Orschel, Charlotte ORCID: 0000-0002-5323-9475 (2026). Deciphering metastatic signaling cascades in small cell lung cancer. PhD thesis, Universität zu Köln.

[thumbnail of Charlotte_Orschel_Doktorarbeit_08_01_26.pdf] PDF
Charlotte_Orschel_Doktorarbeit_08_01_26.pdf

Download (4MB)

Abstract

Down to the present-day small cell lung cancer (SCLC) remains one of the deadliest cancer entities. Due to its early metastasis formation and wide therapy resistance, SCLC occupies a special place within cancer research. Given the limited treatment options, particularly in advanced stages, it is vital to examine how certain signaling cascades contribute to the aggressive phenotype, immune evasion and high migration potential of SCLC. My dissertation mainly focuses on the CD29-dependent signaling pathway and MHC-I dependent regulation of the tumor micro-milieu and discusses their involvement in processes of metastasis formation and immune evasion mechanisms of SCLC. In our initial screening, we observed elevated CD29 expression in liver metastases in both human and murine samples. Therefore, CD29 Knockout (KO) clones were generated using CRISPR to test the characteristics on functional and cellular level in comparison to the original liver metastasis-derived cell line. To evaluate migration behavior, the different clones and the wild type were subjected to a series of cell migration and cell–cell interaction tests (Scratch Assay, Boyden Chamber). To elucidate the functional role of CD29 in metastasis formation, the CD29 KO clones were also tested in an in vivo setting. In vivo, tumors were induced via orthotopic and intravenous injection of the respective tumor cells into immunocompetent and immune deficient mouse models. A fluorescence-activated cell sorting (FACS) readout of tumor and metastasis tissue provided insights into immune cell involvement and tumor expression markers. Additionally, immunohistochemistry (IHC) was applied to assess tumor cells and desmoplastic reactions ex vivo. In vitro migration assays demonstrated that CD29 KO abrogates fibronectin- and angiopoietin-2 (ANG-2) stimulated migration. In vivo experiments further revealed that, in contrast to the wild type SCLC cells, CD29 KO clones did not form liver metastasis, which was confirmed by flow cytometry and IHC. Altogether, CD29 is a potent driver of metastasis in SCLC, which can be abrogated by knockout. Furthermore, my dissertation explores MHC-I and its role in SCLC immune evasion and metastasis formation. In a patient sample screen, we found a downregulation of MHC-I in SCLC liver metastases. To investigate the impact of MHC-I loss on tumor-immune interactions, MHC-I-deficient clones (MHC-I KO) were generated by targeted knockout of the β2 microglobulin (B2M) gene. The MHC-I KO was tested in vivo by orthotopic and intravenous injection and presented a more aggressive, fast-growing phenotype. In MHC-I KO tumors, we found an enhanced reaction of the innate immune system in the liver metastases and a decreased T cell answer in the pleural effusion. A comparison between primary tumors and metastases revealed increased phosphorylation of ERBB2 in SCLC metastases. Initial in vitro experiments with an ERBB2 inhibitor demonstrated suppression of key downstream signaling pathways and induction of immune activating signals via TBK1. Notably, in our autochthonous SCLC mouse model, combined blockade of PD-1 and ERBB2 resulted in a significant extension of both overall and progression-free survival. Overall, this study states the importance of the CD29-ANG-2 signaling axis in SCLC metastasis formation and portrays the immune evading effects caused by MHC-I loss. Based on these findings, potential therapeutic approaches are discussed and tested in preclinical setting.

Item Type: Thesis (PhD thesis)
Translated title:
Title
Language
Entschlüsselung metastatischer Signalkaskaden beim kleinzelligen Lungenkarzinom
German
Translated abstract:
Abstract
Language
Das kleinzellige Lungenkarzinom (SCLC) zählt nach wie vor zu den tödlichsten Krebserkrankungen. Die frühe Metastasierung und die schnelle Entwicklung von Resistenzen gegenüber klassischen Therapien stellen eine besondere Herausforderung dar. Da es vor allem im fortgeschrittenen Stadium kaum wirksame Behandlungsoptionen gibt, ist es von besonderer Bedeutung, die Mechanismen zu ergründen, die für die aggressive Natur, die hohe Migrationsfähigkeit und das Umgehen des Immunsystems des SCLCs verantwortlich sind. In meiner Dissertation fokussiere ich mich auf den CD29-abhängigen Signalweg und die MHC I-abhängige Regulation im Tumormikromilieu und erörtere deren Beteiligung an Prozessen der Metastasenbildung und Immunresistenz. Zunächst zeigte ein breites Screening von SCLC-Probenpaaren aus Primärtumor und Lebermetastasen, menschlichen und murinen Ursprungs, eine erhöhte CD29 Expression im Metastasengewebe. Um die genaue Funktion von CD29 zu verstehen, wurden Knockout-(KO) SCLC Klone mithilfe von CRISPR erzeugt. Diese Klone wurden auf zellulärer und funktioneller Ebene mit der ursprünglichen, aus Lebermetastasen gewonnenen Zelllinie verglichen. Dazu wurden die Verfahren des Scratch Assays und der Boyden Chamber angewandt, um das Migrations- bzw. Invasionsverhalten des CD29 KO zu analysieren. Zusätzlich wurden in vivo Experimente durchgeführt, bei denen CD29 KO und Wildtyp SCLC Tumorzellen in immunkompetente und immundefiziente Mäuse injiziert wurden, um die Metastasenbildung zu untersuchen. Die Ergebnisse zeigten, dass der CD29 KO das Migrationsvermögen der Tumorzellen hemmte, insbesondere unter Stimulation mit Fibronektin und Angiopoietin-2 (ANG-2). In vivo konnten die CD29 KO Tumorzellen im Gegensatz zum Wildtyp keine Lebermetastasen bilden, was durch immunhistochemische Analysen und Durchflusszytometrie bestätigt wurde. Insgesamt zeigt sich, dass CD29 eine entscheidende Rolle bei der Metastasenbildung des SCLCs spielt, was durch einen Knockout unterdrückt werden kann. Im weiteren Verlauf, konzentriert sich meine Dissertation auf MHC-I und dessen Rolle bei der Umgehung der Immunabwehr und Metastasenbildung. Bei der Analyse der gepaarten SCLC Patientenproben zeigte sich eine reduzierte MHC-I Expression in den Lebermetastasen. Zur Untersuchung der Auswirkungen eines MHC-I Verlusts auf die Wechselwirkungen zwischen Tumor und Immunsystem wurden MHC-I defiziente Klone (MHC-I KO) durch gezielten Knockout des β2-Mikroglobulin-Gens (B2M) erzeugt. In vivo zeigte sich, dass die MHC-I KO Tumore deutlich aggressiver wuchsen. Dabei wurde eine verstärkte Aktivierung des angeborenen Immunsystems in den Lebermetastasen und eine reduzierte T-Zell-Antwort im Pleuraerguss beobachtet. Allerdings zeigte sich keine ausgeprägte Lebermetastasierung. Ein Vergleich zwischen Primärtumoren und Metastasen ergab eine verstärkte Phosphorylierung von ERBB2 in den SCLC Metastasen. Erste in vitro Experimente mit einem ERBB2 Inhibitor 10 zeigten eine Hemmung zentraler nachgeschalteter Signalwege und die Aktivierung immunstimulierender Signale durch TBK1. In unserem autochthonen SCLC Mausmodell erzielte die kombinierte Blockade von PD-1 und ERBB2 eine signifikante Verlängerung des Gesamtüberlebens, sowie des progressionsfreien Überlebens. Zusammenfassend stellt diese Dissertation die entscheidende Bedeutung der CD29-ANG-2-Signalkaskade für die Metastasenbildung von SCLC sowie die immunologischen Folgen des MHC-I Verlusts dar, und erörtert darauf basierend mögliche Therapieansätze.
German
Creators:
Creators
Email
ORCID
ORCID Put Code
Orschel, Charlotte
orschelcharlotte@gmail.de
UNSPECIFIED
URN: urn:nbn:de:hbz:38-795987
Date: 2026
Language: English
Faculty: Faculty of Medicine
Divisions: Faculty of Medicine > Innere Medizin > Klinik I für Innere Medizin - Hämatologie und Onkologie
Subjects: Medical sciences Medicine
Uncontrolled Keywords:
Keywords
Language
Metastasis
German
SCLC
German
Targeted theraoy
German
Date of oral exam: 4 December 2025
Referee:
Name
Academic Title
Meder, Lydia
Professorin Dr. nat. med.
Stripecke, Renata
Universitätsprofessorin Dr. rer. nat.
Funders: Mildred Scheel School of Oncology
Projects: Dissertation
References: Saltos A, Shafique M, Chiappori A. Update on the Biology, Management, and Treatment of Small Cell Lung Cancer (SCLC). Front Oncol. 2020 July 16;10:1074. Soomro Z, Youssef M, Yust-Katz S, Jalali A, Patel AJ, Mandel J. Paraneoplastic syndromes in small cell lung cancer. J Thorac Dis. 2020;12(10):6253–63. [Internet]. American cancer society. Lung Cancer Survival Rates | 5-Year Survival Rates for Lung Cancer [cited 2025 Jan 11]. Available from: https://www.cancer.org/cancer/types/lung-cancer/detection-diagnosis-staging/survival rates.html Ko J, Winslow MM, Sage J. Mechanisms of small cell lung cancer metastasis. EMBO Mol Med. 2021;13(1):13122. Nakazawa K, Kurishima K, Tamura T, Kagohashi K, Ishikawa H, Satoh H, et al. Specific organ metastases and survival in small cell lung cancer. Oncol Lett. 2012;4(4):617–20. Micke P, Faldum A, Metz T, Beeh KM, Bittinger F, Hengstler JG, et al. Staging small cell lung cancer: Veterans Administration Lung Study Group versus International Association for the Study of Lung Cancer--what limits limited disease? Lung Cancer Amst Neth. 2002 Sept;37(3):271–6. Demedts IK, Vermaelen KY, Meerbeeck JP van. Treatment of extensive-stage small cell lung carcinoma: current status and future prospects. Eur Respir J. 2009 Dec 31;35(1):202–15. Chen J, Jiang R, Garces YI, Jatoi A, Stoddard SM, Sun Z, et al. Prognostic factors for limited-stage small cell lung cancer: a study of 284 patients. Lung Cancer Amst Neth. 2010;67(2):221–6. Kim CH, Lee YC, Hung RJ, McNallan SR, Cote ML, Lim WY, et al. Exposure to secondhand tobacco smoke and lung cancer by histological type: a pooled analysis of the International Lung Cancer Consortium (ILCCO. Int J Cancer [Internet]. 2014;135(8). Available from: https://doi.org/10.1002/ijc.28835 10. George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53. 11. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A. Induction of small cell lung cancer by somatic inactivation of both TrTP53 and RB1 in a conditional mouse model. Cancer Cell. 2003;4(3):181–9. 12. Lazzari C, Mirabile A, Bulotta A, Viganó MG, Ogliari FR, Ippati S, et al. History of Extensive Disease Small Cell Lung Cancer Treatment: Time to Raise the Bar? Rev Lit Cancers. 2021;13(5):998. 13. Dingemans AC, Früh M, Ardizzoni A, Besse B, Faivre-Finn C, Hendriks LE, et al. Electronic address: clinicalguidelines@esmo.org. Ann Oncol Off J Eur Soc Med Oncol. 2021;32(7):839–53. 14. Jarzebska N, Karetnikova ES, Markov AG, Kasper M, Rodionov RN, Spieth PM. Scarred Lung. An Update on Radiation-Induced Pulmonary Fibrosis. Front Med. 2021;7:585756. 15. Asai N, Ohkuni Y, Kaneko N, Yamaguchi E, Kubo A. Relapsed small cell lung cancer: treatment options and latest developments. Ther Adv Med Oncol. 2014 Mar;6(2):69–82. 16. Johnson BE, Fischer T, Fischer B, Dunlop D, Rischin D, Silberman S, et al. Phase II study of imatinib in patients with small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2003 Dec 1;9(16 Pt 1):5880–7. 17. Moore AM, Einhorn LH, Estes D, Govindan R, Axelson J, Vinson J, et al. Gefitinib in patients with chemo-sensitive and chemo-refractory relapsed small cell cancers: a Hoosier Oncology Group phase II trial. Lung Cancer Amst Neth. 2006 Apr;52(1):93–7. 18. Liu SV, Reck M, Mansfield AS, Mok T, Scherpereel A, Reinmuth N, et al. Updated Overall Survival and PD-L1 Subgroup Analysis of Patients With Extensive-Stage Small-Cell Lung Cancer Treated With Atezolizumab, Carboplatin, and Etoposide (IMpower133. J Clin Oncol Off J Am Soc Clin Oncol. 2021;39(6):619–30. 19. Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N Engl J Med. 2018 Dec 6;379(23):2220–9. 20. Denny SK, Yang D, Chuang CH, Brady JJ, Lim JS, Grüner BM, et al. Nfib Promotes Metastasis through a Widespread Increase in Chromatin Accessibility. Cell. 2016 July 14;166(2):328–42. 21. Ko JH, Lambert KE, Bhattacharya D, Lee MC, Colón CI, Hauser H, et al. Small Cell Lung Cancer Plasticity Enables NFIB-Independent Metastasis. Cancer Res. 2024 Jan 16;84(2):226–40. 22. Ireland AS, Micinski AM, Kastner DW, Guo B, Wait SJ, Spainhower KB, et al. MYC Drives Temporal Evolution of Small Cell Lung Cancer Subtypes by Reprogramming Neuroendocrine Fate. Cancer Cell. 2020 July 13;38(1):60-78.e12. 23. Mollaoglu G, Guthrie MR, Böhm S, Brägelmann J, Can I, Ballieu PM, et al. MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition. Cancer Cell. 2017 Feb 13;31(2):270–85. 24. Kawasaki K, Salehi S, Zhan YA, Chen K, Lee JH, Salataj E, et al. FOXA2 promotes metastatic competence in small cell lung cancer. Nat Commun. 2025 May 26;16(1):4865. 25. Xie M, Vuko M, Rodriguez-Canales J, Zimmermann J, Schick M, O’Brien C, et al. Molecular classification and biomarkers of outcome with immunotherapy in extensive stage small-cell lung cancer: analyses of the CASPIAN phase 3 study. Mol Cancer. 2024 May 30;23(1):115. 26. Rudin CM, Balli D, Lai WV, Richards AL, Nguyen E, Egger JV, et al. Clinical Benefit From Immunotherapy in Patients With SCLC Is Associated With Tumor Capacity for Antigen Presentation. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2023 Sept;18(9):1222–32. 27. Kim YS, Nabet BY, Cortez BN, Sun NY, Sebastian R, Redon CE, et al. NOTCH1 reverses immune suppression in small cell lung cancer through reactivation of STING. J Clin Invest. 2025 July 8;e185423. 28. Choudhury NJ, Lai WV, Makhnin A, Heller G, Eng J, Li B, et al. A Phase I/II Study of Valemetostat (DS-3201b), an EZH1/2 Inhibitor, in Combination with Irinotecan in Patients with Recurrent Small-Cell Lung Cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2024 Sept 3;30(17):3697–703. 29. Hiatt JB, Sandborg H, Garrison SM, Arnold HU, Liao SY, Norton JP, et al. Inhibition of LSD1 with Bomedemstat Sensitizes Small Cell Lung Cancer to Immune Checkpoint Blockade and T-Cell Killing. Clin Cancer Res Off J Am Assoc Cancer Res. 2022 Oct 14;28(20):4551–64. 30. Liotta LA, Kohn EC. Invasion and Metastases. 5th ed. RC B Jr, DW K, RE P, editors. Hamilton (ON: BC Decker; 2000. 31. Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res. 2011;728(1–2):23–34. 32. Zhou ZH, Ji CD, Xiao HL, Zhao HB, Cui YH, Bian XW. Reorganized Collagen in the Tumor Microenvironment of Gastric Cancer and Its Association with Prognosis. J Cancer. 2017;8(8):1466–76. 33. Moreau JF, Pradeu T, Grignolio A, Nardini C, Castiglione F, Tieri P, et al. The emerging role of ECM crosslinking in T cell mobility as a hallmark of immunosenescence in humans. Ageing Res Rev. 2017;35:322–35. 34. Sung B, Ketova T, Hoshino D. Directional cell movement through tissues is controlled by exosome secretion. Nature Communicationndr7164; 2015. 35. Liu Y, Cao X. Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell. 2016 Nov 14;30(5):668–81. 36. Feldman LE, Shin KC, Natale RB, Todd RF. Beta 1 integrin expression on human small cell lung cancer cells. Cancer Res. 3rd;1991;51(4):1065-70. 37. Wang Z, Wang W, Luo Q, Song G. High matrix stiffness accelerates migration of hepatocellular carcinoma cells through the integrin β1-Plectin-F-actin axis. BMC Biol. 2025 Jan 9;23(1):8. 38. Yuan J, Yuan L, Yang L, Chinnathambi A, Alharbi SA, Huang J, et al. Tinagl1 restores tamoxifen sensitivity and blocks fibronectin-induced EMT by simultaneously blocking the EGFR and β1-integrin/FAK signaling pathways in tamoxifen-resistant breast cancer cells. IUBMB Life. 2025 Jan;77(1):e2940. 39. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. 40. Langereis JD. Neutrophil integrin affinity regulation in adhesion, migration, and bacterial clearance. Cell Adhes Migr. 2013;7(6):476–81. 41. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22. 42. Lawson MH, Cummings NM, Rassl DM, Vowler SL, Wickens M, Howat WJ, et al. Bcl-2 and β1-integrin predict survival in a tissue microarray of small cell lung cancer. Br J Cancer. 2010 Nov;103(11):1710–5. 43. Oshita F, Kameda Y, Hamanaka N, Saito H, Yamada K, Noda K. High expression of integrin beta1 and TP53 is a greater poor prognostic factor than clinical stage in small cell lung cancer. Am J Clin Oncol. 2004;27(3):215–9. 44. Sethi T, Rintoul RC, Moore SM, MacKinnon AC, Salter D, Choo C, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: A mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med. 1999 June;5(6):662 8. 45. Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007;8(5):215. 46. Lal H, Verma SK, Foster DM, Golden HB, Reneau JC, Watson LE, et al. Integrins and proximal signaling mechanisms in cardiovascular disease. Front Biosci Landmark Ed. 2009;14(6):2307–34. 47. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(Pt 20):3861–3. 48. Shin N, Son GM, Shin DH, Kwon MS, Park BS, Kim HS, et al. Cancer-Associated Fibroblasts and Desmoplastic Reactions Related to Cancer Invasiveness in Patients With Colorectal Cancer. Ann Coloproctology. 2019 Feb;35(1):36–46. 49. Topalovski M, Brekken RA. Matrix control of pancreatic cancer: New insights into fibronectin signaling. Cancer Lett. 2016;381(1):252–8. 50. Sun Y, Zhao C, Ye Y, Wang Z, He Y, Li Y, et al. High expression of fibronectin 1 indicates poor prognosis in gastric cancer. Oncol Lett. 2020;19(1):93–102. 51. Hegele A, Heidenreich A, Kropf J, Knobloch R, Varga Z, Hofmann R, et al. Plasma levels of cellular fibronectin in patients with localized and metastatic renal cell carcinoma. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2004;25(3):111–6. 52. Saito N, Nishimura H, Kameoka S. Clinical significance of fibronectin expression in colorectal cancer. Mol Med Rep. 2008;1(1):77–81. 53. Hakanpaa L, Sipila T, Leppanen VM, Gautam P, Nurmi H, Jacquemet G, et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun. 2015 Jan 30;6(1):5962. 54. Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov. 2017;16(9):635–61. 55. Falcón BL, Hashizume H, Koumoutsakos P, Chou J, Bready JV, Coxon A, et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol. 2009;175(5):2159–70. by 56. Dong Z, Chen J, Yang X, Zheng W, Wang L, Fang M, et al. Ang-2promotes lung cancer metastasis increasing 2018;9(16):12705–17. epithelial-mesenchymal transition. Oncotarget. 57. Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023 May 22;8(1):1 35. 58. Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012;33(3):119–26. 59. Zhao X, Qu J, Sun Y, Wang J, Liu X, Wang F, et al. Prognostic significance of tumor associated macrophages in breast cancer: a meta-analysis of the literature. Oncotarget. 2017;8(18):30576–86. 60. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000 Oct 2;192(7):1027–34. 61. Zheng Y, Fang YC, Li J. PD-L1 expression levels on tumor cells affect their immunosuppressive activity. Oncol Lett. 2019;18(5):5399–407. 62. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9. 63. Cullen SP, Martin SJ. Fas and TRAIL “death receptors” as initiators of inflammation: Implications for cancer. Semin Cell Dev Biol. 2015;39:26–34. 64. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60. 65. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31:443–73. 66. Thongsin N, Wattanapanitch M. Generation of B2M bi-allelic knockout human induced pluripotent stem cells (MUSIi001-A-1) using a CRISPR/Cas9 system. Stem Cell Res. 2021;56:102551. 67. Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol. 2021;12:636568. 68. Ugurel S, Spassova I, Wohlfarth J, Drusio C, Cherouny A, Melior A, et al. MHC class-I downregulation in PD-1/PD-L1 inhibitor refractory Merkel cell carcinoma and its potential reversal by histone deacetylase inhibition: a case series. Cancer Immunol Immunother. 2019;68(6):983–90. 69. Zhou F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol. 2009;28(3–4):239–60. 70. Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer. 2021;21(3):181–97. 71. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37. 72. Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007 Oct;26(45):6469–87. 73. Chandrasekaran S, Sasaki M, Scharer CD, Kissick HT, Patterson DG, Magliocca KR, et al. Phosphoinositide 3-Kinase Signaling Can Modulate MHC Class I and II Expression. Mol Cancer Res MCR. 2019;17(12):2395–409. 74. Figueroa-Magalhães MC, Jelovac D, Connolly R, Wolff AC. Treatment of ERBB2-positive breast cancer. Breast Edinb Scotl. 2014;23(2):128–36. 75. Dirix LY, Takacs I, Jerusalem G, Nikolinakos P, Arkenau HT, Forero-Torres A, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat. 2018 Feb;167(3):671–86. 76. Micke P, Hengstler JG, Ros R, Bittinger F, Metz T, Gebhard S, et al. c-erbB-2 expression in small-cell lung cancer is associated with poor prognosis. Int J Cancer. 2001;92(4):474 9. 77. Potti A, Willardson J, Forseen C, Kishor Ganti A, Koch M, Hebert B, et al. Predictive role of HER-2/neu overexpression and clinical features at initial presentation in patients with extensive stage small cell lung carcinoma. Lung Cancer Amst Neth. 2002;36(3):257–61. 78. Minami T, Kijima T, Kohmo S, Arase H, Otani Y, Nagatomo I, et al. Overcoming chemoresistance of small-cell lung cancer through stepwise ERBB2-targeted antibody dependent cell-mediated cytotoxicity and VEGF-targeted antiangiogenesis. Sci Rep. 2013;3:2669. 79. Wu S, Zhang Q, Zhang F, Meng F, Liu S, Zhou R, et al. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat Cell Biol. 2019 Aug;21(8):1027–40. 80. Mimura K, Shiraishi K, Mueller A, Izawa S, Kua LF, So J, et al. The MAPK pathway is a predominant regulator of HLA-A expression in esophageal and gastric cancer. J Immunol Baltim. 2013;191(12):6261–72. 81. Sapkota B, Hill CE, Pollack BP. Vemurafenib enhances MHC induction in BRAFV600E homozygous melanoma cells. Oncoimmunology. 2013;2(1):22890. 82. Russell W, Burch R. The principles of humane experimental technique. 1959. 83. Nevalainen T, Berge E, Gallix P, Jilge B, Melloni E, Thomann P, et al. FELASA guidelines for education of specialists in laboratory animal science (Category D). Report of the Federation of Laboratory Animal Science Associations Working Group on Education of Specialists (Category D) accepted by the FELASA Board of Management. Lab Anim. 1999 Jan;33(1):1–15. 84. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007 May;39(2):175–91. 85. Meder L, Schuldt P, Thelen M, Schmitt A, Dietlein F, Klein S, et al. Combined VEGF and PD-L1 Blockade Displays Synergistic Treatment Effects in an Autochthonous Mouse Model of Small Cell Lung Cancer. Cancer Res. 2018 Aug 1;78(15):4270–81. 86. Meder L, Orschel CI, Otto CJ, Koker M, Brägelmann J, Ercanoglu MS, et al. Blocking the angiopoietin-2-dependent integrin β-1 signaling axis abrogates small cell lung cancer invasion and metastasis. JCI Insight. 2024 May 22;9(10):e166402. 87. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014 Mar;15(3):178–96. 88. George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015 Aug 6;524(7563):47–53. 89. Tlemsani C, Pongor L, Elloumi F, Girard L, Huffman KE, Roper N, et al. SCLC-CellMiner: A Resource for Small Cell Lung Cancer Cell Line Genomics and Pharmacology Based on Genomic Signatures. Cell Rep. 2020 Oct 20;33(3):108296. 90. Hakanpaa L, Sipila T, Leppanen VM, Gautam P, Nurmi H, Jacquemet G, et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun. 2015 Jan 30;6:5962. 91. Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 2011 July 18;63(8):610–5. 92. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol Baltim Md 1950. 1995 Jan 1;154(1):180–91. 93. Brea EJ, Oh CY, Manchado E, Budhu S, Gejman RS, Mo G, et al. Kinase Regulation of Human MHC Class I Molecule Expression on Cancer Cells. Cancer Immunol Res. 2016 Nov;4(11):936–47. 94. Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin Cancer Res. 2019 Apr 15;25(8):2392–402. 95. Chao MP, Weissman IL, Majeti R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24(2):225–32. 96. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer Oxf Engl 1990. 2009 Jan;45(2):228–47. 97. Usman S, Waseem NH, Nguyen TKN, Mohsin S, Jamal A, Teh MT, et al. Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers. 2021 Oct 5;13(19):4985. 98. Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci CMLS. 2011;68(18):3033–46. 99. Hu L, Lau SH, Tzang CH, Wen JM, Wang W, Xie D, et al. Association of Vimentin overexpression and hepatocellular carcinoma metastasis. Oncogene. 2004;23(1):298 302. 100. Huck L, Pontier SM, Zuo DM, Muller WJ. beta1-integrin is dispensable for the induction of ErbB2 mammary tumors but plays a critical role in the metastatic phase of tumor progression. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15559–64. 101. Vassos N, Rau T, Merkel S, Feiersinger F, Geppert CI, Stürzl M, et al. Prognostic value of β1 integrin expression in colorectal liver metastases. Int J Clin Exp Pathol. 2014;7(1):288–300. 102. Xu Z, Zou L, Ma G, Wu X, Huang F, Feng T, et al. Integrin β1 is a critical effector in promoting metastasis and chemo-resistance of esophageal squamous cell carcinoma. Am J Cancer Res. 2017;7(3):531–42. 103. Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V, Schmidt JM, et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood. 2004 June 1;103(11):4150–6. 104. Coffelt SB, Tal AO, Scholz A, De Palma M, Patel S, Urbich C, et al. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res. 2010 July 1;70(13):5270–80. 105. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol. 2006;18(5):516–23. 106. Vassilopoulos A, Chisholm C, Lahusen T, Zheng H, Deng CX. A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene. 2014;33(47):5477–82. 107. Konakahara S, Ohashi K, Mizuno K, Itoh K, Tsuji T. CD29 integrin- and LIMK1/cofilin mediated actin reorganization regulates the migration of haematopoietic progenitor cells underneath bone marrow stromal cells. Genes Cells Devoted Mol Cell Mech. 2004 Apr;9(4):345–58. 108. Zavyalova MV, Denisov EV, Tashireva LA, Savelieva OE, Kaigorodova EV, Krakhmal NV, et al. Intravasation as a Key Step in Cancer Metastasis. Biochem Biokhimiia. 2019 July;84(7):762–72. 109. Cheng X, Cheng K. Visualizing cancer extravasation: from mechanistic studies to drug development. Cancer Metastasis Rev. 2021 Mar;40(1):71–88. 110. Heyder C, Gloria-Maercker E, Hatzmann W, Niggemann B, Zänker KS, Dittmar T. Role of the beta1-integrin subunit in the adhesion, extravasation and migration of T24 human bladder carcinoma cells. Clin Exp Metastasis. 2005;22(2):99–106. 111. Chou CW, Huang YK, Kuo TT, Liu JP, Sher YP. An Overview of ADAM9: Structure, Activation, and Regulation in Human Diseases. Int J Mol Sci. 2020 Oct 21;21(20):7790. 112. Giebeler N, Schönefuß A, Landsberg J, Tüting T, Mauch C, Zigrino P. Deletion of ADAM 9 in HGF/CDK4 mice impairs melanoma development and metastasis. Oncogene. 2017;36(35):5058–67. 113. Grützmann R, Lüttges J, Sipos B, Ammerpohl O, Dobrowolski F, Alldinger I, et al. ADAM9 expression in pancreatic cancer is associated with tumour type and is a prognostic factor in ductal adenocarcinoma. Br J Cancer. 2004;90(5):1053–8. 114. Mygind KJ, Schwarz J, Sahgal P, Ivaska J, Kveiborg M. Loss of ADAM9 expression impairs β1 integrin endocytosis, focal adhesion formation and cancer cell migration. J Cell Sci. 2018;131(1):205393. 115. National Library of Medicine. Convection-enhanced Delivery of OS2966 for Patients With High-grade Glioma Undergoing a Surgical Resection [Internet]. clinicaltrials.gov; 2023 Aug [cited 2025 Feb 3]. Report No.: NCT04608812. Available from: https://clinicaltrials.gov/study/NCT04608812 116. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 2014;26(5):638–52. 117. National Library of Medicine. A Study to Test Different Doses of BI 836880 Combined With Ezabenlimab in Patients With Advanced Non-small Cell Lung Cancer Followed by Other Types of Advanced Solid Tumours [Internet]. clinicaltrials.gov; 2024 Dec [cited 2025 Jan 12]. Report No.: https://clinicaltrials.gov/study/NCT03468426 NCT03468426. Available from: 118. National Library of Medicine. A Study to Test Whether Different Combinations of BI 765063, Ezabenlimab, Chemotherapy, Cetuximab, and BI 836880 Help People With Head and Neck Cancer or Liver Cancer [Internet]. clinicaltrials.gov; 2025 Jan [cited 2025 Jan 12]. Report No.: NCT05249426. Available from: https://clinicaltrials.gov/study/NCT05249426 119. Coffelt SB, Chen YY, Muthana M, Welford AF, Tal AO, Scholz A, et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J Immunol Baltim Md 1950. 2011 Apr 1;186(7):4183–90. 120. Wu X, Giobbie-Hurder A, Liao X, Connelly C, Connolly EM, Li J, et al. Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy. Cancer Immunol Res. 2017 Jan;5(1):17–28. 121. Wu C, Xue Y, Wang P, Lin L, Liu Q, Li N, et al. IFN-γ primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b. J Immunol Baltim Md 1950. 2014 Sept 15;193(6):3036–44. 122. Kelly E, Won A, Refaeli Y, Van Parijs L. IL-2 and related cytokines can promote T cell survival by activating AKT. J Immunol Baltim Md 1950. 2002 Jan 15;168(2):597–603. 123. Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V, et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4476–81. 124. Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol. 2021;12:636568. 125. Taylor BC, Balko JM. Mechanisms of MHC-I Downregulation and Role in Immunotherapy Response. Front Immunol. 2022;13:844866. 126. Dibbern ME, Bullock TN, Jenkins TM, Duska LR, Stoler MH, Mills AM. Loss of MHC Class I Expression in HPV-associated Cervical and Vulvar Neoplasia: A Potential Mechanism of Resistance to Checkpoint Inhibition. Am J Surg Pathol. 2020 Sept;44(9):1184–91. 127. Kageshita T, Hirai S, Ono T, Hicklin DJ, Ferrone S. Down-regulation of HLA class I antigen-processing molecules in malignant melanoma: association with disease progression. Am J Pathol. 1999;154(3):745–54. 128. Simpson JA, Al-Attar A, Watson NF, Scholefield JH, Ilyas M, Durrant LG. Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer. Gut. 2010;59(7):926–33. 129. Pedersen MH, Hood BL, Beck HC, Conrads TP, Ditzel HJ, Leth-Larsen R. Downregulation of antigen presentation-associated pathway proteins is linked to poor outcome in triple-negative breast cancer patient tumors. Oncoimmunology. 2017;6(5):1305531. 130. Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, et al. Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics. 2008;60(8):439–47. 131. Rusakiewicz S, Semeraro M, Sarabi M, Desbois M, Locher C, Mendez R, et al. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res. 2013 June 15;73(12):3499–510. 132. Ryschich E, Nötzel T, Hinz U, Autschbach F, Ferguson J, Simon I, et al. Control of T-cell mediated immune response by HLA class I in human pancreatic carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2005 Jan 15;11(2 Pt 1):498–504. 133. Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol. 2014;14(11):719–30. 134. Forero A, Li Y, Chen D, Grizzle WE, Updike KL, Merz ND, et al. Expression of the MHC Class II Pathway in Triple-Negative Breast Cancer Tumor Cells Is Associated with a Good Prognosis and Infiltrating Lymphocytes. Cancer Immunol Res. 2016;4(5):390–9. 135. Yu X, Si J, Wei J, Wang Y, Sun Y, Jin J, et al. The effect of EGFR-TKIs on survival in advanced non-small-cell lung cancer with EGFR mutations: A real-world study. Cancer Med. 2023 Mar;12(5):5630–8. 136. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005 Mar 2;97(5):339–46. 137. Meder L, König K, Ozretić L, Schultheis AM, Ueckeroth F, Ade CP, et al. NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas. Int J Cancer. 2016 Feb 15;138(4):927–38. 138. Yang MH, Yu J, Cai CL, Li W. Small cell lung cancer transformation and tumor heterogeneity after sequential targeted therapy and immunotherapy in EGFR-mutant non-small cell lung cancer: A case report. Front Oncol. 2022;12:1029282. 139. Shen Q, Qu J, Sheng L, Gao Q, Zhou J. Case Report: Transformation From Non-Small Cell Lung Cancer to Small Cell Lung Cancer During Anti-PD-1 Therapy: A Report of Two Cases. Front Oncol. 2021;11:619371. 140. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJW, Kussie P, Ferguson KM. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 2005 Apr 1;7(4):301–11. 141. Hudis CA. Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med. 2007 July 5;357(1):39–51. 142. Morimura O, Minami T, Kijima T, Koyama S, Otsuka T, Kinehara Y, et al. Trastuzumab emtansine suppresses the growth of HER2-positive small-cell lung cancer in preclinical models. Biochem Biophys Res Commun. 2017 July 8;488(4):596–602. 143. Kinehara Y, Minami T, Kijima T, Hoshino S, Morimura O, Otsuka T, et al. Favorable response to trastuzumab plus irinotecan combination therapy in two patients with HER2 positive relapsed small-cell lung cancer. Lung Cancer. 2015 Mar 1;87(3):321–5. 144. National Library of Medicine. Anti-PD-1 Monoclonal Antibody in Advanced, Trastuzumab resistant, HER2-positive Breast Cancer (PANACEA) [Internet]. clinicaltrials.gov; 2018 Oct [cited 2025 Feb 3]. Report No.: NCT02129556. Available from: https://clinicaltrials.gov/study/NCT02129556 145. Strickley JD, Spalding AC, Haeberle MT, Brown T, Stevens DA, Jung J. Metastatic squamous cell carcinoma of the skin with clinical response to lapatinib. Exp Hematol Oncol. 2018;7:20. 146. National Library of Medicine. PD-1 Combined With Pyrotinib for Chemotherapy Failure HER2 Insertion Mutation Advanced NSCLC [Internet]. clinicaltrials.gov; 2024 Sept [cited 2025 Feb 5]. Report No.: https://clinicaltrials.gov/study/NCT04144569 NCT04144569. Available from: 147. Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, et al. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell. 2019 Oct 14;36(4):385-401.e8. 148. Du W, Frankel TL, Green M, Zou W. IFNγ signaling integrity in colorectal cancer immunity and immunotherapy. Cell Mol Immunol. 2022 Jan;19(1):23–32. 149. Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017 Oct 26;8(1):1136. 150. Baccelli I, Gareau Y, Lehnertz B, Gingras S, Spinella JF, Corneau S, et al. Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. Cancer Cell. 2019 July 8;36(1):84-99.e8.
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/79598

Downloads

Downloads per month over past year

Export

Actions (login required)

View Item View Item