Maahn, Maximilian ORCID: 0000-0002-2580-9100, Turner, David D., Loehnert, Ulrich, Posselt, Derek J., Ebell, Kerstin, Mace, Gerald G. and Comstock, Jennifer M. (2020). Optimal Estimation Retrievals and Their Uncertainties What Every Atmospheric Scientist Should Know. Bull. Amer. Meteorol. Soc., 101 (9). S. E1512 - 12. BOSTON: AMER METEOROLOGICAL SOC. ISSN 1520-0477
Full text not available from this repository.Abstract
Remote sensing instruments are heavily used to provide observations for both the operational and research communities. These sensors do not provide direct observations of the desired atmospheric variables, but instead, retrieval algorithms are necessary to convert the indirect observations into the variable of interest. It is critical to be aware of the underlying assumptions made by many retrieval algorithms, including that the retrieval problem is often ill posed and that there are various sources of uncertainty that need to be treated properly. In short, the retrieval challenge is to invert a set of noisy observations to obtain estimates of atmospheric quantities. The problem is often complicated by imperfect forward models, by imperfect prior knowledge, and by the existence of nonunique solutions. Optimal estimation (OE) is a widely used physical retrieval method that combines measurements, prior information, and the corresponding uncertainties based on Bayes's theorem to find an optimal solution for the atmospheric state. Furthermore, OE also allows the relative contributions of the different sources of error to the uncertainty in the final retrieved atmospheric state to be understood. Here, we provide a novel Python library to illustrate the use of OE for inverse problems in the atmospheric sciences. We introduce two example problems: how to retrieve drop size distribution parameters from radar observations and how to retrieve the temperature profile from ground-based microwave sensors. Using these examples, we discuss common pitfalls, how the various error sources impact the retrieval, and how the quality of the retrieval results can be quantified.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||||
Creators: |
|
||||||||||||||||||||||||||||||||
URN: | urn:nbn:de:hbz:38-320164 | ||||||||||||||||||||||||||||||||
DOI: | 10.1175/BAMS-D-19-0027.1 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | Bull. Amer. Meteorol. Soc. | ||||||||||||||||||||||||||||||||
Volume: | 101 | ||||||||||||||||||||||||||||||||
Number: | 9 | ||||||||||||||||||||||||||||||||
Page Range: | S. E1512 - 12 | ||||||||||||||||||||||||||||||||
Date: | 2020 | ||||||||||||||||||||||||||||||||
Publisher: | AMER METEOROLOGICAL SOC | ||||||||||||||||||||||||||||||||
Place of Publication: | BOSTON | ||||||||||||||||||||||||||||||||
ISSN: | 1520-0477 | ||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||
Faculty: | Unspecified | ||||||||||||||||||||||||||||||||
Divisions: | Unspecified | ||||||||||||||||||||||||||||||||
Subjects: | no entry | ||||||||||||||||||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/32016 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |