Lytchak, Alexander and Wenger, Stefan ORCID: 0000-0003-3645-105X (2020). CANONICAL PARAMETERIZATIONS OF METRIC DISKS. Duke Math. J., 169 (4). S. 761 - 798. DURHAM: DUKE UNIV PRESS. ISSN 1547-7398

Full text not available from this repository.

Abstract

We use the recently established existence and regularity of area and energy minimizing disks in metric spaces to obtain canonical parameterizations of metric surfaces. Our approach yields a new and conceptually simple proof of a well-known theorem of Bonk and Kleiner on the existence of quasisymmetric parameterizations of linearly locally connected, Ahlfors 2-regular metric 2-spheres. Generalizations and applications to the geometry of such surfaces are described.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Lytchak, AlexanderUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Wenger, StefanUNSPECIFIEDorcid.org/0000-0003-3645-105XUNSPECIFIED
URN: urn:nbn:de:hbz:38-340939
DOI: 10.1215/00127094-2019-0065
Journal or Publication Title: Duke Math. J.
Volume: 169
Number: 4
Page Range: S. 761 - 798
Date: 2020
Publisher: DUKE UNIV PRESS
Place of Publication: DURHAM
ISSN: 1547-7398
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Mathematics and Computer Science > Mathematical Institute
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
QUASI-SYMMETRIC PARAMETRIZATIONS; SOBOLEV SPACES; HARMONIC MAPS; DIMENSIONMultiple languages
MathematicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/34093

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item