Hönig, Merle Christine ORCID: 0000-0002-0831-750X (2020). The Spatial Evolution of Tau Pathology in Alzheimer’s Disease: Influence of Functional Connectivity and Education. PhD thesis, Universität zu Köln.
|
PDF
Doktorarbeit_MerleHoenig_PrintVersion.pdf Download (5MB) | Preview |
Abstract
Alzheimer’s disease is neuropathologically characterized by extracellular accumulation of amyloid beta plaques and intracellular aggregation of misfolded tau proteins, which eventually lead to neurodegeneration and cognitive impairment. With the recent advances in neuroimaging, these two proteinopathies can now be studied in vivo using positron emission tomography (PET). Combining this imaging technique with functional magnetic resonance imaging has consistently revealed a spatial overlap between amyloid beta accumulates and functional connectivity networks (Buckner et al., 2009; Grothe et al., 2016), indicating functional connectivity as mechanistic pathway in the distribution of neuropathologies. While the infiltration of these neuronal networks by amyloid beta deposits seems uniform across individuals with Alzheimer’s disease, there nevertheless exists inter-individual differences in the clinical expression of the disease despite similar pathological burden (Stern, 2012). This observation has fuelled the concept of existing resilience mechanisms, which are supported by lifetime and –style factors and, which magnitude varies between individuals, contributing to the clinical heterogeneity seen in Alzheimer’s disease. Even though the spreading and resilience mechanisms in the phase of amyloid beta accumulation are now better understood, no information on tau pathology in vivo were available in this regard until recently. Given the recent introduction of tau PET compounds, this thesis therefore aimed to address two questions: 1) whether functional connectivity contributes to the distribution of tau pathology across brain networks, and 2) whether the consequence of tau pathology on cognitive and neuronal function is mitigated by a resilience proxy, namely education. Using [18F]-AV-1451 PET imaging to quantify tau pathology in a group of Alzheimer’s disease patients, we observed that tau pathology arises synchronously in independent components of the brain, which in turn moderately overlap with known functional connectivity networks. This suggest that functional connectivity may act as contributing factor in the stereotypical distribution of tau pathology. Moreover, the results of this thesis demonstrate that the consequence of regional tau pathology on cognition differs depending on the level of education. Despite equal clinical presentation, higher educated patients can tolerate more tau pathology, already in regions related to advanced disease stage, than lower educated patients. Furthermore, tau pathology is less paralleled by neuronal dysfunction at higher levels of education. Thus, higher educated individuals show a relative preservation of neuronal function despite the aggregation of misfolded tau proteins. This maintenance of neuronal function may in turn explain the relative preservation of cognitive function albeit progressive tau pathology aggregation. Taken together, the results of this thesis provide novel insights into the spreading mechanisms and the role of resilience factors towards tau pathology aggregation, which may not only be relevant for Alzheimer’s disease, but other neurodegenerative diseases, in particular,tauopathies. Better understanding of the spreading mechanisms in these diseases will permit a more precise prediction of disease progression and will thus be valuable for disease monitoring. Concomitantly, the development of sensitive biomarkers for disease monitoring is crucial for the evaluation of anti-tau-based therapies. Regarding the development of pharmacological strategies, the current results also indicate that proxy measures of resilience, such as education, need to be considered when allocating patients to treatment groups. Biased allocation may otherwise lead to a misinterpretation of observed effects that are not due to the drug but the group characteristics. Aside from this, sensitive tools for the early identification of at-risk individuals with high resilience need to be established to allow for a timely intervention. Current hypothesis is that an early intervention has the highest chance of success in modifying the disease course. However, as demonstrated by this work, individuals with high resilience remain undiagnosed until late in the disease course. Further research into resilience mechanisms may thus support the development of sensitive diagnostic tools and additionally offer potential targets that can be harnessed for novel treatment strategies. Hopefully, one day supporting the development of effective disease-modifying treatments.
Item Type: | Thesis (PhD thesis) | ||||||||||
Translated abstract: |
|
||||||||||
Creators: |
|
||||||||||
URN: | urn:nbn:de:hbz:38-106996 | ||||||||||
Date: | 2020 | ||||||||||
Language: | English | ||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences Faculty of Medicine |
||||||||||
Divisions: | Faculty of Medicine > Nuklearmedizin > Klinik und Poliklinik für Nuklearmedizin | ||||||||||
Subjects: | Medical sciences Medicine | ||||||||||
Uncontrolled Keywords: |
|
||||||||||
Date of oral exam: | 11 December 2019 | ||||||||||
Referee: |
|
||||||||||
Refereed: | Yes | ||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/10699 |
Downloads
Downloads per month over past year
Export
Actions (login required)
View Item |