Dong, Zhiwen ORCID: 0000-0003-4871-219X, Kang, Shichang, Qin, Dahe, Shao, Yaping ORCID: 0000-0002-2041-5479, Ulbrich, Sven and Qin, Xiang (2018). Variability in individual particle structure and mixing states between the glacier-snowpack and atmosphere in the northeastern Tibetan Plateau. Cryosphere, 12 (12). S. 3877 - 3891. GOTTINGEN: COPERNICUS GESELLSCHAFT MBH. ISSN 1994-0424

Full text not available from this repository.

Abstract

Aerosols affect the Earth's temperature and climate by altering the radiative properties of the atmosphere. Changes in the composition, morphological structure, and mixing state of aerosol components will cause significant changes in radiative forcing in the atmosphere. This work focused on the physicochemical properties of light-absorbing particles (LAPs) and their variability through deposition process from the atmosphere to the glacier-snowpack interface based on large-range observations in the northeastern Tibetan Plateau, and laboratory transmission electron microscope (TEM) and energy dispersive X-ray spectrometer (EDX) measurements. The results showed that LAP particle structures changed markedly in the snowpack compared to those in the atmosphere due to black carbon (BC) and organic matter (OM) particle aging and salt-coating condition changes. Considerably more aged BC and OM particles were observed in the glacier and snowpack surfaces than in the atmosphere, as the concentration of aged BC and OM varied in all locations by 4 %-16% and 12 %-25% in the atmosphere, whereas they varied by 25 %-36% and 36 %-48% in the glacier-snowpack surface. Similarly, the salt-coated particle ratio of LAPs in the snowpack is lower than in the atmosphere. Albedo change contribution in the Miaoergou, Yuzhufeng, and Qiyi glaciers is evaluated using the SNICAR model for glacier surface-distributed impurities. Due to the salt-coating state change, the snow albedo decreased by 16.7 %-33.9% compared to that in the atmosphere. Such a great change may cause more strongly enhanced radiative heating than previously thought, suggesting that the warming effect from particle structure and mixing change in glacier-snowpack LAPs may have markedly affected the climate on a global scale in terms of direct forcing in the cryosphere.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Dong, ZhiwenUNSPECIFIEDorcid.org/0000-0003-4871-219XUNSPECIFIED
Kang, ShichangUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Qin, DaheUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Shao, YapingUNSPECIFIEDorcid.org/0000-0002-2041-5479UNSPECIFIED
Ulbrich, SvenUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Qin, XiangUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-162096
DOI: 10.5194/tc-12-3877-2018
Journal or Publication Title: Cryosphere
Volume: 12
Number: 12
Page Range: S. 3877 - 3891
Date: 2018
Publisher: COPERNICUS GESELLSCHAFT MBH
Place of Publication: GOTTINGEN
ISSN: 1994-0424
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Geosciences > Institute for Geophysics and Meteorology
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
LIGHT-ABSORBING IMPURITIES; DISSOLVED ORGANIC-CARBON; BLACK CARBON; DUST; ABSORPTION; AEROSOLS; ALBEDO; ICEMultiple languages
Geography, Physical; Geosciences, MultidisciplinaryMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/16209

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item