Rothe, Christoph and Wied, Dominik (2020). Estimating derivatives of function-valued parameters in a class of moment condition models. J. Econom., 217 (1). S. 1 - 20. LAUSANNE: ELSEVIER SCIENCE SA. ISSN 1872-6895
Full text not available from this repository.Abstract
We develop a general approach to estimating the derivative of a function-valued parameter theta(o)(u) that is identified for every value of u as the solution to a moment condition. This setup in particular covers interesting models for conditional distributions, such as quantile regression or distribution regression. Exploiting that theta(o)(u) solves a moment condition, we obtain an explicit expression for its derivative from the Implicit Function Theorem, and then estimate the components of this expression by suitable sample analogues. The last step generally involves (local linear) smoothing of the empirical moment condition. Our estimators can then be used for a variety of purposes, including the estimation of conditional density functions, quantile partial effects, and the distribution of bidders' valuations in structural auction models. (C) 2019 Elsevier B.V. All rights reserved.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-328716 | ||||||||||||
DOI: | 10.1016/j.jeconom.2019.11.004 | ||||||||||||
Journal or Publication Title: | J. Econom. | ||||||||||||
Volume: | 217 | ||||||||||||
Number: | 1 | ||||||||||||
Page Range: | S. 1 - 20 | ||||||||||||
Date: | 2020 | ||||||||||||
Publisher: | ELSEVIER SCIENCE SA | ||||||||||||
Place of Publication: | LAUSANNE | ||||||||||||
ISSN: | 1872-6895 | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/32871 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |