Grothe, Oliver, Kleppe, Tore Selland and Liesenfeld, Roman ORCID: 0000-0001-6996-6215 (2019). The Gibbs sampler with particle efficient importance sampling for state-space models*. Econometric Reviews, 38 (10). 1152 -1176. PHILADELPHIA: TAYLOR & FRANCIS. ISSN 1532-4168
Full text not available from this repository.Abstract
We consider Particle Gibbs (PG) for Bayesian analysis of non-linear non-Gaussian state-space models. As a Monte Carlo (MC) approximation of the Gibbs procedure, PG uses sequential MC (SMC) importance sampling inside the Gibbs to update the latent states. We propose to combine PG with the Particle Efficient Importance Sampling (PEIS). By using SMC sampling densities which are approximately globally fully adapted to the targeted density of the states, PEIS can substantially improve the simulation efficiency of the PG relative to existing PG implementations. The efficiency gains are illustrated in PG applications to a non-linear local-level model and stochastic volatility models.
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-127152 | ||||||||||||||||
DOI: | 10.1080/07474938.2018.1536098 | ||||||||||||||||
Journal or Publication Title: | Econometric Reviews | ||||||||||||||||
Volume: | 38 | ||||||||||||||||
Number: | 10 | ||||||||||||||||
Page Range: | 1152 -1176 | ||||||||||||||||
Date: | 2019 | ||||||||||||||||
Publisher: | TAYLOR & FRANCIS | ||||||||||||||||
Place of Publication: | PHILADELPHIA | ||||||||||||||||
ISSN: | 1532-4168 | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Faculty of Management, Economy and Social Sciences | ||||||||||||||||
Divisions: | Center of Excellence C-SEB | ||||||||||||||||
Subjects: | Economics | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
Refereed: | Yes | ||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/12715 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |