Burban, Igor and Gnedin, Wassilij (2016). Cohen-Macaulay modules over some non-reduced curve singularities. J. Pure Appl. Algebr., 220 (12). S. 3777 - 3816. AMSTERDAM: ELSEVIER. ISSN 1873-1376

Full text not available from this repository.

Abstract

In this article, we study Cohen-Macaulay modules over non-reduced curve singularities. We prove that the rings k[x, y, z]/(xy, y(q) - z(2)) have tame Cohen-Macaulay representation type. For the singularity k[x, y, z]/(xy, z(2)) we give an explicit description of all indecomposable Cohen-Macaulay modules and apply the obtained classification to construct families of indecomposable matrix factorizations of x(2)y(2) is an element of k[x, y] (C) 2016 Elsevier B.V. All rights reserved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Burban, IgorUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Gnedin, WassilijUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-255303
DOI: 10.1016/j.jpaa.2016.05.010
Journal or Publication Title: J. Pure Appl. Algebr.
Volume: 220
Number: 12
Page Range: S. 3777 - 3816
Date: 2016
Publisher: ELSEVIER
Place of Publication: AMSTERDAM
ISSN: 1873-1376
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
Mathematics, Applied; MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/25530

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item