de Oliveira Filho, Fernando Mario and Vallentin, Frank ORCID: 0000-0002-3205-4607 (2019). A COUNTEREXAMPLE TO A CONJECTURE OF LARMAN AND ROGERS ON SETS AVOIDING DISTANCE 1. Mathematika, 65 (3). S. 785 - 788. LONDON: LONDON MATH SOC. ISSN 2041-7942

Full text not available from this repository.

Abstract

For each n >= 2 we construct a measurable subset of the unit ball in R-n that does not contain pairs of points at distance 1 and whose volume is greater than (1/2)(n) times the volume of the unit ball. This disproves a conjecture of Larman and Rogers from 1972.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
de Oliveira Filho, Fernando MarioUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Vallentin, FrankUNSPECIFIEDorcid.org/0000-0002-3205-4607UNSPECIFIED
URN: urn:nbn:de:hbz:38-138989
DOI: 10.1112/S0025579319000160
Journal or Publication Title: Mathematika
Volume: 65
Number: 3
Page Range: S. 785 - 788
Date: 2019
Publisher: LONDON MATH SOC
Place of Publication: LONDON
ISSN: 2041-7942
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
Mathematics, Applied; MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/13898

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item