Gundert, Anna and Wagner, Uli ORCID: 0000-0002-1494-0568 (2016). ON TOPOLOGICAL MINORS IN RANDOM SIMPLICIAL COMPLEXES. Proc. Amer. Math. Soc., 144 (4). S. 1815 - 1829. PROVIDENCE: AMER MATHEMATICAL SOC. ISSN 1088-6826
Full text not available from this repository.Abstract
For random graphs, the containment problem considers the probability that a binomial random graph G(n, p) contains a given graph as a substructure. When asking for the graph as a topological minor, i.e., for a copy of a subdivision of the given graph, it is well known that the (sharp) threshold is at p = 1/n. We consider a natural analogue of this question for higher-dimensional random complexes X-k(n, p), first studied by Cohen, Costa, Farber and Kappeler for k = 2. Improving previous results, we show that p = Theta(1/root n) is the (coarse) threshold for containing a subdivision of any fixed complete 2-complex. For higher dimensions k > 2, we get that p = O(n(-1/k)) is an upper bound for the threshold probability of containing a subdivision of a fixed k-dimensional complex.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-280936 | ||||||||||||
DOI: | 10.1090/proc/12824 | ||||||||||||
Journal or Publication Title: | Proc. Amer. Math. Soc. | ||||||||||||
Volume: | 144 | ||||||||||||
Number: | 4 | ||||||||||||
Page Range: | S. 1815 - 1829 | ||||||||||||
Date: | 2016 | ||||||||||||
Publisher: | AMER MATHEMATICAL SOC | ||||||||||||
Place of Publication: | PROVIDENCE | ||||||||||||
ISSN: | 1088-6826 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
Refereed: | Yes | ||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/28093 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |