Pallast, Niklas, Diedenhofen, Michael, Blaschke, Stefan, Wieters, Frederique, Wiedermann, Dirk, Hoehn, Mathias, Fink, Gereon R. ORCID: 0000-0002-8230-1856 and Aswendt, Markus ORCID: 0000-0003-1423-0934 (2019). Processing Pipeline for Atlas-Based Imaging Data Analysis of Structural and Functional Mouse Brain MRI (AIDAmri). Front. Neuroinformatics, 13. LAUSANNE: FRONTIERS MEDIA SA. ISSN 1662-5196
Full text not available from this repository.Abstract
Magnetic resonance imaging (MRI) is a key technology in multimodal animal studies of brain connectivity and disease pathology. In vivo MRI provides non-invasive, whole brain macroscopic images containing structural and functional information, thereby complementing invasive in vivo high-resolution microscopy and ex vivo molecular techniques. Brain mapping, the correlation of corresponding regions between multiple brains in a standard brain atlas system, is widely used in human MRI. For small animal MRI, however, there is no scientific consensus on pre-processing strategies and atlas-based neuroinformatics. Thus, it remains difficult to compare and validate results from different pre-clinical studies which were processed using custom-made code or individual adjustments of clinical MRI software and without a standard brain reference atlas. Here, we describe AIDAmri, a novel Atlas-based Imaging Data Analysis pipeline to process structural and functional mouse brain data including anatomical MRI, fiber tracking using diffusion tensor imaging (DTI) and functional connectivity analysis using resting-state functional MRI (rs-fMRI). The AIDAmri pipeline includes automated pre-processing steps, such as raw data conversion, skull-stripping and bias-field correction as well as image registration with the Allen Mouse Brain Reference Atlas (ARA). Following a modular structure developed in Python scripting language, the pipeline integrates established and newly developed algorithms. Each processing step was optimized for efficient data processing requiring minimal user-input and user programming skills. The raw data is analyzed and results transferred to the ARA coordinate system in order to allow an efficient and highly-accurate region-based analysis. AIDAmri is intended to fill the gap of a missing open-access and cross-platform toolbox for the most relevant mouse brain MRI sequences thereby facilitating data processing in large cohorts and multi-center studies.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-138198 | ||||||||||||||||||||||||||||||||||||
DOI: | 10.3389/fninf.2019.00042 | ||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | Front. Neuroinformatics | ||||||||||||||||||||||||||||||||||||
Volume: | 13 | ||||||||||||||||||||||||||||||||||||
Date: | 2019 | ||||||||||||||||||||||||||||||||||||
Publisher: | FRONTIERS MEDIA SA | ||||||||||||||||||||||||||||||||||||
Place of Publication: | LAUSANNE | ||||||||||||||||||||||||||||||||||||
ISSN: | 1662-5196 | ||||||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||||||||||||||
Refereed: | Yes | ||||||||||||||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/13819 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |