Lytchak, Alexander, Wenger, Stefan ORCID: 0000-0003-3645-105X and Young, Robert (2020). Dehn functions and Holder extensions in asymptotic cones. J. Reine Angew. Math., 763. S. 79 - 110. BERLIN: WALTER DE GRUYTER GMBH. ISSN 1435-5345
Full text not available from this repository.Abstract
The Dehn function measures the area of minimal discs that fill closed curves in a space; it is an important invariant in analysis, geometry, and geometric group theory. There are several equivalent ways to define the Dehn function, varying according to the type of disc used. In this paper, we introduce a new definition of the Dehn function and use it to prove several theorems. First, we generalize the quasi-isometry invariance of the Dehn function to a broad class of spaces. Second, we prove Holder extension properties for spaces with quadratic Dehn function and their asymptotic cones. Finally, we show that ultralimits and asymptotic cones of spaces with quadratic Dehn function also have quadratic Dehn function. The proofs of our results rely on recent existence and regularity results for area-minimizing Sobolev mappings in metric spaces.
Item Type: | Journal Article | ||||||||||||||||
Creators: |
|
||||||||||||||||
URN: | urn:nbn:de:hbz:38-332001 | ||||||||||||||||
DOI: | 10.1515/crelle-2018-0041 | ||||||||||||||||
Journal or Publication Title: | J. Reine Angew. Math. | ||||||||||||||||
Volume: | 763 | ||||||||||||||||
Page Range: | S. 79 - 110 | ||||||||||||||||
Date: | 2020 | ||||||||||||||||
Publisher: | WALTER DE GRUYTER GMBH | ||||||||||||||||
Place of Publication: | BERLIN | ||||||||||||||||
ISSN: | 1435-5345 | ||||||||||||||||
Language: | English | ||||||||||||||||
Faculty: | Faculty of Mathematics and Natural Sciences | ||||||||||||||||
Divisions: | Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute | ||||||||||||||||
Subjects: | no entry | ||||||||||||||||
Uncontrolled Keywords: |
|
||||||||||||||||
Refereed: | Yes | ||||||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/33200 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |