Paffenholz, Pia, Nestler, Tim, Hoier, Simon, Pfister, David, Hellmich, Martin and Heidenreich, Axel (2019). External validation of 2 models to predict necrosis/fibrosis in postchemotherapy residual retroperitoneal masses of patients with advanced testicular cancer. Urol. Oncol.-Semin. Orig. Investig., 37 (11). NEW YORK: ELSEVIER SCIENCE INC. ISSN 1873-2496

Full text not available from this repository.

Abstract

Objectives: Nonseminomatous testicular germ cell tumors with residual retroperitoneal lesions >1 cm are treated with postchemotherapy retroperitoneal lymph node dissection (pcRPLND). However, up to 50% of patients are overtreated since the histology shows only residual necrosis/fibrosis. We aim to validate the 2 currently best performing prediction models (Vergouwe and Leao) for postchemotherapy residual mass histology. Methods and materials: We performed a retrospective analysis including 402 patients who underwent a pcRPLND from 2008 to 2015. The study cohort was used to validate the 2 prediction models by Vergouwe and Leao using the published formulas and thresholds. Results: Using our validation cohort, the Vergouwe model reached a significantly better area under the curve compared to the Leao model (0.760 (confidence interval 0.713-0.807) vs. 0.692 (0.640-0.744), P = 0.002) in the prediction of benign histology. At a threshold of >70% for the predicted probability of benign disease, the Leao model revealed that pcRPLND would be avoided in 10.2% of patients with benign disease with an error rate of 3.8% for viable tumor, while the Vergouwe model would avoid pcRPLND in 27.4% of all patients with benign disease with an error rate of 10.1% for viable tumor and 2.9% for teratoma. Adjusting the models to our data had no significant improvement. Limitations include the retrospective design. Conclusions: The discriminatory accuracy of both models is not sufficient to safely select patients for surveillance strategy instead of pcRPLND. Therefore, further studies including new biomarkers are needed to optimize the accuracy of potential prediction models and to minimize pcRPLND overtreatment. (C) 2019 Elsevier Inc. All rights reserved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Paffenholz, PiaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Nestler, TimUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hoier, SimonUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Pfister, DavidUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hellmich, MartinUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Heidenreich, AxelUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-129705
DOI: 10.1016/j.urolonc.2019.07.021
Journal or Publication Title: Urol. Oncol.-Semin. Orig. Investig.
Volume: 37
Number: 11
Date: 2019
Publisher: ELSEVIER SCIENCE INC
Place of Publication: NEW YORK
ISSN: 1873-2496
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
LYMPH-NODE DISSECTION; GERM-CELL TUMORS; CHEMOTHERAPY; HISTOLOGY; MANAGEMENT; SURGERYMultiple languages
Oncology; Urology & NephrologyMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/12970

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item