Pokotylo, Oleksii, Mozharovskyi, Pavlo and Dyckerhoff, Rainer (2019). Depth and Depth-Based Classification with R Package ddalpha. J. Stat. Softw., 91 (5). LOS ANGELES: JOURNAL STATISTICAL SOFTWARE. ISSN 1548-7660
Full text not available from this repository.Abstract
Following the seminal idea of Tukey (1975), data depth is a function that measures how close an arbitrary point of the space is located to an implicitly defined center of a data cloud. Having undergone theoretical and computational developments, it is now employed in numerous applications with classification being the most popular one. The R package ddalpha is a software directed to fuse experience of the applicant with recent achievements in the area of data depth and depth-based classification. ddalpha provides an implementation for exact and approximate computation of most reasonable and widely applied notions of data depth. These can be further used in the depth-based multivariate and functional classifiers implemented in the package, where the DD alpha-procedure is in the main focus. The package is expandable with user-defined custom depth methods and separators. The implemented functions for depth visualization and the built-in benchmark procedures may also serve to provide insights into the geometry of the data and the quality of pattern recognition.
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-132065 | ||||||||||||||||
DOI: | 10.18637/jss.v091.i05 | ||||||||||||||||
Journal or Publication Title: | J. Stat. Softw. | ||||||||||||||||
Volume: | 91 | ||||||||||||||||
Number: | 5 | ||||||||||||||||
Date: | 2019 | ||||||||||||||||
Publisher: | JOURNAL STATISTICAL SOFTWARE | ||||||||||||||||
Place of Publication: | LOS ANGELES | ||||||||||||||||
ISSN: | 1548-7660 | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||
Subjects: | no entry | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
Refereed: | Yes | ||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/13206 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |