Struve, Rolf ORCID: 0000-0001-6915-5623 and Struve, Horst (2016). An axiomatic analysis of the Droz-Farny Line Theorem. Aequ. Math., 90 (6). S. 1201 - 1219. BASEL: SPRINGER BASEL AG. ISSN 1420-8903
Full text not available from this repository.Abstract
We analyze an elementary theorem of Euclidean geometry, the Droz-Farny Line Theorem, from the point of view of the foundations of geometry. We start with an elementary synthetic proof which is based on simple properties of the group of motions. The proof reveals that the Droz-Farny Line Theorem is a special case of the Theorem of Goormatigh which is, in turn, a special case of the Counterpairing Theorem of Hessenberg. An axiomatic analysis in the sense of Hilbert [14] and Bachmann [2] leads to a study of different versions of the theorems (e.g., of a dual version or of an absolute version, which is valid in absolute geometry) and to a new axiom system for the associated very general plane absolute geometry (the geometry of pencils and lines). In the last section the role of the theorems in the foundations of geometry is discussed.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-254244 | ||||||||||||
DOI: | 10.1007/s00010-016-0430-2 | ||||||||||||
Journal or Publication Title: | Aequ. Math. | ||||||||||||
Volume: | 90 | ||||||||||||
Number: | 6 | ||||||||||||
Page Range: | S. 1201 - 1219 | ||||||||||||
Date: | 2016 | ||||||||||||
Publisher: | SPRINGER BASEL AG | ||||||||||||
Place of Publication: | BASEL | ||||||||||||
ISSN: | 1420-8903 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/25424 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |