Dobre, Cristian, Duer, Mirjam, Frerick, Leonhard and Vallentin, Frank ORCID: 0000-0002-3205-4607 (2016). A copositive formulation for the stability number of infinite graphs. Math. Program., 160 (1-2). S. 65 - 84. HEIDELBERG: SPRINGER HEIDELBERG. ISSN 1436-4646
Full text not available from this repository.Abstract
In the last decade, copositive formulations have been proposed for a variety of combinatorial optimization problems, for example the stability number (independence number). In this paper, we generalize this approach to infinite graphs and show that the stability number of an infinite graph is the optimal solution of some infinite-dimensional copositive program. For this we develop a duality theory between the primal convex cone of copositive kernels and the dual convex cone of completely positive measures. We determine the extreme rays of the latter cone, and we illustrate this theory with the help of the kissing number problem.
Item Type: | Journal Article | ||||||||||||||||||||
Creators: |
|
||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-257549 | ||||||||||||||||||||
DOI: | 10.1007/s10107-015-0974-2 | ||||||||||||||||||||
Journal or Publication Title: | Math. Program. | ||||||||||||||||||||
Volume: | 160 | ||||||||||||||||||||
Number: | 1-2 | ||||||||||||||||||||
Page Range: | S. 65 - 84 | ||||||||||||||||||||
Date: | 2016 | ||||||||||||||||||||
Publisher: | SPRINGER HEIDELBERG | ||||||||||||||||||||
Place of Publication: | HEIDELBERG | ||||||||||||||||||||
ISSN: | 1436-4646 | ||||||||||||||||||||
Language: | English | ||||||||||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||
Refereed: | Yes | ||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/25754 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |