Gracar, Peter ORCID: 0000-0001-8340-8340 and Stauffer, Alexandre (2019). MULTI-SCALE LIPSCHITZ PERCOLATION OF INCREASING EVENTS FOR POISSON RANDOM WALKS. Ann. Appl. Probab., 29 (1). S. 376 - 434. CLEVELAND: INST MATHEMATICAL STATISTICS. ISSN 1050-5164
Full text not available from this repository.Abstract
Consider the graph induced by Z(d), equipped with uniformly elliptic random conductances. At time 0, place a Poisson point process of particles on Z(d) and let them perform independent simple random walks. Tessellate the graph into cubes indexed by i is an element of Z(d) and tessellate time into intervals indexed by tau. Given a local event E(i, tau) that depends only on the particles inside the space time region given by the cube i and the time interval tau, we prove the existence of a Lipschitz connected surface of cells (i, tau) that separates the origin from infinity on which E(i, tau) holds. This gives a directly applicable and robust framework for proving results in this setting that need a multi-scale argument. For example, this allows us to prove that an infection spreads with positive speed among the particles.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-158669 | ||||||||||||
DOI: | 10.1214/18-AAP1420 | ||||||||||||
Journal or Publication Title: | Ann. Appl. Probab. | ||||||||||||
Volume: | 29 | ||||||||||||
Number: | 1 | ||||||||||||
Page Range: | S. 376 - 434 | ||||||||||||
Date: | 2019 | ||||||||||||
Publisher: | INST MATHEMATICAL STATISTICS | ||||||||||||
Place of Publication: | CLEVELAND | ||||||||||||
ISSN: | 1050-5164 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/15866 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |