced changes
in foxo background respectively. Similarly from dilp2-3,5 model the log fold
changes from dilp2-3,5 mutant vs wDah control strains and dilp2-3,5 mutant
vs dilp2-3,5 in the absence of wolbachia were propagated on the network. Thus
each protein in the network has received four propagated scores, the minimum
score for each protein was calculated. If the minimum score of the protein
is positive then it is initially altered (either by its own alteration of protein
expression or through its neighbours in network) in both dilp and ablation in
foxo and wolbachia dependent manner respectively. Hence these positive scored
proteins are most likely causally linked to lifespan extension.
The heatmap represents the proteins with minimal positive scores from

network propagation of both models for each tissue. In total there were 2040
proteins that were lifespan associated revealed from both dilps and ablation in
any of the four tissues. GO enrichment analysis was done on the individual
cluster proteins with all network genes as reference set. From this integration
analysis, translation and related terms of translation were enriched in different
tissues (ex: tRNA metabolic processes is specifically enriched in the Gut,
rRNA processing being enriched in both Fat and Gut) and thus we focused on
translation.
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Figure 26: Hierarchical clustering and Gene Ontology enrichment analysis of
consistently high scored proteins from ablation and dilp2-3,5 models of rIIS
pathway. The proteins absolute log fold changes from ablated vs wDah control
strains comparison and ablated vs ablated-dfoxo comparison of ablation genetic
model were propagated on the DroID filtered network. Similarly from the
dilp2-3,5 genetic model proteins log fold changes from dilp mutants vs control
strains and dilp mutants vs dilp-wolbachia strains were propagated on the
network. This way both the rIIS responses in foxo and wolbachia mediated
changes can be captured. The heatmap represents the proteins which are
positively scored from all the four propagations. Coloured side bars represent
network clusters and associated most significantly enriched GO terms are listed
sideby.
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5.4.3. Translation: a common denominator of rIIS in Drosophila

Subsequently the proteins direction of change for individual components of
translation were analysed. protein synthesis requires production and proper
assembly of ribosomes and also synthesis of enough tRNAs matching the
codons of the expressed mRNAs. Thus we have separately investigated the log
fold changes of proteins in different GOterms associated to ribosome (rRNA
processing, ribosome biogenesis, all the ribosomal proteins as such, nucleolus)
and for tRNA metabolism and genes that are annotated as regulating protein
synthesis. In ablated fat body samples there is foxo-dependent reduction in
expression of ribosomal proteins and all the allied processes (rRNA processing,
ribosomal biogenesis). This observation is experimentally confirmed by S35
incorporation assay to show the de novo protein synthesis rates in different
tissues and the results are very much the same: In the fat bodies there is reduced
incorporation of labelled amino acids (implying reduced protein synthesis rates
could be as a result of reduced ribosomal proteins) and this phenotype is dfoxo
dependent.93
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Figure 27: Ribosome associated proteins expression in reduced IIS conditions
(both dilps and Ablation). Genes from the GOterms rRNA processing, ribosome
biogenesis, ribosome and nucleolus were retrieved. Proteins of these individual
terms log2 fold changes are plotted. Of dilp rIIS model, DPP corresponds to
dilp2-3,5 mutant in the presence of wolbachia, WTP corresponds to control
strains in the presence of wolbachia and DPM corresponds to dilp2-3,5 in the
absence of wolbachia. Of mNSCs ablation rIIS model, Abl corresponds to
ablated strains, Wt corresponds to wDah control strains, Abl.foxo corresponds
to ablated dfoxo null strains.

Intriguingly the tRNA metabolism proteins were also reduced in long-lived
flies brain, gut and fat bodies in a foxo dependent manner. In fat bodies the
reduced tRNA metabolism proteins levels are reduced as a consequence of
reduced ribosomal proteins and both together contributing to reduced protein
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synthesis rates. In gut samples the tRNA metabolism proteins were particularly
reduced in their abundances in ablated strains. This suggests that each tissue
responds differently for rIIS pathway, i.e. in fat bodies both ribosomal proteins
and tRNA metabolism proteins are strikingly down regulated whereas in gut
samples the ribosomal proteins are not consistently down regulated but tRNA
metabolism proteins are strikingly down-regulated.
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Figure 28: The tRNA metabolism and other translation regulating proteins
expression in reduced IIS conditions (both dilps and Ablation). Genes from the
GOterms tRNA metabolic process, translation and regulation of translation
were retrieved. Proteins of these individual terms log2 fold changes are plotted.
Of dilp rIIS model, DPP corresponds to dilp2-3,5 mutant in the presence of
wolbachia, WTP corresponds to control strains in the presence of wolbachia
and DPM corresponds to dilp2-3,5 in the absence of wolbachia. Of mNSCs
ablation rIIS model, Abl corresponds to ablated strains, Wt corresponds to
wDah control strains, Abl.foxo corresponds to ablated dfoxo null strains. n
represents no of proteins annonated to have the respective function

5.5. Discussion

Lowered activity of insulin/IGF-1 signaling is an evolutionarily conserved
pathway that extends lifespan and healthspan.25 With the network propaga-
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tion of the differentially expressed proteins from mNSCs ablated Drosophila
strains we observed that the proteome has tissue speific responses. Each tissue
has responded by altering specific protein modules for example mitochondrial
electron transport processes is altered in brain and fat bodies. Further the
experimental assays indicates that fat body specific increased respiration is
causally associated to lifespan extension in the rIIS mutants of fruit fly. In-
creasing mitochondrial biogenesis has been shown to extend lifespan in both
fat bodies and gut tissues of Drosophila.81 Though the exact mechanism of
how increased mitochondrial respiration is mediating lifespan extension is still
unclear.
Loss in protein homeostasis is one of the hallmarks of ageing,56.47 We

observed that in the rIIS fly strains the proteasome proteins were increased in
their abundances only in the gut tissues. Proteasomes are complex of proteins
that functions in degrading of proteins that are damaged through proteolysis.
During aging decreased proteasome function is associated with decline in protein
homeostasis.99 Increased expression of proteasome sub-unit RPN-6 provides
resistance to proteotoxic stress and extends lifespan in C.elegans.105 Lifespan
extension mediated by over expression of the proteasome sub-unit is likely due
to maintenance of the cellular proteome. The increased proteasome activity in
gut was recapitulated by expressing RPN-6 subunit specifically in the gut tissues
of wDah strains and the causal association with longevity was demonstrated.93

From integrating the rIIS responses of mNSCs ablation model and dilp2-3,5
mutant model we observed that translation is reduced in the fat bodies and
also in gut tissues of rIIS mutants. Global reduction in translation can extend
lifespan of C.elegans,7234 and Drosophila.106 Furthermore reduced translation
is a conserved response to reduced insulin/IGF-1 signaling pathway,88,59.22 In
this study we found that translation is reduced through different mechanisms
in each tissue for example in the fat body the ribosome biogenesis and other
ribosome related proteins are reduced in their abundances and in the gut tissue
tRNA metabolism is reduced. This suggests that in the fat body there could be
a overall reduction in the protein synthesis due to reduced ribosomes. Whereas
in gut there lies a possibility that only a selected class of proteins synthesis rates
might be altered as a result of reduced tRNA metabolism and not necessarily
exhibiting an overall reduction in translation. However this observation has to
be validated with tRNA quantification and translation activity assays in gut
tissues in rIIS condition.
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A.1. Candidate genes selected for lifespan screening
from network propagation results from C.elegans

Gene
name

Wb id Clone name Screen1 Screen2 Mean

alh-10 WBGene00000116 C54D1.4 1.34680135 1.21457490 1.28068812
alh-2 WBGene00000108 K04F1.15 1.35802469 0.68940493 1.02371481
aly-2 WBGene00000121 F23B2.6 1.58024691 0.64406780 1.11215736
asfl-1 WBGene00007277 C03D6.5 0.86956522 0.79722222 0.83339372
aspm-1 WBGene00008107 C45G3.1 1.03225806 1.12272727 1.07749267
B0035.6 WBGene00007109 B0035.6 0.15384615 0.60774411 0.38079513
C02B10.6 WBGene00015331 C02B10.6 1.53846154 1.32352941 1.43099548
C04E6.11 WBGene00015425 C04E6.11 0.20689655 1.05769231 0.63229443
C18A3.3 WBGene00015941 C18A3.3 1.18863049 0.63127690 0.90995370
C44E4.4 WBGene00016653 C44E4.4 0.38314176 0.35256410 0.36785293
C45G3.3 WBGene00001590 C45G3.3 0.35555556 0.47107438 0.41331497

cct-8 WBGene00021934
Y55F3AR.3

0.15384615 0.25541796 0.20463206

cdc-25.2 WBGene00000387 F16B4.8 0.62222222 0.77727273 0.69974747
cht-3 WBGene00016084 C25A8.4 0.83333333 0.98214286 0.90773810
col-119 WBGene00000693 C53B4.5 1.37931034 1.41025641 1.39478338
col-178 WBGene00000751 C34F6.2 1.48148148 1.07561930 1.27855039
col-179 WBGene00000752 C34F6.3 1.73913043 1.68269231 1.71091137
col-19 WBGene00000608 ZK1193.1 0.86274510 0.91093117 0.88683814
col-20 WBGene00000609 F11G11.11 0.38888889 1.40156454 0.89522671
col-92 WBGene00000667 W05B2.6 1.18203310 1.22679045 1.20441177
col-93 WBGene00000668 W05B2.5 1.02564103 1.32625995 1.17595049
cpar-1 WBGene00010036 F54C8.2 1.56862745 0.85953878 1.21408312
cra-1 WBGene00020068 R13F6.10 0.82978723 1.28296146 1.05637435
ctps-1 WBGene00012316 W06H3.3 0.00000000 0.00000000 0.00000000
cul-5 WBGene00000840 ZK856.1 1.85714286 0.84860174 1.35287230
D2045.2 WBGene00008422 D2045.2 1.22222222 0.88811995 1.05517109
ddo-3 WBGene00017648 F20H11.5 0.90476190 0.39108062 0.64792126
dis-3 WBGene00001001 C04G2.6 0.39682540 0.56285178 0.47983859
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dnj-13 WBGene00001031 F54D5.8 0.78348214 0.86659664 0.82503939

E04D5.1a.1
WBGene00008480 E04D5.1a.1 1.10204082 2.68888889 1.89546485

eftu-2 WBGene00001166 ZK328.2 1.05050505 0.69090909 0.87070707
emb-5 WBGene00001259 T04A8.14 0.04273504 0.00000000 0.02136752
emo-1 WBGene00001303 F32D8.6 0.00000000 0.00000000 0.00000000
F25G6.9 WBGene00017800 F25G6.9 1.17857143 0.83877996 1.00867569
F38A1.8 WBGene00009521 F38A1.8 0.15686275 0.03140496 0.09413385
F48E3.4 WBGene00018605 F48E3.4 1.30370370 0.83041958 1.06706164
F53H1.1 WBGene00018776 F53H1.1 0.00000000 0.00000000 0.00000000
F55F10.1 WBGene00018898 F55F10.1 1.88679245 1.61538462 1.75108853
F57B9.3 WBGene00018997 F57B9.3 0.33333333 0.04668305 0.19000819
fzy-1 WBGene00001511 ZK177.6 1.00000000 1.26461039 1.13230519
gfat-2 WBGene00009035 F22B3.4 1.33333333 0.95297806 1.14315569
glh-1 WBGene00001598 T21G5.3 2.33333333 2.56381798 2.44857566
glh-2 WBGene00001599 C55B7.1 1.33333333 0.21983471 0.77658402
gst-10 WBGene00001758 Y45G12C.2 0.89540816 0.80000000 0.84770408
gst-44 WBGene00001792 F13A7.10 0.97222222 1.05224964 1.01223593
haf-2 WBGene00001812 F43E2.4 0.48484848 0.71969697 0.60227273
ham-3 WBGene00044072 ZK1128.5 0.99206349 0.40196078 0.69701214
hcp-3 WBGene00001831 F58A4.3 1.00217865 1.15407407 1.07812636
hil-4 WBGene00001855 C18G1.5 0.56565657 0.71459695 0.64012676
hil-5 WBGene00001856 B0414.3 0.89743590 0.54666667 0.72205128
hmg-3 WBGene00001973 C32F10.5 1.08747045 0.59941521 0.84344283
hpo-21 WBGene00012550 Y37D8A.10 0.10526316 0.07189542 0.08857929
hsr-9 WBGene00002027 T05F1.6 1.41414141 0.59549746 1.00481944
K04C2.2 WBGene00019380 K04C2.2 0.04115226 0.00000000 0.02057613
K07A12.5 WBGene00010623 K07A12.5 1.23456790 0.99358974 1.11407882
K09E4.1 WBGene00010719 K09E4.1 1.69934641 1.56695157 1.63314899
kin-3 WBGene00002191 B0205.7 0.58823529 0.00000000 0.29411765
let-60 WBGene00002335 ZK792.6 0.29629630 0.00000000 0.14814815
let-716 WBGene00002850 C16A3.3 1.35265700 0.56561086 0.95913393
let-99 WBGene00002368 K08E7.3 0.66666667 0.42424242 0.54545455
lin-23 WBGene00003009 K10B2.1 0.25000000 0.23965142 0.24482571
lsm-4 WBGene00003078 F32A5.7 0.88888889 0.20493066 0.54690978
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mog-4 WBGene00003392 C04H5.6 0.00000000 0.00000000 0.00000000
mog-5 WBGene00003393 EEED8.5 1.24528302 0.23529412 0.74028857
mrpl-24 WBGene00019076 F59A3.3 0.68027211 0.52199074 0.60113142
msp-50 WBGene00003443 C34F11.4 0.71428571 1.22041420 0.96734996
nol-1 WBGene00021073 W07E6.1 1.38271605 0.96153846 1.17212726
pafo-1 WBGene00008338 C55A6.9 0.41025641 0.81972265 0.61498953
pbs-7 WBGene00003953 F39H11.5 0.00000000 0.00000000 0.00000000
perm-2 WBGene00016636 C44B12.1 0.97435897 0.74025974 0.85730936
perm-4 WBGene00016638 C44B12.5 0.28368794 0.56583072 0.42475933
pfd-2 WBGene00019220 H20J04.5 1.96551724 0.90588235 1.43569980
pfd-3 WBGene00006889 T06G6.9 0.77777778 0.62539185 0.70158481
R03D7.2 WBGene00010989 R03D7.2 0.00000000 0.91564928 0.45782464
R03G8.4 WBGene00010999 R03G8.4 0.30769231 0.45454545 0.38111888
repo-1 WBGene00008683 F11A10.2 0.49382716 0.00000000 0.24691358
retr-1 WBGene00018416 F44E2.2 0.72222222 0.89869281 0.81045752
ribo-1 WBGene00020683 T22D1.4 0.09523810 0.05956113 0.07739961
rnp-2 WBGene00004385 K08D10.4 1.47126437 0.05956113 0.76541275
rpac-40 WBGene00019275 H43I07.2 0.88888889 0.71180556 0.80034722
rpb-5 WBGene00019246 H27M09.2 1.86000000 1.83333333 1.84666667
rpb-6 WBGene00007355 C06A1.5 0.00000000 0.62809917 0.31404959
rpb-8 WBGene00017830 F26F4.11 1.43089431 1.11952862 1.27521146
rpc-11 WBGene00022309 Y77E11A.6 0.84051724 0.80000000 0.82025862
rpoa-2 WBGene00008781 F14B4.3 0.90534979 1.02564103 0.96549541
rsr-1 WBGene00004706 F28D9.1 0.14035088 0.32590051 0.23312570
rtfo-1 WBGene00009103 F25B3.6 1.20192308 0.46723647 0.83457977
ruvb-1 WBGene00007784 C27H6.2 0.57657658 0.22813036 0.40235347
skpo-1 WBGene00009897 F49E12.1 1.12592593 0.31404959 0.71998776
skr-17 WBGene00004823 C06A8.4 1.20000000 0.52435065 0.86217532
sld-2 WBGene00020466 T12F5.1 0.36363636 0.27094474 0.31729055
smo-1 WBGene00004888 K12C11.2 0.00000000 0.06902357 0.03451178
spt-5 WBGene00005015 K08E4.1 0.00000000 0.00000000 0.00000000
stc-1 WBGene00006059 F54C9.2 1.94444444 1.55773420 1.75108932
sti-1 WBGene00019983 R09E12.3 0.81250000 1.31808279 1.06529139
sun-1 WBGene00006311 F57B1.2 0.50000000 0.47979798 0.48989899
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T01C3.7.1
WBGene00001423 T01C3.7.1 0.39130435 0.39454806 0.39292621

T06E6.1 WBGene00011538 T06E6.1 1.75925926 1.15384615 1.45655271
T14B4.2 WBGene00020499 T14B4.2 0.65359477 0.66191833 0.65775655
T20B12.3 WBGene00020601 T20B12.3 0.66666667 0.68578256 0.67622461

T22D1.10.1
WBGene00020687 T22D1.10.1 1.00000000 2.00000000 1.50000000

T24H10.1 WBGene00012000 T24H10.1 0.95238095 0.68439108 0.81838602
T26G10.1 WBGene00012059 T26G10.1 1.64874552 1.13888889 1.39381720
tba-4 WBGene00006530 F44F4.11 0.61538462 0.09965035 0.35751748
toe-1 WBGene00022739 ZK430.1 0.42042042 0.72888889 0.57465465
tofu-5 WBGene00012167 W01A8.5 0.64000000 0.11912226 0.37956113
top-2 WBGene00010785 K12D12.1 1.13378685 0.96172839 1.04775762
try-1 WBGene00006619 ZK546.15 0.78431373 0.74025974 0.76228673
uba-2 WBGene00006700 W02A11.4 1.49494949 1.02602603 1.26048776
ubc-12 WBGene00006707 R09B3.4 0.23188406 0.48885077 0.36036741
ubh-4 WBGene00006724 C08B11.7 0.66666667 0.67489712 0.67078189
ulp-1 WBGene00006736 T10F2.3 0.81871345 0.11909949 0.46890647
ulp-2 WBGene00006737 Y38A8.3 0.00000000 0.10123457 0.05061728
ulp-4 WBGene00006739 C41C4.6 0.00000000 0.06902357 0.03451178
unc-85 WBGene00006817 F10G7.3 0.64000000 0.79966330 0.71983165
vit-5 WBGene00006929 C04F6.1 1.02564103 0.92319749 0.97441926

W06E11.1
WBGene00021061 W06E11.1 0.98765432 1.07954545 1.03359989

Y23H5B.5
WBGene00021276 Y23H5B.5 0.28846154 0.00000000 0.14423077

Y48B6A.1
WBGene00012978 Y48B6A.1 0.72222222 1.43790850 1.08006536

Y53C12B.1
WBGene00013143 Y53C12B.1 1.11111111 1.31578947 1.21345029

Y62H9A.5
WBGene00013393 Y62H9A.5 0.28301887 1.29411765 0.78856826

Y62H9A.6
WBGene00013394 Y62H9A.6 1.06122449 1.50608519 1.28365484

Y65B4A.6
WBGene00022029 Y65B4A.6 0.63461538 0.64705882 0.64083710
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Y75B8A.7
WBGene00013544 Y75B8A.7 1.46572104 1.33547009 1.40059556

yars-1 WBGene00013677
Y105E8A.19

0.96428571 0.85834334 0.91131453

ZK686.2 WBGene00022792 ZK686.2 1.51300236 1.19230769 1.35265503
ZK792.5 WBGene00014078 ZK792.5 0.75555556 0.50617284 0.63086420
B0391.11 WBGene00007166 B0391.11 0.85849057 0.79463364 0.82656210
nhr-150 WBGene00007367 C06B8.1 0.87500000 1.03773585 0.95636792

E02C12.11
WBGene00017096 E02C12.11 0.55519481 1.44432773 0.99976127

F02E9.1 WBGene00008528 F02E9.1 0.00000000 1.35294118 0.67647059
str-112 WBGene00006163 F10D2.4 0.84375000 0.88235294 0.86305147
F11F1.4 WBGene00008716 F11F1.4 0.65217391 0.83877996 0.74547693
F11F1.5 WBGene00008717 F11F1.5 1.01694915 0.41301627 0.71498271
sup-9 WBGene00006318 F34D6.3 0.00000000 0.63437140 0.31718570
nhr-111 WBGene00003701 F44G3.9 1.53333333 1.70588235 1.61960784
F47B8.10 WBGene00009811 F47B8.10 0.30508475 1.61764706 0.96136590
F53C3.5 WBGene00018749 F53C3.5 0.00000000 0.69327731 0.34663866
F57F4.2 WBGene00019016 F57F4.2 0.43636364 1.52941176 0.98288770
F59E12.8 WBGene00019123 F59E12.8 0.00000000 1.69117647 0.84558824
cyp-25A6 WBGene00019438 K06B9.1 1.40000000 0.85834334 1.12917167
sup-10 WBGene00006319 R09G11.1 0.00000000 0.43333333 0.21666667
nhr-271 WBGene00011396 T03E6.3 1.87500000 1.27100840 1.57300420
T15D6.11 WBGene00011785 T15D6.11 0.63725490 1.47058824 1.05392157
col-164 WBGene00000737 T21D9.1 1.01694915 1.07843137 1.04769026
srh-60 WBGene00005282 W10G11.9 0.00000000 0.83877996 0.41938998
ZK675.4 WBGene00014067 ZK675.4 1.85000000 1.24019608 1.54509804
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A.2. Transcription factors activity with lifespan change
of C.elegans mutants

TF lifestage slope R R.squared
adj.R.squared

p-value

JUN1 L3 5.9786 0.9315 0.8677 0.8545 0
EOR1 L3 7.0998 0.9278 0.8608 0.8469 0
PHA4 YA 6.0508 0.8808 0.7759 0.7535 2e-04
ZTF4 L2 6.9497 0.8801 0.7745 0.752 2e-04
NHR77 L4 6.1603 0.8668 0.7514 0.7265 3e-04
PHA4 L4 7.3594 0.8564 0.7334 0.7067 4e-04
SKN1 L3 6.1317 0.8509 0.7241 0.6965 4e-04
NHR6 L4 7.1038 0.8502 0.7228 0.695 5e-04
DAF16 L4 YA 6.1016 0.8426 0.71 0.681 6e-04
NHR10 L4 8.9626 0.8419 0.7088 0.6797 6e-04
HPL2 L1 7.7324 0.837 0.7006 0.6707 7e-04
ZTF7 L4 7.4764 0.8156 0.6652 0.6317 0.0012
MEF2 L1 4.3968 0.8114 0.6583 0.6241 0.0014
LIN13 L2 6.9992 0.8107 0.6573 0.623 0.0014
PHA4 L3 5.7327 0.7975 0.636 0.5996 0.0019
DVE1 L4 5.832 0.7873 0.6198 0.5818 0.0024
HLH30 L4 5.6059 0.7856 0.6172 0.5789 0.0025
SAX3 L2 4.1474 0.7784 0.6059 0.5665 0.0029
LIN35 L1 5.8416 0.7684 0.5904 0.5495 0.0035
C16A3.4 L1 3.4777 0.7649 0.585 0.5435 0.0038
HAM1 L1 6.046 0.7606 0.5785 0.5363 0.0041
SAX3 L3 3.8295 0.7605 0.5783 0.5362 0.0041
JUN1 L1 4.4556 0.7512 0.5643 0.5207 0.0049
LIN39 L1 5.0444 0.7482 0.5599 0.5158 0.0051
CEH38 L3 5.8547 0.7379 0.5445 0.499 0.0061
NFYA1 YA 5.2135 0.7294 0.5321 0.4853 0.0071
EFL1 L1 4.6456 0.7252 0.5259 0.4785 0.0076
NHR28 L4 5.4556 0.7214 0.5204 0.4725 0.0081
LSY2 L1 6.2148 0.7163 0.5131 0.4645 0.0088
AMA1 L4 YA 6.4729 0.7013 0.4918 0.4409 0.0111
AMA1 L3 5.4653 0.6999 0.4899 0.4388 0.0113
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C01B12.2 L2 6.8133 0.6982 0.4875 0.4362 0.0116
AMA1 L1 5.3647 0.6913 0.4779 0.4257 0.0128
W03F9.2 L4 YA 6.1714 0.685 0.4693 0.4162 0.014
HAM1 L4 6.3874 0.685 0.4693 0.4162 0.014
PHA4 L2 3.5904 0.6798 0.4622 0.4084 0.015
NFYA1 L3 5.318 0.6772 0.4586 0.4045 0.0156
F16B12.6 L1 3.3271 0.6755 0.4564 0.402 0.0159
UNC62 L3 3.5894 0.6718 0.4513 0.3964 0.0167
NHR129 L2 4.4132 0.6661 0.4437 0.3881 0.018
C34F6.9 L2 4.9889 0.6576 0.4325 0.3757 0.0201
ZAG1 L2 2.7599 0.6568 0.4314 0.3745 0.0203
NHR25 L2 4.1717 0.6485 0.4206 0.3626 0.0225
SAX3 L4 4.3348 0.6428 0.4132 0.3546 0.0242
NHR21 L2 4.4415 0.6427 0.413 0.3543 0.0242
EGL5 L3 4.8183 0.6274 0.3936 0.3329 0.029
PHA4 L1 3.3668 0.6254 0.3911 0.3302 0.0296
ALR1 L2 3.7507 0.624 0.3894 0.3284 0.0301
NHR11 L4 3.2438 0.6149 0.3781 0.3159 0.0333
ZIP2 L4 3.9553 0.6143 0.3773 0.3151 0.0336
SEM4 L2 4.4426 0.6125 0.3751 0.3126 0.0343
DAF16 POLII L4
YA

4.5055 0.6076 0.3692 0.3061 0.0361

MAB5 L3 3.8769 0.6064 0.3677 0.3044 0.0366
UNC55 L2 4.2407 0.5967 0.3561 0.2917 0.0405
AHA1 L4 3.771 0.5734 0.3288 0.2617 0.0513
UNC62 L1 2.2689 0.5717 0.3268 0.2595 0.0522
DPL1 L1 4.1824 0.5602 0.3138 0.2451 0.0582
MAB5 L2 5.0452 0.5578 0.3111 0.2422 0.0595
FOS1 L1 3.4424 0.5499 0.3023 0.2326 0.064
AHA1 L1 3.0301 0.537 0.2883 0.2172 0.0718
GEI11 L1 2.1037 0.5238 0.2744 0.2018 0.0805
NHR23 L3 5.2779 0.515 0.2653 0.1918 0.0866
JUN1 L4 5.5507 0.5107 0.2608 0.1869 0.0898
ZTF4 L3 6.0461 0.5064 0.2565 0.1821 0.0929
GEI11 L3 2.8632 0.4895 0.2396 0.1636 0.1062
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ELT1 L3 3.4684 0.4882 0.2384 0.1622 0.1073
FOS1 L2 6.1303 0.4832 0.2335 0.1568 0.1115
NHR77 L1 2.4258 0.482 0.2323 0.1556 0.1126
ZTF4 L1 3.2711 0.4701 0.221 0.1431 0.1231
UNC62 YA 12.0665 0.4639 0.2152 0.1367 0.1287
MML1 L3 1.4994 0.4432 0.1964 0.116 0.1491
NHR6 L2 3.2289 0.4395 0.1931 0.1124 0.1529
LSY2 L4 4.3551 0.4244 0.1801 0.0981 0.1691
R02D3.7 L3 2.719 0.4104 0.1684 0.0853 0.1851
F45C12.2 L1 2.9081 0.3988 0.159 0.0749 0.1991
DPL1 L4 3.7508 0.3984 0.1587 0.0746 0.1996
LIN13 L1 0.7913 0.3888 0.1512 0.0663 0.2116
FKH2 L3 1.2252 0.387 0.1498 0.0647 0.2139
GEI11 YA 1.9887 0.3318 0.1101 0.0211 0.292
DAF12 L4 0.4463 0.3036 0.0922 0.0014 0.3373
RPC1 YA 2.0617 0.3009 0.0905 -4e-04 0.3419
F23B12.7 YA 1.6305 0.2916 0.085 -0.0065 0.3579
PES1 L4 1.5636 0.2726 0.0743 -0.0182 0.3913
F45C12.2 L3 1.5458 0.2565 0.0658 -0.0276 0.4209
EFL1 YA 1.3054 0.254 0.0645 -0.029 0.4257
NHR76 L3 1.2884 0.2472 0.0611 -0.0328 0.4386
NHR23 L2 0.7818 0.2192 0.048 -0.0472 0.4937
NHR11 L1 1.6733 0.2139 0.0458 -0.0497 0.5043
NHR28 L1 0.4565 0.164 0.0269 -0.0704 0.6105
CEH16 L2 0.665 0.1538 0.0237 -0.074 0.6332
LIN13 L4 1.5187 0.1537 0.0236 -0.074 0.6334
GEI11 L2 0.5645 0.1473 0.0217 -0.0761 0.6478
NHR11 L3 0.1959 0.1412 0.0199 -0.0781 0.6616
CES1 L3 0.7468 0.0954 0.0091 -0.09 0.7681
NHR77 L2 0.3021 0.0616 0.0038 -0.0958 0.8491
NHR67 L3 0.1816 0.0607 0.0037 -0.0959 0.8514
CEH38 L4 0.2352 0.06 0.0036 -0.096 0.853
FOS1 L4 0.2428 0.0581 0.0034 -0.0963 0.8577
UNC62 L2 0.0377 0.013 2e-04 -0.0998 0.9681
NHR77 L3 -0.0041 8e-04 0 -0.1 0.998

89



A. Appendix

LSY2 L2 -0.0422 0.0057 0 -0.1 0.9859
NHR76 L4 -0.0547 0.0119 1e-04 -0.0998 0.9707
ELT1 L2 -0.1783 0.0368 0.0014 -0.0985 0.9095
F45C12.2 L2 -0.3046 0.0453 0.002 -0.0977 0.8889
CES1 L4 -0.1333 0.0461 0.0021 -0.0977 0.887
NHR12 L2 -0.2933 0.0532 0.0028 -0.0969 0.8695
LIN35 YA -0.1585 0.0723 0.0052 -0.0942 0.8232
DPL1 YA -0.2138 0.0897 0.008 -0.0911 0.7816
HPL2 YA -0.4248 0.114 0.013 -0.0857 0.7242
R02D3.7 L2 -0.2507 0.1662 0.0276 -0.0696 0.6056
SKN1 L4 -0.4672 0.1991 0.0396 -0.0564 0.535
CES1 L1 -0.9528 0.2012 0.0405 -0.0555 0.5307
NHR11 L2 -0.6167 0.202 0.0408 -0.0551 0.5289
FOS1 L3 -1.698 0.2462 0.0606 -0.0333 0.4405
LIN15B L4 -0.5224 0.2483 0.0617 -0.0322 0.4364
ALY2 L3 -1.3871 0.2697 0.0727 -0.02 0.3967
NHR237 L2 -0.7414 0.2779 0.0772 -0.0151 0.3819
FKH10 L4 -0.8457 0.2809 0.0789 -0.0132 0.3764
ZAG1 L3 -1.1511 0.2882 0.083 -0.0086 0.3637
ZAG1 L4 -0.7622 0.3175 0.1008 0.0109 0.3147
ALY2 L1 -2.5342 0.3293 0.1085 0.0193 0.2959
NHR237 L1 -0.7128 0.3366 0.1133 0.0247 0.2847
ZAG1 L1 -1.053 0.4477 0.2004 0.1205 0.1444
NHR28 L3 -0.793 0.4755 0.2261 0.1487 0.1182
R02D3.7 L4 -2.5654 0.4886 0.2387 0.1626 0.107
TLP1 L1 -2.8204 0.4979 0.2479 0.1727 0.0995
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A.3. Software Versions

• Bowtie 2.2.9

• TopHat 2.1.1

• macs2 2.1.1.2

• bedtools 2.26.0

• samtools 1.3.1

• fastQC 0.11.5

• R 3.3.2

• TFTargetCaller 0.7

• biomaRt 2.30.0

• BioNetSmooth 1.0.0

• DESeq2 1.14.1
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A.4. Supplements

Figure 29: Col-179 nucleotide sequence identity with col-178.
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Figure 30: Common target genes of transcription factors DAF-16,PHA-4 and
HLH-30 log2 fold changes in the lifespan increasing and decreasing mutants of
C.elegans.

93



A. Appendix

UNC62_L2

FOS1_L4

CEH38_L4

NHR67_L3

NHR77_L2

CES1_L3

NHR11_L3

GEI11_L2

LIN13_L4

CEH16_L2

NHR28_L1

NHR11_L1

NHR23_L2

NHR76_L3

EFL1_YA

F45C12.2_L3

PES1_L4

F23B12.7_YA

RPC1_YA

DAF12_L4

GEI11_YA

FKH2_L3

LIN13_L1

DPL1_L4

F45C12.2_L1

R02D3.7_L3

LSY2_L4

NHR6_L2

MML1_L3

UNC62_YA

ZTF4_L1

NHR77_L1

FOS1_L2

ELT1_L3

GEI11_L3

da
f2

is
p1

;c
tb

1

ea
t2

gl
p1

vh
l1

hl
h3

0
nh

r6
2

m
xl

2
m

m
l1

hi
f1

da
f3

6E
t

da
f1

6

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
TFActivity

TF activity across condtions

Figure 31: Transcription factors that are moderately positively associated with
lifespan change in C.elegans
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Figure 32: Transcription factors that negatively associated with lifespan change
in C.elegans
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