Kraemer, Jan, Kroemer, Stefan, Kruzik, Martin ORCID: 0000-0003-1558-5809 and Patho, Gabriel (2017). A-quasiconvexity at the boundary and weak lower semicontinuity of integral functionals. Adv. Calc. Var., 10 (1). S. 49 - 68. BERLIN: WALTER DE GRUYTER GMBH. ISSN 1864-8266
Full text not available from this repository.Abstract
We state necessary and sufficient conditions for weak lower semicontinuity of integral functionals of the form u bar right arrow integral(Omega) h(x, u(x)) dx, where h is continuous and possesses a positively p-homogeneous recession function, p > 1, and u is an element of L-p(Omega; R-m) lives in the kernel of a constant-rank first-order differential operator A which admits an extension property. In the special case A = curl, apart from the quasiconvexity of the integrand, the recession function's quasiconvexity at the boundary in the sense of Ball and Marsden is known to play a crucial role. Our newly defined notions of A-quasiconvexity at the boundary, generalize this result. Moreover, we give an equivalent condition for the weak lower semicontinuity of the above functional along sequences weakly converging in L-p(Omega; R-m) and approaching the kernel of A even if A does not have the extension property.
Item Type: | Journal Article | ||||||||||||||||||||
Creators: |
|
||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-242853 | ||||||||||||||||||||
DOI: | 10.1515/acv-2015-0009 | ||||||||||||||||||||
Journal or Publication Title: | Adv. Calc. Var. | ||||||||||||||||||||
Volume: | 10 | ||||||||||||||||||||
Number: | 1 | ||||||||||||||||||||
Page Range: | S. 49 - 68 | ||||||||||||||||||||
Date: | 2017 | ||||||||||||||||||||
Publisher: | WALTER DE GRUYTER GMBH | ||||||||||||||||||||
Place of Publication: | BERLIN | ||||||||||||||||||||
ISSN: | 1864-8266 | ||||||||||||||||||||
Language: | English | ||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||
Refereed: | Yes | ||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/24285 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |