Niepmann, Sven Thomas, Steffen, Eva, Zietzer, Andreas, Adam, Matti ORCID: 0000-0002-6990-8135, Nordsiek, Julia, Gyamfi-Poku, Isabella, Piayda, Kerstin, Sinning, Jan-Malte, Baldus, Stephan, Kelm, Malte ORCID: 0000-0003-0060-1052, Nickenig, Georg, Zimmer, Sebastian and Quast, Christine (2019). Graded murine wire-induced aortic valve stenosis model mimics human functional and morphological disease phenotype. Clin. Res. Cardiol., 108 (8). S. 847 - 857. HEIDELBERG: SPRINGER HEIDELBERG. ISSN 1861-0692

Full text not available from this repository.

Abstract

Aortic valve stenosis (AS) is the most common valve disease requiring therapeutic intervention. Even though the incidence of AS has been continuously rising and AS is associated with significant morbidity and mortality, to date, no medical treatments have been identified that can modify disease progression. This unmet medical need is likely attributed to an incomplete understanding of the molecular mechanism driving disease development. To investigate the pathophysiology leading to AS, reliable and reproducible animal models that mimic human pathophysiology are needed. We have tested and expanded the protocols of a wire-injury induced AS mouse model. For this model, coronary wires were used to apply shear stress to the aortic valve cusps with increasing intensity. These protocols allowed distinction of mild, moderate and severe wire-injury. Upon moderate or severe injury, AS developed with a significant increase in aortic valve peak blood flow velocity. While moderate injury promoted solitary AS, severe-injury induced mixed aortic valve disease with concomitant mild to moderate aortic regurgitation. The changes in aortic valve function were reflected by dilation and hypertrophy of the left ventricle, as well as a decreased left ventricular ejection fraction. Histological analysis revealed the classic hallmarks of human disease with aortic valve thickening, increased macrophage infiltration, fibrosis and calcification. This new mouse model of AS promotes functional and morphological changes similar to moderate and severe human AS. It can be used to investigate the pathomechanisms contributing to AS development and to test novel therapeutic strategies.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Niepmann, Sven ThomasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Steffen, EvaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Zietzer, AndreasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Adam, MattiUNSPECIFIEDorcid.org/0000-0002-6990-8135UNSPECIFIED
Nordsiek, JuliaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Gyamfi-Poku, IsabellaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Piayda, KerstinUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Sinning, Jan-MalteUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Baldus, StephanUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kelm, MalteUNSPECIFIEDorcid.org/0000-0003-0060-1052UNSPECIFIED
Nickenig, GeorgUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Zimmer, SebastianUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Quast, ChristineUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-145042
DOI: 10.1007/s00392-019-01413-1
Journal or Publication Title: Clin. Res. Cardiol.
Volume: 108
Number: 8
Page Range: S. 847 - 857
Date: 2019
Publisher: SPRINGER HEIDELBERG
Place of Publication: HEIDELBERG
ISSN: 1861-0692
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
CLINICAL FACTORS; PROGRESSION; CALCIFICATION; INFLAMMATION; REPLACEMENT; HEARTMultiple languages
Cardiac & Cardiovascular SystemsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/14504

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item