Mendes, R. A. E. and Radeschi, M. (2020). SINGULAR RIEMANNIAN FOLIATIONS AND THEIR QUADRATIC BASIC POLYNOMIALS. Transform. Groups, 25 (1). S. 251 - 278. NEW YORK: SPRINGER BIRKHAUSER. ISSN 1531-586X
Full text not available from this repository.Abstract
We present a new link between the Invariant Theory of infinitesimal singular Riemannian foliations and Jordan algebras. This, together with an inhomogeneous version of Weyl's First Fundamental Theorems, provides a characterization of the recently discovered Clifford foliations in terms of basic polynomials. This link also yields new structural results about infinitesimal foliations, such as the existence of non-trivial symmetries.
Item Type: | Journal Article | ||||||||||||
Creators: |
|
||||||||||||
URN: | urn:nbn:de:hbz:38-343467 | ||||||||||||
DOI: | 10.1007/s00031-019-09516-9 | ||||||||||||
Journal or Publication Title: | Transform. Groups | ||||||||||||
Volume: | 25 | ||||||||||||
Number: | 1 | ||||||||||||
Page Range: | S. 251 - 278 | ||||||||||||
Date: | 2020 | ||||||||||||
Publisher: | SPRINGER BIRKHAUSER | ||||||||||||
Place of Publication: | NEW YORK | ||||||||||||
ISSN: | 1531-586X | ||||||||||||
Language: | English | ||||||||||||
Faculty: | Unspecified | ||||||||||||
Divisions: | Unspecified | ||||||||||||
Subjects: | no entry | ||||||||||||
Uncontrolled Keywords: |
|
||||||||||||
URI: | http://kups.ub.uni-koeln.de/id/eprint/34346 |
Downloads
Downloads per month over past year
Altmetric
Export
Actions (login required)
View Item |