Pambuccian, Victor ORCID: 0000-0003-2263-1471, Struve, Horst and Struve, Rolf ORCID: 0000-0001-6915-5623 (2016). The Steiner-Lehmus theorem and triangles with congruent medians are isosceles hold in weak geometries. Beitr. Algebr. Geom., 57 (2). S. 483 - 498. HEIDELBERG: SPRINGER HEIDELBERG. ISSN 2191-0383

Full text not available from this repository.

Abstract

We prove that (a) a generalization of the Steiner-Lehmus theorem due to A. Henderson holds in Bachmann's standard ordered metric planes, (b) that a variant of Steiner-Lehmus holds in all metric planes, and (c) that the fact that a triangle with two congruent medians is isosceles holds in Hjelmslev planes without double incidences of characteristic not equal 3.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Pambuccian, VictorUNSPECIFIEDorcid.org/0000-0003-2263-1471UNSPECIFIED
Struve, HorstUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Struve, RolfUNSPECIFIEDorcid.org/0000-0001-6915-5623UNSPECIFIED
URN: urn:nbn:de:hbz:38-274308
DOI: 10.1007/s13366-015-0278-y
Journal or Publication Title: Beitr. Algebr. Geom.
Volume: 57
Number: 2
Page Range: S. 483 - 498
Date: 2016
Publisher: SPRINGER HEIDELBERG
Place of Publication: HEIDELBERG
ISSN: 2191-0383
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/27430

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item