Ivanov, Sergei and Lytchak, Alexander (2019). Rigidity of Busemann convex Finsler metrics. Comment. Math. Helv., 94 (4). S. 855 - 869. ZURICH: EUROPEAN MATHEMATICAL SOC. ISSN 1420-8946
Full text not available from this repository.Abstract
We prove that a Finsler metric is nonpositively curved in the sense of Busemann if and only if it is affinely equivalent to a Riemannian metric of nonpositive sectional curvature. In other terms, such Finsler metrics are precisely Berwald metrics of nonpositive flag curvature. In particular in dimension 2 every such metric is Riemannian or locally isometric to that of a normed plane. In the course of the proof we obtain new characterizations of Berwald metrics in terms of the so-called linear parallel transport.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-159703 | ||||||||||||
DOI: | 10.4171/CMH/476 | ||||||||||||
Journal or Publication Title: | Comment. Math. Helv. | ||||||||||||
Volume: | 94 | ||||||||||||
Number: | 4 | ||||||||||||
Page Range: | S. 855 - 869 | ||||||||||||
Date: | 2019 | ||||||||||||
Publisher: | EUROPEAN MATHEMATICAL SOC | ||||||||||||
Place of Publication: | ZURICH | ||||||||||||
ISSN: | 1420-8946 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/15970 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |