Irelli, G. Cerulli, Fang, X., Feigin, E., Fourier, G. and Reineke, M. (2017). Linear degenerations of flag varieties. Math. Z., 287 (1-2). S. 615 - 655. HEIDELBERG: SPRINGER HEIDELBERG. ISSN 1432-1823

Full text not available from this repository.

Abstract

Linear degenerate flag varieties are degenerations of flag varieties as quiver Grassmannians. For type A flag varieties, we obtain characterizations of flatness, irreducibility and normality of these degenerations via rank tuples. Some of them are shown to be isomorphic to Schubert varieties and can be realized as highest weight orbits of partially degenerate Lie algebras, generalizing the corresponding results on degenerate flag varieties. To study normality, cell decompositions of quiver Grassmannians are constructed in a wider context of equioriented quivers of type A.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Irelli, G. CerulliUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Fang, X.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Feigin, E.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Fourier, G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Reineke, M.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-217187
DOI: 10.1007/s00209-016-1839-y
Journal or Publication Title: Math. Z.
Volume: 287
Number: 1-2
Page Range: S. 615 - 655
Date: 2017
Publisher: SPRINGER HEIDELBERG
Place of Publication: HEIDELBERG
ISSN: 1432-1823
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
QUIVER GRASSMANNIANS; MODULES; BASESMultiple languages
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/21718

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item