Fang, Xiu, Fourier, Ghislain and Littelmann, Peter (2017). Essential bases and toric degenerations arising from birational sequences. Adv. Math., 312. S. 107 - 150. SAN DIEGO: ACADEMIC PRESS INC ELSEVIER SCIENCE. ISSN 1090-2082
Full text not available from this repository.Abstract
We present a new approach to construct T-equivariant flat toric degenerations of flag varieties and spherical varieties, combining ideas coming from the theory of Newton Okounkov bodies with ideas originally stemming from PBW-filtrations. For each pair (S,>) consisting of a birational sequence and a monomial order, we attach to the affine variety G//U a monoid Gamma = Gamma(S, >). As a side effect we get a vector space basis is B-Gamma of C[G//U], the elements being indexed by Gamma. The basis B-Gamma has multiplicative properties very similar to those of the dual canonical basis. This makes it possible to transfer the methods of Alexeev and Brion [1] to this more general setting, once one knows that the monoid Gamma is finitely generated and saturated. (C) 2017 Elsevier Inc. All rights reserved.
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-230708 | ||||||||||||||||
DOI: | 10.1016/j.aim.2017.03.014 | ||||||||||||||||
Journal or Publication Title: | Adv. Math. | ||||||||||||||||
Volume: | 312 | ||||||||||||||||
Page Range: | S. 107 - 150 | ||||||||||||||||
Date: | 2017 | ||||||||||||||||
Publisher: | ACADEMIC PRESS INC ELSEVIER SCIENCE | ||||||||||||||||
Place of Publication: | SAN DIEGO | ||||||||||||||||
ISSN: | 1090-2082 | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||||||
Subjects: | no entry | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
Refereed: | Yes | ||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/23070 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |