Burban, Igor and Gnedin, Wassilij (2016). Cohen-Macaulay modules over some non-reduced curve singularities. J. Pure Appl. Algebr., 220 (12). S. 3777 - 3816. AMSTERDAM: ELSEVIER. ISSN 1873-1376
Full text not available from this repository.Abstract
In this article, we study Cohen-Macaulay modules over non-reduced curve singularities. We prove that the rings k[x, y, z]/(xy, y(q) - z(2)) have tame Cohen-Macaulay representation type. For the singularity k[x, y, z]/(xy, z(2)) we give an explicit description of all indecomposable Cohen-Macaulay modules and apply the obtained classification to construct families of indecomposable matrix factorizations of x(2)y(2) is an element of k[x, y] (C) 2016 Elsevier B.V. All rights reserved.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-255303 | ||||||||||||
DOI: | 10.1016/j.jpaa.2016.05.010 | ||||||||||||
Journal or Publication Title: | J. Pure Appl. Algebr. | ||||||||||||
Volume: | 220 | ||||||||||||
Number: | 12 | ||||||||||||
Page Range: | S. 3777 - 3816 | ||||||||||||
Date: | 2016 | ||||||||||||
Publisher: | ELSEVIER | ||||||||||||
Place of Publication: | AMSTERDAM | ||||||||||||
ISSN: | 1873-1376 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/25530 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |