Schliessauf, Henrik ORCID: 0000-0002-2257-4027 (2019). Escaping orbits are rare in the quasi-periodic Littlewood boundedness problem. NoDea-Nonlinear Differ. Equ. Appl., 26 (4). CHAM: SPRINGER INTERNATIONAL PUBLISHING AG. ISSN 1420-9004

Full text not available from this repository.

Abstract

We study the superlinear oscillator equation xd+|x|-1x=p(t) for 3, where p is a quasi-periodic forcing with no Diophantine condition on the frequencies and show that typically the set of initial values leading to solutions x such that limt(|x(t)|+|xt)|)= has Lebesgue measure zero, provided the starting energy |x(t0)|+|x(t0)| is sufficiently large.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Schliessauf, HenrikUNSPECIFIEDorcid.org/0000-0002-2257-4027UNSPECIFIED
URN: urn:nbn:de:hbz:38-134339
DOI: 10.1007/s00030-019-0570-x
Journal or Publication Title: NoDea-Nonlinear Differ. Equ. Appl.
Volume: 26
Number: 4
Date: 2019
Publisher: SPRINGER INTERNATIONAL PUBLISHING AG
Place of Publication: CHAM
ISSN: 1420-9004
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
UNBOUNDED SOLUTIONS; DUFFING EQUATIONS; STABILITYMultiple languages
Mathematics, AppliedMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/13433

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item