Geiges, Hansjoerg and Onaran, Sinem ORCID: 0000-0002-7627-1187 (2018). Legendrian Lens Space Surgeries. Mich. Math. J., 67 (2). S. 405 - 423. ANN ARBOR: MICHIGAN MATHEMATICAL JOURNAL. ISSN 0026-2285

Full text not available from this repository.

Abstract

We show that every tight contact structure on any of the lens spaces L(ns(2)-s+1, s(2)) with n >= 2 and s >= 1 can be obtained by a single Legendrian surgery along a suitable Legendrian realisation of the negative torus knot T (s,-(sn - 1)) in the tight or an overtwisted contact structure on the 3-sphere.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Geiges, HansjoergUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Onaran, SinemUNSPECIFIEDorcid.org/0000-0002-7627-1187UNSPECIFIED
URN: urn:nbn:de:hbz:38-202429
DOI: 10.1307/mmj/1522980162
Journal or Publication Title: Mich. Math. J.
Volume: 67
Number: 2
Page Range: S. 405 - 423
Date: 2018
Publisher: MICHIGAN MATHEMATICAL JOURNAL
Place of Publication: ANN ARBOR
ISSN: 0026-2285
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
TIGHT CONTACT STRUCTURES; FLOER HOMOLOGY; KNOTS; CONSTRUCTION; 3-MANIFOLDS; INVARIANTSMultiple languages
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/20242

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item