Acharya, Aviseka, Brungs, Sonja, Lichterfeld, Yannick, Hescheler, Juergen, Hemmersbach, Ruth, Boeuf, Helene ORCID: 0000-0002-3006-8773 and Sachinidis, Agapios (2019). Parabolic, Flight-Induced, Acute Hypergravity and Microgravity Effects on the Beating Rate of Human Cardiomyocytes. Cells, 8 (4). BASEL: MDPI. ISSN 2073-4409

Full text not available from this repository.

Abstract

Functional studies of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hCMs) under different gravity conditions contribute to aerospace medical research. To study the effects of altered gravity on hCMs, we exposed them to acute hypergravity and microgravity phases in the presence and absence of the -adrenoceptor isoprenalin (ISO), L-type Ca2+ channel (LTCC) agonist Bay-K8644, or LTCC blocker nifedipine, and monitored their beating rate (BR). These logistically demanding experiments were executed during the 66th Parabolic Flight Campaign of the European Space Agency. The hCM cultures were exposed to 31 alternating hypergravity, microgravity, and hypergravity phases, each lasting 20-22 s. During the parabolic flight experiment, BR and cell viability were monitored using the xCELLigence real-time cell analyzer Cardio Instrument((R)). Corresponding experiments were performed on the ground (1 g), using an identical set-up. Our results showed that BR continuously increased during the parabolic flight, reaching a 40% maximal increase after 15 parabolas, compared with the pre-parabolic (1 g) phase. However, in the presence of the LTCC blocker nifedipine, no change in BR was observed, even after 31 parabolas. We surmise that the parabola-mediated increase in BR was induced by the LTCC blocker. Moreover, the increase in BR induced by ISO and Bay-K8644 during the pre-parabola phase was further elevated by 20% after 25 parabolas. This additional effect reflects the positive impact of the parabolas in the absence of both agonists. Our study suggests that acute alterations of gravity significantly increase the BR of hCMs via the LTCC.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Acharya, AvisekaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Brungs, SonjaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Lichterfeld, YannickUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hescheler, JuergenUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hemmersbach, RuthUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Boeuf, HeleneUNSPECIFIEDorcid.org/0000-0002-3006-8773UNSPECIFIED
Sachinidis, AgapiosUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-151418
DOI: 10.3390/cells8040352
Journal or Publication Title: Cells
Volume: 8
Number: 4
Date: 2019
Publisher: MDPI
Place of Publication: BASEL
ISSN: 2073-4409
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
DIFFERENTIATION PROCESSES; SIGNALING MOLECULES; MODULATIONMultiple languages
Cell BiologyMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/15141

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item