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Kurzfassung

Das Hauptergebnis dieser Arbeit ist eine systematische Formulierung und Beweis der Bulk-
Boundary Korrespondenz in ungeordneten topologischen Isolatoren und Supraleitern für alle
Symmetrieklassen der Altland–Zirnbauer-Klassifizierung.

Für die Beschreibung der symmetrischen Grundzustände in den verschiedenen Altland–
Zirnbauer Klassen übernehmen wir das von R. Kennedy und M.R. Zirnbauer eingeführte Bild
von Quasiteilchenvakua mit Pseudosymmetrien. Wir konstruieren physikalisch fundierte C∗-
Algebren, die jeweils die relevanten physikalischen Quasiteilchenvakua von ungeordneten
Festkörpern ohne Rand bzw. mit Rand enthalten. Diese Konstruktion basiert auf etablierten
Näherungen für die Beschreibung von Festkörpern bei niedrigen Temperaturen. Die Unord-
nung in diesen Systemen wird mittels Bellissards Ansatz sogenannter homogener Unordnung
beschrieben.

Mittels der Beschreibung von Grundzuständen anhand von Quasiteilchenvakua mit Pseu-
dosymmetrien führen wir eine systematische Beschreibung von topologischen Phasen im In-
neren sowie am Rand von ungeordneten topologischen Isolatoren und Supraleitern ein. Diese
topologischen Phasen identifizieren wir anschliessend mit (reellen) K-Klassen der zuvor kon-
struierten C∗-Algebren zur Beschreibung der Quasiteilchenvakua.

Ein wesentlicher Aspekt dieser Arbeit ist unsere Anpassung der Beschreibung der K-
Theorie, sodass die Klassen in natürlicher Weise durch die Quasiteilchenvakua mit Pseu-
dosymmetrien im Inneren bzw. am Rand von ungeordneten topologischen Isolatoren und
Supraleitern beschrieben werden. Neben einer physikalisch natürlichen Beschreibung der to-
pologischen Phasen ermöglicht diese Anpassung der K-Theorie auch eine systematische und
physikalisch natürliche Formulierung der Bulk-Boundary Korrespondenz. Infolgedessen er-
halten wir neue Einblicke in die physikalische Natur der topologischen Phasen im Inneren
und am Rand von ungeordneten topologischen Isolatoren und Supraleitern und deren Bezie-
hung zueinander.

Für eine detaillierte Beschreibung dieser topologischen Phasen leiten wir topologische
Invarianten her, welche die Eigenschaften dieser topologischen Phasen quantifizieren.
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Abstract

In this work we establish a systematic formulation and proof of the bulk-boundary correspon-
dence of disordered topological insulators and superconductors for all symmetry classes of
the Tenfold Way.

We establish a physically natural description of the ground states in the bulk and at the
boundary of these solids for all symmetry classes of the Tenfold Way. This is based on the
description of symmetric ground states in terms of so-called quasi-particle vacua with pseudo-
symmetries, as introduced by Kennedy–Zirnbauer in the case of no disorder. In doing so, we
construct, on the basis of physically natural assumptions, C∗-algebras containing the relevant
physical quasi-particle vacua of disordered solids in the bulk and in the vicinity of a boundary.

We define a physically natural notion of topological phases for the ground states of dis-
ordered topological insulators and superconductors in the bulk and at the boundary. The
description of ground states in terms of quasi-particle vacua allows us to identify the topo-
logical phases with K-classes of the corresponding C∗-algebras of observables. An essential
aspect of this work is that we have adjusted the description of the K-theory in such a way
that the classes are naturally described by the quasi-particle vacua with pseudo-symmetries
in the bulk and at the boundary. This leads to a physically natural description of the topologi-
cal phases and allows us to formulate the bulk-boundary correspondence systematically. The
physically natural and explicit form of the bulk-boundary correspondence allows for a deeper
insight into its physical properties.

To describe the topological phases in the bulk and at the boundary of topological insula-
tors in more detail, we then derive topological invariants quantifying the properties of these
topological phases.
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Chapter One

Introduction

During the last almost 40 years, since the discovery of the quantum Hall effect (QHE) in
1980 [89], the investigation of topology in solid state systems has become one of the most
active research topics in solid state physics. Experimental physicists are driven by the idea
to use these topological properties in order to develop new technologies, such as quantum
computers. This idea has its origins in the robust nature that the topological phases exhibited
in experiments. For example, in the QHE this stability is reflected by the experimentally ob-
served effect that the quantised Hall current at the boundary cannot be destroyed by disorder
at the boundary, e.g. by small cuts.

A rigorous mathematical argument for this stability of the QHE was given by Bellissard
in 1986. Based on the observation that the topological phases of the QHE can be described by
K-classes [7, 85] in the case without disorder, he established a numerical index for this phase
and proved that it is invariant under disorder [10]. His approach relies on the assumption that
the translational invariance of the system holds on macroscopic scales, whereas it is broken
on microscopic scales due to disorder. Because of these properties, this disorder model is
also referred to as homogeneous disorder.

It took more than 30 years to realise that topological phases are also possible for solid
state systems with local symmetries. The first system of such kind was discovered in 2005
[36] with the quantum spin Hall effect in solid state systems with particle number conser-
vation and time-reversal symmetry. During the following years, several other realisations
of topological phases in solid states system with other symmetries as well as for systems
without particle number conservation were observed theoretically and experimentally. These
systems are nowadays summarised under the names topological insulators (TI) and topolog-
ical superconductors (TSC), where the later ones denote the classes without particle number
conservation.

This zoo of TI and TSC was put in order by Kitaev [50]. In the free-fermion limit with
translational invariance and without boundaries, he used the Fourier–Bloch technique to es-
tablish a systematic classification of all symmetry classes of the Tenfold Way [2] in terms of
topological K-classes over the torus. However, since disorder breaks translational invariance,
Kitaev’s classification is not valid for systems with disorder.

Based on Bellissard’s work on the disordered QHE, a systematic classification approach
for disordered TI and TSC was established by [68, 66, 45]. There, the Hamiltonians are
considered as elements of a suitable C∗-algebra containing all observables over a lattice in
the context of homogeneous disorder. The classes in the K-theory of this C∗-algebra are then
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2 Introduction

interpreted as the topological phases of the system.
Although the topological classification of topological insulators and superconductors with

homogeneous disorder is in principle established for all symmetry classes, the picture is still
far from complete. In the following, we will give an overview over the open questions that
will be addressed in this work.

First, the choice of the C∗-algebra describing the observables is the most fundamental
step in the classification. It is essential that this choice governs the physical properties of the
system at hand in the most precise way. However, there are different opinions about the right
choice of this C∗-algebra. See [68, 66] and [53, 25] for recent overviews over the two most
important approaches.

Second, the relation between the K-classes of the C∗-algebra of observables and the phys-
ical properties of the corresponding solid state systems are not understood on a systematic
level for all symmetry classes. The major reason for this is that the description of real K-
theory is more abstract than in the complex case. Kellendonk has established a K-theoretic
description of topological phases in terms of Van Daele groups [86, 87], where the relation to
the gapped Hamiltonians in the bulk of disordered TI and TSC can be seen explicitly [45].

Third, the bulk-boundary correspondence is well known for TI in the complex symmetry
classes A and AIII [48, 78, 66], whereas it is less understood in the remaining eight real sym-
metry classes of the Tenfold Way. Although there are already some systematic descriptions
of bulk-boundary correspondence which are valid for disordered systems in any symmetry
class and dimension [59, 53, 17], a satisfactory understanding of the physical properties of
the bulk-boundary correspondence is still missing.

Fourth, the computation of numerical topological invariants that quantify the topological
phases of disordered TI and TSC is not yet understood to full extent for the real symmetry
classes.

Our contributions to these questions can be roughly summarised as follows.
We develop a physically rigorous construction for the C∗-algebra of physical observables

in the bulk and in the vicinity of a boundary of disordered TI and TSC.
The starting point of our constructions is the single-particle Hilbert space V. In the

tight-binding approximation, the states in the bulk of solid state systems are elements of the
complex Hilbert space

V = `2(Λ) ⊗ V.

Here, Λ � Zd denotes the Bravais lattice which is equipped with a natural Zd-action by trans-
lations and V is a finite-dimensional Hilbert space denoting the local degrees of freedom. In
this work, we will in particular consider TSC, where it is fundamental that the particle num-
ber is not conserved. In order to describe such systems without particle number conservation,
we will develop our observables in the more general Nambu space picture. The Nambu space
W is defined as the real Hilbert space

W = V ⊕V∗ � `2(Λ) ⊗ (V ⊕ V∗),

with the canonical real structure γ B
(

0 h−1

h 0

)
, where h denotes the Fréchet-Riesz isomorphism

from V to its dual space V∗. All physically reasonable non-interacting observables can be
realised as operators in L(W).

As observed by Kubota [53], the observables in the tight-binding approximation can be
identified with the controlled operators in L(W). The norm closure of the set of these con-
trolled operators is the real uniform Roe C∗-algebra C∗u(Λ,W) ⊆ L(W), where W B V ⊕ V∗.
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We will extend Kubota’s approach by combining this description of observables in terms of
C∗u(Λ,W) with the homogeneous disorder approach of Bellissard.

In this approach, the disorder of the solid state system is described by a space of disorder
configurations Ω, carrying a natural Zd-action, and the observables in C∗u(Λ,W) are replaced
by norm continuous maps

O : Ω→ C∗u(Λ,W),

satisfying the covariance relation

Oω·x = u∗xOωux ∀x ∈ Zd, ω ∈ Ω,

where the operators ux for x ∈ Zd are defined by the action of Zd on Λ by translations. These
covariant maps generate a real C∗-algebra, which we denote by A. This real C∗-algebra
consists of all physical non-interacting observables in the bulk of disordered TI and TSC.

The constructions can be done in the same way on the single-particle level for charge
conserving systems. In the charge conserving case, there is no real structure and therefore the
resulting C∗-algebra of observables A is a complex C∗-algebra. In the construction of A, we
will also allows for homogeneous magnetic fields, leading to a twisting in the Zd-action over
Λ.

We perform the analogous constructions in the vicinity of a boundary. In this work, we
will only consider the boundary generated by cutting the Bravais lattice perpendicular to one
translational direction. The resulting physical systems can be described in the same manner
as the bulk system by replacing the Bravais lattice Λ by the half-space lattice

Λ̂ � Zd−1 × N.

This leads to a real C∗-algebra of half-space observables Â. In the charge conserving case,
we obtain a complex C∗-algebra Â of charge conserving half-space observables.

Summarising, we obtain C∗-algebras for the bulk and half-space observables of disor-
dered TI and TSC, which are based on natural physical assumptions. To put these C∗-algebras
of observables in contact with the literature, we will then identify them with crossed product
C∗-algebras:

A �
(
C(Ω) ⊗ End(W)

)
o Zd, A �

(
C(Ω) ⊗ End(V)

)
o Zd.

For the C∗-algebras of observables over the half-space, we will construct ∗-isomorphisms

Â �
(
C(Ω) ⊗ End(W)

)
o (Zd−1 × N), Â �

(
C(Ω) ⊗ End(V)

)
o (Zd−1 × N).

For the complex C∗-algebras A and Â, the presence of a homogeneous magnetic field leads
to a twisting in the corresponding crossed product C∗-algebras.

This identification shows that we obtain the same C∗-algebras as in [9, 10, 13, 78]. This
yields a new, mathematically and physically rigorous justification for the use of their C∗-
algebras. Moreover, our construction establishes a canonical realisation of the crossed prod-
uct C∗-algebras over a physically reasonable (real) Hilbert space. This aspect will be impor-
tant for the physical interpretation of our results.

The identification with crossed product C∗-algebras also allows us to establish the bulk-
boundary short exact sequence

0→ A∂ ⊗ K
(
`2(N)

)
−→ Â −→ A→ 0 (1.1)
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of real C∗-algebras. The real C∗-algebra A∂ is defined as the real C∗-algebras of observables
over the boundary lattice Λ∂ B Z

d−1. Analogously, by the identification of the C∗-algebras of
charge conserving observables with twisted crossed product C∗-algebras, we can construct a
short exact sequence

0→ A∂ ⊗ K
(
`2(N)

)
−→ Â −→ A→ 0 (1.2)

of complex C∗-algebras. As before, the complex C∗-algebra A∂ is defined as the C∗-algebra
of charge conserving observables over Λ∂. The C∗-algebras A∂⊗K

(
`2(N)

)
and A∂⊗K

(
`2(N)

)
can be interpreted in the physical context as (the norm closure of) the algebra of half-space
observables that are localised in the vicinity of the boundary.

On the basis of these results, we will then establish a classification scheme for ground
states in the bulk and in the vicinity of a boundary of disordered TI and TSC in all symmetry
classes of the Tenfold Way [2]. The Tenfold Way consists of eight so-called real symmetry
classes and two so-called complex symmetry classes.

The ground states in the bulk of disordered TI and TSC in the real symmetry classes can
be described by disordered invariant quasi-particle vacua (IQPV) with pseudo-symmetries.
These are given by pairs

(J; φ)

of a real skew-Hermitian unitaries J ∈ A and unital real ∗-morphisms φ : C`r,s → End(W) ⊆
A, such that

{J, φ(ka)} = {J, φ( jα)} = 0 ∀a = 1, . . . , r, α = 1, . . . , s,

where {x, y} = xy + yx for all x, y ∈ A denotes the anti-commutator, and ka( jα) denote the
positive (negative) generators of the real Clifford algebra C`r,s. The unitaries Ka B φ(ka)
for a = 1 . . . , r and Jα B φ( jα) for α = 1, . . . , s are called positive and negative pseudo-
symmetries, respectively. The pair (r, s) is called the symmetry index.

The ground states in the bulk of disordered TI in the two complex symmetry classes can be
described by complex or charge conserving disordered invariant quasi-particle vacua. These
are given in the same way as disordered IQPV, where the A is replaced by A, φ : C`r,s →

End(V) ⊆ A, where C`r,s denotes the complex Clifford algebra with r positive and s negative
generators, and there are no reality conditions on J and φ.

We establish a canonical map which assigns to a given disordered IQPV of symmetry
index (r, s) a class in KR−(s−r+2)(A) for the real symmetry classes, and in K−(s−r+2)(A) for the
complex symmetry classes. To that end, we construct Abelian groups Topr,s(A) and Topr,s(A),
whose elements are formal differences of equivalence classes of disordered IQPV. Thus, this
group measures the topological phases of the disordered IQPV relative to each other. In
practice, we will fix a reference disordered IQPV (Jref ; φ) and measure the topological phases
relative to it.

We will then construct explicit isomorphisms

Topr,s(A) � DKR−(s−r+2)(A) = KR−(s−r+2)(A)

and Topr,s(A) � DK−(s−r+2)(A) = K−(s−r+2)(A),

where DKR−•(−) and DK−•(−) denote the KR- and K-groups in Van Daele’s picture of (real)
K-theory [86].

As we will explain in Section 3.3, the group Topr,s(A) can be defined for every real or
complex C∗-algebra. In this way, we obtain a new picture of real and complex K-theory,
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which is an important mathematical result on its own. In the present physical context, this
new picture of K-theory leads to an explicit, physically natural and systematic definition of
bulk topological phases of disordered TI and TSC in any symmetry class as classes in the
corresponding (real) K-groups.

The topological properties of ground states of disordered TI and TSC in the vicinity of a
boundary are determined by the gapless boundary states. We will show that the ground states
in the real symmetry classes can be described by disordered IQPV with boundary, which are
pairs (Ĵ; φ), where Ĵ ∈ Â is real and skew-Hermitian, and φ : C`r,s → End(W) ⊂ Â is a real
unital ∗-morphism such that

{φ(ka), Ĵ}, {φ( jα), Ĵ}, 1 + Ĵ2 ∈ A∂ ⊗ K(`2(N)) ∀a = 1, . . . , r, α = 1, . . . , s. (1.3)

In the complex symmetry classes, the ground states at the boundary can be described by
complex disordered IQPV with boundary, which are defined in the same way as disordered
IQPV with boundary, where A∂ is replaced by A∂, C`r,s is replaced by C`r,s and there are no
reality constraints.

We will show that the algebra of half-space observables Â can be identified with a real C∗-
subalgebra of the real C∗-algebra B(HA∂ ) of adjointable operators over the real Hilbert space
over A∂. In the same way, we will show that the algebra of complex half-space observables
Â defines a C∗-subalgebra of the C∗-algebra B(HA∂

) of adjointable operators over the Hilbert
space over A∂.

We refer to the resulting generalisation of disordered IQPV with boundary to pairs (Ĵ; φ),
where Ĵ ∈ B(HA∂ ) is real and skew-Hermitian, and φ is given as before such that Equation
(1.3) holds, as generalised quasi-particle vacua (GQPV). The corresponding generalisation
of complex disordered IQPV with boundary is called complex GQPV.

On the basis of these GQPV, we then establish a topological classification scheme by
constructing groups TopG(A∂) and TopG(A∂), whose elements consist of equivalence classes
of GQPV. In doing so, we make sure that the resulting groups indeed measure the topological
properties at the boundary of disordered TI and TSC.

The construction of the groups TopG(A∂) and TopG(A∂) is closely related to the con-
struction of Kasparov’s Fredholm picture of real and complex K-theory [41, 43]. In fact, we
will identify these groups with Kasparov’s Fredholm picture of real and complex K-groups
by constructing explicit isomorphisms

TopG(A∂) � KKR(C`s,r,A∂ ⊗C`0,1) � KR−(s−r+1)(A∂),

and TopG(A∂) � KK(C`s,r,A∂ ⊗ C`0,1) � K−(s−r+1)(A∂).

Summarising, we obtain two independent classification schemes in terms of (real) K-
groups, one for the bulk and one for the boundary topological phases of disordered TI and
TSC.

Following the literature, the bulk-boundary correspondence will be formulated on the
level of the K-groups describing the topological phases. By the bulk-boundary short exact
sequences (1.1) and (1.2), we obtain connecting morphisms

∂ : KR−(s−r+2)(A)→ KR−(s−r+1)(A∂) and ∂ : K−(s−r+2)(A)→ K−(s−r+1)(A∂) (1.4)

on the level of K-groups. In the literature, one can find explicit forms of the connecting
morphism for Van Daele’s picture of K-theory [87], as well for Kasparov’s Fredholm picture
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of K-theory [43]. However, a satisfactory formulation of the bulk-boundary correspondence
has to identify the bulk topological phases with boundary topological phases. The former
can be identified with classes in Van Daele’s picture of K-theory, whereas the latter can be
explicitly identified with classes in Kasparov’s Fredholm picture of K-theory. Therefore,
we have to concatenate the connecting morphisms with the isomorphism between those two
pictures of K-theory, which we call Roe’s isomorphism [72]. This strategy can be summarised
in the following commutative diagram, where we denote Roe’s isomorphism by α:

Topr,s(A) � DKR−(s−r+2)(A) KKR−(s−r+2)(A)

DKR−(s−r+1)(A∂) KKR−(s−r+1)(A∂) � TopGr,s(A∂)

∂

α

α

∂

One of the main results of this work is Theorem 5.3.1. It states that for any disordered IQPV
(J; φ), the bulk-boundary map α ◦ ∂ sends the bulk class associated with (J; φ) relative to a
reference disordered IQPV (Jref ; φ) to the boundary class associated with the same disordered
IQPV. Explicitly, this means that

KR−(s−r+2)(A) = Topr,s(A) 3 [J] − [Jref]
α◦∂
−→ [(Ĵ; φ)] − [(Ĵref ; φ)] ∈ TopG(A∂) = KR−(s−r+1)(A∂),

K−(s−r+2)(A) = Topr,s(A) 3 [J] − [Jref]
α◦∂
−→ [(Ĵ; φ)] − [(Ĵref ; φ)] ∈ TopG(A∂) = K−(s−r+1)(A∂).

The disordered IQPV with boundary Ĵ and Ĵref denote lifts of J and Jref , respectively, along
the morphism Â → A of the SES (1.1) in the real case, and along the morphism Â → A of
the SES (1.2) in the complex case. This theorem is our mathematical formulation of ‘bulk-
boundary correspondence’.

This explicit and simple form of the bulk-boundary correspondence enables us to derive
concrete physical properties of the bulk-boundary correspondence, which cannot be seen
in the more abstract formulations in the literature. One of the physically most important
observations is that the bulk-boundary correspondence determines the existence of stable
gapless boundary states.

In order to quantify the bulk and boundary K-classes, we will also construct numerical
invariants, which we call topological invariants because of the present physical context.

There are recently established formulas by Kellendonk for the computation of those topo-
logical invariants via Van Daele groups and cyclic cohomology [45]. We will use these results
to establish numerical values for the Z-valued invariants of the bulk classes in KR−(s+r−2)(A).

For the topological phases at the boundary, we will derive formulas for the so-called
strong topological invariants by the application of index maps [16, 17] onto the K-classes in
Kasparov’s Fredholm picture, representing the topological phases at the boundary.

The structure of this work is as follows.
In Chapter 2, we will review some fundamental mathematical objects which will be im-

portant for the following chapters and cannot be associated with just one of these chapters.
In Section 3.1, we will introduce Kasparov’s Fredholm picture of K-theory, as well as

KK-theory, also called Kasparov’s bivariant K-theory, which is a generalisation of K-theory.
This more general theory will be needed because it describes K-theory as well as mor-
phisms between K-groups, which are important for the bulk-boundary correspondence and
the derivation of numerical invariants for topological phases.
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In Section 3.2, we will introduce Van Daele’s picture of K-theory, which is based on
Van Daele’s generalisation of K-theory to graded C∗-algebras [86, 87]. As before, we will
first give an introduction to the more general theory, and then explain the resulting picture of
K-theory.

In Section 3.3, we will then derive our new picture of real and complex K-theory of
trivially graded C∗-algebras.

In Chapter 4, we will introduce disordered TI and TSC from the perspective of free-
fermion many-particle physics. In Section 4.1, we will put our upcoming constructions
on firm physical grounds by giving a detailed review of the many-particle picture for free
fermions. In particular, we will explain thoroughly the description of free-fermion ground
states in terms of quasi-particle vacua with pseudo-symmetries, as introduced by [49]. The
correct usage of this many-body picture is essential for this work, and therefore, we consider
such a detailed explanation as necessary.

In Section 4.2, we will construct the C∗-algebras of bulk observables A and A, and derive
the isomorphisms to the crossed product C∗-algebras. We will also establish the description
of symmetric ground states in the bulk of disordered TI or TSC.

In Section 4.3, we will perform the same constructions for disordered TI or TSC with
boundary, leading to the C∗-algebra of half-space observables Â and Â. As in the previous
section, we will establish the isomorphisms to the crossed product C∗-algebras, as well as the
description of symmetric ground states of disordered TI and TSC in the vicinity of a boundary.
Moreover, we will construct the bulk-boundary short exact sequence, which establishes a
relation between the bulk and half-space observables.

In Chapter 5, we use the established descriptions of ground states in the bulk and at
the boundary of disordered TI and TSC, to define topological phases. The bulk topological
phases will be defined in Section 5.1 via our new picture of K-theory of Section 3.3. At the
boundary, we will define in Section 5.2 a group of boundary topological phases. We will
establish an explicit isomorphism to Kasparov’s Fredholm picture of K-theory. In Section
5.3, we will then formulate and prove the bulk-boundary correspondence. In Sections 5.4
and 5.5, we will derive physical properties of this bulk-boundary correspondence.

In Chapter 6, we will use the explicit form of the topological phases in terms of K-classes
to derive the aforementioned numerical topological invariants.

Chapter 7 contains a short outlook on open questions and topics that are closely related
to the topics of this work, but which have not been addressed here.

Most of the material presented in this work was published in the preprint Bulk-boundary
correspondence for disordered free-fermion topological phases by A. Alldridge, C. Max and
M. R. Zirnbauer, 2019, [1]. We extend the results of [1] at the following places of this work.

In Section 3.3, we extend the results of [1] by a more rigorous derivation of our new
picture of K-theory.

In Sections 4.2 and 4.3, we extend the results of [1] by including non-trivial homoge-
neous magnetic fields in the construction of the C∗-algebras A and Â. In the sequel, we will
generalise the results of [1] regarding these two C∗-algebras to the presence of homogeneous
magnetic fields.

In Section 5.1, we extend the construction of the topological phases at the boundary of
disordered TI and TSC by a rigorous discussion of the physical properties of this construction.

Chapter 6 and Chapter 7 have not been published in [1].



8



Chapter Two

Fundamentals

This chapter summarises the mathematical tools that are needed throughout the following
chapters at different places. We begin with a review of real and graded C∗-algebras, which is
addressed to the reader familiar with the general properties of complex C∗-algebras.

Thereafter, we introduce real and complex Clifford algebras. Although detailed introduc-
tions to this topic can be found in the literature [55, Ch. I], there are various notations and
conventions that are not unique and therefore have to be fixed. The properties of Clifford al-
gebras are essential for the systematic description of real K-theory and a good understanding
of those is necessary to follow the constructions in the upcoming chapters.

Most of the material presented here was published as part of the preprint Bulk-boundary
correspondence for disordered free-fermion topological phases by A. Alldridge, C. Max and
M. R. Zirnbauer, 2019, [1]. The introduction to Clifford algebras is extended by a discussion
of Clifford algebras for vector spaces.

2.1 Real and graded C∗-algebras

In this section, we review the fundamental definitions and properties of real and graded C∗-
algebras that will be needed throughout this work. We assume that the properties of complex
C∗-algebras are known. This introduction is primarily based on [15, 77]. More details about
the topics of this chapter can be found there.

Definition 2.1.1 (Real Hilbert space). LetH be a complex Hilbert space with inner product
〈·, ·〉. A real structure onH is an anti-unitary involution γ. That is, γ2 = 1 and

〈γψ, γψ′〉 = 〈ψ′, ψ〉 ∀ψ, ψ′ ∈ H .

A real Hilbert space is by definition a pair (H , γ) of a Hilbert spaceH and a real structure γ.
A complex linear (or anti-linear) map φ : (H1, γ1) −→ (H2, γ2) is called real if it intertwines
the real structures, i.e.

φ ◦ γ1 = γ2 ◦ φ.

Definition 2.1.2 (Real C∗-algebra). A real C∗-algebra is a complex C∗-algebra equipped
with an anti-linear involutive ∗-isomorphism (−) : A→ A; x 7→ x, called conjugation or real
structure, such that (−) commutes with ∗.

9
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Equivalently, we may define real C∗-algebras as complex C∗-algebras equipped with a
linear involutive anti-isomorphism T : A → A; a 7→ aT such that T commutes with ∗. The
map T is called transposition.

These two equivalent definitions are related by the equation

a = (a∗)T for a ∈ A.

We will call an element in a real C∗-algebra real if it is invariant under conjugation. A
∗-morphism φ : A1 → A2 between real C∗-algebras is called real if it intertwines the real
structures, i.e.

φ(a) = φ(a) ∀a ∈ A1.

The spatial tensor product A1 ⊗ A2 of real C∗-algebras becomes a real C∗-algebra when
equipped with the conjugation

a1 ⊗ a2 B a1 ⊗ a2 ∀a1 ∈ A1, a2 ∈ A2.

An important point in order to understand the nature of real C∗-algebras is that they can
be realised over a suitable real Hilbert space, as explained in the following.

Remark 2.1.3. For any real C∗-algebra A, the real subalgebra B = AR consisting of all
real elements is a Banach ∗-algebra such that for every a ∈ B, ‖a∗a‖ = ‖a‖2 and 1 + a∗a is
invertible in the unitisation of B. Building on the work of Arens [4] and Arens–Kaplansky
[5] in the commutative case, Ingelstam [34] proved that conversely, if B is a real Banach
∗-algebra satisfying the above assumptions, then its complexification A = BC is a real C∗-
algebra for the conjugation given by the complex conjugation

a + ib B a − ib for a, b ∈ B.

Moreover, he proved that every real C∗-algebra admits, for some real Hilbert space H , a
real isometric ∗-isomorphism onto a closed subalgebra of L(H) which is invariant under the
adjoint and the transpose. Here, L(−) denotes the set of bounded linear operators.

Although real C∗-algebras can thus always be realised on a real Hilbert space, in practice,
they also arise through quaternionic rather than real structures.

Definition 2.1.4 (Quaternionic structures of Hilbert spaces). Let H be a complex Hilbert
space. An anti-linear operator T : H → H is called quaternionic structure if T 2 = −1. That
is, T is anti-linear and we have

〈T x,Ty〉 = 〈y, x〉, 〈T x, y〉 = −〈Ty, x〉 ∀x, y ∈ H .

A complex Hilbert space equipped with a quaternionic structure is called a quaternionic
Hilbert space. A linear map between quaternionic Hilbert spaces is called quaternionic if it
intertwines the quaternionic structures.

Example 2.1.5. Let C2 be equipped with the quaternionic structure

t B

(
0 c

−c 0

)
.
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Then Adt defines a real structure on M2(C) which is given by(
a b
c d

)
=

(
d −c
−b a

)
∀a, b, c, d ∈ C.

For the real C∗-algebra (M2(C),Adt), the subalgebra of real elements is spanned (over the
real numbers) by the identity matrix and the matrices iσx, iσy, iσz, where

σx B

(
0 1
1 0

)
, σy B

(
0 −i
i 0

)
, σz B

(
1 0
0 −1

)
. (2.1)

This subalgebra is thus isomorphic (as an algebra over R) to the quaternions H. For this
reason, we will denote the real C∗-algebra M2(C) equipped with the conjugation Adt by HC.

With the notion of real C∗-algebras in place, we now introduce graded C∗-algebras.

Definition 2.1.6 (Graded real C∗-algebra). A Z/2Z-grading on a ∗-algebra A is a decompo-
sition

A = A(0̄) ⊕ A(1̄),

where Z/2Z = {0̄, 1̄}, into two closed subspaces such that

A(i)A( j) ⊆ A(i+ j), ∗(A(i)) ⊆ A(i) ∀i, j ∈ Z/2Z.

When equipped with a grading, A is called graded ∗-algebra. Throughout the present work
we use the terms ‘Z/2Z-grading’ and ‘grading’ synonymously. The elements of A(0̄) are called
even, while those of A(1̄) are called odd. An element is called homogeneous, if it is either even
or odd. For homogeneous elements we call

|x| B

0̄ if x even,
1̄ if x odd,

the degree of x.

If A is a C∗-algebra, then we assume in addition that A(0̄) and A(1̄) are closed; in this case,
A is called a graded C∗-algebra.

If A is a real ∗-algebra and A is equipped with a grading, then these data are called graded
real ∗-algebra if A(0̄) and A(1̄) are invariant under conjugation. A graded real ∗-algebra that
is also a graded C∗-algebra is called a graded real C∗-algebra.

A map between graded ∗-algebras is called even if it preserves the grading.

Any (real) C∗-algebra A can be considered as a graded (real) C∗-algebra equipped with
the trivial grading A ≡ A(0̄) and A(1̄) = 0.

For graded ∗-algebras A and B, the algebraic tensor product A � B is graded by

(A � B)(k) B
⊕
i+ j=k

A(i) � B( j), ∀k ∈ Z/2Z.

If A and B are real, then so is A�B. If A and B are graded (real) C∗-algebras, then the grading
on A�B extends to the spatial tensor product A⊗B, turning it into a graded (real) C∗-algebra.

Apart from the spatial tensor product, there is the graded tensor product.
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Definition 2.1.7 (Graded tensor product). Let A and B be graded ∗-algebras and consider
the following ∗-algebra structure of A � B:

(a ⊗ b)(a′ ⊗ b′) B (−1)|a
′ ||b|aa′ ⊗ bb′, (a ⊗ b)∗ B (−1)|a||b|a∗ ⊗ b∗,

for all homogeneous elements a, a′ ∈ A and b, b′ ∈ B. This defines a graded ∗-algebra which
we denote by A �̂ B. If A and B are real then so is A �̂ B.

If A and B are graded C∗-algebras, there is the following C∗-norm on A �̂ B [83]:∥∥∥∥∥∥∥
m∑

i=1

ai ⊗ bi

∥∥∥∥∥∥∥
2

B sup
(ρ ⊗ λ)

[(∑n
j=1 x j ⊗ y j

)∗(∑m
i=1 ai ⊗ bi

)∗(∑m
i=1 ai ⊗ bi

)(∑n
j=1 x j ⊗ y j

)]
(ρ ⊗ λ)

[(∑n
j=1 x j ⊗ y j

)∗(∑n
j=1 x j ⊗ y j

)]
,

where the supremum is taken over all non-zero finite sums
∑n

j=1 x j ⊗ y j ∈ A �̂ B and all states
ρ of A and λ of B such that ρ|A(1̄) ≡ 0 and λ|B(1̄) ≡ 0.

The completion of A �̂ B w.r.t. this norm is denoted by A ⊗̂ B.

If A or B is a nuclear C∗-algebra, A ⊗̂ B is the universal enveloping C∗-algebra of A �̂ B
[15, 14.4.1]. We will consider the graded tensor product almost exclusively in the context,
where one of the C∗-algebras is a finite-dimensional Clifford algebra which are in particular
nuclear.

2.2 Clifford algebras

In this section, we will summarise the most important properties of Clifford algebras. Clif-
ford algebras will play an essential role in the construction of (real) K-theory and the system-
atic description of symmetric free-fermion many-particle ground states. This introduction is
based on [77, Sec. 1.2] and [55, Ch. I].

Definition 2.2.1 (Clifford algebra). Let V be a complex vector space equipped with a bilinear
form q. Let T (V) B

⊕∞

r=0 V⊗r be the tensor algebra of V. Then the Clifford algebra is
defined as the quotient

C`(V) B T (V)/I,

where I ⊆ T (V) is the ideal generated by all elements of the form v ⊗ v − q(v) for v ∈ V.
If V is a real vector space, i.e. if there is an anti-linear involution · : V → V, we demand

that the quadratic form is real. Then T (V) and C`(V, q) become real algebras equipped with
the natural conjugation defined by

v1 ⊗ · · · ⊗ vk = v1 ⊗ · · · ⊗ vk ∀k ≥ 1, v1, . . . , vk ∈ V.

There is a natural (real) embedding j : V → C`(V, q) which identifies V with V⊗1 ⊆

C`(V, q). By [55, Ch. I, Prop. 1.1], the Clifford algebra is universal in the sense that for every
linear map j̃ : V → A into a unital complex algebra A such that j̃(v)2 = q(v)1A, there is a
unique algebra morphism ϕ : C`(V, q)→ A, such that ϕ ◦ j = j̃.

Clifford algebras can be canonically considered as graded algebras by introducing the
following natural grading.
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Definition 2.2.2 (Natural grading). The automorphism α : V → V; v 7→ −v extends to a
involutive automorphism α : C`(V, q)→ C`(V, q). This defines a grading on C`(V, q) by

C`(V, q)(i) B 1
2
(

id +(−1)iα
)
C`(V, q) for i = 0̄, 1̄ ∈ Z/2Z.

This grading is called the natural grading of C`(V, q).

Clifford algebras for finite-dimensional vector spaces can also be defined in terms of
generators, as explained in the following proposition.

Proposition 2.2.3. [77, Cor. 1.2.4] Let {e1, . . . , en} be a basis of V which is orthogonal w.r.t.
the symmetric bilinear form q(v1, v2) B 1

2
(
q(v1 + v2) − q(v1) − q(v2)

)
associated with q. Then

a linear basis of C`(V, q) is given by

{ei1 · · · eik | i1 < . . . < ik, 0 ≤ k ≤ n},

where ei1 · · · eik = 1 if k = 0. C`(V, q) is uniquely determined by the generators e1, . . . , en and
the relations

eie j + e jei = 2δi jq(ei) ∀i, j = 1, . . . , n.

By [77, Thm. 1.2.3], for a q-orthogonal decomposition V = V1 ⊕ V2 (i.e. q(v1 + v2) =

q(v1) + q(v2)∀v1 ∈ V1, v2 ∈ V2), there is a natural isomorphism of oriented graded (real)
Clifford algebras

C`(V1, q1) ⊗̂C`(V2, q2) −→ C`(V, q); v1 ⊗ v2 7→ v1v2,

where qi denotes the restriction of q onto Vi for i = 1, 2.
From hereon, we assume that the vector space V is a Hilbert space with inner product

〈·, ·〉 and that the quadratic form q is of the form q(v) = 〈γ(v), v〉 for some Hermitian unitary
anti-linear γ : V → V . Then we can define a ∗-involution of C`(V, q) by

(v1 · · · vk)∗ = v∗k · · · v
∗
1, where v∗i B γ(v)∀i = 1, . . . , k,

for all k ≥ 1. Then C`(V, q) becomes a ∗-algebra. By the following proposition, there is a
suitable norm on C`(V, q) such that it becomes a C∗-algebra w.r.t. this ∗-structure.

Proposition 2.2.4. [77, p. 11] Let V be a finite n-dimensional vector space and consider the
exterior algebra

Λ(V) =

n⊕
i=0

Λi(V).

This space can be equipped with the Z/2Z-grading

Λ(V)(0̄) B
⊕
i even

Λi(V), Λ(V)(1̄) B
⊕
i odd

Λi(V).

Then we obtain an even ∗-representation π : C`(V ⊕ V, q ⊕ −q)→ End(Λ(V)), given by

π(v ⊕ w) = εv+w − ιγ(v)−γ(w),
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where we define for all v ∈ V, x1 ∧ . . . ∧ xk ∈ Λk(V) and i, k = 1, . . . , n

εv(x1 ∧ . . . ∧ xk) B v ∧ x1 ∧ . . . ∧ xk, (2.2)

ιv(x1 ∧ . . . ∧ xk) B
k∑

i=1

(−1)i+1〈v, xi〉x1 ∧ . . . ∧ xi−1 ∧ xi+1 ∧ . . . ∧ xk. (2.3)

This induces an isomorphism C`(V ⊕ V, q ⊕ −q) � End(Λ(V)) of graded ∗-algebras.
The choice of an orthonormal basis {e1, . . . , en} in V defines the basis

{ei1 ∧ . . . ∧ eik | i1 < . . . < ik, 1 ≤ k ≤ n}

of Λ(V) and thus an inner product by demanding this basis to be orthonormal. The corre-
sponding norm on Λ(V) defines a C∗-norm on C`(V ⊕ V, q ⊕ −q). A C∗-norm on C`(V, q) is
induced by the embedding

C`(V, q) 3 x 7→ x ⊗ 1 ∈ C`(V, q) ⊗̂C`(V,−q) � C`(V ⊕ V, q ⊕ −q).

We are primarily interested in Clifford algebras over finite-dimensional real or complex
Hilbert spaces. By Proposition 2.2.3, these can be described in the following systematic
fashion.

Definition 2.2.5 (Clifford algebras C`r,s, C`r,s). Let dim(V) = r + s for some r, s ∈ N and
fix an orthonormal basis e1, . . . , er+s. Let the quadratic form be given by q(ea) = ‖ea‖

2 = 1
for a = 1, . . . , r and q(er+α) = −‖er+α‖

2 = −1 for α = 1, . . . , s. The assertions above
imply that the Clifford algebra C`(V, q) is the universal C∗-algebra with unitary generators
k1, . . . , kr, j1, . . . , js and the relations

kakb + kbka = 2δa,b

jα jβ + jβ jα = −2δα,β
ka jα + jαka = 0

 ∀a, b = 1, . . . , r;α, β = 1, . . . , s.

The natural grading defines the generators k1, . . . , kr j1, . . . , js to be odd. The ka ( jα) are
called positive (negative) generators, respectively. We denote this Clifford algebra by C`r,s.

The corresponding real Clifford algebra, equipped with the real structure which is defined
by declaring the generators to be real, is denoted by C`r,s.

These Clifford algebras over finite-dimensional Hilbert spaces can be equipped with so-
called orientations. Orientation-preserving isomorphisms between Clifford algebras will play
an important role in the description of K-theory in terms of Kasparov groups.

Definition 2.2.6 (Standard orientation of C`r,s and C`r,s). An orientation of C`r,s is defined
as a homogeneous element ω ∈ C`r,s such that

ω∗ = ±ω, ω∗ω = 1, ω = ω

and xω = (−1)|x|(1+|ω|)ωx for all homogeneous x ∈ C`r,s. The standard orientation of C`r,s is
defined by

ωr,s B k1 · · · kr j1 · · · js.

An orientation of C`r,s is defined analogously without the reality constraint. The standard
orientation of C`r,s is defined by

ωCr,s B (−i)sk1 · · · kr j1 · · · js.
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We now collect some periodicity results on these Clifford algebras, cf. [6, §4]. Funda-
mental for all of the following assertions is the real even orientation-preserving isomorphism

C`p,q ⊗̂C`r,s � C`p+r,q+s. (2.4)

On the level of generators, it is induced by

kb ⊗ 1 7→ kb for b = 1, . . . , p,

jβ ⊗ 1 7→ jβ for β = 1, . . . , q,
1 ⊗ ka 7→ (−1)qkp+a for a = 1, . . . , r,
1 ⊗ jα 7→ jq+α for α = 1, . . . , s.

This also defines an orientation-preserving isomorphism for the complex Clifford algebras

C`p,q ⊗̂C`r,s � C`p+r,q+s. (2.5)

Remark 2.2.7. The ∗-morphism C`0,1 → C`1,0 defined by j1 7→ ik1 defines an even iso-
morphism C`0,1 � C`1,0 between graded complex C∗-algebras, which preserves the standard
orientations. In combination with Equation (2.5), this induces an even orientation-preserving
∗-isomorphism C`r,s+1 � C`r+1,s. Thus C`r,s+1 only depends on the sum r + s.

The complex Clifford algebra C`r,s is therefore often denoted by C`r+s. However, we
refrain from using this notation in the present work.

The key to many periodicity arguments of Clifford algebras is the so-called (1, 1)-periodicity
which we explain next.

Proposition 2.2.8 (Clifford (1, 1)-periodicity). There is an isomorphism of real C∗-algebras
C`1,1 −→ M2(C), defined on generators by

k1 7−→

(
0 1
1 0

)
, j1 7−→

(
0 −1
1 0

)
.

If we grade M2(C) by

M2(C)(0̄) B

{(
∗ 0
0 ∗

)}
, M2(C)(1̄) B

{(
0 ∗

∗ 0

)}
,

this defines an even isomorphism between graded C∗-algebras. In particular, we have

C`r+1,s+1 � C`r,s ⊗̂C`1,1 � C`r,s ⊗̂M2(C) ∀r, s ∈ N.

The same assertions hold for complex Clifford algebras.

Due to the (1, 1)-periodicity, all Clifford algebras C`r,s are stably isomorphic to Clifford
algebras with r = 0 or s = 0, depending on the sign of r − s. We can further improve this
statement by the use of the following proposition.

Proposition 2.2.9. [6, Prop. 4.2] There are isomorphisms of graded real C∗-algebras

C`0,r+2 � C`0,2 ⊗C`r,0, C`r+2,0 � C`2,0 ⊗C`0,r
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induced respectively by  jα 7−→ jα ⊗ 1, if α = 1, 2,
jα 7−→ j1 j2 ⊗ kα−2, if α = 3, . . . , r + 2,

and ka 7−→ ka ⊗ 1, if a = 1, 2,
ka 7−→ k1k2 ⊗ ja−2, if a = 3, . . . , r + 2.

Note that above, we consider the ungraded tensor product.
The same assertions hold for complex Clifford algebras.

Recall the definition of the real C∗-algebra HC from Example 2.1.5. It is easy to see that
the identification j1 7→ iσx, j2 7→ iσy induces an isomorphism

C`0,2 � HC

of ungraded real C∗-algebras. Similarly, there is an isomorphism

C`2,0 � M2(C)

of ungraded real C∗-algebras, induced by k1 7→ σz, k2 7→ σx.
From this, we deduce, cf. [6, §4], isomorphisms of ungraded real C∗-algebras

C`0,8 � C`0,2 ⊗C`0,2 ⊗C`2,0 ⊗C`2,0 � HC ⊗ HC ⊗ M4(C).

Since HC ⊗ HC � M4(C) as real C∗-algebras, it follows that

C`0,8 � M16(C)

as ungraded real C∗-algebras. A similar argument also shows

C`8,0 � M16(C)

as ungraded real C∗-algebras. This is the mod 8 periodicity of real Clifford algebras [6, Table
1]. Disregarding the real structure, we have M2(C) = HC; hence, we obtain the isomorphism
of (ungraded) C∗-algebras

C`0,2 � C`2,0 � M2(C).

This is the mod 2 periodicity of complex Clifford algebras.
Summarising, up to stable isomorphisms, there are only eight real Clifford algebras C`r,s

and only two complex Clifford algebras C`r,s.
From the above, we also deduce the following isomorphism:

C`0,s+4 � C`0,2 ⊗C`s+2,0 � C`0,2 ⊗C`2,0 ⊗C`0,s � M2(HC) ⊗C`0,s,

which establishes a symmetry between the Clifford algebras C`0,s with 0 6 s 6 3 and the
ones with 4 6 s 6 7. With these results it is possible to compute C`0,s and C`0,s in all cases,
see Table 2.1. This reproduces the result from [6, Table 2].

In particular, we obtain the following corollary.
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s C`0,s C`0,s

0 C = RC C
1 CC C ⊕ C
2 HC M2(C)
3 HC ⊕ HC M2(C) ⊕ M2(C)
4 M2(HC) M4(C)
5 M4(CC) M4(C) ⊕ M4(C)
6 M8(C) = M8(RC) M8(C)
7 M8(C) ⊕ M8(C) M8(C) ⊕ M8(C)

Table 2.1: Clifford algebras

Proposition 2.2.10. If s . 3 mod 4, then C`0,s is simple as a real C∗-algebra. Moreover, any
two finite-dimensional real ∗-representations are unitarily equivalent, provided only that they
have the same dimension.

If s . 1 mod 2, thenC`0,s is simple as a complex C∗-algebra and any two finite-dimensional
∗-representations are unitarily equivalent, provided they have the same dimension.

Proof. Simplicity is clear. Any finite-dimensional (real) ∗-representation is the direct sum of
simples, and hence, a multiple of the unique isomorphism class of simple (real) ∗-represen-
tations. �

It is also not hard to deduce the following statement, which may be found in [55, Ch. 1,
Prop. 5.9 & Prop. 5.10].

Proposition 2.2.11. Let s ≡ 3 mod 4 and set ω B j1 · · · js. There are up to unitary equiv-
alence exactly two simple real ∗-representations φ of C`0,s, and they are distinguished by
φ(ω) = 1 and φ(ω) = −1, respectively.

A finite-dimensional real ∗-representation (W, φ) of C`0,s extends to a real ∗-representation
of C`0,s+1 if and only if the eigenvalues ±1 of φ(ω) have equal multiplicity. In this case, the
unitary equivalence class of (W, φ) and indeed of its extension to C`0,s+1 is uniquely deter-
mined by the dimension of W.

Similarly, for s ≡ 1 mod 2 there are two simple ∗-representations of C`0,s, which are
distinguished by φ(ωC0,s) = 1 and φ(ωC0,s) = −1, if

(
ωC0,s

)2
= 1, and by φ(ωC0,s) = i and

φ(ωC0,s) = −i, if
(
ωC0,s

)2
= −1. A finite-dimensional ∗-representation (W, φ) of C`0,s extends

to a ∗-representation of C`0,s+1 if and only if the eigenvalues ±1 resp. ±i of φ(ωC) have
equal multiplicity. In this case, the equivalence class of (W, φ) and its extension to C`0,s+1 is
uniquely determined by the dimension of W.

Proof. The first part is immediate from Schur’s lemma. In particular, the unitary equiva-
lence class of any finite-dimensional real ∗-representation (W, φ) of C`0,n is determined by
the multiplicity of the eigenvalues ±1 of φ(ω).

Assume that in the representation (W, φ), W± B ker
(
φ(ω)∓1

)
have equal dimension. The

automorphism α of Definition 2.2.2 satisfies α( jα) = − jα for all α = 1, . . . , s and therefore

α(ω) = −ω.
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It follows that φ+ ◦ α and φ− are unitarily equivalent, where φ± is the restriction of φ to W±.
Hence, there is a real unitary isomorphism u : W+ −→ W− such that

−uφ+( jα)u∗ = uφ+(α( jα))u∗ = φ−( jα), ∀α = 1, . . . , s.

We may define

φ( js+1) B
(
0 −u∗

u 0

)
.

This defines the required extension.
Conversely, let (W, φ) be a real ∗-representation of C`0,s+1. Because φ(ωs) anti-commutes

with φ( js+1), the eigenvalues of φ(ωs) have equal multiplicity. The statement about unique-
ness is obvious from Proposition 2.2.10, as s + 1 ≡ 0 mod 4.

The complex case is proved analogously. �



Chapter Three

Real and complex K-theory and
KK-theory

There are many equivalent pictures of K-theory that have been developed over the past
decades. One of the first definitions of K-theory for real and complex C∗-algebras can be
found in works by Karoubi from 1969 [39, 40]. Based on this work, Kasparov developed in
1975 a picture of (real) K-theory which we will call Kasparov’s Fredholm picture of (real)
K-theory [41].

In 1981, Kasparov’s generalisation of this picture of (real) K-theory to (real) KK-theory,
also called Kasparov’s bivariant K-theory, has been published. We will give an introduction
to Kasparov’s theory in Section 3.1. Some aspects of this more general theory will be needed
for the construction of morphisms between different (real) K-groups as well as index maps for
topological phases. Thereafter, we will introduce Kasparov’s Fredholm picture of K-theory
explain its relation to KK-theory. We will also compare this picture for the real and complex
K-theory of C to the Clifford module picture of these groups [55].

Prompted by Kasparov’s use of graded C∗-algebras, in 1986, Van Daele developed a
simple uniform picture of the K-theory of graded real and complex Banach algebras [86, 87].
We will review this theory in Section 3.2. The first one to use Van Daele’s theory in the
context of the classification of topological phases was Kellendonk [45]. He observed that this
picture allows for an explicit construction of topological phases in the bulk of topological
insulators and superconductors.

In Section 3.3, we will establish a new formulation of real and complex K-theory, which
is closely related to Van Daele’s picture of K-theory. In fact, we will construct an explicit
isomorphism between our new picture and Van Daele’s picture of K-theory. This new picture
of K-theory is adjusted to our description of physical ground states in the bulk of topological
insulators and superconductors in Chapter 4. It will allow for a physically natural and math-
ematically systematic definition of topological phases in the bulk for all symmetry classes of
the Tenfold Way in terms of K-theory.

Sections 3.1, 3.2 are expository in nature, and introduce basics of KK-theory and Van
Daele’s K-theory by drawing upon the literature. The material of Subsections 3.1.2, 3.3.2 was
published in the preprint Bulk-boundary correspondence for disordered free-fermion topolog-
ical phases by A. Alldridge, C. Max and M. R. Zirnbauer, 2019, [1]. Here, we give a more
extensive account of the various different pictures of K-theory used in the sequel, along with

19
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the picture-changing isomorphisms that are essential for the derivation of our main results.
Note in passing that in the preprint, we use a different definition of Van Daele’s K-theory than
the one discussed here.

3.1 KK-theory
In this section, we introduce real and complex KK-theory, also called Kasparov’s bivariant
K-theory, which generalises (real) K-theory. Here, we will focus on the aspects of KK-
theory that are actually relevant for the present work. We are especially interested in the
aspects of real KK-theory, which are discussed in very detail in [77]. General introductions
to complex KK-theory can be found in [15, §17], [35]. This section is based on the references
[15, 43, 77].

The fundamental objects of this theory are Hilbert modules, which are defined as follows.

Definition 3.1.1 (Hilbert module). Let B be a complex C∗-algebra. A pre-Hilbert B-module
E is a right B-module with a B-valued sesquilinear positive-definite inner product

〈·, ·〉 : E × E → B

such that
〈x, yb〉 = 〈x, y〉b 〈y, x〉 = 〈x, y〉∗ ∀x, y ∈ E, b ∈ B.

The completion of E w.r.t. the norm ‖x‖ is called a Hilbert B-module.
If B is a real C∗-algebra, then a real Hilbert module is defined as in the complex case

with the additional condition of existence of an anti-linear involution (−) : E → E such that

xb = x̄b̄, 〈x, y〉 = 〈x̄, ȳ〉 ∀x ∈ E, b ∈ B.

The involution (−) is called a real structure on E.

Example 3.1.2. [15, Ex. 13.1.2] Let B be a real C∗-algebra.

• The B-module E B B equipped with the inner product 〈b1, b2〉 = b∗1b2 for b1, b2 ∈ E
and the real structure of B defines a real Hilbert B-module.

• The set {
(bn)n≥0 ∈

∞∏
n=0

B

∣∣∣∣∣∣ ∞∑
n=0

b∗nbn converges
}

defines a real Hilbert B-module w.r.t. the inner product

〈b, b′〉 :=
∞∑

n=0

b∗nb′n for all b = (b0, b1, . . . ), b′ = (b′0, b
′
1, . . . ) ∈ HB

and the real structure (b0, b1, . . . ) B
(
b0, b1, . . .

)
for all (b0, b1, . . . ) ∈ HB.

This Hilbert module is denoted byHB and is called the Hilbert space over B.

Equally important for us will be the so-called graded Hilbert modules, which generalise
Hilbert modules. These are defined as follows.
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Definition 3.1.3 (Graded Hilbert module). Let B = B(0̄) ⊕ B(1̄) be a graded complex C∗-
algebra. A Hilbert B-module E is graded if there is a Z/2Z-grading E = E(0̄) ⊕E(1̄) with even
part E(0̄) and odd part E(1̄) such that

E(n)B(m) ⊆ E(n+m) and 〈E(n), E(m)〉 ⊆ B(n+m)

for all n,m ∈ Z/2Z =
{
0̄, 1̄

}
.

For a graded real C∗-algebra, a graded real Hilbert B-module is defined as a real Hilbert
B-module with the same additional obstruction on the grading as for the complex case. Fur-
thermore, the real structure of the Hilbert B-module has to preserve the grading.

An element x ∈ E is called homogeneous if x ∈ E(0̄) or x ∈ E(1̄). In this case, we call

|x| B

0̄ if x ∈ E(0),

1̄ if x ∈ E(1),
the degree of x.

Before we continue, we present the most important examples of graded Hilbert modules
for this work.

Example 3.1.4. Let B be a graded real C∗-algebra.

• The real Hilbert space over B equipped with the induced grading of the C∗-algebra B,
i.e.

H
(i)
B =

{
(b0, b1, . . . ) ∈ HB

∣∣∣∣ bn ∈ B(i)
}

for i = 0̄, 1̄ ∈ Z/2Z,

defines a graded real Hilbert B-module. This grading is called the natural grading.

• Let E = E(0̄) ⊕ E(1̄) be a graded real Hilbert B-module. Interchanging E(0̄) and E(1̄)

defines the so-called opposite grading. The resulting graded real Hilbert module is
denoted by Eop.

• LetHB be naturally graded. Then ĤB := HB⊕H
op
B is a graded real Hilbert B-module,

too. If B is trivially graded, then ĤB is called the graded Hilbert space over B.

In this work, we will solely consider countably generated Hilbert modules.

Definition 3.1.5 (Countably generated Hilbert module). Let E be a Hilbert B-module. E is
called countably generated if there is a countable family of generators {xi}i∈I in E such that{∑

k xik bk | bk ∈ B
}

is dense in E.

The following famous theorem by Kasparov is crucial for the explicit description of Kas-
parov groups.

Theorem 3.1.6 (Kasparov’s Stabilisation Theorem). [42, Thm. 2],[15, Thm. 14.6.1] Let E
be a countably generated graded Hilbert B-module over a real graded C∗-algebra B. Then
E ⊕ ĤB � ĤB. In particular, if E and B are trivially graded, then E ⊕HB � HB.

In view of the intersection product of Kasparov groups, which will be introduced in Sub-
section 3.1.1, we also introduce the tensor product of Hilbert modules.
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Definition 3.1.7 (Tensor product of Hilbert modules). Let B1, B2 be (real) graded C∗-algebras
and E1 and E2 be graded (real) Hilbert B1- and B2-modules, respectively.

Given a (real) even ∗-morphism ψ : B1 → B(E2), we can consider E2 as a left-B1-module
and define E1 �ψ E2 as the usual algebraic tensor product equipped with the Z/2Z-grading

|x ⊗ y| := |x| + |y| ∀ x ⊗ y ∈ E1 �ψ E2.

Moreover, we define the following inner product on the B2-module E1 �ψ E2:

〈x1 ⊗ x2, y1 ⊗ y2〉 :=
〈
x2, ψ(〈x1, y1〉)y2

〉
.

By dividing out elements of zero length and taking the norm closure, we obtain a Hilbert
B2-module which we denote by E1 ⊗ψ E2.

The outer tensor product, denoted by E1 ⊗̂ E2, is defined as the closure of the algebraic
tensor product E1 �̂ E2, equipped with the same grading as before, the right B1 �̂ B2-module
structure

(x1 ⊗ x2)(b1 ⊗ b2) B (−1)|x2 ||b1 |x1b1 ⊗ x2b2

and the inner product〈
x1 ⊗ x2, y1 ⊗ y2

〉
B (−1)|x2 |(|x1 |+|y1 |)〈x1, y1〉 ⊗ 〈x2, y2〉 ∈ B1 ⊗̂ B2.

Whenever one of two factors is trivially graded, we simply write E1 ⊗ E2 B E1 ⊗̂ E2.

With the most important properties of Hilbert modules in place, we now consider the
adjointable operators over Hilbert modules in more detail. These are defined as follows.

Definition 3.1.8 (Adjointable operators). A map T : E → E over a Hilbert module E is
called adjointable if there is a second map T ∗ : E → E satisfying

〈T x, y〉 = 〈x,T ∗y〉 for all x, y ∈ E.

An adjointable map is automatically linear and continuous, and its adjoint T ∗ is unique. The
set B(E) of all adjointable morphisms defines a C∗-algebra w.r.t. the composition and linear
combination of linear maps, the adjoint operation and the operator norm. If E is a real
Hilbert module, then

T (x) B T (x) ∀x ∈ E

defines a real structure on B(E). If E is graded, then a canonical grading of B(E) is defined
by

T ∈ B(E)(n) ⇔ T E(m) ⊆ E(n+m) ∀m, n ∈ Z/2Z.

The (real) graded C∗-algebra B(E1, E2) of all adjointable morphisms between two (real)
graded Hilbert modules E1, E2 can be defined in the same manner.

An important example for adjointable operators are the ‘rank one’ operators

|x〉〈y|(z) B x〈y, z〉 ∀ x, y, z ∈ E.

It is easy to check that (|x〉〈y|)∗ = |y〉〈x|. For any T ∈ B(E), we have

T |x〉〈y| = |T x〉〈y|, |x〉〈y|T = |x〉〈T ∗y|,

showing that the product is again a rank one operator. Therefore, the rank one operators
generate the following non-trivial ideal in B(E).
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Definition 3.1.9 (Compact operators). Let F (E) ⊂ B(E) be the ideal of linear combinations
of rank one operators over a Hilbert B-module E. We call this the ideal of B-finite rank
operators.

The norm closure of F (E) is denoted by K(E). The elements in K(E) are called B-
compact operators.

The compact operators over a (real) graded Hilbert module E form a (real) graded C∗-
algebra K(E), which is an ideal in B(E). The compact operators K(E1, E2) ⊆ B(E1, E2)
between two Hilbert modules E1, E2 can be defined in a similar manner.

Compact operators over Hilbert modules can be related to compact operators over Hilbert
spaces, as explained in the following lemma.

Lemma 3.1.10. [15, Ex. 13.2.4] Let B be real C∗-algebra. Then K ⊗ B � K(HB), where K
denotes the compact operators over an infinite-dimensional separable real Hilbert space.

Note that the statement is in general not true on the level of adjointable operators, i.e.
B(HB) is in general not isomorphic to L(H) ⊗ B. Instead, one can identify the adjointable
operators with multiplier algebras, which are defined as follows.

Definition 3.1.11 (Stable multiplier algebra). Let A be a C∗-algebra. Then the multiplier
algebra of A is defined as the maximal C∗-algebra containing A as an essential ideal. The
outer multiplier algebra is defined as Q(A) B M(A)/A.

The stable multiplier algebra is defined as Ms(A) B M(A⊗K). Similarly, the stable outer
multiplier algebra is defined as Qs(A) B Q(A ⊗ K).

The multiplier algebra can be realised more concretely as the C∗-algebra of double cen-
tralisers, i.e. pairs (T1,T2) of mappings T1,T2 : A→ A with

xT1(y) = T2(x)y ∀x, y ∈ A.

The ∗-involution is given by (T1,T2)∗ =
(
T ∗2 ,T

∗
1
)
, where T ∗i (x) B Ti(x∗)∗ for all x ∈ A.

If A is real, then M(A) becomes a real C∗-algebra with the real structure (T1,T2) =(
T1,T2

)
.

If A is graded, then M(A) becomes a graded C∗-algebra with the grading

M(A)(n) B
{
(T1,T2) | T n

i (A(m)) ⊆ A(n+m) ∀i = 1, 2; m = 0̄, 1̄
}

for n = 0̄, 1̄.

For more details on multiplier algebras, see [65]. Multiplier algebras are closely related
to the bounded operators over Hilbert modules, as explained in the following.

Theorem 3.1.12. [42, Thm. 1] Let E be a (real) graded Hilbert module. Then there is a
(real) ∗-isomorphism B(E)→ M(K(E)) between (real) graded C∗-algebras, which is defined
by

B(E) 3 T 7→ (T1,T2) ∈ M
(
K(E)

)
,

where T1(|x〉〈y|) = |T x〉〈y|, T2(|x〉〈y|) = |x〉〈T ∗y| for all x, y ∈ E. In particular,

Ms(B) B M
(
K(H) ⊗ B

)
� M

(
K(HB)

)
� B(HB)

for any (real) infinite-dimensional separable Hilbert spaceH .
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Now we have established the basic tools that are needed for the definition of Kasparov
groups. The elements of these groups are equivalence classes of Kasparov modules, which
are defined as follows.

Definition 3.1.13 (Kasparov modules). [43, §4: Def. 1] Let A, B be (real) graded C∗-
algebras. Let E(A, B) be the set of triples (E, ψ, F), where E is a graded (real) countably
generated Hilbert B-module, ψ : A → B(E) is a (real) graded ∗-morphism and F ∈ B(E) is
an odd (real) operator, such that

[ψ(a), F], (F2 − 1)ψ(a), (F − F∗)ψ(a) ∈ K(E) ∀ a ∈ A

for the graded commutator [·, ·], defined by [x, y] = xy−(−1)|x||y|yx for homogeneous x, y ∈ E.
The elements of E(A, B) are called (real) Kasparov modules.

Let D(A, B) ⊆ E(A, B) be the set of degenerate Kasparov modules, which are defined by
the property

[ψ(a), F] = (F2 − 1)ψ(a) = (F − F∗)ψ(a) = 0 ∀ a ∈ A.

Equivalence relations for these Kasparov modules are defined as follows.

Definition 3.1.14 (Equivalence classes of Kasparov modules). Let A, B be (real) graded C∗-
algebras. We define the following equivalence relations on E(A, B):

• Two modules (E1, ψ1, F1), (E2, ψ2, F2) ∈ E(A, B) are unitarily equivalent if there is an
even unitary (real) u ∈ B(E1, E2) such that ψ1(a) = u∗ψ2(a)u∀ a ∈ A and F1 = u∗F2u.

• Two modules (E1, ψ1, F1), (E2, ψ2, F2) ∈ E(A, B) are homotopy equivalent if there is an
element (E, ψ, F) ∈ E

(
A,C([0, 1], B)

)
such that

(
E ⊗evi B, evi ◦ ψ, (evi)∗(F)

)
is unitarily

equivalent to (Ei, ψi, Fi) for i = 0, 1, where evi denotes the evaluation at i ∈ [0, 1].

In the case E1 = E2, we call them standard homotopy equivalent if there is a cycle(
C([0, 1]) ⊗ E1, 1 ⊗ ψ, F

)
with ψ(0) = ψ1, F(0) = F1 and ψ(1) = ψ2, F(1) = F2, such

that t 7→ ψ(t)(a) and t 7→ F(t) are strong-∗-continuous paths for all a ∈ A. They are
called operator homotopy equivalent if the stronger conditions that ψ(t) is constant and
the path t 7→ F(t) is norm continuous are satisfied.

We denote the corresponding equivalence classes of Kasparov modules by E(A, B) and the
equivalence classes of degenerate Kasparov modules byD(A, B).

The direct sum

[(E1, ψ1, F1)] ⊕ [(E2, ψ2, F2)] := [(E1 ⊕ E2, ψ1 ⊕ ψ2, F1 ⊕ F2)] ∈ E(A, B)

defines an Abelian semi-group structure on E(A, B). The following lemma implies that the
degenerate Kasparov modules represent the neutral element in this Abelian semi-group.

Lemma 3.1.15. [15, Prop. 17.2.3] All (E, ψ, F) ∈ D(A, B) are homotopically equivalent to
the Kasparov module (0, 0, 0).

By the following theorem, the direct sum defines an Abelian group structure on E(A, B).
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Theorem 3.1.16. [43, Thm. 1] E(A, B) equipped with the direct sum defines a group. The
inverse of an element [(E, ψ, F)] ∈ E(A, B) is given by

−[(E, ψ, F)] =
[(

Eop, ψop,−F
)]
,

where ψop is defined by ψop(a) := (−1)|a|a for homogeneous a ∈ A.

Definition 3.1.17 (Kasparov groups). For complex graded C∗-algebras A, B the Kasparov
group KK(A, B) is defined as the Abelian group

(
E(A, B),⊕

)
.

If A and B are real, we define the real Kasparov group KKR(A, B) as the corresponding
Abelian group of equivalence classes of real Kasparov modules E(A, B).

The elements of Kasparov groups are called Kasparov classes.

Theorem 3.1.18. [15, Thm. 18.5.3] Let A be separable and B be σ-unital. Then one ob-
tains the same Kasparov groups KKR(A, B) and KK(A, B) if one restricts the equivalence
relations in Definition 3.1.14 to unitary equivalence and operator homotopy equivalence.
In other words, two (real) Kasparov modules (E1, ψ1, F1) and (E2, ψ2, F2) are equivalent in
the corresponding (real) Kasparov group if and only if there are degenerate (real) Kasparov
modules (E′1, ψ

′
1, F

′
1) and (E′2, ψ

′
2, F

′
2) such that

(E1, ψ1, F1) ⊕ (E′1, ψ
′
1, F

′
1) and (E2, ψ2, F2) ⊕ (E′2, ψ

′
2, F

′
2)

are connected by an operator homotopy, up to unitary equivalence. This was originally
proved by Skandalis [81].

The following proposition is crucial for the explicit description of Kasparov groups and
will also be important in our physical applications in Chapter 5.

Proposition 3.1.19. [77, Prop. 2.3.5] If A is separable and B isσ-unital, then in the definition
of Kasparov groups it is sufficient to consider Kasparov modules of the form(

ĤB, ψ : A→ B(ĤB), F
)
∈ E(A, B)

with F = F∗ and ‖F‖ ≤ 1.

Finally, we mention two important types of natural morphisms between Kasparov groups.

Definition 3.1.20 (Induced morphisms of Kasparov groups). [43, §4, Def. 4] A real even
∗-morphism f : A2 → A1 induces a morphism f ∗ : KKR(A1, B1)→ KKR(A2, B1) defined by

f ∗[(E, ψ, F)] = [(E, ψ ◦ f , F)].

A real even ∗-morphism g : B1 → B2 defines a morphism g∗ : KKR(A1, B1) → KKR(A1, B2)
defined by

g∗[(E, ψ, F)] =
[(

E ⊗g B2, g∗(ψ), g∗(F)
)]
.

The analogous statements are true for KK-groups.

Proposition 3.1.21. [77, p. 76], [15, 17.8.6] The map

E(A, B)→ E(A ⊗̂D, B ⊗̂D); (E, ψ, F) 7→ (E ⊗̂D, ψ ⊗ 1, F ⊗ 1)

commutes with direct sums and thus defines a natural morphism

τD : KKR(A, B)→ KKR(A ⊗̂D, B ⊗̂D).

If h : D1 → D2 is a real even ∗-morphism of real graded C∗-algebras, then (1 ⊗ h)∗ ◦ τD1 =

(1 ⊗ h)∗ ◦ τD2 as a map from KKR(A, B)→ KKR(A ⊗̂D1, B ⊗̂D2).
The analogous results hold for KK-groups.
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3.1.1 The intersection product
Now we come to the intersection product, also called Kasparov product. It is one of tools that
makes Kasparov’s theory so powerful for applications in geometry and physics. We will only
describe it superficially since a rigorous derivation of the intersection product is beyond the
scope of this work. The basic idea of the intersection product is to define for two Kasparov
modules (E1, ψ1, F1) ∈ E(A,D) and (E2, ψ2, F2) ∈ E(D, B) a suitable product module in
E(A, B) of the form (

E1 ⊗ψ2 E2, ψ1 ⊗ 1, ‘M(F1 ⊗ 1) + N(1 ⊗ F2)’
)

for some suitable operators M,N ∈ B(E1 ⊗ψ2 E2). However, this naive idea leads in general
to an ill-defined Kasparov module because of the following.

On the one hand, we can form the tensor product E := E1 ⊗ψ2 E2 and define the induced
operator F1⊗1 on E as well as the induced morphism ψ1⊗1 without ambiguity. On the other
hand, obtaining a well-defined induced operator for F2 is more difficult. The naive choice
1 ⊗ F2 is in general not well defined over E1 ⊗ψ2 E2, because in general F2 doesn’t commute
with the left action of D on E2. Following the arguments of [15, Sec. 18.3 & 18.4], this
problem is solved by introducing so-called connections, which can be thought of as operators
that are equal to 1 ⊗ F2 ‘up to compacts’.

Definition 3.1.22 (Connections). Let Ei be a countably generated (real) Hilbert Bi-module
for i = 0, 1 and let ψ : B1 → B(E2) be a (real) graded ∗-morphism. We define E := E1 ⊗ψ E2.

For x ∈ E1, let Tx ∈ B(E2, E) be defined by Tx(y) = x ⊗ y. Its adjoint is given by
T ∗x (z ⊗ y) = ψ(〈x, z〉)y. Given an F2 ∈ B(E2), an operator F ∈ B(E) is an F2-connection if
for all x ∈ E1

Tx ◦ F2 − (−1)|x||F2 |F ◦ Tx ∈ K(E2, E),

F2 ◦ T ∗x − (−1)|x||F2 |T ∗x ◦ F ∈ K(E, E2).

Given such a connection, it remains to find a ‘suitable’ combination of the operator F1⊗1
and the F2-connection. By ‘suitable’, we mean that the resulting Kasparov module is well-
defined and, moreover, it defines an intersection product, which is defined as follows.

Definition 3.1.23 (Intersection product). Let [x] = [(E1, ψ1, F1)] ∈ KKR(A,D) and [y] =

[(E2, ψ2, F2)] ∈ KKR(A,D). Let E B E1 ⊗ψ2 E2 and ψ B ψ1 ⊗ 1 : A→ B(E).
The Kasparov class [(E, ψ, F)] ∈ KKR(A, B) is an intersection product of [x] and [y],

denoted by [x] ⊗D [y], if F is an F2-connection for E1 and

ψ(a)
[
F1 ⊗ 1, F

]
ψ(a)∗ ≥ 0 modK(E) ∀a ∈ A.

The intersection product for KK-groups is defined analogously.

To find an explicit form of the intersection product is in general difficult, but its existence
is guaranteed by the following famous theorem of Kasparov [43, §4: Thm. 4].

Theorem 3.1.24. Let A,D, B be real graded C∗-algebras. Then for any [x] ∈ KKR(A,D)
and [y] ∈ KKR(D, B) there is a unique intersection product [x] ⊗D [y] ∈ KKR(A, B). If A is
separable and B,D are σ-unital, this defines an associative bilinear operation

⊗D : KKR(A,D) × KKR(D, B)→ KKR(A, B).
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This product is contravariantly functorial in A and covariantly functorial in B. The intersec-
tion product commutes with the natural morphism τ, i.e.

τD′
(
[x] ⊗D [y]

)
= τD′ ([x]) ⊗D τD′ ([y])

for all graded real C∗-algebras D′.
The intersection product can be generalised for separable real graded C∗-algebras A, A′

and σ-unital real graded C∗-algebras B, B′,D to an associative bilinear intersection product

⊗D : KKR(A, B ⊗̂D) × KKR(D ⊗̂ A′, B′)→ KKR(A ⊗̂ A′, B ⊗̂ B′),

with
[x] ⊗D [y] := τA′ (x) ⊗B ⊗̂D ⊗̂ A′ τB(y),

satisfying the same properties as the previous one.
The analogous assertions are true for KK-groups.

For [α] = [(E1, ψ1, F1)] ∈ KKR(A,D) and [β] = [(E2, ψ2, 0)] ∈ KKR(D, B), the intersec-
tion product can be written down explicitly:

[α] ⊗D [β] = [(E1 ⊗ψ2 E2, ψ1 ⊗ 1, F1 ⊗ 1)] ∈ KKR(A, B).

A more general case, where the explicit calculation of the intersection product is possible,
is presented in the following proposition, which we cite from [15, Prop. 18.10.1].

Proposition 3.1.25. Let A,D, B be (real) graded C∗-algebras with A separable and D, B σ-
unital. Let α = (E1, ψ1, F1) ∈ E(A,D) and (E2, ψ2, F2) ∈ E(D, B) such that F1 = F∗1 and
‖F1‖ ≤ 1. Let G be an F2-connection on E = E1 ⊗ψ2 E2. Set ψ := ψ1 ⊗ 1 and

F := F1 ⊗ 1 +
(
(1 − F2

1)1/2 ⊗ 1
)
G.

If [F, ψ(A)] ⊆ K(E), then γ = (E, ψ, F) ∈ E(A, B) is operator homotopic to the intersection
product for α and β, i.e. [γ] = [α] ⊗D [β].

Theorem 3.1.26 (Multiplicative unit of intersection product). [43, §4: Thm. 5] Let K be a
separable real graded Hilbert space and T1 : K (0̄) → K (1̄) be a real Fredholm operator such
that

1K (1̄) = T1T ∗1 and T ∗1 T1 = 1K (0̄) − p,

where p is a projection onto a one-dimensional subspace in K (0̄). We define

T B

(
0 T ∗1
T1 0

)
.

Then c1 B (K , idC,T ) ∈ E(C,C) defines a class [c1] ∈ KKR(C,C). This class is the multi-
plicative unit w.r.t. the intersection product in the sense

[x] ⊗C [c1] = [c1] ⊗C [x] = [x] ∀ [x] ∈ KKR(A, B).

By dropping the real structure, we obtain the multiplicative unit in KK(A, B).
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A major benefit of the intersection product is that we can interpret Kasparov classes as
morphisms between Kasparov groups. In particular, this gives us a tool to describe iso-
morphisms between Kasparov groups in a systematic fashion as explained in the following
theorem, cited from [43, §4: Thm. 6].

Theorem 3.1.27. Let A be a real graded separable C∗-algebra and B,D, E be real graded
σ-unital C∗-algebras.

1. Let [α] ∈ KKR(D, E) and [β] ∈ KKR(E,D) such that [α] ⊗E [β] = ±τD(c1) ∈
KKR(D,D) and [β] ⊗D [α] = ±τE(c1) ∈ KKR(E, E). Then the morphisms

⊗D [α] : KKR(A, B ⊗̂D) −→ KKR(A, B ⊗̂ E)

and ⊗E [β] : KKR(A, B ⊗̂ E) −→ KKR(A, B ⊗̂D)

are isomorphisms. If D and E are separable, then

[β]⊗D : KKR(A ⊗̂D, B) −→ KKR(A ⊗̂ E, B)

and [α]⊗E : KKR(A ⊗̂ E, B) −→ KKR(A ⊗̂D, B)

are also isomorphisms.

2. Assume that D and E are separable and let [α] ∈ KKR(D ⊗̂ E,C), [β] ∈ KKR(C,D ⊗̂ E)
such that [β] ⊗D [α] = ±τE(c1) ∈ KKR(E, E) and [β] ⊗E [α] = ±τD(c1) ∈ KKR(D,D).
Then the morphisms

[β]⊗D : KKR(A ⊗̂D, B) −→ KKR(A, B ⊗̂ E),

[β]⊗E : KKR(A ⊗̂ E, B) −→ KKR(A, B ⊗̂D),

⊗D [α] : KKR(A, B ⊗̂D) −→ KKR(A ⊗̂ E, B),

⊗E [α] : KKR(A, B ⊗̂ E) −→ KKR(A ⊗̂D, B)

are isomorphisms.

The analogous statements for KK-groups are true, too.

An important application of Theorem 3.1.27 is Kasparov’s construction of the following
isomorphisms proving the stability of Kasparov groups.

Theorem 3.1.28. [43, §4: Thm. 5 & §5: Thm. 1] For any separable real graded Hilbert
spaceH and σ-unital real graded C∗-algebras A, B there are isomorphisms

KKR
(
A ⊗̂K(H), B

)
� KKR(A, B) � KKR

(
A, B ⊗̂K(H)

)
.

These isomorphisms are defined by the intersection product with the Kasparov classes

[α] =
[(
K ⊗̂H , 1 ⊗ id : K(H)→ B(K ⊗̂H),T ⊗ 1

)]
∈ KKR(K(H),C) (3.1)

and [β] =
[(
K ⊗̂K(H), idC,T2

)]
∈ KKR

(
C,K(H)

)
, (3.2)

where T and K are defined as in Theorem 3.1.26 and T2 ∈ B(K ⊗̂H) is isomorphic to T via
a real even isomorphism K ⊗̂H � K .

The same assertions without the real structure are true for KK-groups.
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Before we come to the description of K-groups in terms of Kasparov groups, we make a
short comment on the long exact sequences of Kasparov groups.

For that, we consider a short exact sequence of graded (real) C∗-algebras

0 −→ I
ι
−→ A

π
−→ A/I −→ 0. (3.3)

Then we have the following theorem.

Theorem 3.1.29. [77, Thm. 2.5.6] If the SES (3.3) is semisplit, i.e. there is an even con-
tractive completely positive map s : A/I → A with π ◦ s = idA/I , then there is a class
[∂] ∈ KKR

(
A/I, I ⊗̂C`1,0

)
such that

KKR(D, I) KKR(D, A) KKR
(
D, A/I

)
KKR

(
D, I ⊗̂C`1,0

)
KKR

(
D, A ⊗̂C`1,0

)
KKR

(
D, A/I ⊗̂C`1,0

)
ι∗ π∗

∂

ι∗ π∗

(3.4)
is a long exact sequence for D separable and

KKR
(
A/I ⊗̂C`1,0,D

)
KKR

(
A ⊗̂C`1,0,D

)
KKR

(
I ⊗̂C`1,0,D

)
KKR

(
A/I,D

)
KKR(A,D) KKR(I,D)

π∗ ι∗

∂

π∗ ι∗

(3.5)
is a long exact sequence for A and I separable, where the connecting maps are given by
⊗A/I[∂] and [∂]⊗I ⊗̂C`1,0

.
The analogous results are true for the complex case.

We will not need the explicit form of the connecting class [∂] in the present work. A
detailed explicit derivation of this class can be found in [43, §7].

3.1.2 Kasparov’s Fredholm picture
In this section, we explain the description of (real) K-groups of trivially graded (real) C∗-
algebras in terms of Kasparov groups. Since the topics of this section will be crucial for the
following chapters, we will explain things in more detail than in the previous subsections.

We begin with the definition of Kasparov’s Fredholm picture of K-groups, as introduced
in [41] at the beginning of page 790 on the basis of the work by Karoubi [38, 40]. The
following construction of this picture follows essentially the same strategy as in the definition
of Kasparov groups. Therefore, we keep the following construction short, referring for more
details to [41].

Definition 3.1.30 (Kasparov’s Fredholm picture of KR- and K-theory). Let A be a trivially
graded σ-unital real C∗-algebra. Suppose we are given a real ∗-morphism φ : C`r,s → Ms(A)
and a real operator F ∈ Ms(A) such that

F∗ + F, 1 + F2, {φ(ka), F}, {φ( jα), F} ∈ A ⊗ K ∀ a = 1, . . . , r, α = 1, . . . , s,
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where {·, ·} denotes the anti-commutator. Denote the set of all such pairs (F, φ) by Er,s(A).
A pair is called degenerate if F2 = −1, F∗ = −F and {φ(ka), F} = {φ( jα), F} = 0 for all
a = 1, . . . , r, α = 1, . . . , s. The set of degenerate pairs is denoted by Dr,s(A).

We define the following equivalence relations:

• Two pairs (F1, φ1), (F2, φ2) are homotopy equivalent if there is a pair
[(F, φ)] ∈ E

(
C`r,s,C([0, 1], A)

)
such that (F(0), φ(0)) = (F1, φ1), (F(1), φ(1)) = (F2, φ2).

They are called operator homotopically equivalent if the path t 7→ Ĵ(t) ∈ B(HA) is
norm continuous and the path t 7→ φ(t) is constant.

• Two pairs (F1, φ1), (F2, φ2) are unitarily equivalent if there is a real unitary isomor-
phism u ∈ Ms(A) such that φ1 = u∗φ2u, F1 = u∗F2u.

The set of equivalence classes induced by these two equivalence relations forms an Abelian
semi-group w.r.t. the direct sum

[(F1, φ1)] ⊕ [(F2, φ2)] B [(F1 ⊕ F2, φ1 ⊕ φ2)].

This group operation is well-defined since Ms(A) ⊕ Ms(A) � Ms(A). Let E
r,s

(A) be the so
constructed semi-group and let D

r,s
(A) denote the corresponding semi-group of degenerate

Kasparov cycles. Then we finally define the Fredholm picture of KR-theory as the following
quotient which forms an Abelian group:

KRr,s(A) := E
r,s

(A)
/
D

r,s
(A).

The construction for a complex C∗-algebra A is possible in completely the same way as
for the real case. The only difference is that the ∗-morphism φ and the operator F have no
reality condition and the Clifford algebras are complex. The resulting group is denoted by
Kr,s(A).

In the following, we will show that these Abelian groups are isomorphic to Kasparov
groups. We first discuss the corresponding Kasparov groups and then show the equality.

Definition 3.1.31 (Kp,qKr,sR(A), Kp,qKr,s(A)). Let A be a real σ-unital trivially graded C∗-
algebra. Then we define

Kp,qKr,sR(A) := KKR(C`p,q, A ⊗C`r,s),

where the Clifford algebras are considered as real graded C∗-algebras. For a complex triv-
ially graded C∗-algebra A, we define

Kp,qKr,s(A) := KK(C`p,q, A ⊗ C`r,s).

Theorem 3.1.32. [77, Cor. 2.4.10] Let A, B be C∗-algebras with A separable and B σ-unital.
Then

KK(A ⊗ C`p,q, B ⊗ C`r,s) � KK(A ⊗ C`p−r,q−s, B).

If A, B are real, then

KKR(A ⊗C`p,q, B ⊗C`r,s) � KKR(A ⊗C`p−r,q−s, B).
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Proof. We only discuss the real case as the complex case is almost the same. Since C`r+s,r+s �
End(Λ(Cr+s)), we know by Theorem 3.1.28 that there is an isomorphism

ψ : KKR(A ⊗C`r+s,r+s, B ⊗C`r+s,r+s)→ KKR(A, B).

It follows

ψ ◦ τC`r,s ◦ τC`s,r = idKKR(A,B), τC`r,s ◦ ψ ◦ τC`s,r = idKKR(A⊗C`r,s,B⊗C`r,s) .

Thus by Theorem 3.1.27, we obtain isomorphisms

KKR(A ⊗C`r,s ⊗C`s,r, B) � KKR(A, B) � KKR(A ⊗C`r,s, B ⊗C`r,s).

�

Theorem 3.1.32 in particular implies that the groups Kp,qKr,sR(A) and Kp,qKr,s(A) only
depend on the difference p − q − (r − s). The isomorphism of Theorem 3.1.32 will also be
important for Chapter 5. Therefore, we give a short exposition of the explicit form of this
isomorphism in the following.

Consider the Kasparov class
[(
ĤA ⊗̂C`r,s, 1C, F

)]
∈ KKR(C, A ⊗ C`r,s) with F∗ = F and

‖F‖ ≤ 1. These conditions are no restrictions on the generality of the class according to
Theorem 3.1.19 and the fact that the morphism C → B

(
ĤA ⊗̂C`r,s

)
can be assumed to be

unital, cf. [43, §4, Remark 2]. The natural morphism τC`s,r maps this class onto[(
ĤA ⊗̂C`r,s ⊗̂C`s,r, 1 ⊗ 1 ⊗ idC`s,r , F

)]
∈ KKR

(
C`s,r, A ⊗C`r,s ⊗̂C`s,r

)
.

The isomorphism of Equation (2.4) induces an isomorphism ĤA ⊗̂C`r,s ⊗̂C`s,r � ĤA ⊗̂C`r+s,r+s.
This leads to the Kasparov class[(

ĤA ⊗̂C`r+s,r+s, 1 ⊗ idC`s,r , F
)]
∈ KKR

(
C`s,r, A ⊗C`r+s,r+s

)
.

We identify C`r+s,r+s � End(Λ(Cr+s)), cf. Proposition 2.2.4, and apply the stability isomor-
phism of Theorem 3.1.28, which is given by the intersection product from the right with the
class

[α] =
[(
K ⊗̂Λ(Cr+s), 1 ⊗ idΛ,T ⊗ 1

)]
∈ KKR

(
End(Λ(Cr+s)),C

)
,

where idΛ : End(Λ(Cr+s))→ End(Λ(Cr+s)) denotes the identity. The intersection product can
be calculated explicitly using Proposition 3.1.25, see also [77, Thm. 2.4.7] for more details.
It is given by [(

ĤA ⊗̂Λ(Cr+s) ⊗̂K , 1 ⊗ idC`s,r ⊗1, F ⊗ 1 +
(
1 − F2)1/2

⊗ T
)]

in KKR
(
C`s,r, A). The operator F is now considered as an operator in B

(
ĤA ⊗̂Λ(Cr+s)

)
.

Let p denote the one-dimensional projection in K (0̄) such that T 2 = 1 − p. Then we can
decompose the Hilbert module as

ĤA ⊗̂Λ(Cr+s) ⊗̂K �
(
ĤA ⊗̂Λ(Cr+s) ⊗̂ p(K)

)
⊕

(
ĤA ⊗̂Λ(Cr+s) ⊗̂

(
p(K)⊥ ⊕ K (1̄))) .

On the first summand, the operator is given by F and we obtain a Hermitian unitary operator
on the second summand. Therefore, the second summand is degenerate and the Kasparov
class is equal to[(

ĤA ⊗̂Λ(Cr+s), 1 ⊗ id : C`s,r → B(ĤA) ⊗̂End(Λ(Cr+s)), F
)]
∈ KKR(C`s,r, A),
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where we identified pK � C which thus vanishes in the tensor product.
By Theorem 3.1.6, there is a real even isomorphism ĤA ⊗̂Λ(Cr+s) � ĤA which maps the

Kasparov class above onto a Kasparov class of the form[(
ĤA, ψ : C`s,r → B(ĤA), F′

)]
∈ KKR(C`s,r, A),

where ψ : C`s,r → B
(
ĤA

)
denotes the resulting ∗-morphism.

Thus, we have established the explicit form of the isomorphism from KKR(C, A ⊗ C`r,s)
to KKR(C`s,r, A). All other isomorphisms in Theorem 3.1.32 can be written down explicitly
by using this result.

In particular, we conclude from the explicit form of the isomorphism above that all classes
in KKR(C`s,r, A) and KK(C`s,r, A) can be represented in the form[(

ĤA, ψ, F
)]
,

such that ψ graded-commutes with the operator F. This result can also be obtained more
directly as explained in the following proposition.

Proposition 3.1.33. Any element of KKR(C`s,r, A) and KK(C`s,r, A) for σ-unital A can be
represented by a Kasparov module

(
ĤA, ψ, F

)
such that all of the following expressions van-

ish:

ψ(ka)F + Fψ(ka), ψ( jα)F + Fψ( jα), F∗ − F ∀a = 1, . . . , p, α = 1, . . . , q.

Proof. By Proposition 3.1.19, we already know that all classes can be represented by Kas-
parov modules of the form (

ĤA, ψ, F
)
,

such that F is Hermitian and ψ(ka)F + Fψ(ka), ψ( jα)F + Fψ( jα) ∈ K(ĤA) for all a =

1, . . . , s, α = 1, . . . , r.
If there is some 1 6 a 6 s such that ψ(ka)F + Fψ(ka) , 0, we may assume that a is

minimal for this property. Form

F̃ B
1
2
(
1 − Ad(ψ(ka))

)
(F).

One computes easily that F̃ is Hermitian and F̃2 − 1 ∈ K(ĤA). As for b < a, Ad(ψ(kb))
commutes with Ad(ψ(ka)), we see that Ad(kb)(F̃) = −F̃ for all b 6 a.

Similarly, ψ( jα)F + Fψ( jα) ∈ K(ĤA). As F̃ is a “compact perturbation” of F,
(
ĤA, ψ, F̃

)
represents the same class as

(
ĤA, ψ, F

)
[15, Prop. 17.2.5]. Thus, we may assume that F anti-

commutes with all the ψ(ka). Arguing similarly, we may assume also that it anti-commutes
with all the ψ( jα). �

By the results hitherto, we can now introduce the following notation without ambiguity.

Definition 3.1.34 ((Real) K-theory as Kasparov groups). Since the groups Kp,qKr,sR(A) and
Kp,qKr,s(A) only depend on the difference p − q − (r − s), we introduce the notation

KKR−i(A) B Kp,qKr,sR(A) and KK−i(A) B Kp,qKr,s(A)

for i = p − q − (r − s). Note that we write the groups cohomologically.
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The groups KKR−i(A) and KK−i(A) are one possible definition for the KR-groups of real
C∗-algebras and K-groups of complex C∗-algebras, respectively.

The 8-fold periodicity of real Clifford algebras, the 2-fold periodicity of complex Clifford
algebras and the stability of Kasparov groups imply the following result.

Theorem 3.1.35. [43, §5, Thm. 5] For all i ∈ Z we have

KKR−i(A) � KKR−(i+8)(A) and KK−i(A) � KK−(i+2)(A).

Now we have a sufficient understanding of the groups KKR−i(−) and KR−i(−) in order
to prove the following theorem, which establishes an explicit relation between Kasparov’s
Fredholm picture of K-theory and Kasparov groups.

Theorem 3.1.36. [43, §6: Cor. 1] For a real σ-unital C∗-algebra A, we have

KRr,s(A) � KKR−(s−r+1)(A).

If A is a complex σ-unital C∗-algebra, then Kr,s(A) � KK−(s−r+1)(A).

Proof. We prove this theorem by showing that the group KRr,s(A) is isomorphic to the Kas-
parov group KKR(C`s+1,r, A). We focus our proof on the real case, as the complex case can
be proved in completely the same way.

We present the proof in a form which will be useful for later considerations. In a first step,
we show how to construct a class in KKR(C`s,r, A⊗C`0,1) out of a given class in KRr,s(A). In
a second step, we then show that this defines an isomorphism using KKR(C`s,r, A ⊗C`0,1) �
KKR(C`s+1,r, A).

Let [(F, φ)] ∈ KRs,r(A), i.e. F ∈ Ms(A) � B(HA) and φ : C`s,r → Ms(A) � B(HA)
is a real ∗-morphism between real ungraded C∗-algebras. We define the following even real
∗-morphism onto B

(
HA ⊗C`0,1

)
:

ψ : C`s,r → B
(
HA ⊗C`0,1

)
; kα 7→ φ( jα) ⊗ j1, ja 7→ φ(ka) ⊗ j1,

for all α ∈ {1, . . . , s} and a ∈ {1, . . . , r}. Here, C`s,r and C`0,1 are equipped with the natural
grading. We define the real odd operator

G B F ⊗ j1 ∈ B
(
HA ⊗C`0,1

)
.

It follows

G∗ −G, G2 − 1, {ψ(kα),G}, {ψ( ja),G} ∈ K(HA ⊗C`0,1) ∀α = 1, . . . , q, a = 1 . . . , p.

Thus, we obtain the Kasparov class[(
HA ⊗C`0,1, ψ,G

)]
∈ KKR(C`s,r, A ⊗C`0,1).

To get in contact with our discussion above this theorem, we now apply the natural morphism
τC`1,0 on this class leading to[(

HA ⊗C`1,1, ψ ⊗ (− idC`1,0 ),G
)]
∈ KKR(C`s,r ⊗̂C`0,1, A ⊗C`1,1),
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where we also applied the orientation-preserving isomorphism C`0,1 ⊗̂C`1,0 � C`1,1; j1⊗1 7→
j1, 1⊗k1 7→ −k1. Moreover, we apply the orientation-preserving isomorphism C`s,r ⊗̂C`1,0 �
C`s+1,r defined by kα ⊗ 1 7→ kα ja ⊗ 1 7→ ja 1 ⊗ k1 7→ (−1)r+1ks+1.

Let ψ′ : C`s+1,r → B
(
HA ⊗ C`1,1

)
be the corresponding real even ∗-morphism. Then we

end up with the Kasparov class[(
HA ⊗C`1,1, ψ

′,G
)]
∈ KKR(C`s+1,r, A ⊗C`1,1).

Finally, we apply the stability isomorphism given by the intersection product with the class
[α] ∈ KKR(C`1,1,C) from the right. For the explicit form of this class and the calculation
of the intersection product, we refer to the discussion above this theorem. The result is the
Kasparov class[(

HA ⊗ Λ(C), ψ′, F ⊗ j1
)]

=
[(
ĤA, ψ

′′,
(

0 −F
F 0

))]
∈ KKR(C`s+1,r, A), (3.6)

where the isomorphism above is induced byHA⊗Λ(C) � HA⊕H
op
A = ĤA. The ∗-morphism

ψ′′ : C`s+1,r → B(ĤA) is given by

ψ′′(kα) =

(
0 −Jα
Jα 0

)
, ψ′′(ks+1) = (−1)r+1

(
0 1
1 0

)
, ψ′′( ja) =

(
0 −Ka

Ka 0

)
for α = 1, . . . , s and a = 1, . . . , r.

According to Theorem 3.1.19, we can represent all classes in KKR(C`s+1,r, A) in the form[(
ĤA, ψ : C`s+1,r → B(ĤA),T

)]
, such that T ∗ = T , ‖T‖ ≤ 1. Moreover, we can demand

[ψ(x),T ] = 0 for all x ∈ C`s+1,r, where [·, ·] denotes the graded commutator. In particular,
this implies the weaker statement that all Kasparov classes can be represented in the form of
Equation (3.6).

After all, we conclude that the map from KRs,r(A) to KKR(C`s+1,r, A) = KKR−(s−r+1)(A)
is a well-defined isomorphism. �

Corollary 3.1.37. In Definition 3.1.30, the restriction of the equivalence relations to uni-
tary equivalence and operator homotopy equivalence does not change the resulting groups
KRr,s(A) and Kr,s(A).

Moreover, any given class in KRr,s(A) and Kr,s(A) can be represented by a pair (F, φ) ∈
Er,s(A) satisfying F∗ = −F and

φ(ka)F + Fφ(ka), φ( jα)F + Fφ( jα) = 0 ∀ a = 1, . . . , r, α = 1, . . . , s.

All equivalence relations can be realised over such pairs, i.e. restriction of Er,s(A) to pairs
satisfying the above conditions does not change the resulting groups KRr,s(A) and Kr,s(A).

Proof. This is an immediate consequence of Theorem 3.1.36 and the corresponding results
for Kasparov groups in Proposition 3.1.19, Theorem 3.1.18 and Proposition 3.1.33. �

3.1.3 The KR- and K-theory of C
The KR- and K-groups of C can be calculated explicitly due to its simple structure, where in
the real case, we consider C as a real C∗-algebra equipped with its natural complex conjuga-
tion. These groups constitute an important tool for the calculation of (real) K-groups of more
involved C∗-algebras, such as the group C∗-algebra of Zd in Section 5.5.



Section 3.1 KK-theory 35

In this subsection, we will compare the groups KRr,s(C) and Kr,s(C) with the so-called
Clifford module picture of the (real) K-groups of C, as introduced in [6]. For that, we first
give a short survey of this Clifford module picture. Then we establish in Theorem 3.1.40 an
isomorphism between those two pictures of KR−(s−r+1)(C), which is based on [55, Ch. 3, Sec.
10] and [16, App. B].

Definition 3.1.38 (Clifford module). A C`r,s-module is a real finite-dimensional vector space
W with a real ∗-representation

φ : C`r,s → End(W).

A C`r,s-module is a complex finite-dimensional vector space W with a ∗-representation

φ : C`r,s → End(W).

Two C`r,s-modules (C`r,s-modules) (W1, φ1), (W2, φ2) are equivalent if their representa-
tions are equivalent, i.e. if there is a (real) unitary u : W1 → W2 such that uφ1u∗ = φ2. Let
Mr,s (MRr,s) denote the Grothendieck group of equivalence classes of (real) C`r,s-modules.

Example 3.1.39. We have seen in Proposition 2.2.4 that there is a real ∗-representation of
C`n,n on Λ(Cn). Thus Λ(Cn) is a real C`n,n-module.

There is a natural morphism

i : MRr,s+1 → MRr,s,

given by restricting the C`r,s+1-representation to a C`r,s-representation. Therefore, the quo-
tient

MRr,s/i
(
MRr,s+1

)
,

is always well-defined. The analogous statement holds for the complex case. By the Atiyah–
Bott–Shapiro isomorphism [55, Ch. 1,Thm. 10.11 & Prop. 5.20]

MRr,s/i
(
MRr,s+1

)
� KR−(s−r+1)({pt}

)
≡ KR−(s−r+1)(C),

Mr,s/i
(
Mr,s+1

)
� K−(s−r+1)({pt}

)
≡ K−(s−r+1)(C).

we know that these quotients of Clifford modules indeed describe the real and complex K-
groups of C.

The details of the assertions above can be found in [55, Ch. I: §5, §9, §10].
By the detailed results of Section 2.2, we can describe the groups KR−s(C) for 0 ≤ s ≤ 7

and K−s(C) for 0 ≤ s ≤ 1 even more explicitly by following the arguments of [55, Ch. I, §9].
In the following, we will discuss the non-trivial groups case-by-case. The resulting real and
complex K-groups of C are listed in Table 3.1.

• The group K0(C) � MC1,0/i(M
C
1,1) is generated by equivalence classes of complex C`1,0-

modules. By Proposition 2.2.11, there are two inequivalent irreducible representations
ρ± : C`1,0 → W± of C`1,0 � C ⊕ C. In particular, we have dimC(W±) = 1. Any
representation φ : C`1,0 → End(W) can be decomposed as φ = (ρ+)⊕n+ ⊕ (ρ−)⊕n− .
Therefore, the equivalence class is uniquely determined by n+, n− ∈ N.

As explained in Lemma 2.2.11, this representation is extendable to aC`1,1-representation
if and only if n+ = n−. The class [W] ∈ K0(C) is thus determined by

n+ − n− ∈ Z.
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s KR−s(C) K−s(C)
0 Z Z
1 Z/2Z 0
2 Z/2Z Z
3 0 0
4 Z Z
5 0 0
6 0 Z
7 0 0

Table 3.1: KR- and K-groups of C

• The group KR0(C) � MR1,0/i(MR1,1) is generated by equivalence classes of real C`1,0-
modules. By the same arguments as for the class K0(C), we deduce that the class of a
given real Hilbert module W is determined by the dimensions of the irreducible parts
as

n+ − n− ∈ Z.

• The group KR−1(C) � MR0,0/i(MR0,1) is simply generated by finite-dimensional real
vector spaces. A class [W] is trivial if there is a representation φ : C`0,1 → End(W).
Since C`0,1 � C, such a representation is the same as a complex structure on WR B
Re(W) B {w ∈ W | w = w}. It follows that the class [W] is trivial if and only if the
real dimension of WR is even. Since dimR(WR) = dimC(W), the class [W] ∈ KR−2(C)
is determined by

dimC(W) mod 2 ∈ Z/2Z.

• The group KR−2(C) � MR0,1/i(MR0,2) is generated by equivalence classes of C`0,1-
modules. As we have seen above, the datum of a C`0,1-module W is equivalent to a
complex vector space WR = Re(W). Since C`0,2 � HC, the space W admits a C`0,2-
representation if and only if WR can be equipped with a quaternionic structure. This is
possible if and only if its real dimension is divisible by four. Thus the class in KR−2(C)
is determined by

1
2 dimR(WR) mod 2 = 1

2 dimC(W) mod 2 ∈ Z/2Z.

• The group KR−4(C) � MR0,3/i(MR0,4) consists of equivalence classes of real C`0,3-
modules. There are two inequivalent irreducible representations ρ± : C`0,3 → End(W±).
Any C`0,3-representation φ can be decomposed as φ = ρ⊕n+

+ ⊕ ρ⊕n−
− . As explained in

Lemma 2.2.11, φ is extendable to a C`0,4-action if and only if n+ = n−. The class of a
given C`0,3-module W = (W+)n+ ⊕ (W−)n− is thus determined by

n+ − n− ∈ Z.

All other real and complex K-groups of C turn out to be trivial and are therefore not
discussed here.

The following theorem establishes the explicit connection between the Clifford module
picture and Kasparov’s Fredholm picture of the real and complex K-groups of C. The proof
of this theorem follows the arguments of [16, App. B].
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Theorem 3.1.40. Let [(F, φ)] ∈ KRr,s(C). This class corresponds to the class in KR−(s−r+1)(C)
that is determined by the Clifford module ker(F) with representation φ : C`r,s → ker(F). This
defines an isomorphism KRr,s(C) � MRr,s/i

(
MRr,s+1

)
.

The analogous result is true for complex K-theory.

Proof. Here, we will focus on the construction of the map from KRr,s(C) toMRr,s/i
(
MRr,s+1

)
.

The proof of the fact that this map indeed defines a well-defined isomorphism is quite tech-
nical and we will therefore refer to [55] for these results.

Let [(F, φ)] ∈ KRr,s(C), such that φ : C`r,s → L(H) is a real unital ∗-morphism over
some real Hilbert spaceH and F ∈ L(H) is a real skew-Hermitian operator such that

F2 + 1 ∈ K(H) and φ(kα)F + Fφ(kα) = φ( ja)F + Fφ( ja) = 0

for all α = 1, . . . , s, a = 1, . . . , r. By Corollary 3.1.37, all classes in KRr,s(C) can be rep-
resented by such a pair. By [56, Thm. 1.2.5] and [82, Thm. 3.1.5], there is a unique
partial isometry V such that V : (ker F)⊥ → (ker F)⊥ is an isometry and F = V |F| where
|F| B (F∗F)1/2. The map [0, 1] 3 t 7→ Ft B V |F|t defines an operator homotopy between
(F, φ) and (V, φ). Thus, the class [(F, φ)] is equivalent to the class[(

V, φ
)]
∈ KRr,s(C).

We split the Hilbert space as H = (1 − V∗V)H ⊕ (V∗V)H . The splitting of H leads to the
decomposition of the class as[(

V, φ
)]

=
[(

V |(1−V∗V)H , φ|(1−V∗V)H
)]
⊕

[(
V |V∗VH , φV∗VH

)]
.

The operator V vanishes in the first class and is an isometry in the second class. Thus the
second class is degenerate and the remaining non-trivial term is equal to[(

V, φ
)]

=
[(

0, φ|ker F
)]
∈ KR−(s−r)(C).

Thus, we end up with the finite-dimensional vector space ker(F), equipped with the ∗-
represen-tation φ : C`r,s → L(ker(F)). This defines an element inMRr,s.

It follows immediately that unitarily equivalent pairs in KRr,s(C) are mapped onto unitar-
ily equivalent Clifford modules. By the results of [55, Ch. 3, Prop. 10.6], this indeed defines
a well-defined morphism from KRr,s(C) to KR−(s−r+1)(C) = MRr,s/i

(
MRr,s+1

)
and [55, Ch. 3,

Thm. 10.8] shows that this morphism defines an isomorphism.
The result for the complex case can be proved in the same way. �

3.2 Van Daele K-theory for graded C∗-algebras

Here we recapitulate the construction of Van Daele groups as worked out in [86, 87]. Al-
though the definition of Van Daele groups holds for any Banach algebra, we will restrict
ourselves to the construction for C∗-algebras.

We begin with the definition of ORHU resp. OHU, which are the fundamental objects of
Van Daele groups.
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Definition 3.2.1 (ORHU, OHU). Let A be a graded unital real C∗-algebra. Then we define
F (A) to be the set of all odd real Hermitian unitaries (ORHU) in A. Since F (A) is a subset
of A, we can use the norm topology of A to define the set of path-connected components of
ORHU

F(A) := π0(F (A)).

If A is just a complex graded C∗-algebra, we define F (A) to be the set of all odd Hermitian
unitaries (OHU) in A. The corresponding set of path-connected components of OHU is also
denoted by F(A).

Remark 3.2.2. Note that the set F (A) might be empty in general, e.g. when A is trivially
graded. In the original definition [86, Def. 2.1] of F (A), the elements don’t have to be
Hermitian. However, [86, Prop. 2.5] shows that our definition and the original one lead to
the same set F(A) if A is a C∗-algebra.

We say that two elements in F (A) are homotopic if they define the same element in F(A).
For the matrix algebra Mn(A) over A with n ≥ 1 we define

Fn(A) := F (Mn(A)), Fn(A) := F(Mn(A)).

Then we can define the direct sum by

⊕ : Fn(A) × Fm(A)→ Fn+m(A); (x, y) 7→ x ⊕ y :=
(

x 0
0 y

)
.

This direct sum is associative and induces a map Fn(A)×Fm(A)→ Fn+m(A) such that [x⊕y] =

[y ⊕ x] in Fn+m(A) for all x ∈ Fn and y ∈ Fm(A) [86, Prop. 2.7].
Assume that F (A) is not empty, i.e. there is an element e ∈ F (A). Then Fn(A) is an

inductive system of sets with connecting maps Fn(A) → Fn+1(A); [x] 7→ [x] ⊕ [e] = [x ⊕ e].
The inductive limit of this system defines a semi-group, which we denote as follows.

Definition 3.2.3 (Van Daele (semi-)group). Let A be a graded C∗-algebra. Given an element
e ∈ F (A), we define

DKe(A) := lim
−→n

Fn(A).

If A is real, we define
DKRe(A) := lim

−→n
Fn(A).

By definition, two elements [x], [y] ∈ DKRe(A) with x ∈ Fn(A) and y ∈ Fm(A) are equal
if there are k, l ∈ N such that [x ⊕ ek] = [y ⊕ el] in FN(A), where N B n + k = m + l.

Van Daele shows in [86, Prop. 2.9] that DKRe(A) is an Abelian semi-group with [x]+[y] =

[x ⊕ y] and the neutral element 0 = [e]. If the element e ∈ F (A) is homotopic to −e in F (A),
then we have the following important result.

Proposition 3.2.4. [86, Prop. 2.11 & Prop. 2.12] If e and −e are homotopic in F (A) then
DKRe(A) and DKe(A) are groups. For x ∈ Fn(A), the inverse element of [x] is given by
−[x] = [−enxen], where en = e ⊕ · · · ⊕ e denotes the n-fold direct sum of e.

Moreover, the groups DKRe(A) and DKe(A) are, up to isomorphism, independent of e and
therefore we also write DKR(A) and DK(A), respectively.
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Remark 3.2.5. Proposition 3.2.4 has been improved by Van Daele in [88] by showing that
the condition of e and −e to be homotopic can be replaced by the weaker condition that there
exists an even (real) invertible element u ∈ A such that u−1eu = −e.

The above definitions only make sense if F (A) , ∅. However, in general we may consider
M2(A) = A⊗M2(C), where M2(C) is equipped with the real structure of component-wise com-
plex conjugation and the grading where the diagonal elements are even and the off-diagonal
elements are odd. The grading on M2(A) is then given by the grading of the graded ten-
sor product. Then M2(A) admits the ORHU e =

(
0 1
1 0

)
. The matrix u =

(
1 0
0 −1

)
satisfies

u−1eu = −e. Therefore, DKRe(M2(A)) and DKe(M2(A)) are groups by Remark 3.2.5.
Thus, without any assumptions on the ORHU for a graded real C∗-algebra, we can define

the Van Daele KR-group for M2(A) = A ⊗ M2(C) which is constructed as above:

DKRe(M2(A)), where e = 1 ⊗
(

0 1
1 0

)
.

The analogous construction works for complex C∗-algebras by dropping the real structures.
In this work, we will mostly encounter the case that we are given a reference element

e0 ∈ F (A) that may not be not homotopic to −e0. Then one can again consider the matrix
algebra M2(A) = A ⊗ M2(C) over A, but the real C∗-algebra M2(C) with the component-
wise complex conjugation shall now be equipped with the trivial grading. Then we define
e := e0 ⊕ (−e0) ∈ F2(A). This element is homotopic to −e via the path

[0, π] 3 t 7→
(
e0 cos(t) e0 sin(t)
e0 sin(t) −e0 cos(t)

)
.

This generalises Definition 3.2.3 because of Proposition 3.2.4 and the following stability of
Van Daele groups.

Proposition 3.2.6 (Stability of Van Daele groups). [86, Prop. 3.2], [88] Let A be a graded
real or complex C∗-algebra and let e ∈ F (A) be homotopic to −e within F (A). Then

Fn(A) −→ Fn(Mm(A)); x 7→ x ⊕ em−1

induces an isomorphism DKRe(A) � DKRem (Mm(A)) resp. DKe(A) � DKem (M2(A)), where
ek = e ⊕ · · · ⊕ e denotes the k-fold direct sum for k ∈ N and Mm(A) is equipped with the
component-wise real structure and grading.

This proposition still holds under the weaker conditions of Remark 3.2.5.

Thus, we have defined the Van Daele groups for any graded (real) unital C∗-algebra, and
because of the above observations we can denote this group by DKR(A) or DK(A) without
ambiguity.

In later considerations, we will also need the following relation between the semi-group
DKRe(A) or DKe(A) and the corresponding Van Daele group DKR(A) or DK(A), respectively.

Proposition 3.2.7. [86, Prop. 3.3] If there is an element e0 ∈ F (A), then DKRe(M2(A)) =

DKR(A) with e = e0 ⊕ (−e0) is the Grothendieck group of the semi-group DKRe0 (A). The
isomorphism is defined by

[x] − [y] 7→
[(

x 0
0 −(e0)ny(e0)n

)]
,

for [x], [y] ∈ DKRe(A) with y ∈ Fn(A). In particular, the elements in [x] ∈ DKRe0 (A) are
mapped onto

[(
x 0
0 −e0

)]
∈ DKR(A).

The analogous statement holds for the complex case.
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By Proposition 3.2.7, we could also define the Van Daele groups as the Grothendieck
groups of the semi-groups in Definition 3.2.3. This point of view will be important in Section
3.3.

Now we extend the definition of Van Daele groups to non-unital C∗-algebras.

Definition 3.2.8 (Unitisation). The unitisation of a C∗-algebra is defined as A+ B {(a, λ) |
a ∈ A, λ ∈ C} equipped with the following multiplication and ∗-involution:

(a, λ)(b, µ) B (ab + λb + aµ, λµ), (a, λ)∗ B (a∗, λ∗).

If A is real, we define the unitisation as the real C∗-algebra A+ with the conjugation (a, λ) =

(a, λ). We denote by ϕ : A+ → C the canonical ∗-morphism given by ϕ(a, λ) = λ.

By the use of the unitisation, we generalise the definition of Van Daele groups as follows.

Definition 3.2.9 (Van Daele groups for non-unital C∗-algebra). If A is unital, then DKR(A)
is isomorphic to the kernel of DKR(A+)

ϕ∗
−→ DKR(C) [86, Prop. 3.6]. Thus, for any not

necessarily unital C∗-algebra A, we can define

DKR(A) B ker(ϕ∗) ⊆ DKR(A+),

generalising the definition for unital C∗-algebras. The analogous statement is true for the
complex case.

Subsection 3.2.1 will be essentially based on the existence of long exact sequences of Van
Daele groups for any short exact sequence of graded C∗-algebras. Therefore, we give a short
exposition of this fact in the following.

Let
0→ I

ι
−→ A

π
−→ A/I → 0

be a SES of (real) graded C∗-algebras. Since the Van Daele groups are functorial, the ∗-
morphisms ι and π induce morphisms ι∗ : DKR(I) → DKR(A) and π∗ : DKR(A) →
DKR(A/I) that form an exact sequence [86, Prop. 4.1]

DKR(I)
ι∗
−→ DKR(A)

π∗
−→ DKR(A/I).

The analogous assertions hold for DK-groups.
In order to obtain a long exact sequence, Van Daele constructs in [87] a connecting mor-

phism
∂ : DKR(A/I)→ DKR(A/I ⊗C`1,0)

for the real case, such that

DKR(I) DKR(A) DKR
(
A/I

)
DKR

(
I ⊗̂C`1,0

)
DKR

(
A ⊗̂C`1,0

)
DKR

(
A/I ⊗̂C`1,0

)
ι∗ π∗

∂

ι∗ π∗

(3.7)

is a 24-fold periodic long exact sequence. Here, the real Clifford algebra C`1,0 is equipped
with its natural grading.

For complex C∗-algebras, this leads to a 6-fold periodic long exact sequence of DK-
groups.

Van Daele also proved that the connecting morphism is of the following form.
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Theorem 3.2.10. [87, Prop. 3.4] Let [x] ∈ DKR(A/I) and assume that x ∈ Fn(M4((A/I)+))
such that ϕ(x) = en. Let k be the generator of C`1,0 and kn = k ⊕ . . . ⊕ k be the n-fold direct
sum of k and define ν := 1

√
2
(1 + knen). Let a ∈ Mn(M4(A+)) be any odd real element such that

π(a) = x. Then
∂([x]) =

[
−ν∗ exp(πakn)knν

]
∈ DKR(I ⊗̂C`1,0).

The connecting morphism for DK-groups has the same form without reality condition on
a ∈ Mn(M4(A+)).

Finally, we come to the formulation of K-groups for trivially graded real or complex
C∗-algebra in terms of Van Daele groups.

Definition 3.2.11 (Van Daele’s picture of (real) K-theory). Let C`r+1,s and C`r+1,s be graded
and let A be a trivially graded real C∗-algebra. Then we define

DKR−(s−r)(A) := DKR(A ⊗C`r+1,s). (3.8)

For a complex trivially graded C∗-algebra A, we define

DK−(s−r)(A) := DK(A ⊗ C`r+1,s). (3.9)

The groups DK−(s−r)(A) and DKR−(s−r)(A) indeed depend only on the difference s − r
because of the stability of Van Daele groups, cf. Proposition 3.2.6, and the (1, 1)-periodicity
of Clifford algebras, cf. Proposition 2.2.8.

3.2.1 Roe’s isomorphism
Here we will prove that Van Daele’s picture and Kasparov’s Fredholm picture of real resp.
complex K-theory indeed give rise to isomorphic groups. The proof is based on the work [73]
by Roe. Therefore, we call the isomorphism between the two pictures Roe’s isomorphism.

Since we have already established all necessary results and definitions, we can start right
away with the formulation of the theorem.

Theorem 3.2.12. [73] Let A be a trivially graded C∗-algebra. If A is real, we have

DKR−i(A) � KKR−i(A) ∀i ∈ Z.

Otherwise, if A is complex, there is an isomorphism

DK−i(A) � KK−i(A) ∀i ∈ Z.

By the results of Theorem 3.2.12, we can introduce the following notation.

Definition 3.2.13 (KR−i(A), K−i(A)). Let A be a C∗-algebra. Then we denote its K-groups by

K−i(A) B DK−i(A) = KK−i(A).

If A is real, we denote its real K-groups by

KR−i(A) B DKR−i(A) = KKR−i(A).

We will use this notation whenever we do not wish to specify a picture for these groups.
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Proof of Theorem 3.2.12. Since the real and the complex case can be proved in almost the
same way, we only prove the real case. To be precise, we will prove that DKR(A⊗C`r+1,s) �
KKR(C, A ⊗C`r,s).

By Proposition 3.1.19, any class in KKR(C, A ⊗ C`r,s) can be represented by a Kas-
parov module of the form

(
ĤA ⊗̂C`r,s, 1C, F

)
with F∗ = F and ‖F‖ ≤ 1. Moreover, F ∈

B
(
ĤA ⊗̂C`r,s

)
= Ms(A ⊗ C`r+1,s+1

)
is odd, real and F2 − 1 ∈ K(ĤA ⊗̂C`r,s) = K(HA ⊗

C`r+1,s+1). Thus F defines, by definition, an ORHU in F
(
Qs(A) ⊗ C`r+1,s+1

)
. This defines a

map
KKR(C, A ⊗C`r,s)→ DKR

(
Qs(A) ⊗C`r+1,s+1

)
, (3.10)

which is a well-defined isomorphism because of the following:
On the left hand side, it is sufficient to only consider operator homotopy equivalence of

Kasparov modules, because two unitary equivalent Kasparov modules
(
ĤA ⊗̂C`r,s, 1C, F1

)
and

(
ĤA ⊗ C`r,s, 1C, F2

)
are already operator homotopy equivalent by [15, Prop. 12.2.2] and

homotopy equivalence and operator homotopy equivalence are equivalent by Theorem 3.1.18.
Any operator homotopy is determined by a norm continuous path [0, 1] 3 t 7→ F(t) ∈

B
(
ĤA ⊗ C`r,s

)
between F1 and F2 in the set of all real Hermitian odd operators such that

F(t)2 − 1 ∈ K(ĤA ⊗ C`r,s) for all t ∈ [0, 1]. Under the above identification with ORHU
in F

(
Qs(A) ⊗ C`r+1,s+1

)
, this is the same as a homotopy of ORHU between F1 and F2 in

F
(
Qs(A)⊗C`r+1,s+1

)
in the sense of Definition 3.2.1. Moreover, the identification commutes

with direct sums and thus the morphism (3.10) is indeed well-defined.
It can be checked in the same way that the inverse of the morphism (3.10) is also well-

defined and hence this morphism indeed defines an isomorphism.
It remains to find an isomorphism between DKR

(
Qs(A)⊗C`r+1,s+1

)
and DKR

(
A⊗C`r+1,s

)
.

For that, consider the short exact sequence

0→ K ⊗ A→ Ms(A)→ Qs(A)→ 0.

The KR-theory of Ms(A) is trivial, because the multiplier algebra is contractible [24], [15,
§12.2]. In the corresponding long exact sequence, we thus obtain the exact sequence

0→ DKR
(
Qs(A) ⊗C`r+1,s+1

) ∂Q
−→ DKR

(
K ⊗ A ⊗C`r+2,s+1

)
→ 0.

This means that the connecting morphism is an isomorphism. Using (1, 1)-periodicity of the
Clifford algebra (Proposition 2.2.8) and stability of DKR-theory (Theorem 3.2.6), we end up
with an isomorphism

∂Q : DKR
(
Qs(A) ⊗C`r+1,s+1

)
→ DKR

(
A ⊗C`r+1,s

)
. (3.11)

The composition of the isomorphisms (3.10) and (3.11) exhibits the desired isomorphism
KKR

(
C, A ⊗C`r,s

)
� DKR

(
A ⊗C`r+1,s

)
. �

3.3 A new picture of real K-theory
A physically natural and well-motivated picture for the formulation of topological phases
is essential in order to be able to connect the different K-classes to physical properties of
the systems. To that end, we will now construct a picture of KR- and K-theory for triv-
ially graded C∗-algebras which is formulated in terms of so-called quasi-particle vacua with
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pseudo-symmetries, representing the ground states in the bulk of topological insulators and
superconductors, cf. Subsection 4.1.2.

This section is split into three subsections. In Subsection 3.3.1, we will construct for
a given unital real or complex C∗-algebra A and a unital ∗-morphism φ : C`r,s → A or
φ : C`r,s → A, respectively, the groups TopφJref

(A) that are the core of our new picture of
K-theory. This construction is based on the assumption that the set FF φ(A), cf. Definition
3.3.1, is not empty. This is the case in our physical applications in Chapter 5, but from a
purely mathematical point of view, this condition cannot be true in general.

In Subsection 3.3.2, we will identify the groups of Subsection 3.3.1 with Van Daele
groups.

By combination of the properties of Van Daele groups of Section 3.2 with the isomor-
phism of Subsection 3.3.2, we will then show in Subsection 3.3.3 that these groups only
depend on the C∗-algebra A and the index r − s. We will also generalise the constructions of
Subsection 3.3.1 to the case FF φ(A) = ∅ and to non-unital C∗-algebras. In the end, this will
lead to a systematic picture of these groups. Due to the identification with Van Daele groups,
we thus obtain a new picture of K-theory.

3.3.1 Construction of the groups TopφJref
(A)

The following constructions are closely related to the construction of Van Daele groups in
[86], cf. Section 3.2. Throughout this section, we consider all C∗-algebras as trivially graded.

The starting point for our picture of (real) K-theory is the following set.

Definition 3.3.1 (FF φ(A)). Let A be a unital C∗-algebra and suppose we are given a unital
∗-morphism φ : C`r,s → A. Let Ka B φ(ka) for a = 1, . . . , r and Jα B φ( jα) for α = 1, . . . , s.

Then FF φ(A) is defined as the set of all skew-Hermitian unitaries J ∈ A such that{
J,Ka

}
=

{
J, Jα

}
= 0 ∀a = 1, . . . , r, α = 1, . . . , s,

where {·, ·} denotes the anti-commutator. If A is real, then we demand that J and φ : C`r,s → A
are real.

Throughout this section, we will assume that the set FF φ(A) is not empty. This is in
accordance with our physical application in Chapter 5. We will generalise the results of the
present subsection to the general case in Subsection 3.3.3.

Remark 3.3.2. The notation ’FF ’ in the definition above is motivated by the fact that the
J ∈ FF φ(A) correspond in a physical context to quasi-particle vacua of free fermions in
gapped systems. The ∗-morphism φ encodes the ‘local’ symmetries of the ground state. More
details can be found in Chapter 4 and Section 5.1.

We define a homotopy equivalence on this set as follows.

Definition 3.3.3 (FFφ(A)). Two elements J, J′ ∈ FF φ(A) are called homotopically equivalent
if there is a norm continuous path in FF φ(A) connecting J and J′.

The set of path-connected components of FF φ(A) is denoted by FFφ(A) B π0
(
FF

φ(A)
)
.

These definitions can canonically be generalised to matrix algebras over A, as explained
in the following definition.



44 Real and complex K-theory and KK-theory Chapter 3

Definition 3.3.4 (FF φ
n(A), FFφ

n (A)). Let φn B φ⊕ . . .⊕ φ ∈ Mn(A) denote the n-fold direct
sum and define

FF
φ
n(A) B FF φn

(
Mn(A)

)
, FFφ

n (A) B π0
(
FF

φ
n(A)

)
.

The direct sum of two elements J, J′ ∈ FF φ(A) is defined as

J ⊕ J′ B
(
J 0
0 J′

)
∈ FF

φ
2(A).

In order to compare elements in FFφ
n (A) with elements in FFφ(A), or, more generally, in

FFφ
m(A) for any m , n, we have to establish a canonical embedding of FFφ

n (A) into FFφ
n+1(A)

for all n ∈ N. Therefore, we use the direct sum in combination with a reference element
Jref ∈ FF

φ(A).

Lemma 3.3.5. The direct sum in FFφ(A) is Abelian, i.e. [J ⊕ J′] = [J′ ⊕ J] ∈ FFφ
2 (A).

Proof. Observe that conjugation with
(

0 1
1 0

)
exchanges

(
J′ 0
0 J

)
and

(
J 0
0 J′

)
, whereas conjugation

with
(

1 0
0 −1

)
leaves them invariant. Thus, the continuous path [0, π/2] 3 t 7→

(
sin(t) cos(t)
cos(t) − sin(t)

)
in U(M2(A)) between

(
0 1
1 0

)
and

(
1 0
0 −1

)
defines a homotopy in FF φ

2(A) between
(

J′ 0
0 J

)
and(

J 0
0 J′

)
. �

Definition 3.3.6 (FFφ
∞(A)). Let Jref ∈ FF

φ(A) be given. Then we define an inductive system
via the morphisms

FF
φ
n(A) −→ FF φ

n+1(A); J 7→ J ⊕ Jref =

(
J 0
0 Jref

)
. (3.12)

The inductive limit of the sets FFφ
n (A) with the inductive maps (3.12) is denoted as

FFφ
∞(A) B lim

−→n
FFφ

n (A)

The inductive limit FF φ
∞(A) naturally forms a semi-group when equipped with the group

structure of direct sums. By Lemma 3.3.5, this semi-group structure is Abelian. What is
missing for this semi-group in order to become a group is that in general not all elements are
invertible. We overcome this obstacle by considering the associated Grothendieck group.

Definition 3.3.7 (TopφJref
(A)). The Grothendieck group of the Abelian semi-group FFφ

∞(A) is
denoted by

TopφJref
(A) B Groth(FFφ

∞(A)).

We have thus established the Abelian group TopφJref
(A) for any given triple (A, φ, Jref). This

Abelian group TopφJref
(A) is the desired group which will be proved to exhibit a new picture

of K-theory of (real) C∗-algebras.
We refrain from deriving any further properties of these groups at this point. Instead, in

the next section we will first identify the groups of this subsection with Van Daele groups and
then derive all relevant properties for our groups by using this isomorphism.
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FF
φ(A) F

(
Pφ(A ⊗C`r,s+1)Pφ)

FFφ(A) F
(
Pφ(A ⊗C`r,s+1)Pφ)

FFφ
∞(A) DKRe

(
Pφ(A ⊗C`r,s+1)Pφ)

TopφJref
(A) DKR

(
Pφ(A ⊗C`r,s+1)Pφ)

�

�

�

�

Hom. equiv. Hom. equiv.

Ind. limit Ind. limit

Groth. group Groth. group

Figure 3.1: We will construct this commutative diagram. Once we have established the first
row, this diagram is essentially a consequence of the constructions being the same on the two
sides. Note that in the last row, we consider the Van Daele group as the Grothendieck group
of the (semi-)group DKRe

(
Pφ(A ⊗C`r,s+1)Pφ), as explained in Proposition 3.2.7.

3.3.2 Isomorphism to Van Daele groups
Now we bring our groups in contact with the existing definitions of K-groups. We will show
that the group TopφJref

(A) is isomorphic to a Van Daele group, as shown in Figure 3.1.

Definition 3.3.8 (Pφ,Qa, Pα). For given unital ∗-morphism φ : C`r,s → A, we define com-
muting projections Qa, Pα in A ⊗C`r,s+1 (in A ⊗ C`r,s+1 if A is complex) by

2Qa − 1 = (−1)sKa ⊗ ka j1, 2Pα − 1 = Jα ⊗ j1 jα+1 (3.13)

for all a = 1, . . . , r, α = 1, . . . , s, where, as before, Ka B φ(ka) and Jα B φ( jα). Furthermore,
we define

Pφ B
r∏

a=1

Qa

s∏
α=1

Pα. (3.14)

Remark 3.3.9. The signs of the unitaries in Equation (3.13) are a matter of convention. Our
convention allows us to formulate the bulk-boundary correspondence in a canonical way. In
Subsection 3.3.3, we will see that the resulting Van Daele groups are independent of these
signs.

Proposition 3.3.10. If A is a real C∗-algebra, the assignment

FF
φ(A) −→ F

(
Pφ(A ⊗C`r,s+1)Pφ); J 7−→ (J ⊗ j1)Pφ

defines a bijective map. If A is complex, one has a corresponding bijection

FF
φ(A) −→ F

(
Pφ(A ⊗ C`r,s+1)Pφ); J 7−→ (J ⊗ j1)Pφ.

The proof of Proposition 3.3.10 uses the following lemma.
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Lemma 3.3.11. Let C be a unital graded real C∗-algebra and x ∈ C be an ORHU. Consider
the projection q ∈ C ⊗̂C`0,1 defined by 2q − 1 = x ⊗ j1. (Note that x ⊗ j1 is Hermitian due to
the appearance of the graded tensor product.) Then

F
(
q(C ⊗̂C`0,1)q

)
=

{
(y ⊗ 1)q | y ∈ F (C), xy + yx = 0

}
.

Moreover, the ORHU y ∈ C representing an ORHU (y ⊗ 1)q ∈ q(C ⊗̂C`0,1)q is unique.
Similarly, let x ∈ C be an odd real skew-Hermitian unitary and p ∈ C ⊗̂C`1,0 be the

projection defined by 2p − 1 = x ⊗ k1. Then

F
(
p(C ⊗̂C`1,0)p

)
=

{
(y ⊗ 1)p | y ∈ F (C), xy + yx = 0

}
,

where once again, the representatives y are uniquely determined.
The analogue statements are true if C is complex.

Proof. We only prove the first statement, the proof of the second being nearly identical.
Moreover, the proof of the complex statement works in the same way as for the real case and
therefore we focus on the real case.

The odd elements of C ⊗̂C`0,1 are exactly those of the form

z = 1
2 (y ⊗ 1) + 1

2 (y′ ⊗ j1)

where y is odd and y′ is even. Then z lies in the corner q(C ⊗̂C`0,1)q if and only if

(x ⊗ j1)z = z = z(x ⊗ j1),

that is, if and only if y′ = −xy = yx. If this is the case, then z = (y ⊗ 1)q and z is Hermitian if
and only if so is y. Finally, in that case, z is unitary in the corner if and only if

1
2 (1 ⊗ 1) + 1

2 (x ⊗ j1) = q = z2 = (y ⊗ 1)2q = 1
2 (y2 ⊗ 1) + 1

2 (y2x ⊗ j1),

which in turn is equivalent to y2 = 1. By construction, y is uniquely determined by z. �

With Lemma 3.3.11 at hand, we now prove Proposition 3.3.10.

Proof of Proposition 3.3.10. It is straightforward to check that the Qa and Pα are indeed com-
muting projections. We will prove the statement by two separate inductions with respect to r
and s. In case r = s = 0, we have Pφ = 1, φ = 1, and hence there is nothing to prove.

Assume that r = 0, s > 1, and that the statement has been proved for (0, s − 1) and
any unital real C∗-algebra A. Let P0,s−1 B

∏s−1
α=1 Pα. Since 1 ⊗ js+1 commutes with P0,s−1,

Equation (2.4) implies that

Pφ(A ⊗C`0,s+1
)
Pφ � Ps

(
A′ ⊗̂C`0,1

)
Ps (3.15)

where
A′ B P0,s−1(A ⊗C`0,s

)
P0,s−1.

Here, the C`0,1 factor on the right-hand side of Equation (3.15) is generated by js+1, and the
C`0,s factor on the right-hand side of the latter is generated by j1, . . . , js.

Under the isomorphism in the former equation, Js ⊗ j1 js+1 is mapped to x ⊗ js+1, where
x B Js ⊗ j1. We may apply the first part of Lemma 3.3.11 with C = A′ to the right-hand
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side of the former equation. We conclude that there is a bijection, defined by the equation
a = bPs, between the

a ∈ F (Pφ(A ⊗C`0,s+1
)
Pφ),

and the b ∈ F (P0,s−1(A ⊗C`0,s
)
P0,s−1) anti-commuting with Js ⊗ j1. By the inductive as-

sumption, the b ∈ F (P0,s−1(A ⊗C`0,s
)
P0,s−1) are in bijection via b = (J ⊗ j1)P0,s−1 with the

real Hermitian unitaries J ∈ A anti-commuting with J1, . . . , Js−1. The b anti-commuting with
Js ⊗ j1 are in bijection with the J anti-commuting with J1, . . . , Js.

This proves the statement for (0, s). If now r > 1, then similarly

Pφ(A ⊗C`r,s+1
)
Pφ � Qr

(
A′′ ⊗̂C`1,0

)
Qr

where

Pr−1,s B
r−1∏
a=1

Qa

s∏
α=1

Pα and A′′ B Pr−1,s(A ⊗C`r−1,s+1
)
Pr−1,s.

Here, the C`1,0 factor on the right-hand side of the former equation is generated by kr, whereas
the C`r−1,s+1 factor in the latter is generated by k1, . . . , kr−1, j1, . . . , js+1. The assertion now
follows by induction on r, applying the second part of Lemma 3.3.11 to C = A′′ and x =

(−1)sKr ⊗ j1. �

We have established the bijective map in the first row in Figure 3.1. In the next lemma, we
will show that this map is a homeomorphism and therefore induces a well-defined bijection
between the path-connected components in the second row of Figure 3.1.

Lemma 3.3.12. Let FF φ(A) and F
(
Pφ(A ⊗ C`r,s+1)Pφ) be equipped with the topologies

induced by the norm on A and A ⊗C`r,s+1. Then the bijective map

FF
φ(A) −→ F

(
Pφ(A ⊗C`r,s+1)Pφ); J 7→ (J ⊗ j1)Pφ

is a homeomorphism.

Proof. Inspecting the proof of Proposition 3.3.10, it is sufficient to see that the projection
onto the first factor of C⊗̂C`0,1 = C ⊕ C j1 is continuous. The same holds for C⊗̂C`1,0 =

C ⊕Ck1. �

Thus the isomorphism of Proposition 3.3.10 induces a bijection between the correspond-
ing sets of homotopy equivalence classes. Even more, it defines an isomorphism of resulting
Abelian inductive limits and subsequently of Abelian groups as explained in the following
theorem.

Theorem 3.3.13. If A is real, the homeomorphism FF φ(A) −→ F
(
Pφ(A ⊗C`r,s+1)Pφ); J 7→

(J ⊗ j1)Pφ induces an isomorphism of Abelian monoids

FFφ
∞(A) −→ DKRe0

(
Pφ(A ⊗C`r,s+1)Pφ),

with reference ORHU e0 B (Jref ⊗ j1)Pφ. If A is complex, this induces an isomorphism

FFφ
∞(A) −→ DKe0

(
Pφ(A ⊗ C`r,s+1)Pφ).

These isomorphisms define isomorphisms between the associated Grothendieck groups.
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Proof. Note that Mn
(
Pφ(A ⊗ C`r,s+1)Pφ) = (1n ⊗ Pφ)

(
Mn(A) ⊗ C`r,s+1

)
(1n ⊗ Pφ). For all

J ∈ FF φ
n(A) and J′ ∈ FF φ

m(A) we have(
(J ⊕ J′) ⊗ j1

)
(1n+m ⊗ Pφ) = (J ⊗ j1)(1n ⊗ Pφ) ⊕ (J′ ⊗ j1)(1m ⊗ Pφ),

i.e. the isomorphism commutes with the direct sum. In particular,(
(J ⊕ Jref) ⊗ j1

)(
1n+1 ⊗ Pφ) = (J ⊗ j1)(1n ⊗ Pφ) ⊕ e0.

Therefore, the homeomorphism of Lemma 3.3.12 defines an isomorphism between the induc-
tive systems

(
FFφ

n (A)
)
n>1 and

(
Fn(Pφ(A⊗C`r,s+1)Pφ)

)
n>1. Thus we obtain an isomorphism of

the inductive limits
FFφ
∞(A)

�
−→ DKRe0 (Pφ(A ⊗ C`r,s+1)Pφ).

The claim about the Grothendieck group now follows directly by the naturality of the
Grothendieck functor. �

We have thus established the isomorphism

TopφJref
(A) −→ DKR

(
Pφ(A ⊗C`r,s+1)Pφ),

which completes the diagram in Figure 3.1. We summarise this result and the explicit form
of the isomorphism for later reference in the following corollary.

Corollary 3.3.14. The group TopφJref
(A) is isomorphic to the group DKRe

(
Pφ(A⊗C`r,s+1)Pφ),

as defined in Definition 3.2.3, with reference ORHU e = e0⊕−e0 = (Jref⊗ j1)Pφ⊕−(Jref⊗ j1)Pφ.
This isomorphism maps a class [J]−[Jref] ∈ TopφJref

(A) onto
[
(J⊗ j1)Pφ]−[

(Jref⊗ j1)Pφ] ∈
DKRe

(
Pφ(A ⊗C`r,s+1)Pφ).

Proof. This is an immediate consequence of Proposition 3.2.7. �

Our next goal is to identify the Van Daele group DKR
(
Pφ(A ⊗ C`r,s+1)Pφ) with the Van

Daele group DKR
(
A⊗C`r,s+1

)
. This is primarily a consequence of the following observation.

Lemma 3.3.15. If FF φ(A) , ∅, then the graded real C∗-algebra A ⊗ C`r,s+1 is isomorphic
to the graded real C∗-algebra of 2r+s × 2r+s matrices over Pφ(A ⊗C`r,s+1)Pφ with entry-wise
grading.

Proof. There are many ways to define an isomorphism. Here we make a specific choice that
will allow us to compute its effect on K-theory. We shall index the rows and columns of
2r+s × 2r+s matrices by indices ε running over {±}r+s. Set Q+

α B Qα and Q−α B 1 − Qα, and
similarly for Pa. This enables us to define

Pφ
ε B Qε1

1 · · ·Q
εr
r Pεr+1

1 · · · Pεr+s
s .

The projections Pφ
ε satisfy

Pφ
ε Pφ

ε′ = δεε′P
φ
ε ,

∑
ε∈{±}r+s

Pφ
ε = 1. (3.16)
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Now we make explicit use of the condition FF φ(A) , ∅. Namely, this implies that the
projections Pφ

ε are all unitarily equivalent, as can be seen from the following careful choice
of unitaries implementing the equivalence. Observe first that

Ad(KaJref ⊗ 1)(Pφ) = Pφ
ε−2ea

Ad(JαJref ⊗ 1)(Pφ) = Pφ
ε−2er+α

 ∀a = 1, . . . , r, α = 1, . . . , s.

Hence, setting
uε B

∏
16a6r,εa=−

(KaJref ⊗ 1)
∏

16α6s,εr+α=−

(JαJref ⊗ 1),

we obtain
uεPφ = Pφ

εuε, uε(Jref ⊗ j1) = ε(Jref ⊗ j1)uε.

Define a map
Ψ : A ⊗C`r,s+1 −→ M2r+s (C) ⊗ Pφ(A ⊗C`r,s+1)Pφ

by
Ψ(x) B

∑
ε,ε′∈{±}r+s

Eεε′ ⊗ Pφu∗ε xuε′Pφ =
∑

ε,ε′∈{±}r+s

Eεε′ ⊗ u∗ε Pφ
ε xPφ

ε′uε′ .

Here, Eεε′ are the standard matrix units. It is clear that Ψ commutes with ∗ and the conjuga-
tion. A computation using Equation (3.16) implies that Ψ is in fact a real ∗-morphism. Since
the matrix units form a basis of M2r+s (C), it is easy to see that Ψ is bijective. �

Remark 3.3.16. The result of Lemma 3.3.15 is not surprising, as by [69, Ex. 3.6 & Prop.
3.28], the corner Pφ(A ⊗C`r,s+1)Pφ is Morita equivalent to the closed two-sided ideal gener-
ated by Pφ. If FF φ(A) , ∅, one can show that this ideal is already all of A⊗C`r,s+1. Since A
is unital by assumption, the Brown–Green–Rieffel Theorem [69, Thm. 5.55] applies, and the
Morita equivalence implies stable isomorphism.

It follows by Lemma 3.3.15 and Proposition 3.2.6 that

TopφJref
(A) = DKR

(
Pφ(A ⊗C`r,s+1)Pφ) = DKR(A ⊗C`r,s+1) (3.17)

in the real case, and

TopφJref
(A) = DK

(
Pφ(A ⊗ C`r,s+1)Pφ) = DK(A ⊗ C`r,s+1) (3.18)

in the complex case. The next proposition about the explicit form of these isomorphisms
will be important for the proof of the bulk-boundary correspondence in Section 5.3 and the
computation of topological invariants in Chapter 6.

Proposition 3.3.17. The class [J]− [Jref] ∈ TopφJref
(A) is under the isomorphisms of Proposi-

tion 3.2.6 and Lemma 3.3.15 mapped onto[
(J⊗ j1)Pφ+(Jref⊗ j1)(1−Pφ)

]
−
[
Jref⊗ j1

]
=

[(
(J ⊗ j1)Pφ + (Jref ⊗ j1)(1 − Pφ)

)
⊕ −(Jref ⊗ j1)

]
(3.19)

in DKR(A ⊗C`r,s+1) resp. DK(A ⊗ C`r,s+1) with reference ORHU Jref ⊗ j1 ⊕ −(Jref ⊗ j1).
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Proof. We only prove the real case since the complex case is the same.
By Corollary 3.3.14, the isomorphism TopφJref

(A) � DKR(Pφ(A ⊗ C`r,s+1)Pφ) maps the
class [J] − [Jref] ∈ TopφJref

(A) onto the class

[x] B
[
(J ⊗ j1)Pφ ⊕ −e0

]
∈ DKR(Pφ(A ⊗C`r,s+1)Pφ),

where the reference ORHU is e = e0 ⊕ −e0 with e0 = (Jref ⊗ j1)Pφ.
Unless r + s > 0, there is nothing more to prove.
Set n B 2r+s−1. We abbreviate p B Pφ, and C B A ⊗ C`r,s+1. The map from Proposition

3.2.6 sends x to x ⊕ en−1 ∈ F2n(pAp). This is the 2n × 2n matrix

E++ ⊗ (J ⊗ j1)p +
∑

ε,(+,...,+)

εEεε ⊗ e0,

where E++ is the matrix unit corresponding to ε = (+, . . . ,+).
Let Ψ be the isomorphism from Lemma 3.3.15. As Jref ⊗ j1 commutes with p = Pφ and

Ad(uε)(Jref ⊗ j1) = ε(Jref ⊗ j1), we find

Ψ(Jref ⊗ j1) =
∑

ε,ε′∈{±}r+s

ε′Eεε′ ⊗ (Jref ⊗ j1)u∗ε Pφ
ε Pφ

ε′uε′ =
∑

ε∈{±}r+s

εEεε ⊗ (Jref ⊗ j1)Pφ.

Thus we see that Ψ(Jref ⊗ j1) = en. A similar computation shows that

Ψ
(
(J ⊗ j1)p + (Jref ⊗ j1)(1 − p)

)
= x ⊕ en−1.

Therefore, x ⊗ en−1 is identified with the desired element in M2n(C). �

3.3.3 The general picture
In this section, we will use the properties of Van Daele groups of Section 3.2 in order to
derive a more systematic and generalised picture for the group TopφJref

(A).

Proposition 3.3.18. Up to isomorphisms, the group TopφJref
(A) is independent of the choice

of the reference element Jref and the unital ∗-morphism φ, i.e. given another unital (real)
∗-morphism φ′ : C`r,s → A with reference element J′ref ∈ FF

φ′ (A), there is an isomorphism
TopφJref

(A) � Topφ
′

J′ref
(A).

Proof. If A is real, different choices φ and φ′ with reference elements Jref and J′ref , respec-
tively, lead to the groups TopφJref

(A) = DKR
(
Pφ(A⊗C`r,s+1)Pφ) and Topφ

′

J′ref
(A) = DKR

(
Pφ′ (A⊗

C`r,s+1)Pφ′). By Equation (3.17), it follows

Topφ
′

J′ref
(A) = DKR(A ⊗C`r,s+1) = TopφJref

(A).

The complex case can be proved in the same way. �

Proposition 3.3.18 in particular implies that the definition of TopφJref
(A) is independent

of the signs in Equations (3.13), as promised in Remark 3.3.9. Moreover, this proposition
implies that the following notation is well-defined.
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Definition 3.3.19 (Topr,s(A)). In view of Proposition 3.3.18, we introduce the notation

Topr,s(A) B TopφJref
(A).

We will use this notation whenever we do not wish to specify the morphism φ and the reference
element Jref .

In analogy to the stability of Van Daele groups, we obtain the following stability of the
group Topr,s(−).

Corollary 3.3.20. The map FF φ(A) −→ FF φ2 (M2(A)); J 7→ J ⊕ Jref induces an isomor-
phism Topr,s(A) � Topr,s(M2(A)).

Proof. The assertion is an immediate consequence of the stability of Van Daele groups, cf.
Proposition 3.2.6 and the explicit form of the identification in Proposition 3.3.17. �

Hitherto, the definition of TopφJref
(A), and hence the definition of Topr,s(A), is based on

the assumption FF φ(A) , ∅. As promised at the beginning of this section, we will now
generalise the definition Topr,s(A) to the case FF φ(A) = ∅. For that, we first construct the
following group.

Definition 3.3.21. Let A be a real C∗-algebra and let φ : C`r,s → A be a unital ∗-morphism.
We consider the real unital ∗-morphism Φ : C`r,s → M2(A) defined by

Φ(ka) B
(

Ka 0
0 −Ka

)
, Φ( jα) B

(
Jα 0
0 −Jα

)
∀a = 1, . . . , r, α = 1, . . . , s.

Then we have FF Φ(M2(A)) , ∅ since J̃ref =
(

0 −1
1 0

)
∈ FF

Φ(M2(A)). Thus, the group
TopΦ

J̃ref
(M2(A)) is well-defined.

The construction for the complex case is the same.

All results for the group TopφJref
(A) hold analogously for TopΦ

J̃ref
(M2(A)). In the following,

we will show that this group indeed exhibits a generalisation for the group Topr,s(A), i.e.

Topr,s(A) B TopΦ

J̃ref
(M2(A))

is a well-defined generalisation. For that, we have to show that if there is an element Jref ∈

FF
φ(A), then the group TopΦ

J̃ref
(M2(A)) is isomorphic to TopφJref

(A). But this follows almost
immediately by the above results.

Lemma 3.3.22. Let A be a real C∗-algebra with reference element Jref ∈ FF
φ(M2(A)). Then

TopΦ

J̃ref
(M2(A)) � TopφJref

(A).

Proof. By Proposition 3.3.18, there is an isomorphism TopΦ

J̃ref
(M2(A)) � Topφ2

(Jref )2
(M2(A)).

Then the assertion follows by Corollary 3.3.20. �

Thus, both constructions lead, up to isomorphisms, to the same group Topr,s(A).
Altogether, we have constructed a group Topr,s(A) which solely depends, up to isomor-

phisms, on the unital C∗-algebra A and the natural numbers r, s. By Theorem 3.3.13 and
Lemma 3.3.15, we obtain the equations

Topr,s(A) � DKR−(s−r+2)(A) or Topr,s(A) � DK−(s−r+2)(A)
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for a real or complex C∗-algebra A, respectively. Thus, we have indeed constructed a new
picture of real and complex K-theory for unital C∗-algebras. In particular, we see here that
the group Topr,s(A) actually only depends on the difference s − r.

We close this chapter with the generalisation to non-unital C∗-algebras.

Lemma 3.3.23. Let A be a C∗-algebra. Let A+ be its unitisation, cf. Definition 3.2.8, and let
ϕ : A+ → C be the canonical ∗-morphism. Then we define

Topr,s(A) B ker(ϕ∗) ⊆ Topr,s(A+),

where ϕ∗ : Topr,s(A+)→ Topr,s(C) denotes the induced morphism given by

TopφJref
(A+) 3 [(J, λ)] − [(Jref , λref)] 7−→ [λ] − [λref] ∈ Topϕ(φ)

ϕ(Jref )
(C).

This definition generalises the definition of Topr,s(A) for unital C∗-algebras.

Proof. We only have to show that kerϕ∗ = Topr,s(A) for a unital C∗-algebra A. The map

A ⊕ C −→ A+; a ⊕ λ 7→ (a − λ, λ)

defines a ∗-isomorphism for a unital C∗-algebra A. Thus, in this case we have Topr,s(A+) =

Topr,s(A⊕C). It is straightforward to check that Topr,s(A⊕C) = Topr,s(A)×Topr,s(C). On the
right hand side, the morphism ϕ∗ is simply given by restriction onto the second factor. This
implies kerϕ∗ = Topr,s(A). �



Chapter Four

Disordered Topological Insulators
and Superconductors

The notions of topological insulators and topological superconductors were established over
the last two decades in order to describe a new class of solid state systems with certain topo-
logical features that have been discovered experimentally and theoretically during that time.
These systems can be roughly described as solid state systems with an energy gap around the
chemical potential in the bulk and a gapless energy spectrum around the chemical potential
in the vicinity of the boundary.

Retrospectively, the first topological insulator was discovered with the quantum Hall
effect (QHE) in 1980 [89]. The QHE was experimentally realised in a two-dimensional
electron-gas at the surface of semiconductors, e.g. silicon or gallium. A strong magnetic
field localises the electrons in the bulk of this two-dimensional sample, whereas the elec-
trons at the one-dimensional boundary are delocalised. This leads to an insulating bulk and
a conducting boundary. At that time, the extraordinary observation was that the conducting
property at the boundary is stable w.r.t. disorder and its quantised phases behave fundamen-
tally different to thermodynamic phases. This was the first example of a ‘topological phase’.
Nowadays, there are several experimental realisations of the quantum Hall effect with other
samples. In the modern formulation, these are called topological insulators in symmetry class
A.

For along time, the quantum Hall effect was the only known realisation of a topological
insulator, theoretically and experimentally. However, in 2005, Kane and Mele, [36, 37] pre-
dicted a new type of topological insulators, the so-called quantum spin Hall effect (QSHE).
The most important difference to the QHE is that the states in the QSHE are time-reversal
invariant. Thus, the QSHE gives rise to topological insulators in symmetry class AII. More-
over, in contrast to the QHE, the boundary of the QSHE exhibits a quantised spin current and
meanwhile there is no charge current. The first experimental observations of the QSHE were
made in mercury telluride quantum wells [14, 52] in 2007 and in bismuth antimony alloys
[27, 33] in 2008.

It should be noted that hitherto, the notion of a topological insulator did not exist. The
QSHE made apparent that the QHE is just a certain type of a larger class of materials showing
topological features. This larger class was then called topological insulators.

Throughout the following years, the idea to consider systems with symmetries led to the
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discovery of several other realisations of topological insulators. At that time, it was also re-
alised that these topological phenomena are not restricted to systems with conserved particle
number, but could also occur in superconductors. This lead to the notion of topological su-
perconductors [76]. In fact, much of the excitement about topological quantum matter stems
from the technological promise of robust boundary modes (so-called Majorana modes) at the
ends of superconducting wires. In modern terms, this corresponds to a topological supercon-
ductor in symmetry class D. Another example of topological superconductors in class D are
two-dimensional substructures in strontium ruthenate (SR2RuO4) [58].

The variety of different models for topological insulators and superconductors was then
put in a systematic order by Kitaev’s famous work [50]. Kitaev was the first who used the
Fourier–Bloch theory to identify the topological phases of topological insulators and super-
conductors with classes in the topological K-theory of the torus. There, the ground states of
gapped systems are interpreted as vector bundles over the d-dimensional torus. He presented
a systematic approach to the classification of the bulk phase of topological insulators and
superconductors without disorder or particle-particle interactions in arbitrary dimensions and
all symmetry classes of the Tenfold Way. The relatively abstract approach by Kitaev was
in the following years formulated in physically more concrete ways. Kennedy–Zirnbauer
[49] gave a rigorous translation of translationally invariant free-fermion ground states into
vector bundles over the torus for all symmetry classes of the Tenfold Way. Their results are
fundamental for the concepts of this chapter.

In contrast to the works mentioned above, we are interested in disordered topological in-
sulators and superconductors where the translational invariance is inherently broken. There-
fore, Kitaev’s approach is not applicable for our considerations. A rigorous mathematical
approach for such disordered systems was already established in 1986 by Bellissard [10] in
the context of the disordered quantum Hall effect. We will refer to Bellissard’s approach as
homogeneous disorder for the following reason. His approach is based upon the idea that,
although disorder breaks the translational invariance on microscopic scales, the average over
all disorder configurations should result in translationally invariant observables.

Based on the idea of homogeneous disorder, we will establish a framework for disordered
topological insulators and superconductors in the following way.

We begin with an introduction to the description of ground states of free fermions without
particle number conservation. These can be described via operators, so called quasi-particle
vacua, over the so-called Nambu space. The precise formulation of this picture is funda-
mental in order to get the correct classification scheme for topological insulators and super-
conductors. The implementation of symmetries in this Nambu space picture is based on the
work by Kennedy–Zirnbauer [49]. There the symmetries are encoded in so-called pseudo-
symmetries leading to a systematic picture for the different symmetry classes in the Tenfold
Way.

Once we have established this Nambu space picture, we will use it to construct a frame-
work for physical observables of disordered topological insulators and superconductors. We
will begin with the construction for observables in the bulk, i.e. in the absence of bound-
aries. Observables of solids at zero temperature are in our context described by the so-called
tight-binding approximation. As observed by Kubota [53], operators in the tight-binding
approximation can be identified with elements in the uniform Roe C∗-algebra [72, Ch. 4].

We then add homogeneous disorder as well as homogeneous magnetic fields to the pic-
ture. We will show that the resulting set of physically reasonable bulk observables generates
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a C∗-algebra, which we call the algebra of bulk observables. In the following, we will then
prove that this C∗-algebra is ∗-isomorphic to the crossed product C∗-algebra that is usually
used in the literature to describe observables with homogeneous disorder [9, 10, 13, 45, 66,
78].

Thereafter, we perform the analogous constructions in the presence of a boundary. We
will consider an infinitely long straight boundary perpendicular to one translational direction
of the underlying Bravais lattice. The observables over this system with boundary form a C∗-
algebra which we call the algebra of half-space observables. The final result of this section
will be that the algebras of bulk and half-space observables can be arranged into a short exact
sequence (SES), which we call the bulk-boundary short exact sequence. This SES will be
essential for the bulk-boundary correspondence in Chapter 5.

Most of the material in this chapter was published in the preprint Bulk-boundary cor-
respondence for disordered free-fermion topological phases by A. Alldridge, C. Max and
M. R. Zirnbauer, 2019, [1]. We extend the results of the preprint by including non-trivial
homogeneous magnetic fields in the complex symmetry classes.

4.1 Symmetric fermionic quasi-particle vacua

Here, we establish the description of free-fermion many-particle systems with symmetries.
This section is based on [1, 49].

The assumption that our systems are non-interacting means that there is an effective de-
scription in terms of non-interacting fermions. In a more technical language, this means that
we can describe the systems in a so-called Hartree–Fock–Bogoliubov mean-field approxima-
tion. The principle idea behind this approximation is that the system is described in terms of
effective fermions that govern the physical properties of the system and exhibit no particle-
particle interaction. Since these fermions don’t have to resemble the real physical fermions
(e.g. electrons) in the system, they are called quasi-particles.

Topological insulators exhibit particle number conservation and can therefore be de-
scribed in a single-particle picture in the non-interacting case. Since we consider charged
particles, particle number conservation is equivalent to charge conservation. In contrast to
that, superconductivity is a true many-body phenomenon where the broken charge conser-
vation is fundamental. Therefore, we have to describe superconductors in a many-particle
picture. Although these two systems are physically fundamentally different, they can both be
described in the Nambu space picture which we will describe in the following.

4.1.1 The Nambu space of fields
The starting point is a complex Hilbert spaceV representing the single-particle states of the
quasi-particles in a given solid state system. A fundamental feature of these systems is that
there is a chemical potential µ, which is defined as the energy level at which the insertion or
removal of quasi-particles costs no work. This defines a splitting of the single-particle Hilbert
space asV = V+⊕V−, whereV+ (V−) consists of single-particle states with energies above
(below) µ. In particular, this means that V± are complex Hilbert spaces such that the inner
products satisfy

〈v+ + v−, v
′
+ + v′−〉V = 〈v+, v

′
+〉V+

+ 〈v−, v
′
−〉V− ∀v+, v

′
+ ∈ V+, v−, v

′
− ∈ V−.
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The states inV+ are called conduction states, whereas those inV− are called valence states.
Without loss of generality, we can assume that µ = 0.

The ground state of the system is given by the state where all states in V− are occupied
and all states in V+ are unoccupied. Deviations from this ground state are constructed by
removing states from V− or adding states in V+. We use this idea of describing the states
relative to the ground states for the following descriptions of many-particle states. Namely,
we now consider the corresponding Fock space for V, which is defined as the Hilbert space
completion of

Λ(V+ ⊕V
∗
−) =

⊕
n>0

Λn(V+ ⊕V
∗
−) �

⊕
p,q>0

Λp(V+) ⊗ Λq(V∗−),

where Λ(−) denotes the exterior algebra as explained in Proposition 2.2.4.

Remark 4.1.1. Note that the bare vacuum, i.e. the state without any quasi-particles, would
be a poor starting point for the description of states in solid state physics.

The space Λ0(V+ ⊕ V
∗
−) � C represents the ground state. The space Λp(V+) ⊕ Λq(V∗−)

contains the states with p particles in V+ and q holes in V− relative to the ground state.
Accordingly, the space Λn(V+ ⊕ V

∗
−) =

⊕n
k=0 Λn−k(V+) ⊗ Λk(V∗−) for n > 1 denotes the

subspace of all many-particle states that can be reached from the ground state by adding
n − k states in V+ and removing k states in V− for any 0 6 k 6 n. Removing valence
states corresponds on the Hilbert space level to dual elements of V−. Therefore, the direct
sum V+ ⊕ V

∗
−, where V∗− denotes the dual space of V−, is the correct space to consider. If

the quasi-particles are charged, as it is the case in our considerations, then the holes have
the opposite charge and therefore the number p − q measures the total charge relative to the
ground state.

The insertion of a quasi-particle in state v+ ∈ V+ or a hole in state ϕ− ∈ V∗− corresponds
to the following operators:

εv+ : Λp(V+)→ Λp+1(V+); v1 ∧ . . . ∧ vp 7→ v+ ∧ v1 ∧ . . . ∧ vp,

εϕ− : Λq(V∗−)→ Λq+1(V∗−); ϕ1 ∧ . . . ∧ ϕq 7→ ϕ− ∧ ϕ1 ∧ . . . ∧ ϕq.

The removal of quasi-particles and holes corresponds to the operators

ι̃ϕ+
: Λp(V+)→ Λp−1(V+); v1 ∧ . . . ∧ vp 7→

p∑
i=1

(−1)i−1ϕ+(vi)v1 ∧ . . . ∧ vi−1 ∧ vi+1 ∧ . . . ∧ vp,

ι̃v− : Λq(V∗−)→ Λq−1(V∗−), ϕ1 ∧ . . . ∧ ϕq 7→

q∑
i=1

(−1)i−1ϕi(v−)ϕ1 ∧ . . . ∧ ϕi−1 ∧ ϕi+1 ∧ . . . ∧ ϕq,

for given ϕ+ ∈ V
∗
+ and v− ∈ V− ⊆ (V∗−)∗. Note that these operators are linear in ϕ± and v±.

Remark 4.1.2. The operators εv+ , ι̃v− raise the charge by one unit, whereas the operators
εϕ− , ι̃ϕ+

decrease the charge by one unit. Subsequently, the concatenations εv+εϕ− , εv+ ι̃ϕ+
,

ι̃v−εϕ− and ι̃v− ι̃ϕ+
are charge preserving.
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Definition 4.1.3 (Field operators). A field operator ψ is defined as an element of L
(
Λ(V+ ⊕

V∗−)
)

which is induced by a linear combination of these linear operators, i.e.

ψ = εv+ ⊗ 1 + 1 ⊗ εϕ− + ι̃ϕ+
⊗ 1 + 1 ⊗ ι̃v− ∈ L

⊕
p,q>0

Λp(V+) ⊗ Λq(V∗−)


for some v± ∈ V± and ϕ± ∈ V

∗
±. Let W be the complex vector space of all such field

operators.

Any two field operators ψ = εv+ ⊗ 1 + 1 ⊗ εϕ− + ι̃ϕ+
⊗ 1 + 1 ⊗ ι̃v− , ψ

′ = εv′+ ⊗ 1 + 1 ⊗ εϕ′− +

ι̃ϕ′+ ⊗ 1 + 1 ⊗ ι̃v′− ∈ W satisfy the canonical anti-commutation relations (CAR){
ψ, ψ′

}
B ψψ′ + ψ′ψ = ϕ+(v′+) + ϕ−(v′−) + ϕ′+(v+) + ϕ′−(v−). (4.1)

This induces a canonical bilinear form onW, the so-called CAR form

{·, ·} :W⊗W→ C;
{
ψ, ψ′

}
= ϕ+(v′+) + ϕ−(v′−) + ϕ′+(v+) + ϕ′−(v−). (4.2)

We can use the Hilbert space structures of V± to introduce the anti-linear Fréchet-Riesz
isomorphisms h : V± →V∗± defined by

h(x) B 〈x, ·〉V± ∀x ∈ V±.

These Fréchet-Riesz isomorphisms define an anti-linear involution γ :W→W by

γ
(
εv+ ⊗ 1 + 1 ⊗ εϕ− + ι̃ϕ+

⊗ 1 + 1 ⊗ ι̃v−
)
B ι̃hv+ ⊗ 1 + 1 ⊗ ι̃h−1ϕ− + εh−1ϕ+

⊗ 1 + 1 ⊗ εhv− (4.3)

for all v± ∈ V±, ϕ± ∈ V∗±. This defines a real structure onW. It can be easily checked that
γ is symmetric with respect to the CAR form. The complex vector spaceW, equipped with
the real structure γ and the CAR form defines the so-called Nambu space of fields.

For later reference, we summarise the above observations in the following definition.

Definition 4.1.4 (Nambu space of fields). The Nambu space of fields is defined as the real
vector space (W, γ), equipped with the bilinear CAR form of Equation (4.2), whereW de-
notes the complex vector space of field operators and γ is the real structure from Equation
(4.3).

The Nambu space of fields is isomorphic to the real vector space V+ ⊕ V
∗
− ⊕ V

∗
+ ⊕ V−

via the isomorphism defined by

εv+ ⊗ 1 + 1 ⊗ εϕ− + ι̃ϕ+
⊗ 1 + 1 ⊗ ι̃v− 7→ v+ + ϕ− + ϕ+ + v−. (4.4)

This is indeed a complex linear isomorphism because the operators ε and ι̃ are both linear in
the index. By reordering of the summands, we thus get

W � V ⊕V∗, whereV = V+ ⊕V−.

Lemma 4.1.5. The isomorphismW � V ⊕V∗ of Equation (4.4) maps the CAR form onto
the bilinear form {

v + ϕ, v′ + ϕ′
}

= ϕ(v′) + ϕ′(v) ∀v, v′ ∈ V, ϕ, ϕ′ ∈ V∗. (4.5)

The real structure γ is mapped onto

γ(v + ϕ) = h(v) + h−1(ϕ) ∀v ∈ V, ϕ ∈ V∗. (4.6)
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Proof. Let v±, v′± ∈ V±, ϕ±, ϕ
′
± ∈ V

∗
± be arbitrary. For the sake of readability, let F : W →

V⊕V∗ denote the isomorphism. Then{
v+ + v− + ϕ+ + ϕ−, v

′
+ + v′− + ϕ′+ + ϕ′−

}
=
{
F−1(v+ + v− + ϕ+ + ϕ−

)
, F−1(v′+ + v′− + ϕ′+ + ϕ′−

)}
=
{
εv+ ⊗ 1 + 1 ⊗ εϕ− + ι̃ϕ+

⊗ 1 + 1 ⊗ ι̃v− , εv′+ ⊗ 1 + 1 ⊗ εϕ′− + ι̃ϕ′+ ⊗ 1 + 1 ⊗ ι̃v′−
}

=ϕ+(v′+) + ϕ−(v′−) + ϕ′+(v+) + ϕ′−(v−)

The form of γ follows immediately. �

We have constructed the Nambu space W equipped with the bilinear symmetric CAR
form {·, ·} and the real structure γ. With these information, we can now define the following
canonical inner product.

Definition 4.1.6 (Inner product on Nambu space). The inner product onW is defined by

〈w, w′〉 B
{
γw, w′

}
.

By construction, the adjoint of an operator T ∈ L(W) is given by T ∗ = T
T
.

Lemma 4.1.7. The inner product of Definition 4.1.6 defines the structure of a real Hilbert
space onW. Under the isomorphismW = V ⊕V∗, this inner product becomes of the form

〈v + ϕ, v′ + ϕ′〉 = 〈v, v′〉V + 〈ϕ, ϕ′〉V∗ .

Proof. The form of the inner product overV⊕V∗ follows immediately by the explicit form
of the CAR form of Equation (4.5) and the real structure γ of Equation (4.6).

This defines a Hilbert space structure onW, because the inner products onV andV∗ are
positive definite and hence the inner product onW is positive definite, too. �

Remark 4.1.8. The positive definiteness of the inner product relies crucially on the fact that
we consider fermions. In fact, to perform the same constructions for bosons, we would have
to replace the symmetric bilinear CAR form {·, ·} by the anti-symmetric bilinear form

[v + ϕ, v′ + ϕ′] = ϕ(v′) − ϕ′(v) ∀v + ϕ, v′ + ϕ′ ∈ V ⊕V∗.

The resulting inner product would then no longer be positive definite.

By the observations above, we can conclude that in general all physical many-body oper-
ators, including particle-particle interactions, are elements of the Clifford algebra C`(W, q),
where q is the quadratic form induced by the CAR form. However, we assume that there is a
quasi-particle picture of non-interacting fermions for our systems, which is equivalent to the
existence of a description of the system via a free-fermion Hamiltonian.

Remark 4.1.9. In the literature, one often finds the claim that the generated Clifford algebra
is C`(V ⊕ V, q). This point of view requires to fix a real or quaternionic structure on V
which induces a linear isomorphism V � V∗. But such a real or quaternionic structure
is unphysical if chosen arbitrarily. This isomorphism becomes physically reasonable if we
consider systems where such a structure is given, for example in systems with time-reversal
symmetry, cf. Subsection 4.1.2.
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All free-fermion Hamiltonians are by definition elements of the complex vector space of
non-interacting operators, which is defined as follows.

Definition 4.1.10 (Non-interacting operators). An element in C`(W, q) is called non-interacting
if it is an element of the complex vector space generated by the elements ψψ′−ψ′ψ ∈ C`(W, q)
for ψ, ψ′ ∈ W.

One of the most important points of the Nambu space picture is that Equation (4.1) implies

1
2
[
ψψ′ − ψ′ψ, w

]
= {ψ′, w}ψ − {ψ, w}ψ′ ∀ψ, ψ′, w ∈ W,

where [·, ·] denotes the commutator and {·, ·} the bilinear CAR form. This allows us to identify
the non-interacting operators with elements of L(W) by

[ψ, ψ′] 7→ T[ψ,ψ′] where T[ψ,ψ′](w) B
[
[ψ, ψ′], w

]
. (4.7)

This morphism gives rise to an isomorphism to the Lie algebra so(W).

Proposition 4.1.11. The non-interacting operators generate a real Lie algebra in L(W)
w.r.t. the commutator which is isomorphic to so(W).

Proof. Let ψ, ψ′ ∈ W be arbitrary. It is easy to see that the operators T[ψ,ψ′] generate a
complex vector space which is closed under the commutator [·, ·] and the real structure Adγ,
thus defining a real Lie algebra.

It remains to show that this Lie algebra is isomorphic to so(W). As a set, the Lie algebra
so(W) consists of all skew-symmetric operators in L(W).

Let φ B 1
2 [ψ, ψ′]. Then

{Tφw, w′} = {ψ′, w}{ψ, w′} − {ψ, w}{ψ′, w′} = −{w,Tφw′}.

Thus Tφ is skew-symmetric w.r.t. the CAR form. Since the Lie algebra structure is already
given by the commutator, it follows that the Lie algebra is a subalgebra of so(W).

In order to show equality, let {ei} be an orthonormal Hilbert basis ofW and let

O =
∑
i, j

Oi, jeih(e j) ∈ so(W)

be arbitrary. Since O is skew-symmetric, we have Oi, j = −O j,i for all i, j. Define T B
1
2
∑

i, j TOi, jγ(ei)γ(e j). By

TOi, jγ(ei)γ(e j)ek = Oi, j〈e j, ek〉ei − Oi, j〈ei, ek〉e j = Oi, jδ j,kei − Oi, jδi,ke j ∀i, j, k,

it follows

Tek =
1
2

∑
i

Oi, jδ j,kei − O j,iδ j,kei =
∑

i

Oi, jei = Oek

and thus T = O.
Finally, note that the elements in WR = {w ∈ W | γ(w) = w} induce real operators in

so(W) since γT[ψ,ψ′]γ = T[γψ,γψ′] for all ψ, ψ′ ∈ W. Thus, the real operators in so(W) can be
identified with so(WR). �
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Remark 4.1.12. In physics, the field operators are often expressed in terms of creation and
annihilation operators. For v± ∈ V±, these are given by the creation operator

c†v++v− = εv+ ⊗ 1 + 1 ⊗ ι̃v−

and the annihilation operator

cv++v− = ι̃h(v+) ⊗ 1 + 1 ⊗ εh(v−).

The real structure γ satisfies γ(c†v++v− ) = cv++v− and the CAR for these operators are given by

{c†x, c
†
y} = 0, {cx, cy} = 0, {c†x, cy} = c†xcy + cyc†x = 〈y, x〉V ∀x, y ∈ V. (4.8)

For ψ = εv+ ⊗ 1 + 1⊗ εϕ− + ι̃ϕ+
⊗ 1 + 1⊗ ι̃v− , ψ

′ = εv′+ ⊗ 1 + 1⊗ εϕ′− + ι̃ϕ′+ ⊗ 1 + 1⊗ ι̃v′− ∈ W,
the creation and annihilation operators satisfy the relations

ψ = c†x + cy, ψ′ = c†x′ + cy′ ,

where x = v+ + v−, x′ = v′+ + v′− and y = h−1(ϕ+) + h−1(ϕ−), y′ = h−1(ϕ′+) + h−1(ϕ′−). It follows

ψψ′ − ψ′ψ = 2c†xc†x′ + 2cycy′ + c†xcy′ − cy′c†x + cyc
†

x′ − c†x′cy.

Thus the non-interacting operators are given by linear combinations of operators of the form

c†xcy − cyc†x, c†xc†y, cxcy ∀x, y ∈ V.

The Lie group corresponding to so(W) inside C`(W, q), cf. [55, Def. 2.3., Prop. 6.2], is
given by

Spin(W) = exp(so(W)) =
{
g ∈ C`(W, q)(0̄) | q(g) = ±1

}
.

The Lie group Spin(W) contains all physically relevant unitary operators in the free-fermion
limit. Its canonical action on the Nambu space of fields is given by

ρ : Spin(W)→ SO(W); ρ(g)w B gwg−1 ∀w ∈ W. (4.9)

A free-fermion Hamiltonian H ∈ C`(W) generates by definition the time evolution op-
erator
exp(−itH/~) ∈ Spin(W) which has to induce a real orthogonal action ρ

(
exp(−itH/~)

)
∈

SO(W). This reality condition is motivated physically by the obstruction that the time evo-
lution operator has to preserve the CAR. Therefore, the induced non-interacting Hamiltonian
H = dρ(H) ∈ L(W) has to be imaginary w.r.t. the real structure γ onW. We summarise
this important observation in the following definition.

Definition 4.1.13 (Free-fermion Hamiltonian). A free-fermion Hamiltonian is a skew-symmetric
element H ∈ L(W) which is imaginary with respect to the canonical real structure Adγ on
L(W), i.e.

H = γHγ = −H.

(Recall that γ2 = 1.) By definition of the Hilbert space structure of W, all free-fermion
Hamiltonians are Hermitian. A free-fermion Hamiltonian is gapped if it is invertible. A
gapped free-fermion Hamiltonian is flattened if H2 = 1.
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If we consider the Nambu space in the formW = V ⊕V∗, then we deduce by the form
of the real structure γ =

(
0 h−1

h 0

)
: V ⊕V∗ → V ⊕V∗ that any free-fermion Hamiltonian can

be written in the form

H =

(
A B
−hBh −hAh−1

)
∈ L(V ⊕V∗),

where A ∈ L(V) is Hermitian and B : V∗ →V is a linear morphism with B∗ = −hBh.

Remark 4.1.14. An invertible Hamiltonian H is called gapped because there is a ∆ > 0
such that there are no eigenstates of the Hamiltonian with eigenvalues (=eigenenergies) in
(−∆,∆). Thus, there is a gap in the spectrum of H around the chemical potential µ = 0.

To any gapped free-fermion Hamiltonian H, we can canonically associate a flattened
free-fermion Hamiltonian H|H|−1.

The ground state of a gapped free-fermion Hamiltonian is uniquely determined by the
(−1)-eigenspace of the corresponding flattened Hamiltonian H|H|−1. In principle, one could
thus proceed with the description of ground states via flattened Hamiltonians. However, since
all Hamiltonians are imaginary, it is from a mathematical point of view much more reasonable
to describe ground states via the real operators

J B −iH|H|−1.

This leads to the notion of quasi-particle vacua.

Definition 4.1.15 (Quasi-particle vacuum). A quasi-particle vacuum (QPV) is a skew-Hermitian
real unitary J ∈ L(W), i.e.

J∗ = −J = −J = J−1.

Remark 4.1.16. The original definition of QPV in [49] was formulated in terms of stable
ground states of non-interacting quasi-particles. We briefly explain the bijection between
stable ground states and QPV.

A given QPV J ∈ L(W) has two eigenvalues ±i. Let A B ker(J − i). Thus, J defines a
polarisationW = Ac ⊕ A with Ac B ker(J + i). The corresponding flattened Hamiltonian
H satisfies

Ha = −a ∀a ∈ A, Hc = c ∀c ∈ Ac.

Thus, the elements in A correspond to eigenstates below the chemical potential µ = 0. The
ground state is thereby given by the state where all states in A are occupied. Because J is
orthogonal, the eigenspaces are isotropic, i.e.

{A,A} = 0 = {Ac,Ac}.

This defines a ground state in the sense of [49].
For the converse construction, define

J B iPA − iPAc ,

where PA and PAc are the orthogonal projections onto A and Ac. It follows immediately
that J∗ = J−1 = −J, and PA = PAc implies J = J.
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In the literature, ground states of translationally invariant gapped systems are often de-
scribed in terms of vector bundles over the Brillouin torus. In Appendix 4.B, we will give the
reader who is familiar with this description a comparison to our description in terms of QPV.

The description of ground states in terms of QPV makes sense as long as we consider
stable ground states corresponding to Hamiltonians with an energy gap above the chemical
potential µ. In contrast to that, the boundary of a topological insulator or superconductor
will in general violate this condition. Therefore, we will have to introduce a more general
definition which governs the possibility of gapless localised states. Since we do not yet have
the necessary tools to give this definition, we postpone this issue to Section 4.3.

4.1.2 Pseudo-symmetries of quasi-particle vacua

As explained at the beginning of this chapter, the incorporation of symmetries led to the
discovery of various candidates of topological insulators and superconductors. In this section,
we will recapitulate the fundamental properties of symmetries and explain how the symmetry
classes in the Tenfold Way [2] are described in terms of QPV. This will lead to the notion of
pseudo-symmetries. This section is based on [49].

We begin with the definition of symmetries in the sense of [49].

Definition 4.1.17 (Symmetry). Suppose we are given a free-fermion Hamiltonian H ∈ L(W)
for a given physical system with Nambu spaceW. A linear or anti-linear real unitary iso-
morphism S : W → W is called symmetry and the Hamiltonian H is called S -symmetric
if [

H, S
]

= 0. (4.10)

By Definition 4.1.17, we consider only true symmetries which preserve the structure of
the underlying space and the Hamiltonian. This is in keep with the notion of symmetries used
by Kennedy–Zirnbauer [49]. However, one also finds a different definition for symmetries in
the context of topological insulators in the literature, see e.g. [76]. In the appendix to this
chapter, we give a translation between these two pictures.

In the following example, we present the most important physical examples of symmetries
for this work.

Example 4.1.18 (Local symmetries). We list some examples of symmetries which are so-
called local symmetries. Local symmetries can be roughly defined as symmetries that act
only locally in space. Since we haven’t introduced any notion of space yet, we postpone a
more quantitative definition of locality to the next sections.

The symmetries presented here will later be important, because by suitable combinations
of these symmetries one can represent all of the ten symmetry classes in the Tenfold Way [2].

1. Time-reversal is algebraically defined by an anti-linear unitary automorphism T :
V → V [71, §2.2]. Since we consider free-fermions of spin 1

2 , inversion of spin
implies T 2 = −1 [71, §4.3]. In other words, T defines a quaternionic structure on V.
The canonical lift of this automorphism to a symmetry overW, which we still denote
by T , is given by

T :=
(
T 0
0 hTh−1

)
.
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2. Another set of symmetries may be induced by spin rotations. The operators j1 =

iS 1, j2 = iS 2, j3 = iS 3 are the generators of the group SU(2) of spin-rotations. The
operators S 1, S 2, S 3 are initially defined over the single-particle space V, satisfying
the relations

S 1S 2 = −S 2S 1 = −iS 3, S 2
µ = 1 and S ∗µ = S µ ∀ µ ∈ {1, 2, 3}.

Since time-reversal T inverts the spin, it anti-commutes with the S 1, S 2, S 3 and sub-
sequently it commutes with j1, j2, j3. The canonical lift to symmetries onW is given
by

jµ =

(
jµ 0
0 h jµh−1

)
for µ = 1, 2, 3.

3. The charge operator

Q =

(
1 0
0 −1

)
∈ L(W)

defines the symmetry iQ that corresponds to the conservation of charge. Note that
this operator corresponds to the operator Q over the Fock space that is defined by
Q
∣∣∣
Λp(V)⊕Λq(V∗) = p − q for all p, q > 0. Thus this operator indeed measures the charge.

4. Our last symmetry we mention here is generated by a particle-hole transformation.
A particle-hole transformation is defined as an anti-unitary operation C arising as
follows. Consider a unitary S ∈ U(V), S 2 = 1, [S ,T ] = 0 and [S , S µ] = 0 for
µ = 1, 2, 3. A physical example of such an operator S are sublattice symmetries. Then
the particle-hole transformation C is defined as

C :=
(

0 S h−1

hS 0

)
.

Additionally, we demand that C commutes with the spin symmetries j1, j2, j3 : W →

W.

If this particle-hole transformation is a symmetry, then we also call it a particle-hole
symmetry.

For the classification of symmetric ground states in terms of QPV, we have to translate
symmetric Hamiltonians into symmetric QPV. Anti-linear symmetries of Hamiltonians no
longer commute with the corresponding QPV, instead they anti-commute. Thus, to obtain a
systematic description of the symmetry classes, we have to establish a different treatment for
symmetries of QPV. Such a systematic translation of symmetric Hamiltonians into symmet-
ric QPV for all symmetry classes of the Tenfold Way is obtained by considering so-called
pseudo-symmetries, as introduced in [49].

Definition 4.1.19 (Symmetric QPV). A QPV of symmetry index (r, s) (or simply of index
(r, s)) is a tuple (J; K1, . . . ,Kr, J1, . . . , Js), where J ∈ L(W) is a QPV and K1, . . . ,Kr, J1, . . . , Js ∈

L(W) are real unitaries defining a unital ∗-morphism φ : C`r,s → L(W) with φ(ka) = Ka

for all a = 1, . . . , r and φ( jα) = Jα for all α = 1, . . . , s such that

JKa + KaJ = JJα + JαJ = 0 ∀a = 1, . . . , r, α = 1, . . . , s. (4.11)
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If r = 0 and 0 6 s 6 7, then we also call this a QPV of symmetry class s. We shall also
refer to it by the Cartan–Killing label in Table 4.1 below. (For instance, “J is a QPV of class
D.”) We call the Jα negative and the Ka positive pseudo-symmetries of J.

The definition of pseudo-symmetries differs slightly from the one in [49]. Though, by the
following remark, it can be easily seen that our definition is equivalent to the one in [49].

Remark 4.1.20. The condition in Definition 4.1.19 that the pseudo-symmetries K1, . . . ,Kr

and J1, . . . , Js generate the unital real ∗-morphism φ : C`r,s → L(W) is equivalent to de-
manding that they satisfy the relations

{Ka,Kb} = 2δa,b, {Jα, Jβ} = −2δα,β, {Ka, Jα} = 0

for all a, b = 1, . . . , r and α, β = 1, . . . , s, where {·, ·} denotes the anti-commutator.

In the following, we will use the properties of Clifford algebras to establish a systematic
structure for these symmetric QPV, which leads to the Tenfold Way.

Remark 4.1.21 (Periodicity of QPV). Let J ∈ L(W) be a symmetric QPV of symmetry index
(r + 1, s + 1). By the (1, 1)-periodicity of Clifford algebras

C`r+1,s+1 � C`r,s ⊗ M2(C),

we can write the QPV in the form
(

j 0
0 − j

)
with pseudo-symmetries(

Ka 0
0 −Ka

)
,

(
Jα 0
0 −Jα

)
,

(
0 1
1 0

)
,

(
0 −1
1 0

)
for a = 1, . . . , r and α = 1, . . . , s. Therefore, a QPV of index (r + 1, s + 1) can always
be reduced to a QPV of index (r, s). In combination with the 8-fold periodicity of Clifford
algebras

C`r,s+8 � C`r+8,s � C`r,s ⊗ M24 (C),

we can reduce all symmetric QPV to symmetric QPV of symmetry class s with 0 ≤ s ≤ 7.

A special role will be played by those classes where the charge (or, equivalently, the
number of particles) is preserved. This holds when the QPV J and all its pseudo-symmetries
commute with the charge operator Q of Example 4.1.18.(3), i.e. they are block diagonal w.r.t.
the splittingW � V ⊕V∗:

J =

(
J̃ 0
0 hJ̃h−1

)
; Ka =

(
K̃a 0
0 hK̃ah

−1

)
, Jα =

(
J̃α 0
0 hJ̃αh−1

)
for a ∈ {1, . . . , r} and α = {1, . . . , s}. We call such QPV charge-conserving. Charge conserv-
ing symmetric QPV can be reduced to the following so-called complex symmetric QPV.

Definition 4.1.22 (Complex symmetric QPV). A QPV of complex symmetry index (r, s), or
simply a complex QPV of index (r, s), consists of a complex QPV J ∈ L(V) and unitaries
K1, . . . ,Kr, J1, . . . , Js ∈ L(V), defining a unital ∗-morphism φ : C`r,s → L(V) with φ(ka) =

Ka and φ( jα) = Jα for all a = 1, . . . , r and α = 1, . . . , s such that Equation (4.11) holds; we
call these Ka, Jα complex pseudo-symmetries.

For r = 0 and s = 0, 1, we say that (J; Jα) are in complex symmetry class s.



Section 4.1 Symmetric fermionic quasi-particle vacua 65

Remark 4.1.23 (Periodicity of complex QPV). The pseudo-symmetries of a complex QPV
define a representation of the complex C∗-algebra C`r,s. Because of the 2-fold periodicity of
complex Clifford algebras

C`r,s+2 � C`r+2,s � C`r,s ⊗M2(C),

all complex symmetric QPV can be reduced to QPV of complex symmetry class s with s ∈
{0, 1}.

Remark 4.1.24. In view of the correspondence between operators Ka, Jα and Clifford rep-
resentations φ, we will interchangeably write a QPV of a given (complex) symmetry index as
(J; φ), where φ is the ∗-morphism representing the (complex) pseudo-symmetries.

Tenfold Way in terms of pseudo-symmetries

We review the translation of time-reversal symmetry, particle-hole symmetry, spin-rotation
symmetries and the symmetry leading to particle number conservation into pseudo-symmetries,
as presented in [49]. This translation will in particular show that the definition of symmet-
ric QPV will be exhaustive to describe all symmetry classes of the Tenfold Way in terms of
symmetric QPV.

s class symmetry group generators comments
0 D trivial none -
1 DIII Z4 T time-reversal
2 AII Z4 n U(1)c T, iQ charge
3 CII Z4 n U(1)c × Z2 T, iQ,C particle-hole symmetry
4 C SU(2)s j1, j2, j3 spin rotations
5 CI SU(2)s × Z4 j1, j2, j3,T
6 AI SU(2)s ×

(
Z4 n U(1)c

)
j1, j2, j3,T, iQ

7 BDI SU(2)s ×
(
Z4 n U(1)c

)
× Z2 j1, j2, j3,T, iQ,C

0 A U(1)c iQ charge
1 AIII U(1)c × Z2 iQ,C particle-hole symmetry

Table 4.1: Symmetry classes of the Tenfold Way. The index s denotes the number of negative
pseudo-symmetries. The first eight rows describe the real symmetry classes and the last two
rows describe the complex symmetry classes. The symbol U(1)c denotes the group U(1)
generated by the operator iQ, and SU(2)s denotes the group SU(2) of spin-rotations generated
by j1, j2, j3.

As observed by Kitaev for translationally invariant topological insulators, these ten classes
of the Tenfold Way are organised into two cycles, one of length two (complex classes) and
one of length eight (real classes), see Table 4.1.

Remark 4.1.25. The terminology used to label the symmetry classes is based on the work
by Altland–Zirnbauer [2] who used it in their classification of disordered Hamiltonians in
the context of mesoscopic metals and superconductors, according to the type of the corre-
sponding σ-model target spaces. The labels (D, DIII, etc.) used in this context refer to the
Cartan–Killing classification of Riemannian symmetric spaces.
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Class D, s = 0. In symmetry class D we have no symmetries. Thus this class is described by
all QPV J ∈ L(W). These give rise to the symmetric space O/(U ×U) which is a symmetric
space of Cartan–Killing type DIII.

Class DIII, s = 1. In class DIII, we have time-reversal symmetry T : W → W, which
is defined as explained in Example 4.1.18.(1) and commutes with the flattened Hamiltonian
H, i.e. [H,T ] = 0. Thus, time-reversal has to anti-commute with the corresponding QPV
J = −iH. Since J is real, it commutes with γ and therefore anti-commutes with the product

J1 := JT := γT.

The time-reversal T is also real, i.e. γT = Tγ and this implies J1 = J1 = −J∗1 and J2
1 = −1.

We define the operator Jref B iγT Q, where Q is the charge operator as defined in Example
4.1.18.(3). T and Q commute with γ and they anti-commute with each other. This implies
Jref = Jref , J∗ref = QTγi = iQγT = −Jref and J2

ref = iγT QiγT Q = −1. Analogously, one can
check {J1, Jref} = 0. Thus Jref is a QPV in class DIII. We refer to Jref as a reference QPV.

Now we can apply Lemma 4.1.26 below for x1 = Jref , x2 = J1 in order to obtain a real
∗-isomorphism

L(W) � L(W∼) ⊗ HC.

Since x2x1 = −iQ =
(
−i 0
0 i

)
is already diagonal and γx2 = T , it is easy to see that L(W∼) is

equipped with the quaternionic structure T . Furthermore, it maps J1 7→ iσy and thus a QPV
J that anti-commutes with J1 becomes of the form

J = y1 ⊗ iσx + y2 ⊗ iσz,

where y1, y2 ∈ L(W∼) are Hermitian real (i.e. time-reversal symmetric) elements such that
y2

1 + y2
2 = 1, y1y2 = y2y1. Alternatively, one can describe this QPV J via the symmetric

unitary
U B y1 + iy2 ∈ L(W∼),

where the transposition over L(W∼) is given by UT = (U)∗ = T ∗U∗T .
Thus, the target space of the corresponding σ-model is the symmetric space symmetric

space U/Sp, which is of Cartan–Killing type AII.

Lemma 4.1.26. Let x1, x2 ∈ L(W) be two anti-commuting real skew-Hermitian unitaries.
Then (W∼,T ), whereW∼ B ker(x2x1 − i) and T B −γx2, is a quaternionic Hilbert space.
There is an isomorphism (W, γ) � (W∼ ⊗ C2,T ⊗ t) of real vector spaces such that under
the induced isomorphism of real C∗-algebras

L(W) � L(W∼) ⊗ HC,

we have x1 7−→ 1 ⊗ iσx and x2 7−→ 1 ⊗ iσy. The isomorphism maps real unitaries J ∈ L(W)
anti-commuting with x1 onto operators y1 ⊗ iσy + y2 ⊗ iσz ∈ L(W∼) ⊗ HC, where y1, y2 ∈

L(W∼) are real Hermitian elements such that

y2
1 + y2

2 = 1, y1y2 = y2y1.
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Proof. Let x3 B x2x1 ∈ L(W). Then x3 is a real skew-Hermitian unitary that anti-commutes
with x1 and x2. In particular, x3 has the eigenvalues ±i. SettingW± B ker(x3 ∓ i), we obtain
a splittingW =W+ ⊕W− with

x1 =

(
0 iu∗

iu 0

)
, x2 =

(
0 u∗

−u 0

)
, x3 =

(
i 0
0 −i

)
.

The map u : W+ −→ W− is a unitary isomorphism. Therefore, we can use it to define the
isomorphism

φ B

(
1 0
0 u

)
: W+ ⊕W+ =W+ ⊗ C −→W+ ⊕W−.

We compute
φ∗x1φ = 1 ⊗ iσx, φ∗x2φ = 1 ⊗ iσy.

Since the anti-unitary map γx2 anti-commutes with x3, it leavesW+ invariant. We let T B
−γx2|W+ . Then T is a quaternionic structure onW∼ BW+ and

−uT = −x2γx2|W+ = −γx2
2|W+ = γ|W+ ,

so that

φ(T ⊗ c)φ∗ = φ

(
0 T
−T 0

)
φ∗ =

(
0 Tu∗

−uT 0

)
= γ.

This proves the claim. �

Class AII, s = 2. In class AII, we have a time-reversal symmetric Hamiltonian H with
preserved charge, i.e [H,T ] = 0 = [H,Q], where Q is defined as in Example 4.1.18.(3). The
first pseudo-symmetry is J1 = γT . A second pseudo-symmetry can be defined by

J2 := JQ := iγT Q.

As in class DIII we have J2 = J2, J∗2 = −J2, J2
2 = −1 and {J1, J2} = 0. Applying Lemma

4.1.26 for x1 = J2 and x2 = J1, we obtain by the same arguments as for class DIII that a QPV
in class AII, which anti-commutes with J1 and J2 is given by

J = x ⊗ iσz ∈ L(W∼) ⊗ HC,

where x ∈ L(W∼) is a real Hermitian unitary.
The target space of the corresponding σ-model is the symmetric space Sp

/
(Sp × Sp),

which is of Cartan–Killing type CII.

Class CII, s = 3. In class CII, we have a time-reversal symmetric, charge preserving Hamil-
tonian which is particle-hole symmetric. This means [H,C] = 0, where C : W → W is
defined as in Example 4.1.18.(4) and satisfies C2 = 1, CT = TC, CiQ = iQC and Cγ = γC.
Here, we are given the two pseudo-symmetries J1 = γT and J2 = iγT Q and we can define a
third pseudo-symmetry by

J3 B JC B iγCQ.

It follows that J3 is a real skew-Hermitian unitary and {J1, J3} = {J2, J3} = 0.
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Additionally, we define Jref ∈ L(W) to be a reference QPV that anti-commutes with
J1, J2, J3. Then we can use these four operators for the application of Lemma 4.1.27 below,
where x1 = J2, x2 = J1, x3 = J3, x4 = Jref . Then we obtain an isomorphism

L(W) � L(W≈) ⊗ M2(C) ⊗ HC,

under which the pseudo-symmetries are mapped onto

J1 7→ 1 ⊗ 1 ⊗ iσy, J2 7→ 1 ⊗ 1 ⊗ iσx, J3 7→ 1 ⊗ k1 j1 ⊗ iσz.

The reference QPV Jref is mapped onto 1 ⊗ k1 ⊗ iσz. Any QPV J ∈ L(W) of class CII
anti-commutes with J1, J2, J3 and thus has to be of the form

J = y+ ⊗ k1 ⊗ iσz + y− ⊗ j1 ⊗ iσz ∈ L(W≈) ⊗ M2(C) ⊗ HC,

where y± ∈ L(W≈) are commuting real, y∗± = ±y± and y2
+ − y

2
− = 1.

Alternatively, one can describe J via the Hermitian unitary U B y+ + iy− ∈ L(W≈).
Here we obtain the symmetric space USp, which is of Cartan–Killing type C.

Lemma 4.1.27. Let x1, x2, x3, x4 ∈ L(W) ⊆ A be anti-commuting real skew-Hermitian
unitaries. ConsiderW∼ and L(W∼), defined as in Lemma 4.1.26 with respect to x1, x2, and
let y3, y4 ∈ L(W∼) such that y j ⊗ iσz corresponds to x j for j = 3, 4.

ThenW≈ B ker(y3 − 1) is a quaternionic subspace ofW∼, and there is an isomorphism
W∼ �W≈ ⊗ C2 of quaternionic Hilbert spaces which maps the quaternionic structure T on
W∼ onto T ⊗ c2 onW≈ ⊗ C2, where c2 is component-wise conjugation on C2.

Moreover, the isomorphism is such that, combining the two isomorphisms, we obtain an
induced isomorphism of real C∗-algebras

L(W) � L(W≈) ⊗ M2(C) ⊗ HC,

under which for k1 B
(

0 1
1 0

)
and j1 B

(
0 −1
1 0

)
x1 7−→ 1 ⊗ 1 ⊗ iσx, x2 7−→ 1 ⊗ 1 ⊗ iσy, x3 7−→ 1 ⊗ k1 j1 ⊗ iσz, x4 7−→ 1 ⊗ k1 ⊗ iσz.

This isomorphism maps real skew-Hermitian unitaries J ∈ L(W) anti-commuting with
x1, x2, x3 onto operators y+ ⊗ k1 ⊗ iσz + y− ⊗ j1 ⊗ iσz, where y± ∈ A≈ are commuting real
elements such that

y∗± = ±y±, y2
+ − y

2
− = 1.

Proof. By Lemma 4.1.26 and the discussion of class AII, the operators y3 and y4 are anti-
commuting real Hermitian unitaries. The reality constraint means that they commute with T .
Hence, the eigenspacesW∼

± B ker(y3∓1) are quaternionic subspaces, and y4 :W∼
± −→W

∼
∓.

LetW≈ BW∼
+ and v B y4|W≈ . We obtain a unitary isomorphism

ϕ B

(
1 0
0 v

)
:W≈ ⊗ C2 −→W∼.

Clearly, ϕ is real. Moreover,

ϕ∗y3ϕ =

(
1 0
0 −1

)
= idW≈ ⊗ σz, ϕ∗y4ϕ =

(
0 1
1 0

)
= idW≈ ⊗ σx.

�
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Classes s ≥ 4. Here we are given a Hamiltonian that commutes with the spin rotation gen-
erators j1, j2, j3 : W → W as defined in Example 4.1.18.(2). The spin rotation generators
are linear and thus also commute with the QPV J. To define pseudo-symmetries, we have to
amplifyW toW⊗C2, where C2 is equipped with the natural real structure c2. On this space,
we consider the QPV

J ⊗ σx

and define the pseudo-symmetries

Jµ := jµ ⊗ σz for µ = 1, 2, 3 and J4 := 1 ⊗ iσy.

The jµ are real and anti-commute pairwise. Thus {Ji, J j} = −2δi, j, Ji = Ji, J∗i = −Ji for all
i, j ∈ {1, . . . , 4}. The other pseudo-symmetries can defined by

J5 := JT ⊗ σx, J6 := JQ ⊗ σx, J7 := JC ⊗ σx,

if the corresponding symmetries are present. The jµ commute with γ, T , Q, C and therefore
also with JT , JQ and JC . Thus J5, J6, J7 anti-commute with the pseudo-symmetries J1, . . . , J4.

Class A, s = 0. Here we consider the fundamental example of a complex QPV which
are by definition skew-Hermitian unitaries in L(V). These give rise to the symmetric space
U/(U × U) which is a symmetric space of Cartan–Killing type AIII.

Class AIII, s = 1. In class AIII, we have a charge-conserving QPV anti-commuting with a
particle-hole symmetry C of the form

C =

(
0 S h−1

hS 0

)
∈ L(W).

This defines the complex pseudo-symmetry J1 := JC := iS for the corresponding complex
QPV J ∈ L(V), i.e. the pair (J; J1) defines a QPV of complex symmetry class s = 1. Let
Jref ∈ L(V) be any reference QPV anti-commuting with J1. Then, as in symmetry class DIII,
we can use Lemma 4.1.26 for x1 = Jref and x2 = J1 to deduce that there is an isomorphism

L(V) � L(V∼) ⊗ M2(C),

where J1 7→ 1 ⊗ iσy and Jref 7→ 1 ⊗ iσx. An arbitrary QPV J ∈ L(V) anti-commuting with
J1 thus has to be of the form

J = y1 ⊗ iσx + y2 ⊗ iσz

where y1, y2 ∈ L(V∼) are commuting Hermitian elements with y2
1 + y2

2 = 1. Alternatively, J
can be described via the unitary U B y1 + iy2.

Here, the target space is the symmetric space U, which is of Cartan–Killing type A.

4.2 Bulk systems with disorder
In this section, we will construct the mathematical framework to describe the ground states
in the bulk of disordered topological insulators and superconductors. We begin with the
construction of a C∗-algebra that contains all non-interacting lattice Hamiltonians in the tight-
binding approximation with homogeneous disorder.
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4.2.1 The tight-binding approximation

In the bulk, a solid state system is described over a d-dimensional crystalline lattice in Rd.
As is well known in solid state physics, one can describe any d-dimensional lattice by the
following two ingredients [51]:

• A Bravais lattice

Λ B

 d∑
i=1

niei

∣∣∣∣∣∣ n1, . . . , nd ∈ Z

 � Zd,

spanned by the linear independent set of so-called primitive vectors e1, . . . , ed ∈ R
d. If

there are no magnetic fields, the Bravais lattice carries a canonical action by the group
Zd, which is generated by the translations of the lattice along the primitive vectors:

(m1, . . . ,md) ·

 d∑
i=1

niei

 :=
d∑

i=1

(ni + mi)ei. (4.12)

In the presence of a homogeneous magnetic field, this group action is twisted, as we
will explain later.

• A basis U, which is a bounded finite discrete set in Rd. The boundedness of the set U
reflects the fact that it describes the local spacial degrees of freedom around each point
of the Bravais lattice.

With these two ingredients, the lattice can be represented as Λ × U � Zd × U.

Figure 4.1: Examples of Bravais lattices in two dimensions. The primitive vectors are denoted
by e1 and e2. In Examples a, b and d, the basis U is given by a single point. In Example c (e),
the basis consists of two (three) points.

We consider solid state systems in the tight-binding approximation, which means that the
quasi-particles are localised at the lattice sites up to some finite orbital degrees of freedom.
The resulting complex Hilbert space of single-particle states is therefore given as follows.

Definition 4.2.1 (Single-particle space V). The complex Hilbert space of single-particle
states in the tight-binding approximation is defined as

V := `2(Λ) ⊗ V,

where V is a finite-dimensional complex Hilbert space, which is called the local space.
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The local space contains the Hilbert space `2(U) as well as the relevant internal degrees of
freedom such as spin or orbital degrees of freedom. The property of V to be of finite dimen-
sion is one of the defining properties of the tight-binding approximation. This approximation
is physically justified as long as we are at very low temperatures, where only the states close
to the chemical potential are relevant.

Throughout the rest of this work, the space V will always denote the complex Hilbert
space of Definition 4.2.1 and W will always denote the Nambu space associated to V,
equipped with the canonical real structure γ.

There is an isometric isomorphism ϕ : V∗ → `2(Λ) ⊗ V∗, given by

〈ϕ(ψ1), ψ2〉 :=
∑
x∈Λ

〈ψ1(x), ψ2(x)〉 , ∀ψ1 ∈ `
2(Λ) ⊗ V∗, ψ2 ∈ V

∗.

Setting W := V ⊕ V∗, this induces an isometric isomorphism `2(Λ) ⊗W �W.

Proposition 4.2.2. Consider the canonical real structure on W = V ⊕ V∗. Then the real
structure onW satisfies the equation

ψγ(x) = ψ(x)γ, ∀ψ ∈ W, x ∈ Λ.

Here, on the left-hand side, γ = γW, whereas on the right-hand side, γ = γW .

Corollary 4.2.3. The real C∗-algebraL(W) is ∗-isomorphic toL
(
`2(Λ)

)
⊗End(W) with real

structure T1 ⊗ T2 = cΛT1cΛ ⊗ γT2γ, where cΛ denotes the point-wise complex conjugation on
`2(Λ).

Proof. By Proposition 4.2.2, we know there is a real isometric isomorphism

W = `2(Λ) ⊗ (V ⊕ V∗),

where the right-hand side is equipped with the real structure cΛ ⊗ γ. It can easily be checked
that this induces the real ∗-isomorphism L(W) � L

(
`2(Λ)

)
⊗ End(W). �

4.2.2 The C∗-algebra of disordered bulk observables
A key feature of Hamiltonians and their corresponding QPV in the tight-binding approxima-
tion is that they have a finite hopping range. Mathematically, this property is captured by the
notion of controlled operators as defined below.

Definition 4.2.4 (Controlled Operators). Let U be a finite-dimensional Hilbert space, D ⊆ Λ

a subset. Let O(x, y) ∈ End(W), for x, y ∈ D, denote the kernel function of O ∈ L
(
`2(D)⊗U

)
,

defined by
O(x, y) B 〈x,Oy〉`2(D).

Then we call an operator O ∈ L(`2(D) ⊗ U) controlled if there is an R > 0 such that for all
x, y ∈ D with ‖x − y‖ > R, we have

O(x, y) = 0.

The norm closure of the set of controlled operators in L(`2(D) ⊗ U) is denoted by C∗u(D,U).
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Remark 4.2.5. The previous definition is due to Roe [72, Def. 4.22] in a much more gen-
eral form. The subscript u in C∗u(D,U) refers to the word “uniform”. Indeed, C∗u(D,U) �
C∗u(D,C) ⊗ End(U) where C∗u(D,C) is usually denoted by C∗u(D) and called the uniform Roe
algebra (of the metric space D) in the literature. In the context of topological classification
of solid state systems in the tight-binding approximation, the uniform Roe algebra has first
been used by Kubota [53].

The following statement is immediate, see [72, Cor. 4.24] for the first part.

Proposition 4.2.6. Let U be a finite-dimensional Hilbert space and D ⊆ Λ a subset. Then
C∗u(D,U) is a closed ∗-subalgebra of L(`2(D) ⊗ U) and hence a C∗-algebra.

If U has a real or quaternionic structure, then C∗u(D,U) is invariant under the induced
real structure on L

(
`2(D) ⊗ U

)
, and thus, a real C∗-algebra.

Proof. Only the statement about the real structure requires proof. By definition, the real
structure acts by point-wise complex conjugation over `2(D), hence

O(x, y) = O(x, y) ∀O ∈ L
(
`2(D) ⊗ U

)
, x, y ∈ D.

This implies that the set of controlled operators is invariant under conjugation. Since the
conjugation is isometric, the assertion follows. �

Homogeneous disorder

As long as our system is microscopically translation invariant in the bulk, the smallest C∗-
algebra containing all free-fermion Hamiltonians of interest on W is the algebra of Zd-
invariants in C∗u(Λ,W). In this case, it would be fair to declare this to be the algebra of
bulk observables.

However, a solid state system being microscopically translation invariant is not a reason-
able assumption, as all such systems display some disorder which breaks the translational
invariance. One may however assume that the translational invariance still holds at a macro-
scopic level. A general way to model this assumption was suggested by Bellissard [9]. Start-
ing from some basic Hamiltonian, he considers all translates thereof and the closure Ω of this
translational orbit in the space of operators (in a suitable topology). If the Hamiltonian is
macroscopically homogeneous, then, together with its translates, it should [12] be a function
on Ω which is translationally covariant (or, in a more modern language, equivariant) in the
sense that it intertwines the action of the translation group on Ω and the space of operators.

In this work, we make a general ansatz and do not a priori specify the details of Ω.
Following [66], we define Ω as follows.

Definition 4.2.7 (Space of disorder configurations). A space of disorder configurations is a
compact Hausdorff space Ω with a continuous action of the Abelian group Zd. We denote the
action by the right action ω 7→ ω · x for ω ∈ Ω and x ∈ Zd. Furthermore, we assume that
there is a fully supported Zd-invariant Borel probability measure P on Ω.

Example 4.2.8. Bellissard’s approach works quite generally for any kind of disorder, as long
as the observables are in average translationally invariant. Here we point out the two most
important applications of this approach, giving rise to concrete realisations of Ω.
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• Disorder induced by doping (synthetic insertion of atoms in a solid), is one of the most
important types of disorder in solid state physics. This kind of disorder is commonly de-
scribed by a random potential around each lattice site. The resulting space of disorder
configurations for the lattice Λ × U is given by

Ω =
∏
x∈Λ

Ωx,

where Ωx is a contractible compact Hausdorff space representing all disorder contri-
butions (random potential, spacial fluctuations) at lattice site x. It is assumed that the
homogeneity of solid state systems is preserved on macroscopic scales. Therefore, it is
physically reasonable to assume Ω0 B Ωx = Ωy for all x, y ∈ Λ. More details can be
found in [66].

We obtain a canonical Zd-action on Ω by((
ωx

)
x∈Λ

)
· y B

(
ωx+y

)
x∈Λ ∀y ∈ Zd,

(
ωx

)
x∈Λ ∈

∏
x∈Λ

Ω0.

This dynamical system, known in mathematics as a Bernoulli shift, was first suggested
by Bellissard as a model for the disorder space (see [66] for an exposition).

In [54], numerical calculations lead to explicit results for the space Ω which support
the above assumptions. In this reference, this type of disorder is called thermal disor-
der, referring to the idea that thermal fluctuations correspond to spacial fluctuations of
the localised quasi-particles around each lattice site.

• The topological classification of quasi-crystals relies on Bellissard’s approach, too.
There, the quasi-crystals are described via an effective model as higher-dimensional
lattices, where the space Ω is given by a Cantor set, equipped with a Zd-action [11,
44, 47]. Note that in this case, the space Ω has its origin in the nature of the effective
description of quasi-crystals and does not come from disorder in a physical sense.

Homogeneous magnetic fields

Before we state the covariance condition in its full generality, we digress briefly on magnetic
fields. We incorporate them in our exposition because they are relevant for the complex
symmetry classes. For example, the first experiments on the quantum Hall effect and its
interpretation relied crucially on the existence of a homogeneous magnetic field.1

The homogeneity of the magnetic field implies that the quantised nature of the magnetic
field has to be compatible with the underlying lattice. This is satisfied for the QHE, because
the underlying lattice is actually determined by the magnetic field. However, if the lattice is
determined by the atoms in the solid, this condition can only be achieved by fine-tuning.

We adapt the treatment of magnetic fields in the tight-binding approximation from [66].
The presence of a spatially homogeneous magnetic field is modelled by a real skew-symmetric
d × d-matrix B = (Bµν). Throughout this work, we consider the so-called symmetric gauge,
cf. [66, Ch. 2 & Ch. 3],

σ(x, y) := e
i
2 (x,By) ∀x, y ∈ Λ, (4.13)

1Actually, the Hall conductance in the QHE may be quantised even if the total magnetic flux per lattice plaquette
vanishes. This phenomenon was discovered by Haldane and is nowadays known as the anomalous quantum Hall
effect [31].
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where (x, By) B
∑d
µ,ν=1 xµ(B)µνyν. In particular, we have σ(x, x) = σ(x, x−1) = 1 for all

x ∈ Zd. The corresponding magnetic translations uσx onV are defined as

(uσxψ)(y) := σ(y, x)ψ(y − x), ∀x ∈ Zd, y ∈ Λ, ψ ∈ V.

This defines a twisted projective unitary representation of Zd. The magnetic translation uσx
extends to the real operator onW, given by

(uσxψ)(y) := σ(y, x)ψ(y − x), ∀x ∈ Zd, y ∈ Λ, ψ ∈ W,

where

σ(x, y) :=
(
e

i
2 (x,By) 0

0 e−
i
2 (x,By)

)
.

Although the operators uσx , x ∈ Zd, define a twisted unitary representation of Zd, this
representation is in general not projective, as the cocycle σ does not take values in U(1).
This is only true when σ solely takes its values in {±1}. But this corresponds physically to a
2π-flux per unit cell which is equivalent to no flux. For this reason, we will allow non-trivial
homogeneous magnetic fields only in the complex symmetry classes; in the real symmetry
classes, we assume that the magnetic field vanishes.

This restriction is in keep with the physical applications. Indeed, the only real sym-
metry classes where magnetic fields can in principle occur are D (corresponding to gapped
superconductors or superfluids with no symmetries) and C (corresponding to gapped super-
conductors or superfluids with fermions of spin 1

2 and SU(2) spin-rotation symmetry). But
the physical realisation of magnetic fields in these symmetry classes is given by a so-called
vortex phase, which is far from homogeneous.

Definition of C∗-algebra of bulk observables

Definition 4.2.9 (Covariance algebra). Let Ω be a space of disorder configurations. Let U be
a finite-dimensional Hilbert space and σ : Zd × Zd −→ U(1) a magnetic cocycle as defined
in Equation (4.13) (which might be trivial). Let uσx , for x ∈ Zd, be defined by

(uσxψ)(y) := σ(y, x)ψ(y − x), ∀x ∈ Zd, y ∈ Λ, ψ ∈ `2(Λ) ⊗ U.

We define AU,σ to be the set of all maps O : Ω −→ C∗u(Λ,U) that are continuous in the norm
topology and covariant (or equivariant) in the sense that

Oω·x = (uσx )∗Oωuσx , ∀x ∈ Zd, ω ∈ Ω. (4.14)

The following lemma is straightforward.

Lemma 4.2.10. Retain the assumptions of Definition 4.2.9. With point-wise operations

(O1 + λO2)ω := (O1)ω + λ(O2)ω, (O∗)ω := (Oω)∗, ∀O,O1,O2 ∈ AU,σ, λ ∈ C, ω ∈ Ω,

and the norm defined by
‖O‖ := sup

ω∈Ω

‖Oω‖, ∀O ∈ AU,σ,

the set AU,σ is a C∗-algebra. If U is real or quaternionic and σ ≡ 1, then AU is a real
C∗-algebra with real structure defined by

(O)ω := (Oω), ∀O ∈ AU,σ, ω ∈ Ω.
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Definition 4.2.11 (C∗-algebras of bulk observables). The covariance condition in Equation
(4.14) encodes the notion that the bulk observables of interest are macroscopically homoge-
neous. We therefore call the real C∗-algebra

A B AW

the algebra of bulk observables (or bulk algebra for short), where W denotes the Nambu space
of the local space V.

As we have seen in the context of Definition 4.1.22, charge-conserving observables can
be reduced to operators within the complex C∗-algebra L(V). Subsequently, the algebra of
complex (or charge-conserving) bulk observables is defined as the complex C∗-algebra

A B AV,σ.

4.2.3 The bulk algebra as a crossed product C∗-algebra
In the previous subsection, we have constructed the bulk algebra under the premise that all
definitions shall be based on well-motivated physical assumptions. The aim of this section
is to identify this algebra of (complex) bulk observables with a more abstract C∗-algebra, a
so-called (twisted) crossed product C∗-algebra. This will show that our C∗-algebra is indeed
∗-isomorphic to the algebra of observables with homogeneous disorder that is used in the
literature, as explained at the beginning of this chapter. Moreover, this subsection serves as a
preparation for our derivation of the bulk-boundary correspondence.

Twisted crossed product C∗-algebras

We begin with an overview of the basic properties of twisted crossed product C∗-algebras,
following [64, Sec. 2]. A general overview of complex crossed product C∗-algebras can be
found in [65, Sec. 7.6]. Our references for twisted crossed product C∗-algebras are [22, 64].

Throughout this section, we assume that G is a discrete locally compact group (having
in mind the group G = Zd). In particular, there is the unique normalised unimodular Haar
measure on G, defined by

µ(g) = 1 ∀g ∈ G.

The fundamental objects for the twisted crossed product are the following twisted dynam-
ical systems.

Definition 4.2.12 (Twisted dynamical system). Let G be a group and A be a C∗-algebra. A
twisted action of G on A is a pair (α, σ) of maps

α : G −→ Aut(A), σ : G ×G −→ U(M(A))

such that σ(g1, 1) = σ(1, g2) = 1, α1 = id and

αg1 ◦ αg2 = Ad(σ(g1, g2)) ◦ αg1g2 , αg1

(
σ(g2, g3)

)
σ(g1, g2g3) = σ(g1, g2)σ(g1g2, g3).

for all g1, g2, g3 ∈ G. Here, U(M(A)) denotes the set of unitary elements in M(A). The
quadruple (A,G, α, σ) is called twisted dynamical system. If σ ≡ 1, then α is called an
action and (A,G, α, 1) is called dynamical system.

The (twisted) dynamical system is called real if A is a real C∗-algebra and αg and σ(g, g′)
are real for all g, g′ ∈ G.
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In this work, we are only interested in the following two (twisted) dynamical systems.

Example 4.2.13. Let Ω be a space of disorder configurations and letσ be a magnetic cocycle.
The set

(
C(Ω)⊗End(V),Zd, α, σ

)
defines a twisted dynamical system, where (α, σ) is defined

on C(Ω) ⊗ End(V) by

αx( f )(ω) B f (ω · x) ∀x ∈ Zd, f ∈ C(Ω) ⊗ End(V), ω ∈ Ω. (4.15)

Similarly,
(
C(Ω)⊗End(W),Zd, α, 1

)
with αx( f )(ω) B f (ω·x)∀x ∈ Zd, f ∈ C(Ω)⊗End(W), ω ∈

Ω defines a real dynamical system.

An important tool for the explicit description of twisted dynamical systems and their
crossed products are the following covariant pairs and representations.

Definition 4.2.14 (Covariant pair; covariant representation). A covariant pair (ϕ,U) for
(A,G, α, σ) is given by a non-degenerate ∗-morphism ϕ : A → B for a C∗-algebra B and a
map U : G → U(M(B)) such that

UgUg′ = ϕ(σ(g, g′))Ugg′ , ϕ
(
αg(a)

)
Ug = Ugϕ(a) ∀g, g′ ∈ G, a ∈ A.

A real covariant pair (ϕ,U) of a real twisted dynamical system is defined in the same way with
the additional constraint that Ug is real for all g ∈ G and ϕ, B are real.

A (real) covariant representation of a twisted dynamical system (A,G, α, σ) is a (real)
covariant pair (π,U) with B = L(H) for some (real) Hilbert spaceH .

The following theorem gives us a simple method to construct such covariant representa-
tions.

Theorem 4.2.15 (Induced representation). [22, Thm. 4.1] Let π̃ : A → L(H) be a ∗-
representation. Define π : A→ L(`2(G,H)) and U : G → U(`2(G,H)) on the Hilbert space
`2(G,H) by(

π(a) f
)
(g) B π̃

(
αg(a)

)
f (g),

(
Ug f

)
(g′) B π̃

(
σ(g′, g)

)
f (g′g) ∀a ∈ A, g, g′ ∈ G (4.16)

for all f ∈ `2(G,H). Then (π,U) is a covariant representation for (A,G, α, σ).
If (A,G, α, σ) is a real twisted dynamical system and π̃ is a real ∗-representation, then

(4.16) defines a real covariant representation.

A crucial aspect for our identification of the algebra of observables with a (twisted)
crossed product is the following result about faithful representations.

Theorem 4.2.16. [64, Thm. 3.11] Let G be amenable and let π̃ : A → L(H) be a faithful
representation. Then the induced representation (π,R) is faithful.

Twisted representations for the twisted dynamical systems of Example 4.2.13 are given
as follows.

Example 4.2.17. By Theorem 4.2.15, the pair (π,Rσ) defined by(
π( f )ψ

)
(ω, x) := f (ω · (−x))ψ(ω, x), (Rσ

y ψ)(ω, x) := σ(x, y)ψ(ω, x + y)
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for all y ∈ Zd, f ∈ C(Ω) ⊗ End(V), ψ ∈ L2(Ω,P) ⊗ V, ω ∈ Ω and x ∈ Λ, defines a covariant
representation of the twisted dynamical system

(
C(Ω) ⊗ End(V),Zd, α, σ

)
.

Analogously, the pair (π,R), defined as(
π( f )ψ

)
(ω, x) := f (ω · (−x))ψ(ω, x), (Ryψ)(ω, x) := ψ(ω, x + y)

for all y ∈ Zd, f ∈ C(Ω) ⊗ End(W), ψ ∈ L2(Ω,P) ⊗ W, ω ∈ Ω and x ∈ Λ, defines a real
covariant representation for the real dynamical system

(
C(Ω) ⊗ End(W),Zd, α, 1).

Now we introduce the notion of twisted crossed products.

Definition 4.2.18 (Twisted crossed product). A twisted crossed product C∗-algebra for a
twisted dynamical system (A,G, α, σ) is a C∗-algebra B together with a covariant pair

(
ϕ :

A→ M(B),V : G → U(M(B))
)

satisfying:

• For any covariant representation (π,U) overH of (A,G, α, σ), there is a non-degenerate
representation of B onH , denoted by π oα,σ U such that

π = (π oα,σ U) ◦ ϕ, U = (π oα,σ U) ◦ V.

• The set
{∑

g∈Gϕ(z(g))Vg

∣∣∣ z ∈ `1(G, A)
}

is dense in B.

Proposition 4.2.19. [64, Prop. 2.7] Let (A,G, α, σ) be a twisted dynamical system. Then
there is a crossed product (B, ϕ,V). It is universal in the sense that if (B′, ϕ′,V ′) is another
crossed product, then there is an isomorphism ψ : B→ B′ such that ψ◦ϕ = ϕ′ and ψ◦V = V ′.

Thus, we see that the crossed product C∗-algebra is the universal C∗-algebra defined by
generators τg for all g ∈ G and a ∈ A, and the following relations: the C∗-algebraic relations
of A, and the relations

τgτg′ = σ(g, g′)τgg′ , τ∗gτg = τgτ
∗
g = 1, τga = αg(a)τg, ∀g, g′ ∈ G, a ∈ A.

We denote the twisted crossed product C∗-algebra by A oα,σ G. Whenever σ ≡ 1, we drop σ
from the notation and call A oα G the crossed product C∗-algebra.

In the real case, we will prove that the algebra of observables is isomorphic to a real
crossed product. A real structure on a (twisted) crossed product is in general defined as
follows.

Definition 4.2.20 (Real structures on twisted crossed products). If (A,G, α, σ) is a real
twisted dynamical system, we extend the real structure of A to A oα,σ G by declaring the
τg to be real for all g ∈ G.

The crossed product C∗-algebra of bulk observables

We now assume that we are given a space Ω of disorder configurations as in Definition 4.2.7
and a magnetic cocycle σ as in Equation (4.13). As explained before, we only allow for
non-trivial twisting in the charge-conserving cases. Then we obtain the following result.

Theorem 4.2.21. Let α, σ be given as in Example 4.2.13. Then the twisted crossed product
C∗-algebra (C(Ω) ⊗ End(V)) oα,σ Zd is ∗-isomorphic to A.
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Proof. We can consider A as a C∗-subalgebra of L(L2(Ω,P) ⊗V). For brevity, let G B Zd.
Let (π,Rσ) denote the twisted covariant pair of Example 4.2.17. This pair induces the

∗-representation Φ := π oα,σ Rσ of (C(Ω) ⊗ End(V)) oα,σ G. As G is amenable, it follows by
Theorem 4.2.16 that Φ is faithful.

We claim that the image of Φ lies in A. By definition, Φ(τg)ω and Φ( f )ω are controlled
for any g ∈ G, f ∈ C(Ω) ⊗ End(V), and ω ∈ Ω. Hence, Φ(a)ω ∈ C∗u(Λ,V) for any a ∈
(C(Ω) ⊗ End(V)) oα,σ G.

It remains to check the covariance condition. We compute for g, g′ ∈ G and ω ∈ Ω:

(uσg′ )
∗Φ(τg)ωuσg′ = σ(·,−g′)u−g′σ(·, g)u−gσ(·, g′)ug′

= σ(·,−g′)σ(· + g′, g)σ(· + g′ + g, g′)u−g = Rσ
g = Φ(τg)ω·g′ .

Similarly, for f ∈ C(Ω) ⊗ End(V), g ∈ G, and ω ∈ Ω, we have

(uσg )∗Φ( f )ωuσg =
∑
x∈Λ

σ(x,−g)σ(x, g) f (ω · x)|x − g〉〈x − g| = Φ( f )ω·g.

This shows that im Φ ⊆ A. We have to prove the equality.
As G is an amenable group, there is an approximate unit (φn) for c0(G) consisting of

finitely supported functions of positive type [72, Lem. 11.19]. We may assume that φn(0) = 1.
For every n, there is a finite-dimensional Hilbert space Hn, a unitary representation πn of G
onHn, and a unit vector ξn ∈ Hn such that

φn(g) = 〈ξn|πn(g)ξn〉 ∀g ∈ G.

Let (ξi
n) be an orthonormal basis ofHn. Set

f i
n(g) B 〈ξi

n|πn(g)ξn〉 ∀g ∈ G,

so that f i
n is bounded on G. For T ∈ L(V), we define

S n(T ) B
∑

i

M∗f i
n
T M f i

n
∈ L(V).

Let T (x, y) B 〈x,Ty〉Λ denote the kernel of T . Then

S n(T ) =
∑
x,y∈Λ

∑
i

〈πn(x)ξn|ξ
i
n〉〈ξ

i
n|πn(y)ξn〉T (x, y)|x〉〈y| =

∑
x,y∈Λ

φn(y − x)T (x, y)|x〉〈y|.

In particular, S n(1) = 1, since φn(0) = 1. From the definition, it is clear that S n is completely
positive, see also [72, Lem. 11.17]. In particular, S n is positive, and therefore

‖S n‖ 6 ‖S n(1)‖ = 1.

That is, S n is a contraction. As S n leaves controlled operators invariant, this implies that S n

leaves C∗u
(
Λ,V

)
invariant.

Let T ∈ A. We set S n(T )ω := S n(Tω). Since S n commutes with uσg for every g ∈ G, this
defines an element of A. Let ε > 0 be arbitrary. As Ω is compact, there are finitely many
ωi ∈ Ω and open neighbourhoods Ui ⊆ Ω of ωi covering Ω such that

‖Tω − Tωi‖ 6
ε

6
∀ω ∈ Ui
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and all i. There exist a finite R > 0 and some R-controlled operators Ti ∈ C∗u
(
Λ,V

)
such that

‖Tωi − Ti‖ 6
ε

6

for all i. By [72, Lem. 4.27], there is a constant CR > 0 only depending on R such that

‖Ti − S n(Ti)‖ 6 CR · sup‖x‖6R

∣∣∣1 − φn(x)
∣∣∣ · sup‖x−y‖6R

∥∥∥Ti(x, y)
∥∥∥

for all n and i. Since φn converges to 1 uniformly on
{
‖· 6 R‖

}
, there is an N ∈ N such that

for all n > N and all i, the right-hand side is 6 ε
3 .

If now n > N and ω ∈ Ω, then there is some i such that ω ∈ Ω. It follows that

‖Tω − S n(Tω)‖
6‖Tω − Tωi‖ + ‖Tωi − Ti‖ + ‖Ti − S n(Ti)‖ + ‖S n(Ti − Tωi )‖ + ‖S n(Tωi − Tω)‖

62‖Tω − Tωi‖ + 2‖Tωi − Ti‖ + ‖Ti − S n(Ti)‖ 6
4ε
6

+
ε

3
= ε.

Therefore, the sequence S n(T ) converges to T in A.
For any n ∈ N and g ∈ supp(φn), define fn,g ∈ C(Ω) ⊗ End(V) by fn,g(ω) := Tω(0, g)∀ω ∈

Ω. Then

im Φ 3
∑

φn(g),0

φn(g)π( fn,g)Rσ
−g =

∑
φn(g),0,x∈Λ

φn(g)Tω·x(0, g)|x〉〈x|Rσ
−g

=
∑

φn(g−x),0

φn(g − x)Tω(x, g)|x〉〈g| = S n(T ).

As the image of Φ is closed, T is contained in it. Thus, Φ is surjective. Since we already
know that Φ is injective, this proves the theorem. �

Theorem 4.2.22. Let α be given as in Example 4.2.13 with σ ≡ 1. Then the crossed product
C∗-algebra (C(Ω) ⊗ End(W)) oα Zd is isomorphic to A as a real C∗-algebra.

Proof. Here we consider A as a real C∗-subalgebra of the real C∗-algebra L(L2(Ω,P) ⊗
W) equipped with usual conjugation overW and the point-wise complex conjugation over
L2(Ω,P).

We consider the covariant pair (π,R) of Example 4.2.17. Since Zd is amenable, it follows
by Theorem 4.2.16 that the induced ∗-representation Φ := π oα R of (C(Ω) ⊗ End(W)) oα Zd

is faithful. Since Rx is real for every x ∈ Zd and π is real, it follows that Φ is real, too.
The proof of im Φ = A is the same as for the bulk algebra of complex observables. �

4.2.4 Disordered invariant quasi-particle vacua
Here we finally establish a description of the ground states of disordered topological insu-
lators and superconductors in the bulk. We have already understood in Section 4.1 how to
describe stable free-fermion ground states in terms of QPV. Due to our detailed derivation of
the algebra of observables for disordered topological insulators and superconductors, we can
now make the following definition.
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Definition 4.2.23 (Symmetric disordered IQPV). A disordered invariant quasi-particle vac-
uum (IQPV) of symmetry index (r, s) is given by a tuple

(J; K1, . . . ,Kr, J1 . . . , Js),

where J ∈ A and K1, . . . ,Kr, J1, . . . , Js ∈ End(W) ⊆ A such that (Jω; K1, . . . ,Kr, J1 . . . , Js) is
a QPV of symmetry index (r, s) for all ω ∈ Ω, cf. Definition 4.1.19.

A complex disordered IQPV of symmetry index (r, s) is given by a tuple

(J; K1 . . . ,Kr, J1, . . . , Js),

where J ∈ A and K1, . . . ,Kr, J1, . . . , Js ∈ End(V) ⊆ A such that (Jω; K1, . . . ,Kr, J1 . . . , Js) is
a complex QPV of index (r, s) for all ω ∈ Ω, cf. Definition 4.1.22.

As before, we will interchangeably use the notation (J; K1, . . . ,Kr, J1, . . . , Js) and (J; φ),
where φ is the induced unital ∗-morphism from C`r,s or C`r,s to A or A, respectively.

The name IQPV was introduced in [49]. There it denotes the translationally invariant
QPV. To emphasize that we consider systems with disorder where the translational invariance
is broken on microscopic scale, we equip the IQPV with the prefix ‘disordered’.

We emphasise once more that, under the premise σ ≡ 1, a charge-conserving disordered
IQPV of symmetry index (r, s) is the same as a disordered IQPV of symmetry index (r, s)
such that [J,Q] = [Ka,Q] = [Jα,Q] = 0 for all α = 1, . . . , s and a = 1, . . . , r.

In Definition 4.2.23, we demanded in particular that the pseudo-symmetries act locally
in the sense that they are elements of End(W) ⊆ A in the real case and End(V) ⊆ A in
the complex case. In particular, the pseudo-symmetries thereby commute with all lattice
translations.

We have seen in Section 4.1.2 that all symmetry classes in the Tenfold Way can be
described by pseudo-symmetries that are generated by local symmetries. It can easily be
checked that all physical examples of pseudo-symmetries that we have introduced in Subsec-
tion 4.1.2 define elements in End(W) or End(V). Thus, this locality restriction on the pseudo-
symmetries still allows us to give an exhaustive classification of these symmetry classes.

However, it is in general not possible to translate symmetries acting non-trivially on
the Bravais lattice Λ, so called crystalline symmetries such as translation symmetries, into
pseudo-symmetries. There exists a plethora of classification schemes in the context of such
crystalline symmetries for clean translationally invariant systems [3, 79, 80, 21]. See [63] for
a pedagogical introduction to this topic.

4.3 Boundary systems with disorder
In this section, we will construct a mathematical approach for disordered topological insula-
tors and superconductors with boundary. The construction is almost the same as for the bulk
algebra. The major difference is that we include a boundary into our picture which manifestly
breaks the translational invariance of the system. Once we have established the algebra of ob-
servables, we will construct an explicit relation between this algebra and the bulk algebra of
the previous section. This will result in the bulk-boundary short exact sequence. At the end
of this section, we will introduce the notion of disordered IQPV with boundary, describing
the ground states of disordered topological insulators and superconductors in the vicinity of
a boundary.
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4.3.1 The C∗-algebra of half-space observables
Here, we construct the algebra of disordered observables over a half-space lattice in the tight-
binding approximation in a similar manner as in Subsection 4.2.2.

Figure 4.2: Half-space lattice
of the cubic Bravais lattice.

We begin our construction by introducing a boundary. In
this work, we will consider the most fundamental prototype
of a boundary, which has also been considered in [78, 48]. It
is obtained by cutting the lattice Λ ×U perpendicular to one
translational direction in Λ, as depicted in Figure 4.2.

Hitherto, all directions in the lattice ware equivalent and
therefore we can now assume without loss of generality that
we cut the lattice perpendicular to the dth direction. The
remaining lattice is called the half-space and is given by

Λ̂ × U with Λ̂ B
(
Zd−1 × N

)
,

where N = {0, 1, 2, . . . }. In particular, we assume that the cut
preserves the basis U. The sub-lattice

Λ∂ × U with Λ∂ B Z
d−1 ≡ Zd−1 × {0} ⊆ Λ̂

is called the boundary. The lattice translations parallel to the boundary induce a (twisted)
action of Zd−1 on Λ∂ × U.

Definition 4.3.1 (Half-space projection q). The orthogonal projection

q : `2(Λ) −→ `2(Λ̂) (4.17)

restricts the bulk states onto the half-space states and thus represents the cutting process
described above. We refer to this projection as the half-space projection.

The Hilbert space of single-particle states over the half-space in the tight-binding approx-
imation is given by

V̂ B `2(Λ̂) ⊗ V,

and the corresponding Nambu space is

Ŵ B V̂ ⊕ V̂∗ � `2(Λ̂) ⊗W.

Our strategy for the construction of the algebra of half-space observables is the same as
for the algebra of bulk observables. The major difference to the bulk is that over the half-
space the lattice translations along the dth direction cannot be unitary operators anymore. We
briefly explain this in more detail.

By tensoring the half-space projection q with idV or idW , we obtain orthogonal projections

qV : V −→ V̂ and qW :W −→ Ŵ.

In the following, we use the notation q ≡ qV ≡ qW as this should not lead to confusion. Let
us now consider the effect of this projection on the twisted lattice translations

(uσxψ)(y) = σ(y, x)ψ(y − x) ∀x ∈ Zd, y ∈ Λ, ψ ∈ V.



82 Disordered Topological Insulators and Superconductors Chapter 4

We define
ûσx B quσx q ∀x ∈ Zd.

The lattice translations ûσx commute with q if x ∈ Zd−1 × {0} ⊂ Zd−1 × Z = Zd and are
therefore still unitary. However, the lattice translation uσd B uσed

along the dth direction,
where ed = (0, . . . , 0, 1) ∈ Zd−1 × N, is mapped onto the operator

ûσd = quσd |V̂ ∈ L(`2(Λ̂))

over the half-space, which is no longer unitary. Instead, it is a partial isometry as (ûσd )∗ûσd =

1 and 1 − ûσd (ûσd )∗ is the orthogonal projection onto Zd−1 × {0}.
For σ ≡ 1, the lattice translations ûσx = ûx ∈ L(Ŵ) can be defined in the same manner.
With these half-space translations, we can define the algebra of half-space observables as

follows.

Definition 4.3.2 (Algebra of half-space observables). Let Ω be a space of disorder configura-
tions. Let U ∈ {V,W} and σ : Zd ×Zd −→ U(1) be a magnetic cocycle as defined in Equation
(4.13) (possibly trivial). Define ÂU,σ as the closed subalgebra of the set C

(
Ω,C∗u

(
Λ̂,U

))
of

norm continuous maps O : Ω −→ C∗u(Λ̂,U) generated by those maps O that are covariant in
the sense that

Oω·x = (ûσx )∗Oωûσx , ∀x ∈ Zd−1 × N, ω ∈ Ω.

Equipped with the point-wise operations and the sup-norm, ÂU,σ defines a C∗-algebra.
For U = V , we define

Â B ÂV,σ.

This complex C∗-algebra is called the algebra of charge-conserving half-space observables,
or simply the complex half-space algebra.

For σ ≡ 1 and U = W, we define

Â B ÂW ,

equipped with the point-wise conjugation. This real C∗-algebra is called the algebra of half-
space observables, or simply the half-space algebra.

4.3.2 The bulk-boundary short exact sequence
In this section, we will construct a short-exact sequence that exhibits the relations between
the half-space, boundary and bulk in the following way.

We proved that the bulk algebra is the universal C∗-algebra generated by C(Ω) ⊗ End(W)
(resp. C(Ω)⊗End(V)) and the (twisted) lattice translations over Λ. For the half-space algebra,
we will now establish a similar result. This will enable us to define a canonical surjective ∗-
morphism ρ from the half-space algebra onto the bulk algebra giving rise to the bulk-boundary
SES.

In more detail, we will show that the half-space algebra is isomorphic to a so-called
monoidal twisted crossed product C∗-algebra. We take the pragmatic approach of explaining
only the most important definitions in order to derive the desired results. This is because the
theory of crossed product C∗-algebras for (twisted) monoidal semi-groups is more involved
than for groups. The advantage of a more detailed explanation for the reader to understand
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this work is not of such extent that it would be justified. Furthermore, this theory is not
expected to be applicable to more general geometries of the boundary. There is already the
work [18] that has developed an approach using groupoid C∗-algebras in order to describe
lattices with more general boundaries.

We begin our short exposition by introducing twisted monoidal dynamical systems.

Definition 4.3.3 (Twisted monoidal dynamical system). A twisted monoidal dynamical sys-
tem

(
A, Ĝ, α, σ) is given by a C∗-algebra A, a left-cancellative unital monoid Ĝ and a pair of

maps
α : Ĝ → Aut(A), σ : Ĝ × Ĝ → U(M(A)),

such that for all g1, g2, g3 ∈ Ĝ we have σ(g1, 1) = σ(1, g2) = 1, α1 = id and

αg1 ◦ αg2 = Ad(σ(g1, g2)) ◦ αg1g2 , αg1

(
σ(g2, g3)

)
σ(g1, g2g3) = σ(g1, g2)σ(g1g2, g3).

If A is a real C∗-algebra, we demand that αg, σ(g, g′) are real for all g, g′ ∈ Ĝ and we call(
A, Ĝ, α, σ) a real twisted monoidal dynamical system.

The following example contains the relevant twisted monoidal dynamical systems for the
present work.

Example 4.3.4. Let Ω be a space of disorder configurations, CU B C(Ω) ⊗ End(U) for
U ∈ {V,W}, and let α, σ be given as in Example 4.2.13. We already know that

(
CV ,Zd, α, σ

)
for defines a twisted dynamical system. Therefore, it is easy to see that

(
CV ,Zd−1 × N, α, σ

)
,

where α, σ are restricted to Zd−1 × N, defines a twisted monoidal dynamical system.
In the case U = W and σ ≡ 1,

(
CW ,Zd, α, 1

)
defines a real monoidal dynamical system.

In the same manner as for the twisted dynamical systems, we now introduce covariant
pairs and representations.

Definition 4.3.5 (Twisted covariant pair). A covariant pair (ϕ, Û) for (A, Ĝ, α, σ) is given
by a non-degenerate ∗-morphism ϕ : A → B into a C∗-algebra B and an isometric map
Û : Ĝ → M(B) such that

ÛgÛg′ = ϕ(σ(g, g′))Ûgg′ , ϕ
(
αg(a)

)
Ûg = Ûgϕ(a) ∀g, g′ ∈ Ĝ, a ∈ A.

A real covariant pair (ϕ, Û) of a real twisted monoidal dynamical system is defined in the
same way with the additional obstruction that Ûg is real for all g ∈ G and ϕ, B are real.

A (real) covariant representation of (A, Ĝ, α, σ) is a (real) covariant pair for (A, Ĝ, α, σ)
with B = L(H) for some (real) Hilbert spaceH .

Note that for twisted monoidal dynamical systems there is in general no result as Theorem
4.2.16 about faithful covariant representations.

Covariant representations for the twisted monoidal dynamical systems of Example 4.3.4
are given as follows.

Example 4.3.6. A covariant representation (π̂, R̂σ) for (CV ,Zd−1 × N, α, σ) is given by re-
striction of the covariant pair (π,Rσ). In more detail, π̂ : CV → L

(
L2(Ω,P) ⊗ V̂

)
is the

∗-representation defined by

(π̂( f )ωψ)(x) = f (ω · (−x))ψ(x) ∀ f ∈ C(Ω) ⊗ End(V), x ∈ Λ̂, ψ ∈ V̂
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and R̂σ
x B q Rσ

x q ∈ L
(
L2(Ω,P) ⊗ V̂

)
satisfies

R̂σ
x (R̂σ

x )∗ = 1, R̂σ
x R̂σ

y = σ(x, y)R̂σ
x+y, π̂(αx( f ))R̂σ

x = R̂σ
x π̂( f ) ∀x, y ∈ Zd−1 × N.

In the case U = W, σ ≡ 1, a real covariant pair (π̂, R̂) for (CW ,Zd−1 × N, α) can be defined
analogously.

Remark 4.3.7. Observe that the equation R̂σ
x (R̂σ

x )∗ = 1 for all x ∈ Zd−1 × N in the example
above differs from the condition (ûσx )∗ûσx = 1 for all x ∈ Zd−1 × N for the lattice shifts in
Definition 4.3.2. The rationale here is that operators that commute with (truncated) left
translations are generated by (truncated) right translations.

Finally, crossed product C∗-algebras for twisted monoidal dynamical systems are defined
as follows.

Definition 4.3.8 (Crossed product of twisted monoidal dynamical system). Let CU oα,σ
(Zd−1 × N) be the universal C∗-algebra that is generated by the generators f ∈ CU and
τ̂x, for x ∈ Zd−1 × N, the ∗-algebraic relations for C(Ω) ⊗ End(U) and the relations

τ̂xτ̂
∗
x = 1, τ̂xτ̂y = σ(x, y)τ̂x+y, αx( f )τ̂x = τ̂x f ∀x, y ∈ Zd−1 × N, f ∈ C(Ω) ⊗ End(U).

If U = W, σ ≡ 1, the C∗-algebra CW oα (Zd−1×N) becomes a real C∗-algebra when equipped
with the induced real structure from CW and by declaring the τ̂x to be real.

The algebra of half-space observables can now be identified with such a crossed product,
as explained in the following proposition.

Proposition 4.3.9. The C∗-algebra Â is isomorphic to the crossed product C∗-algebra
(
C(Ω)⊗

End(V)
)
oα,σ(Zd−1×N) and the real C∗-algebra Â is isomorphic to

(
C(Ω)⊗End(W)

)
oα(Zd−1×

N).

Proof. For the sake of brevity we use the notation Ĝ B Zd−1 × N. We will only prove the
case U = V , where we have a possibly non-trivial twisting. The case U = W,σ ≡ 1 can be
proved similarly. It is easy to check that the constructed ∗-isomorphism then becomes a real
∗-isomorphism.

Let (π̂, R̂σ) be the covariant representation of Example 4.3.6. By definition, CV oα,σ Ĝ
is universal for covariant pairs of the dynamical system (CV ,Zd−1 × N, α, σ) and therefore
(π̂, R̂σ) defines a unique ∗-morphism

Φ̂ B π̂ oα,σ R̂σ : (C(Ω) ⊗ End(V)) oα,σ Ĝ −→ L
(
L2(Ω,P) ⊗ V̂

)
.

For the sake of brevity, we denote the crossed product by B̂ B (C(Ω) ⊗ End(V)) oα,σ Ĝ.
In the following, we will show that Φ̂ defines a ∗-isomorphism from B̂ to Â. We begin

by proving the injectivity of Φ̂. Thereby, we follow an idea by Murphy [62, Thm. 4.4], who
proved the case σ ≡ 1 and d = 1.

Let T � U(1)d be the dual group of Zd. For γ ∈ T , define Vγ ∈ U(V̂) by

Vγ(ψ)(x) B γ(x)ψ(x).
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Then V is a unitary representation of T , and clearly Vγ commutes with im π̂. It is similarly
straightforward that

Vγ R̂σ
x = γ(x)R̂σ

x Vγ, ∀γ ∈ T, x ∈ Ĝ.

We may also define an action δ of T on B by letting C(Ω) ⊗ End(V) be point-wise fixed and
setting

δγ(x) B γ(x)x ∀γ ∈ T, x ∈ Ĝ.

Then Φ̂ is T -equivariant.
Now, it is sufficient to prove that Φ̂ is injective when restricted to the fixed-point subal-

gebra of Bδ of the action δ. Indeed, consider normalised Haar measure on T . If a ∈ ker Φ̂,
then

0 =

∫
T

Ad(Vγ)(Φ̂(a∗a)) dt = Φ̂

(∫
T
δγ(a∗a) dγ

)
,

so if Φ̂ is injective on the δ-invariants, then∫
T
δγ(a∗a) dγ = 0

which implies a∗a = 0 and hence a = 0, in view of the positivity of the integral.
We now show the injectivity of Φ̂ on invariants. A simple calculation [62, p. 342] shows

that ∫
T
δγ(τ̂x1 · · · τ̂xn ) dγ =

τ̂x1 · · · τ̂xn , if x1 + · · · + xn = 0,
0, otherwise.

But if x1 + · · · + xn = 0, then x1, . . . , xn ∈ G∂ B Z
d−1 × {0} ⊆ Zd−1 × N = Ĝ.

Let B∂ denote the universal C∗-algebra generated by f ∈ C(Ω)⊗End(V) and τ̂x for x ∈ G∂,
subject to the C∗-algebraic relations of C(Ω) ⊗ End(V), the algebraic relations of G∂, and the
relations

τ∗xτx = τxτ
∗
x = 1, τxτy = σ(x, y)τx+y, αx( f )τx = τx f

for all f ∈ C(Ω)⊗End(V), x, y ∈ G∂. There is a canonical ∗-morphism Φ∂ : B∂ −→ B̂ defined
by Φ∂(τx) = τ̂x for all x ∈ G∂ and Φ∂( f ) = f for all f ∈ C(Ω) ⊗ End(V). By Theorem 4.2.21,
Φ̂ ◦ Φ∂ is injective. Hence, B∂ is a closed ∗-subalgebra of B̂ and the restriction of Φ̂ to B∂ is
injective. As

∫
T δγ dγ is the identity on B̂δ, the above computation shows that B̂δ ⊆ B∂, which

proves that the restriction of Φ̂ to B̂δ is injective. Hence, indeed, Φ̂ itself is injective.
It remains to prove that im Φ̂ = Â. To that end, we refer back to the proof of Theorem

4.2.21. The statement im Φ̂ ⊆ Â follows in much the same way as the corresponding state-
ment of A. For the converse inclusion, we begin with some preparations which are largely
similar to the corresponding steps in the bulk:

Recall the definition of S n and the functions f i
n. We may consider L(V̂) as a subset of

L(V) by the use of the projection q, so that we may restrict S n to L(V̂). For T ∈ L(V̂), we
find that

Ŝ n(T ) B S n(T ) =
∑

i

M∗f̂ i
n
T M f̂ i

n
, f̂ i

n B f i
n|Ĝ ∀T ∈ L(V̂).

In particular, Ŝ n is a completely positive endomorphism of L(V̂). Arguing as in the proof of
Theorem 4.2.21, we see that Ŝ n is a contraction.
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Moreover, we see from the proof of Theorem 4.2.21 that

Ŝ n(T ) =
∑
x,y∈Λ̂

φn(x − y)T (x, y)|x〉〈y| ∀T ∈ L(V̂).

In particular, Ŝ n leaves controlled operators on `2(Λ̂) invariant, and therefore also C∗u
(
Λ̂,V

)
.

Defining, for T ∈ Â, Ŝ n(T ) by Ŝ n(T )ω B Ŝ n(Tω) for all ω ∈ Ω, we obtain a contractive,
completely positive endomorphism of Â. As in the proof of Theorem 4.2.21, it follows that
S n(T ) converges to T for any T ∈ Â.

The remainder of the proof differs slightly from that of Theorem 4.2.21. Let T : Ω −→

C∗u(Λ̂,V) be norm continuous and satisfy the covariance in Definition 4.3.2. Setting

x 6 y :⇐⇒ y − x ∈ Λ̂

defines a total preorder on Λ̂. Therefore, we may write Ŝ n(T ) = I + II where

Iω =
∑

x,y∈Λ̂,x6y

φn(x − y)Tω(x, y)|x〉〈y|

and the sum defining II extends over all x, y ∈ Λ̂, x > y. For x 6 y, we have

〈x|R̂σ
y−x = σ(x, y)〈y| = σ(y, x)∗〈y|,

so that

Iω =
∑

x,y∈Λ̂,x6y

φn(x − y)Tω·x(0, y − x)σ(y, x)∗|x〉〈y| =
∑

g∈Ĝ∩supp φn

π( f I
n,g)ωR̂σ

g ,

where f I
n,g(ω) B φn(g)Tω(0, g), ∀n > 0, g ∈ Ĝ, ω ∈ Ω. Similarly, for x > y, we have(

R̂σ
x−y

)∗
v|y〉 = σ(y, x)∗v|x〉 = σ(x, y)v|x〉 ∀v ∈ V,

so that

IIω =
∑

x,y∈Λ̂,x>y

φn(x − y)σ(x, y)Tω·y(x − y, 0)|x〉〈y| =
∑

g∈(Ĝ\G∂)∩(− supp φn)

(
R̂σ
g

)∗
π( f II

n,g)ω,

where f II
n,g(ω) B φn(−g)Tω(g, 0), ∀n > 0, g ∈ Ĝ, ω ∈ Ω. This proves that Ŝ n(T ) ∈ im Φ̂; since

im Φ̂ is closed, it also contains T , proving that Φ̂ is surjective, and hence, the assertion. �

Due to Proposition 4.3.9, we can now construct the bulk-boundary SES. Besides the al-
gebras of bulk and half-space observables, the bulk-boundary SES will contain a C∗-algebra
corresponding to the observables localised around the boundary. In analogy to the algebra
of bulk observables, we define the algebra of observables that are exactly localised at the
boundary as follows.

Definition 4.3.10 (Algebra of boundary observables). Let Ω, U and uσx be given as in Defi-
nition 4.2.9. In analogy to the bulk algebra, we define AU,σ

∂
to be the C∗-algebra generated

by all norm continuous maps O : Ω −→ C∗u(Λ∂,U) that are covariant in the sense that

Oω·x = (uσx )∗Oωuσx ∀x ∈ Zd−1, ω ∈ Ω.
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The real C∗-algebraA∂ B AW
∂

is called the algebra of boundary observables and the complex
C∗-algebra A∂ B AV,σ

∂
is called the algebra of complex (or charge-conserving) observables.

Note that the boundary algebras consist of observables that are strictly localised at the
boundary.

In the remainder of this section and in Chapter 5, we will make frequent use of the opera-
tors Rσ

ed
and Red , as well as their induced automorphism of A∂ andA∂, respectively. Therefore,

we introduce for brevity the following notation.

Definition 4.3.11 (Rσ
d ,Rd, αd). Consider the covariant pairs (π,Rσ) and (π̂, R̂σ) of the bulk

and half-space algebra of complex observables. We introduce the notation

Rσ
d B Rσ

ed
, R̂σ

d B R̂σ
ed

where ed = (0, . . . , 0, 1) ∈ Zd−1 × N.

The unitary operator Rσ
d defines the ∗-automorphism

αd(a) B
(
Rσ

d
)∗aRσ

d ∀a ∈ A∂.

Analogously, we introduce for the real covariant pairs (π,R) and (π̂, R̂) of the bulk and
half-space algebra of observables the notation Rd B Red and R̂d B R̂ed . The unitary operator
Rd defines the real ∗-automorphism αd(a) B R∗daRd ∀a ∈ A∂.

An important role will in the following also be played by the following boundary projec-
tion.

Definition 4.3.12 (Boundary projection e). The boundary projection is defined by e B 1 −
(R̂σ

d )∗R̂σ
d ∈ L

(
L2(Ω,P) ⊗ V̂

)
. The name of this projection is motivated by the fact that for all

ψ ∈ L2(Ω,P) ⊗ V̂

eψ(ω, x) =

ψ(ω, x), if x ∈ Λ∂,

0, otherwise.

In the real case, we define e B 1 − R̂∗dR̂d ∈ L
(
L2(Ω,P) ⊗ Ŵ

)
.

We are now ready to formulate and proof the following theorem, which is the core of the
bulk-boundary SES that will be explained thereafter.

Theorem 4.3.13. There is a unique surjective ∗-morphism ρ : Â −→ A such that

ρ(π̂( f )) = π( f ), ρ(R̂σ
x ) = Rσ

x , ∀ f ∈ C(Ω) ⊗ End(V), x ∈ Zd−1 × N.

The kernel of ρ is the closed ideal (e) generated by the boundary projection e. It is isomorphic
to A∂ ⊗ K(`2(N)).

In the real case, there is a unique real surjective ∗-morphism ρ : Â −→ A such that

ρ(π̂( f )) = π( f ), ρ(R̂x) = Rx, ∀ f ∈ C(Ω) ⊗ End(W), x ∈ Zd−1 × N.

The kernel of ρ is here as a real C∗-algebra isomorphic to A∂ ⊗ K(`2(N)).
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Proof. We prove the complex case where the twisting is non-trivial. The real case can be
proved in the same way.

The unique existence and the surjectivity of a ∗-morphism as claimed follow from Propo-
sition 4.3.9 and Theorem 4.2.21. It is also clear from the definitions that the projection e is
contained in the kernel of ρ.

We abbreviate Ŝ B ûd and ê B 1 − Ŝ Ŝ ∗ = |0〉〈0|. By Theorem 4.2.21, there is a unique
∗-morphism ν : A −→ A ⊗ M2(L(`2(N))), such that

ν(π( f )) B π( f ) ⊗
(
1 0
0 1

)
, ν

(
Rσ

(x,n)
)
B


Rσ

(x,n) ⊗

Ŝ ∗ 0
ê Ŝ

n

, if n > 0,

Rσ
(x,n) ⊗

Ŝ ê
0 Ŝ ∗

−n

, if n < 0,

for all f ∈ C(Ω) ⊗ End(W), x ∈ Zd−1, n ∈ Z. In fact, the covariance condition is easy to
compute once we note that(

Ŝ ∗ 0
ê Ŝ

) (
Ŝ ê
0 Ŝ ∗

)
=

(
1 0
0 1

)
=

(
Ŝ ê
0 Ŝ ∗

) (
Ŝ ∗ 0
ê Ŝ

)
.

Similarly, by Proposition 4.3.9, there is a unique ∗-morphism ν̂ : Â −→ A ⊗ L(`2(N))
such that

ν̂(π̂( f )) B π( f ) ⊗ 1, ν̂
(
R̂σ

(x,n)
)
B Rσ

(x,n) ⊗ (Ŝ ∗)n, (4.18)

for all f ∈ C(Ω) ⊗ End(W), x ∈ Zd−1, n ∈ N. Arguing as in the proof of Proposition 4.3.9,
using the obvious action of the dual group of Z on L(`2(N)), we see that ν̂ is injective, and
hence defines a ∗-isomorphism onto its image. By the definition of ν, the image of the upper
left component ν11 is contained in the image of ν̂. We may therefore define

s : A −→ Â, s B (ν̂)−1 ◦ ν11.

This map is not a ∗-morphism, but it is a completely positive contraction intertwining the
∗-operations. Moreover, we have

ν11(xy) = ν11(x)ν11(y) + ν12(x)ν21(y), ∀x, y ∈ A,

where ν12(x)ν21(y) is contained in the ideal generated by 1 ⊗ ê. By ν̂−1, this ideal is mapped
onto the ideal generated by e. It follows that s is a section of ρ, as it is sufficient to check this
statement on generators.

We claim that x − s(ρ(x)) is contained in the closed ideal generated by e. By the same
argument as in the previous paragraph, it is sufficient to check on generators x that ν̂(x) −
ν11(ρ(x)) is contained in the closed ideal generated by 1 ⊗ ê. But this expression actually
vanishes on generators.

Thus, let x ∈ Â, ρ(x) = 0. Then we have

x = x − s(ρ(x)) ∈ (e),

proving that ker ρ = (e).
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It remains to prove that this ideal is indeed isomorphic to A∂ ⊗ K(`2(N)). Define a ∗-
morphism

ν∂ : A∂ ⊗ K(`2(N)) −→ A ⊗ L(`2(N)), ν∂(a ⊗ |m〉〈n|) B (Rσ∗
d )ma(Rσ

d )n ⊗ |m〉〈n|,

Then ν∂ is a ∗-morphism on A∂ ⊗ F (`2(N)) where F denotes the finite rank operators.
Both A∂ ⊗ K(`2(N)) and A ⊗ L(`2(N)) are represented faithfully onW⊗ `2(N), and the

operator norm on this space is invariant under left and right multiplications by operators of
the form u⊗ 1 where u is unitary onW. This shows that ν∂ is an isometry on A∂ ⊗F (`2(N)),
and hence it extends to A∂ ⊗ K(`2(N)) as an isometric ∗-morphism.

Observe that

(Rσ∗
d )ma(Rσ

d )n ⊗ |m〉〈n| = ν̂
(
R̂σ

d
)∗m(a ⊗ 1)(1 ⊗ ê)ν̂

(
R̂σ

d
)n
.

Thus, it is clear that the image of ν∂ is equal to the closed ideal of im(ν̂) generated by 1 ⊗ ê,
proving the claim. �

With the results of Theorem 4.3.13 we have finally established the relation between the
bulk, half-space and boundary algebra. This can be summarised in the short exact sequence

0→ A∂ ⊗ K
(
`2(N)

) ι
−→ Â

ρ
−→ A→ 0 (4.19)

of real C∗-algebras, where ι := ν̂−1 ◦ ν∂ : A∂ ⊗ K
(
`2(N)

)
→ Â. The corresponding SES for

the complex observables is given by

0→ A∂ ⊗ K
(
`2(N)

) ι
−→ Â

ρ
−→ A→ 0. (4.20)

The algebras A∂ ⊗ K
(
`2(N)

)
and A∂ ⊗ K

(
`2(N)

)
can be interpreted in the physical context

as (the norm closure of) the algebra of half-space observables that are localised around the
boundary.

We also constructed a section of the SES s : A→ Â resp. s : A→ Â given by

s(x) = ν̂−1(ν11(x)
)
. (4.21)

More explicitly, this section is defined by

s(π( f )) = π̂( f ), s(Rx,n) =

R̂x,n for n ≥ 0,
R̂∗x,−n for n < 0,

for all (x, n) ∈ Zd−1 × Z

in the real case, and

s(π( f )) = π̂( f ), s(Rσ
x,n) =

R̂σ
x,n for n ≥ 0,

R̂σ∗
x,−n for n < 0,

for all (x, n) ∈ Zd−1 × Z

in the complex case.
Now we have all tools at hand that are needed in Chapter 5 for the definition of topological

phases at the boundary of topological insulators and superconductors, and, subsequently,
the formulation and proof of the bulk-boundary correspondence. In particular, we can now
describe the ground states of these solids with boundary in an explicit way, as explained in
the next subsection.
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4.3.3 Disordered invariant quasi-particle vacua with boundary
Now we will finally define a mathematical framework for ground states of disordered topolog-
ical insulators and superconductors with boundary. We will adapt the description of ground
states in terms of disordered IQPV to these physical systems with boundary.

In doing so, we have to take care of the following two important physical observations:
Suppose we are given a topological insulator or superconductor which is described in the

bulk by a disordered IQPV with a finite hopping range R > 0. Then in the description of the
ground state including a boundary, we have to recover the properties of this disordered IQPV
of the bulk if we go far away from the boundary with respect to this length scale R.

In contrast to that, in the vicinity of the boundary, we expect the spectrum to become
gapless at the chemical potential µ due to localised boundary states. In other words, we
expect that the gap condition (cf. Definition 4.1.13) is violated at the boundary and we call
the corresponding states the gapless states. These states are the most important difference
between the bulk and the boundary theory. Thus, in the vicinity of the boundary, we have to
generalise the notion of disordered IQPV in order to allow for such localised gapless states.

These two physical aspects are taken care of by the following definition.

Definition 4.3.14 (Symmetric disordered IQPV with boundary). A disordered IQPV with
boundary of symmetry index (r, s) is a real skew-Hermitian Ĵ ∈ Â such that

J B ρ(Ĵ) ∈ A

defines a disordered IQPV of symmetry index (r, s).
A complex disordered IQPV with boundary of symmetry index (r, s) is defined as a skew-

Hermitian Ĵ ∈ Â such that J B ρ(Ĵ) ∈ A defines a complex disordered IQPV of symmetry
index (r, s).

The properties of ρ enable us to characterise disordered IQPV with boundary more ex-
plicitly.

Proposition 4.3.15. All disordered IQPV with boundary of symmetry index (r, s) are deter-
mined by tuples (

Ĵ; φ
)
,

where Ĵ ∈ Â is a real skew-Hermitian element and φ : C`r,s → Â is a unital real ∗-morphism
such that {

Ĵ, φ(ka)
}
,
{
Ĵ, φ( jα)

}
, Ĵ2 + 1 ∈ ker(ρ) � A∂ ⊗ K(`2(N)), (4.22)

for all a = 1, . . . , r and α = 1, . . . , s, where {·, ·} denotes the anti-commutator.
Complex disordered IQPV with boundary of symmetry index (r, s) are determined by tu-

ples
(
Ĵ; φ

)
of skew-Hermitian Ĵ ∈ Â and unital ∗-morphism φ : C`r,s → Â satisfying the

conditions in Equation (4.22) for A∂ replaced by A∂.

Proof. We only prove the real case because the proof of the complex case is almost identical.
Let Ĵ ∈ Â be a disordered IQPV with boundary of symmetry index (r, s). For the disor-

dered IQPV J B ρ(Ĵ) ∈ A there are pseudo-symmetries K1, . . . ,Kr, J1, . . . , Js ∈ End(W) ⊂
A, such that (

J; K1, . . . ,Kr, J1, . . . , Js
)
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is a disordered IQPV of symmetry index (r, s). By definition, there is a unital real ∗-morphism
φ : C`r,s → A such that φ(ka) = Ka and φ( jα) = Jα for all a = 1, . . . , r and α = 1, . . . , s.

The restriction of ρ to C(Ω)⊗End(W) is equal to the identity. Therefore, φ defines by the
same arguments a unital ∗-morphism φ : C`r,s → Â. Since ρ is a ∗-morphism, the equations
{ρ(Ĵ), φ(ka)} = {ρ(Ĵ), φ( jα)} = 0∀ a = 1, . . . r, α = 1, . . . , s imply{

Ĵ, φ(ka)
}
,
{
Ĵ, φ( jα)

}
∈ ker(ρ) = A∂ ⊗ K

(
`2(N)

)
∀ a = 1, . . . r, α = 1, . . . , s.

By the same argument, we conclude Ĵ2 + 1 ∈ ker(ρ) � A∂ ⊗ K(`2(N)). �

By Proposition 4.3.15, we see that a disordered IQPV with boundary can be considered as
a disordered IQPV up to contributions of localised boundary states. These boundary contribu-
tion will be fundamental for the topological properties at the boundary. In fact, our definition
of topological phases at the boundary in Chapter 5 will be essentially based on the fact that
topological insulators and superconductors with boundary are considered as topologically
trivial if there are no such localised boundary states closing the gap.

4.A Appendix: The SRFL-scheme
In the literature, symmetries are often organised according to a scheme introduced by Schnyder–
Ryu–Furusaki–Ludwig [76], which is different from the approach of Kennedy and Zirnbauer
that we follow. We speak of the SRFL scheme. It is based on two anti-unitary endomorphisms
Θ,Ξ : V −→ V and a unitary operator Π proportional to ΞΘ satisfying the relations

Θ2 = ±1, Ξ2 = ±1, Π2 = 1.

In the literature, Θ is called time-reversal, Ξ is called particle-hole conjugation, and Π the
chiral or sub-lattice symmetry. As we have already reserved these expressions for certain
physical symmetries with potentially different commutation relations, we will not use this
terminology here.

class Θ Ξ Π

A 0 0 0
AIII 0 0 1
D 0 1 0
DIII −1 1 1
AII −1 0 0
CII −1 −1 1
C 0 −1 0
CI 1 −1 1
AI 1 0 0
BDI 1 1 1

Table 4.2: Symmetry classes according to Schnyder–Ryu–Furusaki–Ludwig. An entry 0
means that the corresponding symmetry is absent, whereas a non-zero entry ±1 indicates
that the symmetry is present; in this case, the entry equals the square of the corresponding
symmetry operator.
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According to the SRFL scheme, a Hamiltonian is called Θ-symmetric, Ξ-symmetric, or
Π-symmetric, if respectively,

ΘHΘ∗ = H, ΞHΞ∗ = −H, ΠHΠ∗ = −H.

All possible combinations of the presence or absence of these symmetries can be summarised
in the following table.

Class D

The only restriction here is that a flat-band Hamiltonian H anti-commutes with the real struc-
ture γ on W. Hence, if we set Ξ B γ, then Ξ2 = 1 and any Ξ-symmetric Hamiltonian gives
rise to a QPV of class D.

Class DIII

Here, a time-reversal symmetry T onV, T 2 = −1, is present, and extended toW as explained
in Example 4.1.18. We may set Ξ B γ, Θ B T , and Π B iΘΞ. Then Θ2 = −1, Ξ2 = 1, and
Π2 = 1, and any H that is symmetric for Θ, Ξ, and Π gives rise to a QPV of class DIII.

Class AII

In this class we have the symmetries T and iQ. As explained in the discussion of class AII
in Subsection 4.1.2, a QPV of class AII is the same as an operator x ∈ L(V), x2 = 1, which
commutes with T . Hence, if we set Θ B T , then Θ2 = −1 and any Θ-symmetric flat-band
Hamiltonian H determines a QPV of class AII via x B H.

Class CII

In addition to the previous symmetries, the particle-hole symmetry C is present and given by
C = γS where S is linear, S 2 = 1, and [S ,T ] = 0. As explained in the discussion of class CII
in Subsection 4.1.2, a QPV of class CII is the same as an operator x ∈ L(V), x2 = 1, such
that T x = xT and S x = −xS . We may set Θ B T , Π B S , Ξ B ΘΠ. Then Θ2 = −1, Π2 = 1,
Ξ2 = −1, and any flat-band Hamiltonian H symmetric for Θ, Ξ, and Π determines a QPV of
class CII via x B H.

Classes s > 4

For s > 4, we use the two spin rotation generators j1, j2 and Lemma 4.1.26 to induce an
isomorphism W � W∼ ⊗ C2 and a splitting L(W) � L(V) ⊗ HC. In this splitting, γ
corresponds to T⊗twhere T is a quaternionic structure on W∼ and t the standard quaternionic
structure on C2.

QPV of class s > 4 correspond to operators j ∈ L(W∼) commuting with T such that
j2 = −1 and j anti-commutes with the first s−4 of the operators jT , jQ, and jC , corresponding
to JT , JQ, and JC , respectively. We may proceed as above, with T playing the role of γ, to
establish the correspondence in all real symmetry classes.
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Complex class A

The complex classes are those where both J and the group of symmetries commute with Q.
As we have noted, this implies that J and any other symmetries present leaveV invariant and
are determined by their restriction to this space. In class A, there are no further symmetries
present, so the Hamiltonians H onV determine QPV in the complex symmetry class A.

Complex class AIII

In complex class AIII, we have the additional symmetry C = γS . QPV in this class correspond
to operators on V anti-commuting with S . If we set Π B S , then Π2 = 1, and Π-symmetric
Hamiltonians determine QPV in the complex symmetry class AIII.

4.B Appendix: Translationally invariant systems
Here, we give the reader who is familiar with the classification of translationally invariant
systems without magnetic fields a comparison to these systems.

In the absence of disorder, a QPV corresponds [49, Def. 2.4] to a vector bundle A, cf.
Remark 4.1.15, on the Brillouin zone Ẑd of rank rkA = 1

2 dim W contained in the trivial
vector bundle with fibre W. The Brillouin zone is the d-dimensional torus Td = Ẑd dual to
Zd. It is defined by Td := Rd/(Zd)⊥, where(

Zd)⊥ :=
{
x ∈ Rd

∣∣∣ (x,Zd) ⊆ Z}.
The fibres ofA are subject to the Fermi constraint{

A−k,Ak
}

= 0 ∀k ∈ Td. (4.23)

The QPV J corresponding toA is associated with the flattened (or flat-band) Hamiltonian H
ofA.

The Abelian group Zd acts on V = `2(Λ) ⊗ V by translations, induced by the following
real operators over the Nambu space

(uxψ)(y) := ψ(y − x) ∀x ∈ Zd, y ∈ Λ, ψ ∈ W.

Any operator H ∈ L(W) that commutes with the translations ux for all x ∈ Zd corre-
sponds to an operator Ĥ over the Brillouin zone Ŵ := L2(Td) ⊗W of the form

(Ĥψ̂)(k) = H(k)ψ̂(k) ∀ψ̂ ∈ Ŵ, k ∈ Td,

for some function H(·) ∈ L∞(Td), and vice versa.
So for a vector bundleA representing a QPV, the corresponding flat-band Hamiltonian H

is defined as the unique operator on Ŵ which for every k ∈ Td satisfies

H(k) =

(
−1 0
0 1

)
,

in terms of the orthogonal decomposition Ŵk = Ak ⊕A
c
k.
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The Fermi constraint in Equation (4.23) translates to the condition

H(−k) = −H(k)T ∀k ∈ Td, (4.24)

see [49, Eq. 2.16]. To translate this into a condition on H, we write out the CAR form in
momentum space. Recall that for any ψ ∈ (`1 ∩ `2)(Λ) ⊗W, the Fourier transform is defined
as

ψ̂(k) :=
∑
x∈Λ

e−2πi(k,x)ψ(x) ∀k ∈ Td.

Then, for sufficiently regular ψ1, ψ2, we have

{
ψ̂1, ψ̂2

}
=

∫
dk1 dk2

∑
x∈Λ

e2πi(k1+k2,x){ψ̂1(k1), ψ̂2(k2)
}

=

∫
dk

{
ψ̂1(−k), ψ̂2(k)

}
,

the domain of integration being Td. Hence, Equation (4.24) is equivalent to

H = −HT.

The same condition holds for J because the transposition is linear. This established the rela-
tions between the conditions on ground states in the vector bundle picture over the Brillouin
torus and the description in terms of quasi-particle vacua in the general setting.



Chapter Five

Topological Phases and the
Bulk-Boundary Correspondence

This is the most important chapter of the present work, containing the definitions of topo-
logical phases in the bulk and at the boundary, as well as the formulation and proof of the
bulk-boundary correspondence.

The bulk-boundary correspondence can be roughly understood as a relation between the
topological properties of the stable ground state in the bulk of a topological insulator or super-
conductor and the topological properties and the existence of gapless states at its boundary.

Figure 5.1: Semi-classical pic-
ture of bulk-boundary corre-
spondence in the QHE.

The first principle of bulk-boundary correspondence
was established in the context of anomalies in quantum
field theory. It was observed that the effective bulk and
boundary field theories are not well defined in isolation.
This means that these theories would violate conservation
laws which have to be satisfied. This problem can only
be solved by considering bulk and boundary together such
that the anomalies cancel out each other.

The first example of this bulk-boundary correspon-
dence was observed in the quantum Hall effect (QHE). As
depicted in Figure 5.1, the QHE exhibits states that are lo-
calised at the boundary and move into a fixed direction due
to the strong magnetic field. These boundary states give
rise to the quantised Hall conductance. In the bulk, the
electrons move in circular orbits around the flux quanta,
forming so-called Landau states. In terms of anomalies of
effective quantum field theories, the bulk-boundary cor-
respondence of the QHE can be understood as the fact
that the edge theory exhibits a so-called chiral anomaly.
This anomaly manifests itself in a non-conserved bound-
ary charge. The charge is only conserved if the boundary theory is accompanied with a
suitable effective field theory of the bulk. A recent survey of the assertions hitherto can be
found in [26].

On the basis of the non-commutative geometry approach for the bulk theory of the QHE

95
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by Bellissard, see [13] for a review, this physical principle of bulk-boundary correspondence
in the QHE was put on firm mathematical grounds by Kellendonk, Richter and Schulz-Baldes
[48, 78]. From a physical perspective, they established a rigorous proof of the equality of the
bulk Hall conductance and the edge Hall conductance, which is also valid in the context
of disorder. Mathematically, their results were fundamental for the descriptions of bulk-
boundary correspondence during the following years because they first observed that the
bulk-boundary correspondence can be interpreted as a relation of topological invariants, cf.
Chapter 6, of the K-theories of the bulk and the boundary.

In 2014, Schulz-Baldes and Prodan proved the bulk-boundary correspondence for all
topological insulators of symmetry class AIII [68, 66]. Thus, the bulk-boundary correspon-
dence for the complex symmetry classes A, AIII is well known. However, its formulation
and proof is based on complex K-theory and a direct translation of these results to the real
symmetry classes is not possible.

During the following years, there have been various physical results addressing the bulk-
boundary correspondence in the real symmetry classes for some special choices of the dimen-
sion, the symmetry class and the Hamiltonian. An outstanding mathematical work thereof is
by Graf–Prota [29], addressing the bulk-boundary correspondence in two-dimensional sys-
tems in symmetry class AII.

In contrast to that, there are nowadays only few approaches addressing the bulk-boundary
correspondence in the context of disorder for all real symmetry classes and all dimensions in
a systematic manner.

One of the first more systematic approaches was established by Loring in 2015 [57]. He
defined topological invariants for topological insulators and superconductors in terms of al-
most commuting Hermitian matrices for all ten symmetry classes of the Tenfold Way in two
dimensions, as well as for one symmetry class in three dimensions. The bulk-boundary cor-
respondence was then established by comparing d and d + 1 dimensional systems. However,
the drawback of this approach is that, besides the restriction to low dimensional systems, the
relation of the topological invariants to the physical systems remained unclear.

During the years 2016 through 2018, Hannabuss, Mathai and Thiang established in a
series of papers a bulk-boundary correspondence [60, 59, 84, 32], which works for all di-
mensions and all symmetry classes in the Tenfold Way. Their approach relies on the concept
of T-duality which describes the topological phases as classes in the K-theory of the torus.
In contrast to the classification by the use of Fourier-Bloch theory, this T-duality has also
been established in the context of disorder and the presence of homogeneous magnetic fields,
where the translational invariance is broken. The bulk-boundary correspondence is then in-
duced by a restriction map over the torus.

In 2017, Kubota [53] worked out a formulation of bulk-boundary correspondence which
is more directly formulated for tight-binding Hamiltonians over a lattice and which also holds
in any dimension and symmetry class. His construction is based on the description of tight-
binding observables in terms of uniform Roe C∗-algebras, an idea that we have adapted in
our constructions. The bulk-boundary correspondence is then established by considering a
so-called coarse Mayer–Vietoris exact sequence. On the one hand, the use of the uniform Roe
C∗-algebra is appealing since it reflects the properties of tight-binding observables. On the
other hand, the K-theory of the uniform Roe C∗-algebra is involved and cannot be computed
in full detail in all dimensions. Kubota overcomes this problem in his formulation of the bulk-
boundary correspondence by going over to the larger non-uniform Roe C∗-algebra, whose
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K-theory is well known, cf. [25]. But the use of this larger C∗-algebra is problematic from a
physical point of view as it contradicts the assumptions of the tight-binding approximation.

Last but not least, we mention the approach by Bourne–Carey–Rennie [16] and Bourne–
Kellendonk–Rennie [17]. The bulk-boundary correspondence is there constructed in terms of
unbounded Kasparov modules and the intersection product. The results of [17] will play an
important role in Chapter 6.

The main result of this chapter is that we prove the bulk-boundary correspondence for
all symmetry classes in the Tenfold Way, including disorder and magnetic fields. One of the
essential aspects of this chapter is that the topological phases in the bulk and at the boundary,
as well as the bulk-boundary correspondence, are formulated in an explicit and physically
natural way. This enables us to draw conclusions for the physical properties of the bulk-
boundary correspondence which cannot be seen in the more abstract formulations mentioned
above. Moreover, we can treat all symmetry classes of the Tenfold Way in a systematic
picture. From our point of view, it leads also to a simplified formulation of the bulk-boundary
correspondence of the complex symmetry classes [66].

The outline of this chapter is as follows.
We begin in Section 5.1 with the definition of topological phases for the gapped bulk

phases of topological insulators and superconductors. Since we have already established a
picture of real K-theory in terms of disordered IQPV with pseudo-symmetries in Section 3.3,
we can almost immediately define the notion of topological phases in the bulk.

In Section 5.2, we will independently define topological phases for disordered IQPV
with boundary. The topological properties at the boundary are determined by the gapless
localised boundary states. In order to define a notion of topological phase which indeed
solely depends on the topological properties of these boundary states, we establish topological
phases for disordered IQPV with boundary on a more general level of so-called generalised
quasi-particle vacua (GQPV). The resulting group of topological phases of GQPV of a given
symmetry index will then be proved to be isomorphic to a (real) K-group of the algebra
of boundary observables by constructing an explicit isomorphism to Kasparov’s Fredholm
picture of K-theory.

A priori, the resulting topological phases in the bulk and at the boundary are independent
of each other. In Section 5.3, we will show that there is a canonical correspondence – the
bulk-boundary correspondence – between the topological phases in the bulk and the ones at
the boundary. The bulk-boundary correspondence is essentially based on the bulk-boundary
SES and the corresponding long exact sequences of (real) K-groups.

In Sections 5.4 and 5.5, we will derive some properties of the bulk-boundary correspon-
dence and discuss their physical meaning. We will consider topological phases and the bulk-
boundary correspondence in the case of disorder by doping of Example 4.2.8 in more detail.
The topological phases will be proved to be invariant under this kind of disorder, i.e. the
disordered physical systems exhibit the same topological phases as in the clean case. This
result is not true for other kinds of disorder. Furthermore, we will discuss the role of the ref-
erence disordered IQPV and the local space for the topological classification of topological
insulators and superconductors.

Most of the material of this chapter was published in the preprint Bulk-boundary corre-
spondence for disordered free-fermion topological phases by A. Alldridge, C. Max and M. R.
Zirnbauer, 2019 [1]. In Section 5.2, we give a more detailed construction of the topological
phases at the boundary. In particular, we further generalise the notion of topological phases
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of IQPV with boundary in [1] to topological phases of so-called generalised quasi-particle
vacua.

5.1 Topological phases in the bulk
In this section, we define topological phases in the bulk of disordered topological insulators
and superconductors for all symmetry classes of the Tenfold Way.

By construction, the set of all disordered IQPV, symmetric w.r.t. to a set of positive
pseudo-symmetries K1, . . . ,Kr ∈ End(W) and negative pseudo-symmetries J1, . . . , Js ∈ End(W),
is equal to the set

FF
φ(A),

where φ : C`r,s → A denotes the corresponding unital real ∗-morphism defined by φ(ka) = Ka

and φ( jα) = Jα for all a = 1, . . . , r and α = 1, . . . , s. In the charge-conserving case, the set of
complex disordered IQPV, symmetric w.r.t. φ : C`r,s → A, is equal to the set

FF
φ(A).

The sets FFφ(A) and FFφ(A) establish a natural notion of homotopy equivalence between the
disordered IQPV which are symmetric w.r.t. to a given φ : C`r,s → A, resp. φ : C`r,s → A.

By the choice of a reference disordered IQPV (Jref ; φ), we can now go along the lines
of Subsection 3.3.1 in order to construct the groups of topological phases TopφJref

(A) and
TopφJref

(A). The reference disordered IQPV defines the trivial topological phase. The topo-
logical phase of an arbitrary disordered IQPV (J, φ) will thus always be measured relative to
the topological phase of the reference disordered IQPV.

Thus, our new picture of K- and KR-theory from Section 3.3 defines the following canon-
ical notion of topological phases for symmetric disordered IQPV.

Definition 5.1.1 (Topological phase of symmetric disordered IQPV). Let
(
J; φ) be a disor-

dered IQPV of symmetry index (r, s) and fix a reference disordered IQPV
(
Jref ; φ

)
. Then J and

Jref are elements in FF φ(A) and we call

[(J; φ)] B [J] − [Jref] ∈ TopφJref
(A) = Topr,s(A) (5.1)

the topological phase of the disordered IQPV (J; φ) in the bulk.
Similarly, if (J; φ) and (Jref ; φ) are complex disordered IQPV of symmetry index (r, s), the

topological phase is defined by

[(J; φ)] B [J] − [Jref] ∈ TopφJref
(A) = Topr,s(A). (5.2)

With this definition, we have thus established a systematic and physically natural notion
of topological phases for disordered topological insulators and superconductors.

For technical reasons, it will in the following often be necessary to consider the topolog-
ical phases in the bulk as Van Daele classes. In particular, this will be needed in the proof
of the bulk-boundary correspondence and the application of the results by Kellendonk on the
topological invariants [45]. By Proposition 5.3, the classes (5.1) in TopφJref

(A) and (5.2) in
TopφJref

(A) correspond to the classes[
(J ⊗ j1)Pφ + (Jref ⊗ j1)(1 − Pφ)

]
−

[
Jref ⊗ j1

]
(5.3)
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in DKR(A ⊗C`r,s+1) = KR−(s−r+2)(A) and DK(A ⊗ C`r,s+1) = K−(s−r+2)(A), respectively.
We emphasize once more the important observation that a disordered IQPV of index

(r, s) defines a class in KR−(s−r+2)(A). If the disordered IQPV is complex, it defines a class in
K−(s−r+2)(A)

5.2 Topological phases at the boundary
Here we will define topological phases for topological insulators and superconductors with
boundary. The main result of this section will be that the topological phases at the bound-
ary can be identified with (real) K-classes in terms of Kasparov’s Fredholm picture of (real)
K-theory. In order to derive this result, we start from the physical description of disordered
IQPV with boundary and establish notions of topological equivalence which are physically
natural. On the basis of the resulting equivalence classes, we then construct a group of topo-
logical phases. This construction is closely related to the construction of the KR-groups in
Kasparov’s Fredholm picture and therefore it is not surprising that these groups are indeed
isomorphic to (real) K-groups. The principal idea behind the structure of this section is to
convince the reader of the physical naturality of our description of topological phases at the
boundary. This could not be achieved by an ad hoc definition of topological phases in terms
of (real) K-classes.

We already know that the algebra of localised boundary observables A∂ ⊗ K
(
`2(N)

)
is

isomorphic to the ideal generated by e inside Â. Now we use this fact for realising Â inside
the operators over the Hilbert space over A∂.

Proposition 5.2.1. There is a real injective ∗-morphism Â ↪→ Ms(A∂). The concatenation of
this morphism with the ∗-isomorphism Ms(A∂) � B

(
HA∂

)
of Theorem 3.1.12 is given by

Â 3 R̂d 7→ Ŝ ∗ ∈ B
(
HA∂

)
; Â 3 a 7→

∑
n∈N

αn
d(a)|n〉〈n| ∈ B

(
HA∂

)
∀a ∈ A∂ ⊂ Â.

The analogous statement is true for Â, where

Â 3 R̂σ
d 7→ Ŝ ∗ ∈ B

(
HA∂

)
; Â 3 a 7→

∑
n∈N

αn
d(a)|n〉〈n| ∈ B

(
HA∂

)
∀a ∈ A∂ ⊂ Â.

Proof. We will only prove the real case, since the complex case can be proved in exactly the
same way. The twisting does not play a role in the proof.

We have already established the injective ∗-morphism ν̂ : Â→ A⊗L(`2(N)) in Equation
(4.18). Thus, Â is isomorphic to the real C∗-subalgebra im ν̂ ⊆ A ⊗ L(`2(N)) which is
generated by

R∗d ⊗ Ŝ and a ⊗ 1 ∀a ∈ A∂. (5.4)

We have also already identified the ideal (e) � A∂ ⊗K(`2(N)) with the ideal (1⊗ ê) ⊆ im ν̂
via the ∗-morphism ν∂. It maps an element b⊗|m〉〈n| ∈ A∂⊗K(`2(N)) onto (R∗d)mbRn

d⊗|m〉〈n| ∈
A ⊗ L(`2(N)). The product of this element with the generators in Equation (5.4) is given by(

R∗d ⊗ Ŝ
)(

(R∗d)mbRn
d ⊗ |m〉〈n|

)
= (R∗d)m+1bRn

d ⊗ |m + 1〉〈n|

and
(
a ⊗ 1

)(
(R∗d)mbRn

d ⊗ |m〉〈n|
)

= (R∗d)m
[
(R∗d)−ma(R∗d)m

]
bRn

d ⊗ |m〉〈n|.
(5.5)
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Since (R∗d)−1 = Rd, we have
[
(R∗d)−ma(R∗d)m

]
= αm

d (a).

Suppose now that we are given an element x ∈ Â such that ν̂(x)b = 0 for all b ∈ (1 ⊗ ê).
In particular, this implies that

ν̂(x)(1 ⊗ |m〉〈n|) = 0 ∀m, n ∈ N.

By Equations (5.5), it becomes apparent that this implies ν̂(x) = 0. Since ν̂ is injective, this
implies x = 0. Thus, the ideal is essential and it follows by [65, Prop. 3.12.8] that there is a
real injective ∗-morphism Â→ M

(
A∂ ⊗ K(`2(N))

)
= Ms(A∂), which is given by

Â 3 a 7→ (T a
1 ,T

a
2 ) ∈ Ms(A∂),

where T a
1 (x) = ax,T a

2 (x) = xa for all x ∈ A∂ ⊗ K(`2(N)
)
. By the above arguments, this

morphism is for the generators of Â explicitly given by

T
R̂∗d
1

(
b ⊗ |m〉〈n|

)
= ν−1

∂

(
(R∗d)m+1bRn

d ⊗ |m + 1〉〈n|
)

= b ⊗ |m + 1〉〈n| =
(∑

k∈N

1 ⊗ |k + 1〉〈k|
)(

b ⊗ |m〉〈n|
)
,

T a
1
(
b ⊗ |m〉〈n|

)
= ν−1

∂

(
(R∗d)mαm

d (a)bRn
d ⊗ |m〉〈n|

)
= αm

d (a)b ⊗ |m〉〈n| =
(∑

k∈N

αk
d(a) ⊗ |k〉〈k|

)(
b ⊗ |m〉〈n|

)
for all a ∈ A∂ ⊆ Â, b ⊗ |m〉〈n| ∈ A∂ ⊗ K(`2(N)) and T2 can be derived similarly.

Finally, the isomorphism Ms(A∂) � B(HA∂ ) of Theorem 3.1.12 defines the embedding of
Â ↪→ B

(
HA∂

)
given by

Â 3 R̂∗d 7→ Ŝ =
∑
n∈N

|n + 1〉〈n| ∈ B
(
HA∂

)
and Â ⊇ A∂ 3 a 7→

∑
n∈N

αn
d(a)|n〉〈n| ∈ B

(
HA∂

)
.

�

The fact that Â can be considered as a real C∗-subalgebra of Ms(A∂) � B(HA∂ ) will be
crucial for the definition of topological phases at the boundary. It canonically generalises1

the notion of disordered IQPV with boundary to operators in B(HA∂ ).

Definition 5.2.2 (Generalised quasi-particle vacuum). A generalised quasi-particle vacuum
(GQPV) of symmetry index (r, s), or simply of index (r, s), is a tuple

(
Ĵ; φ

)
given by a skew-

Hermitian real Ĵ ∈ B(HA∂ ) and a unital real ∗-morphism φ : C`r,s → B(HA∂ ) such that{
Ĵ, φ(ka)

}
,
{
Ĵ, φ( jα)

}
, Ĵ2 + 1 ∈ K(HA∂ ) ∀a = 1, . . . , r, α = 1, . . . , s. (5.6)

Recall that the ka, jα denote the generators of C`r,s and {·, ·} denotes the anti-commutator.
A complex generalised quasi-particle vacuum of symmetry index (r, s) is defined in the

same way by dropping the reality conditions, replacing A∂ by A∂ and C`r,s by C`r,s.

Remark 5.2.3. In Definition 5.2.2 one may replace the Hilbert space over A∂ by any infinite-
dimensional countably generated Hilbert module over A∂. A future topic of research might
be to use this flexibility in order to develop classification schemes for other physical systems.

1This is indeed a generalisation because Â ⊆ Ms(A∂) is in general a proper subalgebra. This is true because the
K-theory of Ms(A∂) is trivial, whereas K-theory of Â is in general non-trivial.



Section 5.2 Topological phases at the boundary 101

The generalisation of disordered IQPV with boundary to GQPV has the following phys-
ical interpretation. By construction, all IQPV with boundary give rise to IQPV via the sur-
jective ∗-morphism ρ : Â → A. This feature distinguishes them from arbitrary GQPV
Ĵ ∈ B(HA∂ ), which in general don’t have such a correspondence to IQPV in the bulk, but still
have to satisfy Ĵ2 = −1 modK(HA∂ ).

Physically, this means that we drop the condition that the operators have to be transla-
tionally covariant in the direction perpendicular to the boundary after going into the bulk,
i.e. very far away from the boundary. This is reasonable because we are interested in the
topological properties of the gapless states at the boundary where the translational covariance
in this direction is inherently broken. By this classification approach, we ensure that the re-
sulting topological phases are determined solely by the properties of these boundary states,
which are a priori independent of the details in the bulk, as long as it is gapped. With this
fact, the bulk-boundary correspondence of Section 5.3 becomes even more fascinating from
a physical point of view.

We now introduce the following two equivalence relations on the set of GQPV.

Definition 5.2.4 (Equivalence relations of GQPV). Let
(
Ĵ; φ

)
be a GQPV of index (r, s).

• It is operator homotopically equivalent to a GQPV
(
Ĵ′; φ

)
if there is a norm continuous

path of real skew-Hermitian operators Ĵ(t) ∈ B(HA∂ ) for t ∈ [0, 1] connecting Ĵ and Ĵ′

such that the conditions in Equation (5.6) are satisfied for all t ∈ [0, 1].

• It is unitarily equivalent to the GQPV
(
uĴu∗; uφu∗

)
for any real unitary u ∈ B

(
HA∂

)
.

Let Er,s(A∂) denote the corresponding set of equivalence classes which are obtained by these
two equivalence relations.

The equivalence relations for complex GQPV can be defined in the same manner by drop-
ping the reality constraints. The set of equivalence classes of complex GQPV of index (r, s)
is denoted by Er,s(A∂).

Definition 5.2.5 (Topologically trivial GQPV). A (complex) GQPV is called topologically
trivial if it is equivalent, in the sense of Definition 5.2.4, to a (complex) GQPV (Ĵ; φ) satisfying{

Ĵ, φ(ka)
}

=
{
Ĵ, φ( jα)

}
= 1 + Ĵ2 = 0 ∀a = 1, . . . , r, α = 1, . . . , s.

Let Dr,s(A∂) ⊆ Er,s(A∂) and Dr,s(A∂) ⊆ Er,s(A∂) denote the corresponding equivalence
classes of topologically trivial (complex) GQPV.

The topologically trivial classes correspond physically to GQPV which have no stable
gapless states. For disordered IQPV with boundary, this means that there are no stable gapless
boundary states. Thus, this notion of topological triviality is in accordance with the physical
notion of topological triviality.

Proposition 5.2.6. Consider Er,s(A∂) and Dr,s(A∂) equipped with the Abelian semi-group
structure induced by the direct sum[(

Ĵ; φ
)]
⊕

[(
Ĵ′; φ′

)]
:=

[(
Ĵ ⊕ Ĵ′; φ ⊕ φ′

)]
.

Then the quotient
TopGr,s(A∂) B Er,s(A∂)

/
Dr,s(A∂)
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is an Abelian group. The same assertions are true for the quotient

TopGr,s(A∂) B Er,s(A∂)
/
Dr,s(A∂).

We call the elements of these groups the topological phases of GQPV of symmetry index (r, s).

Proof. Note that the direct sum is well defined because B(HA∂ )⊕B(HA∂ ) ⊆ B
(
HA∂ ⊕HA∂

)
�

B(HA∂ ) and it is Abelian because conjugation with the real unitary u B
(

0 1
1 0

)
∈ B

(
HA∂⊕HA∂

)
exchanges the two summands of a direct sum.

There is a neutral element if the set Dr,s(A∂) is not empty. In order to show this, consider(
js+r+1; idC`r,s

)
∈ C`r+s+1,r+s+1 � M2r+s+1 (C).

By the isomorphisms M2r+s+1 (C) ⊗ B(HA∂ ) = B(C2r+s+1
⊗ HA∂ ) � B(HA∂ ), this pair defines a

topologically trivial GQPV in Er,s(A∂).
It remains to prove the existence of the inverse. To that end, we consider a class

[(
Ĵ; φ

)]
∈

TopGr,s(A∂) and define

−
[(

Ĵ; φ
)]
B

[(
− Ĵ; φop)] ∈ TopGr,s(A∂),

where φop : C`r,s → B
(
HA∂

)
is defined by φop(ka) B −φ(ka) for all a = 1, . . . , r and φop( jα) B

−φ( jα) for all α = 1, . . . , s. The direct sum of this class with the original one is given by[(
Ĵ; φ

)]
⊕ −

[(
Ĵ; φ

)]
=

[((
Ĵ 0
0 −Ĵ

)
;
(
φ 0
0 φop

))]
.

and the operator homotopy

[0, π/2] 3 t 7−→
(
Ĵ cos(t) − sin(t)
sin(t) −Ĵ cos(t)

)
connects this class with the topologically trivial class

[((
0 −1
1 0

)
;
(
φ 0
0 φop

))]
.

Thus, the sum is equal to 0 in TopGr,s(A∂). �

In the following theorem, we will show that the group of topological phases of GQPV is
isomorphic to a real or complex K-group in Kasparov’s Fredholm picture.

Theorem 5.2.7. For all r, s ∈ N, we have

TopGr,s(A∂) = KRr,s(A∂) = KR−(s−r+1)(A∂) and TopGr,s(A∂) = Kr,s(A∂) = K−(s−r+1)(A∂).

Proof. This theorem follows almost immediately by construction of our groups TopGr,s(A∂)
and TopGr,s(A∂). We only prove the real case since the complex case is completely the same.

By definition, the set of GQPV is equal to the set of pairs (F, φ) ∈ Er,s(A∂) with F∗ = −F,
and the set of topologically trivial GQPV is equal to Dr,s(A∂).

By the second assertion of Corollary 3.1.37, all classes in KRr,s(A∂) can be represented
by pairs (F; φ) with F∗ = −F. Therefore, the first assertion of Corollary 3.1.37 implies that
the equivalence relations of Definition 5.2.4 are equivalent to the equivalence relations in
Definition 3.1.30. Thus, the map

TopGr,s(A∂) 3 [(Ĵ; φ)] 7−→ [(Ĵ; φ)] ∈ KRr,s(A∂)

defines a well-defined isomorphism. �
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Corollary 5.2.8. For all r, s ∈ N, we have

TopGr,s(A∂) = KKR−(s−r+1)(A∂) and TopGr,s(A∂) = KK−(s−r+1)(A∂).

This isomorphism maps a class [(Ĵ; φ)] ∈ TopGr,s(A∂) onto the Kasparov class[(
HA∂ ⊗C`0,1, ϕ, Ĵ ⊗ j1

)]
∈ KKR(C`s,r,A∂ ⊗C`0,1) = KKR−(s−r+1)(A∂), (5.7)

where ϕ : C`s,r → B(HA∂ ) ⊗C`0,1 with

ϕ(kα) = φ( jα) ⊗ j1 ∀a ∈ {1, . . . , r} and ϕ( ja) = φ(ka) ⊗ j1 ∀α ∈ {1, . . . , s}. (5.8)

Similarly, a class [(Ĵ; φ)] ∈ TopGr,s(A∂) is mapped onto the Kasparov class[(
HA∂

⊗ C`0,1, ϕ, Ĵ ⊗ j1
)]
∈ KK(C`s,r,A∂ ⊗ C`0,1) = KK−(s−r+1)(A∂), (5.9)

where ϕ : C`s,r → B(HA∂
) ⊗ C`0,1 satisfies Equation (5.8).

Proof. This corollary is an immediate consequence of Theorem 5.2.7 and the explicit iso-
morphisms KRr,s(A∂) � KKR(C`s,r,A∂ ⊗ C`0,1) and Kr,s(A∂) � KK(C`s,r,A∂ ⊗ C`0,1) of the
proof of Theorem 3.1.36. �

With the results above, we have now the full power of Kasparov’s theory at hand in order
to classify topological phases of GQPV. In particular, we obtain the following corollary.

Corollary 5.2.9. Every topological phase in TopGr,s(A∂) can be represented by a GQPV
(Ĵ; φ) with {

Ĵ, φ(ka)
}

=
{
Ĵ; φ( jα)

}
= 0 ∀a = 1, . . . , r, α = 1, . . . , s. (5.10)

Proof. This corollary immediately follows by Theorem 5.2.7 and Corollary 3.1.37. �

Corollary 5.2.9 is important for the physical interpretation of topological phases of GQPV.
It implies that it is sufficient to consider only those GQPV

(
Ĵ; φ

)
that satisfy Equation (5.10)

in order to get an exhaustive topological classification.
In the context of disordered IQPV with boundary, we can make the statement of Corollary

5.2.9 even more constructive. To that end, suppose we are given a disordered IQPV (J; φ)
of symmetry index (r, s) in A. Then we construct a corresponding disordered IQPV with
boundary via the section s : A→ Â of Equation (4.21):

Ĵ B s(J).

This section is equal to the identity, when restricted to C(Ω) ⊗ End(W). Therefore, we have

s(J)φ(ka) + φ(ka)s(J) = s
(
Jφ(ka) + φ(ka)J

)
= 0 ∀a = 1, . . . , r.

Analogously, we derive
{
Ĵ; φ( jα)

}
= 0 for all α = 1, . . . , s, thus obtaining Equation (5.10).

In general, the choice of a disordered IQPV with boundary to a given disordered IQPV
in the bulk is far from unique. However, due to the following lemma, there is a canonical
topological phase at the boundary for a given disordered IQPV in the bulk.
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Lemma 5.2.10. Let (J, φ) be a disordered IQPV of index (r, s) and let (Ĵ, φ) be a disordered
IQPV with boundary corresponding to (J, φ), i.e. ρ(Ĵ) = J. Then [(Ĵ, φ)] = [(s(J), φ)] ∈
TopGr,s(A∂).

The same holds for the complex case.

Proof. By assumption, we have ρ(Ĵ) = ρ
(
(s(J)

)
, which implies s(J) − Ĵ ∈ K(HA∂ ). Thus

[0, 1] 3 t 7−→ Ĵ + t(s(J) − Ĵ)

defines an operator homotopy in the set of GQPV. �

By Lemma 5.2.10, we can make the following definition without ambiguity.

Definition 5.2.11 (Boundary class attached to disordered IQPV). Let [(J; φ)] be the topolog-
ical phase of a bulk disordered IQPV of symmetry index (r, s) with respect to a disordered
reference disordered IQPV (Jref ; φ). Define Ĵ B s(J) and Ĵref B s(Jref). Then we call

[(J; φ)]∂ B [(Ĵ; φ)] − [(Ĵref ; φ)] ∈ TopGr,s(A∂)

the boundary class for (J; φ). By Theorem 5.2.7, the boundary phase defines a class in
KRr,s(A∂) = KR−(s−r+1)(A∂). In terms of Kasparov classes, it is given by the difference of[(

HA∂ ⊗C`0,1, ϕ : C`s,r → B
(
HA∂ ⊗C`0,1

)
, Ĵ ⊗ j1

)]
∈ KKR(C`s,r,A∂ ⊗C`0,1)

and [(
HA∂ ⊗C`0,1, ϕ : C`s,r → B

(
HA∂ ⊗C`0,1

)
, Ĵref ⊗ j1

)]
∈ KKR(C`s,r,A∂ ⊗C`0,1),

where ϕ : C`s,r → B
(
HA∂ ⊗C`0,1

)
is defined by ϕ(kα) = Jα ⊗ j1 and ϕ( ja) = Ka ⊗ j1.

For complex disordered IQPV (J; φ), we define

[(J; φ)]∂ B [(Ĵ; φ)] − [(Ĵref ; φ)] ∈ TopGr,s(A∂)

This boundary class defines a class in Kr,s(A∂) = K−(s+r+1)(A∂).

We close this section with two examples where the boundary class can be represented in
an even simpler form.

Example 5.2.12. For the symmetry class BDI, we have r − s = 1, where r and s label
the number of positive and negative pseudo-symmetries. Up to stable equivalence, we can
consider the case r = 1, s = 0. Then the boundary class [(J; φ)]∂ is given by the difference of[(

HA∂ ⊗C`0,1, ϕ : C`0,1 → B
(
HA∂ ⊗C`0,1

)
, Ĵ ⊗ j1

)]
∈ KKR(C`0,1,A∂ ⊗C`0,1),

and [(
HA∂ ⊗C`0,1, ϕ : C`0,1 → B

(
HA∂ ⊗C`0,1

)
, Ĵref ⊗ j1

)]
∈ KKR(C`0,1,A∂ ⊗C`0,1),

where ϕ( j1) = K1 ⊗ j1. The first class is equivalent to[(
HA∂ , 1C, ĴK1

)]
∈ KKR(C,A∂),
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whereHA∂ is graded by the grading operator K1. Using an index morphism [77, Thm. 2.2.8],
we can identify this Kasparov class with the class[

P+

]
−

[
P−

]
∈ KR0(A∂),

where P± denote the orthogonal projections onto the sub-modules

ker
[

1
2 (1 ± K1)ĴK1

1
2 (1 ∓ K1)

]
⊆ HA∂ .

If K1 =
(

1 0
0 −1

)
, then ĴK1 =

(
0 û
û∗ 0

)
and the class in K0(A∂) is of the form[

Pker(û)
]
−

[
Pker(û∗)

]
∈ KR0(A∂).

The reference class can be simplified in the same way.
In symmetry class AIII, we also have r − s = 1 and therefore we can proceed in the same

way as for symmetry class BDI. For a given complex disordered IQPV J ∈ A with one
positive pseudo-symmetry K1, the Kasparov class at the boundary is given by[(

HA∂
, 1C, ĴK1

)]
−

[(
HA∂

, 1C, Ĵref K1
)]
∈ KK(C,A∂).

This class can be simplified in completely the same way as in symmetry class BDI.

5.3 The bulk-boundary correspondence
In this section, we will establish a canonical correspondence between bulk and boundary
topological phases of topological insulators and superconductors.

As shown in Section 5.1, the bulk topological phases define elements in KR−(s−r+2)(A). By
Section 5.2, the boundary topological phases give rise to elements in KR−(s−r+1)(A∂). These
two groups are connected by a connecting map which is obtained as follows.

The bulk-boundary SES in Equation (4.19) induces the long exact sequence

KR−(s−r+2)(A∂) KR−(s−r+2)(Â) KR−(s−r+2)(A)

KR−(s−r+1)(A∂) KR−(s−r+1)(Â) KR−(s−r+1)(A)

ι∗ ρ∗

∂

ι∗ ρ∗

(5.11)

of KR-groups. Accordingly, the complex bulk-boundary SES in Equation (4.20) induces the
following long exact sequence of K-groups:

K−(s−r+2)(A∂) K−(s−r+2)(Â) K−(s−r+2)(A)

K−(s−r+1)(A∂) K−(s−r+1)(Â) K−(s−r+1)(A)

ι∗ ρ∗

∂

ι∗ ρ∗

(5.12)

In particular, we obtain connecting maps

∂ : KR−(s−r+2)(A)→ KR−(s−r+1)(A∂) and ∂ : K−(s−r+2)(A)→ K−(s−r+1)(A∂), (5.13)
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which we call the bulk-boundary maps. These bulk-boundary maps are well known and
can even be written down explicitly in terms of Van Daele groups, cf. Theorem 3.2.10, and
Kasparov groups, cf. Theorem 3.1.29.

On the one hand, we have seen in Section 5.1 that the bulk topological phases are canon-
ically defined as elements of Topr,s(A) and Topr,s(A), and these can be explicitly identified
with the classes of Equation (5.3) in Van Daele’s picture of real and complex K-theory, re-
spectively.

On the other hand, the topological phases at the boundary are defined as classes in the
group TopGr,s(A∂) or TopGr,s(A∂), which is explicitly isomorphic to Kasparov’s Fredholm
picture of KR- or K-theory, respectively.

Therefore, a satisfactory explicit formulation of the bulk-boundary correspondence has
to identify classes in these two different pictures. This is obtained by the composition of the
bulk-boundary maps with Roe’s isomorphism α from Van Daele groups to Kasparov groups,
cf. Subsection 3.2.1. This strategy can be summarised in the following commutative diagram:

Topr,s(A) � DKR−(s−r+2)(A) KKR−(s−r+2)(A)

DKR−(s−r+1)(A∂) KKR−(s−r+1)(A∂) � TopGr,s(A∂)

∂

α

α

∂

The main result of this section is that ∂ maps the bulk class attached to a disordered
IQPV with symmetries onto the corresponding boundary class, as explained in the following
theorem. (The same holds for the complex symmetry classes, too.)

Theorem 5.3.1 (Bulk-boundary correspondence). Fix a reference disordered IQPV (Jref ; φ)
of (complex) symmetry index (r, s). For any disordered IQPV (J; φ) of (complex) symmetry
index (r, s), we have

∂[(J; φ)] = [(J; φ)]∂. (5.14)

That is, the bulk-boundary map ∂ maps the bulk class [(J; φ)] attached to (J; φ) onto the
boundary class [(J; φ)]∂ attached to (J; φ), cf. Definition 5.2.11.

5.3.1 Proof of the bulk-boundary correspondence
This subsection is devoted to the proof of Theorem 5.3.1. Let us begin by fixing some con-
ventions. Throughout the proof, we will consider the Clifford algebras with their natural
grading. All other C∗-algebras are ungraded. We will only prove the real case here since the
complex case can be proved in completely the same way.

Recall Roe’s isomorphism α from Subsection 3.2.1. Since α ◦ ∂ = ∂ ◦α, we can compute
the effect of ∂ on the bulk class in DKR-theory and subsequently apply α−1 to obtain a class
in KKR-theory.

The non-trivial part of the definition of α is given by the connecting map ∂Q in DKR-
theory. We relate it to the bulk-boundary map. To that end, recall that A∂ ⊗ K (where K =

K(`2(N))) is an essential ideal in Â, as was shown in the proof of Proposition 5.2.1. Therefore,
the canonical map A∂ ⊗ K −→ Ms(A∂) factors as Ψ ◦ ι where Ψ : Â −→ Ms(A∂) is a unique
injective real ∗-morphism.
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We obtain a commutative diagram with exact rows:

0 A∂ ⊗ K Â A 0

0 A∂ ⊗ K Ms(A∂) Qs(A∂) 0

ι

Ψ

ρ

Ψ̃

π

From the naturality of connecting maps (which is a general fact for δ-functors, but can also
be derived directly from the explicit form of the connecting map given in Theorem 3.2.10),
the following diagram commutes:

DKR
(
A ⊗C`r,s+1

)
DKR

(
A∂ ⊗C`r+1,s+1

)
DKR

(
Qs(A∂) ⊗C`r,s+1

)
,

Ψ̃∗

∂

∂Q

Therefore,

(α−1 ◦ ∂)([x] − [e]) =
[(
HA∂ ⊗C`r,s+1, 1C, y

)]
−

[(
HA∂ ⊗C`r,s+1, 1C, f

)]
for y = Ψ(x̂), f = Ψ(ê), ρ(x̂) = x and ρ(ê) = e. Applying these considerations to the bulk
class with reference ORHU e = Jref ⊗ j1 ∈ F (A ⊗ C`r,s+1), we find by Equation (5.3) that as
an element of KKR(C,A∂ ⊗C`r,s+1), the image ∂[(J; φ)] of the bulk class under ∂ equals[(

HA∂ ⊗C`r,s+1, 1C, (Ĵ ⊗ j1)P + (Ĵref ⊗ j1)(1 − P)
)]
−

[(
HA∂ ⊗C`r,s+1, 1C, Ĵref ⊗ j1

)]
where we write P B Pφ. This in turn equals[(

P(HA∂ ⊗C`r,s+1), 1C, (Ĵ ⊗ j1)P
)]
−

[(
P(HA∂ ⊗C`r,s+1), 1C, (Ĵref ⊗ j1)P

)]
.

We denote the two parts of this difference by ∂I and ∂II, respectively. To compare the expres-
sion ∂I − ∂II to the boundary class, we may treat the parts independently. In what follows, we
shall focus on ∂I, the case of ∂II being almost identical.

We set B B A∂ ⊗C`0,1 for brevity. Then the boundary class is given in KKR(C`s,r, B), by
Corollary 5.2.8. We will use some standard isomorphisms of Kasparov’s theory to transfer the
class computed above to this Kasparov group. As a first step, we apply the Clifford algebra
isomorphism C`r,s+1 � C`0,1 ⊗̂C`r,s, given by

j1 7−→ j1 ⊗ 1, jα+1 ⊗ 1 7−→ 1 ⊗ jα, ka 7−→ −1 ⊗ ka.

This isomorphism preserves the orientation of the Clifford algebra. The image of the projec-
tion P now takes the form

P′ B
r∏

a=1

1
2
(
1 + (−1)sKa ⊗ j1 ⊗ ka

) s∏
α=1

1
2
(
1 + Jα ⊗ j1 ⊗ jα

)
.

The natural isomorphism τC`s,r , cf. Proposition 3.1.21, maps ∂I onto

τC`s,r (∂I) =
[(

(P′ ⊗ 1)(HB ⊗̂C`r,s ⊗̂C`s,r), idC`s,r , (J ⊗ j1 ⊗ 1 ⊗ 1)(P′ ⊗ 1)
)]
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in KKR
(
C`s,r, B ⊗̂C`r,s ⊗̂C`s,r

)
. We now apply the orientation-preserving isomorphism

C`r,s ⊗̂C`s,r � C`s+r,s+r given by

ka ⊗ 1 7−→ (−1)sks+a, jα ⊗ 1 7−→ jα, 1 ⊗ kα 7−→ (−1)skα, 1 ⊗ ja 7−→ js+a,

for a = 1, . . . r and α = 1, . . . , s. This isomorphism converts P′ ⊗ 1 into the projection

P′′ =

r∏
a=1

1
2
(
1 + Ka ⊗ j1 ⊗ ks+a

) s∏
α=1

1
2
(
1 + Jα ⊗ j1 ⊗ jα

)
,

so it identifies ∂I ⊗̂ τ with the class[(
P′′(HB ⊗̂C`s+r,s+r), ϕ, (Ĵ ⊗ j1 ⊗ 1)P′′

)]
∈ KKR

(
C`s,r, B ⊗̂C`s+r,s+r

)
,

where ϕ is defined by

ϕ(kα) B (−1)s ⊗ 1 ⊗ kα, ϕ( ja) = 1 ⊗ 1 ⊗ js+a ∀a = 1, . . . , r, α = 1, . . . , s.

The next step is to apply a unitary equivalence. We define commuting unitaries

Uα B
1
√

2

(
1 − Jα ⊗ j1 ⊗ kα

)
, Va B

1
√

2

(
1 − Ka ⊗ j1 ⊗ js+a

)
for a = 1, . . . , r and α = 1, . . . , s. Then we have

Ad(Uα)(1 ⊗ 1 ⊗ kα) = −Jα ⊗ j1 ⊗ 1, Ad(Va)(1 ⊗ 1 ⊗ js+a) = Ka ⊗ j1 ⊗ 1,

whereas 1 ⊗ 1 ⊗ c is fixed for any other generator c of C`r+s,r+s. Similarly, Ad(Uα) fixes any
Ka ⊗ j1 ⊗ 1 and Jβ ⊗ j1 ⊗ 1 for β , α, and Ad(Va) fixes any Jα ⊗ j1 ⊗ 1 and Kb ⊗ j1 ⊗ 1 for
b , a. Both actions fix Ĵ ⊗ j1 ⊗ 1.

Hence, applying the unitary equivalence given by V1 · · ·VrU1 · · ·Us identifies τC`s,r (∂I)
with the class[(

HB ⊗̂Q(C`r+s,r+s), ψ ⊗ 1, Ĵ ⊗ j1 ⊗ Q
)]
∈ KKR

(
C`s,r, B ⊗̂C`r+s,r+s

)
where Q =

∏r+s
i=1

1
2 (1 + ki ji) and ψ is given by

ψ(kα) B (−1)s+1Jα ⊗ j1, ψ( ja) B Ka ⊗ j1 ∀a = 1, . . . , r, α = 1, . . . , s.

The automorphism of C`s,r given by kα 7−→ (−1)s+1kα and ja 7−→ ja preserves orientation,
as (−1)s(s+1) = 1, and thus acts trivially on Kasparov groups. We may therefore remove the
signs in the definition of ψ without changing the class.

The final step of the proof will be to apply stability. By Theorem 3.1.28, the stability
isomorphism is given by the intersection product with

α B
[(

(K ⊕Kop) ⊗̂Λ(Cr+s), 1 ⊗ ρ,T ⊗ 1
)]
∈ KKR(C`r+s,r+s,C),

where K and T are defined as in Theorem 3.1.26 and ρ : C`r+s,r+s → End(Λ(Cr+s)) is the
even real ∗-representation of C`r+s,r+s of Proposition 2.2.4. As we have already explained in
the discussion below Theorem 3.1.32, the intersection product is given by[(

HB ⊗ ρ(Q)(Λ(Cr+s)), ψ ⊗ 1, (Ĵ ⊗ j1) ⊗ 1
)]
∈ KKR(C`s,r, B).
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But ρ(Q)(Λ(Cr+s)) is even, has dimension one and contributes neither to the action nor to the
Fredholm operator, so we conclude

τC`s,r (∂I) ⊗̂C`r+s,r+s α =
[(
HB, ψ, Ĵ ⊗ j1

)]
∈ KKR(C`s,r, B).

The same holds for ∂I replaced by ∂II and Ĵ replaced by Ĵref . Because

[(J; φ)]∂ =
[(
HB, ψ, Ĵ ⊗ j1

)]
−

[(
HB, ψ, Ĵref ⊗ j1

)]
,

this completes the proof of the theorem.

5.4 Corollaries to the bulk-boundary correspondence

In this section, we summarise some important properties of the bulk-boundary correspon-
dence which are in particular relevant for its physical interpretation.

In the context of topological insulators and superconductors, a choice of the reference dis-
ordered IQPV which is especially relevant are disordered IQPV which are local in the strong
sense that Jref ∈ C(Ω) ⊗ End(W). The corresponding ground state of such a local reference
disordered IQPV consists of combinations of localised states. In the physical context, these
are referred to as atomic limit topological insulators or atomic limit superconductors. Such a
local reference disordered IQPV always exists in the present physical context, where we only
consider local (pseudo-)symmetries over the bulk algebra A. In materials with other crys-
talline symmetries than translational symmetries, such an atomic limit, resp. local reference
disordered IQPV, may not exist [21].

The bulk-boundary correspondence becomes of the following more simple form if the
reference disordered IQPV is chosen to be local.

Corollary 5.4.1. Fix r, s > 0 and assume that the reference disordered IQPV in Theorem
5.3.1 is local, i.e. Jref ∈ C(Ω)⊗End(W) (resp. C(Ω)⊗End(V) in the complex case). Then the
boundary class simplifies to [(

J; φ
)]
∂ =

[(
Ĵ; φ

)]
,

so that bulk-boundary correspondence reads

∂[(J; φ)] =
[(

Ĵ; φ
)]
.

Proof. By assumption, Jref commutes with q, so that Ĵref is unitary in Â. Hence, the class
[(Ĵref ; φ)] ∈ TopGr,s(A∂) is trivial. The same holds for complex disordered IQPV. �

Corollary 5.4.2. Fix r, s > 0 and assume that the reference disordered IQPV in Theorem
5.3.1 is local (see the previous corollary). Let (J; φ) be a disordered IQPV of (complex)
symmetry index (r, s) such that its boundary class is trivial, i.e. ∂[(J; φ)] = 0. Then Ĵ is
operator homotopic, in the sense of Definition 5.2.4, to a (real) skew-Hermitian unitary in
B(HA∂ ) anti-commuting with the Ka, Jα.

Proof. This is immediate from Theorem 5.3.1, Corollary 5.4.1 and Corollary 5.2.9. �
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Remark 5.4.3. Although the statement of Corollary 5.4.2 is trivial from a mathematical point
of view, it nevertheless is an important physical observation. Namely, expressed in physical
terms, it states that the boundary topological phase attached to a bulk disordered IQPV is
topologically trivial if and only if it exhibits no stable localised boundary states violating the
gap condition.

Remark 5.4.4. By the exactness of the long exact sequence in K-theory in Equation (5.11),
the image of the map ∂ is equal to the kernel of

ι∗ : KR−(s−r+1)(A∂) −→ KR−(s−r+1)(Â) resp. ι∗ : K−(s−r+1)(A∂) −→ K−(s−r+1)(Â).

As explained in [77, Thm. 1.5.5] for the real case and in [66, Ch. 4] for the complex case,
this coincides with ker

(
id − (αd)∗

)
under an isomorphism KR−(s−r+1)(Â) � KR−(s−r+1)(A∂)

resp. K−(s−r+1)(Â) � K−(s−r+1)(A∂). This kernel is trivial if and only if αd is stably homotopic
to the identity. While this holds for the clean case without disorder, it may fail in general.
Thus, ∂ may not be surjective.

We can compare the boundary phases corresponding to different sides of a boundary. To
that end, observe that 1 − q is the projection corresponding to the left half-space semilattice
−Λ̂. In the following proposition, let Ĵ+ B Ĵ and Ĵ− B (1 − q)J(1 − q).

Proposition 5.4.5. Let (Jref ; φ) be a reference disordered IQPV of (complex) symmetry index
(r, s). For any disordered IQPV (J; φ) of (complex) symmetry index (r, s), we have

[(J; φ)]+
∂ = −[(J; φ)]−∂ .

Here, we set [(J; φ)]±
∂
B

[(
Ĵ±; φ

)]
−

[(
Ĵref,±; φ

)]
.

Proof. It is sufficient to prove that the sum [(Ĵ+; φ)] + [(Ĵ−; φ)] is trivial for any J. The sum
is represented by (

Ĵ+ ⊕ Ĵ−, 12 ⊗ φ
)

Here, by definition
Ĵ+ ⊕ Ĵ− = qJq ⊕ (1 − q)J(1 − q),

where q is the half-space projection of Equation (4.17). The right-hand side is the starting
point F0 of the path

[0, 1] 3 t 7−→ Ft B

(
qJq tqJ(1 − q)

t(1 − q)Jq (1 − q)J(1 − q)

)
.

The operators Ft are skew-Hermitian and

F2
t =

(
q(−1 + (t2 − 1)J(1 − q)J)q 0

0 (1 − q)(−1 + (t2 − 1)JqJ)

)
.

The operator qJ(1 − q)Jq lies in the kernel of the canonical projection ρ = ρ+ of the right
half-space algebra. Indeed, the expression qO1(1 − q)O2q vanishes if O1 and O2 are among
the generators f ∈ C(Ω) ⊗ End(W) and u1, . . . , ud−1, together with their adjoints, as all of
these commute with q. Furthermore, we compute

(1 − q)udq = 0, (1 − q)u∗dq = u∗de.
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Because J is the limit of non-commutative polynomials in the generators f and u1, . . . , ud,
together with their adjoints, it follows that qJ(1 − q)Jq lies in the closed two-sided ideal
generated by e. This is the kernel of ρ+ by Theorem 4.3.13. A similar statement holds for
the lower right corner of the matrix representing F2

t . Hence, (Ft) is an operator homotopy, so
since F2

1 = −1, it follows that the class represented by F0 is trivial. �

5.5 Discussion
We have derived a framework for the bulk and boundary classification of disordered free-
fermion topological phases and proved that these are naturally related. In this final section,
we complement our previous results by drawing some physical conclusions.

Invariance under disorder

So far, the precise nature of the space Ω of disorder configurations has not been important.
Bulk-boundary correspondence holds for any choice of Ω. However, the K-theory of the bulk
and boundary algebras will in general depend on Ω.

Here we assume that the space of disorder configurations is given by a Bernoulli shift

Ω = ΩΛ
0 =

∏
x∈Λ

Ω0 (5.15)

for some compact convex Hausdorff space Ω0 with the canonical action of Zd by translation in
the parameter set Λ. As explained in Example 4.2.8, a physical realisation of such a disorder
space is given by disorder by doping. Then we have the following important result.

Proposition 5.5.1. Assume that Ω is a Bernoulli shift with contractible Ω0. Let A0, Â0, and
A0
∂

denote the algebras A, Â, and A∂, respectively, for the case of the singleton disorder
space. There is a commutative diagram

0 A∂ ⊗ K(`2(N)) Â A 0

0 A0
∂
⊗ K(`2(N)) Â0 A0 0

ι ρ

ι0 ρ0

(5.16)

where the rows are the short exact sequence (4.19) forA andA0, respectively, and the vertical
maps are homotopy equivalences of real C∗-algebras.

In particular, the bulk-boundary map ∂ is surjective and

KR−(s−r+2)(A) = KR−(s−r+2)(A0) =

d⊕
i=0

(
d
i

)
KR−(s−r+2−i)(C), (5.17)

K−(s−r+2)(A) = K−(s−r+2)(A0) = Z2d−1
, (5.18)

Remark 5.5.2. Equation (5.17) identifies KR−(s−r+2)(A) with the real K-theory of the d-
dimensional (Brillouin) torus. The KR-groups of C have been discussed in Subsection 3.1.3.
The component of the bulk class of a disordered IQPV (J; φ) of symmetry index (r, s) corre-
sponding to the summand for i = d is what is often referred to in the literature as the strong
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topological invariant. The other components are summarily called weak topological invari-
ants. As Theorem 5.3.1 and Proposition 5.5.1 show, at least as far as the type of disorder
considered here goes, there is no indication that this distinction is mathematically justified.

Proof of Proposition 5.5.1. We consider the real case first. By assumption, there is a point
ω0 ∈ Ω and a homotopy h = (ht) of maps Ω0 −→ Ω0 where h0 = ω0 is the constant map and
h1 = idΩ0 .

Consider the inclusion η : End(W) −→ C(Ω) ⊗ End(W) and the evaluation

evω0 : C(Ω) ⊗ End(W) −→ End(W) : f 7−→ f (x 7−→ ω0)

at the constant sequence x 7−→ ω0. We have evω0 ◦ η = 1. Moreover, for any t ∈ [0, 1],

φt( f )(ω) B f (ht(ω)) ∀ f ∈ C(Ω) ⊗ End(W), ω ∈ Ω

defines a homotopy (φt) of real ∗-endomorphisms of C(Ω) ⊗ End(W) such that

φ0 = η ◦ evω0 , φ1 = idC(Ω)⊗End(W).

By definition, the morphisms evω0 , η and φt are Zd-equivariant, and by restriction, also equiv-
ariant with respect to Zd−1 and Zd−1×N. By Theorem 4.2.22, Proposition 4.3.9, and Theorem
4.3.13, the existence of the Diagram (5.16) follows.

The homotopy invariance of K-theory gives KR−•(A) = KR−•(A0). In view of [77, Thm.
1.5.5], ∂ is surjective. Since by Theorem 4.2.22,

A0 = (C o Zd) ⊗ End(W) = C∗(Zd) ⊗ End(W),

where C∗(Zd) is the group C∗-algebra of Zd, we find that

KR−•(A) = KR−•
(
C∗(Zd)

)
= KR−•

(⊗d
C(S1)

)
.

From this, Equation (5.17) follows by [77, Thm. 1.5.4].
The complex case can be proved analogously and we end up with K−•(A) = K−•(A0),

where A0 = End(V) oσ Zd. By the untwisting trick by Packer and Raeburn [64, Thm. 3.4],
A0 is stably isomorphic to C∗(Zd) ⊗ End(V). It follows K−•(A0) = K−•

(
C∗(Zd)

)
. �

The role of the trivial phase

Our construction of bulk classes depends on the choice of a trivial phase. Indeed, we have
constructed bulk classes as deviations from an arbitrarily chosen reference disordered IQPV.
This circumstance is imposed by the group structure of K-theory, which measures differences
of certain homotopy classes, rather than the classes themselves.

From a physical point of view, free-fermion topological phases do not directly have a
group structure, whereas differences of such phases do. Therefore, it is advantageous for the
physical interpretation of the bulk classes as free-fermion topological phases that the choice
of reference disordered IQPV is not fixed by the mathematical model, and instead allows for
adjustments according to the physical system of interest.

The situation is different for the boundary classes. Any reference disordered IQPV Jref
that has a unitary lift Ĵref (in particular, any local reference disordered IQPV in the sense



Section 5.5 Discussion 113

of Corollaries 5.4.1 and 5.4.2) will itself already represent a trivial Kasparov class, trivial in
the associated K-group. This corresponds to the understanding in physics that a boundary
free-fermion topological phase is trivial if there are no stable localised boundary states that
close the gap.

To state bulk-boundary correspondence cleanly, our definition of boundary classes avoids
the requirement that the reference disordered IQPV be trivial in this sense. It instead measures
the deviation from an arbitrary reference boundary class. The bulk-boundary map is sensitive
to the choice of reference phase and preserves this dependence.

The role of the local space

Throughout this work, we have relied on a tight-binding approximation in which the relevant
degrees of freedom close to the chemical potential split into a spatial contribution, corre-
sponding to the translational lattice of atomic sites Zd, and a finite-dimensional local space
V resp. W = V ⊕ V∗ independent of the spatial part. It is important that the choice of this
splitting is performed in such a way that the only relevant spatial symmetries (in mean) of the
Hamiltonians of interest are the lattice translations.

This is shown by the following Gedankenexperiment due to Fu–Kane–Mele [28]. Assume
that W is doubled to W2 B W ⊕ W while Zd is reduced to (2Z)d by merging sites of the
Bravais lattice adjacent in one selected spatial direction. Let A2 be the bulk algebra defined
in terms of W2 and (2Z)d, and suppose we are in the setting of Proposition 5.5.1. Although
the K-groups of A and A2 are isomorphic by the proposition, the natural “doubling” map
φ2 : A −→ A2 is not an isomorphism, not even on K-theory. Indeed, Fu–Kane–Mele show
for clean systems that, although the strong invariant is preserved, some weak invariants are
annihilated by doubling; by the proposition, this also holds in the presence of disorder. Fu–
Kane–Mele view the annihilation of weak invariants as an indication that they are not stable
under disorder. However, as we have seen, all topological phases are preserved by the kind
of disorder we consider. This is corroborated by the work of Ringel–Kraus–Stern [70].

The problem lies in the fact that φ2 maps a disordered IQPV J in A to one in the algebra
A2 which forgets the invariance (in mean) of J under the translations removed by the dou-
bling process. By incorporating these lost translations into the definition of the algebra as
symmetries ofW2 = `2((2Z)d) ⊗W2 �W, we obtain a new algebra, isomorphic to A under
the doubling map, thus removing the perceived inconsistencies.
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Chapter Six

Topological Invariants

In order to assign physical properties to topological phases of topological insulators and su-
perconductors it is essential to define topological invariants. As topological invariants we
refer to numbers that quantify topological phases of topological insulators and superconduc-
tors.

This chapter is split into two sections. In the first section, we will apply the tools of cyclic
cohomology in the context of Van Daele’s picture of KR- and K-theory to define topological
invariants in the bulk. In principle, this section is an application of the results of Kellendonk
[46].

In the second section, we will compute the so-called strong topological invariants at the
boundary on the level of Kasparov’s Fredholm picture of KR- and K-theory and their cor-
responding Kasparov groups. This section combines the index maps established in [16, 17]
in terms of Kasparov classes with our new explicit form of the topological phases at the
boundary.

6.1 Topological invariants without torsion in the bulk

Here, we apply Kellendonk’s generalisation of cyclic cohomology to Van Daele groups [46]
on the bulk topological phases of disordered IQPV.

The idea of using cyclic cohomology in order to derive numerical values for K-classes
goes back to Connes [23, Ch. 3.3]. He constructed the cyclic cohomology groups HCn(A)
and showed that these are dual to complex K-theory in the sense that there is a non-degenerate
linear pairing

K−n(A) ⊗ HCn(A) −→ C for n ∈ N.

This pairing is determined by a so-called character, which will also be explained below. In the
context of topological insulators, this pairing has first been used by Bellissard in the context of
the QHE. Bellissard showed that the quantised Hall conductance (complex symmetry class
A) is equal to such a pairing, up to a prefactor of e2

h , where e is the electron charge and h
denotes Planck’s constant, see [13] for an overview. By the work of Prodan and Schulz-
Baldes [68, 66], this pairing is also well understood for the complex symmetry class AIII. We
have seen that these symmetry classes A and AIII are described by complex K-groups and
therefore the pairing can be applied without ambiguity.
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The pairing with real K-groups is more involved because these groups might have torsion.
The linearity of the pairing implies that it vanishes for torsion elements. Therefore, for the
real symmetry classes one has to perform two calculations in order to get a complete set of
topological invariants. Connes pairing allows for the calculation of numerical values for the
invariants without torsion in the real case, too.

The invariants with torsion can be computed via Kellendonk’s results [46]. He showed
how to modify this pairing for Z/2Z-valued invariants. However, to the present date, we are
missing a satisfactory explicit result for these invariants of the bulk topological phases in our
context. Therefore, we refrain from considering them in this work.

In the following, we will first present the extension of Connes’ pairing to real K-classes
in Van Daele’s picture, as it has been derived in [46], and then apply it for our bulk classes.
Since the complex topological invariants have already been derived in very detail in [66], we
will not consider them here.

6.1.1 Cyclic cohomology for Van Daele’s picture of K-theory
Here, we summarise the results of [46] that enable us compute the pairing for Van Daele’s
picture of K- and KR-theory.

We begin with the definition of cycles and characters as defined in [23, Ch. 3].

Definition 6.1.1 (Cycle, character). An n-dimensional cycle over a trivially graded algebra
A is a triple

(
Ω, d,

∫ )
, with

• a Z-graded algebra Ω =
⊕

k∈ZΩk together with a morphism ϕ : A → Ω0,

• a derivation of degree 1, i.e. d : Ωk → Ωk+1 for all k ∈ Z with d2 = 0,

• a closed graded trace
∫
A

: Ωn → C.

The character ξ : Ωn+1 → C of the cycle
(
Ω, d,

∫ )
is defined as

ξ
(
a0, . . . , an

)
B

∫
A

ϕ(a0)dϕ(a1) · · · dϕ(an).

Proposition 6.1.2. [23, Ch. 3.1, Prop. 4] The character of an n-dimensional cycle is a closed
graded trace of dimension n.

Example 6.1.3. The most simple example is the algebra Mm(C). For Ω0 = Mm(C) and
Ωk = 0 for all 0 , k ∈ Z, the triple (Ω, 0,Trm) defines a cycle over Mm(C).

Example 6.1.4. [46, 7.1] By Theorem 4.2.22, all elements in A are (the limit of) non-
commutative polynomials ∑

x∈Zd

fxRx ∈ A, (6.1)

where fx ∈ C(Ω) ⊗ End(W) for all x ∈ Zd. We define the derivations

∂ j

∑
x∈Zd

fxRx B i
∑
x∈Zd

x j fxRx (6.2)
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for all j = 1, . . . , d and x = (x1, . . . , xd). (The prefactor i is introduced in order to let ∂ j be
a ∗-derivation.) This is of course not a well-defined map over A since not all polynomials of
the form (6.2) have to converge. Thus let Cm(A) be the linear subspace of A that is spanned
by m-times differentiable elements in A and define

A B C∞(A) B
⋂
m∈N

Cm(A).

For given n = (n1, . . . , nd) ∈ Nd, we define the semi-norm

‖a‖n B ‖∂na‖ where ∂n = ∂n1
1 · · · ∂

nd
d . (6.3)

Then by [66, Prop. 3.3.3], A is a ∗-algebra which, equipped with the topology induced by
the semi-norms (6.3), is a dense Fréchet sub-algebra of A which is stable under holomorphic
calculus.

A trace on A is defined by

T

∑
x∈Zd

fxRx1 · · ·Rxd

 B ∫
Ω

f0 dP. (6.4)

This trace obviously satisfies T ◦ ∂ j = 0 for all j = 1, . . . , d.
Fix an orthonormal basis λ1, . . . , λn of Cn and a subset I = {i1, . . . , in} ⊆ {1, . . . , d} with

|I| = n. Define
Ω B A⊗ Λ(Cm),

equipped with the derivation

d B
m∑

j=1

∂i j ⊗ λ j,

and the trace
∫

on Ω defined by∫ (
a ⊗ (λ1 ∧ . . . ∧ λn)

)
= T (a),

∫ (
(a ⊗ (λ1 ∧ . . . ∧ λk)

)
= 0 ∀k < n,

for all a ⊗ λ ∈ A ⊗ Λ(Cm). Then
(
Ω, d,

∫ )
defines an n-dimensional cycle overA.

Definition 6.1.5 (Graded trace over C`r,s). Let κ : C`r,s → C be the graded trace defined by

κ
(
k1 · · · kr j1 · · · js

)
B 2

r+s
2 i

r−s
2 and κ

(
ka1 · · · kar′ jα1 · · · jαs′

)
= 0 if r′ < r or s′ < s.

Here the square root of i is defined as i
1
2 B ei π4 .

Now we introduce the extension of cycles as in [46, Def. 4.4].

Definition 6.1.6 (Extension of cycles). Let
(
Ω, d,

∫
A

)
be a cycle over an algebra A. The

extension of this cycle to Mm(A) ⊗C`r,s is defined by the cycle(
Mm(Ω) ⊗C`r,s, d ⊗ id,

∫ )
,

where
∫
B

∫
A
◦Trm ◦ κ with κ(a ⊗ c) B κ(c)a for all a ∈ Mm(A), c ∈ C`r,s.
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By this extension of cycles, we can canonically define the extended character over A ⊗
C`r,s. The following definition is a specialised version of [46, Def. 4.7].

Definition 6.1.7 (Extended character). Let
(
Ω, d,

∫
A

)
be an n-dimensional cycle of a trivially

graded C∗-algebra A, with domain algebraA and character ξ.
Let e ∈ A ⊗ C`r,s be a reference ORHU satisfying de = 0. Then the pairing with an

element [x] ∈ DK
(
A ⊗C`r,s

)
, where x ∈ Fm(A ⊗C`r,s) is defined as

ξ#Trm#κ(x − em, . . . x − em) =

∫
A

Trmκ
(
(x − em)(dx)n).

By [46, Cor. 4.2 & Lem. 4.5], this pairing is constant on path connected components of
Fm(A⊗C`r,s) and thus well-defined.

6.1.2 Bulk topological invariants without torsion
Here, we will finally apply the formulas that we have explained in Subsection 6.1.1 for the
calculation of topological invariants for the bulk topological phase of a disordered IQPV
(J; φ) of symmetry index (r, s).

Throughout this subsection we assume that the reference disordered IQPV (Jref , φ) is
local, i.e. Jref ∈ C(Ω) ⊗ End(W), in particular dJref = 0. As we have seen in Section 5.1, the
topological phase [

J
]
−

[
Jref

]
∈ TopφJref

(A)

of (J; φ) relative to (Jref ; φ) corresponds to the Van Daele class

[x] B
[(

(J ⊗ j1)Pφ + (Jref ⊗ j1)(1 − Pφ) 0
0 −Jref ⊗ j1

)]
∈ DKR(A ⊗C`r,s+1). (6.5)

We can associate topological invariants without torsion to this topological phase as explained
in the following theorem.

Theorem 6.1.8 (Topological bulk invariants without torsion). Assume that J ∈ A ⊆ A and
Jref is local.

Let
(
Ω, d,

∫
A

)
be the n-dimensional cycle of Example 6.1.4 with character ξ for an index

set I = {i1, . . . , in} ⊆ {1, . . . , d}. If r + s + n is even, the pairing with the class [x] ∈ DKR(A ⊗
C`r,s+1) of Equation (6.5) is given by

ξ#TrW#κ
(
[x]

)
= Λr,s,n

∑
σ∈SI

sign(σ)(trW ◦T )

( r∏
a=1

Ka

)( s∏
α=1

Jα
)
(J − Jref)

n∏
j=1

∂iσ( j) J

 ,
where Λr,s,n B 2

r+s+1
2 i

r−s−1
2 (−1)

1
2 (r2+s2+n) and SI denotes the permutations of the index set I.

The pairing vanishes if r + s + n is odd.

Proof. Let e B Jref ⊗ j1 ⊕ (−Jref ⊗ j1). The pairing is by definition given by

ξ#TrW#κ
(
[x]

)
=

∫
κ
(
(x − e)(dx)n).



Section 6.2 Strong topological invariants at the boundary 119

Since de = 0, it follows dx = (dJ ⊗ j1)Pφ ⊕ 0, and thus the pairing is equal to∫
κ
((

(J − Jref)(dJ)n ⊗ jn+1
1

)
Pφ

)
.

Note that we used that J ⊗ j1 commutes with Pφ, and therefore also dJ ⊗ j1 commutes with
Pφ, because Pφ acts non-trivially only on End(W). The graded trace on C`r,s+1 vanishes for
terms which are not proportional to the product of all generators k1 · · · kr j1 · · · js+1. Thus the
only relevant term of the projection is given by

( r∏
a=1

(−1)sKa ⊗ ka j1
)( s∏

α=1

Jα ⊗ j1 jα+1

)
.

It follows

ξ#TrW#κ
(
[x]

)
=

∫
κ
(( r∏

a=1

(−1)sKa ⊗ ka j1
)( s∏

α=1

Jα ⊗ j1 jα+1

)
(J − Jref)(dJ)n ⊗ jn+1

1

)
.

The graded trace κ of C`r,s+1 vanishes, if r + s + n is odd, because then the j1 occurs even
times. Otherwise, if r + s + n is even, the pairing is given by∫

κ
(( r∏

a=1

(−1)sKa ⊗ ka j1
)( s∏

α=1

Jα ⊗ j1 jα+1

)
(J − Jref)(dJ)n ⊗ jn+1

1

)
=(−1)

1
2 (r2+s2+n)

∫
κ
(( r∏

a=1

Ka

)( s∏
α=1

Jα
)
(J − Jref)(dJ)n ⊗ k1 · · · kr j1 · · · js+1

)
=2

r+s+1
2 i

r−s−1
2 (−1)

1
2 (r2+s2+n)

∫ ( r∏
a=1

Ka

)( s∏
α=1

Jα
)
(J − Jref)(dJ)n,

where we used that κ(k1 · · · kr j1 · · · js+1) = 2
r+s+1

2 i
r−s−1

2 . The prefactor is equal to Λr,s,n. Finally,
the operator (dJ)n ∈ A ⊗ Λ(Cn) is given by

(dJ)n =
∑
σ∈SI

sign(σ)
n∏

j=1

∂σ( j)J ⊗ (λ1 ∧ . . . ∧ λn).

Thus, we obtain

ξ#TrW#κ
(
[x]

)
= Λr,s,n

∑
σ∈SI

sign(σ)(trW ◦T )

( r∏
a=1

Ka

)( s∏
α=1

Jα
)
(J − Jref)

n∏
j=1

∂iσ( j) J

 .
�

6.2 Strong topological invariants at the boundary
In this section, we derive explicit formulas for the strong topological invariants of the topolog-
ical phases at the boundary. This section is based on the results of [16, 17]. Our contribution
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to this topic is that we compute the explicit form of the strong topological invariants for our
novel boundary topological phases.

We first discuss the one-dimensional case which is simpler than the higher-dimensional
case. The resulting formula for the topological invariant can be computed more explicitly
than in the higher-dimensional case. Moreover, the one-dimensional case is important for
physical considerations (e.g. superconducting chains in class D). The higher-dimensional
strong topological invariants will be computed by reduction to systems that can be treated
with the same techniques as the one-dimensional case.

Throughout this section, we assume for the sake of simplicity that the reference disor-
dered IQPV is local. The assertions below can easily be generalised to general reference
disordered IQPV by performing the calculations below in the same way for the topological
phase at the boundary induced by the reference disordered IQPV Jref . The resulting topolog-
ical invariant at the boundary is then given by the difference of the topological invariants of
J and Jref .

6.2.1 One-dimensional systems
For a one-dimensional Bravais lattice Λ = Z, we have A∂ = C(Ω) ⊗ End(W) and A∂ =

C(Ω) ⊗ End(V). Since the reference disordered IQPV Jref is assumed to be local, we know
by the bulk-boundary correspondence that the boundary class for a disordered IQPV (J; φ) is
given by [(

HC(Ω)⊗End(W) ⊗C`0,1, ϕ, Ĵ ⊗ j1
)]
∈ KKR(C`s,r,C(Ω) ⊗ End(W) ⊗C`0,1),

where ϕ : C`s,r → B
(
HC(Ω)⊗End(W) ⊗C`0,1

)
is defined as in Definition 5.2.11.

We now fix a disorder configurationω ∈ Ω and consider the evaluation map evω : C(Ω)→
C; f 7→ f (ω). The induced morphism of Kasparov groups (evω)∗, cf. Definition 3.1.20, maps
the class above onto[(

HEnd(W) ⊗C`0,1, ϕ, Ĵω ⊗ j1
)]
∈ KKR(C`s,r,End(W) ⊗C`0,1),

where Ĵω B (evω)∗(Ĵ). If Ω is as in Proposition 5.5.1, then this class is independent of the
choice ofω. However, for more general Ω, the class depends on the choice ofω and the result-
ing strong topological invariants could vary for different disorder configurations. The local
Nambu space W is a finite-dimensional real vector space, and therefore, we can apply the
stability isomorphism of Kasparov groups in order to reduce the group to KKR(C`s,r,C`0,1).
This isomorphism is given by the intersection product from the right with the element

α B
[(

(K ⊕Kop) ⊗W, 1 ⊗ id,T ⊗ 1
)]
∈ KKR(End(W),C),

where K and T are given as in Theorem 3.1.28. The result is the class[(
`2(N,W) ⊗C`0,1, ϕ, Ĵω ⊗ j1

)]
∈ KKR(C`s,r,C`0,1),

where we used thatHC = `2(N). By Theorem 3.1.36, this class is equivalent to the tuple[(
Ĵω, φ

)]
∈ KRr,s(C) = KR−(s−r+1)(C).

By Theorem 3.1.40, this class is equivalent to the class in the Clifford module picture that is
generated by the C`r,s-module (

ker Ĵω, φ
)
,
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where φ : C`r,s → L(ker Ĵω) denotes the usual real ∗-morphism induced by pseudo-symmetries.
Depending on the value of s− r, one can now proceed to determine the class in the group

KR−(s+1−r)(C). In the following, we will consider the fundamental irreducible examples for
each case with a non-trivial KR-group using the results of Section 3.1.3.

1. Class BDI, s − r = −1 mod 8. The fundamental example is a disordered IQPV of
symmetry index (1, 0), i.e. there is one positive pseudo-symmetry K1. The equivalence
class of the Clifford module is then determined by the number

dimC(ker Ĵω)+ − dimC(ker Ĵω)− ∈ Z,

where (ker Ĵω)± B P±(ker Ĵω) with P± B 1
2 (1 ± K1). In particular, the trivial phase is

determined by dim(ker Ĵω)+ = dim(ker Ĵω)−.

2. Class D, s − r = 0. Here we consider the case where we have no pseudo-symmetries.
The kernel ker(Ĵω) is now just a real vector space, and the topological invariant is
therefore determined by

dimC(ker Ĵω) mod 2 ∈ Z/2Z.

This symmetry class corresponds to superconducting chains without any symmetries.
The Z/2Z-invariant determines whether there is a localised Majorana mode at the end
of the chain, and the Z/2Z-value reflects the topological instability of pairs of Majorana
modes.

3. Class DIII, s − r = 1 mod 8. The fundamental example is a disordered IQPV with one
negative pseudo-symmetry J1 and no positive pseudo-symmetries. Then J1 defines a
complex structure on U := Fixγ(ker(Ĵω)). The topological invariant is here determined
by

dimC(U) mod 2 = 1
2 dimC(ker Ĵω) mod 2 ∈ Z/2Z.

4. Class CII, s−r = 3 mod 8. We consider the fundamental example of a disordered IQPV
J ∈ Awith three negative pseudo-symmetries J1, J2, J3. We have seen in Lemma 4.1.27
and the discussion of class CII in Subsection 4.1.2 that the algebra of observables can
be split as A � A∼ ⊗ HC, such that J = x ⊗ iσ3 and J1 = 1 ⊗ iσ1, J2 = 1 ⊗ iσ2 and
J3 = x3 ⊗ iσ3. Thus ker(Ĵω) = ker(x̂ω) ⊗ C2. The x3 plays algebraically the same role
as the positive pseudo-symmetry in the class BDI. Thus, the topological invariant is
determined by

dimC(ker x̂ω)+ − dimC(ker x̂ω)− ∈ Z,

where (ker x̂ω)± B P±(ker x̂ω) with P± B 1
2 (1 ± x3).

5. Complex class AIII, s − r = 1 mod 2. We consider the case of a complex disordered
IQPV J ∈ A with one complex pseudo-symmetry K1. We can argue in the same way
as for the class BDI that the topological invariant is given by

dimC(ker Ĵω)+ − dimC(ker Ĵω)− ∈ Z,

where (ker Ĵω)± B P±(ker Ĵω) with P± B 1
2 (1 ± K1).
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6.2.2 Higher-dimensional systems
In this section, we will derive a formula for the strong topological invariants for all symmetry
classes and dimensions d > 2. The resulting formula is based on our explicit form of the
boundary classes and the spectral triples which have been derived in [17].

Spectral triples are formulated in [17] in terms of unbounded Kasparov classes. Un-
bounded Kasparov theory is a generalisation of the usual Kasparov theory in the sense that
there is a canonical surjection from unbounded onto bounded Kasparov groups, where bounded
Kasparov theory coincides by definition with Kasparov theory as introduced in Chapter 3.
Although we will in the end not work with the unbounded theory, we have to give a short
review over the fundamental definitions of unbounded Kasparov modules in order to explain
the results of [17].

Definition 6.2.1 (Unbounded Kasparov module). Let A, B be graded real C∗-algebras and
let E be a Hilbert B-module. A regular operator over E is a densely defined closed operator
D : Dom(D) → E, such that D∗ is densely defined in E and 1 + D∗D is densely defined. The
operator is self-adjoint if Dom(D) = Dom(D∗).

If there is an even real ∗-morphism π : A → B(E), then (E,D) defines a real unbounded
A-B-Kasparov module if D : Dom(D) → E is an unbounded regular real odd Hermitian
operator such that for all a ∈ A

π(a)(1 + D2)−1/2 ∈ K(E)

and the set of elements a ∈ A such that

[D, π(a)] ∈ B(E)

is dense in A, where [·, ·] denotes the graded commutator. Unbounded Kasparov modules
for complex C∗-algebra A, B can be defined in the same manner by dropping the reality con-
straints.

More details to this topic can be found in [61, Sec. 5]. Crucial for us is the following
result about the aforementioned surjection from unbounded onto bounded Kasparov groups
[8].

Theorem 6.2.2. Let (E,D) be a (real) unbounded A-B-Kasparov module and define F B
D(1 + D2)−1/2. Then

(E, π, F) ∈ E(A, B)

is a (real) Kasparov module. This defines a surjection from (real) unbounded Kasparov mod-
ules onto (real) Kasparov modules, which is natural w.r.t. the intersection product in the
sense that it maps the intersection product on the unbounded level, cf. [61, Sec. 6], onto the
one on the bounded level.

These basic definitions are sufficient in order to obtain the desired Kasparov modules via
the following unbounded Kasparov modules.

Definition 6.2.3 (Representations πω, πω
∂
, π̂ω). Let

π : A→ L(L2(Ω,P) ⊗W)
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denote the natural real ∗-representation of A. Fix a disorder configuration ω ∈ Ω and let
evω : L2(Ω,P) → C denote the restriction onto the disorder configuration ω. Then πω B
evω ◦ π : A→ L(W) defines a representation of A overW.

Analogously, we obtain real ∗-representations

πω∂ B evω ◦ π∂ : A∂ → L(W∂) and π̂ω B evω ◦ π̂ : Â→ L(Ŵ)

via the natural ∗-representations π∂ : A∂ → L(L2(Ω,P)⊗W∂) and π̂ : Â→ L(L2(Ω,P)⊗Ŵ).
Representations for the algebras of complex observables can be defined analogously.

Proposition 6.2.4. [17, Prop. 3.2] Consider the graded real Hilbert space W ⊗ Λ(Cd).
Identify C`d,d � End

(
Λ(Cd)

)
and define the unbounded odd real operator

D(d) B
d∑

j=1

X j ⊗ k j,

where X j is the position operator in the jth direction of Zd. Then
(
W⊗Λ(Cd),D(d)), equipped

with the ∗-morphism πω ⊗ idC`0,d defines a real unbounded (A ⊗ C`0,d)-C-Kasparov module.
The corresponding real Kasparov module is given by(

W⊗ Λ(Cd), πω ⊗ idC`0,d , F
(d)

)
∈ E

(
A ⊗C`0,d,C

)
.

where

F(d) B D(d)(1 + (D(d))2)−1/2
=

d∑
j=1

X j√
1 + |X|2

⊗ k j

for |X|2 B
∑d

j=1 X2
j .

Analogously, we define the unbounded odd real operator D(d−1) B
∑d−1

j=1 X j ⊗ k j ∈ W∂ ⊗

Λ(Cd−1). Then
(
W∂ ⊗ Λ(Cd−1),D(d−1)) equipped with the ∗-morphism πω

∂
⊗ idC`0,d−1 defines a

real unbounded (A∂⊗C`0,d−1)-C-Kasparov module. The corresponding real Kasparov module
is given by (

W∂ ⊗ Λ(Cd−1), πω∂ ⊗ idC`0,d−1 , F
(d−1)

)
∈ E

(
A∂ ⊗C`0,d−1,C

)
.

where F(d−1) B D(d−1)(1 + (D(d−1))2)−1/2.

We summarise the resulting Kasparov classes in the following definition.

Definition 6.2.5 (λωd , λ
ω
d−1). We denote the Kasparov classes associated to the real unbounded

Kasparov modules from Proposition 6.2.4 by

[λωd ] B
[(
W⊗ Λ(Cd), πω ⊗ idC`0,d , F

(d)
)]
∈ KKR(A ⊗C`0,d,C),

and
[λωd−1] B

[(
W∂ ⊗ Λ(Cd−1), π∂ ⊗ idC`0,d−1 , F

(d−1)
)]
∈ KKR(A∂ ⊗C`0,d−1,C).

In the complex case, we can analogously define classes in KK(A ⊗ C`0,d,C) resp. KK(A∂ ⊗

C`0,d−1,C).
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Via the intersection product, these Kasparov classes can be interpreted as morphisms
between (real) K-groups, i.e.

λωd−1 : KR−(s−r+1)(A∂)
⊗[λωd−1]
−−−−−→ KR−(s−r+2−d)(C).

In the following, we will calculate the image of this map for the classes induced by disordered
IQPV with boundary. The result is the following theorem.

Theorem 6.2.6. Let [(J; φ)]∂ ∈ KKR−(s−r+1)(A∂) be the boundary class attached to a given
disordered IQPV (J, φ) of index (r, s). Assume that the reference disordered IQPV is local.
Then the strong topological invariant at the boundary is given by

λωd−1
(
[(J; φ)]∂

)
=

[
ker(T )

]
∈ KR−(s−r+2−d)(C),

where

T B π̂ω(Ĵ) ⊗ ωd−1 +
(
1 + π̂ω(Ĵ)2)1/2

d−1∑
j=1

X j√
1 + |X|2

⊗ ωd−1k j ∈ L
(
Ŵ ⊗ Λ(Cd−1)

)
.

Here, Λ(Cd−1) is considered as trivially graded, ωd−1 B k1 · · · kd−1 j1 · · · jd−1 and ker(T ) is
equipped with the C`r+d−1,s-representation φ defined by φ(ka) B Ka ⊗ ωd−1 for a = 1, . . . , r,
φ(kr+n) B 1 ⊗ jnωd−1 for n = 1, . . . , d − 1 and φ( jα) B Jα ⊗ ωd−1 for α = 1, . . . , s.

Analogously, for a complex disordered IQPV (J; φ) we have

λωd−1
(
[(J; φ)]∂

)
=

[
ker(T )

]
∈ K−(s−r+2−d)(C),

where T ∈ L
(
V̂ ⊗ Λ(Cd)

)
and φ : C`r+d−1,s → L

(
V̂ ⊗ Λ(Cd)

)
have the same form as in the

real case.

Proof. The complex case can be proved in exactly the same way as the real case and will
therefore not be discussed in the following.

Recall from Definition 5.2.11 that the boundary topological phase attached to a disordered
IQPV (J; φ) and local reference disordered IQPV corresponds to the Kasparov class

[(J; φ)]∂ =
[(
HA∂ ⊗C`0,1, ϕ, Ĵ ⊗ j1

)]
∈ KKR(C`s,r,A∂ ⊗C`0,1),

where Ĵ = s(J). The intersection product of this class and the class [λωd−1] is of the form

τC`0,d−1

(
[(J; φ)]∂

)
⊗A∂⊗C`0,1 ⊗̂C`0,d−1

τC`0,1

(
[λωd−1]

)
∈ KKR(C`s,r ⊗̂C`0,d−1,C`0,1).

where τ denotes the natural isomorphism of Definition 3.1.21. We have

τC`0,d−1

(
[(J; φ)]∂

)
=

[(
HA∂ ⊗C`0,1 ⊗̂C`0,d−1, ϕ ⊗ idC`0,d−1 , Ĵ ⊗ j1 ⊗ 1

)]
τC`0,1

(
[λωd−1]

)
=

[(
W∂ ⊗ Λ(Cd−1) ⊗̂C`0,1, π∂ ⊗ idC`0,d−1 ⊗ idC`0,1 , F

(d−1) ⊗ 1
)]

We apply on τC`0,d−1

(
[(J; φ)]∂

)
the orientation-preserving ∗-isomorphism C`0,1 ⊗̂C`0,d−1 �

C`0,d−1 ⊗̂C`0,1 defined by j1 ⊗ 1 7→ 1 ⊗ j1 and 1 ⊗ jn 7→ − jn ⊗ 1 for n = 1, . . . , d − 1, leading
to

τC`0,d−1

(
[(J; φ)]∂

)
=

[(
HA∂ ⊗C`0,d−1 ⊗̂C`0,1, ϕ

′, Ĵ ⊗ 1 ⊗ j1
)]
,
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where ϕ′ : C`s,r ⊗C`0,d−1 → B
(
HA∂ ⊗C`0,d−1 ⊗̂C`0,1

)
is given by

ϕ′(kα ⊗ 1) = Jα ⊗ 1 ⊗ j1, ϕ′( ja ⊗ 1) = Ka ⊗ 1 ⊗ j1, ϕ′(1 ⊗ jn) = 1 ⊗ − jn ⊗ 1

for α = 1, . . . , s, a = 1, . . . , r and n = 1, . . . , d − 1.
Now the tensor product of the Hilbert modules is given by(

HA∂ ⊗C`0,d−1 ⊗̂C`0,1

)
⊗πω

∂
⊗idC`0,d−1 ⊗̂ idC`0,1

(
W∂ ⊗ Λ(Cd−1) ⊗̂C`0,1

)
�HA∂ ⊗πω∂ W∂ ⊗ Λ(Cd−1) ⊗̂C`0,1,

where we used that C`0,d−1 · Λ(Cd−1) = Λ(Cd−1). Since the representation πω
∂

is unital, we
have

HA∂ ⊗πω∂ W∂ � `
2(N) ⊗W∂ = Ŵ.

Thus, we obtain the graded real Hilbert space Ŵ ⊗ Λ(Cd−1) ⊗̂C`0,1.

The orientation-preserving ∗-isomorphism C`s,r ⊗ C`0,d−1 � C`s,r+d−1 of Equation (2.4)
maps the ∗-morphism ϕ′ onto ψ : C`s,r+d−1 → B

(
Ŵ ⊗Λ(Cd−1) ⊗̂C`0,1

)
with ψ(kα) = ϕ′(kα ⊗

1), ψ( ja) = ϕ′( ja ⊗ 1) and ψ( jr+n) = ϕ′(1 ⊗ jn) for all α = 1, . . . , s, a = 1, . . . , r and
n = 1, . . . , d − 1.

It remains to determine the product operator. We follow [17, Sec. 3.3].
First we need a X j-connection overHA∂ ⊗πω∂ W∂. Such a connection, denoted by 1⊗∇ X j,

has already been derived in [17, Sec. 3.3]:

(1 ⊗∇ X j)
(
|m〉 ⊗ a

)
⊗ x B

(
|m〉 ⊗ a

)
⊗ X j(x) +

(
|m〉 ⊗ 1

)
⊗ [X j, π

ω
∂ (a)]x =

(
|m〉 ⊗ 1

)
⊗ X jπ

ω
∂ (a)x

for all
(
|m〉 ⊗ a

)
⊗ x ∈ HA∂ ⊗πω∂ W∂. The isomorphismHA∂ ⊗πω∂ W∂ � `

2(N) ⊗W∂ is on the
level of elementary tensors given by(

|m〉 ⊗ a
)
⊗ x 7→ |m〉 ⊗ πω∂ (a)x.

The operator 1⊗∇ X j is thereby mapped onto 1⊗ X j. The corresponding F(d−1)-connection is
given by

F B
d−1∑
j=1

X j√
1 + |X|2

⊗ k j ∈ L
(
Ŵ ⊗ Λ(Cd−1)

)
.

It is easy to see that the operator Ĵ ⊗ 1 over HA∂ ⊗πω∂ W∂ is mapped onto π̂ω(Ĵ) via the

isomorphismHA∂ ⊗πω∂ W∂ � Ŵ.
Now we have everything in place in order to apply Proposition 3.1.25. The premises of

this proposition are satisfied, and therefore the intersection product is given by the class[(
Ŵ ⊗ Λ(Cd−1) ⊗̂C`0,1, ψ, π̂

ω(Ĵ) ⊗ 1 ⊗ j1 +
(
1 ⊗ 1 + π̂ω(Ĵ)2 ⊗ 1

)1/2
F ⊗ 1

)]
(6.6)

in KKR
(
C`s,r+d−1,C`0,1

)
.

In order to classify the resulting class in KR−(s−r−d+2)(C) as in Subsection 3.1.3, it remains
to calculate the class in KRr+d−1,s(C) � KR−(s−r−d+2)(C) which is determined by the inverse
image of the Kasparov class above under the isomorphism in Theorem 3.1.36.
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To that end, we first apply the even unitary isomorphism

u B 1 ⊗ 1 ⊕ 1 ⊗ j1 : Λ(Cd−1)(0̄) ⊗̂C`0,1 ⊕ Λ(Cd−1)(1̄) ⊗̂C`0,1

−→ Λ(Cd−1)(0̄) ⊗C`0,1 ⊕ |Λ(Cd−1)(1̄)| ⊗C`0,1 � |Λ(Cd−1)| ⊗C`0,1,

where, for the sake of readability, we denote by |Λ(Cd−1)(1̄)| and |Λ(Cd−1)| the Hilbert spaces
Λ(Cd−1)(1̄) and Λ(Cd−1) equipped with the trivial grading.

Since the grading on Λ(Cd−1) is defined by the grading operatorωd−1 = k1 · · · kd−1 j1 · · · jd−1,
we can also write this isomorphism as

u = P+ ⊗ 1 + P− ⊗ j1 : Λ(Cd−1) ⊗̂C`0,1 −→ |Λ(Cd−1)| ⊗C`0,1,

where P± B 1
2 (1 ± ωd−1) denote the projections onto the even/odd part of Λ(Cd−1). We have

u(1⊗ j1)u∗ = ωd−1⊗ j1, u(kn⊗1)u∗ = ωd−1kn⊗ j1, u( jn⊗1)u∗ = ωd−1 jn⊗ j1 ∀n = 1, . . . , d−1.

This isomorphism maps the Kasparov class (6.6) onto[(
Ŵ ⊗ |Λ(Cd−1)| ⊗C`0,1, ψ

′, π̂ω(Ĵ) ⊗ ωd−1 ⊗ j1 +
((

1 + π̂ω(Ĵ)2)1/2
⊗ ωd−1

)
F ⊗ j1

)]
(6.7)

in KKR
(
C`s,r+d−1,C`0,1

)
, where ψ′(kα) = Jα⊗ωd−1⊗ j1 for α = 1, . . . , s, ψ′( ja) = Ka⊗ωd−1⊗ j1

for a = 1, . . . , r and ψ′( jr+n) = 1 ⊗ −ωd−1 jn ⊗ j1 = 1 ⊗ jnωd−1 ⊗ j1 for n = 1, . . . , d − 1.
It can now easily be checked that the inverse of the isomorphism of Theorem 3.1.36 maps

the Kasparov class (6.7) onto the KR-class[(
π̂ω(Ĵ) ⊗ ωd−1 +

((
1 + π̂ω(Ĵ)2)1/2

⊗ ωd−1
)
F, φ

)]
∈ KRr+d−1,s(C) = KR−(s−r−d+2)(C),

where φ : C`r+d−1,s → L
(
Ŵ ⊗ |Λ(Cd−1|

)
with φ(ka) = Ka ⊗ ωd−1 for a = 1, . . . , r, φ(kr+n) =

1 ⊗ jnωd−1 for n = 1, . . . , d − 1 and φ( jα) = Jα ⊗ ωd−1 for α = 1, . . . , s.
Finally, by the results of Subsection 3.1.3, the class is determined by the Clifford module

ker
(
π̂ω(Ĵ) ⊗ ωd−1 +

((
1 + π̂ω(Ĵ)2)1/2

⊗ ωd−1
)
F
)
⊆ Ŵ ⊗ |Λ(Cd−1)|,

equipped with Clifford representation φ. This proves the theorem.
�

For a given value for the dimension d, a numerical value for the topological invariants of
the above theorem can be determined as in the one-dimensional case in Subsection 6.2.1.

We close this section with the following important observation about strong topological
invariants at the boundary.

Proposition 6.2.7. Let

∂i : KR−(s−r+2)(A)→ KR−(s−r+1)(A∂i ) and ∂i : K−(s−r+2)(A)→ K−(s−r+1)(A∂i )

for i ∈ {1, . . . , d} denote the bulk-boundary maps obtained by introducing a boundary per-
pendicular to the ith direction. Here, A∂i and A∂i denote the boundary algebras generated by
C(Ω) ⊗ End(W) resp. C(Ω) ⊗ End(V) and the lattice translations parallel to this boundary.
Then

λωd−1 ◦ ∂i = (−1)i− jλωd−1 ◦ ∂ j ∀i, j ∈ {1, . . . , d}, i , j, ω ∈ Ω.
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Proof. We only prove the real case since the proof of the complex case is literally the same.
By [17, Thm. 3.4], we have

[∂d] ⊗A∂ [λωd−1] = (−1)d−1[λωd ] ∈ KKR
(
A ⊗C`0,d,C

)
. (6.8)

The proof of this theorem in particular shows that

[∂d] ⊗A∂ [λωd−1] =
[(
W⊗ Λ(Cd), πω ⊗ idC`0,d , F

(d)
)]
.

The sign occurring in Equation (6.8) is due to the reordering of the Clifford generators k1 7→

kd and k j+1 7→ k j for j = 1, . . . , d − 1, which changes the orientation by the factor (−1)d−1.
Therefore, the inspection of the proof of this theorem yields the more general result

[∂i] ⊗A∂i
[λωd−1] = (−1)i−1[λωd ]

for all i = 1, . . . , d. It follows

[∂i] ⊗A∂i
[λωd−1] = (−1)i−1[λωd ] = (−1)i−1(−1)− j+1[∂ j] ⊗A∂ j

[λωd−1] = (−1)i− j[∂ j] ⊗A∂ j
[λωd−1].

The formulation in the proposition then follows by the definition of λωd−1 and the functoriality
of the KKR-groups. �

Proposition 6.2.7 implies that the strong topological invariant is, up to a sign, the same
on all boundaries. Since topological invariants in the physical context are expected to corre-
spond to boundary currents (e.g. of charge, heat or spin), this sign may be interpreted as an
orientation for these currents. For example, in the quantum Hall effect, the strong topological
invariant is reflected at the boundary by oriented charge currents along the boundary.
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Chapter Seven

Outlook

In this final chapter we mention some open questions and topics that have not been addressed
in this work but are closely related.

Crystalline symmetries

We have established a rigorous approach for the topological classification of disordered topo-
logical insulators and superconductors by assuming that the observables are translationally
equivariant and symmetric w.r.t. local symmetries. Thus, in our approach, the only kind of
symmetries that act non-trivially on the lattice, so-called crystalline symmetries, were trans-
lations. However, experiments on topological insulators made apparent that other crystalline
symmetries, such as rotation- or mirror-symmetries, can also play an important role for the
topological phases.

During the last years, the role of more general crystalline symmetries on the topological
phases has been extensively studied for clean systems using the tools of the Fourier–Bloch
theory, see [63, 79, 80, 3] for an overview. A rigorous classification of disordered topological
insulators and superconductors with crystalline symmetries is missing to the present date. Our
construction of the algebra of observables allows for the inclusion of additional symmetries
in the same way as for the translational symmetries. Therefore, we consider our approach
as suitable for establishing such a classification scheme in the disordered case. Moreover,
our construction is formulated explicitly in terms of operators over the physical lattice, thus
allowing for a more explicit view on the influence of crystalline symmetries on topological
phases.

Higher order topological insulators

We have established the bulk-boundary correspondence for a flat boundary perpendicular to
a translational direction of the underlying lattice. It has been proved in [18], on an abstract
level, that the bulk-boundary correspondence still holds if the boundary is flat and perpendic-
ular to an arbitrary direction, i.e. not necessarily perpendicular to a translational direction.

An even more general boundary can be considered by allowing boundaries with corners
and edges. Such boundaries are physically interesting for the following reason.

In order to consider a bulk-boundary correspondence for systems with crystalline symme-
tries, e.g. a rotational symmetry, one has to consider boundaries that are invariant under these
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symmetries. This can only be achieved by boundaries with corners. It has been observed
experimentally that in this case the boundary states can exhibit a special type of localisation.
Namely, it might happen that the boundary states are localised at the corners or edges corre-
sponding to sub-lattices of co-dimension larger than one. In this case, one calls such systems
higher order topological insulators or higher order topological superconductors. The most
prominent experimental realisations of higher order topological insulators are bismuth [75]
and SnTe [74].

There are currently no systematic results on the bulk-boundary correspondence of these
higher order systems including disorder.

Topological invariants

We have presented a collection of topological invariants that quantify the topological phases
in the bulk and at the boundary. As explained there, this picture is not yet complete. In
the bulk, we are missing a systematic explicit formula for the torsion valued topological
invariants. Kellendonk has already established a general approach for these torsion valued
invariants. However, the application of this approach is in our context not yet established on
an explicit level.

At the boundary, there is currently no canonical approach for the calculation of the weak
topological invariants. This problem is addressed in [20, 67].

Strong disorder

An issue that has not been addressed in this work is the extension of bulk-boundary corre-
spondence and topological phases into the regime of strong disorder. Disorder is called strong
if there are states which are localised due to disorder, so-called Anderson localisation. These
localised states violate the gap condition in the bulk, which is fundamental for the classifi-
cation of topological phases in terms of K-theory. Therefore, it is currently not possible to
include strong disorder into the K-theoretic picture of topological phases.

In the literature, the strong disorder regime is usually approached by first deriving formu-
las for the numerical topological invariants in the bulk and at the boundary and then showing
that these are invariant under strong disorder in a certain sense. This strategy has already
been worked out for the complex symmetry classes in [66]. For the real symmetry classes,
there are only partial results [19, §5].

Systems with particle-particle interactions

Many interesting phenomena in solid state physics stem from the particle-particle interactions
of the electrons. In our consideration, we relied crucially on the assumptions that there is
an effective model of free-fermion quasi-particles that governs the physical features of the
underlying physical system. However, such an effective model does not exist in general. The
most prominent physical example where there is in general no effective free-fermion quasi-
particle picture is the fractional quantum Hall effect (FQHE) [90, §7.2,7.3]. Nevertheless,
there are topological phenomena in the FQHE which are similar to the ones of the QHE [30].
Therefore, a systematic topological classification of interacting systems would be of great
importance.
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To the present date, there are no systematic K-theoretic approaches for interacting sys-
tems.
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