Coman, Dan, Klevtsov, Semyon and Marinescu, George ORCID: 0000-0001-6539-7860 (2019). Bergman Kernel Asymptotics for Singular Metrics on Punctured Riemann Surfaces. Indiana Univ. Math. J., 68 (2). S. 593 - 629. BLOOMINGTON: INDIANA UNIV MATH JOURNAL. ISSN 1943-5258

Full text not available from this repository.

Abstract

We consider singular metrics on a punctured Riemann surface and on a line bundle, and study the behavior of the Bergman kernel in the neighborhood of the punctures. The results have an interpretation in terms of the asymptotic profile of the density-of-states function of the lowest Landau level in quantum Hall effect.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Coman, DanUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Klevtsov, SemyonUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Marinescu, GeorgeUNSPECIFIEDorcid.org/0000-0001-6539-7860UNSPECIFIED
URN: urn:nbn:de:hbz:38-138954
DOI: 10.1512/iumj.2019.68.7589
Journal or Publication Title: Indiana Univ. Math. J.
Volume: 68
Number: 2
Page Range: S. 593 - 629
Date: 2019
Publisher: INDIANA UNIV MATH JOURNAL
Place of Publication: BLOOMINGTON
ISSN: 1943-5258
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
KAHLER-METRICS; EQUIDISTRIBUTION; THEOREMMultiple languages
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/13895

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item