Bettiol, Renato G. and Mendes, Ricardo A. E. (2018). Strongly positive curvature. Ann. Glob. Anal. Geom., 53 (3). S. 287 - 310. DORDRECHT: SPRINGER. ISSN 1572-9060

Full text not available from this repository.

Abstract

We begin a systematic study of a curvature condition (strongly positive curvature) which lies strictly between positive-definiteness of the curvature operator and positivity of sectional curvature, and stems from the work of Thorpe (J Differ Geom 5:113-125, 1971; Erratum. J Differ Geom 11:315, 1976). We prove that this condition is preserved under Riemannian submersions and Cheeger deformations and that most compact homogeneous spaces with positive sectional curvature satisfy it.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Bettiol, Renato G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Mendes, Ricardo A. E.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-191025
DOI: 10.1007/s10455-017-9578-9
Journal or Publication Title: Ann. Glob. Anal. Geom.
Volume: 53
Number: 3
Page Range: S. 287 - 310
Date: 2018
Publisher: SPRINGER
Place of Publication: DORDRECHT
ISSN: 1572-9060
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
MANIFOLDS; METRICSMultiple languages
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/19102

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item