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Zusammenfassung 

Implizites Lernen ist einer der grundlegendsten Lernprozesse, der es dem Menschen 

ermöglicht, sich ohne Intention oder Anstrengung und selbst ohne das Bewusstsein, etwas zu 

lernen, an reguläre Strukturen in der Umwelt anzupassen. (z.B. Dienes & Berry, 1997). Ein oft 

replizierter Befund ist jedoch, dass implizites Sequenzlernen in einer seriellen Wahlreaktions-

aufgabe (SRTT; Nissen & Bullemer, 1987) in Doppelaufgaben unter bestimmten Bedingungen 

gestört ist. Das Ziel der vorliegenden Arbeit war es, die Mechanismen zu untersuchen, die der 

Störung vs. Erhaltung des impliziten Lernens in Doppelaufgaben zu Grunde liegen. 

In Studie 1 wurden zwei Ansätze gegenübergestellt: „task integration“ (Rah, Reber & 

Hsiao, 2000; Schmidtke & Heuer, 1997) und „parallel response selection“ (Schumacher & Schwarb, 

2009). Die Ergebnisse deuten auf eine Konzeption von „task integration“ hin, die nahe legt, 

dass implizites Lernen in Doppelaufgaben in dem Maße bewahrt vs. gestört ist, in dem zeit-

gleich auftretende Ereignisse in der Zweitaufgabe vorhersagbar sind oder nicht. 

In Studie 2 wurde die Rolle zweier verschiedener Arten von „across-task predictability“ 

untersucht, die als lokal oder global bezeichnet werden (in Abhängigkeit der ambigen Struktur 

der SRTT). Die Ergebnisse legen nahe, dass ein automatischer Vorhersagemechanismus (z.B. 

Broeker et al., 2017) auf die globale Vorhersagbarkeit der zeitlich nächsten Ko-Ereignisse 

anspricht und profitiert, wenn die lokale Vorhersagbarkeit ebenfalls hoch ist, aber Konflikt 

verursacht, wenn nicht, was die Reduktion des Vorhersagefehlers/das Sequenzlernen stört. 

In Studie 3 wurde der Befund weiter untersucht, dass Sequenzlernen erhalten bleibt, 

wenn die zwei Aufgaben durch ein langes SOA getrennt sind (Schumacher & Schwarb, 2009). 

Außerdem wurde untersucht, in welchem Ausmaß vorhersagbar variierende SOAs genutzt 

werden können, um die Sequenz zu lernen. In einer Gegenüberstellung der Annahmen, dass 

variierende SOAs entweder eine globale serielle Verarbeitungsstrategie auslösen (Israel & 

Cohen, 2011) oder dass Versuchspersonen (ohne die Instruktion, eine Aufgabe zu priorisieren) 

eher eine moderat parallele Verarbeitungsstrategie vorziehen (Lehle & Hübner, 2009), ergab 

sich, dass Letzteres wahrscheinlich zutreffender ist. Lernen trat (mechanistisch) nur mit langen 

SOAs auf, aber nicht flexibel und strategisch ebenso mit kurzen SOAs. Es wird diskutiert, ob 

„task integration“ vs. „separation“ die Befunde besser erklären kann. 

Zusammengenommen deuten die Befunde aller drei Studien darauf hin, dass, in der 

Gegenwart nicht vorhersagbarer Ko-Ereignisse, die Separierung der Aufgabenrepräsentationen 

bedeutsam ist. Nicht nur im Kontext des impliziten Sequenzlernens in Doppelaufgaben – 

sondern auch, um zukünftig generelle Fortschritte in der Multitasking-Forschung zu erzielen. 



 
 

 



 
 

Abstract 

Implicit learning is assumed to be one of the most fundamental learning processes 

enabling humans to adapt to regular structures inherent in the environment without intention 

or effort and even without being consciously aware that they learn or what they actually learn. 

(e.g., Dienes & Berry, 1997). One often replicated finding is, however, that implicit sequence 

learning in a serial reaction time task (SRTT; Nissen & Bullemer, 1987) is impaired in dual-

task situations under certain conditions. The aim of the present research was to shed light on 

the mechanisms underlying the impairment vs. the preservation of dual-task sequence learning. 

In the first study, mainly two accounts were contrasted: task integration (Rah, Reber, & 

Hsiao, 2000; Schmidtke & Heuer, 1997) vs. parallel response selection (Schumacher & Schwarb, 

2009). The results strongly hint at a conception of task integration suggesting that dual-task 

implicit sequence learning is preserved vs. impaired to the extent that secondary task events, 

co-occurring with the SRTT, are predictable or not. 

In the second study, the role of two different types of across-task predictability was 

investigated, termed local vs. global (depending on the ambiguous structure of the SRTT). The 

findings suggest that a supposed automatic prediction mechanism (e.g., Broeker et al., 2017) 

operates on the global predictability of the most contiguous co-occurrences, benefitting if the 

local across-task predictability is in accord but causing conflict if not, thereby disturbing the 

reduction of the prediction error and, thus, sequence learning. 

In the third study, the finding of preserved sequence learning when the two tasks are 

temporally separated by long SOAs (Schumacher & Schwarb, 2009) was further investigated. 

It was also investigated to what extent participants can exploit predictably varying SOAs in 

order to learn the sequence. Pitting the assumption that varying SOAs trigger a global serial 

processing strategy (Israel & Cohen, 2011) against the assumption that participants (without 

prioritization instructions) prefer moderately parallel processing (Lehle & Hübner, 2009), it 

turned out that the latter assumption is probably more appropriate. Learning occurred only 

(mechanistically) with long SOAs but not flexibly and strategically with short SOAs as well. 

It is discussed whether task integration vs. separation can better explain the findings. 

To sum up, the outcomes of all three series of experiments hint at the importance of 

the separation of task representations in the face of unpredictable across-task co-occurrences, 

not only in the context of dual-task implicit sequence learning – but probably also for future 

endeavors to come to progress in the research on multitasking in general. 
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1 General Introduction 

Whether we are aware of it or not, many action sequences in our daily lives are based 

on routines which we developed due to our remarkable ability to extract regularities from the 

environmental input. Imagine, for instance, how you get up in the morning, walk into the 

kitchen – still half asleep – and make coffee. Every single step of this action sequence, taking 

place within the (relatively) stable environment that is your kitchen, has been practiced many 

times and proceeds smoothly, without much effort and awareness. You might not be able to 

verbalize the steps within your coffee routine – or even not realize that you have something 

like a coffee routine. Nevertheless, on the day, for instance, a new roommate has placed the 

coffee powder somewhere else, your routine is very likely to falter – indicating that, indeed, 

you had perfectly adapted to the “normal” conditions in your kitchen. Now imagine you 

shared an apartment with five other people and your coffee procedure would every morning 

be accompanied by all kinds of random events. It seems intuitively likely that you would 

never develop a really stable routine. In other words, although the learning of sequenced 

information is essential to many human behaviors (Lashley, 1951), the evidence suggests that 

(implicit) sequence learning gets massively disturbed by temporally contiguous co-occurring 

events requiring one or the other response (for reviews, see Keele, Ivry, Mayr, Hazeltine, & 

Heuer, 2003; Schumacher & Schwarb, 2009; Schwarb & Schumacher, 2012). 

Even though not being able to develop a stable morning coffee routine might already 

have subjectively unpleasant effects, it is obvious that an impairment of our implicit learning 

abilities, as a consequence of multiple simultaneous task demands, complicates operational 

procedures in numerous areas of human agency and, for instance, increases the risk of severe 

problems in working areas with high safety requirements. Nevertheless, our modern lives can 

virtually be characterized by the ubiquitous necessity to engage in multitasking activities – 

notwithstanding that these almost inevitably cause all sorts of performance costs. It is, thus, 

highly relevant to investigate the problem of implicit (sequence) learning in multitasking in 

more detail. Interestingly, so far, the sequencing of actions has drawn relatively little attention 

in the literature on multitasking – while multitasking (or, more specifically, dual-tasking) has 

occasionally been implemented in implicit sequence learning experiments, in order to fathom 

out its dependency on limited attentional resources, since the seminal study of Nissen and 

Bullemer (1987). The separateness of these two research fields might have sustained because 

they see the key to optimal performance within opposing, or incompatible, abilities, namely, 

in enabling parallelism to the extent of “virtually perfect time sharing” (Schumacher et al., 
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2001; multitasking) vs. avoiding parallelism in order not to confound within-task regularities 

(e.g., Houghton & Hartley, 1995; implicit sequence learning). However, while hundreds of 

dual-tasking studies reported severe problems in the endeavor of enabling parallelism leading 

unescapably to the assumption of a bottleneck in information processing (Pashler, 1994), 

some implicit learning studies reported preserved sequence learning despite dual-tasking due 

to successfully separating the tasks temporally (Schumacher & Schwarb, 2009) or conceptually 

(Halvorson, Wagschal, & Hazeltine, 2013) and, therefore, by avoiding parallelism. 

In the present series of studies, it is suggested – by linking both research perspectives 

– that one functional characteristic of the ubiquitous bottleneck might lie in keeping the 

representations of two (or multiple) tasks separate and that maintaining separate vs. integrated 

representations might essentially (but not solely) determine whether sequence learning in a 

dual-task context is possible or not. Recently, two accounts have been put forward that are, 

in principle, both in line with the assumption that the insufficiently separated processing of 

simultaneously presented tasks might indeed be the main cause for impaired implicit sequence 

learning. Interestingly, however, these accounts can be characterized as addressing the problem 

(predominantly) from either one of the two research perspectives – thereby also suggesting 

different mechanisms by which sequence learning is affected by dual-tasking. 

In very short, the task integration account (Schmidtke & Heuer, 1997), focusing on the 

mechanisms of implicit sequence learning, suggests that a tendency to integrate the two tasks 

hampers learning to the extent that (a) the integrated event sequence is often extraordinarily 

long and that (b) co-occurrences have no predictive value (Rah, Reber, & Hsiao, 2000). This 

account, thus, incorporates the assumption that associating sequenced information relies on 

the reduction of the prediction error (Rescorla & Wagner, 1972). Furthermore, that prediction 

proceeds automatically, is omnipresent, and operates on temporally contiguous events (see, 

e.g., Broeker et al., 2017). 

The parallel response selection account on the other hand (Schumacher & Schwarb, 2009), 

more strongly considers the general mechanisms of dual-task processing thereby contributing 

to the debate whether the limited central (cognitive) capacity can be shared (e.g., Tombu & 

Jolicoeur, 2003) or not (e.g., Pashler, 1994). Here, it is suggested that selecting two responses 

simultaneously disturbs the learning of stimulus-response rules and, thus, sequence learning 

(see also Schwarb & Schumacher, 2012). 

Interestingly, both lines of research also demonstrated an amazing flexibility of human 

cognitive processing. That is, parallel response selection (Schumacher & Schwarb, 2009; 

Experiment 2) and/or task integration (see Halvorson, Wagschal, et al., 2013) – both assumed 
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to occur by default given temporally contiguous dual-task events – could be prevented simply 

by instruction. It is, thus, warranted, as also Koch, Poljac, Müller, and Kiesel (2018) suggested, 

that research on multitasking should investigate the fundamental aspects of our cognitive 

architecture not only in terms of its structure – but also in terms of its flexibility and plasticity. 

Implicit learning provides a profound basis for the plasticity of human behavior. Finding the 

conditions under which this plasticity is preserved despite dual-tasking will, thus, contribute 

to our knowledge about the flexibility of the involved cognitive mechanisms. 

The aim of the present series of three studies was to shed more light on the basic 

mechanisms underlying implicit sequence learning in dual-task situations and to compare and 

to evaluate (predominantly) the two above mentioned accounts: the task integration account 

originating by Schmidtke and Heuer (1997; see also Rah et al., 2000) and the parallel response 

selection account of Schumacher and Schwarb (2009). 

In the following sections, some fundamental assumptions within the implicit sequence 

learning literature and the multitasking literature will be introduced before reviewing previous 

theories and findings concerning implicit sequence learning in multitasking situations – from 

which the rationale and the hypotheses for the present experiments were derived. 

Implicit sequence learning 

The question why implicit sequence learning is often impaired by a simultaneously 

conducted secondary task – and whether it is, thus, dependent on attentional resources – is 

only one of several strongly debated questions within the huge body of literature on implicit 

learning (for recent reviews, see Abrahamse, Jiménez, Verwey, & Clegg, 2010; Keele et al., 

2003; Schwarb & Schumacher, 2012). 

Since the seminal study of Nissen and Bullemer (1987), researchers have used the 

serial reaction time task (SRTT) to investigate the nature of sequence learning. In this task, 

participants have to respond to a visual target stimulus occurring at one of (e.g.) four spatial 

locations on the screen by pressing the appropriate spatially mapped key. Unbeknownst to 

the participants, the successive target locations follow a regular sequence. Several training 

blocks repeating this sequence are followed (or interrupted) by a random block. Sequence 

knowledge is revealed, when the response times in this random block are significantly slower 

than in the later (or surrounding) sequence blocks. The implicit nature of this knowledge is 

inferred when participants are unable to verbalize the sequence or do not know that they had 

learned anything in the first place (e.g., Dienes & Berry, 1997). However, defining implicit 

learning – in contrast to explicit learning or hypothesis testing – is already the first of several 
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theoretical challenges (for a short summary, see Frensch & Rünger, 2003). The smallest 

common denominator within this debate is that it is learning without awareness that occurs 

unintentionally (and probably automatically in the sense of being independent of attentional 

resources). Meanwhile, it is often assumed that implicit learning “consists of a continuous, 

incremental change in the associative pattern that is sensitive to the statistical features of the 

set of items or events encountered” (Frensch & Rünger, 2003, p. 17). 

Related to this issue is the question whether implicit and explicit learning are based 

both on one single knowledge base (e.g., Cleeremans & Jiménez, 2002) or on two (or multiple) 

independent knowledge bases (e.g., Keele et al., 2003). The latter view has also tried to unify 

early attempts to explain why sequence learning suffers when a secondary task is added to 

the SRTT. This point will be considered in more detail below. 

Since implicit (sequence) learning can be defined as learning without awareness of the 

products of learning, the question of what exactly it is that is learned implicitly – and how the 

acquired knowledge is represented in the brain – has received much of the attention in recent 

research (Abrahamse et al., 2010; Schwarb & Schumacher, 2012). This research has focused 

mainly on the dichotomy of purely stimulus-based and purely response-based learning. For 

instance, by demonstrating the effector independence of sequence knowledge, the findings 

of Cohen, Ivry, and Keele (1990) can be seen as evidence for stimulus-based learning. Transfer 

of sequence knowledge from one- to a slightly different stimulus-response (S-R) mapping 

while keeping the response locations constant (e.g., Willingham, Wells, Farrell, & Stemwedel, 

2000), on the other hand, suggest that implicit motor sequence learning is represented in the 

form of successive response locations. 

However, other alternatives have also been suggested, that is, learning of response-

effect associations (e.g., Ziessler & Nattkemper, 2001) or of stimulus-response (S-R) rules (e.g., 

Schwarb & Schumacher, 2010) – the latter being the basis for the parallel response selection 

account of impaired sequence learning in dual-task contexts (see below). According to the S-R 

rule hypothesis, sequence knowledge is acquired when task relevant S-R pairs, as defined by 

the S-R rule, remain active in working memory across several trials and begin to form cross-

temporal associations. Schwarb and Schumacher (2010), for instance, showed that sequence 

knowledge transferred to novel S-R mappings even when the response locations changed – 

given that these changes were simple “spatial transformations” of the original S-R rules (e.g., 

always one key to the left). Both, the finding of effector independence (Cohen et al., 1990) as 

well as many findings in line with response based theories (e.g., Willingham et al., 2000) can 

also be explained by the S-R rule hypothesis because, for instance, changing the effector does 
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not change the S-R rule. However, findings of perceptual sequence learning with uncorrelated 

responses (e.g., Haider, Eberhardt, Esser, & Rose, 2014; Haider, Eberhardt, Kunde, & Rose, 

2012) are hard to reconcile with it. 

To summarize, most researchers agree that implicit learning is based on mechanisms 

that associate selectively attended, predictive pieces of information being relevant for behavior. 

Implicit knowledge remains unaware to the participants (at least) in the sense that they cannot 

verbalize it – and/or perform poorly in recognition tests, generation tasks, inclusion/exclusion 

tasks, and other established testing methods (see Haider, Eichler, & Lange, 2011). 

Multitasking 

Two of the main questions in the literature on multitasking – or, more specifically, 

dual-tasking – have been whether the ubiquitous finding of dual-task costs can be attributed 

to an assumed bottleneck in information processing that is either structural or strategic in 

nature and, thus, whether parallel processing at this stage is, in principle, possible or not (for 

a recent review, see Koch et al., 2018). 

Two different dual-task paradigms are employed in order to investigate the limits and 

the possibilities of the human cognitive architecture. Dual-task interference is either assessed 

by comparing the performance in dual-task vs. single-task conditions or by gradually varying 

the temporal overlap (stimulus onset asynchrony; SOA) of the two tasks. The latter has been 

termed PRP (psychological refractory period) paradigm and was introduced by Welford (1952). 

The SOA can be varied between two extremes, ranging from complete temporal overlap (i.e., 

SOA = 0 ms) up to nearly mimicking a task switching situation (e.g., SOA = 1000 ms). The 

classical finding is that the performance in the secondary task suffers the more the shorter 

the SOA (which is the so-called PRP effect) but that the performance in the primary task is 

rather unaffected by this manipulation (see Pashler, 1984; 1994). It is assumed that one (or 

more) stages in information processing might exist that can be accessed by the two tasks only 

serially – but not in parallel. Attempts to localize this bottleneck repeatedly pointed at the 

response selection stage, centrally linking perceptual and motor processes (see Donders, 

1868/1969; Sternberg, 1969), which themselves, in contrast, both can run in parallel with any 

other process (see, e.g., Pashler & Johnston, 1989). Many researchers have tried to eliminate 

the PRP effect (e.g., by means of extensive practice) but only few attempts have had some 

success (e.g., Schumacher et al., 2001; see also Hazeltine, Teague, & Ivry, 2002) – fostering 

the view that the “bottleneck” represents a structural limitation (Pashler, 1984, 1994) that 
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might possibly only become extremely shortened and, thus, “latent” (Ruthruff, Johnston, Van 

Selst, Whitsell, & Remington, 2003; see also Strobach & Schubert, 2017a; 2017b). 

In recent years, however, several findings called the assumption of a structural central 

bottleneck into question. For instance, Hommel (1998) found that task 2 responses, being 

spatially (in)compatible to task 1 responses, affected the performance in task 1. This effect 

was called backward compatibility effect, or, more generally, backward crosstalk effect (BCE) because 

interference seemingly operated “backwards” through the bottleneck – which contradicts the 

assumption of its structural, single-channel nature as conceptualized within Pashler’s (1984; 

1994) response selection bottleneck (RSB) model. This assumption implies that response related 

task 2 processing cannot start before response selection for task 1 is finished, thus, backward 

crosstalk effects are not predicted. To account for this, Hommel (1998) suggested an additional 

processing stage of automatic response activation allowing parallel processing at the risk of 

crosstalk – which has, then, finally to be overcome within the subsequent original controlled 

response selection stage of limited capacity. This way, the RSB model was expanded but could 

be maintained (see also Janczyk, 2016; Janczyk, Pfister, Hommel, & Kunde, 2014). 

However, other models, built on the assumption that the limited central capacity can 

be gradually (and probably also strategically) shared, can as well explain the BCE (Logan & 

Gordon, 2001; Meyer & Kieras, 1997; Navon & Miller, 2002; Tombu & Jolicoeur, 2003). 

Crucially, these models can, nevertheless, also account for the PRP effect – simply by assuming 

that, for instance, under conditions highlighting the prioritized processing of task 1, the limited 

central capacity is directed to 100% at task 1 first. In this case of serial processing, RT1 

should be approximately as fast as in a single-task condition. In case of parallel processing on 

the other hand, RT1 should be slowed down to the extent that capacity is shared and RT2 is 

accelerated. Miller, Ulrich, and Rolke (2009) tested these predictions under the assumption 

that (a) the extent to which participants process two tasks serially or in parallel depends on 

the list-wide frequency of long vs. short SOAs, respectively, and that (b) participants choose 

one or the other processing strategy in order to optimize the dual-task performance in terms 

of minimizing the total response time (TRT; i.e., the sum of RT1 and RT2). Their results were 

mainly in accord with that. 

Meanwhile, it has been shown that participants are also able to flexibly engage in a 

more parallel or more serial processing mode simply by instruction (Lehle & Hübner, 2009) 

thereby producing larger vs. smaller crosstalk effects. However, several further factors, like 

stress, motivation, awareness of conflict, determine if participants are indeed willing or able 

to engage in effortful control processes (like suppressing interfering task 2 response features) 
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– or whether they prefer a relaxed, moderately parallel processing mode at the expense of 

one or the other kind of costs (see Fischer & Plessow, 2015 for a recent review). 

The core assumption of the parallel response selection account of impaired implicit 

sequence learning (cf. Schumacher & Schwarb, 2009) builds on capacity sharing models (e.g., 

Tombu & Jolicoeur, 2003) as, here, it is assumed that in a condition consistently presenting 

the two stimuli simultaneously (i.e., with an SOA of 0 ms), triggers a parallel response selection 

strategy (cf. Miller et al., 2009) which, in turn, impairs sequence learning. This point will be 

considered in more detail below. 

Implicit sequence learning in multitasking situations 

Since the introduction of the SRTT (Nissen & Bullemer, 1987), one predominant 

question in the research on implicit sequence learning has been whether it is dependent on 

attentional resources (Cohen et al., 1990; Curran & Keele, 1993; Nissen & Bullemer, 1987). 

One method to investigate this question was to present the SRTT together with a secondary 

tone-counting task. Nissen and Bullemer reported that this secondary tone-counting task 

entirely eliminated implicit sequence learning and they concluded that attention is indeed 

needed to implicitly learn a repeating sequence. Other researchers found that the extent to 

which implicit sequence learning was impaired under dual-task requirements interacted 

strongly with the specific length and structure of the sequence and they concluded that the 

implicit learning of sequences with unique or hybrid – in contrast to ambiguous – pairwise 

transitions does not depend on attention (Cohen et al., 1990; Curran & Keele, 1993). 

In all further research, the question whether or not implicit learning was impaired 

under dual-task requirements was investigated using different learning phases (dual- or single-

task or both, in different lengths and ratios) and/or different test phases (dual- or single-task 

or both in succession and different orders). Additionally, the SRTT sequences were of different 

lengths and structures (see Cohen et al., 1990). In most of the earlier studies, participants’ 

secondary task was to count one of two tones that were randomly played during the response-

stimulus interval (RSI) of the SRTT. Conclusions concerning the dependency of implicit 

sequence learning on attention (and on the complexity of the sequence structure) were drawn 

from comparably larger or smaller learning effects in the SRTT. 

Curran and Keele (1993; Experiment 1) found learning scores in a dual-task test after 

single-task training that were smaller than the learning scores in the preceding single-task test 

(but not absent). Additionally, the learning scores after dual-task training were also small and 

did not differ as a function of the kind of subsequent test (single- vs. dual-task; Experiment 3). 
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Keele and colleagues (e.g., Curran & Keele, 1993) interpreted these and similar findings as 

evidence for the existence of two different sequence representation systems, with only one of 

them depending on attention. They suggested that counting tones during the training phase 

might prevent attention-dependent implicit learning – and might suppress its expression when 

introduced later, in the test phase. 

Nevertheless, Frensch and colleagues (Frensch, Lin, & Buchner, 1998; Frensch, 

Wenke, & Rünger, 1999) found implicit learning effects in a single-task test after dual-task 

training that were larger than those in the preceding dual-task test. Frensch and colleagues 

concluded that implicit sequence learning takes place automatically and is generally independent 

of attention. In their conception, the smaller learning scores in the dual-task test reflected the 

suppressed expression of the acquired knowledge (due to specific interference from the tone-

counting task in terms of trial-by-trial variability in task scheduling). Also in favor of a “specific 

interference” account, Stadler (1995) considered the point that updating the tone-count in 

the RSI of the SRTT is usually only required in 50% of all trials thereby separating successive 

SRTT-targets by irregular events disrupting the organization of the sequence. 

Task integration 

Adding to Stadler’s point, Heuer and Schmidtke (1996) criticized the tone-counting 

task altogether for not allowing to decide whether implicit sequence learning gets impaired 

due to increased memory load or due to processing requirements on a trial-by-trial basis 

(classifying tones). Therefore, they introduced an auditory-motor go/no-go task (foot-pedal 

press in response to only one of the tones, played in the RSI of the SRT). This task required 

immediate decisions without increased memory load – and produced substantial interference 

on implicit sequence learning. 

Based on this finding, Schmidtke and Heuer (1997) introduced two further novel 

procedures into the dual-task implicit sequence learning literature. Most importantly, they 

added to the random tone condition two new conditions with regular tone sequences that 

were (to a high or lower degree) correlated with the visual-manual SRTT sequence. Second, 

they not only assessed the amount of implicit sequence learning in dual- as well as in single-

task tests but they also obtained learning scores for both tasks, that is, they either changed 

the repeating SRTT- or the repeating tone sequence (or both) in different transfer-blocks and 

assessed learning within- as well as across tasks. They hypothesized that impaired implicit 

sequence learning under dual-task requirements results from task integration, that is, from 

the (ineffective) “attempt” to learn an integrated bimodal (visual-auditory) sequence in which 



19 
 

every second element is random. This implies that – with correlated sequences in both tasks 

– integrated learning should be as good as single-task learning. 

Three experiments revealed the following main findings. In Experiment 1, a dual-task 

test after dual-task training revealed learning scores that were the larger the more the two 

sequences were correlated. Indeed, with perfectly correlated sequences, the dual-task learning 

effect was comparably large as the single-task learning effect of the single-task control group. 

The single-task scores (SRTT only) of all dual-task groups were equally sized (and smaller 

than in the dual-task test) replicating the finding that hybrid sequences can also be learned 

under dual-task requirements (Cohen et al., 1990). Experiment 2 replicated the major findings 

of Experiment 1 under different test conditions. These results indicate that task integration 

occurs per default, being either beneficial or detrimental for sequence learning depending on 

the extent to which co-occurring events have to be attended (i.e., have to be responded to; 

see Experiment 3), are of predictive value for each other (Rah et al., 2000) and that the 

resulting integrated sequence is not extraordinarily long. 

The dual-system model of sequence representation 

Up to this point, Keele et al. (2003) had been able to integrate the majority of the 

findings into their dual-system model of sequence representation. In short, the model proposes two 

independent sequence learning systems, the multidimensional and the unidimensional system. 

The multidimensional system forms associations between events that occur across different 

“dimensions” (a term used more or less interchangeably with “modality”), given that these 

events are selectively attended. Importantly, attention in the sense of capacity limitation is 

not part of the model. The unidimensional system, on the other hand, forms associations 

exclusively within dimensions. This encapsulation makes it possible to associate automatically 

events occurring within the same dimension – even in the presence of random events within 

another dimension (as long as they are not task relevant). 

While learning within the unidimensional system is entirely implicit, learning within 

the multidimensional system can also become explicit. Additionally, it is assumed that the 

two systems operate in parallel in single-task sequence learning, while in dual-task situations, 

unidimensional modules operate exclusively. However, attended information still gains access 

to the multidimensional system. If this information includes correlated events, associations 

will be also formed across dimensions. If, however, attended events are random, sequence 

learning will be disrupted. These assumptions are close to the task integration hypothesis and 

Keele et al. (2003) also propose a quite specific mechanism. By comparing task integration 

with classical conditioning they suggest that associations across dimensions are formed when 
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a signal within one dimension reliably predicts an immediately following event within another 

dimension (see also Rescorla & Wagner, 1972). 

The model also incorporates other “specific interference” accounts by considering 

the observation that SRTT learning seems to be consistently only then affected by co-

occurring tones when participants have to respond to these tones in any way – instead of just 

hearing them (see Rah et al., 2000; Schmidtke & Heuer, 1997; Stadler, 1995). Specifically, it 

seems as if (apart from differential working memory demands) counting 50% of the tones is 

not so different from pressing a foot-pedal in 50% of trials, possibly because both tasks 

require some sort of response (or at least a decision) on a trial-by-trial basis – suffering from 

random- but benefitting from predictable cross-dimensional events. 

Parallel response selection 

In a more recent dual-task implicit learning study, Schumacher and Schwarb (2009) 

focused exclusively on situations in which both tasks required a response in every trial, aiming 

at identifying the exact locus of the impairment of learning within the central response 

selection stage (cf. Donders, 1868/1969; Sternberg, 1969). To investigate this assumption, 

they adopted the two different dual-task paradigms (introduced above) and paired the SRTT 

with a (random) tone-discrimination task calling for an open (vocal) response in 100% of the 

trials. Additionally, the tones were no longer played in the RSI of the SRTT but occurred 

either simultaneously with the visual SRTT stimuli or after a long SOA (of 750 ms). Since 

separate input and output modalities were required for both tasks in the respectively most 

compatible (“standard”) combination of stimuli and responses (see Hazeltine, Ruthruff, & 

Remington, 2006), the authors expected any impairment of implicit learning to occur due to 

interference within the central response selection stage, thereby adopting the assumption that 

central capacity can, in principle, be shared (e.g., Tombu & Jolicoeur, 2003). 

To summarize, preserved learning was found only when the tasks were temporally 

separated by the long SOA which, in the authors’ conception, prevented parallel response 

selection (Experiment 1; see also Miller et al., 2009). It was also found simply by instructing 

the participants to prioritize the SRTT (Experiment 2) despite simultaneous stimulus onset. 

And, finally, it was found when the SRTT was the secondary task within the PRP paradigm, 

separated from the tone-task by the bottleneck (Experiment 3) – even though dual-task costs 

(i.e., the PRP effect) were also present. This outcome suggests that not dual-task interference 

per se but exclusively parallel response selection disturbs sequence learning. 

Schumacher and Schwarb (2009) see their findings as being inconsistent with all other 

accounts shortly reviewed above. Most importantly, in respect to the present studies, the 
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authors reject both the task-integration hypothesis by Schmidtke and Heuer (1997) and the 

dual-system model (Keele et al., 2003) as, in their study, they consistently found sequence 

learning despite the presence of an unpredictable secondary task – as long as the strategy of 

parallel response selection was prevented. They also concluded that the additivity of learning 

effect and PRP effect (Experiment 3) supports the hypothesis that implicit sequence learning 

is generally mediated by response selection (see also Schwarb & Schumacher, 2010, 2012). 

Across-task prediction 

The rationale for the present series of studies was derived by considering that many 

earlier accounts of impaired implicit sequence learning in dual-task contexts – especially the 

task integration account and the parallel response selection account – are in line with the 

assumption that the insufficient separation of crucial processes for sequence learning (or of 

whole task representations) might be the main cause for its disruption (in combination with a 

low predictive value of across-task events). Prediction – and the step-wise reduction of the 

prediction error as conceptualized by Rescorla and Wagner (1972) – can be seen as such a 

crucial learning process. The task integration account directly builds on this conception (at 

least in the variant proposed by Rah et al., 2000) considering the predictability of across-task 

events as the crucial factor determining whether sequence learning in a dual-task context is 

possible or not. The finding of Schumacher and Schwarb (2009) that temporally separating 

the SRTT and the (random) tone-task was beneficial for sequence learning while simultaneous 

stimulus presentation was not, could, in principle, also count as strong evidence for the task 

integration/ the across-task prediction account. Crucially, however, as described above, the 

authors interpret their findings, instead, as evidence for the parallel response selection account. 

In the following, the across-task prediction account will be introduced more broadly – before 

three series of experiments are presented which have been conducted in order to shed more 

light on the causes of impaired implicit sequence learning in dual-task situations. 

Already in the early decades of research on learning and serial ordering of behavior 

(Lashley, 1951), the importance of expectations and predictive mechanisms was emphasized 

(Bubic, von Cramon, & Schubotz, 2010). The reduction of the prediction error is, indeed, the 

central mechanism in the model of classical conditioning by Rescorla and Wagner (1972). 

According to the principles of the predictive coding account (Clark, 2013; Friston, 2010), 

prediction is an omnipresent mechanism that can also proceed automatically and implicitly 

operating on temporally contiguous events (see, e.g., Broeker et al., 2017). Marcus, Karatekin, 

and Markiewicz (2006) found that predictive eye movements accompanied sequence learning 

suggesting that prediction is already part of the learning process itself – and that the accuracy 
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of prediction improves in effect (see also Dale, Duran, & Morehead, 2012). Prediction allows 

us “to direct our behavior towards the future, while remaining well-grounded and guided by 

the information pertaining to the present and the past” (Bubic et al., 2010; p. 11). Learning, 

in the sense of reducing the prediction error, is triggered by the exposure to non-random 

patterns of events in the environment allowing the brain to extract the statistical relationships 

between these events for later predictive use. However, the brain may also, by default, predict 

novel events and “attempt” to extract patterns from completely random input in order to 

avoid surprises (that is, to minimize free energy), ensuring that the state of a biological agent 

remains within its physiological bounds (Friston, 2010). Prediction is, thus, not dependent on 

“predictability” – but strongly supported by it (Broeker et al., 2017). 

The acquisition of (implicit) knowledge about the serial order of a sequence of events 

in a SRTT can be seen as an instance of learning via predictive processing. Learning proceeds 

due to the exposure to instances of conditional dependencies of successive events – which is 

also the core assumption within the statistical learning approach sharing some commonalities 

with the implicit learning approach (Perruchet & Pacton, 2006). Accordingly, the impairment 

of implicit sequence learning due to the integration of a randomly sequenced secondary task 

can be seen as a demonstration of the omnipresence and automaticity of predictive processing 

showing that across-task predictions occur despite being disadvantageous in some cases. For 

instance, in dual-tasking, the greater temporal proximity of across-task events (occurring in 

the same trial) in comparison to within-task events (occurring in successive trials) might bias 

the predictive processes to operate on co-occurrences that are potentially of low predictive 

value. In sum, with integrated task representations, dual-task sequence learning should depend 

strongly on the predictability of across-task events (cf. Rah et al., 2000; Schmidtke & Heuer, 

1997). With separate task representations, on the other hand, chances should be good that 

the prediction mechanism will operate on successive within-task events instead – supporting 

sequence learning despite the presence of a random secondary task. 

The separation of representations might be induced by a potent bottom-up cue, like, 

for instance, the temporal separation of the two tasks (cf. Schumacher & Schwarb, 2009). It 

has, however, also been shown that different conceptualizations of task boundaries can be 

induced top-down, by instruction (e.g., Freedberg, Wagschal, & Hazeltine, 2014). Participants 

in the study of Halvorson, Wagschal, et al. (2013) who viewed the same tasks (of which one 

followed a regular- and the other a random sequence) as either two separate or one integrated 

task, did vs. did not learn the sequence, respectively. Indeed, the implementation of different 

task-sets has repeatedly proven to be a powerful instrument determining which information 
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exactly participants extract from the environment for later predictive use (see Dreisbach & 

Haider, 2008, 2009; Gaschler, Frensch, Cohen, & Wenke, 2012; Haider et al., 2014). 

Conceptualizing predictive processing as an omnipresent mechanism, it is warranted 

to consider predictability as most beneficial in multitasking situations – not only for sequence 

learning but also for mastering other challenges whenever multiple tasks call for appropriate 

responses (Broeker et al., 2017). Predictive processing provides several advantages for all 

kinds of behavior by saving cognitive resources, by accelerating perceptual processing and by 

limiting the repertoire of potential responses (Bubic et al., 2010). First evidence is available 

that already existing sequence knowledge (acquired in single-task blocks) – allowing the use 

of within-task predictability – reduces general dual-task costs (Gaschler et al., 2018; see also 

Gaschler, Zhao, Röttger, Panzer, & Haider, 2019). It seems, thus, that in the most common 

dual-task context (i.e., with two randomly sequenced tasks), a considerable amount of the 

ubiquitous costs can possibly be attributed to predictive processing in the absence of any 

opportunity to reduce the prediction error. 

Another multitasking situation benefitting from predictability is task switching. It has 

been shown that participants perform better in switch trials (in principle associated with costs) 

when the tasks occur in a regular sequence of which implicit knowledge has been acquired 

(Koch, 2001). Very likely, this knowledge supports the advance preparation of the upcoming 

task set. However, recently it has been shown that other predictive cues can also be utilized. 

Aufschnaiter, Kiesel, Dreisbach, Wenke, and Thomaschke (2017), for instance, provided 

temporal cues (RSI durations) contingent with the upcoming task set to 70, 80, or 90%. In 

result, task-switch- as well as -repetition trials benefitted from the most frequent (and, thus, 

predictable) task-RSI combinations – even though, at the same time, the participants were 

unaware of the respective contingencies. 

In line with this finding – and with recent theories suggesting that timing behavior is 

driven by memory traces of preceding timing experiences (Los, Kruijne, & Meeter, 2014, 

2017; Taatgen & van Rijn, 2011) – Zhao et al. (in press) implemented a PRP paradigm and 

provided direct evidence that sequences of time intervals (here: SOAs) can (a) be learned and 

(b) used in a predictive way, thereby reducing (global) dual-task costs. Fischer and Dreisbach 

(2015) could even demonstrate a very flexible (i.e., trialwise) up- and down-regulation of task 

shielding activities due to an increased predictability of the SOA lengths. The BCE for items 

predicting short SOAs (bearing a high risk for between task interference) was smaller than for 

items predicting long SOAs. Wendt and Kiesel (2011) reported similar findings in a single-

task flanker experiment (Eriksen & Eriksen, 1974). Predictable foreperiods (i.e. time intervals 
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before the onset of target and flankers) were utilized as cues for flexible conflict adaptation 

in case of interference from incompatible flankers. Interestingly – but potentially untenably – 

Schmidt (2013; see also Schmidt, Lemercier, & de Houwer, 2014) even suggested that findings 

usually interpreted as evidence for flexible conflict adaptation (for a review, see Bugg & 

Crump, 2012) are nothing more than manifestations of temporal expectancies as the result of 

context-dependent temporal learning (of one’s own response rhythms). 

In sum, evidence from many fields of research suggests that prediction is indeed 

central for cognitive processing – and predictability beneficial for optimizing the performance. 

Assuming that multitasking situations provide optimal testbeds for the investigation of the 

capabilities and limits of human motor cognitive interaction (Broeker et al., 2017; Koch et al., 

2018), the present three series of experiments aimed at (re)investigating in detail the causes 

for the impairment of dual-task implicit sequence learning – with particular attention to the 

potential role of prediction and predictability. 

Overview of the present studies 

The rationale for the present studies was derived by considering that many earlier 

accounts of impaired implicit sequence learning in dual-task contexts are in line with the 

assumption that the insufficient separation of crucial processes for sequence learning (or of 

whole task representations) might be the main cause for its disruption (in combination with a 

low predictive value of across-task events). Within a dual-task paradigm originally introduced 

by Schumacher and Schwarb (2009), holding the general dual-tasking procedure (in main 

parts) constant across all experiments, especially two accounts were contrasted: the task 

integration account by Schmidtke and Heuer (1997; see also Rah et al., 2000) and the parallel 

response selection account (Schumacher & Schwarb, 2009). 

The aim of the first study (Chapter 2) was to reinvestigate several assumptions why 

implicit sequence learning might be impaired in dual-task situations that have been suggested 

in the literature since the seminal study of Nissen and Bullemer (1987). Keeping the (visual-

manual) SRTT constant across all experiments and conditions, the stimuli and the response 

requirements in the additional (auditory-vocal) tone-discrimination task were manipulated. 

To foreshadow, in line with the assumed omnipresence of prediction, the results of study 1 

most prominently indicated that the predictability of the tones (on the basis of the SRTT) is 

indeed the crucial factor for the impairment vs. the preservation of implicit sequence learning 
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in dual-task contexts – at least as long as an automatic tendency to integrate the two tasks is 

not prevented by an appropriate manipulation. 

In the second study (Chapter 3), the role of across-task predictability was investigated 

in more detail. Considering that, depending on the structure of the SRTT sequence – i.e., 

whether its transitional probabilities are unique or ambiguous (cf. Cohen et al., 1990) – the 

local and the global across-task predictability must be discriminated, the standard 8-element 

ambiguous (2nd order) SRTT was combined with to-be-discriminated tones that were either 

locally or globally predictable. It turned out that locally predictable tones (in principle capable 

of disambiguating ordinal sequence positions) were less useful than globally predictable tones. 

Potentially, the global across-task predictability reduced the frequency of response conflicts 

due to wrong predictions (and the necessity to inhibit features of the SRTT) as a consequence 

of integrated task representations – thereby preserving sequence learning. 

In the third study (Chapter 4), the parallel response selection account of Schumacher 

and Schwarb (2009) once again came into focus. The goal was to investigate to what extent 

participants in a dual-task situation can efficiently exploit predictably varying SOAs in order 

to optimize their processing strategies – and learn the SRTT sequence despite random tones. 

Pitting the assumption that PRP-like varying SOAs trigger a global serial processing strategy 

(Israel & Cohen, 2011) against the assumption that participants (not receiving prioritization 

instructions) rather prefer moderately parallel processing (Lehle & Hübner, 2009), it turned 

out that the latter assumption is probably more appropriate. Implicit learning only occurred 

together with long SOAs, that is, fully automatically and mechanistically but not flexibly and 

strategically with short SOAs as well. Backing away from the concept of parallel and serial 

processing (e.g., Miller et al., 2009) this outcome hints, again, at the importance of separate 

task representations in the face of co-occurrences with low predictive value – highlighting, in 

addition, the bottom-up nature of the temporal separation of task representations. 
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2 Implicit sequence learning despite multitasking: The role of 

across-task predictability 

One often replicated finding is that implicit sequence learning is hampered in dual-task situations. 

Thus, one crucial question has been whether implicit learning processes require attentional resources. 

Meanwhile, focusing exclusively on limited attentional resources might be considered as too 

unspecific. Overall, the focus lies now rather on the possibility that the impairment is due to 

interference coming along with (a) task integration (see also Schmidtke & Heuer, 1997) – or with (b) 

parallel response selection (Schumacher & Schwarb, 2009). Yet, other explanations have also been put 

forward – and there is still no agreement. 

Our goal here is to contribute to this debate by testing several constraints that have been suggested in 

the literature within one single paradigm, originating by Schumacher and Schwarb (2009). Therefore, 

we paired the same visual-manual serial reaction time task (SRTT; Nissen & Bullemer, 1987) with 

different auditory-vocal tone-discrimination tasks across seven dual-task conditions. We manipulated 

(a) its relation to the SRTT and/or (b) the difficulty of response selection. The results suggest that task 

integration is indeed a crucial factor for implicit sequence learning: Since the tone- task is a potential 

source of noisy patterns of covariation in a complex arrangement of task components, sequence 

learning is disrupted. In line with Rah, Reber, and Hsiao (2000), the usefulness (in terms of sequence 

learning) of task integration seems to depend on the predictive value of across-task stimulus and/or 

response events. 

Implicit learning is assumed to be one of the most fundamental learning processes 

enabling humans to exploit regular structures inherent in the environment (see, e.g., Dienes 

& Berry, 1997). They do this without any intention or additional effort and even without 

being consciously aware that they learn or what they actually learn. 

Even though implicit learning is considered a rather robust phenomenon (e.g., Reber, 

1993), many findings suggest that implicit learning is diluted when participants are instructed 

(e.g.) to count the occurrence of one of two randomly presented tones while performing an 

implicit learning task (Cohen, Ivry, & Keele, 1990; Curran & Keele, 1993; Frensch, Buchner, 

& Lin, 1994; Frensch, Lin, & Buchner, 1998; Frensch, Wenke, & Rünger, 1999; Heuer & 

Schmidtke, 1996; Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003; Nissen & Bullemer, 1987; 

Schmidtke & Heuer, 1997; Schumacher & Schwarb, 2009; Stadler, 1995). Yet, there has been 

no agreement about the explanation why such a secondary task impairs implicit learning. Our 

goal here is to contribute to this debate by testing – within one single paradigm – several 

constraints leading to an impairment of implicit learning in a dual-task situation. 

Implicit learning in dual-task situations 

One of the most frequently used tasks in the field of implicit learning is the serial 

reaction time task (SRTT; Nissen & Bullemer, 1987). In the standard SRTT, participants see 

locations on the screen which are mapped to spatially corresponding keys. They are instructed 

to press the appropriate response key whenever a target stimulus, e.g., an asterisk, occurs at a 
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certain location. Unbeknownst to the participants, these target locations follow a regular 

sequence. After several blocks of practice, the regular sequence is replaced by a random 

sequence. This leads to performance decrements that disappear almost immediately when the 

original regularity is reintroduced. Importantly, usually participants are not able to explicate 

their acquired knowledge when asked to do so. 

Since the introduction of the SRTT, one crucial question has been whether implicit 

learning processes require attentional resources (e.g., Cohen et al., 1990; Curran & Keele, 

1993; Nissen & Bullemer, 1987). In order to investigate this question, many researchers 

presented the SRTT together with a secondary tone-counting task. In the most frequently 

used setup, participants respond with a manual key press to the target location on the screen. 

Shortly after the key press [i.e., in the response-stimulus interval (RSI)] a high- or a low-pitched 

tone is randomly presented and the participants are instructed to count, for instance, only the 

high tones. Then, the next trial starts with the asterisk occurring at a different location. At the 

end of each block, the participants have to report the total number of counted tones. 

Overall, the results obtained within this paradigm seem to show that the processes 

involved in implicit sequence learning are disturbed under such dual-task conditions suggesting 

that these processes, indeed, depend – to some degree – on attentional resources (for excellent 

overviews, see Keele et al., 2003; Schumacher & Schwarb, 2009). 

However, explaining the impairment of implicit sequence learning by merely focusing 

on limited attentional resources might be considered as too unspecific. Many alternative 

explanations have been proposed but the debate on how to best account for these findings is 

still going on. For instance, Frensch and colleagues (1998; 1999) have argued to differentiate 

between effects that the secondary task might exert on sequence learning vs. on the impact 

of sequence knowledge on performance. The reaction time difference between blocks 

following the practiced sequence vs. containing randomly sequenced target stimuli (i.e., the 

measure of implicit learning) was present under single-task conditions but reduced when 

participants had to concurrently perform the secondary task. Therefore, the authors 

proposed that only the expression of learning is impaired, not the learning process itself 

(suppression hypothesis). Stadler (1995) assumed that implicit sequence learning in the earlier 

dual-task experiments was reduced due to the randomness of events (updating the tone-

count or not) separating successive elements of the SRTT, thereby disturbing the organization 

of the sequence (organizational hypothesis). More extremely, Rah, Reber, and Hsiao (2000) 

suggested that, essentially, the “duality” of the standard combination of the SRTT and a 

tone-counting task is “illusory”. The tone-counting task degrades the SRTT performance 
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“not because it diverts attention, reduces short-term memory capacity, suppresses 

performance, and/or disrupts organization, but simply because it introduces a set of co-

occurrences that have no predictive value” (p. 310). In a similar vein, Schmidtke and Heuer 

(1997) subsumed that task integration might be the reason why implicit sequence learning is 

impeded. They refrained from using the tone-counting task and instead instructed the 

participants to press a foot-pedal in response to one of the two tones (go/no-go task). 

Furthermore, in some of their experiments the tones were not presented randomly, but 

either followed a 6-elements or a 5-elements sequence. Thus, the tones were correlated with 

the 6-elements SRTT sequence to a high or to a lower degree. Schmidtke and Heuer found 

larger amounts of sequence learning with the 6-elements tone-sequence than with the 5-

elements tone-sequence in a dual-task test. From this finding, they concluded that the 

participants had integrated the tone-task into the SRTT resulting in an easy to learn 12-

elements sequence in the former and a more difficult 60-elements sequence in the latter case 

(task integration hypothesis). 

In an attempt to integrate the findings and assumptions in the field of dual-task 

implicit learning, Keele et al. (2003) proposed the dual-system model of sequence representation. 

Here, the assumption is that implicit sequence learning relies on two independent 

representational systems – the unidimensional and the multidimensional system. Learning in 

the unidimensional system is thought to represent associations within single dimensions. 

This system works independently of attention. It is sufficient as a selection criterion that an 

event in the environment belongs to one dimension. By contrast, the multidimensional 

system is thought to form associations across different dimensions and therefore requires 

attention to select information in the environment. With regard to dual-task learning, the 

crucial point in the dual-system model is that the secondary tone-task is thought to impede 

learning in the multidimensional system, whereas learning in the unidimensional system is 

preserved. Thus, occasional observations of implicit sequence learning in dual-task paradigms 

should result exclusively from (residual) learning within the unidimensional system. 

Albeit this model has largely contributed to our understanding of implicit learning, 

two potential weaknesses should be mentioned: First, Keele et al. had only loosely defined 

what the term “dimension” means. The findings of Eberhardt, Esser, and Haider (2017) 

suggest that this term “dimension” refers to single feature codes (e.g., location, color, shape 

etc.) irrespectively of whether these codes belong to the stimulus or to the response. Other 

researchers, however, assume that stimuli or responses constitute different dimensions (e.g., 

Abrahamse, Jiménez, Verwey, & Clegg, 2010). Second, the assumption of residual learning 
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within the unidimensional system might also be ambiguous. As detailed below, the participants 

in all experiments reported so far were asked to respond to only one of the two presented 

tones. That is, in approximately 50% of the trials, they experienced a single-task situation (at 

least under the assumption that merely presenting a secondary stimulus does not already 

disrupt learning in the multidimensional system). Thus, it is conceivable that the “dual-task” 

learning had simply been preserved during the single-task trials. 

More recently, Schumacher and Schwarb (2009) reported dual-task experiments in 

which the participants were instructed to respond to both stimuli in every trial (i.e., to 

respond manually to the visually presented SRTT stimuli and verbally to the tones). 

However, they also presented both stimuli simultaneously and not, as was done in most of 

the former experiments, within the RSI of the SRTT. Their findings suggest that under this 

condition, implicit sequence learning is absent – at least when participants treat both tasks 

with equal priority. They surmise that it is the central capacity sharing (Tombu & Jolicoeur, 

2003, 2005) – or, in other words, the demand for parallel response selection that impedes implicit 

sequence learning. 

Overall, this short overview reveals that the research focusing on implicit learning in 

dual-task situations does not provide a consistent picture – neither on the empirical nor on 

the theoretical side. On the empirical side, even subtle changes in the experimental setups 

and research designs might have provoked differences in the task representations (cf. 

Abrahamse et al., 2010). This, in turn, could have contributed to the divergent findings and 

complicates comparisons across studies. For instance, in many experiments, the participants 

had to count (or to respond to) only one of the tones (e.g., Cohen et al., 1990; Curran & 

Keele, 1993; Frensch et al., 1994; 1998; 1999; Heuer & Schmidtke, 1996; Nissen & Bullemer, 

1987; Schmidtke & Heuer, 1997; Stadler, 1995), whereas in other experiments a response to 

every tone was required (e.g., Schumacher & Schwarb, 2009). These differences in the 

experimental procedures make it difficult to decide whether any preservation of implicit 

sequence learning under dual-task conditions was obtained because learning in the 

unidimensional system (Keele et al., 2003) was left intact or because participants had 

experienced a single-task situation in about 50% of the trials. Furthermore, even though 

many researchers had used the tone-counting task (with the tones occurring in the RSI of the 

SRTT), they had used sequences that differed in complexity (see, e.g., Cohen et al., 1990). 

Thus, it is not clear whether the complexity of the sequence might have affected the amount 

of implicit learning in dual-task conditions. Larger changes concern the requirements of the 

secondary tone-task. Some researchers refrained from using the tone-counting task. Instead, 
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they instructed the participants to press a foot-pedal (Schmidtke & Heuer, 1997; go/no-go 

task) or to respond verbally to the tones (Schumacher & Schwarb, 2009; tone-discrimination 

task). 

Variation in methods parallels variation in theoretical accounts of the impact of dual-

tasking on implicit sequence learning. On the one hand, impaired sequence learning has been 

attributed to interference coming along with parallel response selection (Schumacher & 

Schwarb, 2009). Participants face difficulties to perform response selection in parallel for two 

tasks. As response selection has been attributed a major role in implicit sequence learning 

(e.g., Willingham, Wells, Farrell, & Stemwedel, 2000), disturbing response selection might 

hamper sequence learning. On the other hand, it has been suggested that the sequence learning 

decrements under dual-task conditions are based on (partial) randomness of the responses 

rather than on the requirements for simultaneous response selection. Keele et al. (2003) 

suggested that combining a task with a regular sequence of events and a task with a random 

sequence of stimuli and responses complicates the learning problem for the organism in case 

that the events in the two tasks are represented together. In such a compound representation 

the randomly sequenced stimuli and responses would reduce predictability. Integrating the two 

tasks can negatively affect implicit learning when events in one task are randomly sequenced 

and therefore have no predictive value (e.g., Rah et al., 2000; Schmidtke & Heuer, 1997). 

The Present Study 

The goal of the present study was to further investigate the reasons why implicit 

sequence learning is impeded in dual-task situations. For this purpose, we used an experimental 

setup similar to the variant of the dual-task paradigm used by Schumacher and Schwarb (2009; 

Experiment 1). While keeping the (visual-manual) SRT task constant across all experiments 

and conditions, we varied stimuli and response requirements in the (auditory-vocal) tone-

discrimination task. Taking into account that it is still unclear whether the learning process 

itself or only the expression of the acquired knowledge is disturbed (Frensch et al., 1998; 

1999), we generally assessed implicit learning effects under single-task conditions. 

Altogether, we investigated eight experimental conditions which we grouped – 

according to the superordinate questions they address – into four experiments. The first 

three conditions (Experiment 1) aimed at replicating the finding of Schumacher and Schwarb 

(2009) that implicit learning is absent when the participants are asked to respond to the 

(randomly presented) tones in every trial. In addition, we tested if the impairment of implicit 

learning could be reduced when the dimensional codes of both tasks are made maximally 
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different. In one condition, like in the experiments of Schumacher and Schwarb (2009), 

participants were required to say “high” vs. “low” to high vs. low pitched tones. These 

responses might be represented in terms of spatial codes and therefore might increase the 

interference between the tone-task and the (also spatially coded) SRTT (cf. Eberhardt et al., 

2017; Koch, 2009; Wenke & Frensch, 2005). Therefore, we additionally tested a condition in 

which participants responded with arbitrary words (“blue” and “yellow”) to the timbre of 

two tones. These two conditions were compared to a third control condition in which 

participants only received the SRTT (single-task condition). 

The next four conditions (Experiment 2 and 3) aimed at testing more directly the task 

integration account proposed by Schmidtke and Heuer (1997) against the parallel response 

selection account of Schumacher and Schwarb (2009). In Experiment 2, we focused on 

factors that might preserve implicit learning in dual-tasking, whereas Experiment 3 was 

dedicated to the Schumacher and Schwarb assumption that facilitating the response selection 

process should reduce the impairment of implicit sequence learning. 

In the last condition (Experiment 4), we then tested in particular if the tone-task 

impairs implicit learning because it introduces a set of co-occurrences that have no predictive 

value as suggested by Rah et al. (2000). 

General Method 

Apparatus and stimuli 

The experiment was controlled by custom-written software (Lazarus/FreePascal, 

compiled for Microsoft Windows). In all conditions, the visual stimuli in the SRTT consisted 

of four horizontally aligned white squares (100 x 100 pixels, with a distance of also 100 

pixels) on a grey background (see Figure 1). They were displayed slightly below the center of 

a TFT monitor (19 inch; 1280 x 1024 pixels) that was connected with a standard PC. Each 

square was mapped to one of four response keys (Y, X, N, M on a QWERTZ-keyboard; 

spatially compatible mapping). In each trial, an uppercase “X” occurred for 100 ms as the 

visual target in one of the four white squares signaling the participants which key had to be 

pressed. Unbeknownst to the participants, in all conditions the successive locations of the 

target followed a second order conditional 8-elements sequence (3-1-2-4-1-3-4-2). 

If not otherwise described in the method sections of the experiments, the tone-task 

consisted of a random sequence of high (900 Hz) and low (300 Hz) tones lasting 56 ms and 

required a verbal response [saying “hoch” (high) in the case of a high tone or “tief” (low) in 

the case of a low tone]. For tone presentation and registration of verbal responses we used a 
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head set. A sound mixer (Behringer XENYX 302USB) served as a bridge between headset 

and PC and integrated the tone stimuli with the verbal responses into one single wave-file 

per trial. The tone-task was analyzed offline, after the experiment. 

 

  

Figure 1. Screenshot of the SRT task. The target 
in each trial was an uppercase “X”. 

Procedure 

All participants were introduced step by step into the dual-task training phase. They 

started with 20 practice trials with only the tone-discrimination task. Subsequently, they also 

practiced 20 trials of the SRTT and then another 20 trials of the dual-task. In all these 

practice trials, the stimuli of both tasks did not follow any regular sequence. 

After these practice trials, the participants performed 6 dual-task training blocks of 96 

trials each. In all conditions, the SRTT followed the 8-element sequence. In each block, the 

sequence started at a random position. A dual-task trial began with the simultaneous 

presentation of the visual SRTT target (the “X”) and one of the two auditory stimuli of the 

tone-discrimination task [stimulus onset asynchrony (SOA) = 0 ms]. The participants were 

instructed to give both responses – the manual SRTT response and the verbal response to 

the tone – as fast and as accurately as possible in a freely chosen order and with “equal 

priority” (see Schumacher & Schwarb, 2009, Experiment 1 and 2). The response-window 

closed 2000 ms after the stimulus-onset and the next trial started immediately. In the single-

task control condition (Experiment 1), the timing was identical, but the tones were not 

presented. 

After the 6 dual-task blocks, the participants were transferred without further 

instruction to 3 single-task test blocks presenting only the SRTT. Of these test blocks, blocks 

7 and 9 were (pseudo-)random blocks (i.e., the visual target locations followed a random 

sequence with the constraint that immediate location-repetitions were not allowed). Block 8 

was a regular block in which the targets again followed the trained sequence. 
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At the end of the experiment, participant’s explicit sequence knowledge was assessed. 

For this purpose, we first asked the participants whether they believed that they had been 

assigned to a SRTT-condition in which the stimuli followed a random or a regular sequence. 

Subsequently, they were informed that they had been in the regular condition and were asked 

to try to name the sequence. Participants were categorized as having complete explicit 

knowledge when they were able to name the entire sequence. Participants who could name at 

least six successive sequence elements were categorized as having partial explicit knowledge 

about the sequence. 

Design 

Since our main research question concerned the constraints leading to preserved 

implicit sequence learning in dual-task situations, we analyzed our different experimental 

conditions separately. By choosing this approach, we aimed at avoiding the occurrence of 

non-interpretable interactions. For the training blocks, we conducted one-way repeated 

measures ANOVAs with mean RTs as dependent variables separately for each condition and 

task. To assess the implicit learning effects in each condition, we conducted (two-tailed) t-

tests with mean RTs and error rates as dependent variables between the pooled two random 

blocks 7 and 9 and the regular block 8. Since we found rather strong speed-accuracy trade-

offs in the first half of block 7 in all dual-task conditions, we included only the second half of 

block 7 in these t-tests. This strong speed-accuracy trade-off might have been due to the fact 

that block 7 – the first single-task block – started without any further instruction. This might 

have led the participants to newly adjust their speed and accuracy. 

In all analyses, trials were excluded if an error had occurred in the SRTT or if the 

vocal response in the tone-discrimination task could not be correctly classified. Additionally, 

RTs faster than 200 ms (both tasks) or slower than 1500 ms (SRT task only) were excluded. 

Furthermore, the data set of a participant who made more than 30% errors in at least one 

block of the SRTT was replaced by that of a new participant to ensure having equal numbers 

of participants in each condition (n = 25).1 Whenever the assumption of sphericity was 

violated, Greenhouse-Geisser corrections are reported. 

                                                           

1 In Experiment 2 (30% responses condition), we expanded our standard error criterion and additionally 
replaced the data of participants who responded to the wrong tone in more than 15% of the respective trials. 
We did this because a rate of 15% of this special kind of error already increases the amount of dual-task trials 
by one third. 
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Experiment 1: Is reduced implicit sequence learning in dual tasking due to code 

overlap within the unidimensional system? 

The goal of Experiment 1 was, first, to replicate the finding of Schumacher and 

Schwarb (2009) that implicit learning vanished when participants responded to simultaneously 

presented random secondary task tones in all training trials. Such a finding seems to be at 

odds with the assumption of Keele et al. (2003) that conducting a secondary task disturbs 

sequence learning only in the multidimensional- but not in the unidimensional system. 

However, it is conceivable that the verbal “high”-“low” responses in the Schumacher and 

Schwarb experiments led the participants to represent the tone-task (like the SRT task) in 

terms of spatial codes – resulting in interference within the unidimensional system (cf. 

Eberhardt et al., 2017). To also test for this alternative account, we investigated two different 

dual-task conditions and one single-task condition in Experiment 1. 

The first dual-task condition (spatial condition, hereafter) was a replication of the “equal 

priority” condition of Schumacher and Schwarb (2009, Experiment 1 and 2). As described in 

the “General Method” section, we used a high and a low pitched tone as auditory stimuli. 

Participants had to respond to them by saying “high” or “low”. In the second dual-task 

condition (arbitrary condition), we used two tones that did not differ in pitch but in timbre - 

and the participants had to respond to them by saying “blue” or “yellow”. Thus, the tone-

task in the arbitrary condition should not activate spatial codes. If, in former studies, the 

code overlap had contributed to interference in the unidimensional system, the participants 

should show at least some implicit learning in this condition. In the single-task condition, 

participants did not receive any tones during training. 

Method 

Participants 

75 students (16 men) of the University of Cologne (mean age 23.55, SD = 4.15) 

participated in the experiment either for monetary compensation or for course credit. They 

were randomly assigned to one of the three conditions. Each session lasted approximately 45 

min. 

Apparatus and stimuli 

Apparatus and stimuli were as described in the “General Method” section. The only 

exception was that participants in the arbitrary condition received either a sinus-tone or the 
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sound of a bike-bell as the auditory stimuli (both tones at approximately 300 Hz). They were 

asked to respond by saying “gelb” (yellow) to one sound and “blau” (blue) to the other 

(counterbalanced across participants). In the single-task condition, all participants received 

only the SRTT. 

Procedure 

The procedure followed the description given in the “General Method” section. 

Results and Discussion 

Due to our exclusion criteria, 12.2%, 13.7% and 8.0% of all trials in the spatial, the 

arbitrary and the single-task conditions, respectively, were excluded from the analysis.2 

Furthermore, we replaced the data of five participants in the single-task control condition. 

We first report the results of the training blocks, followed by the results of the test blocks. 

Performance in the training blocks 

Table 1 displays the mean RTs in the SRTT and the tone-discrimination task as a 

function of block and condition. As can be seen, in all three conditions the mean RTs in 

both tasks decreased across the six training blocks. Accordingly, the one-way ANOVAs with 

mean RTs as dependent variable (see Table 2) separately conducted for each condition and 

task, all revealed significant main effects of block. The only exception was the single-task 

control in which participants did not show any acceleration across training. There are at least 

two potential reasons for this finding. First, due to the rather short SRTT sequence, the 

learning process could have been already completed by the end of the first block. Second, the 

fact that the response window was fixed, may have offered less incentive for a more 

pronounced speed-up of responding. Additionally, the overall slower mean RTs in the tone-

task suggest that participants had responded, on average, to the SRTT first. 

Mean error rates in the SRTT were overall very low (1.40%, 1.43%, and 2.36% in the 

spatial, the arbitrary, and the control conditions, respectively). The corresponding analyses of 

the error rates did not reveal any significant effects. 

                                                           

2 In the SRT task (9 blocks), 0.9% / 0.9% / 5.9% of the trials were classified as RT outliers and 2.1% / 1.7% / 
7.2% of the trials were excluded due to errors in the spatial / arbitrary / single-task condition, respectively. In 
the tone-discrimination task (6 blocks), 0.1% / 0.1% of the trials were classified as RT outliers. In 14.9% / 
17.5% of the trials the voice-key data in the spatial / arbitrary condition, respectively did not match the required 
response. As some trials also fulfilled multiple exclusion criteria, overall 12.2% / 13.7% / 8.0% of all trials were 
excluded. 
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Table 1. Mean RTs and SDs in the SRTT and the tone-discrimination task as a function of block and condition 
in Experiment 1. 

  SRTT   Tone-Task 

Condition Spatial 
 

Arbitrary 
 

Single-Task 
 

Spatial 
 

Arbitrary 

 
Mean SD 

 
Mean SD 

 
Mean SD 

 
Mean SD 

 
Mean SD 

Block 1 606 155 
 

593 153 
 

416 48 
 

749 154 
 

791 154 

Block 2 597 170 
 

592 149 
 

414 45 
 

743 160 
 

760 141 

Block 3 584 160 
 

585 140 
 

422 47 
 

719 154 
 

751 147 

Block 4 581 172 
 

567 144 
 

429 57 
 

709 168 
 

723 140 

Block 5 558 158 
 

563 141 
 

415 56 
 

688 154 
 

721 149 

Block 6 550 153 
 

544 158 
 

407 48 
 

678 167 
 

698 157 

               Block 7 (R) 440 81 
 

419 64 
 

435 55 
      Block 8 433 83 

 
416 73 

 
411 72 

      Block 9 (R) 440 73   421 65   437 66             

 

Table 2. Results of separate one-way ANOVAs for each condition and task as a function of the six training 
blocks in Experiment 1 with RTs as dependent variable. 

Main effect "Block"   SRTT   Tone-Task 

  
 

F(5,120) p ηp² 
 

F(5,120) p ηp² 

Spatial 
 

8.19 < .001 .254 
 

13.49 < .001 .360 

Arbitrary 
 

4.75 = .002 .165 
 

9.25 < .001 .278 

Single-Task   2.10 = .106 .080         

 

Performance in the test blocks 

To assess sequence learning in the SRT task, we compared the RTs averaged across 

the random blocks 7 and 9 with the mean RTs in the regular block 8 (see Figure 2). The 

three t-tests revealed that only the participants in the single-task control condition showed a 

substantial learning effect of 26 ms, t(24) = 3.26, p = .003, d = 0.651. The respective 

differences in the two dual-task conditions were rather small (7 ms, d = 0.236 in the spatial 

condition and 5 ms, d = 0.169 in the arbitrary condition) and were not significant (both |t| 

≈ 1).3 The corresponding analyses of the error rates revealed no significant effects. 

 

                                                           

3 In Experiment 1, 9 participants reported full/partial SRTT sequence knowledge. Full sequence knowledge was 
reported by 1 participant in the spatial condition and 3 participants in the single-task condition. Partial sequence 
knowledge was reported by 4 participants in the spatial condition and 1 participant in the arbitrary condition. 
When these 9 participants were excluded from the test blocks analysis, the pattern of results (RTs and error 
rates) remained unchanged. 
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Figure 2. Mean RTs (left y-axis) and error rates (right y-axis) in the regular 
and the random single-task SRTT test blocks within the spatial, the arbitrary, 
and the single-task control condition of Experiment 1. Error bars are the 
95% within-subjects confidence intervals of the learning effect calculated 
separately for each condition (Loftus & Masson, 1994). 

 

Taken together, the results of Experiment 1 show implicit learning effects in the 

single-task condition but not in the two dual-task conditions. This pattern of results 

replicates the main findings of Schumacher and Schwarb (2009). Furthermore, finding no 

significant implicit learning effect in the arbitrary condition – in which the potential code 

overlap between the SRTT and the tone-task was maximally reduced – suggests that the 

secondary tone-task in the Schumacher and Schwarb experiments did not impair implicit 

learning due to an additional interference within the (spatial) unidimensional system (Keele et 

al., 2003). Rather, it seems that the tone-task impedes the implicit learning process on a more 

global level. 

Contrary to the suppression hypothesis (Frensch et al., 1998; 1999), we did not find 

any sequence learning, albeit we assessed it under single-task conditions. The results suggest 

that the implicit learning process itself – and not just the usage of implicit sequence 

knowledge – is disturbed in dual-task situations. However, note that the participants in the 

studies of Frensch and colleagues had to respond to the tone-task only in about 50% of the 

trials whereas in our- as well as in the Schumacher and Schwarb (2009) experiments, the 

participants were instructed to respond to the tones in every trial. Thus, it might be that, in 

the earlier experiments, the trials in which no secondary task response was required were 

sufficient to produce small implicit learning effects. Overall, the findings of Experiment 1 

seem to speak against the suppression hypothesis and cast doubt upon the assumption that 

the preserved sequence learning in the earlier tone-counting experiments reflected residual 
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learning within the unidimensional system (Keele et al., 2003). Experiment 2 served to 

further clarify this point. 

Experiment 2: What preserves implicit sequence learning in dual-tasking? 

The goal of Experiment 2 was (a) to test whether we would find preserved implicit 

sequence learning when the participants were instructed to respond to only one of the two 

tones. According to Schumacher and Schwarb (2009), parallel response selection is the 

crucial factor that impedes dual-task implicit sequence learning. Thus, a substantial amount 

of trials requiring no response selection for the secondary tone-task should preserve implicit 

learning. To investigate this hypothesis, we reduced the number of required tone-task 

responses from 100% to only 30% in the 30% responses condition. 

The additional question was (b) whether implicit learning effects would be obtained if 

the simultaneously presented tone-task and the SRTT were correlated. Schmidtke and Heuer 

(1997) had found implicit learning effects under such a condition and suggested that the 

learning of an integrated sequence is affected by the across-task predictability of stimulus 

(and response) events. In a similar vein, Rah et al. (2000) suggested that sequence learning 

can occur when events in one task are predictive of events in the other task (which is the 

case if they are correlated). Thus, if task integration or predictability across the two tasks is 

the crucial factor, we should find implicit learning in our correlated-tasks condition. By contrast, 

if, as it is assumed by Schumacher and Schwarb (2009), parallel response selection is the key 

factor, it should be irrelevant whether or not both tasks follow a correlated sequence – since 

even correlated tasks require parallel response selection. 

Method 

Participants 

50 students (6 men) of the University of Cologne (mean age 23.44, SD = 3.60) 

participated in the experiment either for monetary compensation or for course credit. They 

were randomly assigned to one of the 2 conditions. Each session lasted approximately 45 

min. 

Apparatus and stimuli 

Apparatus and stimuli were as described in the “General Method” section. 
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Procedure 

The procedure followed the description given in the “General Method” section. The 

only exceptions were (a) that in the 30% responses condition only one of the two tones per 

block required a response. This tone occurred in approximately 30% of the trials. Its identity 

alternated from block to block in order to prevent the participants from ignoring one of the 

tones completely. In the correlated-tasks condition (b), the two tones (both requiring a 

response) followed a repeating 16-elements sequence (2-1-1-2-2-2-1-1-1-2-2-1-2-2-1-1) that 

was correlated with the 8-elements SRTT sequence. 

Results and Discussion 

Due to our exclusion criteria, 12.0% of the trials in the correlated-tasks and 5.7% of 

the trials in the 30% responses condition were excluded from the analysis.4 Furthermore, we 

replaced the data of four participants (1 participant in the correlated-tasks condition and 3 

participants in the 30% responses condition) as they exceeded our error criterion. Again, we 

first report the results of the training phase, followed by the results of the test blocks. 

Performance in the training blocks 

Table 3 displays the mean RTs in the SRTT and the tone-discrimination task as a 

function of block and condition. In the SRTT, the participants in both conditions became 

faster across the six training blocks. In the tone-task, only the mean RTs of the correlated-

tasks condition decreased with practice. By contrast, the mean RTs of the 30% responses 

condition remained rather stable across the training blocks. 

Accordingly, for the SRTT the two one-way ANOVAs with RTs as dependent 

variable revealed significant main effects of block (see Table 4). The two one-way ANOVAs 

for the mean RTs in the tone-task, however, yielded only a significant block effect for the 

correlated-tasks condition. Probably, the block by block alternation of the imperative tone 

might have reduced the training effect. The error rates in the SRTT were rather low (1.35% 

and 1.36% in the 30% responses and the correlated-tasks condition, respectively) and did not 

differ across blocks. 

                                                           

4 In the SRT task (9 blocks), 0.8% / 0.3% of the trials were classified as RT outliers and 2.5% / 2.0% of the 
trials were excluded due to errors in the correlated-tasks / 30% responses condition, respectively. In the tone-
discrimination task (6 blocks), 0.2% / 0.1% of the trials were classified as RT outliers. In 14.2% / 9.7% of the 
trials the voice-key data in the correlated-tasks / 30% responses condition, respectively did not match the 
required response. Additionally, 3.9% of the “no response” trials in the 30% responses condition were excluded 
because participants nevertheless responded to the (wrong) tone. As some trials also fulfilled multiple exclusion 
criteria, overall 12.0% / 5.7% of all trials were excluded. 
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Table 3. Mean RTs and SDs in the SRTT and the tone-discrimination task as a function of block and condition 
in Experiment 2. 

  SRTT Tone-Task 

Condition 30% Responses 
 

Correlated-Tasks 
 

30% Responses 
 

Correlated-Tasks 

 
Mean SD 

 
Mean SD 

 
Mean SD 

 
Mean SD 

Block 1 499 83 
 

565 98 
 

726 141 
 

743 122 

Block 2 513 85 
 

557 102 
 

751 153 
 

740 122 

Block 3 489 71 
 

545 104 
 

737 168 
 

725 124 

Block 4 480 71 
 

524 91 
 

731 154 
 

705 120 

Block 5 480 76 
 

524 111 
 

719 149 
 

709 130 

Block 6 469 76 
 

512 94 
 

729 167 
 

701 128 

            Block 7 (R) 450 62 
 

430 40 
      Block 8 440 60 

 
424 52 

      Block 9 (R) 451 69   443 41             

 

Table 4. Results of separate one-way ANOVAs for each condition and task as a function of the six training 
blocks in Experiment 2 with RTs as dependent variable. 

Main effect "Block"   SRTT   Tone-discrimination 

  
 

F(5,120) p ηp² 
 

F(5,120) p ηp² 

30% Responses 
 

11.29 < .001 .320 
 

1.59 = .200 .062 

Correlated-Tasks   11.98 < .001 .333   4.48 = .004 .157 

 

Performance in the test blocks 

To assess whether the participants in the 30% responses and the correlated-tasks 

conditions had acquired knowledge about the sequence in the SRT task, we again compared 

the mean RTs in the random blocks 7 and 9 with those in the regular block 8. Figure 3 

depicts these mean RTs for the two conditions (for comparison, the single-task control 

condition of Experiment 1 is also depicted). Two separate t-tests revealed significant learning 

effects in the 30% responses condition (11 ms), t(24) = 2.09, p = .048, d = 0.417 as well as in 

the correlated-tasks condition (15 ms), t(24) = 3.59, p = .001, d = 0.718.5 The corresponding 

analyses of the error rates revealed no significant effects. 

 

                                                           

5 In Experiment 2, 7 participants reported full/partial SRTT sequence knowledge. Full sequence knowledge was 
reported by 1 participant in the correlated-tasks condition. Partial sequence knowledge was reported by 4 
participants in the correlated-tasks condition and 2 participants in the 30% responses condition. When these 7 
participants were excluded from the test blocks analysis, the pattern of results (RTs and error rates) remained 
unchanged. 
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Figure 3. Mean RTs (left y-axis) and error rates (right y-axis) in the regular 
and the random single-task SRTT test blocks within the 30% responses and 
the correlated-tasks condition of Experiment 2 presented together with the 
single-task control condition of Experiment 1. Error bars are the 95% within-
subjects confidence intervals of the learning effect calculated separately for 
each condition (Loftus & Masson, 1994). 

 

Experiment 2 yielded small but significant implicit learning effects in both the 30% 

responses condition and the correlated-tasks condition. The finding of at least some 

sequence learning in the 30% responses condition suggests that the preserved implicit 

sequence learning in the earlier tone-counting experiments (e.g., Frensch et al., 1998; 1999; 

Stadler, 1995) was due to the fact that participants had to respond to the tones in only 50% 

of the trials. From the perspective of Schumacher and Schwarb (2009), participants might 

have learned the sequence because they could perform the SRTT partly under single-task 

requirements. However, note that a large proportion of (frequently successive) single-task 

SRTT trials does not only reduce parallel response selection requirements but also increases 

the predictive value of the respective events within the SRTT – because they are no longer 

separated by random secondary task (response) events. In addition, the finding of implicit 

learning effects in the correlated-tasks condition rather suggests that simultaneous response 

selection per se, as assumed by Schumacher and Schwarb (2009), is of minor importance. It 

replicates the results and supports the interpretation of Schmidtke and Heuer (1997) that 

implicit sequence learning in dual-task situations depends on whether or not the two tasks 

can be integrated. 

Last but not least, together with the finding that eliminating potential code overlap 

between the two tasks did not preserve implicit sequence learning (Experiment 1), the results 

of the 30% responses condition (with a “spatial” tone-task) seem to speak against the 
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assumption of Keele et al. (2003) that sequence learning in dual-task experiments reflects 

(residual) learning within the unidimensional system. 

Experiment 3: Does facilitating the response selection process preserve implicit 

sequence learning? 

The results of the correlated-tasks condition of Experiment 2 seem to be less in line 

with the account of Schumacher and Schwarb (2009) and better fit the task integration 

account (Schmidtke & Heuer, 1997). To again compare these two accounts, we implemented 

two further dual-task conditions in Experiment 3, the ideomotor condition and the listen-only 

condition. 

In both conditions, the high and low pitched tones were replaced by the recorded 

spoken words “hoch” and “tief” (“high” and “low”). In the ideomotor condition, the 

participants’ task was simply to repeat what they heard. Greenwald and Shulman (1973) 

already have shown that a task like this should facilitate response selection (see also 

Halvorson, Ebner, & Hazeltine, 2013). This, in turn, should reduce the dual-task costs – or, 

in terms of the Schumacher and Schwarb (2009) account – the duration of parallel response 

selection. Thereby, it should also reduce the impairment of implicit sequence learning. If so, 

we should find at least small implicit learning effects in the ideomotor condition. However, if 

the randomness of the tone-task is the crucial factor that disturbs the implicit learning 

process (Rah et al., 2000; Schmidtke & Heuer, 1997), any implicit learning effect again should 

be strongly reduced. 

In the listen-only condition, the participants heard exactly the same auditory stimuli 

but did not have to respond to them. This condition served as a single-task equivalent 

control condition to ensure that merely hearing tones does not affect implicit learning. 

Method 

Participants 

50 students (7 men) of the University of Cologne (mean age 23.20, SD = 3.03) 

participated in the experiment either for monetary compensation or for course credit. They 

were randomly assigned to one of the 2 conditions. Each session lasted approximately 45 

min. 
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Apparatus and stimuli 

Apparatus and stimuli were the same as described in the “General Method” section. 

The only difference concerned the stimuli in the tone-task as we replaced the sinus tones by 

the recorded words “hoch” (high) and “tief” (low). Fitting the gender of the participant, the 

words were spoken in either a male or a female voice. These voice-stimuli always lasted for 

390 ms. 

Procedure 

Apart from the above mentioned replacements of the tone stimuli, the overall 

procedure followed the description given in the “General Method” section. In the listen-only 

condition, the participants were instructed to listen to the words without responding to them 

at all. 

Results and Discussion 

According to our exclusion criteria, overall 12.2% of the trials in the ideomotor and 

6.7% of the trials in the listen-only condition were excluded.6 Furthermore, we replaced the 

data of five participants (3 in the ideomotor- and 2 in the listen-only condition) as they 

exceeded our error criterion. Again, we first report the results of the training phase, followed 

by the test phase results. 

Performance in the training blocks 

Table 5 displays the mean RTs in the SRTT and the tone-discrimination task as a 

function of block and condition. Again, the participants in both conditions became faster 

over the course of the training. This was also true for the tone-task in the ideomotor 

condition. Consequently, the separate one-way ANOVAs with mean RTs as dependent 

variable revealed significant main effects of block in both conditions either for the SRTT or 

for the tone-task (see Table 6). The error rates in the SRTT were again rather low (1.67 % 

and 2.12% in the ideomotor- and the listen-only condition, respectively). The corresponding 

analyses revealed only a slight but significant difference of 1.17% (increasing from block 1 to 

6) in the SRT task in the listen-only condition, F(5,120) = 2.75, p = .038, 𝜂𝑝2 = .103. 

                                                           

6 In the SRT task (9 blocks), 0.7% / 4.6% of the trials were classified as RT outliers and 2.5% / 6.1% of the 
trials were excluded due to errors in the ideomotor / listen-only condition, respectively. In the tone-
discrimination task (6 blocks; ideomotor condition), 3.0% of the trials were classified as RT outliers. In 14.2% 
of the trials the voice-key data did not match the required response. As some trials also fulfilled multiple 
exclusion criteria, overall 12.2% / 6.7% of all trials in the ideomotor / listen-only condition, respectively were 
excluded. 
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To test whether the ideomotor compatible tone-task indeed facilitated response 

selection, we additionally computed the dual-task costs in the ideomotor condition (the 

difference between the mean RTs in the last training block and the regular block in the test 

phase). The dual-task costs were only 23 ms. Compared to the dual-task costs of the spatial 

condition (117 ms) and the arbitrary condition (128 ms) of Experiment 1, these dual-task 

costs are significantly smaller (t[48] = 3.56, p = .001, d = 1.007 and t[48] = 4.09, p < .001, d = 

1.156, for the comparison between the ideomotor and the spatial condition and the 

ideomotor and the arbitrary condition, respectively). Thus, the ideomotor compatible task 

indeed reduced the response selection effort. 

Table 5. Mean RTs and SDs in the SRTT and the tone-discrimination task as a function of block and condition 
in Experiment 3. 

  SRTT Tone-Task 

Condition Ideomotor 
 

Listen-Only 
 

Ideomotor 

 
Mean SD 

 
Mean SD 

 
Mean SD 

Block 1 484 79 
 

447 78 
 

553 88 

Block 2 487 93 
 

447 83 
 

555 117 

Block 3 478 97 
 

436 83 
 

538 116 

Block 4 474 78 
 

435 79 
 

542 98 

Block 5 469 81 
 

426 78 
 

530 112 

Block 6 454 81 
 

430 81 
 

514 109 

         Block 7 (R) 443 63 
 

442 74 
   Block 8 431 61 

 
420 79 

   Block 9 (R) 434 58   436 76       

 

Table 6. Results of separate one-way ANOVAs for each condition and task as a function of the six training 
blocks in Experiment 3 with RTs as dependent variable. 

Main effect "Block"   SRTT   Tone-discrimination 

  
 

F(5,120) p ηp² 
 

F(5,120) p ηp² 

Ideomotor 
 

4.39 = .007 .155 
 

5.50 = .001 .186 

Listen-Only   3.84 = .009 .138         

 

Performance in the test blocks 

The sequence learning in the SRT task was again tested by comparing the mean RTs 

in the random blocks 7 and 9 with those in the regular block 8. The mean RTs are depicted 

in Figure 4. Two t-tests revealed a significant learning effect in the listen-only condition (18 

ms), t(24) = 4.26, p < .001, d = 0.853, but not in the ideomotor condition (6 ms), t(24) = 
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1.46, p = .157, d = 0.293.7 Surprisingly, the corresponding analysis of the error rates revealed 

in the ideomotor condition significantly less errors (difference of 1.07%) in the regular block 

8 than in the two random blocks, t(24) = 2.66, p = .014, d = 0.532. In the listen-only 

condition, this difference (of 0.46%) was not significant, |t| < 1, d = 0.195. 

 

 

Figure 4. Mean RTs (left y-axis) and error rates (right y-axis) in the regular 
and the random single-task SRTT test blocks within the ideomotor and the 
listen-only condition of Experiment 3 presented together with the single-task 
control condition of Experiment 1. Error bars are the 95% within-subjects 
confidence intervals of the learning effect calculated separately for each 
condition (Loftus & Masson, 1994). 

 

The results of Experiment 3 revealed that, as expected, the ideomotor compatible 

tone-task strongly reduced the dual-task costs. Nevertheless, implicit learning effects in the 

ideomotor condition were almost entirely absent. Only the error rates indicated a small 

learning effect. Thus, albeit somewhat ambiguous, it seems that facilitating the response 

selection process did not preserve implicit sequence learning. Since the participants in the 

listen-only condition showed substantial implicit learning effects, it seems as if the implicit 

learning process is impaired whenever participants have to produce a second response, 

irrespectively of how effortful it is to generate this response. 

Together with the results of the correlated-tasks condition of Experiment 2, this 

finding suggests that the parallel response selection process per se (Schumacher & Schwarb, 

2009) is not the critical factor for the impairment of implicit sequence learning. Rather, it 

seems to be the randomness of the verbal responses as we did find implicit learning in the 

                                                           

7 In Experiment 3, 5 participants reported full/partial SRTT sequence knowledge. Full sequence knowledge was 
reported by 1 participant in the listen-only condition. Partial sequence knowledge was reported by 2 participants 
in the ideomotor condition and 2 participants in the listen-only condition. When these 5 participants were 
excluded from the test blocks analysis, the pattern of results (RTs and error rates) remained unchanged. 
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correlated-tasks condition. Thus, the entire pattern of results up to this point is fitted best by 

the assumption of task integration (e.g., Rah et al., 2000; Schmidtke & Heuer, 1997) leading 

the cognitive system to register (and to “try” to exploit) co-occurrences that have no predictive 

value. 

Experiment 4: Does predictability of the tones affect implicit learning? 

The goal of this last dual-task experiment was, once again, to investigate the role of 

task integration, or, more specific, the role of co-occurring (un)predictable tones on implicit 

sequence learning. For this purpose, 4 sequence positions of our standard SRTT were 

consistently presented together with one particular tone whereas the other 4 sequence 

positions were randomly paired with either of the two tones. Thus, only in the consistently 

paired trials, the SRTT response was predictive for the tone-task response or vice versa (e.g., 

Rah et al., 2000). It is important to note that from the consistently (or fixedly) paired SRTT 

positions, one position occurred in isolation and three in a short sequence (R1-F2-R3-F4-F5-

F6-R7-R8; with F = fixedly paired SRTT positions, R = randomly paired positions). This 

enabled us to explore how within-trial predictability might affect implicit learning in dual-

tasking. If the predictability between the SRTT and the tone-task is crucial for preserving 

implicit learning it remains an open question whether this predictability affects the association 

between the fixed SRTT-tone pair and the next SRTT-position (i.e., the association between 

F2 and the SRTT position of R3). Alternatively, it is also conceivable that the within-trial 

prediction is crucial for implicitly learning exactly this single SRTT position (i.e., learning F2). 

Method 

Participants 

25 students (2 men) of the University of Cologne (mean age 22.60, SD = 4.85) 

participated in the experiment either for monetary compensation or for course credit. Each 

session lasted approximately 45 min. 

Apparatus and stimuli 

Apparatus and stimuli were the same as described in the “General Method” section 

with the only exception that four positions of the 8-element SRTT sequence (3-1-2-4-1-3-4-

2) were consistently paired with a particular tone (fixedly paired sequence positions) whereas 

the other four stimuli of the SRTT were randomly paired (randomly paired sequence positions; 
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i.e., 3R-1L-2R-4H-1H-3L-4R-2R [with H = fixedly paired, high tone; L = fixedly paired, low 

tone; R = randomly paired tone]). 

Procedure 

The procedure followed the description given in the “General Method” section. 

Results and Discussion 

According to our exclusion criteria, overall 12.8% of all trials were excluded.8 

Furthermore, we replaced the data of one participant due to our error criterion. Again, we 

first report the results of the training phase, followed then by the test phase results. 

Performance in the training blocks 

Since our main focus was on the potential difference between the fixed and the 

randomly paired SRTT-tone stimuli, we introduced the additional within-participants factor 

type of sequence position (fixedly vs. randomly paired sequence positions) in the analyses of 

results. Table 7 presents the mean RTs in the SRTT and the tone-discrimination task as a 

function of block and type of sequence position. As can be seen from Table 7, participants 

became faster over the course of the training in both the SRTT and the tone-task and with 

both types of sequence positions. Furthermore, the mean RTs were slower with the 

randomly paired than with the fixedly paired SRTT-tone stimuli. The two separate 6 (block) 

x 2 (type of sequence position: fixed vs. random) repeated measures ANOVAs with mean 

RTs in either tasks as dependent variable revealed significant main effects of block and type 

of sequence position – but no significant interactions (see Table 8). The difference of the 

mean RTs between the fixed and the randomly paired sequence positions in both tasks was 

already present in the first block (58 ms and 45 ms for the SRTT and the tone-task, 

respectively) and did not change across the training (block 6: 41 ms and 32 ms for the SRTT 

and the tone-task, respectively). Additionally, this difference between fixed and random 

SRTT-tone-task pairs occurred for each single sequence position (F2: 37 ms; F4: 47 ms; F5: 49 

ms; F6: 54 ms, respectively, across the 6 training blocks in the SRTT). That is, even the 

responses to the isolated fixedly paired sequence position (i.e., F2) were faster than those to 

the randomly paired positions. 

                                                           

8 In the SRT task (9 blocks), 0.5% of the trials were classified as RT outliers and 2.3% of the trials were 
excluded due to errors. In the tone-discrimination task (6 blocks), 0.0% of the trials were classified as RT 
outliers. In 15.7% of the trials the voice-key data did not match the required response. As some trials also 
fulfilled multiple exclusion criteria, overall 12.8% of all trials were excluded. 
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The difference between fixedly and randomly paired SRTT positions was mirrored in 

the error rates of the SRT task [more errors in randomly- than in fixedly paired sequence 

positions (overall difference of 1.10%)], F(1,24) = 7.55, p = .011, 𝜂𝑝2 = .239. No other effect 

within the analyses of error rates reached the level of significance. 

Table 7. Mean RTs and SDs in the SRTT and the tone-discrimination task as a function of block and type of 
sequence position (fixed vs. randomly paired sequence positions) in Experiment 4. 

  SRTT Tone-Task 
Type of 
Sequence Position 

Fixed 
Combinations 

 

Random 
Combinations 

 

Fixed 
Combinations 

 

Random 
Combinations 

 
Mean SD 

 
Mean SD 

 
Mean SD 

 
Mean SD 

Block 1 542 105 
 

600 111 
 

725 132 
 

770 142 

Block 2 541 88 
 

586 95 
 

713 120 
 

757 126 

Block 3 521 102 
 

567 103 
 

695 114 
 

733 116 

Block 4 515 95 
 

556 97 
 

684 88 
 

715 93 

Block 5 511 105 
 

559 110 
 

673 99 
 

709 108 

Block 6 503 93 
 

544 89 
 

654 85 
 

686 87 

            Block 7 (R) 423 56 
 

428 45 
      Block 8 413 60 

 
456 60 

      Block 9 (R) 441 59   440 51             

 

Table 8. Results of separate 6 (block) x 2 (type of sequence position) repeated measures ANOVAs for each 
task in Experiment 4 with RTs as dependent variable. 

 
SRTT 

 
Tone-discrimination 

Block F(5,120) p ηp² 
 

F(5,120) p ηp² 

 
4.54 = .011 .159 

 
6.55 = .001 .214 

Type of 
Sequence Position 

F(1,24) p ηp² 
 

F(1,24) p ηp² 

93.58 < .001 .796 
 

77.30 < .001 .763 

Interaction F(5,120) p ηp² 
 

F(5,120) p ηp² 

  1.50 = .194 .059   0.87 = .472 .035 

 

Performance in the test blocks 

In order to assess the implicit sequence learning effects in the SRTT, we compared 

the mean RTs in the random blocks 7 and 9 with those in the regular block 8. Again, we 

analyzed these learning effects separately for the two types of sequence positions; that is, the 

sequence positions that were – during training – either fixedly or randomly paired with the 

tones. The mean RTs are depicted in Figure 5. The 2 (block type: regular vs. random) x 2 

(type of sequence position: fixed vs. random) repeated-measure ANOVA with mean RTs as 

dependent variable revealed a significant main effect of type of sequence position, F(1,24) = 

38.84, p < .001, 𝜂𝑝2= .618, that was qualified by a significant interaction, F(1,24) = 79.93, p < 



50 
 

.001, 𝜂𝑝2= .769. The main effect of block type was not significant (F < 1). Post-hoc t-tests 

showed that for the formerly fixedly paired sequence positions the mean RTs were 

significantly faster (22 ms) in the regular block 8 than in the random blocks 7 and 9, t(24) = 

3.59, p = .001, d = 0.717. For the randomly paired sequence positions, however, the mean 

RTs were significantly slower (-19 ms) in the regular block 8 than in the surrounding random 

blocks 7 and 9, t(24) = -2.59, p = .016, d = -0.518.9 Again, the learning effect was found for 

all four fixedly paired sequence positions (F2: 23 ms; F4: 26 ms; F5: 17 ms, and F6: 21 ms, 

respectively), but for none of the variably paired positions. The corresponding analyses of 

the error rates yielded a significant main effect of block type F(1,24) = 6.46, p = .018, 𝜂𝑝2= 

.212 and of type of sequence position F(1,24) = 8.19, p = .009, 𝜂𝑝2= .254, but no significant 

interaction, F(1,24) = 3.42, p = .077, 𝜂𝑝2= .125. Thus, participants made more errors in the 

random blocks than in the regular block (difference of 0.92%). In addition, they made more 

errors when the sequence positions were formerly randomly paired than when they were 

formerly fixedly paired with the tones (difference of 1.72%). 

 

 

Figure 5. Mean RTs (left y-axis) and error rates (right y-axis) in the regular 
and the random single-task SRTT test blocks shown separately for SRTT 
positions that had been randomly paired versus fixedly paired with the tones 
during the training of Experiment 4. For means of comparison they are 
presented together with the single-task control condition of Experiment 1. 
Error bars are the 95% within-subjects confidence intervals of the learning 
effect calculated separately for each condition (Loftus & Masson, 1994). 

 

Overall, the findings of this last condition revealed that the participants had implicitly 

learned only those sequence positions that had been consistently paired with the tones. 

                                                           

9 In Experiment 4, no participant reported full/partial SRTT sequence knowledge. In our replication of 
Experiment 4 (see the discussion) with 10 new participants, one participant reported partial knowledge. 
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Basically, this finding suggests that the within-trial predictability between the SRTT and the 

tone-task seems to affect implicit learning. This seems to support the assumption that the 

crucial factor for implicit learning to occur in dual-task situations is whether or not the 

registered co-occurrences between the SRTT and the tone-task are predictive. 

Interestingly, this within-trial predictability had not affected the associations between 

the SRTT response in a fixedly paired trial (e.g., F2) and the SRTT response in a successive 

variably paired trial (e.g., R3), even though the tone of this fixedly paired trial was predictive 

for the SRTT response of the next trial (e.g., Schmidtke & Heuer, 1997). Moreover, there are 

two points in the pattern of results which are not really consistent with the assumption that 

the participants had indeed implicitly learned the “content” of the fixedly paired SRTT 

sequence positions. 

First, we found large performance differences between the fixedly and the randomly 

paired tone-SRTT stimuli already in the first block of the training phase. Implicit learning 

effects, however, should develop over time. Second, the mean RTs of the randomly paired 

sequence positions were slower in the regular block of the test phase than in the random 

blocks. Therefore, an alternative interpretation of our findings might be that the participants 

had rather learned a sequence of low versus high conflict laden trials. 

The following mechanism is conceivable: First, although in each trial the tone and the 

SRTT-stimulus occurred simultaneously, the participants, on average, decided to respond to 

the SRTT-stimulus, first. As both stimuli were also presented very shortly (visual SRTT 

target = 100 ms; auditory stimulus = 56 ms), the participants had to maintain the tone (or 

the tone response) while responding to the SRTT-stimulus. In trials in which the tone- and 

the SRTT-stimulus are consistently paired, the SRTT-response always leads to the same 

tone-response. By contrast, in variably paired trials, the SRTT response might have predicted 

a different tone response than the tone stimulus did. This, in turn, might have produced a 

response conflict (reflected by slower RTs). Due to this response conflict, the learning 

mechanism might have been disturbed. That way, it is conceivable that participants had not 

learned parts of the sequence-content, but merely an abstract sequence of (e.g.) high-low-

low-…-high conflict laden trials (see, e.g., Jiménez, Lupiáñez, & Vaquero, 2009). 

In order to further investigate whether or not the participants had learned the 

content of the sequence, we replicated Experiment 4 with 10 new participants. The only 

difference between Experiment 4 and the replication was that we replaced the former test 

phase by a generation task containing two single-task blocks (see, e.g., Haider, Eichler, & 

Lange, 2011). In 20 of the 96 trials per test block, question marks occurred in all four white 
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squares (instead of the usual target stimulus, the “X”, in only one of the squares). The 

participants then had to generate (to guess) the correct response by pressing the 

corresponding key. These generation trials were equally distributed across all sequence 

positions (i.e., across the formerly fixedly or randomly paired SRTT-tone stimuli). After 

having pressed a key, the participants were asked to place a wager (either 1 or 50 Cent) 

regarding their confidence in the correctness of their response. The rationale is that 

participants with explicit knowledge should place high wagers when having responded 

correctly (e.g., Dienes & Seth, 2010). 

The results of this replication showed that the participants indeed had learned the 

content of the formerly fixedly paired sequence positions. They generated 59.5% correct 

responses for the formerly fixedly paired sequence positions [including 68% for the isolated 

fixedly paired SRTT position (F2)] which was significantly above the chance level of 33.33% 

[t(9) = 7.76, p < .001, d = 2.455]. By contrast, for the formerly randomly paired sequence 

positions the amount of correct responses was only 36% and not above chance level (|t| < 

1, d = 0.294). In addition, the participants’ knowledge was almost entirely implicit. With the 

formerly fixedly paired sequence positions, the participants placed a high vs. a low wager 

after having responded correctly in 63.4% vs 61.5% of cases, respectively (|t| ≈ 1, d = 

0.064). With the formerly randomly paired sequence positions, the participants placed a high 

vs. a low wager after having responded correctly in 34.7% vs 46.5% of cases, respectively 

(|t| ≈ 1, d = -0.397). 

Thus, these results suggest that the participants in Experiment 4 indeed learned 

exclusively the content of those sequence-positions that had been fixedly paired with the 

tones during training. These findings fit nicely Rah et al.’s (2000) assumption that the 

random tone-task degrades implicit learning simply because the participants always represent 

the SRTT and the (un)predictable tone-task together as one single task. They are also in line 

with the idea of Schmidtke and Heuer (1997) that implicit learning is preserved whenever the 

SRTT and the tone-task can be successfully integrated. However, one critical point appears 

to be that our findings suggest that this integration takes place solely within- rather than 

across trials (or across the entire sequence). 

General Discussion 

The goal of the present study was to investigate the constraints compromising 

implicit sequence learning in dual-task situations. In contrast to earlier dual-task implicit 

learning studies, we employed – in all our experiments – the same dual-task paradigm 
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originating by Schumacher and Schwarb (2009). This enabled us to systematically test 

different theoretical accounts proposed in the literature to explain the reduced implicit 

learning effects under dual-task conditions. 

 

 

Figure 6. Cohen’s d for the learning effect in each condition of the 4 Experiments in the order of being 
discussed in the “General Discussion” section. Error bars are the 95% confidence intervals of the effect sizes 
(see, e.g., Bühner & Ziegler, 2009). 

 

Figure 6 summarizes the sizes of the implicit learning effects within the different 

conditions (Cohen’s d). As can be seen, we found medium to large implicit learning effects 

when the participants received at least some single-task trials during the training (i.e., in the 

listen-only, single-task, 30% responses conditions, d = 0.417 to d = 0.853). Furthermore, 

implicit learning effects were also substantial when the tone-task and the SRTT followed 

different but correlated sequences (d = 0.718). By contrast, the implicit learning effects were 

reduced if the tone-task was presented in a random order and participants had to respond to 

it in all trials. This finding was independent of how time-consuming the response selection in 

the tone-task was. The d-values of the spatial, the arbitrary, and the ideomotor conditions are 

all small and of comparable size (between d = 0.169 and d = 0.293). Thus, neither reducing 

nor increasing the ambiguity of whether a particular stimulus (or response) belongs to task 1 

or task 2 influenced the implicit learning effect (e.g., Halvorson, Ebner, et al., 2013). In 

Experiment 4, the effect size of the implicit learning effect for the fixedly paired sequence 

positions lies in the range of the effect sizes of the single-task condition (d = 0.717). 

Together with our replication, it seems justified to conclude that the participants in this 

condition had acquired implicit knowledge about those sequence positions that were 

consistently paired with the tones. 
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Overall, the pattern of results suggests that the relation between the SRTT and the 

tone-task is the critical factor affecting implicit learning in dual-task situations. If the tone-

task was random, we found almost no implicit learning. By contrast, if there was a consistent 

relation between the SRTT-stimuli and the tones, as was the case in the correlated-tasks and 

the fixed-pair conditions, the implicit knowledge acquired during training lies in the range of 

single-task learning. 

Since we always tested implicit learning under single-task conditions, the results are 

inconsistent with the suppression hypothesis (Frensch et al., 1998; 1999). They also suggest 

that the preserved implicit learning effects were not due to intact implicit learning in the 

unidimensional system as Keele et al. (2003) have proposed. We found almost no implicit 

learning in the spatial and the arbitrary conditions. If learning in the unidimensional system 

had been preserved under dual-task requirements, we should have found at least small 

learning effects in the arbitrary condition. Here, the difference of the codes between the 

SRTT and the tone-task was enlarged and hence any potential interference between the tasks 

should have been reduced. 

In addition, albeit we could replicate the findings of Schumacher and Schwarb (2009) 

in our Experiment 1, the entire pattern of results seems not to be in line with their 

assumption that the requirement of parallel response selection per se impairs implicit 

sequence learning. By adding a condition in which spatial crosstalk between the tasks was not 

a feasible alternative explanation, we could provide stronger support for their claim that 

parallel response selection might cause the disruption of sequence learning in multitasking 

than provided in the original investigation. Yet, our further results were inconsistent with the 

proposition that parallel response selection causes the disruption of sequence learning in 

multitasking. First, we did not find clear implicit learning effects in the ideomotor condition; 

that is, when response selection for the tone-task was facilitated (Halvorson, Ebner, et al., 

2013). Second, implicit learning should have been impaired in the correlated-tasks condition 

or in the fixed-paired sequence positions of Experiment 4 since also in these conditions, 

simultaneous response selection was inevitable. To hold for these latter findings, the 

Schumacher and Schwarb account requires at least the additional assumption that the 

concurrently selected responses only interfere if the two tasks are randomly paired. Without 

such an additional assumption, it appears that the pattern of results is best explained by the 

assumption that the impairment of implicit learning in dual-task situations is caused either by 

task integration (Schmidtke & Heuer, 1997) or by trying to predict events on the basis of co-

occurrences that have no predictive value (e.g., Rah et al., 2000). In particular, the findings of 
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our last experiment support this assumption. Only if the sequence position of the SRTT is 

consistently paired with a certain tone, implicit learning in dual-task situations is preserved. 

Integration of events from two tasks might lead to activation of conflicting response 

tendencies as predicted responses (due to the random sequence in one of the tasks) often 

mismatch the response required by the stimulus actually presented in the SRTT. Such 

problems seem plausible as they have been documented in setups with two randomly 

sequenced streams of information (rather than just one stream, as in our case). For instance, 

work on feature binding (e.g., Dreisbach & Haider, 2009; Frings, Rothermund, & Wentura, 

2007; Hommel, 1998; Moeller, Pfister, Kunde, & Frings, 2016) shows that repetition vs. 

alternation of irrelevant stimulus features of a prior trial affects performance in the current 

trial. For instance, if the irrelevant stimulus color is repeated from the last trial, the response 

that was due in that trial might be erroneously retrieved hampering performance in the 

current trial as it conflicts with the response required by the stimulus presented in the SRTT. 

Therefore, one conceivable explanation for the present pattern of findings is that task 

integration leads – in the case of variably paired SRTT-tone stimuli – to a response conflict 

due to incorrect predictions (see, e.g., Frings et al., 2007). This response conflict might be 

solved by inhibiting the activation of the SRTT response, which in turn would reduce the 

strengthening of associations between the successive positions of the SRTT sequence. 

However, caution is needed as Experiment 4 did not provide a baseline. Hence, it is 

difficult to decide whether task performance has been facilitated by the fixed SRTT-tone 

pairings or whether indeed the integration of the variable pairings resulted in increased 

interference. In addition, the assumption of increased interference in the case of the variably 

paired SRTT-tone stimuli raises the question of how an implicit learning mechanism might 

work when some sequence positions are fixedly paired while others are variably paired. It is 

highly unlikely that the participants could have integrated the tone and the SRTT sequence 

into one single sequence (Schmidtke & Heuer, 1997). Currently, we suspect that the 

participants did not associate the successive sequence positions of the SRTT as is usually 

assumed in implicit SRTT learning (e.g., Cleeremans, 2011). Rather, what they might have 

associated is the ordinal sequence position of the certain event(s) (Schuck, Gaschler, & 

Frensch, 2012; Schuck, Gaschler, Kreisler, & Frensch, 2012). This would explain why they 

showed learning of unique sequence positions (e.g., F2). Of course, at the time being, this is 

speculative and further research is needed. 

The proposed explanation that participants always integrated the SRTT and the tone-

task fits to several of the former findings concerning implicit learning in dual-task situations. 
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For instance, Schmidtke and Heuer (1997) found reduced implicit learning when presenting a 

6-elements SRTT sequence together with a 5-element tone-task sequence. That is, the 

participants were confronted with a 60-element combined sequence. Consequently, much 

more trials should be necessary before the reduced activation of a single SRTT position 

suffices to become associated within a chain of sequence positions. Sequence learning should 

be impaired to the extent that there are trials leading to response conflicts due to incorrect 

predictions. 

In former studies, dual-task implicit sequence learning was also found whenever there 

was a chance to keep the representations of the two tasks separate. For example, 

Schumacher and Schwarb (2009) found implicit learning effects when they separated the 

SRTT and the tone-task through long time intervals (Experiment 1: SOA = 750 ms). 

Additionally, it seems as if separate task representations can also be induced simply by 

instruction (Halvorson, Wagschal, & Hazeltine, 2013). In both cases, the tasks are probably 

represented as two separate tasks and are thus not integrated trialwise. As predictions in this 

case should only occur within-tasks, implicit sequence learning in the SRTT can be 

preserved. Future research should investigate whether other context manipulations are 

capable of preserving implicit sequence learning in multitasking by inducing separate task 

representations. 

An interesting parallel to the proposed prediction account can be found in the 

anticipative learning model of Ziessler and Nattkemper (2001; Ziessler, Nattkemper, & Frensch, 

2004). The authors assume that learning in an SRT task is essentially based on response-

effect learning (the stimulus in trial n+1 is interpreted as the effect of the response to the 

stimulus in trial n). The authors suggest that the anticipation of this effect is an integral part 

of the response production. Learning is then equivalent to the reduction of the prediction 

error over the course of the training (Rescorla & Wagner, 1972). Importantly, Ziessler et al. 

(2004) could show that learning was impaired when a random tone stimulus was presented 

within the stimulus-response interval of the SRTT. They concluded that, in this case, the 

response production – and thereby the prediction mechanism – was disturbed. However, 

since the timing of stimulus and response events in their experiments differed from our 

paradigm, further research is needed to investigate whether this assumption could hold for 

our current findings as well. 

Even though the task integration account appears to be a feasible explanation of our 

findings, a conceivable alternative assumption might be that task integration, at least when 

the two stimuli are simultaneously presented, is equivalent to the formation of a complex 
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compound representing the two stimuli as one single stimulus. In this case, the random tones 

would make the whole compound random – and, thus, unpredictable. Consequently, also the 

assumption of such random compounds predicts reduced sequence learning in dual-task 

situations. However, Freedberg, Wagschal, and Hazeltine (2014) recently showed that 

simultaneously presented visual-auditory stimuli are not automatically bound together. Their 

results suggest that only if they are represented as conceptually related, the two stimuli are 

represented as compounds. Concerning our current results, it is not clear why the 

participants should have represented the task stimuli as conceptually related. In addition, we 

always assessed the implicit learning effects under single task conditions. Hence, if 

participants had learned associations between these compounds they should have shown 

reduced learning effects in such a single-task test. However, the implicit learning effects in 

the correlated condition and in the fixedly paired condition were not smaller than that found 

in the single-task condition. 

To summarize, our findings suggest that two major factors are crucial for the 

impairments of implicit sequence learning in dual-task situations. The first is whether the 

within-trial integration results in response conflicts – due to co-occurring elements that have 

no predictive value (see also Rah et al., 2000; Schmidtke & Heuer, 1997). The second factor 

concerns the proportion of dual- to single-task trials, as single-task trials always contribute to 

the strengthening of the successive sequence positions within the SRTT. 
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3 Global – not local – across-task predictability determines the 

amount of implicit sequence learning in a dual-task context 

When a serial reaction time task (SRTT; Nissen & Bullemer. 1987) is combined with a random tone-task, 

implicit sequence learning suffers – probably due to a tendency to integrate the two tasks, resulting in 

extremely long sequences and unpredictable across-task events (see Rah, Reber, & Hsiao, 2000; Röttger, 

Haider, Zhao, & Gaschler, 2019; Schmidtke & Heuer, 1997). In the present dual-task experiments, we 

investigated the role of two different types of predictability (of the tones on the basis of the SRTT) for 

the preservation of sequence learning. These two types were termed local vs. global (i.e., depending on the 

SRTT targets’ sequence position vs. not). It turned out that neither high local- nor high global across-task 

predictability alone was sufficient in this respect. Nevertheless, the present findings strongly suggest that a 

supposed omnipresent automatic prediction mechanism (e.g., Broeker et al., 2017) operates on the global 

predictability of the most contiguous co-occurrences (within one trial), benefitting if the local across-task 

predictability is in accord but causing conflict if not – hampering the reduction of the prediction error. 

One often replicated finding is that implicit sequence learning is impaired in dual-task 

situations (for recent reviews, see Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003; Schumacher 

& Schwarb, 2009). Schmidtke and Heuer (1997) had suggested that this impairment is caused 

by task integration whenever the secondary task is random. Inserting random elements into a 

sequence learning task, like the serial reaction time task (SRTT; Nissen & Bullemer, 1987), might 

sham an endless sequence of unpredictable events that is impossible to learn. Similarly, Rah, 

Reber, and Hsiao (2000) had suggested that the “duality” of the standard combination of the 

SRTT and a tone-task is illusory – and that the tone-task degrades the SRTT performance 

“simply because it introduces a set of co-occurrences that have no predictive value” (p. 310). 

Crucially, even rather simple contingencies within the SRTT might, then, remain undetected. 

In the dual-task training blocks, Schmidtke and Heuer (1997) had paired a 6-element 

(visual-manual) SRTT sequence with an (auditory-motor) go/no-go task that followed either 

also a 6-element or a 5-element or a random sequence (D-6, D-5, and D-R condition). The, 

resulting integrated sequences were (a) of very different length and (b) the extent to which 

single elements occurred predictably was also very different for the three conditions. Since 

the SRTT and the tone-task sequences were of the same length in the D-6 condition, the 

integrated sequence contained only 12 elements and the predictability of across-task events 

was high. In the D-5 condition, however, the sequences were of different lengths. Integrating 

them resulted in a 60-element sequence with much lower predictability levels, not very far 

from chance – as it was the case in the D-R condition. 

After the training, sequence learning was assessed in dual-task as well as single-task 

tests (Schmidtke & Heuer, 1997; Experiment 1). In the single-task test, learning of the pure 

SRTT sequence was moderately present in all three conditions, in line, for instance, with the 
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assumption that only the expression of learning is hampered by a secondary task (Frensch, 

Lin, & Buchner, 1998; Frensch, Wenke, & Rünger, 1999). However, in the dual-task test 

(with the tones present) the sizes of the learning effects were very different in the three 

conditions: The learning effect was very small in the D-R condition (and smaller than in the 

single-task test). It was intermediate (and as large as in the single-task test) in the D-5 

condition. But, most importantly, it was very large (and larger than in the single-task test) in 

the D-6 condition. This outcome strongly suggests that, here, the participants had acquired 

implicit knowledge about an integrated sequence of alternating and highly predictable 

auditory and visual events. Schmidtke and Heuer (1997) concluded that the length and the 

complexity of the integrated sequence in a dual-task context most likely determines whether 

it can be learned or rather not. 

Recently, we could add more evidence for the assumption that task integration is a 

crucial factor for the impairment – as well as the preservation – of implicit sequence learning 

in dual-tasking situations (Röttger, Haider, Zhao, & Gaschler, 2019). 

Just like Schmidtke and Heuer (1997), we implemented a standard SRTT with the 

target occurring at one of four marked possible screen locations and the requirement to press 

the appropriate spatially mapped key in response. The tone-task in our experiments required 

the verbal responses “high” vs. “low” (in German) in response to high vs. low pitched tones 

(see also Schumacher & Schwarb, 2009). This task was similar to Schmidtke and Heuer’s 

go/no-go task in that it required immediate responses. Memory load (i.e., keeping a running 

count of the tones; the standard procedure in earlier dual-task SRTT experiments) was not 

part of the task. In our correlated tasks condition (Röttger et al., 2019; Experiment 2) we paired 

an 8-element SRTT with a tone sequence that was twice as long (16 elements). Thus, the 

tasks were correlated to some extent – but not as perfectly as in Schmidtke and Heuer’s D-6 

condition. The resulting integrated sequence of manual and vocal responses had 32 elements 

– lying in between the D-6 (12 elements) and the D-5 (60 elements) sequence. 

In contrast to Schmidtke and Heuer, we assessed learning exclusively under single-

task conditions. However, our results allowed similar conclusions as we will explicate below. 

Our single-task test revealed that the SRTT sequence had been substantially learned in the 

correlated tasks condition – while exactly the same sequence in another condition (the spatial 

condition) with random tones (Röttger et al., 2019; Experiment 1) had not been learned. This 

pattern of results differs from that of Schmidtke and Heuer, where the learning effects in the 

single-task test had been more or less of the same (moderate) size for the D-6, D-5, and D-R 

conditions, respectively. This difference, however, is likely due to the different sequences 
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used in both studies. Schmidtke and Heuer (1997) had used a 6-element hybrid sequence like 

“1-3-4-2-3-2” with unique as well as ambiguous transitions. In contrast, our 8-element SRTT 

sequence (3-1-2-4-1-3-4-2) was not only longer but the transitions between the successive 

elements were throughout ambiguous (2nd order) meaning that the prediction of the next 

SRTT target always required to take more than one single sequence element into account. 

Sequences of such higher order complexity have been found to be much more difficult to 

learn under dual-task conditions (e.g., Cohen, Ivry, & Keele, 1990).1 Thus, the finding of a 

substantial learning effect in the single-task test in our correlated-tasks condition in 

comparison to the finding of a reduced effect in the spatial condition (with random tones) 

allows the conclusion that task integration – or across-task predictability (Rah et al., 2000) – 

is crucial for implicit sequence learning. Additionally, it suggests that the extent to which the 

tasks are correlated not only affects the learning of the integrated sequence but also the 

learning within the SRTT (which is what we are interested in). 

Importantly, Experiment 4 of our previous study provided straightforward evidence 

that across-task predictability (of the tones on the basis of the SRTT) might, in fact, be the 

more important aspect of task integration than the length of the integrated sequence. Here, 4 

of the 8 SRTT-elements had been fixedly paired with one particular tone while the other 4 

elements had been randomly paired with the tones. In result, exclusively the fixedly paired 

elements had been learned – suggesting that frequent wrong across-task predictions due to 

the randomly paired elements had disrupted overall sequence learning in the sense of item-

item associations or chaining (see, e.g., Cleeremans, 2011). 

Instead, this outcome is probably best understood as ordinal position learning (Schuck, 

Gaschler, & Frensch, 2012; Schuck, Gaschler, Kreisler, & Frensch, 2012). That is, in the 

single-task test, the participants expressed the implicit knowledge that, e.g., the target at screen 

location 2 (from left), formerly fixedly paired with the low tone, always occurs at sequence 

position 3 (is the third event within the sequence). Such so-called position-item associations 

may have developed because fixedly paired SRTT items (occurring at salient local positions 

within the sequence2) had allowed an extensive local reduction of the (across-task) prediction 

error (e.g., Rescorla & Wagner, 1972), i.e., within the respective trial. 

                                                           

1 Cohen et al. (1990) suggested that the learning of hybrid and ambiguous sequences in a dual-task context is 
reduced because the required attention has to be directed at the tone-task. This interpretation, however, is rather 
outdated. Instead, the task integration hypothesis of Schmidtke and Heuer (1997) seems to be a better candidate. 

2 In Experiment 4 of Röttger et al. (2019), the combination of SRTT- and tone-task stimuli was as follows: 3R-
1F-2R-4F-1F-3F-4R-2R (with F = fixedly paired, R = randomly paired). This uneven distribution of pairing types 
might have offered salient anchors defining the starting point of the sequence and, thereby, its ordinal positions. 
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Aiming at investigating the role of across-task predictability for dual-task implicit 

sequence learning in more detail while using a higher order SRTT sequence like our standard 

8-element 2nd order sequence (3-1-2-4-1-3-4-2) makes it necessary to pay attention to a few 

subtleties. First, we have to distinguish between sequence positions (1-8) and target locations (1-4). 

From this, it follows that two types of across-task predictability have to be defined – which 

in the following will be called local and global. On the one hand, sequence learning within the 

SRTT could depend on the extent to which each target location locally (depending on its 

sequence position) predicts the corresponding tone. On the other hand, the global probability 

that (e.g.) target location 3 predicts the high tone (independently of its sequence position) 

could be the key. The former is related to the assumption that the length of the integrated 

sequence determines the extent to which learning – in the sense of item-item associations or 

chaining – is possible (cf. Schmidtke & Heuer, 1997). The latter would imply that a (high) 

global frequency of certain co-occurrences might be the useful information reducing the 

prediction error not only within the respective trial(s) but potentially also, over time, across 

the whole SRTT sequence (e.g., due to the infrequent necessity to inhibit any feature of the 

SRTT after wrong predictions – allowing the simultaneous activation and, thus, association 

of successive SRTT elements). 

A closer look at the local and the global across-task predictability levels in the D-5 

and D-6 conditions of Schmidtke and Heuer (1997) reveals interesting differences.3 While in 

the D-6 condition the across-task predictability was locally high (and globally also high for 

unique sequence elements), it turned out that both, the local and global predictability of the 

tones in the D-5 condition was throughout 60% – which is not much higher than chance 

level (50%). While this observation strongly suggests that the low across-task predictability 

levels in the D-5 condition had caused the reduced learning effect (rather than the length of 

the integrated sequence), it does not allow to decide which type of across-task predictability 

(i.e., global vs. local) had been crucial. 

Computing the predictability of the tones also for our correlated tasks condition on 

the basis of the 2nd order SRTT (Röttger et al., 2019; Experiment 2), it turned out that the 

global predictability of the tones had been high (75%) for each of the four target locations 

but that the local predictability of the tones was variable. The resulting significant learning 

effect in our single-task test might, thus, indicate that the global predictability of the tones is 

                                                           

3 The authors used a 6-element hybrid SRTT sequence like “1-3-4-2-3-2” with two unique and four ambiguous 
transitions The D-6 tone sequence was added by the following rules: Tones never repeated more than once. 
The frequent SRTT elements were followed once by the high- and once by the low tone and the two unique 
elements were followed by different tones. In the D-5 condition, the last tone of the D-6 sequence was omitted. 
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more important for dual-task sequence learning than the extent to which each SRTT element 

locally predicts a particular tone. 

To sum up, the evidence suggests that (a) across-task predictability could be the more 

important aspect of task integration than the length of the integrated sequence – and that (b) 

global across-task predictability could be more important for implicit sequence learning in a 

dual-task context than local across-task predictability. 

However, one major difference between our study and that of Schmidtke and Heuer 

(1997) makes it impossible to already draw conclusions about the mechanism(s) by which 

task integration affects dual-task sequence learning, namely that the differential complexity of 

the respectively used SRTT sequences resulted in differential outcomes in the single-task test. 

While Schmidtke and Heuer’s 6-element hybrid SRTT sequence could be learned also in the 

presence of random tones, our 8-element ambiguous (2nd order) sequence could not. Thus, it 

is necessary to vary the levels of global vs. local across-task predictability (of the tones) while 

keeping the underlying (higher order) SRTT sequence constant – and to compare (via single-

task tests) the extent to which this SRTT sequence can be learned. In our view, single-task 

test results are more informative than dual-task test results because if, in a dual-task context, 

learning within the SRTT is preserved vs. hampered due to increased vs. reduced levels of 

across-task predictability, then two conclusions are justified: (a) task-integration occurs and 

(b) different types (global/local) and levels (high/low) of across-task predictability modulate 

sequence learning within the SRTT. 

The present study 

In the present study, we aimed at investigating the role of global vs. local across-task 

predictability for implicit sequence learning in a dual-task context in more detail. Therefore, 

we combined our standard 8-element 2nd order SRTT with to-be-discriminated tones that 

were differentially predictable. We conceived of two different ways by which high levels of 

local vs. global tone-predictability could turn out to be beneficial for the strengthening of 

item-item associations or chaining within the SRTT. On the one hand, locally predictable 

tones could disambiguate transitions between successive SRTT elements. On the other hand, 

globally predictable tones could reduce the frequency of response conflicts due to wrong 

predictions for any target location (independently of its sequence position) and thereby the 

necessity to inhibit features of the SRTT – which could otherwise prevent chaining. 

Following the approach of Rah et al. (2000), we set up three “sets of circumstances” 

with slightly varied types and levels of across-task predictability and present them as separate 
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experiments to avoid the occurrence of non-interpretable interactions. Since we aimed at 

investigating the role of different types of across-task predictability for the extent of implicit 

sequence learning within the SRTT, our focus lies predominantly on the SRTT data (RTs and 

error rates). Since different levels of across-task predictability should affect the tone-task as 

well, we will also report the tone-task data (RTs only). In general, the tone-task should be 

seen mainly as a part of the predictability manipulation. 

In Experiment 1, only the local predictability of the tones (on the basis of one SRTT 

loop) was high (75%) while the global predictability was at chance level (50%). We expected 

to find a substantial learning effect in the single-task test only if high levels of local across-

task predictability are sufficient for sequence learning in a dual-task context – probably by 

means of disambiguating the transitions between successive SRTT elements (and in line with 

the original understanding of task integration; see Schmidtke & Heuer, 1997). 

In Experiment 2, the local predictability of the tones was, again, high (75%) but now 

the global predictability was high (75%) as well. In case that a high level of global across-task 

predictability is necessary for dual-task sequence learning (as it allows an extensive reduction 

of the prediction error for every target location, independently of its sequence position), we 

expected no (strongly reduced) sequence learning in Experiment 1 but a substantial learning 

effect in Experiment 2. 

Experiment 3 was designed similar to Experiment 4 of our previous study (Röttger et 

al., 2019). This time, each of the four target locations within one 8-element sequence loop 

was once fixedly paired with one particular tone and once randomly paired. Thus, the local 

across-task predictability for each target location was once high (100%) and once at chance 

level (50%). At the same time, the global tone-predictability was high (75%). A replication of 

our former finding in Experiment 4 (ordinal position learning and the absence of chaining) 

would now indicate that ordinal position learning can occur independently of the presence of 

(very) salient anchors defining a starting point of the sequence. Furthermore, this outcome 

would suggest that global- and local across-task predictability interact. With strong local 

differences in the tone-predictability, predicting the globally most likely tone must be wrong 

in 50% of cases for the randomly paired SRTT elements. Thus, chaining should not occur 

because the local tone-predictability varies too extensively. 

Experiment 1 

The goal of Experiment 1 was to investigate whether a high local predictability of the 

tones on the basis of one SRTT loop is sufficient to preserve implicit sequence learning (in 
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the sense of chaining) in a dual-tasking situation. Therefore, we combined an 8-element 2nd 

order visual-manual SRTT with a two-choice auditory-vocal tone-discrimination task across 

six dual-task training blocks. Each element of the SRTT sequence predicted one particular 

tone with a probability of 75%. Subsequently, we assessed sequence learning in a single-task 

test (three blocks SRTT only). 

Method 

Participants 

Twenty-five students (5 men) of the University of Cologne (mean age 22.72, SD = 

3.41) participated in the experiment either for monetary compensation or for course credit. 

Each session lasted approximately 45 min. 

Apparatus and stimuli 

The experiment was controlled by custom-written software (Lazarus / FreePascal, 

compiled for Microsoft Windows). Placeholders for the visual SRTT target (an uppercase 

“X”) were four horizontally aligned white squares on a light grey background (100 x 100 

pixels, separated by gaps of also 100 pixels). They were displayed slightly below the center of 

a TFT monitor (19 inch; 1280 x 1024 pixels) that was connected with a standard PC. In each 

trial, the SRTT target occurred for 100 ms in one of the four white squares and the 

participants had to press a spatially mapped key in response (Y, X, N, M on a QWERTZ-

keyboard). Unbeknownst to the participants, the response locations of the SRTT followed a 

2nd order conditional 8-elements sequence (3-1-2-4-1-3-4-2). In the dual-task trials, a high 

(900 Hz) or a low (300 Hz) pitched tone, lasting 56 ms, was played simultaneously, requiring 

the verbal responses “hoch” vs. “tief” [high vs. low]. A sound mixer (Behringer XENYX 

302USB) served as a bridge between headset and PC and integrated the tone stimuli with the 

verbal responses into one single wave-file per trial. The tone-task was analyzed offline, after 

the experiment. 

Procedure 

All participants were introduced step by step into the dual-task training phase. After 

20 practice trials with only the tone-discrimination task and another 20 practice trials with 

only the SRTT, they received 20 practice trials with the dual-task. In this first phase, both 

tasks did not follow any regular sequence. 
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In the training phase, the participants performed 6 dual-task blocks of 96 trials each. 

Now, the SRTT followed the 8-element sequence, each block starting at a randomly drawn 

sequence position. A dual-task trial began with the presentation of the visual SRTT target 

(the “X”) and the simultaneous occurrence of one of the two auditory stimuli of the tone-

discrimination task. The instructions highlighted equal priority of the tasks and the response 

order was free. The response-window closed 2000 ms after the SRTT target onset and the 

next trial started immediately. 

Since we implemented an 8-element 2nd order conditional sequence (3-1-2-4-1-3-4-2), 

the target occurred twice at each of the four possible screen locations across one sequence 

loop. Each target location (1-4) was once paired with the high tone and once paired with the 

low tone with a local probability of 75% each (i.e., depending on its sequence position). One 

tone was, thus, typical for a given target location at a certain sequence position – and the 

other tone was untypical (occurring with a local probability of 25%). The global probability 

that each target location was paired with one or the other tone was, thus, 50%. In other 

words, the resulting predictability of particular tones on the basis of one SRTT loop was 

locally high (75%) but globally at chance level (50%). 

The dual-task training phase was followed by 3 single-task test blocks of also 96 trials 

presenting only the SRTT. In blocks 7 and 9, the SRTT sequence was (pseudo-)randomized 

(i.e., immediate repetitions were not allowed). In block 8 the originally trained sequence was 

reintroduced. To allow the participants a short phase of accommodation to the single-task 

context (and to control for initial speed-accuracy trade-offs), only the second half of block 7 

entered the analysis of the single-task test. 

At the end of the experiment, participant’s explicit sequence knowledge was assessed 

(for details, see Röttger et al., 2019). Since it turned out that infrequent signs of partly explicit 

knowledge did not modulate any effect, the respective results will not be reported. 

Results and Discussion 

Trials were excluded due to SRTT errors (1.8%) or RTs < 200 ms or > 1500 ms in 

the SRTT (0.4%). As some trials fulfilled multiple exclusion criteria, overall 1.9% of the trials 

were excluded. We will first report the results of the dual-task training phase and, second, the 

results of the single-task test phase. 
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Performance in the training blocks 

Table 1 displays the mean RTs in the SRTT and in the tone-discrimination task for 

locally typical (75% probability) vs. non-typical (25% probability) SRTT-tone combinations 

as a function of block. As can be seen, the participants became generally faster across the six 

training blocks in both tasks. However, they were also faster (in both tasks) together with the 

locally typical, that is, with the locally highly predictable tones. 

Accordingly, two 6 (block) x 2 (local predictability of the tones) repeated measures 

ANOVAs (one for each task4) with RTs as dependent variable revealed a significant main 

effect of block in the SRTT F(5,120) = 19.57, p < .001, 𝜂𝑝2 = .449, and in the tone-task as 

well, F(5,120) = 10.94, p < .001, 𝜂𝑝2 = .313. Additionally, the RTs were significantly faster 

with the locally highly predictable tones in both the SRTT (14 ms), F(1,24) = 24.50, p < .001, 𝜂𝑝2 = .505, and also in the tone-task (23 ms), F(1,24) = 41.95, p < .001, 𝜂𝑝2 = .636. However, 

in both tasks, the effect of the tone-predictability was additive to the block effect (Fs < 1 for 

the respective two-way interactions). 

Table 1. Mean RTs and SDs in the SRTT and the tone-discrimination task for locally typical (75% probability) 
vs. locally non-typical (25% probability) SRTT-tone combinations as a function of block. in Experiment 1. 

  SRTT Tone-Task 

Predictability Local 75% 
 

Local 25% 
 

Local 75% 
 

Local 25% 

 
Mean SD 

 
Mean SD 

 
Mean SD 

 
Mean SD 

Block 1 552 104 
 

568 111 
 

717 111 
 

746 107 

Block 2 540 96 
 

551 104 
 

719 100 
 

742 103 

Block 3 521 99 
 

534 108 
 

702 103 
 

726 100 

Block 4 499 81 
 

517 91 
 

678 109 
 

693 108 

Block 5 496 87 
 

515 90 
 

674 102 
 

697 105 

Block 6 480 73 
 

488 81 
 

663 107 
 

688 113 

            Regular Block 8 410 53 
         Random Blocks 7/9 415 39 
         Learning Effect 4 20                   

 

The SRTT error rates were similarly low (1.44% and 1.33% together with the locally 

typical vs. the untypical tone, respectively) and did not differ across the blocks (all Fs < 1.18). 

Performance in the test blocks 

To assess sequence learning in the SRTT single-task test, we compared the mean RTs 

(and error rates) of the collapsed random blocks 7 (2nd half) and 9 with those of the regular 

block 8. Figure 1 reveals that the participants responded only 4 ms faster in the regular than 

                                                           

4 Whenever the sphericity assumption was violated, Greenhouse-Geisser corrected p-values are reported, along 
with the original degrees of freedom. 
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in the random blocks suggesting that the SRTT sequence had not been learned. Accordingly, 

the respective (two-tailed) t-test revealed that this difference was not significant, t(24) = 1.08, 

p = .289, d = 0.217. 

In addition, we conducted a Bayes test (see Dienes, 2014) to assess whether this small 

and non-significant effect indicates evidence for the Null hypothesis (no sequence learning). 

Based on the effect of 26 ms for the single-task condition in our previous study (Röttger et 

al., 2019; Experiment 1), which we specified as maximum expected learning effect, the Bayes 

factor was BF = 0.48 indicating insensitivity of the data for making a clear decision. 

 

 

Figure 1. Mean RTs (left y-axis) and error rates (right 
y-axis) in the regular and the random single-task SRTT 
test blocks in Experiment 1. Error bars represent the 
95% within-subjects confidence interval of the learning 
effect (Loftus & Masson, 1994). 

 

Figure 1 also shows that the error rates were only slightly different in the regular- vs. 

the collapsed random test blocks (2.63% vs. 2.42%, respectively). The corresponding t-test 

(two-tailed) revealed that this difference was not significant (|t| < 1). 

To summarize, the findings in Experiment 1 suggest that the high local predictability 

of the tones (75%) – and, thus, the disambiguation of transitions between successive SRTT 

elements – was not sufficient for the development of implicit sequence knowledge (within 

the SRTT) during the six training blocks. Additionally, the participants responded slower in 

both tasks at presentation of the locally non-typical tones – indicating response conflicts due 

to a discrepancy between the predicted and the actually required tone-task response. Both 

findings will be discussed in more detail after presenting the results of Experiment 2. Here, 
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the local predictability of the tones was still high (75%) – but the global tone-predictability 

was now raised to 75% as well. 

Experiment 2 

In Experiment 2, 25 new participants were trained with the same combination of an 

8-element 2nd order SRTT and a two-choice tone-task as in Experiment 1 across six dual-task 

blocks. Each SRTT target location (1-4) now predicted not only locally but also globally one 

respective tone with a probability of 75% each. If global across-task predictability should be 

necessary – or more important than local across-task predictability – for dual-task sequence 

learning to occur our single-task test should now reveal a significant learning effect. 

Method 

Participants 

Twenty-five students (8 men) of the University of Cologne (mean age 21.92, SD = 

2.08) participated in the experiment either for monetary compensation or for course credit. 

Each session lasted approximately 45 min. 

Apparatus and stimuli 

Apparatus, stimuli and the 2nd order SRTT sequence (3-1-2-4-1-3-4-2) were the same 

as in Experiment 1. The only difference concerned the across-task predictability manipulation 

as described below. 

Procedure 

The overall procedure was the same as in Experiment 1. Again, both tones occurred 

overall equally frequently across the dual-task training blocks. Crucially, each of the four 

SRTT target locations (1-4) now predicted one particular tone with a probability of 75% – 

independently of its local position within one SRTT sequence loop. Thus, the across-task 

predictability was not only locally but also globally high (75%). 

Results and Discussion 

Trials were excluded due to SRTT errors (1.7%) or RTs < 200 ms or > 1500 ms in 

the SRTT (1.0%). As some trials fulfilled multiple exclusion criteria, overall 2.4% of the trials 
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were excluded. We will, again, first report the results of the dual-task training phase and, 

second, the results of the single-task test phase. 

Performance in the training blocks 

Table 2 displays the mean RTs in the SRTT and in the tone-discrimination task for 

locally and globally typical (75% probability) vs. non-typical (25% probability) SRTT-tone 

combinations as a function of block. Again, as can be seen, the participants became generally 

faster across the six training blocks in both tasks – and they were also faster (in both tasks) 

together with the with the locally and globally highly predictable tones. 

Accordingly, two 6 (block) x 2 (local and global predictability of the tones) repeated 

measures ANOVAs (one for each task) with RTs as dependent variable revealed significant 

main effects of block in the SRTT, F(5,120) = 19.21, p < .001, 𝜂𝑝2 = .445, and in the tone-

task as well, F(5,120) = 3.38, p = .035, 𝜂𝑝2 = .123. Additionally, the predictability of the tones 

had a significant effect in both the SRTT (9 ms), F(1,24) = 9.99, p = .004, 𝜂𝑝2 = .294, and 

also in the tone-task (23 ms), F(1,24) = 37.21, p < .001, 𝜂𝑝2 = .608. Like in Experiment 1, the 

effect of the tone-predictability was additive to the block effect in both tasks (Fs < 1 for the 

respective two-way interactions). 

Table 2. Mean RTs and SDs in the SRTT and the tone-discrimination task for locally and globally typical (75% 
probability) vs. non-typical (25% probability) SRTT-tone combinations as a function of block. in Experiment 2. 

  SRTT Tone-Task 

Predictability Global 75% 
 

Global 25% 
 

Global 75% 
 

Global 25% 

 
Mean SD 

 
Mean SD 

 
Mean SD 

 
Mean SD 

Block 1 648 172 
 

660 175 
 

771 133 
 

804 163 

Block 2 618 160 
 

637 161 
 

764 157 
 

783 149 

Block 3 595 153 
 

602 158 
 

751 153 
 

774 147 

Block 4 591 155 
 

596 166 
 

747 143 
 

765 154 

Block 5 575 156 
 

583 162 
 

731 134 
 

763 141 

Block 6 554 135 
 

557 143 
 

720 139 
 

733 156 

            Regular Block 8 435 69 
         Random Blocks 7/9 445 61 
         Learning Effect 9 19                   

 

The SRTT error rates were similarly low (1.28% and 1.50% together with the typical 

vs. the untypical tone, respectively) and did not differ across the blocks (all Fs < 1). 

Performance in the test blocks 

Figure 2 depicts the results of the SRTT single-task test in Experiment 2, for means 

of comparison together with the respective results of Experiment 1. As can be seen, the 
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mean RTs of the collapsed random blocks 7 (2nd half) and 9 were slower (9 ms) than those of 

the regular block 8. The respective (two-tailed) t-test revealed that this learning effect was 

significant, t(24) = 2.37, p = .026, d = 0.474. 

The additional Bayes test (see Dienes, 2014) revealed a Bayes factor of BF = 4.61 

indicating clear evidence for the alternative hypothesis that sequence learning had occurred. 

 

  

Figure 2. Mean RTs (left y-axis) and error rates (right y-axis) in the regular 
and the random single-task SRTT test blocks in Experiment 1 and 2. Error 
bars represent the 95% within-subjects confidence intervals of the learning 
effects in each experiment (Loftus & Masson, 1994). 

 

Figure 2 also shows that the effect in the SRTT error rates mirrored the RT effect in 

Experiment 2. More errors occurred in the collapsed random test blocks than in the regular 

block (2.47% vs. 1.92%, respectively). However, the corresponding (two-tailed) t-test revealed 

that this difference was only marginally significant, t(24) = 1.79, p = .087, d = 0.357. 

The findings in Experiment 2 show that increasing the global predictability of the 

tones while maintaining the high local predictability (now both 75%) resulted in a significant 

sequence learning effect in the single-task test. Nevertheless, the participants responded, 

again, slower in both tasks at presentation of the non-typical tones – indicating response 

conflicts due to a discrepancy between the predicted (typical) and the actually required (non-

typical) tone-task response. 

Overall, the response times were quite slow in Experiment 2, in the dual-task training 

phase as well as in the single task test phase. Comparing the response times between all three 

experiments presented in this study, the response times in Experiment 2 were overall the 

slowest. At the time being, we have no explanation for this finding and tend to attribute it to 

the between subjects nature of the experiments. 
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Most importantly, the differential learning outcomes in Experiments 1 vs. 2, already 

give a hint that the relevant across-task prediction mechanism determining the amount of 

sequence learning in a dual-tasking situation might not operate across trials by integrating 

predictable tones within associative triplets like “target in trial n – tone in trial-n – target in 

trial n+1” thereby potentially disambiguating the transition between the successive SRTT 

targets. In fact, globally highly predictable tones cannot contribute to such a disambiguation 

within a 2nd order SRTT sequence. The probability of (e.g.) the target occurring at location 1, 

given location 4 in the current trial, is the same with and without the globally typical tone, 

namely 50% [p(target1|target4+tone)] = [p(target1|target4)].5 In Experiment 1, in contrast, 

the locally typical tone increased the predictability of the upcoming SRTT element to 75%. 

Nevertheless, a substantial learning effect was present only in Experiment 2, suggesting that, 

instead, the frequent within-trial co-occurrences of particular target locations and particular 

tones, independently of their sequence position, had been beneficial for sequence learning. 

We conducted Experiment 3 to further clarify this point. 

Experiment 3 

In Experiment 3, we kept the global tone-predictability as high as in Experiment 2 

(75%) but the local across-task predictability now varied between 50% and 100%. That is, 

depending on its local position within one loop of the SRTT, each target location (1-4) was 

once fixedly and once randomly paired with the tones. This manipulation was very similar to 

that of Experiment 4 of our previous study (Röttger et al., 2019). In this former experiment, 

however, the fixed and random SRTT-tone pairs had been unevenly distributed. The tone 

had been always fixedly paired with the target at location 1 and always randomly paired with 

the target at location 2. Only the target at locations 3 and 4 had been once fixedly and once 

randomly paired like in the present Experiment 3. Replicating our finding of substantial 

(ordinal position) learning only for fixedly paired SRTT elements would indicate that neither 

the local- nor the global predictability of the tones alone is sufficient to allow for chaining. 

                                                           

5 Across one block of 96 trials, the target occurred 24 times at any screen location: Location 1, for instance, was 
marked 12 times at one ordinal position across one 8-element sequence loop and 12 times at another ordinal 
position. Thus, the probability of the target occurring (e.g.) at position 1 in the current trial, following position 
4 in the previous trial was: p(target1|target4) = 12/24 = 0.50. In Experiment 1, the locally highly predictable 
tone increased this transitional probability to 75%: p(target1|target4+tone) = 9/12 = 0.75. In Experiment 2, 
with globally highly predictable tones, this probability was still 50%: p(target1|target4+tone) = 9/18 = 0.50. 
Thus, the globally typical tones did not disambiguate transitions between SRTT elements. 
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Method 

Participants 

Twenty-five students (8 men) of the University of Cologne (mean age 23.08, SD = 

3.55) participated in the experiment either for monetary compensation or for course credit. 

Each session lasted approximately 45 min. 

Apparatus and stimuli 

Apparatus and stimuli were, in principle, the same as in Experiment 1 and 2. Two 

slightly different 8-element 2nd order SRTT sequences were combined with the high and low 

tones due to certain rules as described below. 

Procedure 

The overall procedure was also the same as in Experiment 1 and 2. Two 8-element 

2nd order SRTT sequences (1-2-4-1-3-4-2-3 / 4-3-1-4-2-1-3-2) were counterbalanced across 

participants. Both tones occurred equally frequently during the dual-task training blocks. 

Crucially, across one SRTT loop, we paired each of the four target locations once fixedly 

with one particular tone and once randomly with the tones. Thus, the local predictability of 

the tones varied between 50% and 100%. The global predictability of the tones, however, 

given the target at a certain location, was as high as in Experiment 2 (75%). 

Results and Discussion 

Trials were excluded due to SRTT errors (1.6%) or RTs < 200 ms or > 1500 ms in 

the SRTT (0.5%). As some trials fulfilled multiple exclusion criteria, overall 1.7% of the trials 

were excluded. We will first report the results of the dual-task training phase and, second, the 

results of the single-task test phase. 

Performance in the training blocks 

Table 3 displays the mean RTs in the SRTT and in the tone-discrimination task for 

fixedly vs. randomly paired SRTT elements as a function of block. As in Experiments 1 and 

2, the participants became generally faster across the six training blocks in both tasks – and 

they were also faster (in both tasks) together with the with the fixedly paired SRTT elements 

locally predicting one particular tone with a 100% probability. 

Accordingly, two 6 (block) x 2 (type of SRTT element: fixedly vs. randomly paired) 

repeated measures ANOVAs (one for each task) with RTs as dependent variable revealed 
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significant main effects of block in the SRTT, F(5,120) = 17.03, p < .001, 𝜂𝑝2 = .415, and in 

the tone-task as well, F(5,120) = 9.31, p < .001, 𝜂𝑝2 = .280. Additionally, the factor type of 

SRTT element had a significant effect in both the SRTT (14 ms), F(1,24) = 18.27, p < .001, 𝜂𝑝2 = .432, and also in the tone-task (15 ms), F(1,24) = 20.58, p < .001, 𝜂𝑝2 = .462. The latter 

effect of type of SRTT element was additive to the block effect in both tasks (Fs < 1.56 for 

the respective two-way interactions). 

Table 3. Mean RTs and SDs in the SRTT and the tone-discrimination task as a function of block and type of 
SRTT element (fixedly vs. randomly paired with the tones) in Experiment 3. 

  SRTT Tone-Task 

Type of 
SRTT element 

Fixed 
 

Random 
 

Fixed 
 

Random 

Mean SD 
 

Mean SD 
 

Mean SD 
 

Mean SD 

Block 1 554 108 
 

560 106 
 

744 114 
 

754 120 

Block 2 524 82 
 

542 88 
 

719 129 
 

731 132 

Block 3 506 73 
 

515 70 
 

685 104 
 

710 122 

Block 4 489 74 
 

507 70 
 

692 127 
 

708 124 

Block 5 477 77 
 

494 74 
 

679 133 
 

690 127 

Block 6 461 82 
 

477 74 
 

670 132 
 

684 134 

            Regular Block 8 410 70 
 

427 54 
      Random Blocks 7/9 431 50 

 
431 50 

      Learning Effect 21 35   4 23             

 

The SRTT error rates were lower for the fixedly paired SRTT elements (0.90%) than 

for the randomly paired elements (2.19%). The corresponding 6 (block) x 2 (type of SRTT 

element) repeated measures ANOVA with SRTT error rates as dependent variable revealed 

that this difference was significant, F(1,24) = 19.64, p < .001, 𝜂𝑝2 = .450 (all other Fs < 1). 

Performance in the test blocks 

Figure 3 depicts the results of the SRTT single-task test in Experiment 3, separately 

for the formerly fixedly- and for the formerly randomly paired SRTT elements. As can be 

seen, for the fixedly paired elements, the mean RTs of the collapsed random blocks 7 (2nd 

half) and 9 were slower (21 ms) than those of the regular block 8. However, for the randomly 

paired elements, this difference was much smaller (4 ms). The two respective (two-tailed) t-

test revealed that the large learning effect for the fixedly paired elements was significant, t(24) 

= 2.91, p = .008, d = 0.582 – while for the randomly paired elements it was not (|t| < 1). 

The additional Bayes test (see Dienes, 2014) revealed a Bayes factor of BF = 26.90 

for the fixedly paired SRTT elements indicating clear evidence for the alternative hypothesis 

that sequence learning had occurred. For the randomly paired elements, the Bayes factor was 

BF = 0.36. Although, in a strict sense, this factor indicated insensitivity of the data, it was so 
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close to the criterion of 0.33 that we are inclined to suspect that indeed no implicit learning 

had occurred for the randomly paired SRTT elements. 

 

  

Figure 3. Mean RTs (left y-axis) and error rates (right y-axis) in the regular 
and the random single-task SRTT test blocks shown separately for SRTT 
elements that had been fixedly vs. randomly paired with the tones during the 
training phase of Experiment 3. Error bars represent the 95% within-subjects 
confidence intervals of the learning effects (Loftus & Masson, 1994). 

 

Figure 3 also shows that the error rates were only slightly different in the regular- vs. 

the collapsed random test blocks for the formerly fixedly paired SRTT elements (1.56% vs. 

1.83%, respectively). The corresponding (two-tailed) t-test revealed that this difference was 

not significant (t  < 1). For the formerly randomly paired SRTT elements, the error rates 

were higher in the regular- (5%) than in the random blocks (1.83%) but this difference was 

also not significant (|t| = 1.25). 

The findings in Experiment 3 replicate the findings of Experiment 4 of our previous 

study (Röttger et al., 2019). We found a substantial learning effect only for the fixedly paired 

SRTT elements indicating ordinal position learning instead of chaining. Additionally, during 

training, the participants responded slower in both tasks at presentation of the random tones 

indicating, again, response conflicts due to incorrect predictions. 

Interestingly, we found ordinal position learning although no sequence position had 

been especially salient. Obvious anchors defining the ordinal positions of the SRTT sequence 

had not been provided as every target location was once fixedly- and once randomly paired 

with the tones across one sequence loop. Nevertheless, in the single-task test, the participants 

responded faster to any target location occurring at a sequence position that had formerly 

indicated a fix pairing (i.e., RTs were smaller in the regular block than in the collapsed two 
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random blocks). It is, thus, conceivable that the 8-element sequence had been parsed into 

two 4-element sequences with the target occurring at each location only once (see, e.g., 

Cohen et al., 1990) – making it easier to represent the respective ordinal positions. 

Most importantly, the finding of substantial learning only for the fixedly paired SRTT 

elements strongly suggests that a high global predictability of the tones alone (in the presence 

of strongly varying local predictabilities) is not sufficient to allow for chaining. In fact, always 

predicting the globally most likely tone in Experiment 3 could not result in more “hits” than 

predicting the tone by chance for the randomly paired SRTT elements. 

Also, at a closer look, it becomes obvious that the 100% local predictability of the 

tones for the fixedly paired elements had been rather useless for disambiguating at least some 

transitions in the SRTT. The fixedly paired tones increased the predictability of the respective 

next SRTT element from 50% to only 67%, which is less than in Experiment 1 (constantly 

75%) where, however, chaining had been also absent. 6 

A first conclusion might, thus, be warranted. Implicit sequence learning in a dual-task 

context, in the sense of item-item associations or chaining, neither depends solely on a high 

local across-task predictability (in principle capable of disambiguating transitions within the 

SRTT) nor solely on a high global across-task predictability (in principle allowing increasingly 

correct predictions of the tone event). The present results strongly suggest that both types of 

predictability interact. Whether the crucial prediction mechanism nevertheless might rather 

operate on the global probabilities of certain within-trial co-occurrences – and whether this 

tendency might depend also on other factors than the structure of the SRTT sequence – will 

be discussed in the “General Discussion”. 

General Discussion 

In the present study, we investigated the role of across-task predictability, as one 

aspect of task integration, for the preservation as well as the impairment of implicit sequence 

learning in a dual-task context. Originally, Schmidtke and Heuer (1997) had suggested that a 

tendency to integrate sequences of events belonging to two different tasks – of which at least 

one follows an inherent regularity – impairs learning to the extent that the two sequences are 

uncorrelated. Then, on the one hand, the integrated sequence can become extraordinary long 

                                                           

6 As in Experiments 1 and 2, target location 1, for instance, was marked 12 times at one ordinal position across 
one 8-element sequence loop and 12 times at another ordinal position. Thus, e.g., p(target1|target4) = 12/24 = 
0.50. In Experiment 3, the fixedly paired tone increased this transitional probability to only 67% (instead of 75% in 
Experiment 1): p(target1|target4+tone) = 12/18 = 0.67. 
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(Schmidtke & Heuer, 1997) and, on the other hand, the co-occurrences lose predictive value 

(Rah et al., 2000). Our own findings (Röttger et al., 2019) confirmed the importance of task 

integration for dual-task sequence learning. Additionally, they suggested that across-task 

predictability might be the more important aspect of task integration than the length of the 

integrated sequence (although, naturally, the former is an effect of the latter). 

Depending on the complexity of the sequence in one task (e.g., an SRTT), two types 

of across-task predictability must be distinguished which we call local and global. These two 

types arise because, given that the SRTT has a higher order structure, also sequence positions 

(e.g., positions 1-8) and possible target locations (e.g., locations 1-4 ) must be discriminated. 

Then, the local predictability of a tone-event given a certain target location (i.e., depending 

on its position within the sequence) is potentially different from the global tone-predictability 

(i.e., independently of the targets’ sequence position) – and both might also have different 

effects. In three experiments, we varied the levels of local vs. global across-task predictability 

independently of each other. Therefore, we paired an 8-element 2nd order SRTT with a tone-

discrimination task (see also Röttger et al., 2019; Schumacher & Schwarb, 2009) allocating 

the tones to the target locations in different proportions per experiment. 

In Experiment 1, the local tone-predictability was high (75%) while the global tone-

predictability was at chance level (50%). We hypothesized that, by way of disambiguating the 

transitions between successive SRTT elements, the locally highly predictable tones could turn 

out to be beneficial for sequence learning. This mechanism would operate across trials and, 

thus, be more in line with the assumption that the length of the integrated sequence is crucial 

(Schmidtke & Heuer, 1997). However, we found no significant learning effect. 

In Experiment 2, the local tone-predictability remained high (75%) and the global 

predictability was increased to 75% as well. We hypothesized that, by allowing increasingly 

better predictions of the tones based on the target locations (independently of their sequence 

position), the globally highly predictable tones could be more beneficial than the locally highly 

predictable tones. This mechanism would operate within trials, possibly by decreasing the 

frequency of response conflicts as a consequence of the extensive reduction of the prediction 

error (Rah et al., 2000; Röttger et al., 2019). This conflict reduction may have allowed the 

simultaneous activation of successive SRTT elements, thereby strengthening the associations 

between them. Indeed, we found a substantial learning effect in Experiment 2. 

In Experiment 3, the global tone-predictability remained high (75%) but the local 

predictability of the tones varied extensively and was either very high (100%) or low (50%). 

We hypothesized that if the prediction mechanism operated rather on the global across-task 
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predictability by focusing on SRTT-tone contingencies within a given trial, we should find 

substantial implicit learning only for the fixedly paired SRTT elements. Here, the 100% tone-

predictability allows the reduction of the prediction error. For the randomly paired elements, 

however, inevitably frequent wrong across-task predictions must lead to response conflicts 

thereby preventing the development of item-item associations or chaining within the SRTT. 

Indeed, replicating our former results (Röttger et al., 2019; Experiment 4), we found ordinal 

position learning instead (position-item associations for the fixedly paired elements). That is, 

the participants expressed implicit knowledge about the ordinal sequence positions of fixedly 

paired SRTT elements. 

Based on this observation, some new and important suggestions concerning implicit 

sequence learning in dual-task situations might be warranted. First, and basically, the present 

results, again, confirm the importance of task integration – or across-task predictability – for 

the formation of associations within the SRTT as measured by our single-task test. Second, 

and more importantly, our results give a hint at the crucial route on which the supposed 

prediction mechanism might operate in contexts similar to the present dual-task situation, 

i.e., with a 2nd order sequence in the SRTT and differentially predictable secondary tone-task 

events. We suggest that some helpful fundamental thoughts can be derived from the literature 

on the predictive coding account (e.g., Bubic, von Cramon, & Schubotz, 2010; Clark, 2013) and 

the literature on statistical learning (e.g., Perruchet & Pacton, 2006). 

According to the predictive coding account, predictions of “whatever next” (Clark, 

2013) are omnipresent and do also occur implicitly (for a short review, see Broeker et al., 

2017). Learning the regularities within a SRTT, might require the progressive improvement 

of predictions via statistical learning (Hunt & Aslin, 2001). The authors showed that implicit 

learning in a SRTT can be based on more than one statistic extracted from the distribution 

of possible events within the learning context, ranging from simple element frequency over 

conditional probabilities of element pairs up to the complex joint probability of exact event 

patterns out of all possible combinations within this context. Given a tendency to integrate 

the two streams of events in a dual-task (Schmidtke & Heuer, 1997), it is, thus, important to 

investigate, which statistical dependencies might be most informative – and, therefore, might 

be operated on by the prediction mechanism. 

The results of Experiment 1 suggest that the prediction mechanism did not focus the 

increased conditional or transitional probabilities of successive SRTT elements due to locally 

highly predictable tones (in principle capable of disambiguating these transitions). One idea 

why this might have been the case can possibly be derived from findings like that of Gómez 
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(2002). She investigated, in the context of (artificial) language learning, the conditions under 

which so-called nonadjacent dependencies can be learned (conditional probabilities between 

the first and the third “word” separated by a more or less variable middle element in a three 

element string). It turned out that these nonadjacent dependencies were only learned if the 

variable middle element was drawn from a large set of 24 items – but not if it was drawn 

from smaller sets. In other words, as long as the variability of the middle element was low, 

the prediction mechanism seemed to focus rather on adjacent elements (e.g., the first and the 

middle element) missing the strong dependencies between the nonadjacent elements. These, 

however, were detected as soon as the variability of the middle element was high and, thus, 

made the nonadjacent dependencies literally stand out of the crowd. 

Attempting to relate this finding to our dual-task context, the tones can be conceived 

of as the varying middle element separating successive elements of the SRTT. It is possible 

that these SRTT dependencies had not been learned in Experiment 1 because, with a set size 

of two, the tone-variability could have been too limited to direct the prediction mechanism 

to the SRTT dependencies. The “failure” to learn the SRTT sequence strongly suggests that 

the prediction mechanism had focused other relations, namely the within-trial predictability 

of the tones on the basis of the SRTT elements. Unfortunately, due to our manipulation, this 

within-trial predictability depended on the (unknown) SRTT’s ordinal positions across-trials 

– precluding any reduction of the prediction error. 

Increasing the global predictability of the tones from 50% to 75% in Experiment 2, 

offered a way out of this vicious circle. The focus on the within-trial SRTT-tone relations 

(now being independent of the SRTT’s ordinal positions) allowed to progressively improve 

the respective predictions and to reduce the likelihood of response conflicts. Otherwise these 

response conflicts possibly would have had to be solved by inhibiting the activation of SRTT 

features, which, in turn, should have hampered the strengthening of associations between the 

successive SRTT elements. The substantial learning effect in Experiment 2 might count as 

evidence for this assumption, as it most probably indicates strong item-item associations or 

chaining. In Experiment 3, in contrast, where the global predictability of the tones was also 

high (75%) but the local predictability of the tones varied, chaining was absent – very likely 

because the temporally overlapping activation of successive SRTT elements had frequently 

needed to be inhibited. 

Yet, assuming a prediction mechanism which, by default, focuses on the spatially and 

temporally most contiguous – within-trial or adjacent – dependencies (e.g., Gómez, 2002), 

can also explain the outcome in Experiment 3. This way, the prediction error can extensively 
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be reduced for the fixedly paired elements – but not at all for the randomly paired elements. 

As a result, we observed that responses to targets occurring at sequence positions indicating 

a (formerly) fix pairing in the regular single-task test block were faster than the respective 

responses in the random test blocks. Thus, the participants expressed implicit knowledge of 

the ordinal positions of the fixedly paired SRTT elements. Responses to the randomly paired 

elements were slow and their speed did not differ between the test blocks. 

As already mentioned above, the finding of position-item associations in Experiment 

3 is, at first sight, a bit surprising because the distribution of the pairing types (each target 

location within the SRTT had been once fixedly and once randomly paired with the tones) 

did not provide salient anchors defining the starting point (and, thus, the ordinal positions) 

of the sequence (see Schuck, Gaschler, & Frensch, 2012; Schuck, Gaschler, Kreisler, et al., 

2012). We suspect that the possibility to divide the 8-element 2nd order sequence into two 4-

element 1st order sequences (containing each target location once) might have been quite 

obvious and offered a way to extract the ordinal SRTT positions nevertheless. This process 

might have been supported by the locally slightly increased predictability of successive SRTT 

elements due to the locally highly predictable (fixedly paired) tones. 

To summarize, the outcomes of the present three experiments are indeed suitable to 

shed more light on the crucial mechanisms by which task integration might affect implicit 

sequence learning in a dual-task context. Assuming an omnipresent prediction mechanism 

(see, e.g., Broeker et al., 2017; Bubic et al., 2010; Clark, 2013) that operates on the principles 

of statistical learning (see, e.g., Hunt & Aslin, 2001; Perruchet & Pacton, 2006), our findings 

suggest that the predictability of the most contiguous upcoming event determined whether 

sequence learning had been possible or not. With simultaneous stimulus onset and serially 

produced responses, the highest contiguity of successive events could be found within-trials 

– and the present results strongly suggest that within-trial events (belonging to both tasks) 

had been focused by the prediction mechanism (see also, e.g., Gómez, 2002). 

Interestingly, Gómez (2002) also showed that by increasing the variability of adjacent 

events, the focus of the prediction mechanism could be moved to the dependencies of 

nonadjacent events, meaning that this mechanism is, in principle, open for modifications. 

Another such modification might be triggered by separating the tasks temporally, that is, by 

inserting long intervals between the onsets of the stimuli (stimulus onset asynchrony; SOA). 

Schumacher and Schwarb (2009; Experiment 1) found that implicit sequence learning was 

preserved in such a condition despite the presence of a random tone-discrimination task (see 

also Röttger, Haider, Zhao, & Gaschler, in prep.). In our view, temporally separating the two 
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tasks might have separated also the task representations. Representing the SRTT as one 

independent task might bring out its inherent statistical relations and, in turn, allows an 

extensive reduction of the prediction error. 

While such an SOA manipulation might operate automatically, on a bottom-up route, 

the findings of Hazeltine and his colleagues (Freedberg, Wagschal, & Hazeltine, 2014; 

Halvorson, Wagschal, & Hazeltine, 2013) suggest that separate task representations – or task 

files (Hazeltine & Schumacher, 2016; Schumacher & Hazeltine, 2016) – can also be established 

top-down, i.e., by instruction (see also Schumacher & Schwarb, 2009; Experiment 2). 

Moreover, since human actions are almost always goal-directed and embedded in hierarchical 

sequential structures (e.g., Schiffer, Waszak, & Yeung, 2015), the extent to which the content 

of the two tasks is distinguishable and belongs to separate goals might determine whether the 

prediction mechanism focuses the respectively relevant rather than the most contiguous – 

but irrelevant – dependencies. Related questions are currently investigated in our lab. 

To conclude, the present three dual-task sequence learning experiments added to the 

existing research the finding that task integration or, more specifically, across-task prediction 

seems to operate, per default, on the most contiguous dependencies, namely those between 

across-task events within the same trial. In our paradigm, given an underlying higher order 

SRTT sequence, it seems to be the global predictability of the tone that determines whether 

sequence learning is possible or not – unless some cue might trigger the establishment of 

separate task representations and thereby a move of the predictive focus away from the most 

contiguous to the most (goal-) relevant dependencies. 
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4 Implicit sequence learning as an indicator of efficient dual 

task processing? 

Implicit sequence learning often suffers when a serial reaction time task (SRTT; Nissen & Bullemer, 1987) is 

presented simultaneously with a random secondary task. Schumacher and Schwarb (2009) demonstrated, 

however, that sequence learning is preserved when the tasks are consistently separated by long stimulus 

onset asynchronies (SOAs) – potentially due to serial- instead of parallel processing (cf. Miller, Ulrich, and 

Rolke, 2009). Evidence suggests that, with varying SOAs, like in the psychological refractory period (PRP) 

paradigm (Welford, 1952), one processing mode is globally preferred: serial processing (Israel & Cohen, 

2011) or parallel processing (Lehle & Hübner, 2009). As implicit sequence learning should be preserved 

in the former case and impaired in the latter, we suggest that the amount of learning can serve as an 

indicator of the dual-task processing mode participants adopt when experiencing varying SOAs. In the 

present study, we combined a SRTT and a random tone-discrimination task and paired high proportions 

of short vs. long SOAs with certain SRTT-items within two PRP experiments. Learning occurred, purely 

mechanistically, only together with long SOAs suggesting that the PRP context did not trigger a global 

serial processing strategy. Rather, we observed a kind of automatic switching from moderately parallel- 

to serial processing whenever the SOA was actually long. As serial processing is, in principle, conceived 

of as being more efficient than parallel processing (cf. Miller et al., 2009), it is discussed whether this 

assumption holds for the present findings. 

Every day, we are engaged in numerous diverse activities and very often we attempt 

to master more than one activity simultaneously – trying to maintain high levels of efficiency. 

Although it is well known that multitasking performance often suffers (e.g., Pashler, 1994), 

we feel as efficient multitaskers when, subjectively, we need less time to complete two tasks 

simultaneously than in succession (without making too many errors). Indeed, assessing 

efficiency in multitasking is usually based on the comparison of the time needed to complete 

two tasks in combination vs. in isolation and this comparison almost inevitably reveals dual-

task costs. The most prominent finding is that the response time in the second of two tasks 

(RT2) is dramatically slowed down the shorter the interval between the onset of the stimuli is 

(stimulus onset asynchrony; SOA). This so-called psychological refractory period (PRP) effect (Telford, 

1931; Welford, 1952) is usually attributed to a structural limitation in information processing 

allowing central processes (e.g., response selection) to proceed only serially and supporting 

the response selection bottleneck (RSB) model (Pashler, 1984, 1994). However, frequently RT1 

also suffers from dual-tasking supporting the assumption of central capacity sharing (e.g., 

Navon & Miller, 2002; Tombu & Jolicoeur, 2003). If two tasks are processed in parallel, they 

share limited central capacity – to the benefit of RT2 but leading to costs in RT1. Also, the 

finding of backward crosstalk (compatibility effects in RT1 resulting from response related 

processes in Task 2) is more in line with capacity sharing (e.g., Mittelstädt & Miller, 2017) – 

unless, as suggested by Hommel (1998), the RSB model is extended by the stage of automatic 
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response activation (in Task 2) proceeding in parallel to response selection in Task 1, influencing 

RT1 (see also Durst & Janczyk, 2018; Janczyk, Renas, & Durst, 2018). 

Occasional findings of “virtually perfect time sharing” (Schumacher et al., 2001), that 

is, efficient parallel processing without any costs, constitute exceptional cases in the dual-

tasking literature, keeping the debate going whether central processing can, in principle, 

proceed in parallel for two tasks or not (for a review, see Fischer & Plessow, 2015). 

Miller, Ulrich, and Rolke (2009) suggested to define dual-task efficiency by the sum 

of the RTs in task 1 and task 2 (RT1 + RT2). The smaller the so-called “total response time” 

(TRT), the higher the multitasking efficiency. They suggested that in almost all cases, serial 

central processing should be the most efficient performance strategy, largely reducing, for 

instance, performance costs due to central capacity sharing (in task 1) and/or crosstalk (see 

also, e.g., Lehle & Hübner, 2009). They also demonstrated, however, that certain dual-task 

contexts, involving high proportions of trials with strongly temporally overlapping tasks (i.e., 

SOA ≈ 0 ms), can favor parallel over serial processing in terms of efficiency – actually, in 

rare cases, allowing for (virtually) perfect time sharing. 

Integrating research on multitasking and research on implicit sequence learning, 

Schumacher and Schwarb (2009, Experiment 1) also demonstrated differences in dual-task 

performance in conditions presenting two stimuli (S1 and S2) either always simultaneously 

(SOA = 0 ms; DT-S condition) or consistently separated by a long SOA of 750 ms (DT-L 

condition). Only in the DT-S condition, they replicated the ubiquitous finding of impaired 

implicit sequence learning in dual-tasking (see, e.g., Cohen, Ivry, & Keele, 1990; Curran & 

Keele, 1993; Frensch, Buchner, & Lin, 1994; Frensch, Lin, & Buchner, 1998; Frensch, 

Wenke, & Rünger, 1999; Heuer & Schmidtke, 1996; Nissen & Bullemer, 1987; Rah, Reber, & 

Hsiao, 2000; Schmidtke & Heuer, 1997; Stadler, 1995). In the DT-L condition, learning was 

preserved. The authors attributed this preservation of implicit sequence learning to serial- 

and its impairment to parallel dual-task processing. 

We suggest to interpret this differential learning outcome as a novel indicator of dual-

tasking efficiency – in addition to (e.g.) the TRT of Miller et al. (2009). Implicit learning, as 

one of the most fundamental learning processes (e.g., Dienes & Berry, 1997), results, without 

much effort, in highly adaptive behavior. A dual-task context with consistently long SOAs 

(DT-L condition) seemingly allows implicit learning (and, thus, the development of this 

highly adaptive behavior) via serial processing. Accordingly, and as suggested by Schumacher 

and Schwarb (2009), the finding of impaired implicit learning in the DT-S condition adds to 

the majority of findings demonstrating the inferiority (in terms of efficiency) of a parallel 
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processing mode. Thus, differentially strong implicit learning effects can possibly be seen as 

the outcome of more vs. less efficient dual-tasking. 

In general, it is still not well understood, why implicit learning is impaired in dual-

tasking (for reviews, see Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003; Schumacher & 

Schwarb, 2009). Since it enables humans to automatically and effortlessly adapt to regular 

structures in the environment, its impairment in multitasking situations, requiring high levels 

of adaptability or flexibility, is somehow paradox. Especially in the light of a second finding 

of Schumacher and Schwarb (2009). In Experiment 2, they simply instructed the participants 

to prioritize the sequence learning task over the secondary task while the SOA was 

consistently short – and learning was preserved. That is, although the participants were 

apparently able to learn a sequence inherent in one of two temporally overlapping tasks, 

simply by implementing, as instructed, a serial processing mode, they failed to do so if the 

instructions highlighted equal task priority. In other words, the participants seemed to 

choose (or to lapse into) the inefficient parallel processing mode if not otherwise instructed – 

and if short SOAs were frequent. 

A similarly paradox behavior was observed by Lehle and Hübner (2009). They turned 

the Eriksen Flanker Task (Eriksen & Eriksen, 1974) into a dual-task requiring a first response 

(R1) to the target and a second response (R2) to the flankers, and instructed the participants 

either to process the tasks serially or in parallel (see also Hübner & Lehle, 2007). Importantly, 

in a third condition, the participants received no specific instruction. Then, they assessed the 

degree of strategic central capacity sharing between the two tasks in terms of the size of the 

flanker congruency effect (FCE) in RT1 and RT2 in the three conditions. The FCEs were largest 

in the parallel condition reflecting high degrees of crosstalk, smallest in the serial condition – 

and intermediate in the condition with no specific instruction. Thus, although the participants 

were, in principle, able to globally adjust the degree of (inefficient) parallel processing (if 

instructed to do so), they chose a “moderate degree of parallel processing” in the control 

condition – thereby accepting large performance costs (Lehle & Hübner, 2009). The flankers 

became imperative by changing their color (and sometimes also their identity) after varying 

SOAs of 50, 150, and 350 ms. Whether this PRP-like SOA manipulation also affected the 

choice of the processing mode is unclear. FCEs were present with all degrees of temporal 

task overlap in the control condition but slightly modulated with the longest SOA (350 ms). 

However, since this interval was still rather short, the longer SOA of 750 ms used by 

Schumacher and Schwarb (2009) should have reduced the FCEs – indicating an almost 

inevitable switch to the serial processing mode (because this SOA is long enough that R1 can 
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be produced before S2 occurs). It is, however, an empirical question whether such switches 

would happen automatically, due to the actually presented long SOA and, thus, trialwise – or 

whether the overall strategy would globally become (more) serial. 

An observation resembling the latter outcome was made by Israel and Cohen (2011). 

Within eleven sessions, participants always had to perform two tasks with equal priority. The 

first eight sessions included alternating single- and dual-task blocks in which the SOA was 

always zero. Comparing single- and dual-task performance in sessions seven and eight, the 

authors found no dual-task costs any more. Obviously, after some training, the participants 

were able to perform the two tasks highly efficiently in parallel. However, in the last three 

sessions, the PRP procedure was introduced with SOAs varying between 0, 50, 150, and 800 

ms and dual-task costs (in RT2) were back – even in trials actually presenting the extensively 

practiced situation with an SOA of zero milliseconds. It seemed as if the PRP timing context 

led the participants to involuntarily prioritize one task over the other, that is, to globally 

engage in an “exogenous” serial processing strategy (as the authors termed it). 

To summarize, Israel and Cohen (2011) as well as Schumacher and Schwarb (2009), 

and also Lehle and Hübner (2009) demonstrated that participants are, in principle, able to 

flexibly adopt the respective most efficient global processing strategy by instruction or after 

some training – even if the context calls for increased effort to do so. With the exception of 

Israel and Cohen (2011) – who demonstrated a rare case of perfect time sharing – serial 

processing was considered to be the most efficient dual-tasking strategy. It reduces the TRT 

(Miller et al., 2009), it reduces crosstalk (Lehle & Hübner, 2009) and it preserves sequence 

learning (Schumacher & Schwarb, 2009). 

Most importantly (and in line with Miller et al., 2009), in the absence of prioritization 

instructions, manipulating the SOAs had an immense effect on the participants’ performance 

outcomes and, thus, most likely on their processing strategies in the studies of Israel and 

Cohen (2011) and Schumacher and Schwarb (2009). In the latter, separating a sequence 

learning task and a secondary task consistently by a long SOA preserved implicit sequence 

learning via serial processing. Presenting varying SOAs in the former apparently led to a 

global serial processing strategy as well. These two findings, however, are in contrast to the 

observation of Lehle and Hübner (2009) that participants in the control condition produced 

medium sized FCEs due to parallel processing – even though they had been exposed to 

(moderately) varying SOAs as well. 

Given these inconsistent findings, the aim of the present study was to investigate 

which kind of (exogenous?) dual-task strategy participants would adopt when conducting a 



87 
 

sequence learning task concurrently with a secondary task in the context of varying SOAs – 

and to what extent this strategy would be efficient. As a measure of efficient performance, we 

were interested in the amount of implicit sequence learning. We considered three outcomes 

as possible. If the PRP context indeed globally triggers a serial processing strategy, even 

though the instructions emphasize equal priority of the two tasks (Israel & Cohen, 2011), 

implicit sequence learning should be overall preserved (cf. Schumacher & Schwarb, 2009; 

Experiment 1). If, on the contrary, participants engage in a moderately parallel processing 

strategy when not encouraged to prioritize one task over the other (Lehle & Hübner, 2009), 

independently of the SOA manipulation, sequence learning should be overall impaired (cf. 

Schumacher & Schwarb, 2009, Experiment 1 and 2). As a third outcome, however, as we will 

further explicate below, we conceived it possible that the participants’ processing modes 

depend very much on the actual length of the SOA – allowing (or forcing) them to switch 

from more parallel to more serial processing only when the respective SOA is long. In this 

case, learning should be evident exclusively (or mainly) for certain elements of the sequence 

– namely for those that had been frequently paired with a long SOA. 

The present study 

In three experiments, we investigated whether and to what extent participants in a 

dual-task implicit sequence learning situation can efficiently exploit predictably varying SOAs 

in order to optimize their dual-task processing strategies. Therefore, we were interested in 

the size of the learning effects per SOA level. We paired a visual-manual serial reaction time task 

(SRTT; Nissen & Bullemer, 1987) with an auditory-vocal tone-discrimination task in a design 

similar to that of Schumacher and Schwarb (2009). After replicating their finding of preserved 

vs. impaired sequence learning with consistently long vs. short SOAs in Experiment 1, we 

conducted two further PRP experiments. 

In Experiment 2, we linked high proportions of either short (0 ms) or long (800 ms) 

SOAs to different elements of the SRTT sequence. This procedure resembles to some degree 

the item-specific proportion (ISP-) SOA manipulation introduced by Fischer and Dreisbach 

(2015).1 In a situation with dimensional overlapping tasks and, thus, a high risk for across-

task conflict, the authors found evidence for trialwise adjustments towards more serial (or 

rather less parallel) processing for items predominantly paired with short SOAs in terms of 

                                                           

1 The ISP-SOA manipulation of Fischer and Dreisbach (2015) is related to the “proportion congruent” (PC) 
literature (for a review, see Bugg & Crump, 2012). The main finding, here, is that congruency effects are smaller 
for lists, contexts or items predicting high (in contrast to low) levels of conflict. 
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smaller backward crosstalk effects (BCEs). This outcome is understood as indicating a high 

extent of flexibility and efficiency. Participants seem to exploit the predictability of the short 

SOAs (and, thus, the predictability of conflict) and to intensify “on-the-fly” their levels of 

task shielding. For such adjustments to occur, the frequent exposure to conflict with certain 

items is a precondition. In our paradigm (rather lacking conflict due to dimensional overlap), 

a different source of conflict, especially with short SOAs, could possibly be the randomness 

of the tones in task 2 hampering task integration (Rah et al., 2000; Röttger, Haider, Zhao, & 

Gaschler, 2019; Schmidtke & Heuer, 1997). Potential item-specific conflict adaptation (in 

terms of more task shielding / serial processing for items predicting the short SOA) should, 

here, logically result in substantial learning effects for both item types. This outcome would 

be indistinguishable from that predicted by Israel and Cohen (2011), overall substantial 

sequence learning due to globally serial processing triggered by the mere presence of varying 

SOAs. Nevertheless, we were interested in the effect that such an ISP-like SOA manipulation 

would have on sequence learning in a PRP context for the following reason. 

To the extent that sequence learning in a SRT task is implicit and incidental, it is 

conceivable that participants are unaware of conflict or “task integration confusion” due to 

the randomness of a secondary task – even with short SOAs. However, without even a vague 

feeling that responding to some SRTT elements is harder than to others (e.g., Dreisbach & 

Fischer, 2011) or feels more aversive (e.g., Dreisbach & Fischer, 2015; Dreisbach, Reindl, & 

Fischer, 2018), flexible anticipative strategy adjustments could also be simply impossible. 

Thus, if it is true that participants in our paradigm do not feel clear differences between the 

item types, they might indeed overall engage in moderately, low-effort, parallel processing as 

Lehle and Hübner (2009) suggested – but only until actually a long SOA occurs and provides 

the optimal mechanistic precondition for (a) serial processing and (b) for the development of 

implicit associations. Associations, for instance, between successive events within the SRTT 

as a consequence of their prolonged undisturbed conjoint activation. Substantial learning 

effects for SRTT elements that had been frequently paired with the long SOA – but weak (or 

absent) learning effects for elements that had been frequently paired with the short SOA 

should be the – completely incidental – result. 

Otherwise, if participants do indeed engage globally in one or the other processing 

strategy, rather than passively drifting between parallel and serial processing, we should find 

overall substantial (Israel & Cohen, 2011; serial strategy) or overall impaired sequence 

learning (Lehle & Hübner, 2009; parallel strategy). 
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To foreshadow, since we found overall substantial learning in Experiment 2, being, 

at first sight, in accord with a global serial processing strategy triggered by the PRP context 

(Israel & Cohen, 2011) – or with flexible adjustments towards more serial processing for 

items predicting the short SOA (Fischer & Dreisbach, 2015) – we conducted Experiment 3. 

Here, we examined the probability that, in fact, the significant learning effect also for items 

predicting the short SOA, resulted from the small proportion of trials in which the actually 

occurring SOA was (untypically) long. For this purpose, we extended the design of a 

previous Experiment (Röttger et al., 2019; Experiment 4) in which we already had observed 

differential learning effects for single elements within a SRTT sequence. Elements being 

100% predictive for the required secondary task response (fixedly paired elements) had been 

learned – while the unpredictive (randomly paired) elements had not been learned. In the 

present Experiment 3, the fixedly paired sequence positions were now additionally to 100% 

combined with the long SOA, the variably paired elements to 100% with the short SOA. We 

hypothesized that if the context of varying SOAs indeed triggers a global serial processing 

strategy, the variably paired sequence elements should now also be learned. 

Since our research question concerns participants’ (efficient?) adaptation to varying 

SOAs in a PRP context, reflected in the amount of dual-task implicit sequence learning, our 

focus lies on the SRTT data (RTs and error rates). That is, in the present study, we see the 

tone-task mainly as a part of the SOA manipulation – with its outcome being of rather 

marginal interest. Only for the purpose of double checking the extent of serial vs. parallel 

processing from the RT patterns in the dual-task training phase, we report the tone-task data 

(RTs only) as well. In the respective analyses, we collapsed the RTs of both tasks (separately) 

across all training blocks and analyzed them as a function of the SOAs (i.e., the actual SOAs 

as well as, in Experiment 2, the most likely SOAs). Following the predictions of Miller et al. 

(2009), RTs in the primary task (probably the SRTT)2 should be generally faster the higher 

the extent of serial processing, that is, the higher the proportion of long SOAs per condition. 

At the same time, RTs in the secondary task (the tone-task, accordingly) should show a steeper 

PRP effect. Potentially, these RT patterns would additionally be modulated by the ISP-SOA 

manipulation in Experiment 2. 

                                                           

2 Although we instructed the participants to give both tasks equal priority, we expected them to prioritize the 
visual-manual SRTT over the auditory-vocal tone-task because this freely chosen task order has been observed 
many times before and is, thus, very common (e.g., Liepelt, Strobach, Frensch, & Schubert, 2011; Röttger et al., 
2019; Schumacher & Schwarb, 2009; Schumacher et al., 2001; Strobach, Salminen, Karbach, & Schubert, 2014). 
Additionally, it seems that participants prefer to respond to the easy task first – which might have been the SRTT 
(with spatially compatible S-R mappings) in our case (cf. Ruiz Fernández, Leonhard, Rolke, & Ulrich, 2011). 
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Experiment 1 

The goal of Experiment 1 was to replicate the finding of Schumacher and Schwarb 

(2009) that dual-task implicit sequence learning is preserved in a condition with 100% long 

SOAs (SOAlong condition), but that no learning occurs in a condition with 100% short SOAs 

(SOAshort condition). Therefore, we combined a visual-manual SRTT (Nissen & Bullemer, 

1987) with a two-choice auditory-vocal tone-discrimination task across six dual-task training 

blocks. Taking into account that only the expression of learning might be disturbed in dual-

tasking (Frensch et al., 1998; 1999), we subsequently assessed sequence learning under single-

task conditions (three blocks SRTT only). 

Method 

Participants 

Sixty-two students of the University of Cologne (13 men; mean age 21.65, SD = 3.54) 

participated in Experiment 1 either for monetary compensation or for course credit. Each 

session lasted approximately 45 min. 

Apparatus and stimuli 

The experiment was controlled by custom-written software (Lazarus / FreePascal, 

compiled for Microsoft Windows). In both conditions, the placeholders for the visual SRTT 

target (an uppercase “X”) were four horizontally aligned white squares on a light grey 

background (100 x 100 pixels, separated by gaps of also 100 pixels). They were displayed 

slightly below the center of a TFT monitor (19 inch; 1280 x 1024 pixels) that was connected 

with a standard PC. In each trial, the SRTT target occurred for 100 ms in one of the four 

white squares and the participants had to press a spatially mapped key in response (Y, X, N, 

M on a QWERTZ-keyboard). Unbeknownst to the participants, the responses in the SRTT 

followed a 2nd order conditional 8-elements sequence (3-1-2-4-1-3-4-2). Additionally, after an 

SOA of 0 ms or 800 ms, a high (900 Hz) or a low (300 Hz) pitched tone, lasting 56 ms, was 

played in an unpredictable sequence requiring the verbal responses “hoch” vs. “tief” [high vs. 

low]. The response-window closed 2000 ms after the SRTT target onset and the next trial 

started immediately. A sound mixer (Behringer XENYX 302USB) served as bridge between 

headset and PC and integrated the tone stimuli with the verbal responses into one single 

wave-file per trial. The tone-task was analyzed offline, after the experiment. 
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Procedure 

All participants were introduced step by step into the dual-task training phase. After 

20 practice trials with only the tone-discrimination task and another 20 practice trials with 

only the SRTT, they received 20 practice trials with the dual-task (SOA = 0 ms and free 

response order in the two conditions). In these practice trials, both tasks did not follow any 

regular sequence. 

In the training phase, the participants performed 6 dual-task blocks of 96 trials each. 

Now, the SRTT followed the 8-elements sequence, each block starting at a randomly drawn 

sequence position. A dual-task trial began with the presentation of the visual SRTT target 

(the “X”) and the simultaneous (SOAshort condition; SOA = 0 ms) vs. the deferred (SOAlong 

condition; SOA = 800 ms) onset of one of the two auditory stimuli of the tone-task. The 

instructions highlighted equal priority of the two tasks and the response order was free in 

both conditions (see also Schumacher & Schwarb, 2009; Experiment 1). 

The dual-task training phase was followed by 3 single-task test blocks of also 96 trials 

presenting only the SRTT. In blocks 7 and 9, the SRTT sequence was (pseudo-)randomized 

(i.e., immediate repetitions were not allowed). In block 8 the originally trained sequence was 

reintroduced. 

At the end of the experiment, participant’s explicit sequence knowledge was assessed 

(for details, see Röttger et al., 2019). Since it turned out that infrequent signs of partly explicit 

knowledge did not modulate any effect, the respective results will not be reported. 

Results and Discussion 

Trials were excluded due to errors or RTs < 200 ms or > 1500 ms in the SRTT. 

Furthermore, the data of 2 participants were excluded completely because their SRTT error 

rates exceeded 30% in at least one block. Two further participants were excluded because 

they showed a negative learning effect (faster RTs in the random- than in the regular blocks) 

that deviated from the respective condition mean by more than 2 SD. 

Additionally, we identified a subgroup of participants whose mean SRTT RTs with 

long SOAs (1169 ms across all training blocks compared to 440 ms in the remaining sample) 

exceeded by far the length of the respective SOA. That is, the participants seemed to wait 

until tone onset – responding only after having processed both stimuli. The data of these 8 

participants are reported separately, in the Appendix. 

In the data of the remaining 50 participants (n = 25 per condition), we identified 

0.8% RT outliers and 2.1% SRTT errors, thus overall 2.3% of the trials were excluded. We 
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will first report the results of the dual-task training phase and, second, the results of the 

single-task test phase. 

Performance in the training blocks 

First, we assessed which task order the participants had preferred during the training 

phase. The mean inter-response intervals (IRIs), computed as RTtone-task + SOA – RTSRTT, 

were positive (SOAshort condition: 186 ms / SOAlong condition: 969 ms) meaning that the 

participants had responded, on average, to the SRTT first. 

Figure 1 displays the mean RTs in the SRTT (i.e., RT1) and the tone-discrimination 

task (i.e., RT2), collapsed across the six dual-task training blocks as a function of SOA 

condition. As can be seen, the mean RTs in the SOAshort condition were much slower than 

the RTs in the SOAlong condition in both tasks (SRTT: 583 ms vs. 440 ms / tone-task: 763 

ms vs. 608 ms, respectively). Accordingly, the two one-way ANOVAs with mean RTs as 

dependent variable revealed significant effects of SOA condition in the SRTT, F(1,48) = 

27.55, p < .001, 𝜂𝑝2 = .365, and in the tone-task as well, F(1,48) = 30.18, p < .001, 𝜂𝑝2 = .386. 

Mean SRTT error rates were very low in the SOAshort condition (0.89%). In the 

SOAlong condition, however, the very fast RTs were accompanied by increased error rates 

(2.88%). Thus, the corresponding one-way ANOVA revealed a significant main effect of 

SOA condition, F(1,48) = 24.78, p < .001, 𝜂𝑝2 = .340.3 

 

 

Figure 1. Mean RTs in the SRTT (left panel) and the tone-discrimination task (right panel) as a function of 
SOA condition in Experiment 1. Error bars represent the 95% between-subjects confidence intervals of the 
SOA effect (Loftus & Masson, 1994). 

 

                                                           

3 Including the factor block in the analyses of the training phase revealed significant main effects in the SRTT, 
the tone-task and the SRTT error rates (all ps < .05). The RTs and the error rates were highest in the earlier 
blocks and decreased in the following. The two-way interaction with SOA condition was significant only in the 

SRTT, showing a slightly stronger block effect in the SOAlong condition; F(5,240) = 2.45, p = .035, 𝜂𝑝2 = .049 

(all other Fs < 2.0; all other ps > .08). 
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Performance in the test blocks 

To assess sequence learning in the SRTT single-task test, we compared the mean RTs 

(and error rates) of the collapsed random blocks 7 and 9 with the mean RTs of the regular 

block 8, separately for each SOA condition (see Figure 2). Just like in our previous study 

(Röttger et al., 2019), it turned out that the participants needed some trials to accommodate 

themselves to the single-task context, showing speed-accuracy trade-offs in the first half of 

the first random block (block 7). Therefore, only the second half of block 7 entered the 

analysis of the single-task test. The respective (two-tailed) t-tests revealed that the larger 

learning effect of 9 ms in the SOAlong condition was significant, t(24) = 2.37, p = .026, d = 

0.473 – while the smaller learning effect in the SOAshort condition (5 ms) was not, t(24) = 

1.34, p = .194, d = 0.267. 

In addition, we conducted Bayes analyses (see Dienes, 2014) to assess whether the 

smaller and non-significant learning effect in the SOAshort condition is in accordance with the 

Null hypothesis (no sequence learning). Based on previous data of the single-task condition 

of Experiment 1 in Röttger et al. (2019), we specified a maximum expected learning effect of 

26 ms if the hypothesis was true that the participants had acquired some knowledge about 

the sequence. For the SOAlong condition, the Bayes factor was BF = 4.36 and, thus, clearly 

indicated sequence learning. By contrast, in the SOAshort condition, the resulting Bayes factor 

was BF = 0.68 indicating insensitivity of the data for making a clear decision. 

 

  

Figure 2. Mean RTs (left y-axis) and error rates (right y-axis) in the regular and 
the random single-task SRTT test blocks for the SOAshort and the SOAlong 
condition in Experiment 1. Error bars represent the 95% within-subjects 
confidence intervals of the learning effects calculated separately for each 
condition (Loftus & Masson, 1994). 
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As Figure 2 shows, the error rates in the collapsed random test blocks were higher 

than in the regular block in both conditions (2.69% vs. 2.04% in the SOAshort and 2.67% vs. 

2.21% vs. SOAlong conditions, respectively). However, the two corresponding t-tests revealed 

no significant differences (both ts < 1.5). 

To summarize, the findings in Experiment 1 replicate the results of Schumacher and 

Schwarb (2009; Experiment 1). We found clear evidence for sequence learning in the SOAlong 

condition, but not so in the SOAshort condition. The slightly less pronounced difference 

between the two conditions compared to the Schumacher and Schwarb study is most likely 

due to a shorter training phase and the application of a single-task test in our experiment. 

Dual-task tests, as used by Schumacher and Schwarb, i.e., with the tones still present, have 

been shown to reveal larger learning effects (e.g., Schmidtke & Heuer, 1997). 

RTs in the SRTT (RT1) were significantly faster in the SOAlong condition than in the 

SOAshort condition, in line with the assumption of increased – and more efficient – serial 

processing with a high proportion (here 100%) of long SOAs (Miller et al., 2009). RT2 (tone-

task) were also faster in the SOAlong condition. Accordingly, the TRT, as an independent 

measure of efficiency (apart from the learning effects), was smaller in the SOAlong condition 

(1048 ms) than in the SOAshort condition (1346 ms); t(48) = 5.91, p < .001, d = 1.501. 

Experiment 2 

Experiment 2 aimed at testing whether and how efficiently participants are able to 

adjust their dual-task processing strategies due to predictably varying short and long SOAs in 

a PRP context. If participants adopt one global processing strategy, we expected overall 

preserved sequence learning in case that this strategy is serial (Israel & Cohen, 2011) – but 

overall impaired sequence learning in case that it is parallel (Lehle & Hübner, 2009). To 

additionally investigate whether participants adjust their processing mode rather trialwise 

(due to the experience of the SOAs) we linked high proportions of short and long SOAs to 

different elements of the SRTT (resembling an ISP-SOA manipulation). In case that the 

participants’ performance depends rather passively on the actually occurring SOAs, we 

expected to find a substantial learning effect for SRTT elements mostly paired with a long 

SOA – but a reduced learning effect for elements mostly paired with a short SOA. In the 

following, we will refer to these types of proportional SRTT-SOA pairings as SOA types. 
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Method 

Participants 

Sixty-two students of the University of Cologne (18 men; mean age 22.63, SD = 3.35) 

participated in Experiment 2 either for monetary compensation or for course credit. Each 

session lasted approximately 45 min. 

Apparatus and stimuli 

Apparatus, stimuli and the 2nd order conditional SRTT sequence (3-1-2-4-1-3-4-2) 

were the same as in Experiment 1. Short and long SOAs varied within blocks and occurred 

with an overall probability of 50% each. Importantly, two of the four SRTT response 

locations (i.e., location 1 and 3) now predicted the 800 ms SOA with a probability of 75% 

(SOA type 800) – and the other two (i.e., location 2 and 4) predicted the 0 ms SOA with a 

probability of 75% (SOA type 0). Thus, a typical sequence of SRTT-SOA combinations 

would have been 3 (long) – 1 (long) – 2 (short) – 4 (short) – 1 (long) – 3 (long) – 4 (short) – 

2 (short). However, there was always a probability of 25% that the actually occurring SOA 

was of the non-typical length. The SRTT- and the tone-task events were uncorrelated. 

Procedure 

The procedure was also the same as in Experiment 1. Six dual-task training blocks 

were followed by three single-task test blocks. 

Results and Discussion 

Trials were excluded due to errors or RTs < 200 ms or > 1500 ms in the SRTT. 

Furthermore, the data of 1 participant were excluded completely because the SRTT error 

rate exceeded 30% in at least one block. Three further participants were excluded because 

they showed a negative learning effect (faster RTs in the random- than in the regular blocks) 

that deviated from the respective mean per SOA type by more than 2 SD. 

As in Experiment 1, we identified a subgroup of 8 participants whose SRTT RTs 

with long SOAs (1064 ms compared to 537 ms in the remaining sample for SOA type 800 

across all dual-task training blocks) exceeded by far the length of the respective (typical) 

SOA. The data of these participants will be reported separately, in the Appendix. 

In the data of the remaining 50 participants we identified 0.7% RT outliers and 1.9% 

SRTT errors, thus overall 2.1% of the trials were excluded. Again, we will first report the 

results of the dual-task training phase and, second, the results of the single-task test phase. 
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Performance in the training blocks 

As in Experiment 1, the mean IRIs were throughout positive (455 ms for SOA type 0 

/ 721 ms for SOA type 800, respectively) – meaning that the participants had responded, on 

average, to the SRTT first. 

Figure 3 displays the mean RTs in the SRTT (i.e., RT1) and the tone-discrimination 

task (i.e., RT2), collapsed across the six dual-task training blocks as a function of actual SOA 

and SOA type. For means of comparison, the results of Experiment 1 are also depicted. As 

can be easily seen, the most crucial result in Experiment 2 was that the RTs in both tasks 

were exclusively affected by the actual SOAs (SRTT: 64 ms / tone-task: 208 ms across both 

SOA types). They did not differ due to the different SOA types (SRTT: 3 ms / tone-task: 4 

ms across both actual SOAs). Furthermore, the RT pattern in the SRTT (RT1) was reversed 

compared to Experiment 1: RT1 was faster with actually short than with actually long SOAs 

(490 ms vs. 554 ms, respectively, across both SOA types). Nevertheless, the RT pattern in 

the tone-task (RT2) was similar to that in Experiment 1: RT2 was slower with actually short 

than with actually long SOAs (807 ms vs. 599 ms, respectively, across both SOA types). 

Accordingly, two 2 (actual SOA) x 2 (SOA type) repeated measures ANOVAs4 with 

mean RT1 and mean RT2 as dependent variables, respectively, revealed only main effects of 

actual SOA in the SRTT, F(1,49) = 31.22, p < .001, 𝜂𝑝2 = .389, and in the tone-task as well, 

F(1,49) = 291.05, p < .001, 𝜂𝑝2 = .856 (all other Fs < 1.58). 

The mean SRTT error rates were overall rather low and were neither affected by the 

actual SOA nor by the SOA type (1.83% for SOA type 0; 2.08% for SOA type 800; all Fs < 

1.38 in the corresponding ANOVA).5 

 

                                                           

4 Whenever the sphericity assumption was violated, Greenhouse-Geisser corrected p-values are reported, along 
with the original degrees of freedom. 

5 Including the factor block in the analyses of the training phase revealed significant main effects in the SRTT 
(RT1; p < .001) and in the tone-task (RT2; p < .001) but not in the SRTT error rates (F < 1). The two-way 
interaction with SOA type was significant only in RT1 (p = .039) with slightly faster RT1 for SOA type 800 than 
for SOA type 0 in the sixth block – it was, however, not significant in RT2 and in the SRTT error rates (both 
Fs < 1). The two-way interaction with actual SOA was significant in RT1 (p < .001) and RT2 (p = .009) but not 
in the SRTT error rates (F < 1.4). All three-way interactions SOA type x SOA x block were not significant (all 
Fs < 2.1). 
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Figure 3. Mean RTs in the SRTT (left panel) and the tone-discrimination task (right panel) as a function of 
actual SOA and SOA type in Experiment 2. For means of comparison, they are depicted together with the 
results of Experiment 1. Error bars represent the 95% confidence intervals (Loftus & Masson, 1994) of the 
effect of the actual SOA, calculated separately for each condition (Experiment 1; between-subjects) and SOA 
type (Experiment 2; within-subjects). 

 

The overall RT pattern suggests that the participants were, in principle, sensitive for 

the varying SOAs. Nevertheless, they showed no modulation of their overall performance 

due to the ISP-SOA manipulation – neither in the SRTT nor in the tone-task. Interestingly, 

implementing a PRP context reversed the effect of the actual SOAs on participants’ manual 

SRTT responses (compared to Experiment 1). RT1 was slower with actually long SOAs than 

with actually short SOAs. The effect of the actual SOAs on the vocal tone-task RTs (slower 

RT2 with short SOAs; i.e., the PRP effect) was similar to that in Experiment 1 but the slope 

was slightly steeper. Thus, with actually short SOAs, the RT patterns in both tasks were in 

accordance with the predictions of Miller et al. (2009) – faster RT1 and slower RT2 in the 

within-subjects condition (presenting both SOAs in an overall 50:50 ratio) compared to the 

between-subjects condition (presenting the short SOA in 100% of the trials). However, with 

actually long SOAs, RT1 was too slow to meet the predictions of Miller et al. (2009). We will 

come back to this point after reporting the results of the test blocks. 

Performance in the test blocks 

To assess sequence learning in the SRTT, we compared the mean RTs (and error 

rates) of the collapsed random blocks 7 (2nd half) and 9 with the mean RTs of the regular 

block 8, separately for each SOA type (i.e., for the SRTT response locations that, during the 

dual-task training phase, had predicted the long SOA vs. the short SOA with a probability of 

75% each). Figure 4 displays the respective mean RTs and error rates. 

We conducted two separate (two-tailed) t-tests that revealed significant learning 

effects of 9 ms each for SOA type 800, t(49) = 2.47, p = .017, d = 0.349 as well as for SOA 

type 0, t(49) = 2.01, p = .050, d = 0.284. 
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Figure 4. Mean RTs (left y-axis) and error rates (right y-axis) in the regular 
and the random single-task SRTT test blocks as a function of SOA type in 
Experiment 2. Error bars represent the 95% within-subjects confidence inter-
vals of the learning effects calculated separately for each SOA type (Loftus & 
Masson, 1994). 

 

Even though the numerical size of the learning effect was 9 ms for both SOA types, 

the effect sizes (Cohen’s d) slightly differed. The additional Bayes tests confirmed this. Again, 

we used the size of the single-task learning effect (26 ms) from Experiment 1 of our previous 

study (Röttger et al., 2019) as the maximum expected learning effect. The resulting Bayes 

factor was BF = 5.30 for SOA type 800 indicating clear evidence for implicit learning. For 

the SOA type 0, the resulting Bayes factor was BF = 2.34, indicating insensitivity of the data 

for making a clear decision. However, this Bayes factor was numerically larger than the 

corresponding Bayes factor in the SOAshort condition in Experiment 1 (BF = 0.68) and nearly 

approached the criterion of 3.0 indicating learning (see Dienes, 2014). 

The effect in the error rates for SOA type 0 mirrored the RT effect: more errors in 

the random blocks (2.08%) than in the regular block (1.67%). For SOA type 800, the effect 

was reversed (1.25% vs. 2.08%, respectively). Two t-tests (two-tailed) revealed that the 

reversed effect for SOA type 800 was significant, t(49) = -2.39, p = .021, d = -0.338, whereas 

the positive effect for SOA type 0 was not, t(49) = 1.16, p = .253, d = 0.164. 

In contrast to Experiment 1 in which we replicated the findings of Schumacher and 

Schwarb (2009) – preserved implicit learning due to consistently long SOAs, probably via 

serial processing vs. impaired implicit learning due to consistently short SOAs, probably via 

parallel processing – Experiment 2 yielded overall rather surprising results. In the dual-task 

training phase, two outcomes are especially interesting. 
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The first interesting finding concerns the RT1 pattern (SRTT) as a function of the 

actual SOAs. Contrary to Experiment 1, RT1 was slower when the actual SOA was long than 

when it was short. This is not what one would expect given the assumption that long SOAs 

trigger serial processing (with faster RT1), while short SOAs trigger parallel processing (with 

slower RT1). However, since RT1 with long SOAs (554 ms) was still shorter than the SOA 

itself (800 ms), serial processing logically must have happened. Besides, the finding of 

increased RT1 with long SOAs in a PRP context is not unique – but currently not well 

understood. Miller et al. (2009) as well as Schumacher and Schwarb (2009; Experiment 3) 

also found slower RT1 with longer SOAs in their mixed SOA blocks. We will come back to 

this point in the “General Discussion”. 

The second interesting finding is that participants’ performance was not modulated 

by the ISP-SOA manipulation – even though the main effect of the actual SOAs indicated 

that they were, in principle, sensitive to the varying time intervals. This suggests that they did 

not utilize the predictability of the SOAs. Potentially, because the PRP context itself already 

provided the relevant information determining the most efficient strategy – namely, a global 

serial processing strategy (cf. Israel & Cohen, 2011). In this case, however, the reversed effect 

of the actual SOA on RT1 (compared to Experiment 1) all the more needs an explanation 

since it, at first sight, hints at less efficient processing with long- compared to short SOAs. 

Consulting, again, the TRT as an independent measure of efficiency, reveals the opposite. 

The TRT was significantly smaller with actually long SOAs (1154 ms) than with actually 

short SOAs (1296 ms); t(49) = 8.53, p < .001, d = 1.206 – indicating more, instead of less, 

efficient processing with long SOAs. 

The single-task test phase revealed substantial learning effects for both SOA types 

(although the evidence for learning was less clear for SOA type 0). By itself, this outcome 

also fits well to the assumption that the participants had globally adopted a serial processing 

strategy. However, one alternative interpretation is conceivable. Since the SOA types 

predicted a short or a long SOA with a probability of only 75% each (and occurred, thus, 

together with the respective other SOA in 25% of the trials), it is possible that the 25% long 

SOAs had been sufficient to preserve implicit learning for items of the SOA type 0. This 

would indicate a rather passive dependency of the participants’ processing modes on the 

actually occurring SOAs – instead of the rather active utilization of the information provided 

by the PRP context. To further investigate this possibility, we conducted Experiment 3. 
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Experiment 3 

Experiment 3 aimed at testing whether the significant learning effect for SRTT items 

of SOA type 0 in Experiment 2 should indeed be attributed to a serial processing strategy 

globally adopted by the participants in the PRP-like dual-task training phase – or whether it 

automatically resulted from the 25% of cases in which actually the long SOA had occurred. 

Therefore we reused the sequence material of Experiment 4 of our previous study (Röttger 

et al., 2019). Here, 4 of the 8 SRTT-elements had been fixedly paired with one particular 

tone whereas the other 4 elements had been randomly paired with the tones. The results 

indicated that exclusively the fixedly paired elements had been learned, probably because 

wrong, disruptive across-task predictions (inducing task integration conflicts) had occurred 

infrequently for these items. In the present experiment, we linked the fixedly paired elements 

additionally to 100% with the 800 ms SOA, and the randomly paired elements to 100% with 

the 0 ms SOA. We hypothesized that if the PRP context with varying SOAs triggers a global 

serial processing strategy, the randomly paired SRTT elements should now also be learned. 

Method 

Participants 

Twenty-nine students of the University of Cologne (9 men; mean age 23.95, SD = 

3.38) participated in Experiment 3 either for monetary compensation or for course credit. 

Each session lasted approximately 45 min. 

Apparatus and stimuli 

Apparatus and stimuli were the same as in Experiments 1 and 2. As in Experiment 4 

of our previous study (Röttger et al., 2019), four positions of the 8-element SRTT sequence 

(3-1-2-4-1-3-4-2) were now fixedly paired with a particular tone and the other four positions 

were randomly paired with the tones. Importantly, the fixedly paired sequence positions now 

also predicted to 100% the 800 ms SOA (SOA type 800) and the randomly paired sequence 

positions predicted to 100% the 0 ms SOA (SOA type 0). Overall, both SOAs occurred with 

a probability of 50% each. In contrast to Experiment 2, now the SRTT response position 1 

was always of SOA type 800, position 2 was always of SOA type 0 – positions 3 and 4, 

however, were each 1 x of SOA type 800 and 1 x of SOA type 0 in a 50:50 ratio. Thus, the 

sequence of SRTT-SOA-tone combinations was 3R(0)–1F(800)–2R(0)–4F(800)–1F(800)–

3F(800)–4R(0)–2R(0); with F = fix tone; R = random tone. 
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Procedure 

The procedure was the same as in Experiment 1 and 2. Six dual-task training blocks 

were followed by three single-task test blocks. 

Results and Discussion 

Trials were excluded due to errors or RTs < 200 ms or > 1500 ms in the SRTT. 

Furthermore, the data of 2 participants were excluded completely because they showed a 

negative learning effect (faster RTs in the random- than in the regular blocks) that deviated 

from the respective mean per SOA type by more than 2 SD. 

As in Experiments 1 and 2, we identified a subgroup of 2 participants whose SRTT 

RTs with long SOAs (1184 ms compared to 530 ms in the remaining sample for SOA type 

800 across all dual-task training blocks) exceeded by far the length of the respective SOA. 

The data of these participants will be reported separately, in the Appendix. 

In the data of the remaining 25 participants we identified 1.1% RT outliers and 2.3% 

SRTT errors, thus overall 2.5% of the trials were excluded. Again, we will first report the 

results of the dual-task training phase and, second, the results of the single-task test phase. 

Performance in the training blocks 

The mean IRIs were throughout positive (312 ms for SOA type 0 / 861 ms for SOA 

type 800, respectively) – meaning that the participants had responded, on average, to the 

SRTT first. 

Figure 5 displays the mean RTs in the SRTT (i.e., RT1) and the tone-discrimination 

task (i.e., RT2), collapsed across the six dual-task training blocks as a function of the factor 

SOA type (note, that “SOA type” was now equivalent to “actual SOA”). Again, for means of 

comparison, the results of Experiment 1 are also depicted. As in Experiment 2, the RT1 

pattern due to the SOA manipulation was reversed compared to Experiment 1. RT1 was 

faster for SOA type 0 than for SOA type 800 (487 ms vs. 530 ms, respectively). The RT2 

pattern revealed a PRP effect. RT2 was slower for SOA type 0 than for SOA type 800 (790 

ms vs. 586 ms, respectively). The slope of this effect was again slightly steeper compared to 

the between-subjects SOA effect in Experiment 1. 

Accordingly, two repeated measures ANOVAs with mean RT1 and mean RT2 as 

dependent variables, respectively, revealed a marginally significant effect of SOA type in the 

SRTT, F(1,24) = 3.79, p = .063, 𝜂𝑝2 = .136, and a highly significant effect of SOA type in the 

tone-task, F(1,24) = 151.78, p < .001, 𝜂𝑝2 = .863. 
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The mean SRTT error rates were overall rather low and not affected by the SOAs 

(1.92% for SOA type 0; 2.08% for SOA type 800; F < 1 in the corresponding ANOVA).6 

 

 

Figure 5. Mean RTs in the SRTT (left panel) and the tone-discrimination task (right panel) as a function of 
SOA type in Experiment 3, for means of comparison depicted together with the results of Experiment 1. Error 
bars represent the 95% confidence intervals (Loftus & Masson, 1994) of the SOA type effect (Experiment 3; 
within-subjects) / the SOA condition effect (Experiment 1; between-subjects). 

 

Thus, the overall RT pattern was a replication of Experiment 2 and shows again that 

the participants were (on the one hand) sensitive for the varying SOAs but produced (on the 

other hand) a RT1 pattern questioning (at first sight) the assumption of serial processing due 

to a high proportion of long SOAs (here: 100% for SRTT elements of SOA type 800). 

Performance in the test blocks 

To assess sequence learning in the SRTT, we compared the mean RTs (and error 

rates) of the collapsed random blocks 7 (2nd half) and 9 with the mean RTs of the regular 

block 8, separately for each SOA type. Figure 6 displays the respective mean RTs and error 

rates. Two t-tests (two-tailed) revealed that for sequence positions of the SOA type 800, the 

mean RTs were significantly faster (39 ms) in the regular block 8 than in the surrounding 

random blocks 7 and 9, t(24) = 10.68, p < .001, d = 2.137. However, for sequence positions 

of the SOA type 0, the mean RTs were even slightly slower (-4 ms) in the regular- than in the 

random blocks. However, this negative effect was not significant (|t| < 1; d = -0.115). Thus, 

we found pronounced differences between the learning effects for the two SOA types. 

 

                                                           

6 Including the factor block in the analyses of the training phase revealed significant main effects in the SRTT 
(RT1; p = .008) and in the tone-task (RT2; p < .001) but not in the SRTT error rates (F < 1). The two-way 
interaction with SOA type was marginally significant only in RT2 (p = .064) – but not in RT1 and in the SRTT 
error rates (both Fs < 1.7). 
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Figure 6. Mean RTs (left y-axis) and error rates (right y-axis) in the regular 
and the random single-task SRTT test blocks as a function of SOA type in 
Experiment 3. Error bars represent the 95% within-subjects confidence inter-
vals of the learning effects calculated separately for each SOA type (Loftus & 
Masson, 1994). 

 

Additional Bayes tests (see Dienes, 2014) confirmed this. Using again the size of the 

single-task learning effect (26 ms) from Experiment 1 of our previous study (Röttger et al., 

2019) as the maximum expected learning effect, the resulting Bayes factor for SOA type 800 

exceeded by far the criterion of BF =3.0 indicating clear evidence for implicit learning. For 

SOA type 0, on the contrary, the resulting Bayes factor was BF = 0.16, indicating clear 

evidence for the Null hypothesis. 

For both SOA types, the error rates were slightly higher in the regular block than in 

the collapsed random blocks (differences of 2.36% and 0.86% for SOA type 0 and SOA type 

800, respectively). Two t-tests (two-tailed) revealed that the negative effect for SOA type 0 

was significant, t(24) = -2.46, p = .021, d = -0.493, whereas the negative effect for SOA type 

800 was not (|t| < 1, d = -0.128). 

To summarize, although the RT1 pattern in the training phase of Experiment 3 was a 

replication of Experiment 2 (slow RT1 with long SOAs suggesting less efficient processing), 

the TRT was, again, smaller for SOA type 800 (1115 ms) than for SOA type 0 (1277 ms), 

t(24) = 5.00, p < .001, d = 0.999 indicating, on the contrary, more efficient processing with 

long SOAs. In line with that, the single-task test phase now revealed a highly significant 

learning effect for SOA type 800 – but strongly reduced learning for SOA type 0. This was 

the case for every single item of each SOA type. Figure 7 shows the sizes of the learning 

effects (Cohen’s d) for the 8 SRTT-SOA-tone combinations in their sequential order [3R(0)–

1F(800)–2R(0)–4F(800)–1F(800)–3F(800)–4R(0)–2R(0); with F = fix tone; R = random 
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tone]. The effect sizes for SOA type 800 ranged from d = 0.709 up to d = 1.389 and were, 

thus, very large. In contrast, the effect sizes for SOA type 0 were small and ranged from d = 

-0.254 up to d = 0.303. Interestingly, for response positions 3 and 4 (each 1 x fixedly paired 

and of SOA type 800 and 1 x randomly paired and of SOA type 0 in a 50:50 ratio), we found 

differential learning effects per SOA type as well – suggesting that the actual SOA determined 

whether learning was possible for a certain sequence element or not. 

 

 

Figure 7. Cohen’s d for the learning effect for the single SOA types in Experiment 3 in the 
order of their occurrence in the sequence. Error bars are the 95% confidence intervals of the 
effect sizes (see, e.g., Bühner & Ziegler, 2009). 

 

Since we used a single-task test in which no SOAs and no tones were present any 

more, faster RTs for single SRTT positions of the (former) SOA type 800 occurring in the 

regular- compared to a random order suggest that the ordinal positions of the SOA types had 

been learned (Schuck, Gaschler, & Frensch, 2012; Schuck, Gaschler, Kreisler, & Frensch, 

2012). This finding replicates our former results with the same stimulus- and sequence 

material but with SOAs of consistently 0 ms (Röttger et al., 2019, Experiment 4). Here, also 

exclusively the fixedly paired sequence elements (now of SOA type 800) had been learned 

(because they had enabled a successful within-trial task integration). In other words, 

implementing a PRP context in the present Experiment 3 did not change the pattern of 

results compared to the former Experiment 4 (Röttger et al., 2019). That is, it did not allow 

for learning now also the (randomly paired) SRTT elements of SOA type 0. This finding 

suggests that the participants had not adapted a global serial processing strategy, contrary to 

the predictions of Israel and Cohen (2011) – ruling out this possibility also for Experiment 2. 

This finding is also at odds with the outcome of Fischer and Dreisbach (2015) who 

found adjustments towards more efficient (serial) dual-task processing for items predicting a 
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short SOA (in the form of smaller BCEs). As mentioned above, the anticipative utilization of 

the predictable SOAs should have resulted in substantial learning (also) for elements of SOA 

type 0 – but the opposite was the case. Thus, the differential learning effects in the present 

Experiment 3 do certainly not reflect a high level of “flexibility” in the sense of (reactive) 

control or task shielding (see, e.g., Bugg & Crump, 2012; Fischer & Dreisbach, 2015; Fischer, 

Gottschalk, & Dreisbach, 2014; Gonthier, Braver, & Bugg, 2016). Rather, they indicate the 

passive dependency of the participants’ behavior on the actually occurring SOAs. This point, 

as well as the question which kind of dual-task processing might have caused the observed 

effects will be discussed in the “General Discussion”. 

General Discussion 

In the present study, we paired a visual-manual sequence learning task (SRTT) with 

an auditory-vocal tone-discrimination task and investigated whether and to what extent 

participants can exploit predictably varying SOAs in a PRP context in order to adjust their 

dual-task processing mode towards high efficiency. As a measure of efficient processing we 

looked at the sizes of the learning effects for SRTT positions predicting short vs. long SOAs. 

We derived the conception of implicit learning as a marker for dual-task efficiency 

from the findings of a recent study of Schumacher and Schwarb (2009; Experiment 1). They 

reported substantial learning effects in a condition with consistently long SOAs (DT-L) – but 

reduced learning effects in a condition with consistently short SOAs (DT-S). The former was 

attributed to serial- the latter to parallel processing. This fits nicely to the assumption of 

Miller et al. (2009) that serial processing is most likely (and most efficient) in a context with a 

high proportion of long SOAs – while parallel processing is most likely (and potentially most 

efficient) in a context with a high proportion of short SOAs. We suggest that any dual-task 

processing mode allowing for implicit learning can be seen as efficient, because this kind of 

learning enables humans to effortlessly adapt to regularities in the environment (e.g., Dienes 

& Berry, 1997). Even though Israel and Cohen (2011) reported one rare case of “virtually 

perfect time sharing” and, thus, efficient parallel processing (see also, e.g., Schumacher et al., 

2001), in the majority of cases, parallel processing turns out to be a rather inefficient strategy. 

It enlarges the TRT (Miller et al., 2009), it causes costs both in RT1 and RT2 due to crosstalk 

(e.g., Fischer & Dreisbach, 2015; Lehle & Hübner, 2009) – and it impairs implicit learning 

(Schumacher & Schwarb, 2009). 

Interestingly, manipulating the length of the SOAs seems to have an immense impact 

on the participants’ processing modes. The findings of Israel and Cohen (2011) even suggest 
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that the mere existence of some long SOAs in a PRP context triggers an “exogenous” global 

serial processing strategy. To investigate whether varying SOAs (without explicit instructions 

to prioritize the SRTT) indeed trigger serial processing – or whether unspecific instructions 

(despite varying SOAs) rather result in “moderately parallel processing” as Lehle and Hübner 

(2009) suggested – we conducted three dual-task implicit sequence learning experiments and 

assessed the size of the learning effects due to short vs. long SOAs. 

In Experiment 1, we varied the SOAs between-subjects and replicated the finding of 

Schumacher and Schwarb (2009), preserved learning in the SOAlong condition but impaired 

learning in the SOAshort condition. Additionally, the RT1 pattern (SRTT) in the training phase 

reflected more parallel processing in the SOAshort condition than in the SOAlong condition 

(slower RT1 in the former than in the latter). RT2 resembled a PRP effect. 

In Experiment 2, we varied the SOAs within-subjects. Additionally, we linked high 

proportions (75%) of short vs. long SOAs, respectively, to different elements of the SRTT. 

As a result, we found significant learning effects for both SOA types, suggesting that the 

participants had globally adopted a serial processing strategy. Also, RT1 in the training phase 

was not modulated by the ISP-SOA manipulation. However, the RT1 pattern due to the 

actual SOAs was, surprisingly, reversed compared to Experiment 1. RT2 (also not modulated 

by the ISP-SOA manipulation) again revealed a PRP effect. 

To test whether the varying SOAs had indeed triggered a global serial processing 

strategy or whether 25% actually long SOAs had been enough to also learn SRTT elements 

of SOA type 0, we conducted Experiment 3. Here, certain SRTT elements were consistently 

(to 100%) paired with either a long or a short SOA, respectively. Contrary to Experiment 2, 

we found substantial learning effects exclusively for elements of the SOA type 800 – but 

strongly reduced (even absent) learning effects for elements of the SOA type 0. Nevertheless, 

the RT1 pattern due to the actual SOAs (now equivalent to the factor SOA type) replicated 

Experiment 2 and was reversed compared to Experiment 1. RT2 again revealed a PRP effect. 

Thus, some aspects of our results are quite surprising and will be discussed in the following. 

The most straightforward interpretation of the learning effects in Experiments 2 and 

3 is that implicit learning took place automatically every time actually a long SOA occurred. 

In Experiment 2, for SRTT elements of SOA type 0, even the 25% of cases in which actually 

the long SOA occurred were sufficient in this respect. Accordingly, in Experiment 3 (with 

100% SRTT-SOA contingency) learning for SOA type 0 was absent (confirmed by the Bayes 

factor BF = 0.16). This outcome suggests that merely implementing a PRP context does not 

trigger globally serial processing as Israel and Cohen (2011) proposed. It also implies that our 
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ISP-SOA manipulation (cf. Fischer & Dreisbach, 2015) did not result in flexible anticipative 

switches to more serial processing for elements of SOA type 0 – suggesting that, for this, at 

least a minor degree of conflict awareness or an (aversive) feeling of disfluency in conflict 

trials is required (for a short review, see Dreisbach & Fischer, 2012). Such conscious feelings 

might have been absent in our experiments since any “bumpiness” within the stimulus- and 

sequence material disturbed implicit processes. 

We also found no evidence for a global parallel processing strategy (Lehle & Hübner, 

2009) since implicit learning was definitely not globally impaired. Nevertheless, the kind of 

dual-task processing actually underlying the observed behavior did not allow for learning the 

whole sequence (i.e., chaining; see, e.g., Cleeremans, 2011). Instead, at least in Experiment 3, 

the participants seemingly had learned the ordinal positions (Schuck, Gaschler, & Frensch, 

2012; Schuck, Gaschler, Kreisler, et al., 2012) of the SOA types (see also Röttger et al., 2019; 

Röttger, Haider, Zhao, & Gaschler, in prep.). Strong so-called position-item associations 

might have developed whenever, during the training, the actual presence of a long SOA at a 

certain position had allowed the undisturbed processing of one stimulus- and one response 

event, both belonging to the SRTT. With a short SOA, on the contrary, the simultaneous 

processing of two stimulus- and two response events belonging to separate tasks might have 

caused confusion and prevented strong associations. Afterwards, in the single-task test, the 

acquired implicit knowledge about the ordinal sequence positions of the different SOA types 

became manifest by facilitating the responses to SRTT elements of SOA type 800 occurring 

at the regular – compared to a random – ordinal sequence position. 

This outcome suggests that the participants had drifted rather passively, in synchrony 

with the SOAs, between parallel and serial processing during the training – or, that they had 

preferred, in principle, a moderately parallel processing mode (cf. Lehle & Hübner, 2009), 

not learning anything – until actually a long SOA occurred (longer than their mean RT1) 

forcing them to process the tasks serially (thereby strengthening the relevant associations). 

Obviously, these switches to serial processing took place automatically, due to the long SOA, 

and required no increased levels of effortful control (as it would be necessary with strongly 

temporally overlapping tasks and the requirement to shield the performance against between-

task interference). According to Lehle and Hübner (2009), humans prefer to avoid effortful 

control (see also Fischer & Plessow, 2015; Lehle, Steinhauser, & Hübner, 2008; Plessow, 

Schade, Kirschbaum, & Fischer, 2017) – and the observed behavior in our PRP experiments 

is in accord with that. 
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The fact that the participants had, in result, learned only parts of the SRTT sequence 

(the ordinal positions of SOA type 800) suggests that globally efficient (i.e., in most cases, 

serial) dual-task processing in the context of varying SOAs is not possible without effortful 

control in the sense of voluntarily prioritizing the SRTT (Schumacher & Schwarb, 2009) or 

keeping the task representations separate in order to prevent task integration confusion (see, 

e.g., Halvorson, Wagschal, & Hazeltine, 2013). The PRP context per se seems indeed to be 

insufficient to exogenously elicit a global serial processing strategy and to allow for chaining, 

contrary to the suggestion of Israel and Cohen (2011). Also, the predictability of the short 

SOAs, bearing the risk of task integration confusion (e.g., Röttger et al., 2019, in prep.; 

Schmidtke & Heuer, 1997), could, in the present dual-task context, obviously not be 

exploited for flexible switches to serial processing with elements of the SOA type 0 as it was 

demonstrated by Fischer and Dreisbach (2015). A higher degree of between-task conflict than 

the mere confusion due to the randomness of the secondary task – or simply the awareness 

of it (Dreisbach & Fischer, 2012) – seems to be a necessary precondition. 

To sum up, the switches to serial processing with long SOAs that we observed in the 

present PRP experiments, are best described as passive instead of active and flexible. They 

do not indicate the implementation of an overall efficient strategy. Otherwise, we should 

have found substantial learning effects across both SOA types. 

Another finding that probably also indicates the suboptimal nature of the observed 

behavior is that RT1 (SRTT) in the two PRP experiments was slow with actually long SOAs. 

It was slower than the corresponding RT1 in Experiment 1 (SOAlong condition) and it was 

slower than with actually short SOAs. This outcome is, at first sight, not in accord with the 

assumption of serial processing (cf. Miller et al., 2009). However, as already mentioned, a 

closer look reveals that RT1 was still shorter than the long SOA itself. Additionally, the TRT 

was significantly smaller with actually long than with actually short SOAs in both PRP 

experiments. Thus, the slow RT1 with long SOAs nevertheless must have been the result of 

a processing mode that was (a) serial and (b) more efficient than with short SOAs (due to the 

compensatory fast RT2). However, neither the RSB model (e.g., Pashler, 1994) nor models 

assuming central capacity sharing (e.g., Tombu & Jolicoeur, 2003) predict that RT1 should be 

affected by the SOA manipulation. Nevertheless, SOA effects on RT1 have been observed 

frequently (see also Miller et al., 2009; Schumacher & Schwarb, 2009) – but an explanation is 

still lacking. Response grouping (e.g., Pashler & Johnston, 1989; Ulrich & Miller, 2008) is 

sometimes responsible for an increase in RT1 across the SOAs meaning that participants 

tend to await and to process both stimuli first, in order to execute R1 and R2 then nearly 
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simultaneously – slowing down RT1 when the SOA is long. Inter-response intervals (IRIs) 

smaller than 100 ms are often regarded as an indicator of grouping (e.g., Miller, 2006). In the 

present study, however, the respective IRIs were much larger (721 vs. 861 ms in Experiment 

2 vs. 3, respectively) excluding a grouping strategy. Because, on average, R1occurred before 

S2-onset, it is also impossible to say whether the participants’ slow RT1 were the result of 

withholding the already selected SRTT response shortly for some (unknown) reasons – or 

whether response selection itself was deferred. 

Comparing RT1 with long SOAs between the experiments, the aspect that RT1 was 

not only slow in the PRP experiments – but also exceptionally fast in the SOAlong condition 

(Experiment 1) – should also be considered.7 Here, the participants neither experienced any 

timing variability, nor the necessity to process any T2 component in parallel – favoring fast 

R1 on the one hand and, probably, the development of separate task representations on the 

other hand. The latter, in turn (and in addition to the long SOA), was most likely beneficial 

for chaining because it might have fostered within-SRTT- instead of across-task predictions 

and, thus, a reduction of the prediction error (cf. Röttger et al., 2019, in prep.). The resulting 

sequence knowledge might have accelerated RT1 even more. We suspect that the variable 

timing and, thereby, higher scheduling demands somehow must have contributed to the 

slowness of RT1 in Experiments 2 and 3 (and maybe as well in other PRP experiments). 

Equal proportions of long and short SOAs within a PRP context might, for instance, shift 

the point in time when participants are optimally prepared to start responding in general. 

Additionally, participants are possibly better prepared for the more difficult trials, with short 

SOAs, in which both stimuli must be processed simultaneously and then “wait” a moment 

for S2 if it does not occur immediately. 

Interestingly, some individuals in our PRP experiments (whose data are reported in 

the Appendix) literally waited longer than the SOA (i.e., > 800 ms) and selected and/or 

executed R1 only after S2 actually occurred. Taking a closer look at the data of the rest of 

our participants (the regular sample), it turned out that their individual SOA effects on RT1 

(computed as RT1longSOA – RT1shortSOA) were all quite different. Some of the effects were 

negative (faster RT1 with long SOAs), some were highly positive and some were negligible – 

resulting in the reported mean positive SOA effect (slower RT1 with long SOAs) in both 

PRP experiments, suggesting that individual dual-tasking preferences might exist. Supporting 

                                                           

7 In the SOAlong condition (Experiment 1), RT1 was very fast. In the last block of the dual-task training phase 
(block 6), RT1 was even 22 ms faster than the RTs in the regular single-task test block (block 8), t(24) = -3.15, p 
= .004, d = 0.630. In all other experiments and conditions, the opposite was the case. 



110 
 

this assumption, Brüning and Manzey (2018), identified “serial processors” and “overlapping 

processors” in task switching experiments always providing a preview of the upcoming 

stimulus in trial n+1. Only the overlapping processors made use of the preview and some of 

them could even turn switch costs into switch benefits. Thus, also individual dual-tasking 

preferences should be accounted for in future endeavors to find the causes of SOA effects 

on RT1 that are often found in PRP experiments. By now, admittedly, all our considerations 

are speculative. 

However, last but not least, it must be mentioned that potential individual dual-

tasking preferences did not change the overall pattern of the learning effects. To explore this 

possibility, we defined (post-hoc) two groups of participants each in Experiments 2 and 3 by 

ranking the individual SOA effects on RT1 and splitting them at the median. This procedure 

revealed one group with a positive mean SOA effect and one with a negative SOA effect (66 

ms and 107 ms vs. -6 ms and -27 ms in Experiments 2 and 3, respectively). In Experiment 2, 

the learning effects (per SOA type) were not different between the groups. Accordingly, in 

Experiment 3, implicit learning was exclusively present (and highly significant) with SOA 

type 800 – but generally absent with SOA type 0 in both groups.8 This suggests that most of 

the potential individual dual-tasking preferences did not favor chaining. 

Taken together, the present three experiments provide additional evidence for the 

assumption that implicit sequence learning can be preserved in dual-task contexts via serial 

processing as first suggested by Schumacher and Schwarb (2009). It reduces task integration 

confusion (or other across-task conflicts), allows the implicit adaptation to the SRTT 

structure and is, thus, more efficient than parallel processing. In the SOAlong condition 

(Experiment 1), other efficiency measures (i.e., fast RT1 and a small TRT) were in accord 

with this classification. Thus, for the time being, the conception of implicit learning as an 

indicator of efficient dual-task processing can, in principle, be maintained. However, as 

discussed above, some of the present findings suggest a few limitations. 

First, Experiments 2 and 3 revealed that serial processing due to long SOAs seems to 

occur automatically and rather not due to an actively chosen strategy. Substantial implicit 

learning effects resulted purely mechanistically. This became fully disclosed in Experiment 3, 

where significant learning effects exclusively occurred for SRTT elements consistently paired 

                                                           

8 In Experiment 2, the learning effects for SRTT elements of the SOA type 0 as well as the learning effects for 
the SOA type 800 did not differ between the two groups of participants (both |t| < 1). In Experiment 3, the 
learning effects for SRTT elements of the SOA type 800 were highly significant for both groups of participants 
but did not differ from each other. Additionally, none of the groups showed learning for elements of the SOA 
type 0 (again, both |t| < 1). 
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with the long SOA – implying that also a potential “exogenous” serial processing strategy 

(Israel & Cohen, 2011) had not globally been applied. The resulting behavior is probably best 

described as passively commuting between different processing modes, investing as little 

effort as possible. This low-effort kind of serial processing turned out to be slow, but the 

TRT with long SOAs was still smaller than the TRT with short SOAs and, thus, most likely, 

parallel processing (cf. Miller et al., 2009). Potentially, this indicates some kind of tradeoff 

between different aspects (e.g., speed vs. learning) of efficient processing. 

The overall outcome of our experiments suggests that choosing and maintaining a 

serial processing strategy in a PRP context requires the effortful implementation of cognitive 

control – either globally or flexibly, due to predictable risks of conflict as demonstrated by 

Fischer and Dreisbach (2015). However, our results strongly suggest that without obvious 

conflict such flexibility is not possible. Future research should investigate whether explicit 

instructions to process the tasks serially, as in the study of Lehle and Hübner (2009), can 

change the pattern of results within a PRP context – or whether it turns out that individuals 

have severe difficulties to stop drifting with the varying SOAs (even if they vary predictably). 
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Appendix: 

Performance of the subgroups of participants showing particularly slow RT1 with 

long SOAs 

In all three Experiments, we identified subgroups of participants (8 in Experiment 1, 

8 in Experiment 2, and 2 in Experiment 3) whose RT1 (SRTT) with long SOAs considerably 

exceeded the length of the respective SOA. Obviously, these 18 participants waited until 

tone onset – and responded only after they had processed both stimuli. This behavior was 

very different from that of the regular samples. Therefore, we did not include the data of 

these slow participants in our main analyses. 

Figure 8 displays the mean dual-task RTs of these three subgroups of participants in 

the SRTT and the tone-discrimination task as a function of the actual SOAs (Experiment 1; 

between-subjects SOA manipulation) or as a function of the item-specific SOA types 

(Experiment 2 and 3; within subjects SOA manipulation). For means of comparison, Figure 

8 also depicts the mean RTs of the remaining participants (regular groups) in the respective 

conditions. As can be seen, the participants in the subgroups responded very slowly in the 

SRTT. This was particularly true with long SOAs / with SOA type 800. Since the number of 

participants within these subgroups was very small (maximal 8 participants per experiment), 

we refrained from conducting any statistical analyses. 

 

 

Figure 8. Mean dual-task RTs of the slow subgroups of participants in comparison to those of the regular 
samples in the SRTT (RT1; upper panel) and the tone-discrimination task (RT2; lower panel) as a function of 
the actual SOAs (Experiment 1) or the SOA types (Experiments 2 and 3). Error bars represent standard errors of 
the means. 
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Table 1 displays the learning effects for both groups of participants – the regular 

groups and the slow subgroups – in Experiments 1-3, respectively. In Experiment 1, the 

slow subgroup of participants in the SOAlong condition did not show sequence learning. The 

respective learning effect was even negative (-5 ms), meaning that these participants 

responded faster in the random blocks 7 and 9 than in the regular block 8. In Experiment 2, 

the slow subgroup of participants did not learn the SRTT response locations of the SOA 

type 0 – but produced a learning effect for SOA type 800 that was descriptively as large as 

that of the regular sample (9 ms). The two slow participants in Experiment 3 did not show 

sequence learning, neither with SOA type 0 nor with SOA type 800. 

Table 1. Learning effects (means and standard deviations) for both groups of participants – the regular group 
and the slow subgroup – in Experiments 1-3, respectively, computed as the difference between the collapsed 
mean RTs of the random single-task test blocks 7 (2nd half) and 9 and the regular single-task block 8. 

Learning effect 

Experiment 1 

 

Experiment 2 
 

Experiment 3 

SOA short 
 

SOA long 
 

SOA type 0 
 

SOA type 800  SOA type 0 
 

SOA type 800 

Mean SD 

 

Mean SD 

 

Mean SD 

 

Mean SD 
 

Mean SD 

 

Mean SD 

Regular sample 5 20 
 

9 18 
 

9 31 
 

9 26  -4 31 
 

39 18 

Subgroup       -5 26   0 28   9 25   -50 10   14 7 
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5 General Discussion 

The aim of the present series of studies was to shed more light on the mechanisms 

underlying the impairment vs. preservation of implicit sequence learning in a dual-task context 

and to compare and evaluate (mainly) two accounts: the task integration account originating 

by Schmidtke and Heuer (1997; see also Rah et al., 2000) and the parallel response selection 

account proposed by Schumacher and Schwarb (2009). All experiments reported here hint at 

a conception of task integration as the crucial mechanism suggesting that sequence learning 

is disturbed to the extent that an omnipresent prediction mechanism operates on unpredictable 

across-task events occurring in close temporal contiguity, that is, within a trial. Accordingly, 

sequence learning should be preserved when the across-task predictability is high – or, if not, 

when the two tasks are represented separately, facilitating within-task predictions and, thus, 

learning. Nevertheless, several aspects of the proposed across-task prediction mechanism are, 

by now, speculative and are discussed below – as well as currently further investigated. 

The role of inhibition in dual-task sequence learning 

Already in the first study (Chapter 2) it was suggested that dual-task sequence learning 

might be disturbed to the extent that unsuccessful across-task predictions result in response 

conflicts – which, then, are solved by inhibiting (features of) the SRTT. This assumption seems 

clear-cut since the SRTT response on average preceded the tone response and, thus, served 

as the basis for these unsuccessful predictions. As a consequence, the simultaneous activation 

of successive SRTT elements (and thereby the strengthening of associations between them) 

might have been prevented. The results of Experiment 4 (see Chapter 2) are indicative of this 

assumption. Here, exclusively SRTT elements that had been fixedly paired with the tones in 

the training phase had been learned – while for randomly paired SRTT elements, the 

resulting learning effect was even negative. This finding was replicated in Experiment 3 in 

Chapter 3. Additionally, the finding that the response times in both tasks were slower during 

training for randomly- than for fixedly paired SRTT elements is in favor of the assumption 

that incorrect predictions had caused response conflicts (solved by inhibition). However and 

importantly, direct evidence for this “inhibition” assumption is lacking. Interestingly, also 

Koch et al. (2018) considered that, in general, processes underlying the resolution of conflict 

– namely, inhibition – have received relatively little attention in the dual-tasking literature, 

compared to the task switching research (but see Hirsch, Nolden, & Koch, 2017). In task 

switching, inhibition is typically seen as the most relevant conflict-resolving mechanism that 
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supports the flexible switching between competing task sets. So-called n-2 repetition costs 

(larger switch costs when a recently inhibited task set must be reactivated in an “ABA” task 

sequence) are the marker for this “backward” inhibition occurring at the task set level (for a 

review, see Koch, Gade, Schuch, & Philipp, 2010). 

In the present dual-task experiments, it would make little sense to look for aftereffects 

of inhibition also at the task set level because (in most conditions) none of the tasks had ever 

become irrelevant in any trial and to be abandoned. Instead, potential aftereffects of inhibition 

should become evident at the level of the SRTT elements in trials directly following conflict. 

Crucially, this consideration entails that the conflict-triggering (randomly paired) SRTT target 

is directly repeated. That is, if one assumes that response conflict due to a wrongly predicted 

tone-response in trial n is resolved by inhibiting the involved SRTT element, then the response 

to this element should be slowed if it is directly repeated in trial n+1. Periodically pressing 

the same key twice in succession is, however, a quite salient response – possibly resulting in 

explicit sequence knowledge because it leads the participants to engage in hypothesis testing 

(e.g., Frensch et al., 2003). This, in turn, would change their overall processing strategies. 

Hence, the usefulness of such a manipulation (implementing a SRTT sequence with direct 

target repetitions) strongly depends on the specific research question (e.g., whether implicit 

or explicit processes are in the research focus). 

Furthermore, a few pilot experiments revealed that SRTT repetitions caused large 

costs in both tasks if the corresponding tones were not repeated as well – resembling so-

called partial repetition costs investigated in the feature binding literature (e.g., Colzato, Raffone, 

& Hommel, 2006; Moeller et al., 2016). Such costs emerge if one feature of a stimulus (or a 

stimulus compound) is repeated while a second feature is not. As they had been bound in 

trial n, repeating only one feature in trial n+1 might (erroneously) re-activate also the other – 

causing response conflict. Observing partial repetition costs in our paradigm suggests that 

“task integration” might also mean that the participants represent the visual- and auditory 

stimuli as a compound. In the case that one part of this compound is random, a mechanism 

that reactivates previous- (or predicts upcoming-) compounds might also falter – hampering 

sequence learning. However, it turned out that, in all experiments presented here, costs due 

to the frequently occurring partial tone repetitions (i.e., without additional repetition of the 

respective SRTT item) occurred very unsystematically – suggesting that the two stimuli were 

rather not represented as compounds. Since the feature- (or modality-) overlap between the 

visual-manual SRTT and the auditory-vocal tone-task (cf. Hazeltine et al., 2006) was also 

negligible in the present studies, a “compound assumption” seems indeed rather inapplicable. 
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Thus, not across-task binding – but across-task prediction – is the most plausible mechanism 

causing the impairment of sequence learning in dual-tasks. Yet, since partial repetition costs 

sometimes occurred, it cannot be excluded that across-task binding also plays a role in the 

present dual-task context. It might, for instance, occur initially – but diminish as across-task 

predictions progressively improve with correlated tasks (Schmidtke & Heuer, 1997) or as the 

task representations become separated. Related questions are currently further investigated. 

The role of statistical learning 

The second study (Chapter 3) provided more evidence that the assumed prediction 

mechanism seems to focus, per default, on the statistical relationships between the most 

contiguous successive (adjacent) events. With simultaneous stimulus onset, these events co-

occur within one trial but belong to both tasks and can, therefore, be of very low predictive 

value for each other. The potentially much stronger relationships of nonadjacent events, i.e., 

of SRTT events occurring across successive trials, separated by a tone-task event, seem to be 

neglected when participants maintain an integrated task representation. Impaired sequence 

learning is the result. 

As already discussed, Gómez (2002) demonstrated, in the context of artificial language 

learning, that nonadjacent dependencies nevertheless can be learned if the separating middle 

event is highly variable, making the nonadjacent dependencies stand out of the crowd. In her 

study, participants had to judge whether three-element test strings were instances (or not) of 

an artificial language they had previously been listening to. If a language with high (instead of 

low) variability of the middle element had been trained, the judgements tended to be correct. 

This finding suggests that, in the present dual-task context, increased variability within the 

tone-task could have moved the predictive focus away from adjacent across-task events of 

low predictive value towards the most helpful (but nonadjacent) dependencies within the 

SRTT. In other words, high variability in the tone-task could serve as a strong bottom-up cue, 

triggering separate task representations and, thus, within-task predictions.1 

In a recent study of Vuong, Meyer, and Christiansen (2016), however, participants were 

trained on three successive days (one hour per day) with material similar to that of Gómez 

(2002) – but with only a medium variability of the middle element – presented in a SRTT-like 

fashion. Afterwards, replicating former findings, the authors found weak knowledge about 

                                                           

1 Also in other artificial language learning studies (e.g., Van den Bos, Christiansen, & Misyak, 2012), the learning of 
nonadjacent dependencies strongly depended on the presence of (perceptual) cues suggesting that predictive 
processes operate indeed, by default, on the most contiguous events – but can be moved. 
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the nonadjacent dependencies within the typical offline-measures (i.e. in the grammaticality 

judgements). In the online measures, however, (i.e., in the SRTT response times) knowledge 

was present. This observation adds nicely to the finding of Hunt and Aslin (2001) that implicit 

learning in a SRTT can be based even on the most complex joint probabilities of exact event 

patterns out of great numbers of possible combinations in a given context. This might simply 

be a matter of the number of pattern repetitions and, thus a matter of time. It is conceivable 

that implicit sequence learning in the presence of a temporally close random secondary task 

also simply (or to a certain extent) depends on the duration of the training phase. In general, 

it should be fruitful to take assumptions of the statistical learning literature into account for 

future research on dual-task sequence learning – and, thereby, on an important aspect of 

plasticity in multitasking per se (see also Koch et al., 2018). 

The role of the separation of representations 

Implicit learning is one of the most fundamental learning processes (e.g., Dienes & 

Berry, 1997) and contributes largely to the plasticity and adaptability of human behavior. In 

the third study (Chapter 4), implicit sequence learning was suggested as a novel indicator of 

dual-tasking efficiency. This conception was derived from the finding of Schumacher and 

Schwarb (2009) that sequence learning was impaired vs. preserved in the presence of a random 

secondary task depending on the length of the SOAs and, thereby, as suggested by the 

authors, on the respective dual-task processing modes. Impaired learning with short SOAs 

was attributed to parallel processing, preserved learning with long SOAs to serial processing 

– in accord with the assumptions of Miller et al. (2009) that high proportions of short vs. 

long SOAs trigger parallel vs. serial processing, respectively. Miller et al. investigated whether 

selecting one or the other processing mode is driven by the participants’ goal to optimize the 

total reaction time (TRT) and, thus, to perform efficiently. Since serial processing is, under 

most circumstances, more efficient than parallel processing (in terms of the TRT; Miller et 

al., 2009)2, the finding that sequence learning is preserved with long SOAs might, thus, as 

well indicate highly efficient – serial – processing. 

Yet, in the light of the present findings – which repeatedly ruled out the (parallel/ 

serial) response selection account of Schumacher and Schwarb (2009) – another assumption 

might also be justified, namely, that preserved sequence learning with consistently long SOAs 

                                                           

2 Based on mathematical simulations, Miller et al. (2009), demonstrated that serial processing is under most 
conditions most efficient (in terms of the TRT) – but that, under special conditions (i.e., with a high frequency 
of short SOAs), it can be outperformed by parallel processing. 
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rather indicates the (efficient) separation of task representations. Already in the “General 

Introduction”, the parallel response selection- and the task integration hypothesis (Rah et al., 

2000; Schmidtke & Heuer, 1997) were introduced as two accounts that are, in principle, both in 

line with the assumption that the insufficiently separated processing of two simultaneously 

presented tasks might be the cause for impaired sequence learning, suggesting, however and 

importantly, different processes as critical. The first and second studies (Chapter 2 and 3), 

then, provided strong evidence in favor of the task integration or, more precisely, the across-

task prediction account, assuming that sequence learning should be impaired vs. preserved 

depending on the within-trial predictability of across-task events. For instance, in the correlated 

tasks condition (Röttger et al., 2019; Experiment 2), with regular sequences in both tasks 

(and, thus a high across-task predictability), learning was preserved. In Experiment 3, on the 

contrary, facilitating parallel response selection due to an ideomotor compatible – but still 

randomly sequenced – tone-discrimination task was not sufficient in order to preserve learning 

(see also Chapter 2). These findings can only be explained by the parallel response selection 

account by adding the assumption that parallel response selection disturbs sequence learning 

not per se but only if the two tasks are randomly paired. 

In recent theoretical considerations (Hazeltine & Schumacher, 2016; Schumacher & 

Hazeltine, 2016) as well as in a recent study, Schumacher and colleagues also refrained from 

the assumption that response selection processes in the simple sense of “mental operations 

that associate task-related responses to current stimuli” (Schumacher et al., 2018, p. 2) are 

responsible for dual-task interference. They considered that adding another S-R mapping 

might not necessarily be equivalent with adding a “task”, causing interference due to central 

capacity sharing (e.g., Tombu & Jolicoeur, 2003) or a response selection bottleneck (e.g., 

Pashler, 1984; 1994). Instead, interference between multiple task representations – or “task 

files” (e.g., Schumacher & Hazeltine, 2016) – could call for control processes to keep them 

separate (to prevent integration). Such task files do not only include sets of S-R mappings but 

also context information, internal goals and, importantly, sequential information belonging to 

these goals that should not be confounded. In a dual-task, Schumacher et al. (2018) induced 

integrated vs. separate task representations via different S-R mapping rules while keeping the 

stimulus information and response options constant (including “no response” in either of the 

tasks). It turned out that bimanual responses were slower than unimanual responses in the 

“two-task set” condition, resembling the typical dual task costs – which were absent (reversed) 

for the “one-task set” condition replicating the finding that task representations (i.e., whether 
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they are integrated vs. separate) determine whether costs occur or not (see also Halvorson, 

Wagschal, et al., 2013). 

The finding of preserved sequence learning with consistently long SOAs (Chapter 4; 

Experiment 1; see also Schumacher & Schwarb, 2009) is in accord with the assumption that 

the participants represented the tasks separately, facilitating predictions within the SRTT and 

allowing sequence learning. It makes, however, little sense to assume that the participants in 

the two PRP experiments (see Chapter 4; Experiments 2 and 3), who only acquired position-

item associations for SRTT elements of SOA type 800 (see Experiment 3) or, more generally, 

with long SOAs, switched trialwise between integrated and separate task representations. 

Rather, in the wording of the “task files” framework, it seems that the participants did overall 

not spend much effort to keep the task files or -representations separate. Implicit learning 

with actually long SOAs might, then, indeed have occurred purely mechanistically due to 

automatic serial processing forced by the length of the SOAs. 

To sum up, long SOAs might, on the one hand, trigger separate task representations 

(if they occur consistently), and, on the other hand, automatic serial processing (at least in a 

PRP context). Both conceptions of the impact of long SOAs predict that one or the other 

type of learning within the SRTT should occur – chaining (with consistently long SOAs) 

and/or ordinal position learning (at least in a PRP context; see Chapter 4). It is also plausible 

to assume that high proportions of short SOAs trigger integrated representations (at the risk 

of confounding task file features). Crosstalk as well as impaired sequence learning should be 

the result. The same would be predicted by capacity sharing accounts of parallel processing 

(e.g., Navon & Miller, 2002; Tombu & Jolicoeur, 2003). However, whether “integrated task 

representations” and “parallel processing” as well as “separate task representations” and 

“serial processing” can, in fact, be understood as two sides of the same coin, respectively, is 

questionable – since the whole concept “parallel processing” must be viewed critically. 

As already mentioned in the “General Introduction”, a debate is going on whether 

parallel processing at the response selection stage is, in principle, possible or not (for a recent 

review, see Koch et al., 2018). More confusingly, however, it seems that, in the literature, 

several notions of “parallel processing” coexist – and, thereby, also different assumptions 

about its most likely consequences (e.g., in terms of efficiency). While some researchers 

expected and demonstrated “virtually perfect time sharing” (e.g., Hazeltine, Teague, & Ivry, 

2002; Israel & Cohen, 2011; Schumacher et al., 2001) – others demonstrated costs like, e.g., 

the BCE (e.g., Fischer & Dreisbach, 2015; Fischer et al., 2014; Hommel, 1998; Janczyk et al., 

2014; Lehle & Hübner, 2009; Miller et al., 2009). Both classes of findings are not in accord 
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with Pashler’s (1984, 1994) RSB model3 – and some of the former findings are also not 

explained by assuming central capacity sharing. Israel and Cohen (2011), for instance, draw 

on the Dimension Action model (Magen & Cohen, 2007) suggesting that separate (visual) 

modules exist, endowed with both perceptual and response selection capabilities, which are 

not shared across dimensions. This kind of parallel processing, however, is probably better 

described as “isochronous” (but independent) processing as it is, in fact, the opposite of task 

integration and/or capacity sharing – and does certainly not underlie the present findings. It 

is, additionally, unclear, to what degree the extent of parallel (vs. serial) processing is under 

strategic control and how flexible humans can switch between processing modes, depending, 

e.g., on individual goals or internal states or on contextual information. As described above, 

Miller and colleagues (2009) suggested that participants adopt a more parallel vs. more serial 

processing mode depending on the list-wide frequency of short vs. long SOAs in order to 

optimize the TRT. In their PRP experiments, they implemented blocks with either mostly 

short or mostly long SOAs and predicted that RT1 should be slower in the former than in 

the latter due to a higher extent of capacity sharing / parallel processing. At the same time, the 

PRP effect should be less steep because, with shared capacity, RT2 should be faster when the 

actual SOA is short. Otherwise, e.g., the reallocation of the full capacity to T2 after prioritized 

T1 processing would prolong RT2 (cf. Mittelstädt & Miller, 2017). In main parts, the findings 

were in accord with that. 

Interestingly, Mattes et al. (subm.) found ambiguous evidence for parallel processing 

in an attempt to replicate the findings of Miller et al. (2009) and to additionally compare the 

extent of parallel vs. serial processing by using a drift-diffusion model approach4 (see also 

Durst & Janczyk, 2019). Implementing conditions with different SOA distributions across 

three experiments, Mattes and colleagues expected that the drift rate would be lower for both 

tasks only with actually short SOAs in the condition with predominantly short SOAs (PS) 

indicating parallel processing. The non-decision time was expected to be longer only in T2 

with actually short SOAs in the condition with predominantly long SOAs (PL) indicating serial 

processing. In other words, with actually short SOAs, the authors expected parallel processing 

                                                           

3 Some observations of apparent parallel processing can be reconciled with the RSB model. The elimination of 
dual-task costs, for instance, can be conceived of as indicating that the bottleneck has become “latent” due to 
extensive training (Ruthruff et al., 2003; see also Strobach & Schubert, 2017a; 2017b). By adding a stage of 
automatic response activation, also the BCE can be explained within the RSB framework (Hommel, 1998). 

4 In general, two parameters of the drift diffusion model (Ratcliff & Rouder, 1998) should vary characteristically as 
a function of parallel vs. serial processing (cf. Mattes et al., subm.). The drift rate should be lower in both tasks 
with parallel than with serial processing, indicating a slower evidence accumulation process due to shared 
capacity. Serial processing should manifest itself in a longer non-decision time (representing perceptual and 
motor processes) for the secondary task at short SOAs (which is mirrored in the PRP effect). 
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in the PS condition and serial processing in the PL condition. Surprisingly, in the PS condition, 

the authors found a lower drift rate with short SOAs only for T2. Even more surprisingly, 

the drift rate was also lower (for both tasks) with short SOAs in the PL condition. The non-

decision time was longer in T2 with short SOAs not only in the PL condition but also in the 

PS condition (to a lesser extent). Both findings contradict the assumption that more parallel- 

vs. more serial processing should be found in the in the PS- vs. the PL condition, respectively. 

In addition, also the RT data were overall not perfectly in line with the predictions. The PRP 

effect in RT2 was indeed flatter in the PS- than in the PL condition (indicating more parallel 

processing). However, RT1 in the PS condition increased across the actual SOAs so that the 

difference between the two conditions was largest with long SOAs – apparently indicating 

more parallel processing with long instead of short SOAs, which is not plausible. As alternative 

explanation, Mattes et al. (subm.) suggested that the SOA distribution might have influenced 

the participants’ temporal expectancy (see e.g., Los et al., 2017) of S2 onset It is conceivable 

that participants in the PS condition learned to expect S2 immediately after S1, using S2 as an 

“external impulse generator” for response initiation. In this case, they should be less prepared 

with infrequent long- than with frequent short SOAs – slowing down RT1. 

As discussed in Chapter 4, the finding of such an SOA effect on RT1 is not unique 

(see also, e.g. Miller et al., 2009; Schumacher & Schwarb, 2009) – and it occurred in the 

present PRP experiments as well (see Experiments 2 and 3; Chapter 4). By now, however, all 

explanations that have been proposed in the literature are speculative. In the present study, 

without list-wide biased SOA distributions like in the study of Mattes et al. (subm.), it was 

nevertheless also suggested that different extents of preparation could have caused this effect. 

The Participants had been possibly better prepared for more difficult trials, with short SOAs, 

requiring (e.g.) more inter-task coordination (e.g., Liepelt et al., 2011) – and “wait” a moment 

for S2 if it does not occur immediately, withholding R1. 

Conclusion 

Taken together, the role of parallel processing (or, more specifically, parallel response 

selection) in dual-tasking is still unclear. Capacity sharing models (e.g., Navon & Miller, 2002; 

Tombu & Jolicoeur, 2003) predict costs – which seemingly can be brought under strategic 

control (e.g., Lehle & Hübner, 2009; Miller et al., 2009) more or less flexibly (e.g., Fischer & 

Dreisbach, 2015; Fischer et al., 2014). Bottleneck models like Pashler’s RSB model (1984, 

1994), on the contrary, deny the possibility of parallel processing. Proponents, thus, explain 

occasional findings of crosstalk or “perfect time sharing” away by adding stages in the former 
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case (e.g., Hommel, 1998) or by assuming optimized bottleneck processing in the latter case 

(e.g., Strobach et al., 2014). Possibly, as Hazeltine and Schumacher (2016) suggest, progress 

in the research on multitasking can be made by backing away from the notion that response 

selection is responsible for dual-task interference – and focusing on the impact of integration 

vs. separation of the “task files” instead. In line with that, the results of the present series of 

studies repeatedly ruled out a contribution of parallel response selection to the impairment of 

implicit sequence learning in dual-tasking. Even in Chapter 4, where the parallel response 

selection hypothesis of Schumacher and Schwarb (2009) was once more investigated, the 

outcomes were also (or even better) explained by the task integration-, or, more specifically, 

the across-task prediction account (Röttger et al., 2019; see also Rah et al., 2000; Schmidtke 

& Heuer, 1997) incorporating the assumption that implicit sequence learning requires the 

progressive improvement of omnipresent and automatic predictions (cf. Broeker et al., 2017) 

via statistical learning (cf. Perruchet & Pacton, 2006). Whether dual-task sequence learning is 

impaired vs. preserved, might simply depend on the extent that the prediction mechanism 

focuses on the respectively most predictable events. With simultaneous stimulus onset and at 

least one random task, any manipulation leading to a separation of representations (or task 

files; see Schumacher & Hazeltine, 2016) should move the predictive focus away from its 

default focus on the most contiguous (but unpredictable) within-trial events occurring across-

tasks – towards the (predictable) within-task (SRTT) events, occurring across-trials. 

In general, under which conditions sequence knowledge can be acquired in dual-task 

contexts – and whether it, in turn, might help to reduce several kinds of dual-task costs like, 

e.g., crosstalk or partial repetition costs due to across-task binding – are important questions 

that will be further investigated in future endeavors to better understand the limits and the 

possibilities of the human cognitive architecture. The present evidence ascribes a crucial role 

to the separation of representations. As it seems that such a separation can be induced via 

bottom-up cues like long SOAs or a high variability of the middle element within regular three-

element strings (Gómez, 2002), it is possible that already acquired sequence knowledge (e.g., 

via single-task training; see Gaschler et al., 2018) might itself serve as such a separation cue, 

moving the focus towards predictable within-task events. As a consequence, processing in one 

task might be shielded against irrelevant information (see, e.g. Fischer & Plessow, 2015) from 

the other task, preventing that information, belonging to separate “task files”, is confounded. 
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